
o

(A

THE UNIVERSITY OF MICHIGAN

^ Technical Report 5

CONCOMP
/tme /967

TRAMP: A Relational Memory with an Associative Base

William Ash and Edgar Sibley

Reproduced by the
CLEARINGHOUSE

lor Federal Scientific & Technical
Informaiion Springfield Va 22151

(\V

■■'. 1 ■■ i ■■

1 <£>

1

O
(M
W
C«

1 iV
^

1
II

«£

THE UNIVERSITY OF MICHIGAN

Technics' Report 5

TRAMP: A RELATIONAL MEMORY WITH AN
ASSOCIATIVE BASE

William Ash

and

Edgar Sibley

CONCOMP: Research in Conversational Use of Computers
F.H. Westervelt, Project Director

ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE

WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO, 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

May 1968

TRAMP: A RELATIONAL MEMORY WITH AN
ASSOCIATIVE BASE

ABSTRACT

This report describes the theory and implementation

of an experimental language called TRAMP, which is a software

simulation of a content-addressable memory. The system consists

of an associative data structure embedded in an interpretive

language, allowing great flexibility and strong recursive power.

The system has further been extended with a logical inference

capability by superimposing a relational structure over the as-

sociative memory. The resulting language has already proved to

be extremely powerful in several applications, and can be termed

a language for developing question-answering and interactive

communication systams.

This report discusses the theory and design considera-

tions, details of machine implementation, and details of opera-

tion with examples.

111

I
1

.1

]

1
1
I

TABLE OF CONTENTS

1
j Page

ABSTRACT iii

LIST OF FIGURES vii

I. INTRODUCTION 1

II. BACKGROUND 4

III. TRAMP 12

The Associative Data Structure 14
Data Structure Storage 16
Data Retrieval 17
Data Structure—General Strategy 19

IV. LOGICAL INFERENCE PACKAGE 23

Implementation of Inference 26

V. TRAMP INTERNAL ORGANIZATION 28

APPENDIX A. ÜMIST A-1

APPENDIX B. TRAMP FUNCTIONS C-l

j APPENDIX C. EXAMPLES OF TRAMP C-l

.. REFERENCES R-l

Ü

LIST OF FIGURES

Figure

1

2

3

4

5

6

7

8

9

10a

10b

11a

lib

Page

Association by Tables . 5

Association by Lists 7

Association by Rings 9

Addition of Association with Rings 10

Binary 4 Generation Male Relational Tree... 13

Name Table Structure 20

Associated Tables 22

Defined Relation Name Table 33

"FO" Questions C-2

Family Relationships/Nested Questions C-3

Relational Example, Associations Between

Siblings... C-3

Output of Question Answering Program C-5

Question Answering Program C~6

vn

I
I
I

I
1
i

I
]
I

i

]
j

I
I
I

TRAMP: A RELATIONAL MEMORY WITH AN
ASSOCIATIVE BASE

I. INTRODUCTION

In recent years, the need for a content-addressable

computer memory has become increasingly clear. Larger and

larger programs are being written which require a structured

data base to operate with any efficiency. Many of these could

well benefit by replacing tedious searches with a fast, effi-

cient, "content addressable" access of the data store. A good

example is the "key word" library search. If we ask for a list

of the books written by J.von Neununn, we do not expect the

system to look at each title in its store and save only those

written by von Neumann. And, if there happens to be a catalog

prepared, designed to answer this particular question, we do

not want to have to do a binary search to find the correct

section of the catalog—we want to retrieve the answer directly1

There are many other problems which might find content-

addressability advantageous. Examples abound in Artificial

Intelligence, where prohibitively large tree searches are en-

countered; question answering machines; logical inference system?;

graphic systems; and most conversational (timeshared) systems,

which require immediate, direct access to a large data store to

interact effectively. To date, most investigations into content-

addressable memories have been concerned with hardware; such

memories have not yet proved to be economically feasible. Even

if they had, it is not clrar that the obvious gain in speed

would compensate for the loss in generality and flexibility.

For the moment, it can be said that software simulations ire a

stopgap measure. They are. But it is not certain that they

will be completely replaced by hardware in even the relatively

distant future.

Another function of an artificial language is to permit

the programmer to phrase his problem in a natural manner. For

-1-

i.i =
-2-

i

Di
i

Hi
many problems information is most naturally described as "rela- "

tional triples"; e.g., in a graphics system, one might want to «,

say: <Picture in> <Window A> is <Line B>;or<Connected to> IJ j

<Line B> is <Line C>. The associative processor approach to

content addressability allows this.

Before proceeding, we shall explain some potentia ^y

ambiguous terms.

The essential feature of an associative processor is

that it has, in the conventional sense, no explicit addresses.

Reference to storage is made by specifying all or any part of "

an associative cell, and all cells which match this fieid(s) »t
jf

are referenced. The conventional computer store may be thought U

of as a special (degenerate) case of an associative memory,

in that the association is between the physical address and

its contents. However, reference can be made only by speci-

fying the address—one cannot ask directly for all cells which
Li

are zero! The true associative memory is accessed by speci-

fying any of the N participants in the association. Asso-

ciative memories are often referred to as relational data struc-

tures. This is because an association between N + 1 "objects"

is most easily thought of, talked about, and manipulated by

calling it an N-place relation.

The following example demonstrates why an associative

processor can effectively be employed as an application of con-

tent addressability. Suppose we wish to know the phone number

of Clark Kent. It is simple to look it up in the '.ocal phone \

book. It is, however, quite a different matter to find out if \

whose number is 764-6148 (using the same directory). An as-
i

sociative processor would find both tasks equal. In this '> |

example, the "association" is between a subscriber's name and Ü j

his phone number. In translating this to a two-olace relation,

"phone number of" could be the relation, and using the <R,x,y>

format we would say: <Phone number of> <Clark Kent> is

<KR 9-8765>. This is a type of associativity wherein we may

fi

i
n

I
I
I
1
3
I
I
a
i
3
3
1
I
I
I
I
I
I
I

-3-

now directly reference this triple by any of its content-address-

able components or combination thereof. If we use only the

first component, phone number, in a search, what will be re-

ferenced is the entire book. If we specify two components: phone

number and 764-6148, then we are referencing directly all assoc-

iations containing those two components, viz., the associations

containing the name(s) of the person(s) having the phone number

764-6148.

We are, of course, working with a conventional com-

puter memory. The general strategy used to effect the simulation

of an associative processor and an approximation to content

addressability was that of hash-coding.t For those unfamiliar

with the term, hash-coding is simply a technique whereby an

arithmetic transformation is applied to an external name to

generate an internal address. Hash-coding by itself provides a

restricted but significant approximation to content addressa-

bility, but hashing alone does not provide any kind of assoc-

iativy, and there is always the problem of the "collision,"

i.e., when two distinct names hash to the same internal address:

X ^ Y : H(X) = H(Y) . Hashing partitions the space of names

into equivalence classes. Hopefully, each class has onl ' one-

element, but two or more names may be equivalent under this

partition.*

By providing an interpretive language with an assoc-

iative data structure it is possible to achieve great flexi-

bility. To this end, we decided to use an existing interpreter

and give it. a new data structure, rather than start at the bot-

tom by designing a special purpose interpreter. Principally,

we were concerned with the data structure, and the vehicle for

t A good survey of this technique may be found in Robert Morns'
article "Scatter Storage Techniques," which appears in the
January 1968 issue of Communicat ions of the ACM. Vol. 11,
No. 1 .

* Even restricting names to four characters of the Er.glish
alphabet, a one-to-one transformation would require a table
with 456, 976 entries to guarantee no collisions.

I
-4-

I
it «as initially felt to be unimportant, since the data struc-

ture relies on the host only superficially. In considering f

the question of the interpreter, e were faced with very little

choice. A major consideration was that of availability; fortunately T

this consideration led us to TRAG* T-64 Language. It has

proven to be a most elegant host, and credit for the power of f|

the resulting system must be shared by both the interpreter »*

and the associative memory given to it. However, we feel that ^

the additional primitives are excellent vehicles which change

the original processor into an efficient language for writing

man-machine and machine-machine communication systems. Famil-

iarity with the TRAC language may be helpful in reading this

article, but it is not prerequisite. A brief summary of the

basic components of the language is found in Appendix A.

II. BACKGROUND

* TRAC is the trademark of Rockford Research Institute, Inc.,
Cambridge, Mass, in connection with their standard languages.
For details on TRAC T-64 language, see References 14 and 15.

.i

1 :

An associative processor is one possible tool for u

iiformation storage and retrieval, and its history should be rj

discus5ed relative to such systems Unfortunately, adequate U,

comparisons of different types of data systems are difficult

to make because they are predicated on different rules. Thus

the prime method of storage may vary from cards or paper tape,

through magnetic discs and drums, to prime computer memory; U

at the same time, the storage may be either random or ordered

according to some schema; finally, the retrieval of the infor-
j

mation may be gross, such as the use of a mechanical sort

based on some algorithm, or simple because the data were stored
1

for such answers or jecause there is a wel 1-developed language

to address the stored data.

I
I
I

11

■5-

r^us we have three possible criteria for comparison

of systems: the type of storage, the way of entering data into

that storage, and the language for addressing that storage.

The spectrum of potential systems is therefore large and varied.

We will consider only thc-e which use main computer memory as

the storage device (including virtual or paged memory).

One inherent bias of computer design affects the

storage of data: the use of sequential storage, wh-re the data

are placed in numbered or ordered cells. Because this organi-

zation system allows the automatic indexing of information by

means of some automatically varied register, the preferred

method of storage is tabular. Fortunately, tables are excellent

ways of storing information, for the parallel entries are ways

of expressing associations between objects (see Figure 1).

.*

3
J

ITEM# NAME FATHtR OF BROTHER OF MOTHER OF

1 JOHN EDITH;
ARNOLD

SAM;JOAN

2 ARNOLD JAMES EDITH

3 MARY ARNOLD

A EDITH MELISSA
»_ _.. . .J

Figure 1. Association by Tables.

Hence an index may carry the association and we can respond to

the query: "Who is the mother of Arnold?" by scanning the

"mother of" column, picking the Index 5 at the entry "Arnold"

and returning "Mary" from the "3 position" of NAME.

Such n-trieval systems are obvious and are in general

use. What, then, are the faults? Part of the problem lies in

the relative paucity of information—the large number of blanks

in the tables. Other problem:; occur at the t' me of search, for

6-

the tables are not properly ordered. In fact, the "best order"

depends on what qv;?stion is expected to be asked. For the

question: "Who is the mother of...?" the order 4,3,2,1 is

prefPx-red, whereas "Who is the father of...?" prefers the

order 2,1,3,4 or 1,2,3,4. He-ce 'here is no order that is

optimal for all questions. Anothei major problem of tabular

storage is its size limitation. To be efficient, the table

sizes musi be pre-specified, and hence a sudden request for

extra space is potentially catastrophic.

The need for easy addition and deletion led to the

list proceicor, and many information systems stem from the ideas

of IPL-V [16] and SLIP [21]. The former elucidated and refined

the method of pointers and lists, and the ideas of association

lists (Figure 2). The use of lists fflakas possible dynamically

extended tables. A second use of lists is with association

explicitly defined for certain objects. Thus the illustration

of Figure 2b could be written:

<Attribute A> of <object a> = <value A>

<Son> of <Arnold> is <James> etc.

I
I
I
I
I

;i I

y

II i

Here we see that the question "Who is the mother of Arnold?"

is difficult to answer, because it was not explicitly stored

on Arnold's association list. This question may be answered

by searching all association lists, un^ :1 one is found which

has the pair (Mother, Arnold}.

SLIP was the first embedding of a list-processing

capability within a higher-level language and was a formative

ring structure. The idea of rings was crystalized by

Sutherland [20], and Roberts [17], and used with data syst

designed primarily for graphics and computer-aided desigr

Roberts has also d"veloped a language to refer to rings , Viass

Orie ted Ring Associative Language: CORAL). In ach lan-

guages, the associations are built into the structure by allow-

ing blocks of information to be threaded by rings which carry

the associations between the blocks of data. This is illustrated

ft *

ll i

il 1

11
El
if i

ft !

I1 i

i • i

i

I
1
I
I

]

]
n

7-

List Start

L
pointer to next

v
stop

B C

information

a. Ordinary, single way list: (A,B,C)

Association List of
object "Arnold"

U

_. y
att SON

stop

value JAMES

Stop

att SISTE?

