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TRAMP : A RELATICNAL MEMORY WITH AN
ASSOCIATIVE BASE

ABSTRACT

This report describes the theory and implementation
cf an experimental language called TRAMP, which is a software
simulation of a content-addressable memory. The system consists
of an associative data structure embedded in an interpretive
language, allowing great flexibility and strong recursive power.
The system has further been extended with a logical inference
capability by superimposing a relational structure over the as-
sociative memory. The resulting language has already proved to
be extremely powerful in several applications, and can be termed
a language for developing question-answering and interactive
communication systems.

This report discusses the theory and design considera-
tions, details of machine implementation, and details of opera-
tion witlk examples.
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TRAMP : A RELATIONAL MEMORY WITH AN
ASSOCIATIVE BASE

I. INTRODUCTION

In recent years, the need for a content-addressable
computer memory has become increasingly clear. Larger and
larger programs are being wrntten which require a structured
data base to operate with any efficiency. Many of these could
well benefit by replacing tedious searches with a fast, effi-

cient, '"content addressable' access of the data store. A good

example is the ‘'key word" library search. If we ask for a list
of the books written by J.von Neumunn, we do not expect the
system to look at each title in its store and save only those
written by von Neumann. And, if there happens to be a catalog
prepared, designed to answer this particular question, we do
not want to have to do a binary search to find the correct
section of the catalog—we want to retrieve the answer directly!
There are many other problems which might find ccntent-

addressability advantageous. Examples abound in Artificial

Intelligence, where prohibitively large tree searches are en-

countered; question answering machines; logical inference systems;

s

graphic systems; and most conversational (timeshared) systems,

bk Do bl boid bend bd  bed bk bad  beeed G OEE s

which require immediate, direct access to a large data store to
interact effectively. To date, most investigations into content-

addressable memories have been concerned with hardware; such
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memories have not yet proved to be economically feasible. Even

»
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if they had, it is not cl:ar that the obvious gain in speed

-

would compensate for the loss in generality and flexibiiity.
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For the moment, it can be said that software simulations are a

&A

stopgap measure. They are. But it is not certainrn that they

will be completely replaced by hardware in even the relatively
distant future.

Another functicn of an artificial language is to permit
the programmer to phrase his problem in a natural manner. Ffor
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many problems information is most naturally described as '"rela-
tional triples"; e.g., in a graphics system, one might want to
say: <Picture in> <Window A> is <Line B>;or<Connected to>
<Line B> is <Line (C>. The associative processor appiroach to
content addressability allows this.

Before proceeding, we shall explain some potentia .y
ambiguous terms.

The essential feature of an associative processor is
that it has, in the conventional sense, no explicit addresses.
Reference to storage is made by specifying all or any part of
an associative cell, and all cells which match this field(s)
are referenced. The conventional computer store may be thought
of as a special (degenerate) case of an associative memory,
in that the association is between the physical address and
its contents. However, reference can be made only by speci-
fying the address—one cann>t ask directiy for all cells which
are zero! The true associative memory is accessed by speci-
fying any of the N participants in the association. Asso-
ciative memorics are often referred to as relational data struc-
tures. This is because an association between N + 1 '"objects”
is most easily thought of, talked about, and manipulated by
calling it an N-place relation.

The following example demonstrates why an associative
processor can effectively be employed as an application of con-
tent addressability. Supposc we wish to know the phone number
of Clark Kent. It is simple to look it up in the “ocal phone
book. It is, however, quite a different matter to find out
whose number is 764-6148 (using the same directory). An as-
sociative processor would find both tasks equal. In this
example, the '"association' is between a subscriber's name and
his phone number. 1In translating this to a two-place relation,
"phone number of" could be the relation, and using the <R,x,y>
format we would say: <Phone number of> <Clark Kent> is

<KR 9-8765>. This is a type of associativity wherein we may
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now directly rcference this triple by any of its content-address-
able components or combination thereof. If we use only the

first component, phone number, in a search, what will be re-
ferenced is the entire book. If we specify two components: phone
number and 764-6148, then we are referencing directly all assoc-
iations containing those two components, viz., the associations
containing the name(s) of the person(s) having the phone number
764-6148.

We are, of course, working with a conventional com-
puter memory. The general strategy used to effect the simulation
of an associative processor aand an approximation to content
addressability was that of hash-coding.t For those unfamiliar
with the term, hash-coding is simply a technique whereby an
arithmetic transformation is applied to an external name to
generate an internal address. Hash-coding by itself provides a
restricted but significant approximation to content addressa-
bility, but hashing alone does not provide any kind of assoc-
iativy, and there is always the problem of the '"collision,"

i.e., when two distinct names hash to the same internal address:
X # Y

into equivalence classes. Hopefully, each class has onl~’ opnz

: H(X) = H(Y) . Hashing partitions the space of names

element, but two or mcre names may be equivalent under this
partition.*

By prov.ding an interpretive language with an assoc-
iative data structure it is possible to achieve great flexi-
bility. To this end, we decided to use an existing interpreter
and give it a new data structure, rather than start at the bot-
tom by designing a special purpose interpreter. Principally,

we were concerned with the data strvcture, and the vehicle for

t A good survey of this technique may be found in Robert Morris'
article "Scatter Storage Techniques,' wnich appears in the

January 1968 issue of Communications of the ACM, Vol. 11,
No. 1.

Even restricting names to four characters of the Ernglish
alphabet, a one-to-one transformation would require a table
with 456, 976 entries to guarantee no collisions.




it was initially felt to be unimportant, since the data struc-

ture relies on the host only superficially. 1In considering

the question of the interpreter, < were faced with very little

choice. A major consideration was that of availability; fortunat=zly

this consideration led us to TRAC* T-64 Language. It has
proven to be a most elegant host, and credit for the power of
the resulting system must be shared by both the interpreter
and the associative memory given to it. However, we feel that
the additional primitives are excellent vehicles which change
the original processor into an efficient language for writing
man-machine and machine-machine communication systems. Famil-
iarity with the TRAC language may be helpful in reading this
article, but it is not prerequisite. A brief summary of the

basic components of the language is found in Appendix A.

II. BACKGROUND

An associative processor is one possible tool for
irformation storage and retrieval, and its history should be
discuscsed relative to such systems. Unfortunately, adequate
comparisons of different types of data systems are difficult
to make because they are predicated on different rules. Thus
the prime method of storage may vary from cards or paper tape,
through magnetic discs and drums, to prime computer memory;
at the same time, the storage may be either random or crdered
according to some schema; finally, the retrieval of the infor-
mation may be gross, such as the use of a mechanical sort
based cn some algorithm, or simple because the data were stored
for such answers or ovecause there is a well-developed language

to address the stored data.

* TRAC is the trademark of Rockford Research Institute, 1nc.,

Cambridge, Mass. in connection with their standard languages.

For details on TRAC T-64 language, see References 14 and 15.
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[us we have three possible criteria for comparison
of systems: the type of storage, the way of entering data into
that storage, and the language for addressing that storage.

The spectrum of potential systems is therefore large and varaied.

We will consider cnly thc-e which use main computer memory as

1 the storage device (including virtual or paged memory).
} One inherent bias of computer design affects tae
storage of data: the use of sequential storage, wh.re the data

are placed in numbered or ordered cells. Because this organi-

a o
[ =

zation system allows the automatic indexing of information by
'I means of some automatically varied register, the preferred
method of storage is tabular. Fortunately, tables are exceliznt
ways of storing information, for the parallel entries are ways

of expressing associations between objects (see Figure 1).

ITEM# NAME FATHER OF BROTHER OF MOTHER OF
{ EDITH, .
A 1 JOHN ARNGCLD SAM; JOAN —_—
fi 2 ARNOLD JAMES EDITH
- 3 MARY — — ARNOLD
g % EDITH _— — MELISSA
4 i )
1
£ Figure 1. Association by Tables.
"E Hence an index may carry the association and we can respond to
the query: '"Who is the mother of Arnold?" by scanning the
; "'mother of'" <column, picking the Index 3 at the entry 'Arnold"
-

and returning "Mary" from the "3 position" of NAME.

-
B ]

Such ntrieval systems are obvious and are in general

L}

use. What, then, are the fauits? Part of the problem lies in
the relative paucity of information—the large number of blanks

in the tables. Other problem: occur at the time of search, for

om s b




the tables are not properly ordered. In fact, the '"best order"
depends on what qu~stion is expected to be asked. For the

question: "Who is the mother of...?" the order 4,3,2,1 is

prefersred, whereas 'Who is the father ~f...?" prefers the
order 2,1,3,4 or 1,2,3,4. He-ce *‘here is no order that is

optimal for all questions. Anothei1 major problem of tabular

Lol (s

storage is its size limitation. To be efficient, the table

sizes mus: be pre-specified, and hence a sudden request for

extra space is potentially catastrophic.

bed e Gy W SN =T

The need for easy additionr and deletion led to the %
list procescor, and many information systems stem from the ideas § '
of IPL-V [16] and SLIP [21]. The former elucidated and refined ;
the method of pointers and lists, and the ideas of association ) i
lists (Figure 2). The use of lists makes possible dynamically -*
extended tables. A second use of lists is with association -
explicitly defined for certain obj»cté. Thus the iilustration v
of Figure 2b could be written: - j

<Attribute A> of <object a> = <value A> —~
<Son> of <Arnold> is <James> etc. §
-
Here we see that the question "Who is the mother of Arnold?"
is difficult to answer, because it was not explicitly .tored é%;
on Arnold's association list. This question may be answered -
ty cearching all association lists, unt .l one is found which I
has the pair {Mother, Arnold}. =

SLIP was the first embedding of a lis*-processing 144
capab’lity within a higher-level language and was a formative i
ring structure. The idea of rings was crystalized by ,"
Sutherland {2C), and Roberts [17], and used with data zvst -: i
designed primarily for graphics and computer-aided design
Roberts has also d-veloped a language to refer to rings . iass E;
Orie-t:d Ring Assvciative Language: CORAL). In ach lan-
gnages, the associations are built into the structure by allow- ¥
ing blocks of information to be threaded by rings which carry =
the associations between the blocks of data. This is illustrated i
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List Start pointer t¢ next
& —— > stop
A B C
1\
information
a. Ordinary, single way list: (A,B,C)
Association List of
otject "Arnnld"
lT__ )r +— Stop
v
B > stop
att SON value JAMES
-+ stop
att SISTE’Tl value EDITH

Figure 2.

One type of paired Association List:
[(att A,val A)(ate B,val B)

Association by Lists



by Figure 3. Dodd [l] has implemented a similar structure
within PL/I. The duality of certain relationships, such as:
"defined by" and '"defines'" or 'to the left of" and "to
the right of," etc¢., ied to the need for a connector block,
here illustrated by the three NUBS.* 1In essence, the NUB
represents a two-way switch for transferring out of one ring
and into another. The subrout.nes or macros pass along the
ring until they arrive at a NUB. They '"switch" it, and pas-
into the other ring, passing along the second ring (and others
as found) picking up information until they return to the
origina)l MNUB and re-enter the first ring. This allows
answers to questions such as '"Who is the mothker of Arnold?"
as well as '"Who is the son of Mary?" One of the major dis-
advantages of these structures occurs on adding a new, not
previously anticipated, association. The operation either 1s
impossible, requiring a complete recompilation, or else clumsy,
patching vn additional blocks (Figure 4) and requiring so-
phisticated garbage collectors. A recent survey by Gray {5]
descr.bes these and similar structures.