^

. . .

stop

value EDITH

b. One type of paired Association List:

[(att A,val A)(att B,val B)

Figure 2. Association by List:

Ü
by Figure 3. Dodd [1] has implemented a similar structure

within PL/I. The duality of certain relationships, such as:

"defined by" and "defines" or "to the left of" and "to

the right of," etc., ied to the need for a connector block,

here illustrated by the three NUBS.* In essence, the NUB

represents a two-way switch for transferring out of one ring

and into another. The subrout nes or macros pass along the

ring until they arrive at a NUB. They "switch" it, and pas

into the other ring, passing along the second ring (and others

as found) picking up information until they return to the

original MUB and re-enter the first ring. This allows

answers to questions such as "Who is the mother of Arnold?"

as well as "Who is the son of Mary?" One of the major dis-

advantages of these structures occurs on adding a new, not

previously anticipated, association. The operation either is

impossible, requiring a complete recompilation, or else clumsy,

patching on additional blocks (Figure 4) and requiring so-

phisticated garbage collectors. A recent survey by Gray [5]

describes these and similar structures.

Probably the first conception of a true relational

data structure was Kcchen's AMNIPS [7,8] . He dealt with the

problem of logical inference rather than with data structures,

but he recognized that conventional memories were inadequate,

and turned to the relational structure, which unfortunately

was never fully realized.

A considerable amount of work has been done on

various "question-answering machines." Among the better early

machines were Lindsay's SAD SAM [11] which can digest English

statements about family relationships and construct a family

trte, and the BASEBALL program of Green, et al. [6] which

answers English queries about facts taken from a stylized

t

I

y

"

H

It is interesting to note that there is no need for NUBS
if we are willing to store all inverse and similar relation-
ships explicitly, with separate rings for each.

i I

-9-

Name

Sex

Parent of

Child of

Generic "Person"
Block

John

male

Mary

female

Ml"- A

Figure 3. Associations by Rings.

10-

A A

Q

H i

4-1
O

B1
u

c
o
H
4J (/)
cU 00

■H C

C O OS
•H 1/1
o in
a. <

tr

/v

■a

rr

0) rt
6 4-i
« «
c •a

c

C
o

•t-t

o
o
tfl

<

o
c
o

<:

3
»o

u i

11

If

n

n -

t
If

n:

i
I
I
I
I
f

J

11

baseball "yearbook." These investigations use conventional

data structures, and their real cont.ributions were to the

analysis of the English language nud logical inference by

computer. Simmons [18] provides the most complete survey to

date of this work.

Maron and Levien [9,10,12] hive designed one of the

most extensive and complete systems depending on a relational

data file. They deal with binary relations as their building

bljcks, i.e., each association has three components: one

relation ard two operands. In addition, they allow the naming

of the entire association (triple) giving rise to a fourtn

component. Reference can be made using any of the four com-

ponents, and there are four copies of each association—one

copy for each word which can reference it.

Feldman has recently used the ideas of hash-

coding for association tables [5,4]. The associations

are, of course, carried by a n^w table, referenced

by a "double hash" technique. Feldman's language, AL , is

designtd to be compiled rather than interpreted. AL has been

expa ided to be three languages in one: a true ALGOL-type

algebraic language with full numerical computation facilities;

an associative processor; and a language which operates on

sets as its basic entities with a full complement of set

operations. The language now allows tor certain kinds of re-

stricted composition of associations. Specifically, i ' a

sentence is a triple <A,0,V> , then Ü or v may itself

be another triple. This allows for generating N'-piace rela-

tions out of the basic biiary relations. However, the language

has, instead of dynamic inference, a DO loop which is slight-

ly more cumbersome, and far less economical of storage,than

are strict logical inference capabilities.

Naturally, the simplicity in using data systems de-

p.nds on the retrieval language. We have already suggested

that the problem is partially a function of explicit versus

implicit storage. If the family relationships are taken in

I
12-

t-he binary male lineage tree of four generations (Figure 5),

we have: lo ^reat-grandfather—son; 24 grandfather—son; 28

father—son; 14 brother; 24 uncle—nephew; 48 cousins, etc.

Obviously, a large number of relationships must be explicitly

stored for rapid access, compared with the cost of an implied

relationship search with small storage requirement.

The "relational" part of the TRAMP system is the

means for retrieving implied relationships, while the "assoc-

iative" part deals with the explicit relations.

III. TRAMP

TRAMP (Timeshared Relational Associative Memory

Program) is two packages of functions: the first—the data

structure—may be used to enter, retrieve, and generally manip-

ulate an associative data structure; the second—the relational

memory—places an artificial structure on the "associative

triples," viz., the relational structure. The relational

package allows logical inference to be performed o» the data

within the associative structure. Specifically, rules may be

entered, these will be followed by TRAMP, effectively expanding

a "minimal" set of data to a workably large set; the number

rf associations that must be explicitly stored is thereby

drastically reduced. For example: oy defining the relation

"HUSBAND OF" to be the converse of "WIFE OF," the user need

only store marital relations ir one direction, while effectively

having them available in both directions. More detailed ex-

amples and the rules for using the relational package appear

later.

These machine-^oded functional packages are presently

embedded in the UMIST* interpreter on the IBM./360 model 67.

Although this existing union has proved most fruitful, the

I

II .

UMIST is closely patterned after the standard TRAG T-64
Language, and was implemented at The University of Michigan
with the cooperation of Mr. C.N.Mooers, creator of the TRAC «
T-64 language.

J

-13-

0)

u
H

a)

O
■H
•M
CO

—I

o
as

c
o

o

o

u

c

GO

-14.

data structure is totally independent of the interpreter and

actually relies on it only for I/O. The relational package

is also independent, except that it relies on the type of re-

cursion th t the interpreter provides. The relational package

is totally dependent on the associative data structure.

n i

The Associative Data Structure

Feldman's initial work was a strong motivation in

the design of this system, and led us to adopt his notation,

viz., the generic entity:

I

A (0) --• V

<Attribute> of <Übject> equals <Value>

Thus the Associative Triple is: <A,0,V> . Each of the three

components is a non-empty set. To the data structure this is

an ordered triple, but no interpretation or meaning is attached

to the ordering, and all three are treated equally, giving none

a priority.* By appropriately designating ehe three components

as being constant or variable, we can ask eight "questions"

of the data structure. Again using Feldman's notation, with

a slight re-ordering, they are:

D

F0 A (0) = V

Fl A (0) = x

F2 A (x) = V

F3 A (x) = y

F4 X (0) = V

F5 X (0) = y

F6 X (y) = V

F7 X (y) - z

* This is in contrast to the relational package which places
an artificial structure on the triple, i.e., calling the
first component a "relation" and the second and third its
arguments.

-.

L

J

15-

where [A,0,V] represent constants, and [x,y,z] are variables

Question F7 is not a question at all but a request for a dump

of the associative memory, and in TRAMP such a dump is given.

Question FO simply asks: "Does A (0) = V?" and the answer is

a kind of truth value. In the case where A, 0, and V are

all singletons, the truth value is a straightforward 1 or 0 de-

noting whether or not the specified association can be verified

by the data. The interpretation is slightly ambiguous, however,

when one or more of the three sets has cardinality greater than

one. To illustrate, assuming that the association

COLOR (CAR) = RED; GREEN*

has been stored, these five questior.s have the following truth

values:

1. COLOR (CAR) = BLUE 0

2. COLOR (CAR) = RED; GREEN 1

3. COLOR (CAR) = RED; BLUE 7

4. COLOR (CAR) = RED 1

5. COLOR (CAR) = RED;GREEN; BLUE 9

Questions 1 and 2 are clearly false and true respectively,

but questions 3 and 5 are each partially true and partially

false; question 4 is only half true. The interpretation which

seemed most natural, and the one adopted by TRAMP, gives the

truth values as shown, namely:

if ALL associations implied by the question are
resident in memory, or derivable therefrom, the
value is "1''

if none, the value is "0"

if some, but not all, the value returned is "?"

Since the comma already plays an important role as a TRAC
language meta character, it is unavailable as a set clement
delimiter. Therefore the semi-colon (;) plays that role
in TRAMP.

16

Questions F1-F6 simply ask the system to "fill in the blank(s),"

i.e., to replace the variable with the set that is the answer to
i I

the question. For example. Question Fl asks for the set of all

Vs that A (0) equals. Question F3 asks for the sets of all ff

0s and Vs that have a first component "A." Because of the »'

recursive nature of TRAC, questions F1-F6 may be nested in T_

any way, to any desired depth. One may ask: "How many fingers [|

on a hand?"; "What figures are pointed to by the arrows in

Window Q?"; "How old are the fathers of the wives of Mary's

brothers?"; or any questions composed in any way compatible

with the stored data, nested to any level.

For those totally unfamiliar with TRAC language, for

this section it is necessary to know only the syntax of a func-

tion call. The sharp sign (#) signals the start of a func- '-

tion call, with the call itself enclosed in an immediately T,

following pair of parentheses. The arguments are separated Q

by commas, and the first argument is the name of the function.
- :

n
#(sub,ARG)

is therefore aralagous to the FORTRAN

CALL SUB(ARG) fl
y

Data Structure Storage r- a_

The name of the storage function is d_r and the

syntax of the call is: #(dr,A,0,V) . Again, the three ar- n

guments to dr are each non-empty sets. Each point in the i.

cartesian product of the three sets is stored, i.e., each

element of each set is grouped with each pair of elements of

the other two sets, and the resulting triple is stored. Thus

a single call on dr stores as many associations as the pro-
L.

duct of the cardinalities of the three sjts. The storage

dec laration:
L

#(dr,AGE,J0HN;MARY,64)

j 5

-J

17-

would therefore store:

AGE (JOHN) = 64

AGE (MARY) = 64

The actual storage is accomplished by pairing each A and 0

to point to a list of Vs ; each A and V point to a list of

Os , etc. These "answer" lists are, strictly speaking,un-

ordered, except that they retain the order in which they were

•* stored. That is, asking the question:

{ "Whose age is 64?"
,j

-i would yield the answer:

JOHN; MARY not MARY; JOHN

I
.1 It should be noted that this is a nure data structure,

and it does not deal with semantics; d_r simply inserts associa
t

tions into mpmory in a way that they can be quicKly retrieved.

TRAMP is not a question-answering system that checks for redun-

dancies or inconsistencies of data.

Data Retrieval

The primary retrieval function has the name r_l_ . The

syntax of the function call is identical to that of <Tr except

for variable specification. A variable in TRAMP is denoted by

enclosing a name, possibly null, within asterisks (*) . Thus,

#(rl,A,0,V) has no variables and asks whether A (0) = V ;

(rl ,A,0,*X*) asks: "What does A (0) equal?" If the vari-

able is Named, i.e., there is a name within the asterisks, then

the function is Null Valued and the answer is stored in TRAC

language form storage labeled by the Name. ^(r1,A,0,*ANS*)

would store the set of Vs which A (0) equals, under the

label "ANS." If the variable is not Named, #(r1,A,0 , * *) ,

then the answer is the Value of the function. #(rl,A,*SET0*,"* 3

18-

: in example of a two-variable question with one Named and

01. Unnamed variable. The result in this case would be that

the set of Os is placed in form storage under the label

"SETO" while the set of Vs is returned as the Value of the

function.

The two-variable questions (F3, FS, F6) simply use

the Name table of one of the variables and index through that

table, internally always asking the one-varisble questions.

Since the data structure does not assign any priority to the

three components, questions F3, F5, and F6, although con-

ixderab1v slower that the one-variable questions, are all

equal among themselves. The process of answering a two-vari-

able question is less efficient because it must iterate on

the one-variable questions, the number of iterations being a

linear function of the size cf memory.* The 5peed with which

the cne-variable questions are answered is not significantly

affected by he size of memory! The three-variable question,

(rl ,**,**, **) , is, of course, th3 slowest of all and it is

a full dump of the associative memory. Alternatively, one can

call: # fdump).

Going back to the earlier example of N and MARY,

the question: #(r1,AGE,JOHN;MARY,* *) shouxd have as its

value: 64;64. That is, redundancies can be valid and should

be reported. But there are certain times, particularly in

the two-variable questions, when redundancies become quite a

nuisance (and even threalen to overflow the interpreter).