Probably the first conception of a true relational
data structure was Kocchen's AMNIPS [7,8]. He dealt with the
problem of iogical inference rather than with data structures,
but he recognized that conventional memories were inadequate,
and turned to the relational structure, which unfortunately
was never fully realized.

A considerable amount of work has been done on
various "question-answering machines.'" Among the better early
machines were Lindsay's SAD SAM [11] which can digest English
statements about family relationships and construct a family
trece, ana the BASEBALL program of Green, et al. [6] which

answers English queries about facts taken from a stylized

It is interesting to note that there is no need for NUBS
if we are willing to store all inverse and similar relation-
ships explicitly, with separate rings for each.

-0

(X3

—a

[ d

.

re

[P

i

5 < uiuh




-9-
Name
Sex Generic "Person"
Block
Parent of
Child of
John Mary
male female
Arnold Edith
male female
- A S .
A
k
Y, L
N\
NUT A NUB ﬁ[ NUB C

Figure 3. Associations by Rings.
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baseball "yearbook.'" These investigautions use conventional
data structures, and their real coniributions were to the
analysis of the English language and logical inference by
computer. Simmons [18] provides the most complete survey to
date of this work.

Maron and Levien [9,10,12] have designed one of the
most extensive and complete systems depending on a relational
data file. They deal with binary relations as their building
blucks, i.e., each association has three components: one
rel~tion ard two operands. 1In addition, they allow the naming
of the entire association (triple) giving rise tc a fourtn
component. Reference can be made using any of the four com-
ponents, and there are four copies of each associuation-one
copy for each word which can reference 1t.

Feldman has recently used the ideas of hash-
coding for association tables [3,4]). The associations
are, of course, carried hy a n=2w table, refereuced
by a '"double hash" technique. Feldman's language, AL , is
designed to be compiled rather than interpreted. AL has been
expaided to be three languages in cne: a truec ALGOL-tvpe
algebraic language with full numerical computation facilities;
an associative prucessor; and a lunguage which operutes on
sets as its basic entities with a full complement of set
operations. The language now allows tor certuin kinds of re-
stricted composition of associarions. Specificually, 17 a
sentence is a triple <A,0,V> |, then 0 or \ muay itself
be another triple. This allows for gencerating N-place rela-
tions out of the basic biaary relations. Illtowever, the language
has, instead of dynamic inference, a DO loop which is slight-
ly more cumbersome, and far less cconomical of storage, than
are strict logical inference capabilities.

Naturally, the simplicity in using datu systems de-
p.nds on the retrieval language. We have alrecady suggested
that the problem is partially a function or cxplicit versus

implicit storage. 1f the family relationships are taken in




-12-

the binary male lineage tree of four generations (Figure 5),
we have: 1t yreat-grandfather—son; 24 grandfather—son; 28
father—son; 14 brother; 24 uncie—nephew; 48 cousins, etc.
Obviously, a large number of relationships must be explicitly
stored for rapid access, compared with the cost of an implied
relationship search with small storage requirement.

The I'"relational" part of the TRAMP system is the

means for retrieving implied relationships, whiie the '"acsoc-
iative'" part deals with the explicit relations.
IITI. TRAMP

TRAMP (Timeshared Relational Associative Memory
Program) is two packages of functions: the first—the data
structure—may be used to enter, retrieve, and generally manip-
ulate an associative data structure; the second—the relational
memory—places an artificial structure on the '"associative
triples,'" viz., the relational structure. The relational
package allows logicai inference to be performed o:. the data
within the associative structure. Specifically, rules may be
entered, these will be followed by TRAMP, effectively expanding
a "minimal'" set of data to a workably large set; the number
~f associations that must be explicitly stcred is thereby
drastically reduced. For example: oy defining the relation
"HUSBAND OF" to be the converse of "WIFE OF," the user need

only store marital relations i1 one direction, while effectively

having them available in both directions. More detailed ex-
amples and the rules for using the relational package appear
later.

These machine-roded functional packages are presently
embedded in the UMIST* interpreter on the IBM/360 model 67.

Although this existing union has proved most fruitful, the

* UMIST is closely patterned after the standard TRAC T-64
Language, and was implemented at The University of Michigan
with the cooperation of Mr. C.N. Mooers, creator of the TRAC
T-64 language.
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data structure is totally independent of the interpreter and
actually relies on it only for I/0. The relational package

is also independent, except that it relies on the type of re-
cursion th-t the interpreter provides. The relational package

is totally dependent on the associative data structure.

The Associative Data Structure

Feldman's initial work was a strong motivation in
the design of this system, and led us to adopt his notation, s
viz., the generic entity: :-
A (0) =V

<Attribute> of <Ubject> equals <Value>

Thus the Associative Triple is: <A,0,V> . Each of the three

components is a non-empty set. To the data structure this is -
an ordered triple, but no interpretation or meaning is attached e
to the ordering, and all three are treated equally, giving none i

a priority.* By aprropriately designating cthe three components

as being constant or variable, we can ask eight '"questicns" i
of the data structure. Again using Feldman's notation, with
a slight re-ordering, they are: ;1
FO A (0) =V
Fl A (0) = x i
F2 A (x) =V
F3 A (x) =y
Fa x (0) =V
F5S x (0) =y
Fé6 x (y) =V =
F7 x (y) =z 1y

L

* This is in contrast to the relational package which places
an artificial structure on the triple, i.e., calling the
first component a 'relation" and the second and third its
arguments.

PY—Y
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where [A,0,V] represent constants, and ([x,y,z] are variables.
Question F7 is not a question at all but a request for a dump
of the associative memory, and in TRAMP such a dump is given.
Question FO simply asks: '"Does A (0) = V?" and the answer 1is
a kind of truth value. 1In the case where A, 0, and V are
all singletons, the truth value is a straightforward 1 or 0 de-
noting whether or not the specified association can be verified
by the data. The interpretation is slightly ambiguous, however,
when one or more of the three sets hes cardinality greater than

one. To illustrate, assuming that the association
COLOR (CAR) = RED; GREEN*

has been stored, these five questions have the following truth
values:

1. COLOR (CAR) = BLUE 0
2. COLOR (CAR) = RED; GREEN 1
3. COLOR (CAR) = RED; BLUE ?
4, COLOR (CAR) = RED 1
5.

COLOR (CAR) = RED;GREEN,; BLUE °?

Questions 1 and 2 are clearly false and true respectively,
but questions 3 and 5 are each partially true and partially
false; question 4 is only half true. The interpretation which

seemed most natural, and the one adopted by TRAMP, gives the
truth values a4s shown, namely:

if ALL associations implied by the question are

resident in memory, or derivable therefrom, the
value is "1

if none, the value is "0"

if some, but not all, the value returned is "?"

Since the comma already plays an important role as a TRAC
language meta character, it is unavailable as a sct element

delimiter. Therefore the semi-cclon (;) plays that role
in TRAMP,
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Questions F1-F6 simply ask the system to '"fill in the blank(s),"

i.e., to replace the variable with the set that is the answer toc

the question. For example, Question Fl asks for the set of all
Vs that A (0) equals. Question F3 asks for the sets of all
0s and Vs that have a first componernt "A.'" Because of the

recursive nature of TRAC, questions F1-F6 may be nested in

any way, to any desired depth. One may ask: '"How many fingers
on a hand?"; '"What figures are pointed to by the arrows in
Window Q?"; ‘'How old are the fathe.s of the wives of Mary's

brothers?"; or any questions composed in any way compatible
with the stored data, nested to any level.

For those totally unfamiliar with TRAC language, for
this section it is necessary to know only the syntax of a func-
tion call. The sharp sign (#) signals the start of a func-
tion call, with the call itself enclosed in an immediately
following pair of parentheses. The arguments are separated

by commas, and the first argument is the name of the function.
# (sub,ARG)
is therefore aralagous to the FORTRAN

CALL SUB(ARG)

Data Structure Storage

The name of the storage function is dr and the
syntax of the call is: #(dr,A,0,V) . Again, the three ar-
guments to dr are each non-empty sets. Each point in the
cartesian product of the three sets is stored, i.e., each
element of each set is grouped with each pair of elements of
the other two sets, and the resulting triple is stored. Thus
a single call on dr stores as many associations as the pro-
duct of the cardinalities of the three s2ts. The storage

declaration:

#{(dr,AGE,JOHN;MARY,64)
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would therefore store:
AGE (JOHN) = 64
AGE (MARY) = 64

The actual sterage is accomplished by pairing each A and 0
to point to a list of Vs ; each A and V point to a list of
Os , etc. These '"answer'" lists are, strictly speaking,un-
ordered, except that they retain the order in which they were

stored. That is, asking the question:
"Whose age is 647"
would yield the answer:
JOHN; MARY not  MARY; JOHN

It should be noted that this is a nure data structure,
and it does not deal with semantics; dr simply inserts associa-
tions into memory in a way that they can be quickly retrieved.
TRAMP 1is not a question-answering system that checks for redun-

dancies or inconsistencies of data.

Data Retrieval

The primary retrieval function has the name rl . The
syntax of the function call is identical to that of dr except

for variable specification. A variable in TRAMP is denotea by

enclosing a name, possibly null, within asterisks (*) . Thus,
#(r1,A,0,V) has no variables and asks whether A (0) =V ;
#(rl1,A,0,*X*}) asks: "What does A (0) -equal?" If the vari-

able is Named, i.e., there is a name within the asterisks, then

the function is Null Valued and the answer is stored in TRAC

language form storage labeled by the Name. #(rl,A,G,*ANS*)
would store the set of Vs which A (0) equals, uncer the
label "ANS." 1If the variable is not Named, #(rl,A,0,**)

then the answer is the Value of the function. #(rl,A,*SETO0","*)
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: n example of a two-variable juestion with one Named and
o1 Unnamed variable. The result in this case would be that
the set of Os 1is placed in form storage under the label
"SETO0" while the set of Vs is returned =s the Value of the
function.

The two-variable questions (F3, F5, F6) simply use
the Name table of one of the variables and index through that
table, internally always asking the one-varizble questions.
Since the data structure does not assign any priority to the
three components, questions F3, F5, and F6, althougn comn-
5iderablv slower that the one-variable questions, are all
equal among themselves. The process of answering a two-vari-
able question is less <fficient because it must iteratu on
the one-variable questions, the number of jiterations being a
linear functicn of the size of memory.* The speed with which
the cne-variable questions are answsred is not significantly
affected by “he size of memory! The three-variable question,
#(rl,**,** **)  is, of course, tlL2 slowest of all and it is
a full dump cf the associative memory. Alternatively, one can
call: #(dump).