Tnerefore, the function r_l_ will always return an answer set

with all redundancies deleted. A second entry point is pro-

vided, with the name "Ir , which is identical except that it

dees not check for redundancies but returns the answer set

as it finds it.

Here, and subsequently, "size of memory" refers to the amount
of data in the structure, rather than tne physical extent of
tl. system.

..

19-

rl generates the union of the answer sets. That is,

the question: # (rl,AGE,JOHN;MARY,**) has two answer sets:

the AGE of JOHN and the AGE of MARY. rj_ simply forms the

union of however many sets there might be. int is the func-

tion (yet another entry point to the same routine) which

generates the intersection of the several answer sets. Thus,

(int,SOUTH;WEST,AUGUSTA,**) generates the set of all things

both south and west of Augusta. #(rl,SOUTH;WEST, AUGUSTA,**) ,

on the other hand, would generate the set of ail thrngs either

south or west of Augusta.

data Structure-General Strategy

As stated in the introduction, hash-coding is the

technique most basic to the data structure design. A brief

description of the use of nash-coding in TRAMP follows. Sec-

tion v gives a more technical and detailed description.

The data structure uses three Name tables and three

Association talles, one each for each of the three components

of the association. When the declaration: ." (dr, WIFE , JOHN ,

MARY) is maae, each name that appears must be stored somewhere

in memory. The full name must be present so that it can be

retrieved, and so that, when it is referenced, a collision can

be identified and resolved. The first hash, H, , then is

applied to the "A" component, "WIFE," to generate a dis-

placement from the A Name Table. The designated table entry

ia then inspected. If the entry is zero, then there is no

collision and WIFE has never appeared before as an "A" com-

ponent. Accordingly, the table entry is now made to point to

the Header for the name WIFE, see Figure 6. If the table

entry is not zero, the Header to which it points is inspected

t.; see if it is the Header for WIFE. If so, the A name

haa been processed and we move on to the 0 component, other-

wise there is a collision. For a collision, instead of a

single Header, there is an alphabetical list of Headers.

-20-

u

4) 0
e XI
C8 rt
C X

C o.
^ tn ■rH -^
O C rt

0 •o
*-l -H <u
C 4-1 !/)
a ea 3
O -H
o o

o .-^
l/l
tn
B)

O
4) —<
E X)
C3 rt
C 4-1 f-

c

3
4->

U
3
U
•M
W5

x>
IT)

H

£
to

o

3
DO

21

Thus, Name Table collisions are not rpally special cases: if

there is no collision, then there is a list consisting of a

single Header, otherwise the list contains two or more Headers

in alphabetical order.

If the above process did not find the name, before

it is actually placed in storage, a further check is made on

the other Name Tables, thus avoiding redundant storage. Any

name will appear at most once in memory, with up to three

Headers pointing to it.

The same procedure is applied to "JOHN" and "MARY,"

the 0 and V of this example, on their respective Name Tables

As a result of the Name Table processing, a unique pointer is

associated with each of A, G , and V , namely the pointer in

the Header which points t. the location of the actual name.

It is this unique pointer that will be used for the second

hash, H„ . "WIFE" must now be placed on the A Association

Table. To do this, the 0 and V pointers are hashed to-

gether to generate a displacement from the Association Table.

To be able to identify collisions, both pointers that were

used to generate the hash are stored in the table entry de-

signated by the hash. Collisions are again resolved by ordered

lists. The Association Table entry has three pointers: the

first two are the pointers used to generate the displacement;

the third points to the Answer List, i.e., the list of A's

(in this case) with wh^ch 0 and V have been associated.

Thus, "WIFE" is appended to the Answer List by placing the

unique pointer to it at the end of the list. No.e that H

is a function of the actual name, while H, is only a func-

tion of where the .lame is stored and is independent of the

name itself. Figure 7 shows the Association Tables, both for

the collision case [7b], and for the normal case [7a].

-22-

A

c
o

■H
</.

^^
o
u

o
2

V)

CO

e

o
2

<0

u
3

X

II

i i

•-5
w
-J
03

<
H

c
o Q

-r-l UJ

'/) f-
■-(<
^H t—(

t—t U
o O
u w

V)
<

XI
h-

r--
0)
^1 OJ

3 Ä

b« 3
•H O
u, H«

LU

<
-i
u,

IV LOGICAL INFERENCE PACKAGE

The associative memory accomplishes a kind of content

addressability by usinp two quick hashes to address data, and

the access time is essentially independent of the size of

storage.* But for most, if not all, applications, many associa-

tions will be implied by a single associative sentence. This

poses two real problems:

2.

The user must make sure that all associations that

apply are actually inserted into the structure.

This is extremely tedious and prone 10 error and

omissions.

Explicit storage results in gross inefficiency.

To alleviate this, TRAMP provides the facility to define, in a

characteristic way, what other associations may be derived from

a given association. This permits all of the information that

might be contained in a single association or sequence of as-

sociations to be utilized instead of having to enter the same

information redundantly in each of the several ways that it

might be referenced. The name of the function which makes the

definition is ddr . The syntax of the function call is:

#(ddr,(R = EXP)) , wl.ere R is the relation ("A" component)

to be defined, and "EXP" is a logical expression which is

the definition.

Before presenting examples of the use of ddr , two

relational operators must be defined:

The first is converse, denoted ir TRAMP by "CON."

Converse simply inverts the order of the two rela-

As the size of storage increases, there are more collisions,
but they are quickly resolved, and do not cause a significant
delay. Even in extreme pathological cases, they involve only
relatively minor list searches.

-2 3-

tional arguments:t

RCx.y) ■+ .CON. R(y.x)

Thus "CHILD OF" is the converse of "PARENT OF";

"WIFE OF" is the converse of "HUSBAND OF";

"SPOUSE' is its own converse; any symmetric rela-

tion is its own converse.

Re lative Product: The relative product or compos it ion

of two relations is common^ denoted by R /R , and

this is the notation used by TRAMP.

Yxvxaz [(R^RjHx.y) <- RjCx^z) A R2(z.y)]

Less rigorously, but more specifically,

#(ddr,(R3 = R^l^))

would tell TRAMP that R-(x,y) if a "z" can be foum

such that R.Cx.z) and R2(z,y) .

Besides these two relational operators, three logical operators

are available: .A. (conjunction); .V. (disjunction); .N. (nega-

tion). Finally, there are six equality operators: .EQ.; NE.;

.GE.; . LE.; .CT.; .LT. , with obvious meanings.

Examples of TRAMP relational definitions are:

#(ddr,(BIGGER = BIGGER / BIGGER)) Bigger is transitive

#(ddr, (BIGGER(A,B) = BIGGER(A,Q) .A. BIGGER(Q,B)))
exact same definition using expanded
format—specifying dummy arguments.

#(ddr,(SIB = BRO .V. SIS V. .CON.SIB))
a sibling is a brother or a sister and it

 is symmetric.
The relational notation used by TRAMP is derived from the
format "R,x,y" by enclosing the relational arguments in
parentheses. This is a slight distortion of the associative
notation: A(0) = V , but the order is preserved: R(x,y)
means that R(x) = y .

I
I
I

...

•j

-25-

(ddr, (HUSBAND = .CON.WIFE)) Husband is the converse of Wife

(ddr,(BIGGER = LARGER) Bigger and Larger are synonomous.

(ddr,(BROfCATN,ABEL) = SIBtCAIN,ABEL) .A. SEX(ABEL,"MALE")))
a brother is a male sibling. Note that
constants are denoted by enclosing them
within double quotes.

(ddr,(MALE(X) = SEX(X,"MALE"))) defined the unary relation
MALE

(ddr,(BRO(X,Y) = FATHER(X,Z) .A. FATHER(Y,Z) .A. MALE(Y)

.A. X.NE.Y))
a brother is a male offspring of the same
father, other than oneself.

(ddr,(STEPMOTHER = FATHER / SPOUSE .A. .N.MOTHER))
a stepmother is the spouse of the father
who is not the mother.

(ddr, (NEPHEW = SIBLING / SON)) a nephew is the composition
of sibling and son.

#(ddi,,UNCLE = .CON. (SIBLING/SON))) in a male world, uncle
is the converse of nephew and may be de-
fined as the converse of the definition
of nephew.

(ddr,(UNCLE = .CON.NEPHEW)) or simply as the converse of
nephew.

More complex examples will arise, and TRAMP is pre-

pared to handle definitions of the above form to a level of com-

plex ity virtually unlimited. One major constraint is placed on the

definiticns: relations must be defined so that at least one

set is generated. This generated set can then be intersected

with or joined with another set, or otherwise manipulated.

The intent of this constraint is that there be at least one

reference set. The "whole space" may never be used as a

reference set.

i
I

#(ddr,(R. N . R . V R9)) is illegal since it specifies
a global complement (of R.),
i.e., it references the "whole
space."

-26-

#(ddr.(R, ,N.R1.A, R2)) is legal because it specifies
a relative rather than a global
complement, i
constraint on
whole space.

R, 1 places a
not on the

Implementation of Inference

The purpose of the inference mechanism is to allow

the user to define under what conditions an implied association

may be derived from data explicitly in memory. This is ac-

complished by generating where necessary (where defined) a more

complex retrieval call from a simple one. Specifically, if

the following detinition had been entered:

#(ddrf(STEPMOTHER = FATHER/SPOUSE .A. .N.MOTHER))

i 5 =

then the following simple retr; al call:

#(rl,STEPMOTHER,JOHN,**)

which asks for the stepmother of John, would be expanded by

the system to be the following:

#(rcom,#(rl,SPOUSE,#(rl,FATHER,JOHN,**),**),#(rl,MOTHER,JOHN,**))

#(rl,STEPMOTHER,JOHN,**)

The exact call generated would be slightly different, but that

is a technicality, irrelevant at this point. The final re-

trieval call in the sequence generated asks if the desired as-

sociation was entered explicitly. It is always assumed that

a relation that has been given a definition may also appear

explicitly. The rest of ths expanded call will find the answer

if it is present implicitly. This expanded call is t ■ re-

turned to the UMIST processor, which in turn makes tM actual

calls to the data structure. The importance of this is that

relations need be expanded only one level at a time, with the

UMIST recursion automatically taking care of the possibility

that any relation is defined in terms of more complex relations.

■

m

1
I
I
f

-2 7-

etc, (this is the major difference between the call as it

actually would be generated, and as it appears above—the above,

taken literally, would specify an infinite recursion!) Thus

the inference compiler generates TRAMP procedures—they operate

only within the TRAMP language—not at a lower, machine level.

The definition, entered by #{ddr), specifies what information

the procedure is to derive and what rules may be used to derive

it; the compiler accordingly constructs such a procedure; and

the interpreter (TRAMP inference interpreter—rather than UM1ST)

expands the procedure at retrieval time, filling in information

specific to th» call.

At retrieval time, a retrieval "preprocessor" looks

to see if the "relation" ("A" component) has been given a def-

inition . If not, the preprocessor exits and retrieval pro-

ceeds as described earlier. If the name is found to have been

defined, then the "interpreter" is called in to interpret the

program generated by the compiler at the time it was defined.

This program tells the interpreter what TRAMP function calls

are t" be made, and what the function arguments are to be.

It should be noted that the compiler actually puts

out two programs: one which, given x of R(x,y) , builds

a chain to generate y ; the other builds the appropriate

chain in the opposite direction, from y to x . Thus ques-

tion Fl: #(rl,A,0,**) generates a different sequence of

function calls than F2: #(rl,A,**,V) . It may not be imme-

diately obvious why this is necessary, but, in general, the

two programs will be quite different. This is always the

case for composition. Still, the compiler would only have

to output one program, and the interpreter could decide how

to interpret it. Since the compiler will usually be called

only once or twice for each relation, cr certainly fewer times

than the interpreter, it is most efficient to let the compiler

do as much of the work as possible.

The compiler is prepared to handle definitions which

are circular in the sense that a relation is defined in terms

of itself. That is, symmetric and transitive relations are

perfectly acceptable. However, the sequence:

28-

#(ddr)(rHP = QQQ .V. ...)) #(ddr,(QQQ = PPP .V. ...))

is invalid because of its circularity. Were the compiler to

attempt to generate code for that sequence, the code would

specify an infinite recursion. This situation is checked

for ar'd flagged if detected.