Going back to the earlier exampie of N and MARY,
the question: #(rl,AGE,JOHN;MARY,**) shou.d have as its
value: 64;64. That is, redundancies can be valid and should
be reported. But there are certain times, particularly in
the two-variable questions, when redundancies bhe«come quite a
ruisance (and even threaien to overflow the inte:preter).
Trerefore, the function rl will always return an answer set
with all redundancies deleted. A second entry pcint 1s pro-
vided, with the name ~rlr , which is identical except that it
dces not check for redundancies but returns the answer set

as it finds 1it.

* Here, and subsequently, "size cf memory" refers to the amount
of data in the structure, rather than tie physical extent of
tl . system.
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rl generates the union of the answer sets. That is,

the question: #(rl,AGE,JOHN;MARY,**) has two answer sets:

the AGE of JOHN and the AGE of MARY. rl simply forms the
union of however many sets thcre might be. int is the func-
tion (yet another entry point to the same routine) which
generates the intersection of the several answer sets. Thus,
#(int,SOUTH;WEST,AUGUSTA,**) generates the set of all things
both south and west of Augusta. #(rl,SOUTH;WEST, AUGUSTA,**)

on the other hand, would generate the set of all things either

south or west of Augusta.

Data Structure-General Strategx

As stated in the introduction, hash-coding is the
technique most basic to the data structure design. A brief
description of the use of nash-coding in TRAMP follows. Sec-
tion V gives a more technical and detailed description.

The data structure uses three Name tables and three

Association tailes, one each for each of the three components
of the association. When the declaration: < (dr,WIFE,JOHN,
MARY) is maae, each name that appcars must be stored somewhere
in memory. The full name must be present so that it can be
retrieved, and so that, when it is referenced, a collision can
be identifiesd and resolved. The first hash, Hl , then is
applied to the "A" <component, "WIFE," to generate a dis-

placement from the A Name Table. The designated table entry

i> then inspected. If the entry is zero, then there is no
collision and WIFE has never appeared before as an "A" com-
ponent. Accordingly, the table entry is now made to point to
the Header for the tame WIFE, see Figure 6. If the table
entry is not zero, the Header to which it points is inspected
t, see if it is the Header for WIFE. If so, the A name
has been processed and we move on to the O component, other-
wise there is a collision. For a collision, instead of a

single Header, there is an alphabetical list of Headers.
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Thus, Name Table collisions are not really special cases: if
there is no collision, then there is a list consisting of a
single Header, otherwise the list contains two or more Headers
in alphabetical order.

If the above process did not find the name, before
it is actually placed in storage, a further check is made on
the other Name Tables, thus avoiding redundant storage. Any
name will appear at most once in memory, with up to three
Headers pointing to it.

The same procedure is applied to "JGHN" and "MARY,"
the O and V of this example, on their respective Name Tables
As a result of the Name Table processing, a unique pointer 1s
associated with each of A, C , and V , namelv the pointer in
the Header which points t. the location of the actual name.

It is this unique pointer that will be used for the second

hash, H, . "WIFE" must now be placed on the A Association

Table. To do this, the O and V pointers are hashed to-
gether tc generate a displacement from the Association Table.
To be able to identify collisions, both pointers that were

used to generate the hash are stored in the table entry de-
signated by the hash. Collisions are again resolved by ordered
lJists. The Association Table entry has three pointers: the
first two are the pointers used to generate the displacement;

the third points to the Answer List, i.e., the list of A's

(in this case) with which 0 and V have been associated.
Thus, "WIFE'" is appended to the Answer List by placing the
unique pointer to it at the end of the list. No.e that H

1
is a function of the actual name, while H2 is only a func-
tion of where the iame is stored and is independent of the
name itself. Figure 7 shows the Assnciation Tables, both for

the collision case [7b], and for the normal case [7a].
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IV. LOGICAL INFERENCE PACKAGE

The associative memory accomplishes a kind of content
addressability by using two quick hashes to address data, and
the access time is essentially indcpendent of the size of
storage.* But for most, if not all, applications, many associa-
tions will be implied by a single associitive sentence. This

poses two real problems:

1. The user must make sure that all associations that
apply are actually inserted into the structure.
This is extremely tedious and prone o error and
omissions.

2. Explicit storage results in gross inefficiency.

To alleviate this, TRAMP provides the facility to define, in a
characteristic way, what other associations may be derived from
a given association. This permits all of the information that
might be contained in a single associztion or sequence of as-
sociations to be utilized instead of having to enter the same
information redundantly in each of the several ways that it
might be referenced. The name of the function which makes the
definition is ddr . The syntax of the function call is:
#(ddr,(R = EXP)) , wi.ere R 1is the relation ("A" component)
to be defined, and "EXP" 1is a logical expression which 1is

the definition.

Before presenting examples of the use of ddr , two
relational operators must be defined:
The first is converse, denoted ir TRAMP by ".CON."

Converse simply :inverts the order of the two rela-

As the size of storage increases, there are more collisions,
but they are quickly zesolved, and do not cause a significant

deiay. Even in extremec pathological cases, they involve only
relatively minor list searches.
~23-
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tional arguments:T
R{x,y) ** L.CON. R(y,x)

Thus "CHILD OF" is the converse of '"PARENT OF";
"WIFE OF" is the converse of "HUSBAND OF";
"SPOUSE"is its own converse; any symmetric rela-

tion is its own converse.

Relative Product: The relative product or composition

of two relations is commonly denoted by Rl/RZ , and
this is the notation used by TRAMP, :

¥Xyy3zZ KRI/RZ)(x,y) > Ry (x,2) A Rz(z,y)]
Less rigorously, but more specifically,
#(ddr,(R3 = Rl/RZ))

would tell TRAMP that Rs(x,y) if 2 "z <¢an be found
such that Rl(x,z) and Rz(z,y)

Besides these two relational operators, three logical operators

are avail:ble: .A. (conjunction); .V. (disjunction); .N. (nega-
tion). Finally, there are six equality operators: .EQ.; .NE.; =
.GE.; .LE.; .GT.; .LT. , with obvious meanings.

Examples of TRAMP relational definitions are:
#(ddr, (BIGGER = BIGGER / BIGGER)}) Bigger is transitive
4 (ddr, {BIGGER(A,B) = BIGGER(A,Q) .A. BIGGER(Q,B)))
exact same definition using expanded

format—specifying dummy arguments.

#(ddr, (SIB = BRO .V. SIS V. .CON.SIB))
a sibiing is a brother or a sister and 1t

is symmetric.

t* The relational notation used by TRAMP is derived from the
format "R,x,y" by enclosing the relational arguments in
parentheses. This is a slight distortion of the associative
notation: A(0) = V , but the order is preserved: R(x,y)
means that R(x) =y
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# (ddr, (HUSBAND = .CON.WIFE}) Husband is the converse of Wife.
#(ddr, (BIGGER = LARGER) Bigger and Larger are synonomous.

#(ddr, (BRO(CAIN,ABEL) = SIB(CAIN,ABEL) .A. SEX(ABEL,"MALE")))
a brother is a male sibling. Note that
constants a2re denoted by enclosing them
within double quotes.

# (ddr, (MALE(X) = SEX(X,"MALE"))) defined the unary relation
MALE

4 (ddr, (BRO(X,Y) = FATHER(X,Z) .A. FATHER(Y,Z) .A. MALE(Y)

AL XLUEELY))
a brother is a male offspring of the same
father, other than onesclf.

#(ddr, (STEPMOTHER = FATHER / SPOUSE .A. .N.MOTHER))
a stepmother is the spouse of the father
who is not the mother.

#(ddr, (NEPHEW = SIBLING / SON)) a nephew is the composition
of sibling and son.

# (dds, (UNCLE LCON. (SIBLING/SON))) in a male world, uncle
is the converse of nephew and may be de-
fined as the converse of the definition

of nephew.

# (ddr, (UNCLE

.CON.NEPHEW)) nr simply as the converse of
nephew.

More complex examples will arise, and TRAMP is pre-
pared to handle definitions of the above form to a level of com-
plexity virtually unlimited. One major constraint is placed on the
definiticns: relations must be defined so that at least one
sct is generated. Tihis generated set can then be intersected
with or joined with another set, or otherwise manipulated.

The intent of this constraint is that there be at least one

reference set., The "whole space' may never be used as a

reference set,

#(ddr,(R3 = .N.R1 V. R,)) is illegal since it specifies
- a global complement (of R.),
i.e., it references the "whole
space."
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is legal because it specifies

a relative rather than a glohal
complement, i.e., R places a
constraint on R2 not on the
whole space.

#(ddr, (R,

n
z
-
b
-

1)
-
Nt

Implementatiocn of Inference

The purpose of the inference mechanism is to allow
the user to define under what conditions an implied association
may be derived from data explicitly in memory. This is ac-
complished by generating where necessary (where defined) a more
complex retrieval call from a simple one. Specifically, if

the following definition had been entered:
# (ddr, (STEPMOTHER = FATHER/SPOUSE .A. .N.MOTHER))
then the following simple retr? al call:
#(rl1,STEPMOTHER,JOHN, **)

which asks for the stepmother of John, would be expanded by
the system to be the following:

#(rcom,#{(rl,SPOUSE,# (rl,FATHER,JCHN,**),**) # (r1,MOTHER,JOHN,**))

#(xr1,STEPMOTHER,JOHN, **)

The exact cail generated would be slightly different, but that
is a technicality, irrelevant at this point. The final re-
trieval call in the sequence generated asks if the desired as-
sociation was entered explicitly. It is always assumed that

a relation that has been given a definition may also appear
explicitly. The rest of the expanded call will find the answer
if it is present implicitly. This expanded call is t:": re-
turned to the UMIST processor, which in turn makes th= actual
calls to the data structure. The importance of this is that
relations need be expanded only one level at a time, with the
UMIST recursion automatically taking care of the possibility

that any relation is defined in terms of more complex relations,
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etc. (this is the major difference between the call as it
actually would be generated, and as it appears above—the above,
taken literally, would specify an infinite recursion!) Thus
the inference compiler generates TRAMP procedures--they operate
only within the TRAMP language-—not at a lower, machine level.
The definition, entered by #(ddr), specifies what informat:on
the procedure is to derive and what rules may be used tc derive
it; the compiler accordingly constructs such a procedure; and l
the interpreter (TRAMP inference interpreter—rather than UMIST)
expands the procedure at retrieval time, filling in information
specific to the call.

At retrievai time, a retrieval '"preprocessor'" looks
to see if the '"relation" ("A" component) has been given a def-
initionr . If not, the preprocessor exits and retrieval pro-
ceeds as described earlier. If the name is found to have been
defined, then the "interpreter'" is called in to interpret the
program generated by the compiler at the time it was defined.
This program tells the interpreter what TRAMP function calls
are t~ be made, and what the function arguments are to be.

It should be noted that the compiler actually puts
, builds

a chain to generate y ; the other builds the apprepriate

out two programs: one which, given x of R(x,y)

chain in the opposite direction, from y to x . Thus ques-
tion F1: #(rl,A,0,**) generates a different sequence of
function calls than F2: #(rl,A,**,V) . It may not be immc-

diately obvious why this is necessary, but, in general, the
two programs will be quite different. This is 1lways the
case for composition. Still, the compiler would only have
to output one program, and the interpreter could decide how
to interpret it. Since the compiler will usually be called
only once or twice for each relation, ci certainly fewer times
than the interpreter, it is most efficient to let the compiler
do as much of the work as possible.

The compiler is prepared to handle definitions which
are circular in the sense that a relation is defined 1n terms
of itself. That is, symmetric and transitive relations uare

perfecily acceptable. However, the sequence:
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#(ddr, (TPP = QQQ .V. ... ))

is invalid because of its circularity.

attempt to generate code for that sequence,

specify an infinite recursion.

for ard flagged if detected.

#(ddr, (QQQ = PPP

Neoooo )

Were the compiler to

the code would

This situation is checked

V. TRAMP INTERNAL ORGANIZATION

In effect, TRAMP employs a triple storage technique

to be able to reference an association in three different ways.

Thus, the association A (0) =

0 , and V Association Tables,.

V is stored on each of the A

This makes the answers to

questions Fl1, F2, and F4 equally accessible and optimizes

retrieval time.

TRAMP uses eight principal blocks of core. Though

it is designed to run under a timesharing supervisor waich

continually swaps TRAMP on and off a drum,

no explicit use of drums, discs

TRAMP itself makes

, or other secondary storage

devices; that is, such use by the system is transparent to

TRAMP as well as to the user.

The blocks of virtual core are:

four Name Tables [A, C, V, and a Name Table for Definzd Re~

lations]; three Association Tab

ies;

and a General Storage list

[GS] (commonly cailed '"'Available Space' in many list proces-

sors). GS provides all the working space for TRAMP and is

by far the largest of the eight. in addition to storing all

of the information indexed by the seven tables, GS resolves

any overflow (via collisions) from the tables.

For purposes of illustration,

interpretation of:

#(dr,HUSBAND,EVE,LADAM)

First the Name Tables are processed.

produce a displacement from the

HAH

"HUSBAND"
Nome Table.

let us follow the

is hashed to

The actual

as

-n

>




hashing scheme for H1 is to form a full word (4 bytes) by con-
catenating the first, last, and middle two characters of the
name, in that order. A single character may play only one of

those roles, i.e., a name consisting of oite character has no

Jast or middle characters. Any missing components arc filled
with hexadecimal zeroes. Thus HUSBAND yields "HDBA'; EVE yields
"E:Vo" and ADAM yields '"AMDA." The full word so generated 1s

then transformed, with the transformation being little more
than squaring and masking.

A list is geaerated in GS to hold the EBCDIC re-
presentation of the name: € characters (bytes) per dcuble word
and a 2-byte pointer to the next unit in the 1list. All units
in GS are double words (64 bits). Each name list 1s term-
inated with a stop meta character. All lists in TRAMP are
terminated with a stop pointer, though the stop pointer is
superfluous in the name lists because of the stop meta. In
the case of HUSBAND, two double word units will be needed: the
first will hold the 6 characters H-U-S-B-A-N, and a two-
byte pointer to the next unit which will hold the character
"D," the stop meta charc:er, and the stop pointer, with four
bytes left over. Since HUSBAND is used here as an "attribute,"
we are concerned with the A Name Table. We loolk at the
entry in this table designated by the hash. 1f this entry is
empty, i.e., zero, there is no collision, and HUSBAND has
not been used previously as an attribute. If not empty, we
look at the list of Headers pointed to by the entry This
list is alphabetical, so we need lcok only until we find HUSBAND
or its proper alphabetical position on the list. Proceeding
down this 1list of Headers, we compare the list generated above
with the sublists pointed to by the headers. 1f a match 1is
found, simply rerurn this temporary list to GS and i1ncrement
the USE count for HUSBAND in its header. 1f it is not found,
insert it ... after checking the O and V tables for 1ts

occurren:e. Previously HUSBAND may have been used as, say, an
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‘ubject” #(d1,SEX,HUSBAND,MALE) . In this case the HUSBAND
name list would already be resident in GS. We therefore return
the co.y of it generated above, and insert a pointer to the
first 11ist on the A tabl!e header list. Thus a name never ap-
nears in core more than once, though many pointers nay point
to it, including up to four hesaders if a name appears on all
four Name Tables,

The atove process is done for each HUSBAND, EVE, and
ADAM. The final pointer to the one name sublist of ezch is
saved to gencerate the Association Table hash—H2 . Let us
follow the processing of the O Association Tabte. HUSBAND and
ADAM (A and V) are ha:hed together (multiplied and masked)
to produce a displacement in the Assoc’-tion Table. The actual
hash is performed on the two unique pointers found during Name
Table processing. The designated Association Table entry is
examired. If zero, there is no collision, aund HUSBAND and
ADAM have never appeared together with another value. The
unique pointer to HUSBAND is placed in the first 2 bytes of
the 6-byte entry. The pointer to ADAM is inserted in the middle
2 bytes. A double word unit is picked off GS to be the start
of the "Answer List," and the pointer to this Answer List is
placed in the last 2 bytes of th: table entry. The Answer List
elements consist of three 2-byte pointers to name sublists, the
answ>rs, and a 2-byte pointer to the next list element. Ac-
cordingly, the pointer to EVE is insertea in the Answer List.

If the table entry was not zero, compare the first 4
bytes of it with the two pointers that would go there. If a
natch is made, then just add EVE to the end of the already
started Answer List (polygamy is fine here), starting a new
unit if necessary. This is a simple unordered list, with new
elements always being added to the right-hand ead. If the first
four bytes of the table entry do rot match the pointers, is
there a collision fiag :n the eatry? If not, a collision list

is begun. This 1s an orderei list, with the ordering being
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the numerical value of the full word obtained by concatenation
of the A and V pointers (the f.rst 4 bytes of the table
entry). Each element of the 1i5¢ is a double word as always.
The fir>c¢ 6 bytes of this double woru are identical to the
6-byte table entry. The last 2 bytes point to the next ei:ment
on the list. When a collisien occurs, the first 4 bytes of

the table entry are so flagged and the last two bytes point to
the list which resolves it,

The entries of all the tables, .s well as all list
pointers within GS , pouint to double word units in GS . All
pointers are 2 bytes long (l6 bits), but are capable of ad-
dressing 128 pages of GS . (1 page = 4096 bytes; 128 pages =
219 bytes.) For some applications this size is more than
adequate,and for others (e.g., artificial intelligence) not
nearly enough., With its present scheme (addressing 2']'9 bytes
vith only 16 bits) TRAMP has an upper limit of 128 pages, which
is a usable sizz ¥or the majority of cases, including many Al
applications. There is obviously a trade-off here since the
more vore that a pointer can address, the less percentage
(though rnot p-oportionately less) of that core is available!
There is a second trade-off because the sice of the units
which must be addressed deter. tnes the number of bits neceded
to address them—the larger the unit, -he fewer bits required,
but genera.ily, the less efficiently it 1s used. We arbitrarily
decided that the half-word pointers that TRAMP uses to address
double words are, in a sense, optimal. Should more experience
prove us wrong, or 1f somc special application should require
much greater capacity, the struccure could be augmented, e.g.,
to incorporate full 32-bit addresses, with little more trouble
than alteration of an assembly parameter. At this time it is
not anticipated that explicit use will be made of any peri-
pheral stor: e devices, other than the transparent swapping

performed by the timesharing supervisor.
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“he sizes of the various Name and Association tables
are another assembly parameter. Currently the 7 tables occupy
4 pages of core. This figure was arrived at arbitrarily and
will remain in force pending feedback which indicates that it
is inappropriate.

TRAMP is initially loaded into core with all of its
tables, a one-page PSECT and 8 pages of GS . Thereafter, when
more space is needed (GS is the only unit that will require
more space, since overflow from the tables is placed in GS),
TRAMP requests it of the system in blocks of 8 pages until
the maximum of 128 is reached, or the system is unable tc comply
with the request.

TRAMP is continually fenerating temporary 1ists which
are immediately returned to GS when no longer needed. As
well, when an association is destroyed, or a i1elational defini-
tion erased (KR and KDR , Appendix B), as much storage as is
being released is at that time returned to GS . Thus, un-
used units are never left lying about core: a unit is returned,
not discarded, eliminating formal garbage colleciions by en-

suring that garbage is never created.
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APPENDIX A

UM1ST

The following excerpts from the UMIST manual are re-
produced with the permission of Mr. Tad Pinkerton, whose work it
is. Wwhat follows is partial and incomplete and is intended
only to familiarize the reader with the structure of the
language and enable him to follow the TRAMP definitions and
examples. A complete description of the UM1ST language may
be found in The University of Michigan Terminal System Manual:
MTS, 2nd Ed., Vol 11, The University of Michigan Computing
Center, December 1967.

A level of the TRAC language called "TRAC 64" is
described in [14}. 1t is the basic standard and point of
reference for UMIST. A good discussion of TRAC 64's design
goals and principles is given in reference [1.Y]. Much of the
motivation fnr the development of the TRAC language came from
the work of Eastwood and Mclroy [2,13] at Bell Laboratories.
A system similar to the TRAC language which was developed in-

dependently in Great Britain is described by Strachey [19].

MODE OF OPERATION

There are two kind of functions: primitives, or
machine-language subroutines that support the system in its
environment. The primitives are the basis for the second type
of function, called forms, or named procedures in UMIST storage,
which are character strings written like racro definritions and
expanded, interpretively, when called. When writing a function
call, one specifies whether its value (replacing the call) is
to be processed again as part of the input string (active call),
or whether processing is to continue starting with the portion
of the string to the right of the value returned (neutral call).

A-1




A single processing cycle is completed when the scanning and
evaluating process reaches the right-hand end of the string.
Sequencing and evaluation in UMIST are inherentiy

recursive: function calls are evaluated from left to right,
but may be nested to any depth in the arguments of other calls.
Each function call is evaluated when, and only when, all of 1ts
argum~nts have been completely processed. Thus the string be-
ing processed is divided logically into two parts: the active
string, ccnsisting of input text (possibly preceded by inserted
functional values) which is yet to be scanned, and evaluated

arguments of function calls which are not completely ready for

evaluation. This mode ~f operation, based on the completely
interpretive execution of function calls, eliminates tne dis-

tinction between program and data.

SYNTAX

Each function call in UMIST has the form of a spe-
cially delimited argument list, in which the name of tne func-
tion is always the first argument. <Calls may be open (a vari-
able number of arguments) or closed. A function call may be
protected from evaluation by the use of literal delimiters.
Another delimiter signals the right-hand end of the input
string. These considerations lead to a syntax in which thexe

are seven special symbols, whose occurrences are deleted from

the string during syntax scanning and whose presence indicates
the beginning or end of a substring. The character strings

enclosed in brackets below are the UMIST special symbols:

Beginning of neutral function call [##(]
Beginning of active function call [#(]
End of argument {,]

End of call [)]

Beginning of literal [(]}

End of literal [)]}

Ny B e

End of input string [']
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Note that the three beginning-of-substring s,mbols
##( and #( and ( are terminated by the occur:ence of the same
ead-of-substring character, ). UMIST has a '"parenthesis
balanced" syntax, in the sense that an occurrence of the right
parenthesis matches only the last previous occurrence of any one
of the beginning-of-substring special symbols. Whenever a
literal substring is encountered, the UMIST processor removes
the enclosing parentheses, but only the outer set is removed
if more than one matching pair occurs. Thus a string initially
protected from evaluation may be evaluated if scanned a second
time, and, in general, =svaluation can be controlled to occur

the n-th time the substri-'g is scanned.