V. TRAMP INTERNAL ORGANIZATION

In effect, TRAMP employs a triple storage technique

to be able to reference an association in three different ways

Thus, the association A (0) = V is stored on each of the A

0 , and V Association Tables. This makes the answers to

questions Fl, F2, and F4 equally accessible and optimizes

retrieval time.

TRAMP uses eight principal blocks of core. Though

it is designed to run under a timesharing supervisor wiiich

continually swaps TRAMP on and off a drum, TRAMP itself makes

no explicit use of drums, discs, or other secondary storage

devices; that is, such use by the system is transparent to

TRAMP as well as to the user. The blocks of virtual core are:

four Name Tables [A, 0, V, and a Name Table for Defined Re-

lations]; three Association Tables; and a General Storage list

[GS] (commonly called "Available Space" in many list proces-

sors). GS provides all the working space for TRAMP and is

by far the largest of the eight, in addition to storing all

of the information indexed by the seven tables, GS resolves

any overflow (via collisions) from the tables.

For purposes of illustration, let us follow the

interpretation of:

#(dr, HUSBAND,EVE,ADAM)

I
I
I
I
I
I

First the Name Tables are processed. "HUSBAND" is hashed to

produce a displ icement from the "A" Nnme Table. The actual

-29-

hashing scheme for H is to form a full word (4 bytes) by con-

catenating the first, last, and middle two characters of the

name, in that order. A single- character may play only one of

those roles, i.e., a name consisting of one character has no

last or middle characters. Any missing components are filled

with hexadecimal zeroes. Thus HUSBAND yields "HDBA"; EVE yields

"E_;Vo" and ADAM yields "AMDA." The full word so generated is

then transformed, with the transformation being little more

than squaring and masking.

A list is generated in GS to hold the EBCDIC re-

presentation of the name: C characters (bytes) per double word

and a 2-byte pointer to the next unit in the list. All units

in GS are double words (64 bits). Each name list is term-

inated with a stop meta character. All lists in TRAMP are

terminated with a stop pointer, though the stop pointer is

superfluous in the name lists because of the stop meta. In

the case of HUSBAND, two double word units will be needed: the

first will hold the 6 characters H-U-S-B-A-Nj and a two-

byte pointer to the next unit which will hold the character

"D," the stop meta charc:er, and the stop pointer, with four

bytes left over. Since HUSBAND is used here as an "attribute,"

we are concerned with the A Name Table. We lool at the

entry in this table designated by the hash. If this entry is

empty, i.e., zero, there is no collision, and HUSBAND has

not been used previously as an attribute. If not empty, we

look at the list of Headers pointed to by the entry This

list is alphabetical, so we need look only until we find HUSBAND

or its proper alphabetical position on the list. Proceeding

down this list of Headers, we compare the list generated above

with the sublists pointed to by the headers. If a match is

found, simply return this temporary list to GS and increment

the USE count for HUSBAND in its header. If it is not found,

insert it ... after checking the 0 and V tables for its

occurren-e. Previously HUSBAND may have been used as, say, an

30-
I

"ubject" # (dl,SEX,HUSBAND,MALE) . In this case the HUSBAND

name list would already be resident in GS. We therefore return

the co;.y of it generated above, and insert a pointer to the

first list on the A tab^e header list. Thus a name never ap-

pears in core more than once, though many pointers nay point

to it, including up to four headers if a name appears on all

four Name Tables.

The above process is done for each HUSBAND, EVE, and

ADAM. The final pointer to the one name sublist of each is

saved to generate the Association Table hash—H_ . Let us

follow the processing of the 0 Association Table. HUSBAND and

ADAM (A and V) are ha.hed together (multiplied and masked)

to produce a displacement in the Assoc'-tion Table. The actual

hash is performed on the two unique pointers found during Name

Table processing. The designated Association Table entry is

examined. If zero, there is no collision, and HUSBAND and

ADAM have never appeared together with another value. The

unique pointer to HUSBAND is placed in the first 2 bytes of

the 6-byte entry. The pointer to ADAM is inserted in the middle

2 bytes. A double word unit is picked off GS to be the start

of the "Answer List," and the pointer to this Answer List is

placed in the last 2 bytes of th ; table entry. The Answer List

elements consist of three 2-byt:e pointers to name sublists, the

answers, and a 2-byte pointer to the next list element. Ac-

cordingly, the pointer to EVE is insertea in the Answer List.

If the table entry was not zero, compare the first 4

bytes of it with the two pointers that would go there. If a

u.<itch is made, then just add EVE to the end of the already

started Answer List (polygamy is fine here), starting a new

unit if necessary. This is a simple unordered list, with new

elements always being added to the right-hand end. If the first

four bytes of the table entry do rot match the pointers., is

there a collision flag in the entry? If not, a collision list

is be£un. This is an orderea list, with the ordering being

I
I
I
I
1

-\ ■

-31-

the numerical value of the full v.ord obtained by concatenation

of the A and V pointeis (the f^rst A bytes of the table

entry). Each element of the I4it is a double word as always.

The lirot 6 bytes of this double woru are identical to the

6-byte table entry. The last 2 bytes point to the next element

on the list. When a collision occurs, the first 4 bytes of

the table entry are so flagged and the last two bytes point to

the list which resolves it.

The entries of all the tables, ^.s well as all list

pointers within GS , puint to double word units in GS . All

pointers are 2 bytes long (16 bits), but are capable of ad-

dressing 128 pages of GS . (1 nage = 4096 bytes; 128 pages =
19

2 * bytes.) For some applications this size is more than

adequate,and for others (e.g., artificial intelligence) not
l 9

nearly enough. With its present scheme (addressing 2 bytes

with only 16 bits) TRAMP has an upper limit of 128 pages, which

is a usable sizs '■'or the majority of cases, including many AI

applications. There is obviously a trade-off here since the

more ."ore that a pointer can address, the less percentage

(though r.ot p'oportionately less) of that core is available!

There is a second trade-off because the size of the units

which must be addressed deters '.nes the number of bits needed

to address them—the larger the unit, ihe fewer bits required,

but generally, the less efficiently it is used. We arbitrarily

decided that the half-word pointers that TRAMP uses to address

double words are, in a sense, optimal. Should more experience

prove us wrong, or if some special application should require

much greater capacity, the structure could be augmented, e.g.,

to incorporate full 32-bit addresses, with little more trouble

than alteration of an assembly parameter. At this t^me it is

not anticipated that explicit use will be made of any peri-

pheral stor e devices, other than the transparent swaoping

performed by the timesharing supervisor.

; .

li

32-

Ihe sizes of the various Name and Association tables

are another assembly parameter. Currently the 7 tables occupy

4 pages of core. This figure was arrived at arbitrarily and

will remain in force pending feedback which indicates that it

is inappropriate.

TRAMP is initially loaded into core with all of its

tables, a one-page PSECT and 8 pages of GS . Thereafter, when

more space is needed (GS is the only unit that will require r] ;

more space, since overflow from the ^ables is placed in GS), ü |
i

TP.AMP requests it of the system in blocks of 8 pages until _. \

the maximum of 128 is reached, or the system is unable tc comply

with the request.

TRAMP is continually ronerating temporary lists which

are immediately returned to GS when no longer needed. As

well, when an association is destroyed, or a lelational defini-

tion erased (KR and KDR , Appendix B), as much storage as is

being released is at that time returned to GS . Thus, un-

used units are never left lying about core: a unit is returned, li

not discarded, eliminating formal garbage collections by en-
11

sunng that garbage is never created.

i ;

i j

; 1
i i

f "

I |

L

I
I
I

J

-33-

c
o

*-> ♦->
c tx,
V IU « •
-o S U Jrf
•H n) X u

C <u o
m rH

■H ^ ^->0Q
(U vO

<u J5 It
r-l 4-> a> D
J3 o M 4-i
rt 3 C
+J a> OO-H

^ •H O
<u 4-1 u, o.
e >—/
tu o (U
c +->

0) 4-1
in f—1 r—t

■ H Rl X> h
X u rt O
H •H 4J (44

J3

H

4)
e
2

C
o

a:
T3
O
c

•H

4)
Q

ao

1)

3
00

i t

*->
X

1"
(X- ">

X- T

H-

i W

•
•

4 k

^
g

0Q- a, " ^

X.

c— .

CO
a.

o
o

Hi
4J

o
a.

APPENDIX A

UMIST

APPENDIX A

UMIST

The following excerpts from the UMIST manual are re-

produced with the permission of Mr. Tad Pinkerton, whose work it

is. What follows is partial and incomplete and is intended

only to familiarize the reader with the structure of the

language and enable him to follow the TRAMP definitions and

examples. A complete description of the UMIST language may

be found in The University of Michigan Terminal System Manual:

MTS, 2nd Ed., Vol II, The University of Michigan Computing

Center, December 1967.

A level of the TRAC language called "TRAC 64" is

described in [l'*»]. It is the basic standard and point of

reference for UMIST. A good discussion of TRAC 64,s design

goals and principles is given in reference [1-]. Much of the

motivation for the development of the TRAC languag0 came from

the work of Eastwood and Mclroy [2,13] at Bell Laboratories.

A system similar to the TRAC language which was developed in-

dependently in Great Britain is described by Strachey [19].

MODE OF OPERATION

There are two kind of functions: primitives, or

machine-language subroutines that support the system in its

environment. The primitives are the basis for the second type

of function, called forms, or named procedures in UMIST storage,

which are character strings written like racro definitions and

expan-lea, interpretively, when called. When writing a function

call, one specifies whether its value (replacing the call) is

to be processed again as part of the input string (active call),

or whether processing is to continue starting with the portion

of the string to the right of the value returned (neutral call).

A-l

A-2

A single processing cycle is completed when the scanning and

evaluating process reaches the right-hand end of the string.

Sequencing and evaluation in UMIST are inherently

recursive: function calls are evaluated from left to right,

but may be nested to any depth in the arguments of other calls-

Each function call is evaluated when, and only when, all of its

arguments have been completely processed. Thus the string be-

ing processed is divided logically into two parts: the active

string, consisting of input text (possibly preceded by inserted

functional values) which is yet to be scanned, and evaluated

arguments of function calls which are not completely ready for

evaluation. This mode cf operation, based on the completely

interpretive execution of function calls, eliminates the dis-

tinction between program and data.

SYNTAX

Each function call in UMIST has the form of a spe-

cially delimited argument list, in which the name of tne func-

tion is always the first argument. Calls may be open (a vari-

able number of arguments) or closed. A function call may be

protected from evaluation by the use of literal delimiters.

Another delimiter signals the right-hand end of the input

string. These considerations lead to a syntax in which there

are seven special symbols, whose occurrences are deleted from

the string during syntax scanning and whose presence indicates

the beginning or end of a substring. The character strings

enclosed in brackets below are the UMIST special symbols:

■

I

1. Beginning of neutral function call [*#(J

2. Beginning of active function call [#(]

3. End of argument [,]

4. End of call ()]

5. Beginning of literal [(]

6. End of literal [)J

7. End of input string [']

I
I
I
I

A-3

Note that the three beginning-of-substring s/mbols

##(and #(and (are terminated by the occurrence of the same

end-of-substring character,). UMIST has a "parenthesis

balanced" syntax, in the sense that an occurrence of the right

parenthesis matches only the last previous occurrence of any one

of the beginning-of-substring special symbols. Whenever a

literal substring is encountered, the UMIST processor removes

the enclosing parentheses, but only the outer set is removed

if more than one matching pair occurs. Thus a string initially

protected from evaluation may be evaluated if scanned a second

time, and, in general, evaluation can be controlled to occur

the n-th time the substri g is scanned.

READ STRING AND Pf.INT STRING

The value of a "read string' function call

* (.rlS)

is an input string accepted from the current input device.

The 'print string' function

#(PS,X)

causes the display of the second argument, here symbolized by

X , on the current output device, and has a null value.

When the UMIST processor is first given control,

and at the end of every processing cycle, the idling procedure

##(PS,#(RS;)

is automatically loaded as an input string. This procedure

first causes a read from the input device, with the input string

becoming the second argument of th" 'print string' call. Thus

the string, if any, remaining when the input string has been

completely processed, is finally printed before the idling

A-4

procedure is again loaded. For example, if the input string is

#(PS,ABC) '

then after the 'read string' has been evaluated the proces-

sor is scanning the string

##(PS,#(PS.ABCJ)

and the inner call produces the output ABC ; the outer call

nothing, since the inner 'print string' has a null value

DEFINE. CALL. AND SEGMENT STRING

Any character string in UMIST can be given a name

and placed in storage, from whence it can be called by using

its name. Tne null-valued 'define string' function

#(DS,A,B)

places the string B in storage with the name A . A is

called a form with value B . At most one string can be de-

fined with a given name at any one time: use of the same

name replaces a former definition. The value is retrieved

with the 'call string' function

#(CL,A) .

A form name, like a value, is any character string

The only restriction on length is that of the total string

capacity of the processor.

The occurrence of strings in storage is deleted

with the 'delCie definition' function

11

(DD,N1,N2, . . .) .

This null-valued function removes the names Ni,N2,

forms and discards their values.

as

I
I
I
I

A-5

Once defined, a form can be "parameterized," or

segmented, using the 'segment string' function:

(SS,A,X1,X2, . . .)

This null-valued function scans the form A , searching for an

occurrence of the string XI as a substring. If XI matches

a part of A , that part is excluded from further matching,

creating a "formal variable," or segment gap. The rest of the

form is also compared with XI to create, if possible more

segment gaps, all of which are assigned the ordinal value one,

identifying the argument matched. The (separate) substrings

of the form not already taken for segment gaps are next scanned

with respect to the string X2 , and any occurrences of the

latter substring in A create segment gaps of ordinal value

two, etc.

Thus, the 'define string' and 'segment str-ng' func-

tions together create a "macro" in which the segment gaps

locate the "formal parameters." The "macro" is expanded by

supplying the "actual parameters" in a call on the 'call string'

function mentioned above:

#(CL,A,Y1,Y2, . . .) .

The value of the 'call' is generated by returning the form A

with all the segment gaps of ordinal value 1,2,... replaced

by Y1,Y2,... respectively. If extra arguments are given

in a CL , they are ignored. If some are missing, null strings

are used as their values.

i
i
I
I

THE EQUAL FUNCTION

A decision function is provided for character strings

#(EQ.A,B,T,F) .

A-6

If the string A is identical to the string B , then the

value of this function is the fourth argument, T ; otherwise

the value is the fifth argument, F . Since the strings T

and F may be any UM1ST procedures, this primitive is the one

normally used for branching.

-.

I
I
I
\

I
1
1

APPENDIX B

TRAMP FUNCTIONS

BLANK PAGE

I
I
I
I

APPENDIX B

TRAMP FUNCTIONS

I. This appendix is intended as a reference manual for TRAMP and

provides full specifications for using the various functions

available in it. This section assumes a working knowledge

of UMIST (Appendix A), as well as familiarity WJth the design

goals of TRAMP as set foith in the body of this paper.

1

I
I
I
I
I
i
I

II. Running TRAMP in MTS (Michigan Terminal System)

TRAMP is invoked in the normal way be specifying it as the

object file of a "RUN" command. The input is taken from the

logical device SCARDS; output is put on the logical device

SPRINT; and error comments (TRAMP, not UMIST) appear on the

logical device SERCOM. While all three are global run para-

nuters, the active in^ut/output dev.ces may be switched from

SCARDS/SPRINT to some other logical device, dynamically with-

in UMIST, via the #(par> function.

The "RUN" command can accept, besides these keyword para-

meters, a parameter "list" (via "PAR=") consisting of the

following three global parameters., whose default values

are underscored:

a. NOPRIME or PRIME

This parameter specifies whether or not the prime

(') will be required to terminate TRAMP input lines.

If PAR^PRIME , then the program is in the normal UMIST

mode of operation: an input line is not terminated

vintil the prime is encountered Otherwise, a prime will

automatically be appended to the end of each input line

(if not already there), as delineated bv a carriage re-

turn or other device-dependent end-of-record signal, by

TRAMP before it is passed on to UMIST, which is still

I
B-l

B-

operating in the normal mode. If an input record has

as its last character an ampersand ($) , then that is

taken to be a continuation .ark: the ampersand is

deleted from the line, which is passed on to UM1ST

without a prime. If the ampersand is followed by a

blank, then it is not a continuation mark; it must be

the last character, not just the last non-blank char-

acter !

The mode of operation is initially set with this

parameter, but may be dynamically altered during exe-

cution via the PRIME function, fully described in tms

Appendix.

*UMISTL or *UMIST

This parameter specifies which version of UMIST

is to be used as t^.e host interpreter. Presently the

above two files are the two versions of UMIST avail-

able. These two, and any other that might becone

available, may be used.

NOW or LATER

This parameter specifies when the TRAMP functions

are to be loaded. If PAR=LATER , then only UMIST will

be loaded initiall/, with the loading of TRAMP being

deferred until a call on #(tramp), further explained

below.

B-3

NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION

EXAMPLES

DR

#(DR.A.0.V)

This is the associative storage function—the

function that inserts the data into the struc-

ture.

The three arguments, A, 0 , and V , are each

non-empty sets. The set element delin.ter in

TRAMP is the semicolon (;) because of the im-

portant role played by the comma in UM1ST- The

triple is ordered and interpreted as meaning:

A (0) = V . Each '^ment of each set is grouped

with each pair of elements of the other two sets,

and the resulting triple is stored, i.e., each

point in the cartesian product is stored. The

three sets are ordered sets only inasmuch as

the order .n which they appear in the storage

declaration is retained.

DR simply inserts the data into the structure

in a way in which it can be efficiently re-

trieved. No check is made for inconsistency

of d^ta or for redundancies.

#(DR, COLOR,CAR.RED;GREEN)

ll (DR., AGE, MABLE; EUNICE, 39)

this would store: "JE (MABLE) = 59

AGE (EUNICE) = 59

B-4

NAME :

PROTOTYPE:

PURPOSE:

DESCRIPTION:

EXAMPLES:

KR

tftKR.A.fl.V)

To undo what DR did—to erase an association

from memory.

The syntax of this function is exactly the same,

and the effect exactly the opposite, of DR .

#(KR,COLOR,CAR,CHARTREUSE)

#(KR,AGE,#(RLR,AGE,**,*X*),#(X))

This would delete ALL associations containing

"AGE" as the "A" component [s'-.e RLR , below].

IJ

I

I
I
I

i
1

I
I
I
I
I
I

NAME :

PROTOTYPE

PURPOSE:

DESCRIPTION;

B-5

RL

#(RL,A,0,V)

This is the associative retrieval function.

"Questions" are asked of the data structure

by calling RL and specifying which, if any,

among A, 0 , and V are variables

Variables are denoted by enclosing a name, pos-

sibly null, within asteriks (*) . To ask the

question: "What color is the car?" , one would

write: # (RL , COLOR , CAP. ,**) or # (RL , COLOR , CAR ,

NAME) . The "answer set" in this example is

the set of all third components of associations

having "COLOR" as the first component and

"CAR" as the second. In the first instance

above, the variable is not Named [nothing

between the asterisks]. In this case, the

answer set i. "he Value of the function. fn the

second instance, the variable is Named, which

results in the function being Null Valued, and

the answer set being stored in UMIST form

storage labeled by the Name within the asterisks

Thus, the following two statements are exactly

equivalent:

#(DS,ANS,# (RL,COLOR,CAR,**))

#(RL,COLOR,CAR,»ANS*)

If there are no variables, e.g., #(RL,COLOR,

CAR,RED) , then the question being asked is:

"Does A(0) = V?", or in this case, "Is the

car colored red?" No answer set is generated,

rather a "truth value" is retuiiied as the

value of the function. If the specified associa

tion is in f ct rcsidon.. in the structure, or

B-6

derivable thereof, then the value is "1"; if

not, the value is "0." An ambiguity arises

when one or more of the three sets has cardi-

nality greater than one. Suppose #(DR,COLOR,

CAR,RED) had been entered. Then,

#(RL,COLOR,CAR,RED) would have the value "1"

#(RL,COLOR,CAR,BLUE) " " " " "0"

#(RL,COLOR,CAR,RED;BLUE) " " " " "?"

That is, the first association is found in storage,

and the answer is "1." The second is not found,

and the answer is "0." But two associations are

specified by the last example, one is verified,

the other not, and TRAMP returns the value "?"

If there is one variable, then TRAMP is being

asked to "fill in the blank." The one variable

may be in any of the three positions of the

triple. The variable may be either Named or

Unnamed, with the respective consequences des-

cribed above.

I
I
I
I
I

m

m

If there are two variables, then two answer sets

are generated. One of the variables is picked as

the index variable, and values are ono-by-one

substituted for it, internally iterating on the

one-variable question. The one constant may

again be in any of the three positions of the

triple. If both variables are named, the func-

tion is Null Valued, and the two answer sets

are stored and labeled by their respective

names. If one is Named and the other Unnamed,

then the set corresponding to tit Named variable

is stored and the other answer set is the Value

I
I

■f

r

B-7

of the function. It is syntactically valid for

both variables to be Unnamed, but this should

not be done since then the Value of the function

would be the concatenation, not union, of the

two answer sets.

The two-variable questions generate two answer

sets—not a set of ordered pairs! Soon a varia-

tion of this function may be offered which will

allow the generation of ordered pairs. In the

meantime, if this is desired, the user will have

to write a short UMIST procedure to pick out

the proper subset of the cartesian product of the

two answer sets.

«4

I f

The present form of the two-variable questions-

generating two answer sets—is very often used

to find all "objects-" associated with some other

"objects," without regard for the third component

of the triple. For example, to find all those who

have sons, one could say:

#{rl,SON,**,*>'*)

with the set of all sons now being stored in the

form "X." In general, this generated set, here

the set X , will not be further used and is not

wanted. TRAMP recognizes one special Named

Variable for two-variable questions: "§," as

denoting that the corresponding answer set is

not to be generated. Thus,

(rl.SON,**,*SONS*) would return the s^t of all
those Wiio have sons, and
store the set of all Sons
in the form "SONS"

B-8

#(rl,SON,**,*§*) wou^d likewise t--turn the
set of all those who have
sons, but would discard the
set of Sons.

If there are three variables it is interpreted

as being a request for a dump of the associative

memory. If any of the three variables are Named,

the names are ignored. Alternatively, one can

simply call: #(DUMP). V,

EXAMPLES #(RL,*REL*,JOHN,HARVEY)

#{RL,SON,CLYDE,**)

#(RL,COLOR,**,»COLOR*)

#(RL,*X(Z*)

put the set of all re-
lations that associate
John with Harvey in the
string "REL."

return the set of
Clyde's sons,

return the set of all
objects that have the
attribute "COLOR," and
place the set of all
colors in the string
"COLOR."

give a dump of the as-
sociative memory. The
three names are ignored

#(RL,AGE,#(RL,FA,#(RL,WIFE,#(RL,BRO,MARY,**),

WIVES)#(WIVES),**),**) recursively asks the
question: "How old are
the fathers of the wives
of Mary's brothers?"
Also, the set of the
wives of Mary's brothers
is now in the string,
"WIVES."

#(rl,COLOR, return the set of all ob-
jects that have the at-
tribute "COLOR," but do
not generate the set of
colors.

Ui

i I

I
\

B-9

* (rl,COLOR,CAR,*@*) put the set of the colors
of the car in the string
"@." "8" is a special
symbol only in the two-
variable questions.

NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION;

EXAMPLES:

B-10

RLR

MRLR.A^.V)

To retrieve answer sets that may contain re-

dundancies .

This function is identical to RL except that

any redundancies are reported. RL returns non-

redundant answer sets, while RLR does not check

for redundancies, and is therefore significantly

faster.

#(RLR,AGE,EUNTCE;GLADYS.**)

if they are both 31, then the value will
be: "SljSl."

I
I
i

5§ =
'if I

1

ii

I
I
I
I
I
I
1
1

I

I
I

I
I

B-n

NAME: INT

PROTOTYPE: # (INT,A,0,V)

PURPOSE: To generate intersections of answer sets.

DESCRIPTION: This function has the same syntax as the one-

variable question of RL . RL generates the

union of the answer sets, while INT generates

the intersection

#{rl.SOUTH;WEST,TOLEDO.**) generates the set of
all things either
south or west of
Toledo.

#(int,SOUTH;WEST,TOLEDO**) generates the set
of all things both
south and west of
Toledo.