READ STRING AND PEINT STRING

The value of a ‘'read string' function call
#(rS)

is an input string accepted from the current input device.

The ‘'print string' function
#(PS,X)

causes the display of the second argument, here symbolized by
X , on the current output device, and has a null value.
When the UMIST processor is first given control,

and at the end of every processing cycle, the idling procedure

## (PS,# (RS})

is automatically loaded as an input string. This procedure
first causes a read from the input device, with the input string
becoming the second argument of the 'print string' call. Thus
the string, if any, remaining when the input string has been

compietely processed, is finally printed before the 1dling




procedure is again loaded. For example, if the input string 1s
#(PS,ABC)'

then after the 'read string' has been evaluated the proces-

sor is scanning the string
#4# (PS,#(PS,ABC))

and the inrer call produces the output ABC ; the outer call

nothing, since the inner 'print string' has a null value.

DEFINE, CALL, AND SEGMEIT STRING

Any character string in UMIST can be given a name
and placed in storage, from whence it can be called by using

its name. Tne null-valued ‘'define string' function
# (DS,A,B)

places the string B in storage with the name A . A s
called a form with value B . At most one string can be de-
fined with a given name at any one time: use of the same
name replaces a former definition. The value is retrieved

with the ‘'call string' function
#(CL,A)

A form name, like a value, is any character string.
The only restriction on length is thkat of the total string
capacity of the processor.

The occurrence of strings in storage is deleted

with the ‘'dele*te definition' function
#(DD,N1,N2,...)

This null-valued function removes the names NI1,N2,... as

forms and discards their values.

-
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Once defined, a form can be 'parameterized,' or

segmented, using the ‘'segment string' function:
#(S8S,A,X1,X2,...)

This null-valued function scans the form A , searching for an
occurrence of the string X1 as a substring. If X1 matches
a part of A , that part is excluded from further matching,
creating a '"formal variable," or segment gop. The rest of the
form is also compared with X1 to create, if possible more

segment gaps, all of which are assigned the ordinal value one,

identifying the argument matched. The (separate) substrings
of the form not already taken for segment gaps are next scanned
with respect to the string X2 , and any occurrences of the
latter substring in A <create segment gaps of ordinal value
two, etc.

Thus, the 'define string' and 'segment str ng' func-
tions tegether create a '"macro'" in which the segment gaps
locate the '"formal parameters." The '"macro'" is expanded by
supplying the '"actual parameters' in a call on the 'call string'

function mentioned above:
#(CL,A,Y1,Y2,...)

The value of the 'call' is generated by returning the form A

with all the segment gaps of crdinal value 1,2,... Treplaced
by Y1,Y2,... respectively., If extra arguments are given
in a CL , they are ignored. If some are missing, null strings

are used as their values,.

THE EQUAL FUNCTION

A decision function is provided for character strings:

# (EQ,A,B,T,F)




If the string A

the value is the fifth argument, F

and F may be any UMIST procedures,

normally used for branching.

is identical to the string B
value of this function is the fourth argument, T

, then the

; otherwise
Since the strings T

this primitive is the one
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APPENDIX B

TRAMP FUNCTIONS

This appendix is intended as a reference manual for TRAMP and
provides full specifications for using the various functions
available in it. This section assumes a working knowledge

of UMIST (Appendix A), as well as familiarity with the design
goals of TRAMP as set foith in the body of this paper.

Running TRAMP in MTS (Michigan Terminal bystem)

TRAMP is invoked in the normal way be specifying it as the
object file of a "RUN" command. The input is taken from the
logical device SCARDS; output is put on the logical device
SPRINT; and error comments (TRAMP, not UMIST) appear on the
logical device SERCOM. While all three are global run para-
m¢ ters, the active inmut/output dev.ces may be switched from
SCARDS/SPRINT to soine other logical device, dynamically with-
in UMIST, via the #(par, function.

The "RUN" command can accept, besides these keyword para-
meters, a parameter "list" (via "PAR=") consisting of the

following three global parameters, whose default values

are underscored:

a. NOPRIME or PRIME

This parameter specifies whether or not the prime
(') wils be regaired to terminate TRAMP input lines.
If PAR=PRIME , then the program is in the normal UMI1ST
modc of operation: an input line is not terminated
uantil the prime is encountered. Otherwise, a prime will
aatomatically be appended to the end of each input line
{if not already there), ac delineated bv a carriage re-
turn or other device-dependent end-of-record signal, by

TRAMP before it is passed on to UMIST, which 1s sti1ll

B-1
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operating in the norma2l mode. If an input record has
as its last character an ampersand (&) , then that is
taken to be a continuation .'ark: the ampersand 1is
deleted from the line, which is passed on to UMIST
without a prime. If the ampersand is followed by a
blank, then it is not a continuatinan mark; it must be
the last character, noi just the last non-blank char-
acter!

The mode of operation is initially set with this
parameter, but may be dynamically altered during exe-
cution via the PRIME function, fully described in tnis

Appendix.

*UMISTL or *UMIST

This parameter specifies which version of UMIST
is to be used as th“e hest interpreter. Presently the
above two files are the two versions of UMIST avail-
able. These two, and any other that might becone
available, may be used.

NOW or LATER

This parameter specifies when the TRAMP functions
are to be loaded. If PAR=LATER , then only UMIST will
be loaded initiall,, with the loading of TRAMP being

deferred until a call on #(tramp), further explained

below.
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NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION:

EXAMPLES:

DR
#(DR,A,D,V)

This is the associative storage function-—the
function that inserts the data into the struc-

ture,

The three arguments, A, ® , and V , are each
non-empty sets. The set element delin.ter in
TRAMP is the semicolon (;) because of the im-
portant role played by the comma in UMIST. The
triple is ordered and interpreted as meaning:

A (§) = V . Each ¢ "ement of each set is grouped
with each pair of elements of the other two sets,
and the resulting triple is stored, i.e., each
point in the cartesian product is stored. The
three sets are ordered sets only inasmuch as
the order .n which they appear in the storage

declaration is retained.

DR simply inserts the data into the structure
in a2 way in which it can be efficiently re-
trieved. No check is made for inconsistency
of data or for redundancies.

# (DR,COLOR,CAR,RED;GREEN)

" {DR,AGE,MABLE;EUNICE, 39)

this would store: *~3E (MABLE)
AGE (EUNICE)

i
(93]
O

1]
(73]
(o]
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NAME : KR
PROTOTYPE: #(KR,A,8,V)
PURPOSE: To unde what DR did-to erase an association
from memory.
DESCRIPTION: The syntax of this function is exactly the same,

and the effect exactly the opposite, of DR
EXAMPLES: # (KR,COLOR,CAR,CHARTREUSE)
# (KR,AGE,# (RLR,AGE,**,*X*),# (X))

This would delete ALL associations containing

"AGE" as the "A" component [s<e RLR , below].

R
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NAME:
PROTOTYPE:

PURPOSE:

DESCRIPTION:

RL
#(RL,A,D,V)

This is the associative retrieval function.
"Questions'" are asked of the data structure
by calling RL and specifying which, if any,

among A, @ , and V are variables.

Variables are denoted by enclosing a name, pos-
sibly null, within asteriks (*) . To ask the
question: '"What color is the car?" , one would
write: #(RL,COLOR,CAR,**) or #(RL,COLOR,CAR,
*NAME*) . The "answer set'" in this example 1is
the set of all third components of associations
having "COLOR" as the first component and
"CAR" as the second. In the first instance
above, the variable is not Named [nothing
between the asterisks]. In this case, the
answer set I. the Value of the function. Tn the
second instance, the variable is Named, which
results in the function being Null Valued, and
the answer set being stored in UMIST form
storage labeled by the Name within the asterisks.

Thus, the following two statements are exactly

equivalent:

#(DS,ANS,# (RL,COLOR,CAR,**})

#(RL,COLOR,CAR,*ANS*)

If there are no variables, e.g., #(RL,COLOR,
CAR,RED) , then the cuestion being asked 1is:
"Does A(@P) = V?", or in this case, ''Is the

car cclored red?" No answer set is generated,
rather a "truth value" is retuined as the

value of the function. If the specifie« associa-

tion is in f ct resident in the structure, or

T preres
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derisable thereof, then the value is "1'; if
not, the value is "0." Ar ambiguity arises

when one or more of the three sets has cardi-
nality greater than one. Suppose #(DR,COLOR,
CAR,RED) had been entered. Then,

# (RL,COLOR,CAR,RED) would have the value '1"
# (RL,COLOR,CAR,BLUE) 00 00 " " non

# (RL,COLOR,CAR,RED;BLUE) " " " " 10

That is, the first association is found in storage,
and the answer is "1." The second is not found,
and the answer is "0.'" But two associations are
specified by the last example, one is verified,

the other not, and TRAMP returns the value "?"

If there is one variable, then TRAMP is being
asked to "fill in the blank." The one variable
mzy be in any of the three positions of the
triple. The variable may be either Named or
Unnamed, with the respective consequences des-

cribed abhove.

if there are two variables, then two answer sets
are generated. One of the variables is picked as
the index variable, and values are one-by-one
substituted for it, internally iterating on the
one-variable question. The one constant may
again be in any of the three positions of the
triple. If both variables are named, the func-
tion is Null Valued, and the two answer sets

are stored and labeled by their respective
names. If one is Named and the other Unnamed,
then the set corresponding to t.e¢ Named variable

is stored ard the other answer set is the Value
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of the function. It is syntactically valid for
both variables to be Unnamed, but this should
not be done since then the Value of the function

would be the concatenation, not union, of the

two answer sets.,

The two-variable questions generate two answer
sets—not a set of ordered pairs! Soon a varia-
tion of this function may be cffered which will
allow the generation of ordered pairs. In the
meantime, if this is desired, the user will have

to write a short UMIST procedure to pick out

the proper subset of the cartesian product of the

- two answer sets.

The present form of the two-variable gquestions—

generating two answer sets—is very often used

to find all "objects" asscciated with some other

"objects," without regard for the third component

. of the triple. For example, to find all those who
=

: 5 have sons, one could say:
E #(rl,SON,**,*X*)

with the set of all sons now being stored in the
form "X." In general, this generated set, here
the set X , will not be further used and is not
wanted. TRAMP recognizes one special Named

Variable for two-variable gquestions: '"@," as

denoting that the corresponding answer set is

not to be generated. Thus,

those wao have sons, and
store the set of all Sons
in the form "SONS"

t #(r1,SON,** *SONS*) would return the s=t of all

[P ——
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#(r1,SON,**, *e*) wou.d likewise rzturn the s
set of all those who have i
sons, but would discard the =t

set of Sons.