If both constant sets are singletons, INT and

RL will yield identical answer sets The vari-

able may again be in any of the three positions

and may be either Named or Unnamed, This func-

tion must have exactly one variable.

EXAMPLES: #(int,NORTH;EAST,CHICAGO,*NE*1

place the set of everything both north
and east of Chicago in the string "NE."

#(int,**,JOHN;MARY,CLARA)

return the set of all relations that
John and Mary commonly share with Clara

NAME :

l-KOTOTYPE:

PURPOSE:

DESCRIPTION:

EXAMPLE

B-12

RCOM

#CRCOM,SETl,SET2,NAMfi)

To compute the relative complement of two TRAMP
sets.

The third argument is logically subtracted

from the second argument, with the disposition

of the resulting set determined by the fourth

argument: if it is present, the function is null

valued and the set is stored in UMIST form

storage labeled by the name; if the fourth

argument is omitted, the relative complement

of the other two argume-its is returned as the

value of the function. The set computed con-

sists of all elements of "SETI" that are not
elements of "SET2."

#(RCOM,#(RL,AGE,*»,40),#(RL,SPOUSE,**,*§*),
SPINSTER)

this would store in the string
"SPINSTER" all those wh . are 40
years old and not married.

i
I
I
I

0

0
n

0
0
Q
Ö
n
U

0

NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION:

EXAMPLE:

B-13

SYMD

^(SYMD,SETI,SET2,NAME)

To compute the symmetric difference of two sets.

The symmetric difference of two sets is defined

to be the set of all things that are in either

of the two sets, but not in both (exclusive OR)

The syntax of SYMD is identical to that of RCOM,

with the fourth argument determining what will

be done with the generated .-«et.

(SYMD, #CRL,BP.0,**,*8*),#(RL, SIS. **,*§*))

this would return the set of all those who
have siblings, but siblings of only one
sex.

Ü

3
i

B-14

NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION;

EXAMPLES:

INT

(INT,SETIfSET2,NAME)

To intersect two TRAMP sets.

This function h s the same syntax as the other two

set operators: RCOM and SYMD: the two operands are

the second and third arguments (SETI and SET2) and

the fourth argument specifies the dispositton of the

result: if it is present, it will be used as the

name of the form into which the answer will be placed;

if omitted, the answer will be returned as the value

of the function. The answer is a straight set inter-

section, except that any redundancies (e.g., introduced
by a call on RLR) are deleted.

Note that this function has the same name as the

retrieval function INT. There is no ambiguity and

there should be no confusion, since the two func-

tions have dissimilar syntax! The retrieval

function INT is called by specifying exactly

three functional arguments, of which exactly one

is a Variable; the Set Operation INT is invoked

by giving either two or three functional argu-

ments, oT which exactly zero are Variables! I.e.,

a variable specifies retrieval—if there is no

variable then a question is not being asked.

#(int,#(int,NORTH;EAST,CHICAGO,**),

#(int.SOUTH;WEST,MAINE,**)>UNHUH)
recursively uses both forms of INT to place the
set of all things both northeast of Chicago and
southwest of Maine in the string "UNHUH."

#(int,#(X),#(X),X) remove all redundancies from
the string "X."

#(int,#(rl,AUTHOR,**,GEORGE),#(rl,SUBJECT,**,SEA))

return the sec of everything George wrote
about the sea.

i.

D

n

I
I
I NAME:

PROTOTYPE:

PURPOSE:

DESCRIi'TION:

EXAMPLES:

B-1S

DUMP

#(DUMP) or »(Ri^**^**^ **j

To obtain a coraplete listing of everything

that is explicitly stored in the data structure.

All associations explicitly stored are printed

out. using the "A (0) = V" format. A and 0

are singletons and V is the set of all "values"

associated with the A/0 pair. Any redundancies

in the V set are printed. Implied associations

are not listed in the dump. After all of the as-

sociations are listed, all of the current rela-

tional definitions [entered by Di'R , below]

are displayed.

#(DUMP)

#(RL,**,** **)

#(RLR,*X*,**,**)

NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION;

B-16

ERM

#(ERM)

To completely erase the memory for a fresh

restart.

It is not anticipated that this fucntion will

he called very often, if ever, and to prevent

its being invoked unintentionally, via mis-

spelling, etc., confirmation is required by

TRAMP before it actually erases the structure.

This is similar in form and in content to the

confirmation that MTS requires before EMPTYing

a file: an exclamation point (!) , or the

two letters "0K" are positive confirmation.

Anything else cancels the request.

I
I
i
I
I

I
I
i
I

I
I

I
I
r

NAMG:

PROTOTYPE:

PURPOSE:

DESCRIPTION;

EXAMPLES:

B-17

USE

(USE,NAME)

To obtain the number of explicit associations
that the NAME is used in.

The value of the function is the total number

of associations that the name in tne argument

is used in. Any implied associations are not

included in the USE count. There is no break-

down as to how the name is used within the as-

sociations, simply a count of the triples in
which it appears.

#(USE,JOHN)

*(USE,COLOR)

How many objects have the attribute color?

B-18

NAME :

PROTOTYPE:

PURPOSE;

DESCRIPTION:

EXAMPLES:

CT

#(CT,SET)

To determine the cardinality of a TRAMF set.

This is a very simple function that is signifi-

cantly faster and more convenient than a UMIST

procedure thac would do the same thing. It

distinguishes between: a missing argument; a

null set; and a singleton (set with no semicolons);

but otherwise is sim^ y an efficient way to count
semicolons.

#(CT,#CSET)) what is the cardinality of 'SET?"

#(CT,#(RL, SON; DAUGHTER, SHERMAN*^)"»

How many , .ildren does Sherm«,.* have?

I
I
I
I
I

B-19

NAME: TABLE

PROTOTYPE: #(TABLE,X)

PURPOSE: To obtain the contents of one of the Name

Tables.

DESCRIPTION: The argument, X , specifies which of the four

Name Tables is desired:

A - attribute

0 object

V - value

D - defined relation

The set of names found on the particular table

is returned as the value of the function.

EXAMPLES: # (TABLE,A)

#(TABLE,D)

(room,#(table,A),# (table,D))

return the set of all nam^s that have been
used as "attributes" but have not been given
definitions. The Defined Relation Name
Table is always a subset of the "A Name
Table!"

#(int,#(int,#(table,A),#(table,0)),#(table,V))

return the set of all things that have been
used at some time in each of the three
positions of the associative triple,

#(symd,#(table,A),#(table,V))

return the set of all names used as either
"attributes" or "values" but not as both.

NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION

EXAMPLES:

B-20

PRIME

#(PRIME,[ON,OFF])

To set or invert the mode of operation regard-

ing the prime that terminates all UMIST input
lines.

An internal switch in TRAMP determines whether

or not a prime is required to terminate an in-

put line. This switch is initially set by the

parameter in the RUN command. The function

PRIME may be used to alter dynamically the set-

ting of this switch during execution.

The argument to PRIME may specify that this

switch is to be turned ON or OFF, or simply

inverted from its present setting. ffCPRIME.ON)

turns the prime ON, i.e., it specifies that a

prime will be required to mark the end of a

line. #(PRIME,OFF) sets the switch the other

way; equivalent to: PAR=NOPRIME. Full details

of operation with the switch off appear in the

introduction to this Appendix.

#(PRIME,OFF)

#(PRIME)

#(PRIME,ON)

#(PRIME,X) an unrecognizable argument inverts
the switch.

0

01

B-21

NAME:

PROTOTYPE:

PURPOSE;

DESCRIPTION:

TRAMP

(TRAMP)

To load TRAMP if PAR specified that loading was

to be delayed.

If PAR=LATER, then only UMIST will be loaded

initially. When ready for TRAMP, the user

issues this function call which loads and links

up all the TRAMP functions.

The function "TRAMP" is defined only when PAR=

LATER, and then only until it has been called.

B-22

1

NAME: SAVE

PROTOTYPE : # (SAVE, FUNAME,RLI.G, ID)

PURPOSE: To save the current state of the data structure

on an auxiliary device so that at a later date *

the structure can be initialized to contain the n
pr«. jevt data, U

DESCRIPTION: FDNAME is the name of the file or device onto r|

which the data are to be SAVEd. RLNG is an U

optional argument specifying the record lengths

to be written. If this argument i? eit.' si omit-

ted or specifies ir>o large a record length for

the particular device, the following default

values, which ?r3 the respective physical
maximums, will >e used:

PUNCH 80

FILE 255 Ul

TAPE 32,760

If RLNG * 80, either explicitly or by default,

then each record will contain 72 bytes of in-

formation and 8 characters of sequential identi-

fication, the first 4 of which may optionally fl
be specified in the last argument, ID. If

more than 4 characters are given, extra char- n\
acters on the right will be truncated. If

less than 4, trailing blanks will be appended.

If RLNGsSO and this argument is omitted, t'.e

4-character MIS signon ID will be u?^d. If

RLNG « X , A)< 80 , then there will be X
bytes of information with DO Identification.

Ü

al

I
I

3
1
y

I
I
I
I

B-23

EXAMPLES: »(SAVE.MYI-LE)

write 255-byte records into the file

#(SAVE.MYFILE,80,IDX)

write 80-byte records into the file with
the specified ID. Caa now be copied to
a card punch.

#CSAVE,♦PUNCH*,,IDZ)
f punch the data onto cards with "IDZ" ID,

#(SAVE,*PDN1*,80)

3 write 80-byte records onto tape using
MTS ID. *

#(SAVE,*PDN2*,25S3

write records on tape that can be copied
into a file.

^

NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION:

B-24

COPY

#(COPY,FDNAME)

To reed back in what has previously been SAVEd.

COPYing in a new structure completely erases

anything that might be in the structure at the

time the COPY i, called. There is no direct way

to merge two TRAMP data files. (See Appendix C.)

n

0
0

I 5 5

}

I
I
I

i

I
I
I

NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION:

B-25

PAGE

#(PAGE)

To ascertain what size file will be required

to SAVE in and/or how much core the data

structure is occupying.

PAGE is a null-valued printing function which

prints on the current output device. The out-

put is the number of pages currer y in core

that will have to be saved, and w many exten-

sions have been made to TRAMP. \he sizes of

the various tables used by TRAMP are assembly

parameters and are likely to change. Presently

the tables occupy a total of 4 pages of core.

The information printed by PAGE is the amount of

core being used in addition to the tables (tables

cannot grow during execution) .

TRAMP is initially loaded with an Available Stor-

age List 8 pages long (32, 768 bytes). As this

is used up, more is acquired from the system in

blocks of 8 pages, called extensions. There can

be up to 16 extensions (presently meaning that

a maximum of 132 pages - 540,672 bytes would

have to be SAVEd). These 8-page blocks are

never broken up—SAVEir.g requires that the

entire block(s) 'on written. In summary, (assum-

ming 4 pages for tables) there is a minimum of

12 pages (= 49,152 bytes) and a maximum of 132

pages (= 540,672 bytes), with the minimum ap-

proaching the maximum in steps of 32,768 bytes.

B-26

NAME:

PROTOTYPE

PURPOSE:

DESCRIPTION;

DDR

#(DDR,(REL » EXP)) or #(DDR,(REL :« EXP))

To define a relation in terms of other rela-

tions, thereby creating implicit associations

in the data structure.

REL is the relation being defined, a^d EXP

is an expression which is the definition. The

equal sign is the delimiter and must be present.

In the prototype the entire argument to DDR is

enclosed in parentheses, i.e., a UMIST "literal."

Depending on the particular definition, this

may or may not be necessary, but it will never

hurt, and it is good practice always to paren-

thesize the argument.

EXP is composed of one or more relations joined

by the logical connectives: .A. conjunction;

.V. disjunction; .N. negation; two relational

operators: / (slash) relative product or com-

position; .CON. converse; and s^x equality

operators: .EQ.; .NE.; .GE.; .LE.; .GT.; .LT.; with

obvious meanings.

The "RCx.y)" format Is the relational format

adopted by TR'vMP and is Interpreted to mean

that R (x) = y .

"Converse" simply Inverts th« order of the two

relational arsuments: R(x,y) -*"♦• .CON.R(y,x) .

Thus, "child of" Is the converse of "parent of,"

any symmetric relation Is Its own converse, etc.

Composition Is defined: Vx Vy 3 z [(S/T) (x,y)^

S(x,z) A T(z,y)l . Specifically, the declaration:

#(DDR,(R:= S/T)) would tell TRAMP that R(x,y)

if for some z: S(x,z) and T(z,y).

I
I

!

U i

B-27

DDR is the only TRAMP function that allows spurious blanks.

Before compiling the definitita, all blanks are removed. In

all other functions (except EDIT, below, which is another

entry to this function), blanks are valid EBCDIC characters

ard are treated like any other. Definitions may be either

abbreviated: #(DDR,(R1 = R2 .V. R3)) ; or in an expanded form:

#(DDR,(R1(X,Y) = R2(X,Y) .V. R3tX,Y))). There is the restric-

tion that any one definition be consistent. #(DDR,(R1 » R2(X,Y)))

is not legal. The two relational operators, composition and

converse, may be used only in abbreviated definitions where there

are no explicit relational arguments. On the other hand, the

equality operators may only be used with relational arguments

as their operands. A constant which is to be ust . as a rela-

tional argument is denoted by enclosing the name of the constant

in double quotes (").

Precedence of operators: The precedence ordering of

the various operators is as follows:

/ composition

.CON. converse

.EQ. etc. all equality operators have the same
precedence

.N. negation

.A. conjunction

.V. disjunction

i
I
I

The above precedence ordering may be altered in the usual way

by the appropriate use of parentheses.

One major constraint is placed on the argument to

DDR: relations must be defined so that at least one set is

generated. The Intent of this constraint is that there be

at least one reference set. The "whole space" may never

be the reference set!

ff(DDR,(R = .N, Si) is illegal, since it specifies a
global complement, i.e., it references
the "whole space."

B-2S

I
#{DDR,(R = .N. S .A. T)) is legal, since it first generates

a reference set via T , and then p
places a constraint on that reference ||
set, not on the whole space.

Besides the choice of using the "expanded" vs y

"abbreviated" notation for defining a relation, the user has

the option of specifying whether or not the implication is one

way, or specifies an if and only if condition.

Husband ■ .CON. Wife u

is an iff condition whereby it is implicit that:

Wife = .CON. Husband ,-,

Q
the equal sign will be used to denote this kind of equivalence

which can be interpreted as meaning iff.

On the other hand.

Parent :» Father or Mother

is one-way implication, giving information about the relation fl

'parent" while giving none about the relations "father" or "

"mother." To denote this the "assignment symbol" (:«) is used. r.

In general, if the assignment symbol is used then no U

attempt will be made to extract information about the relations

on the right side of the equation. If the equality symbol is

used, such an attempt will be made. This attempt will not,

of course, always be successful:

Parent = Father .V. Mother n

U
gives us no information about "father" or"mothei" even through

the equality sign is used. f

If a relation is defined, and later a new definition fci

is given for that same relation, TRAMP simply OR's the two

definitions together. If there is a syntactic error in the

second definition, a diagnostic is printed and the earlier

definition is retained.

0
D

I
I
I
1

B-29

EXAMPLES:

#(DDR,(BIGGER » BIGGER / BIGGER))

BIGGER is transitive

#(DDR,(BIGGER(A,B) « BIGGER(A,C) .A. BIGGER(C,B)))

same definition using expanded format.*

#(DDR,(SIB ■ BRO .V. SIS .V. .CON.SIB))

a sibling is defined to be a brother or a sister
and it is symmetric

#(DDR,(HUSBAND = .CON. WIFE))

husband is the converse of wife

#(DDR,(3RO(CAIN,ABEL) = SIB(CAIN,ABEL) .A. SEX (ABEL,"MALE")))

a brother is a male sibling. Constants are enclosed
in double quotes

#(DDR,(BIGGER = LARGER))

bigger and larger are synonymous

(DDR,(MALE(X) = SEX(X,"MALE")))

unary relations may be defined

#(DDR,(BROTHER(X,Y) = FATHER(X,Z) .A. FATHER(Y,Z) .A. MALE(Y)

.A.X.NE.Y))

a brother can be defined as a male offspring of the
same father, other than oneself

#(DDR,(PARENT = FATHER .V. MOTHER))

#(DDR,(NEPHEW = SIBLING / SON))

a nephew is the composition of sibling and son.

(DDR,(UNCLE = .CON.(SIBLING / SON)))

in a male world, uncle is the converse of nephew and
may be defined as the converse of the definition of
nephew.

#(DDR,(UNCLE = .CON. NEPHEW))

or simply as the converse of nephew.

The dummy arguments used in expanded definitions may be
up to eight characters long.

*

/

/

/

B-30

(DDR, (STEPMOTHER = FATHER / SPOUSE .A. .N,MOTHER))

a stepmother is the spouse of the father who is not
the mother.

n i
i I !
I! I

n

NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION:

EXAMPLES:

KDR

#(KDR,REL1,REL2, ...,RELn)

To erase definitions made by DDR .

KDR may have any number of arguments. The

definition for each of the relation names given

as argument} is deleted.

»(KDR.SIBLING)

(KDR,NEPHEW,UNCLE,SPOUSE)

#(DS,X.#(TABLE>D))#(SS,X,;)#(KDR,#{X,(,)))

would erase ALL definitions

n

D
J

 i

I
I
I
I
I
I
I

B-31

NAME: SHOW

PROTOTYPE: »(SHOW,RELATION)

PURPOSE: To display the current definition of a relation.

DESCRIPTION: SHOW will display the definition of the relation

specified by its argument exactly as it was

entered by the user, except that blanks will

have been removed. If more than one definition

has been given for the r lation, they will all

be concatenated, separated by a break character,

and displayed in a continuous line. Three actions

may be taken b/ SHOW : if the relation has

been successfully defined, its definition will

be displayed on the current output device; if

TRAMP has never hea^d of the relation, the com-

ment: "RELATION XXX HAS NOT BEEN DEFINED." will

be printed; if the relation was unsuccessfully

defined, or was erased, via KDR, the comment:

•'RELATION XXX IS UNDEFINED." will be printed.

NAME:

B-32

EDIT

"0T0WE: ,(5DII(llEWTI

PURPOSE- T '•■■•PAT"«N.REPUCBMENT)

DESCRIPTION;
The second argument is the name of the relation

that is to be EDITed. The third argument is the

pattern within the definition., as displayed by

SHOW, that is to be altered. If this argument

is null, it matches the void immediately to the

right of the relation name in the definition

string. The last argument is the string that

replaces the pattern specified by the third

argument. Ar;- blanks in the PATTERN or REPLACE-

MENT will be ignored. If the last argument is

omitted, the pattern is simply deleted. If the

string specified by the third argument occurs

more than once in the definition, only the first
occurrence is changed.

Calling EDIT implicitly calls SHOW to display
the EDITed definition.

EXAMPLES: #(EDIT,SIB,(.V.},(.A.))

change tne first OR to AND in the de-
finition of SIB . Like DDR , it is good
practice to enclose the argument in
parentheses.

#l£DIT,REL,C.A. R4))

finm^V^"« "■A-R4" "o. th. „..
D

I
I
I
I

I

NAME:

PROTOTYPE:

PURPOSE:

DESCRIPTION;

DDEF

#(DDEF)

To display all current relational definitions.

DDEF iteratively calls on SHOW for each name

found in the Name Table of Defined Relations.

DDEF is an entry to the second half of DUMP, which

bypasses the listing of the associations.

1
I

Ther. TuRAMP ^ n0 W8y alterS an^hing internal to UMIST inere are throia MUTCT * *••»* uu uniai.

*- -ce t::;:::L
£:::::r:t

t!::srrbe——
#(DSS)

#(DA)

*(RES)
as a subsetj

::r.:::::b-:: :::rr-the fui1 — -—
Define Special Sytbol

Delete All (including TRAMP)

Restart - contains #(DA)

I

--^i

APPENDIA C

EXAMPLtJ OF TRAMP

* i I

APPENDIX C

EXAMPLES OF TRAMJ-

This Appendix gives both simple and more complicated

examples of the use of TRAMP. The most relevant information

about UMIST necessary to understanding the examples is found

in Appendix A. Complete understanding of the more complicated

example of the question-answering program (Fig. lib) requires

mor' detailed knowledge of UMIST, which may be found in the

citud references.

The first set of examples (Fig. 9) show the "FO"

questions of Part III. First, we define the COLOR of CAR to

be RED and GREEN. Then the various Boolean questions are asked;

the answers given by the system are on the line immediately

following the "question."

The next examples (Fig. 10a) describe the family

tree information of Fig. 1. Two relatively complicated ques-

tions are then asked. The first may be stated as: "Who are

the people who have brothers whose age is 64?" To illustrate

this in depth, we first ask "Who is aged 64?", then "Who are

the people who can call this 64-ye3r-old 'brother'?" 0b\ .ously,

for one of these people (Mary), there is no answer, for no one

calls her "brother." The second question asks: "What is the

age of the father of the brother of Melissa's mother?" Store

the answer (this age) in the form called "NUM." Now Melissa's

mother is Edith, Edith's brother is Arnold, Arnold's father

is John, who is 64 years old. Hence, a call for the string

NUM prints "64.''

C-l

C-2

n I

< DR* COLOH« CAR« REDI GREEN > «
CRL* COLOR« CAR* BLUE) *
0
#<RL# COLOR« CAR, REOi GREEN> *
1
f(RL*COLOR« CAR« GREEN1RED)*

1
f <RL« COLOR« CAR« RED! BLUE) •
7
#(RL« COLOR« CAR« RED)*
t
#<RL« COLOR« CAR« REDI BLUE; GREEN > *
?
f CRL* COLOR« CAR« YELLOWl BLUE) »
0

I
ii

Figure 9. "FO" Questions.

I

C-3

COR*FATHER«ARNOLD« JOHN)
i COR« FATHER« JAMES« ARNOLD)
#CDR#BROTHER, SAM; JOAN« JOHN)
COR«BROTHER« EDITH«ARNOLD)
f COR«MOTHER« ARNOLD«MARY)
CDR^HOTHER«HELISSA«EDITH)
COR«AGE« JOHNiMARY« 64)
CDR« AGE« ARNOLD« 39)
#COR«AGE«EDITH«33)*
#CRL«BROTHER«*««#CRL«AGE«**«64})*
SAM!JOAN
fCRL«AGE«**«64)*
JOHN;MARY
#CRL, BROTHER«**, JOHN)»
SAM;JOAN
CRL«BRO THER« **«MARY) •

#CRL«AGE«#CRL«FATHER«#CRL«BROTHER«#CRL,MOTHER«M£LISSA«**)«**)«
♦ ♦)#*N^«♦)•
#Ca«NUM)*
64

Figure 10a. Family Relationships / Nested Question

COR«SISTER«JOAN«ALICE)*
#CDDR«CSIB ■ BROTHER .V. SISTER .V. .CON.SIB))*
#C8L«SIS,ALICE,**)*
JOAN
#(DDR,CSIBCX«Y) = SIBCX«Z) .A. SIBCY«Z) .A. X.NE.Y))*
#CRL«SIB«ALICE«**)*
JOAN! JOHN; SAM

Figure 10b. Relational Example. Associations Between Siblings

H.
■ ■.

C-4

The examples of Fig. 10b show the first use of ddr,

where we add to the family of Fig. 10a the sisterhood of Joan

and Alice. The first definition of Sibling now allows the

retrieval of one of Alice's siblings, though Sibling has never

appeared explicitly in an association. The second definition

entered completes the job, and TRAMP is now able to return

all of Alice's siblings.

As a more complicated example of the use of TRAMP,

a rudimentary "question-answering system," with thesaurus,

was coded. It should be noted that this illustration is not

intended to constitute a good system—in fact, it represents

a total of less than one hour's coding and debugging time.

The job of the system is to parse input commands

and, from them, generate TRAMP statements. In this regard

the system is grossly incomplete, i.e., it uses a most un-

sophisticated parsing algorithm. The generated TRAMP calls

are realistic, nonetheless. The complete program, used as

the question-answering system (QAS), is shown in Fig. Hb.*

The output from an actual session is shown in Fig. Ha.