If there are three variables it is interpreted

as being a request for a dump of the associative 1!

P
o

memory. If any of the three variables are Named,
the names are ignored. Alternatively, one can
simply call: #(DUMP).

o

9
g
&

[

‘ EXAMPLES: # (RL,*REL*,JOHN,HARVEY) put the set of all re-
lations that associate
John with Harvey in the
string "REL."

| # (RL,SON,CLYDE,**) return the set of
| Clyde's sons.

Rty )

e
]

# (RL,COLOR,** ,*COLOR*) return the set of all
objects that have the
attribute "COLOR," and
place the set of all
colecrs in the string
"COLOR."

e

o |
s

==

#(RL,*X*, *Y* *Z7*) give a dump of the as-
sociative memory. The
three names are ignored.

TR |
o

L

# (RL,AGE, # (RL,FA,# (RL,WIFE, # (RL,BRO,MARY, **),

*WIVES*)# (WIVES),**),**) recursively asks the
question: "How old are
the fathers of the wives
of Mary's brothers?"
Also, the set of the
wives of Mary's brothers
is now in the string, i
"WIVES."

e

#(r1,COLOR,** *@*) return the set of all ob-
jects that have the at-
tribute "COLOR,'" but do
not generate the set of
colors.

il

O S



“A“.“ m “ ~

Loiid

.

]
[T

‘vmll’"m’va

it |

Wisiamil

TS eSS NS PR TR T e el

B-9

#(r1,COLOR,CAR,*e*)

put the set of the colors
of the car in the string
"e." "e" is a special
symbol only in the two-
variable questions.

I



NAME:
PROTOTYPE:

PURPOSE:

DESCRIPTION:

EXAMPLES:

B-10

RLR
#(RLR,A,,V)

To retrieve answer sets that may contain re-

dundancies.

This function is identical to RL except that
any redundancies are reported. RL Treturns non-
redundant answer sets, while RLR does not check
for redundancies, and is therefore significantly
faster.

E
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# (RLR,AGE ,EUNTCE;GLADYS,**)

U s i

if they are both 31, then the value will gg

be: '"31;31.," i
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NAME:
PROTOTYPE:
PURPOSE:

DESCRIPTION:

EXAMPLES:

B-11

INT
#(INT,A,0,V)
To generate intersections of answer sets.

This function has the same syntax as the one-
variable question of RL . RL generates the
union of the answer sets, while INT gemnerates

the intersection

#(rl,SOUTH;WEST,TOLEDO,**) generates the set of
2111 things either
south or west of
Toledo.

#(int,SOUTH;WEST,TOLEDO**) generates the set
of all things both
south and west of
Toledo.

If both constant sets are singletons, INT and
RL will yield identical answer sets The vari-
able may again be in any of the three positions
and may be either Named or Unnamed. This func-

tion must have exactly one variable.

# (int,NORTH;EAST,CHICAGO, *NE*)

place the set of everything both north
and east of Chicago in the string "NE."

#(int,**,JCHN;MARY,CLARA)

return the set of all relations that
John and Mary commonly skare with Clara
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NAME : RCOM

PURPOSE: To compute the relative complement of two TRAMP
Sets.

DESCRIPTION: The third argument is logically subtracted
from the secund argument, with the disposition
of the resulting set determined by the fourth
argument: if it jig pPresent, the function is null
valued and the set is stored in UMIST fornm
Storage labeled by the name; if the fourth
argument is omitted, the relative complement
of the other two argume.ts is returned as the ]
value of the function. The set computed con- .
sists of all elements of "SET1" that are not 1
elements of "§gT2."

£ 3
FROTOTYPE : # (RCOM, SET1,SET2, NAME) il

EXAMPLE: #(RCOM,#(RL,AGE,**,40),#(RL,SPOUSE,**,*@*),
SPINSTER}

this would store in the string
"SPINSTER" all those wh. are 40
years old and not married,

T Bttt
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NAME:
PROTOGTYPE:
PURPOSE:

DESCRIPTION:

EXAMPLE:

B-13

SYMD
# (SYMD,SET1,SET2,NAME)
To compute the symmetric difference of two sets.

The symmetric difference of two sets is defined
to be the set of all things that are in either
of the two sets, but not in both (exclusive OR).
The syntax of SYMD is identical) to that of RCOM,
with the fourth argument determining what will

be done with the generated =et.

# (SYMD,# (RL,BRO,**,*@*) ,# (RL,SIS,**, *g*))
this would return the set of all those who

have siblings, but siblings of only one
sex.

W
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NAME:
PROTOTYPE:
PURPOSE:

DESCRIPTION:

EXAMPLES:

INT
¥ (INT,SET1,SET2,NAME)
To intersect two TRAMP sets.

This function h-s the same syntax as the other two
set operators: KRCUM and SYMD: the two operands are
the second and thire arguments (SET1 and SET2) and
the fourth argument specifies the disposition of the
result: if it is present, it will be used as the

name of the form into which the answer will be placed;
if omitted, the answer will be returned as the value
of the function. The answer is a straight set inter-

section, except that any redundancies (e.g., introduced
by a call on RLR) are deleted.

Note that this function has the same name as the
retrieval function INT. There is no ambiguity and
there should be no confusion, since the two func-
tions have dissimilar syntax! The retrieval
function INT is called by specifying exactly

three functional arguments, of which exactly ore
is a Variable; the Set Operation INT is invoked

by giving either two or three functional argu-
ments, ol which exactly zero are Variables! I.e.,

a variable specifies retrieval—if there is no
variable then a question is not being asked.

#(int,#(int,NORTH;BAST,CHICAGO,**),

#(int,SOUTH;WEST,MAINB,**J,UNHUHJ

recursively uses both forms of INT to piace the
set of all things both northeast of Chicago and
southwest of Maine in the string "UNHUH,"

#(int,#(X),#(X),X) remove all redundancies from
the string "X."

#(int,#(rl,AUTHOR,**,GEORGEJ,3(rl,SUBJECT,**,SEA))

return the set of everything George wrote
about the sea.

"
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NAME: DUMP
PROTOTYPE: # (DUMP) or #(RL,**, *» #x)
PURPOSE: To obtain a compleie listing of everything g

that is explicitly stored in the data structure.

DESCRIPTION: All associations explicitly stored are printed
out, using the "A (@) = V" format. A and g
are singletons and V is the set of all "values"
associated with the A/¢ pair. Any redundancies
in the V set are printed. Implied associations
are not lisced in the dump. After all of the as-
sociations are listed, all of the current rela-
tional definitions [entered by DiR , below]
are displayed.

HTTEH PRSI HIH ]

{HIHITY

11

Il

EXAMPLES: # (DUMP)
#(Rl.’tt,ii tt)

#(RLR,iXi,tt,**)
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NAME :
PROTOTYPE:
PURPOSE:

DESCRIPTION:

——— = P -

B-16 E

ERM
# (ERM)

To completely erase the memory for a fresh
restart.

It is not anticipated that this fucntion will
he called very often, if ever, and to prevent
its being invoked unintentionally, via mis-

i
!
l
|
spelling, etc., confirmation is required by :
TRAMP before it actually erases the structure.
This is similar in form and in content to the '
confirmation that MTS requires before EMPTYing
a file: an exclamation point (!) , or the §
two letters "PK'" are positive confirmation.
Anything else cancels the request. ;
i
i
i
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l NAME:

l PROTOTYPE :
PURPOSE :

3 DESCRIPTION:
EXAMPLES :

B-17

USE
# (USE,NAME)

To obtain the number of expliciti associations
that the NAME is used in.

The value of the function is the tctal number
of associations that the name in the argument
is used in. Any implied associations are not
included in the USE count. There is no break-
down as to how the name is used within the as-
sociations, simply a count of the triples in
which it appears.

# (USE, JOHN)

# (USE,COLOR)

How many objects have the attribute color?

Wil
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NAME : CcT
PROTOTYPE: #(CT,SET)
PURPOSE; To determine the cardinality of ga TRAMF set.
- DESCRIPTION: This is a very simple function that is signifi-
g cantly faster and more convenient than a UMIST
: Procedure thai would do the same thing. It
distinguishes between: a missing argument; a
null set; and a singleton (set with no semicolons);
but otherwise is simp y an efficient way to count
semicolons.
EXAMPLES: #(CT,#(SET)) what is the cardinality of "SET?v
. #(CT,#(RL,SON;DAUGHTER,SHERMAN}*)1
How many . jldren does Shern.. have?




NAME:
PROTOTYPE:

PURPOSE:

DESCRIPTION:

EXAMPLES:

B-19

TABLE
# (TABLE,X)

To obtain the contents of one of the Name
Tables.,

The argument, X , specifies which of the four
Name Tables is desired:

A - attribute
p object

V - value

D

- defined relation

The set of names found on the particular table
is returned as the value of the function.

# (TABLE,A)

# (TABLE,D)

ni

#(rcom,#(table,A),#(table,D))

return the set of all namass that have been
used as "attributes" but have not been given
definitions. The Defined Relation Name
Table is always a subset of the "A Name

Table!"
#(int,#(int,#(table,A),#(table,O)),#(table,V))

return the set of all things that have been
used at some time in each of the thresa
positions of the associative triple.

#(symd,#(table,A),#(table,V))

return the set of all names used as either
"attributes" or '"values'" but not as both.
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NAME :
PROTOTYPE:

PURPOSE:

DESCRIPTION:

EXAMPLES:

B-20

PRIME
# (PRIME, [ON,OFF])

To set or invert the mode of operation regard-

ing the prime that terminates ail UMIST input
lines.

An internal switch in TRAMP determines whether
Or not a prime is required to terminate an in-
put line. This switch i3 initially set by the
parameter in the RUN command. The function
PRIME may be used to alter dynamically the set-
ting of this switch during execution.

The argument to PRIME may specify that this
switch is to be turned ON or OFF, or simply
inverted from its present setting. #(PRIME,ON)
turns the prime ON, i.e., it specifies that a
prime will be required to mark the end of a
line. #(PRIME,OFF) sets the switch the other
way; equivalent to: PAR=NOPRIME. Full detaiis
of operation with the switch off appear in the
introduction to this Appendix,

# (PRIME,OFF)
# (PRIME)
# (PRIME,ON)

# (PRIME,X) an unrecognizable argument inverts
the switch,

i

|
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NAME : TRAMP =
PROTOTYPE: # (TRAMP)

PURPOSE: To load TRAMP if PAR specified thet loading was =

to be delayed. =

il

i
i

DESCRIPTION: If PAR=LATER, then only UMIST will be loaded
initially. When ready for TRAMP, the user
issues this function call which loads and links
up all the TRAMP functions.

R

The function "TRAMP" is defined only when PAR=
LATER, and then only until it has been called.

S e




NAME:
PROTOTYPE:

PURPOSE:

DESCRIPTION:

B-22

SAVE
#(SAVE,FDNAME,RLEG,ID)

To save the current state of the dats structure
On an auxiliary device so that at a later date

the structure can be initialized to contain the
Pry ie*t daca,

FDNAME is the name of the file or device onto
which the data are tn be SAVEd. RLNG is an
opticnal argument specifying the record lengths
to be written. If this argument (s eit!2r omit-
ted or specifies ino large a record length for
the particular device, the following defaul:
values, which 7r2 the respective physical
naximums, will Le used:

PUNCH 80
FILE 255
TAPE 32,760

If RLNG = 80, either explicitly or by default,
then each record will contain 72 bytes of in-
formation and 8 characters of sequential identi-
fication, the first 4 of which may optionally
be specified in the last arguzent, ID, 1If
more than 4 characters are given, extra char-
acters on the right will be truncated. If
less than 4, trailing blanks will be appended.
If RLNG=80 and this argument is omitted, t'e
4-character MIS signon ID will by usad., If
RLNG = X , X # 80 , then there will be )
bytes of information with no idertification.
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EXAMPLES:

# (SAVE,MY['ILE)
write 255-byte records into the file

# (SAVE,MYFILE, 80, IDX)

write 80-byte records into the file with
the specified ID. Cau uow be copied to
a card punch.

¥ (SAVE,*PUNCH*,,1D2)

punch the data onto cards with "IDZ" ID.

# (SAVE,*PDN1*,890)

write 80-byte records onto tape using
MTS 1ID.

# (SAVE, *PDN2*,255)

write records on tape that can be copied
into a file.



NAME:
PROTOTYPE;

PURPOSE:

DESCRIPTION:

Copy
¥ (COPY, FDNAME)

To recd back in what has previously been SAVEd,

COPYing in a new structure completel,; erases
anything that might be in the structure at the
time the COPY is called. There is no direct way
to merge two TRAMP data files. (See Appendix C.)
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PROTOTYPE:

PURPOSE:

DESCRIPTION:
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PAGE
# (PAGE)

To ascertain what size file will be required
to SAVE in and/or how much core the data
Structure is occupying.

PAGE is a rull-valued printing function which
Prints on the current output device. The out-
put is the number of pages currer. .y in core
that will have to be saved, and " ow many exten-
sions have been made to TRAMP. ‘he sizes of

the various tables used by TRAMP are assembly
parameters and are likely to change. Presently
the tables occupy a total of 4 pages of core.
The information printed by PAGE is the amount of
core being used in addition to the tables (tables
cannot grow duriny execution).

TRAMP is initially loaded with an Available Stor-
age List 8 pages long (32, 768 bytes). As this
is used up, more is acquired from the system in
blocks of 8 pages, called extensions. There can
ve up to 16 extensions (presently meaning that

a8 maximum o€t 132 pages = 540,672 bytes would
have to be SAVEd). These 8-page blo.ks are
never broken up-SiVEing requires that the

entire block(s) be written. In summary, (assum-
ming 4 pages for tables) there is a minimum of
12 pages (= 49,152 bytes) and a maximum of 132
pages (= 540,672 bytes), with the minimum ap-
proaching the maximum in steps of 32,768 bytes.
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NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION:

DDR
# (DDR, (REL = EXP)) or #(DDR,(REL :« EXP))

To define a relation in terms of other rela-
tions, thereby creating implicit associations
in the data structure,

REL is the relation being defined, and EXP

is an expression which is the definition. The
equal sign is the delimiter and must be present.
In the prototype the entire argument to DDR is
enclosed in parentheses, i.e., a UMIST "literal."
Depending on the particular definition, this

may or may not be necessary, but it will never
hurt, and it is good practice always to paren-
thesize the argument,

EXP is composed of one o:r more relations joined

by the logical connectives: .A. conjunction;

.V. disjunction; .N. negation; two relational
operaters: / (slash) relative product or com-
position; .CON. converse; and six equality
operators: .EQ.; .NE.; .GE.; .LE.; .GT.; .LT.; with
obvious meanings.

The "R(x,y)'" format is the relational format
adopted by TR'MP and is interpreted to mean
that R (x) =y

"Converse'" simply inverts the order of the two
relational areumesnts: R(x,y) +«* .CON.R(y,x)
Thus, "child of" is the converse of "parent of,"

any symmetric relation is its own converse, etc.

Composition is defined: ¥x ¥y Zz[(S/T)(x,y)«>
S(x,z) A T(z,y)} . Specifically, the declaration:
# (DDR, (R:= S/T)) would tell TRAMP that R(x,y)

if for some z: S(x,z) and T(z,y).
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DDR is the only TRAMP function that allows spurious blanks.
Before compiling the definitica, all blanks are removed. In
all other functions (except EDIT, below, which is another
entry to this function), blanks are valid EBCDIC characters
and are treated like any other. Definitions may be either
abbreviated: #(DDR,(R1 = R2 .V. R3)) ; or in an expanded form:
# (DDR, (R1(X,Y) = R2(X,Y) .V. R3(X,Y))). There is the restric-
tion that any one definition be consistent. #(DDR,(R1 = R2(X,Y)))
is not legal. The twd relational operators, composition and
converse, may be used only in abbreviated definitions where there
are no explicit relational arguments. On the other hand, the
equality operators may only be used with relational arguments
as their operands. A constant which is to be use¢. as a rela-
tional argument is denoted by enclosing the name of the constant
in double quotes (").

Precedence of operators: The precedence ordering of

the various operators is as fcllows:

/ composition

.CON, converse

.EQ. etc. all equality operators have the same
precedence

.N. negation

A B conjunction

V. disjunction

The above precedence ordering may be altered in the usual way
by the appropriate use of parentheses.

One major constraint is placed on the argument to
DDR: relations must be defined so that at least one set is
generated. The intent of this constraint is that there be
at least one reference set. The "whole space" may never

be the reference set!

#(DDR,(R = .N. S)) is illegal, since it specifies a
global complement, i.e., it references
the "whole space."
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#(DDR,(R = .N. § .A. T)) 1is legal, since it first generates
a reference set via T , and then
places a constraint on that reference
set, not on the whole space.

Besides the choice of using the "expanded" «vs
"abbreviated" notation for defining a relation, the user has
the option of specifying whether or not the implication is one
way, or specifies an if and only if condition.

Husband = .CON. Wife
is an iff condition whereby it is implicit that:
Wife = ,CON. Husband

the equal sign will be used to denote this ¥rind of equivalence
which can be interpreted as meaning iff.
On the other hand,

Parent := Father or Mother

is one-way implication, giving information about the relation
'parent" while giving none about the relations '"father" or
"mother." To denote this the '"assignment symbol" (:=) is used.
In general, if the assignment symbol is used then no
attempt will be made to extract information about the relations
on the right side of the equation. If the equality symbol is
used, such an attempt will be made. This attempt will not,
of course, always be successful:

Parent = Father .V. Mother

gives us no information about "father" or''mother" even through
the equality sign is used.

If a relation is defined, arnd later a new definition
is given for that same relation, TRAMP simply OR's the two
definitions together. If there is a syntactic error in the
second definition, a Jdiagnostic is printed and the earlier
definition is retained.
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EXAMPLES:

# (DDR, (BIGGER = BIGGER / BIGGER))
BIGGER is transitive

# (DDR, (BIGGER(A,B) = BIGGER(A,C) .A. BIGGER(C,B)))
same definition using expanded format.*

# (DDR, (SIB = BRO .V. SIS .V. .CON.SIB))

a sibling is defined to be a brother or a sister
and it is symmetric

# (DDR, (HUSBAND = .CON. WIFE))

husband is the converse of wife

# (DDR, (BRO(CAIN,ABEL) = SIB(CAIN,ABEL) .A. SEX(ABEL,"MALE")))

a brother is a male sibling. Constants are enclosed
in doudle quotes

# (DDR, (BIGGER = LARGER))

bigger and larger are synonymous

# (DDR, (MALE(X) = SEX(X,"MALE"}))

unary relations may be defined

¥ (DDR, (BROTHER(X,Y) = FATHER(X,Z) .A. FATHER(Y,Z) .A. MALE(Y)
.A.X.NE.Y))

a brother can be defined as a male offspring of the
same father, other than oneself

# (DDR, (PARENT FATHER .V. MOTHER))
# (DDR, (NEPHEW SIBLING / SON))

a nephew is the composition of sibling and son.

# (DDR, (UNCLE = .CON. (SIBLING / SON)))

in a male world, uncle is the converse of nephew and

may be defined as the converse of the definition of
nephew.

# (DDR, (UNCLE = .CON. NEPHEW))

or simply as the converse of nephew.

The dummy arguments used in expanded definitions may be
up to eight characters long.
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# (DDR, (STEPMOTHER = FATHER / SPOUSE .A. .N.MOTHER))

a stepmother is the spouse of the father who is not
the mother.

NAME: KDR
PROTOTYPE: # (KDR,REL1,REL2, ...,RELn)
PURPOSE: T> erase definitions made by DDR .

DESCRIPTION: KDR may have any number of arguments. The
definition for each of the relation names given
as arguments is deleted.

EXAMPLES: # (KDR,SIBLING)
# (KDR,NEPHEW,UNCLE , SPOUSE)

#(DS,X,# (TABLE,D))#(SS,X,;)#(KDR,#(X, (,)))
would erase ALL definitions

= o - arerwre e - S
" 9 i 'E &
. 2
T

”|

rstesnern
k.

prwmonns IS ool |

o

oo S




NAME:
PROTOTYPE:
PURPOSE:

DESCRIPTION:

SHOW
¥ (SHOW,RELATION)
To display the current definition of a relation,

SHOW will display the definition of the relation
specified by its argument exactly as it was
entered by the user, except that blanks will

have been removed. If more than one definition
has been given for the r lation, they will all

be concatenated, separated by a break character,
and displaye: in a continuous line. Three actions
may be taken b, SHOW : if the relation has

been successfully defined, its definition will

be displayed on the current output device; if
TRAMP Las never heard of the relation, the com-
ment: "RELATION XXX HAS NOT BEEN DEFINED." will
be "rinted; if the relation was unsuccessfully
defined, or was erased, via KDR, the comment:
"RELATION XXX IS UNDEFINED." will be printed.
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NAME ;

PROTOTYPE:
PURPOSE:

DESCRIPTION:

EXAMPLES ;

EDIT

#(EDIT,RELATIQN,PATTERN,REPLACEMENT)

To correct or alter g Telationa] definition made

The secong argument jis
that is to be EDITed, The third argument js the
Pattern withinp the definition, 2s displayed by
SHOW, that j¢ to be altered, If this argument
is null, it matches the vojig immediately to the

the name of the relation

argument, Ar: blanks in the PATTERN or REPLACE-

MENT wil]l pe ignored. 1f the last argument jg

omitted, the Pattern jg simply deleted. If the

#(EDIT,SIB,(.V.),(.A.))

change tpe first oR to AND in the de-
finition of SIB . Like DDR , it jg good
Practice to enclose the argument ip
Parentheses,

¥ (EDIT,REL, (.a. R4))

delete the String " A R4n from the de-
finition of REL.