To enable the reader easily to follow the dialogue,

each statement issued by the QAS is initiated by the word:

"ANSWER." Everything else was typed at the terminal by the

user. QAS has been given a thesaurus to relax the format of

The code for th^ question-answering program is shown as it _
would appear for a processor for the standard TRAC T-64 I
language, rather than for the locally used dialect UMIST, •
but the differences are very slight indeed.

c-s

INPUT AUTHOR OF HÜCKFINN WAS MARKTWAIN»
SYNOWYM MARKTWAIN IS SAMCLEMENS»
WHAT CID SAMCLEMENS WRITE ?•

ANSWERS
SYNONYM WRITE « AUTHOR»
WHAT DID SAMCLEMENS WHITE 7'

ANSWER! HÜCKFINN
DID TWAIN WRITE HÜCKFINN 7»

ANSWERS NO
SYNONYM MARKTWAIN AND TWAIN*
DID TWAIN WRITE HÜCKFINN 7»

ANSWER« YES
INPUT AUTHOR OF TOMSAVTYER IS TWAIN»
INPUT AUTWR OF THESTRANGER WAS SAMCLEMENS»
HOIWANY BOOKS DID MARKTWAIN WRITE 7»

ANSWER« 3
WHAT DID TWAIN WRITE 7*

ANSWER« HUCKFINNJTOMSAWYER;THESTRANGER
INPUT MODEL OF /360 IS 67*
SYNONYM /360 IS IBM»
WHICH MODEL OF IBM DO WE HAVE 7 •

ANSWER« 67

Figure Ha. Output of Question-Answerin«; Program,

■ ■;■■- ...;■■ ^-::-

C-6

QUESTION-ANSWERING PROGRAM

CDS* START* Cf <DS#FF, #(RS> >#(SS* FF#)#CCL# ##<CS*FF> >#<a.# START) > > •

#<DS*SYN«(#COS#i#X)#(EQ«##CCC«0)***X. (##(RL«SYN*X«*<i>>)n}#CSS«SYN«X>t

#(DS#CK#(##CHL*SYN*X,*f*)#CEQ###<CL/e)*#<#(DR#SYN,X#X)X),
(##(CL*»>>>)>#CSS#CK#X)*

#CDS*OR#C#CDR##(CL#CK*A>«#CCL*CK>0>*#(CL#CK*V>}}>#CSS«OR#A«0«V>'

#(DS,m,*<#(RL,#(CL,Sm,A),#CCL#SyN,0)*#(CL#SYN,V))))#(SS,RL*A,0,V)*

<OS* INPUT, (#(CL#DRj##CCS*FF)*#(PS*###<CS#FF>)##<CS#FF)*
#CPS*###<CS#FF>>##CCS#FF)>))*

#CDS*SYNONYM* (#COSJ0«##(CS«FF>}#(PS**##(CS«FF})#(OR*SYN###CCS#FF>
*##(a,#9>}#(0R*SYN###(CL*«)*##(CL*«>)}>t

CDS* WHAT* C#CPS* ANSWER! #(PS** ##<CS*FF))#CDS*f* ##(CS*FF))
fCCL*RL* ##<CS*FF)****##(CL* 9)>>))*

#(DS*WH0*(#CPS* ANSWER! #CPS**##CCS*FF>>#(CL*RL*##CCS*FF>*
#CPS**##(CS*FF)>##CC?*FF)*♦♦)))>•

#CDS*HOWMANY*(#CPS* ANSWER! #<PS** ##(CS*FF)#f (CS*FF) >
#(CT*#(CL*RL*#CDS*t*##(CS*FF>)##(CS*FF)*♦**##<CL*•J>)))),

#<DS*IS*(#<PS* ANSWER! #(EC* #CCL*RL* ##(CS*FF)* #CPS** ##CCS*FF>)
##CCS*FF)*##(CS#FF)>*0*NO*yES>>))•

#CDS*DID*(#(PS* ANSWER! #<DS*»* #f CCS*FF))#(EQ* #(CL*fiL* ##CCS*FF)*
##<CS*FF)*##(CL*f)>*0*NO#YES))))•

#(DS*WHICH*(#CPS* ANSWER! #<CL*fiL«##CCS*FF)* #(PS** ##(CS*FF>)
##CCS*FF)*♦*)>>),

#CCL* START)»

7 i

11

n

Figure lib. Question-Answering Program.

n

n
ii %

C-7

statements. This thesaurus, as well as all data, is held in

I the TRAMP structure. To make a thesaurus entry, the user types

the command "SYNONYM" followed by the two synonymous names.

A datum is entered by the command "INPUT." The questions are

self-explanatory.

I
I
I

I

Merging TRAMP Data Files

The following procedure shows one way that two TRAMP

data files can be merged. This sort of thing is necessaiy be-

■ cause the COPY function erases the current memory while it is

3 writing in a new one. Thus, assume that files DATA1 and DATA2

are two TRAMP data files that are to be merged:

I $RUN TRAMP PAR=NOPRIME

#Ccopy,DATAl)

#(par,FDO,SCRATCH)*(dump)#(pai,FD0,*SINK*)

| #(copy,DATA2)

#(ds,PARSE,C#(ds,X,##{rs))#(eq,##(cc,X), ,(#(ss.X,)fi

1 #(dr,##(cs,X),#(cs,X),#{nl,##(cs,X))##(cs,X))#(PARSE)),§

(#(par,FDI,*SOURCE*)))))

#(par.FDI,SCRATCH((2)))fr(PARSE)

By way of a superficial explanation: the procedure

"PARSE" simply reads in the "dumped" information and parses

those lines to extract the three arguments to DR, The process

. must start at line #2 because the first line of a dump is always

* a label. The procedure recursively calls on itself until an-

1 other "label" is encountered, signaled by not having a blank

I
I
I

I
~~

C-8

in the first column. Segmenting the dumped line for blanks,

the first segment will be the "A" component; the second seg-

ment will be the "0" component (stripped of the parentheses

by calling CS actively); the next segment will be the equal

sign and is discarded via the NL (null) function; the last

segment is the "V" component. Note that PAR must equal NOPRIME

(default case) in order for PARSE to be able to i--ad the dumped

lines in sequence, since they do not have primes on the end.

An analogous procedure could be written 2nd called

by PARSE to read in the rest of the dump, which would contain

the relational definitions, and make those definitions via

generated calls on DDR.

n i

0

D
11

y

I
I
I
I

REFERENCES

1. Dodd, G.G., "APL—A Language for Associative Data Handling
in PL/I/' Proc. AFIPS FJCC. November 1966, pp. 677-684.

2. Eastwood, D.E., and M.D. Mcllroy, "Macro Compiler Modifi-
cation of SAP," Computer Laboratory Memo, Bell Telephone
Laboratories, Murray Hill, N.J., September 1959.

3. Feldman, J.A., "Aspects of Associative Processing," Lincoln
Laboratories, Lexington, Mass., April 1965.

4. Feldman, J.A., and P.D. Rovner, "An Associative Processing
System for Conventional Digital Computers,'' Lincoln
Laboratories, Lexington, Mass., April 1967.

5. Gray, J.C., "Compound Data Structure for Computer Aided
Design: A Survey," ACM National Conference, August
1967, pp. 355-365.

6. Green, B.F., A.K. Wolf, C. Chomsky, K. Laughery, "BASEBALL:
An Automatic Question Answer," Computers and Thought,
ed. E.A. Feigenbaum and J. Feldman, McGraw-Hill, New
York, 1963, pp. 207-216.

7. Kochen, M., "Adaptive Mechanisms in Digital 'Concept'
Processing," Discrete Adaptive Processes—Symposium
and Panel Discussion, AIEE, New York, 1962, pp. 50-58.

8. Kochen, M., "Some Problems in Information Science with
Emphasis on Adaptation to Use Through Man-Machine
Interaction," Vol. 1 S 2, IBM, Thomas J. Watson Research
Center, Yorktown Heights. N.Y,, April 1964.

9. Levien, R.E. and M.E. Maron, Relational Data File: A Tool
for Mechanized Inference Execution and Data Retrieval,
The RAND Corp., RM-4793-PR, December 1965.

10. Levien, R.E. and M.E. Maron, A Computer System for Infer-
ence Execution and Data Retrieval, The RAND Corp., RM-
5085-PR, September 1966.

11. Lindsay, R.K., "Inferential Memory as the Basis of Machines
Which Understand Natural Language," Computers and Thought,
ed. E.A. Feigenbaum and J. Feldman, McGraw-Hill, New
York, 1963, pp. 217-233.

12. Maron, M.E., Relational Data File I: Design Philosophy,
The RAND Corp., P-3408, July 1966.

R-l

It I
I ! i

REFERENCES (cont'd)
n f
Ü i

13. Mcllroy. M.D., "Using SAP Macro Instructions to Manip-
ulate Symbolic Expression,'* Computer Laboratory
Memo, Bell Telephone Laboratories, Murray Hill,
N.J., 1960.

14. Mooers, C.N., "TRAC, A Procedure-Describing Language
for the Reactive Typewriter," Comm. ACM., Vol. 9,
No.3, March 1966, pp. 215-219.

15. Mooers, C.N., and L.P. Deutsch, "TRAC, A Text Handling
Language," Proc. ACM National Conference, Cleveland,
August 1965, pp. 229-246.

16. Newell, A. (ed.). Information Processing Language - V
Manual, The RAND Corp., Prentice-Hall, Englewood
Cliffs, N.J., 1961.

17. Roberts, L.G., "Graphical Communications and Control
Languages," Second Congress on Information System
Sciences, Spartan Books, Baltimore, Md., 1964.

18. Simmons, R.F., "Answering English Questions by Computer,
A Survey," Comm. ACM, Vol. 8, No. 1, January 1965,
pp. 53-70.

19. Strachey, C, "A General Purpose Macrogenerator," Computer
Journal, Vol. 8, No. 3, 1966.

20. Sutherland. I.E., "Sketchpad, A Man-Machine Graphical
Communication System," Proc. AFIPS 1963 SJCC, Spartan
Books, Baltimore, Md., pp. 329-346.

21. Weizenbaum, J., "Symmetric List Processor," Comm. ACM,
Vol. 6, No. 9, September 1963, pp. 524-544.

P f
i

f?

ni

0:
ol

R-2

UNCLASSIFIED
Siwwlty CUwiBcatton

DOCUMENT ONfROL DATA .R&D
mhut ■>• »»Ml/ fpft <■» ctmmmMmtj

I. ONICINATIM« ACTIVITY fCM^OMM «tiftar>

THE UNIVERSITY OF MICHIGAN
CONCOMP PROJECT

nK^eRT TITLB

ia. ncpoRT sseuniTv et.*tttPicATic -i

Unclassified
It. «NOW»

TRAMP:A RELATIONAL MEMORY WITH AN ASSOCIATIVE BASE

TecnnJcpl Report
IncliMln rfai«a>

•■ AutHONMl ffES RMM, SÜ9K Mitel, tea« Maw> "^

William Ash and Edgar Sibloy
if

•■ RBPORT DATC

May 1968
im. TOTAL NO. OP PASCt

80
T*. NO. or Mtr« ff

M. CONTRACT OR «RANT NO.

DA-49-083
k. »ROJICTNO.

0SA-3050
•a. ORIOINATOIft REPORT NUkaERISI

Technical Report 5

M. OTHER «EPORT MOW turn/ mUmr mioaw Oat «a» ba aag
Ml* rattert)

io. OKTRIRUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC,

It. «UPPLBMENTARV NOTES It. ERONSORIN« MILITARV ACTIVITY

Advanced Research Projects Agency

:
It. ABSTRACT

This repor
perimental
a content-
sociative
allowing g
system has
capability
associativ
be extreme
a language
communicat

t describes th
language call

addressable me
data structure
reat flexibili
further been
by superimpos

e memory. The
ly powerful in
for develcpin

ion systems

e theory and implementation of an ex-
ed TRAMP, which is a software simulation o:
mory. The system consists of an as-
embedded in an interpretive language,

ty and strong recursive power. The
extended with a logical inference
ing a relational structure over the
resulting language has already proved to
several applications, and can be termed

g question-answering anc1 interactive

This report discusses the theory and design considerations,
details of machine implementation, and details of operation
with examples.

DD POM 1473 Unclassified
Security CUsi ty CUsslRcsUon

I
-l'r.vi «.

* Äflt» Cft ■ssifiotion

KEY WOMOt

Computer Softwear Simulated Associative
Memory

Data-Structure

Relations

Recursive Associative Processor

Question-Answering Languages

Hash Coding

Unclassified
Security Ctauiricatlon I