8-,3
NAME : DDEF
PROTOTYPE : # (DDEF)
PURPOSE; To display ail current relational definitions,

DESCRIPTION: DDEF iteratively calls on SHOW for each name
found in the Name Table of Defined Relatisons,
DDEF is an éntry to the second hailf of DUMP, which
bypasses the listing of the 8ssoc.ations,

TRAMP in no way alters anything internal to UMIST.
There are three UMIST functions that cannot be talled within
TRAMP since they would render it unusable:

#(DSS) Define Special Syndol
# (DA) Delete A1} (including TRAMP)
# (RES) Restart - contains #(DA) as a subset.

With these three éxceptions, the fuil}l facilities of UMIST
ave available to the user,

|
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APPENDIX C

EXAMPLES OF TRAM}

This Appendix gives both simple and more complicated
exanples of the use of TRA!!P. The most relevant information
apout UMIST necessary to understanding the exawmples is found
in Appendix A. Complete understanding of the more complicated
example of the question-arswering program (Fig. 11b) requires
mor< detailed knowledge of UMIST, which may be found in the
citud references.

The first set of examples (Fig. S) show the "FO"
questions of Part III. First, we define the COLOR of CAR to
be RED and GREEN. Then the various Boolean questions are asked;
the answers given by the system are on the line immediately
following the '"question."

The next examples (Fig. 10a) describe the family
tree information of Fig. 1. Two relatively complicatec ques-
tions are then asked. The first may be stated as: "Who are
the people who have brothers whose age is 64?" To illustrate
this in depth, we first ask "Who is aged 64?'", then "Who are
the people who can call this 64-year-old 'brother'?" Oby‘ously,
for one of these people (Mary), there is nc answer, for no one
calls her "orother." The second question asks: "What is the
age of the father of the brother of Melissa‘’s mother?" Store
the answer (this age) in the form called "NUM." Now Melissa's
mother is Edith, Edith's brother is Arnold, Arnold's fatler
is John, who is 64 years old. Hence, a call for the string

NUM prints "64."




¢ (DR, COLOR, CAR, RED3 GREEN) *

# (RL, COLOR, CAR, BLUE) *
3(RL300L0R0CAR:RED)GREEN)'
1'(RLoCOLOR¢CﬁRoGEEEN3RED)'
:(8L:00L08:CAR;RED3BLUE)'
2(RLJOOLORaCAR¢RED)'

‘nm.. COLOR, CAR, RED; BLUE; GREEN) *
E(RLoCDLORJCARaYELhowiﬂLUE)’

Figure 9., npggn

Questions,
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# (DR, FATHER, ARNOL D, JOHN)

# (DR, FATHER, JAMES, ARNOL D)

# (DR, BRO THER, SAM3 JOAN, JOMN )
# (DR, BRO THER, EDI TH, ARNOLD)
# (DR, MO THER, ARNOL D, MARY)

# (DR-MOTHER,MEL SSA, EDI TH)
# (DR, AGE, JOHNMARY, 64)

# (DR, AGE, ARNOLD, 39)

# (DR, AGE, EDITH, 33) "

# (RL, BRO THER, :x*, #CRL, AGE, *%,64) ) *
SAM; JOAN

#(RL,AGE, %, 64) *

JOHN3IMARY

# (RL, BRO THER, **, JOHN) *

SAM3 JOAN

# (RL, BRO THER, %%, MARY) *

# (RL,AGE, #(RL, FATHER, #(RL, BRO THER, #(RL,MOTHER,MELISSA, %), xk),
k), eNUMR) ¢

#CCLLNUM)*

64

Figure 10a. Family Relationships / Nested Questions.

# (DR, SISTER, JOAN,ALICE)*

# (DDR, (SIB = BROTHER V. SISTER .V. +CON.SIB)Y)* ¢
#{BL,SIB,ALICE, *%)*

JOAN

#C(DDR, (SIB(X,Y) = SIBCX»2Z) oA~ SIBC(Y»Z) oeAe X«NE.Y))"
#(RL, SIB,ALICE, ®%x)*

JOAN3 JOHNJ SAM

Figure 10b. Relational Example, Associations Between Siblings.
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The examples of Fig. 10b snow the first use of ddr,
where we add to the family of Fig. 10a the sisterhood of Joan
and Alice. The first definition of Sibling now allows the
retrieval of one of Ali-e's siblings, though Sibling has never
appeared explicitly in an association. The second definition
entered completes the j;.b, and TRAMP is now abie to vreturn
all of Alice's siblings.

As a more complicated example of the use of TRAMP,
a rudimentary "question-answering system," with thesaurus,
was coded. It should be noted that this illustration is not
intended to constitute a good system—in fact, it represents
a total of less than one hour's coding and debugging time.

The job of the system is to parse input commands
and, from them, generate TRAMP Statements. In this regard
the system is grossly incomplete, i.e., it uses a most un-
sophisticated parsing algorithm. The generated TRAMP calls
are realistic, nonetheless. The complete program, used as
the question-answering system (QAS), is shown in Fig. 11b.~*
The output from an actual session is shown in Fig. 1la.

To enable the reader easily to follow the dialogue,
each statement issued by the QAS is initiated by the word:
"ANSWER." Everything else was typed at the terminal by the

user. QAS has been given a thesaurus to relax the format of

The code for th= question-answering program is shown as it
would appear for a processor for the standard TRAC T-64
language, rather than for the locally used dialect UMIST,
but the differences are very slight indeed.
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INPUT AUTHOR OF HUCKFINN WAS MARXTWAIN®
SYNOWYM MARKTWAIN IS SAMCLEMENS®
WHAT LID SAMCLEMENS WRITE ?°

ANSVER:

SYNONYM WRITE = AUTHOR®
WHAT DID SAMCLEMENS WRITE 7~

ANSWER? HUCKFINN

DID TWAIN WRITE HUCKFINN ?°

ANSWER: NO

SYNONYM MARKTWAIN AND TWAIN®
DID TWAIN WRITE HUCKFINN ?7°

ANSWER: YES

INPUT AUTHOR OF TOMSAUVYER IS TWAIN'®
INPUT AUTHOR OF THESTRANGER WAS SAMCLEMENS'
HOWMANY BOOKS DID MARKTWAIN WRITE 2!

ANSWER: 3

WHAT DID TWAIN WRITE ?°

 ANSWER: HUCKF INN3 TOM SAWYER; THES TRANGER
INPUT MODEL OF /360 IS 67

SYNONYM /360 IS IBM®

WHICH MODEL OF IBM DO WE HAVE ?7°

ANSWER: 67

Figure 1l1la.

Output of Question-Answering Program.
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QUESTION-ANSWERING PROGRAM

# (DS» START, C(#(DS>FF, #CRS)) #(SS, FF» )#(CL,##(CS,FF))#(CL, START)))"*
#(DSs SYN» (#(DS»8, X)#CEQ, ##(CC»0) s %, Xs (##CRL, SYN, X, %2%)) ) ) )#(SS5, SYN, X *

#(DS,CK, C##CRL, SYN, Xo %0%) #(EQ, ##(CL,0), 5 (#(DR, SYN,»X» X)X,
C##C(CL,@))))IF(SS,CKL X"

#(DS,DR, (#(DR; #(CL,CK,A), #{CL,CK»0),#(CL>CKsV)»))#(S5S,DR, A0, *
#(DS,RL, C#CRL, #(CL, SYN,A), #(CL, SYN,O ), #(CL,SYN,V))))#(SS, RL,A»0,V)*

# (DS, INPUT, (#(CL> DRy ##C(CS»FF )5 #(PS, » ##(CS, FF)) ##(CS, FF),
#(PS,, ##(CS,FF)I##(CS,FF))))"*

# (DS, SYNONYM, (#(DS, @, ##(CS, FF)) #(PS, » ##(CSsFF) ) #(DKs SYN, ##(CS, FF)
s ##(CL,8))#(DR, SYN, ##(CL,9),##(CL,8))))"*

# (DS, WHAT, (#(PS, ANSWER: #(PS,, ##(CS,FF))#(DS, 0, ##(CS,FF))
FCCLRL, ##CCS,FFIoa%, ##(CL,9)))))°*

# (DS, WHO, (#(PS, ANSWER: #(PS,,##(CS,FF))#(CL,RL, ##(CS,FF),
#(PS, » ##(CS,FF))##(CSsFF)s%%))))"*

# (DS, HOWMANY, (#(PS, ANSWER: #(PS,» ##(CS,FF)##(CS,FF))
#CCT» #CCL,RL, #(DS, 8, ##(CSs FF)) ##(CSsFF), %%, ##(CL,8))))))"*

#(DS, 1S, (#(PS, ANSWER: #(EQ, #(CL,RL, ##(CS,FF), #(PS,, ##(CS,FF))
##(CS,FF)» ##{CS,FF)),0,N0,YES))))"*

# (DS, DID, (#(PS, ANSWER: #(DS,8,##(CS,FF))#CEQ, #(CL,RL, ##{CSsFF),
#8(CS,FF),##(CL,0)),0,N0,YES))))°*

# (DS, WHICH, (#(PS, ANSWER: #(CL,RLo##(CS,FF), #(PS,,##(CS,FF))
##CCSH,FF)sx%x))N?*

# (CL, START)*

Figure 11b. Question-Answering Program.
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statements. This thesaurus, as well as all data, is held in
the TRAMP structure. To make a thesaurus entry, the user types
the command "SYNONYM" followed by the two synonymous names.

A datum is entered by the command "INPUT." The questions are

self-explanatory.

Merging TRAMP Data Files
The following procedure shows one way that two TRAMP

data files can be merged. This sort of thing is necessary be-
cause the COPY function erases the current memory while it is
writing in a new one. Thus, assume that files DATA1l and DATA2
are two TRAMP data files that are to be merged:

$RUN TRAMP PAR=NOPRIME

#(copy,DATA1)

#(par,FDO,SCRATCH)#(dump)#(pax,FDO,*SINK*)

#(copy,DATA2)

#(ds,PARSE,(#(ds,x,##(rs))#(eq,##(cc,X), s (#(ss,X, )§

#(dr,##(cs,x),#(cs,x),#(nl,##(cs,X))##(cs,X))#(PARSE)),6

(#(par,FDI,*SOURCE*)))))

#(par,FDI,SCRATCH((Z)))#(PARSE)

By way of a superficial explanation: the procedure
"PARSE" simply reads in the "dumped" informatisn and parses
those lines to extract the three arguments to DR. The process
must start at line #2 because the first line of a dump is always

a label. The procedure recursively calls on itself until an-

other "label" is encountered, signaled by not having a hlank

i
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in the first column. Segmenting the dumped line for blanks,
the first segment will be the "A'" component; the second seg-
ment will be the "0" component (stripped of the parentheses
by calling CS actively); the next segment will be the equal
sign and is discarded via the NL (null) function; the last
segment is the "V" component. Note that PAR must equal NOPRIME
(default case) in order for PARSE to be able to 1:ad the dumped
lines in sequence, since they do not have primes on the end.

An analogous procedure could be written 2nd called
by PARSE to read in the rest of the dump, which would contain
the relational definitions, and make those definitions via

generated calls on DDR.
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