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TRAMP:   A RELATIONAL MEMORY WITH AN 
ASSOCIATIVE BASE 

ABSTRACT 

This report describes the theory and implementation 

of an experimental language called TRAMP, which is a software 

simulation of a content-addressable memory.  The system consists 

of an associative data structure embedded in an interpretive 

language, allowing great flexibility and strong recursive power. 

The system has further been extended with a logical inference 

capability by superimposing a relational structure over the as- 

sociative memory.  The resulting language has already proved to 

be extremely powerful in several applications, and can be termed 

a language for developing question-answering and interactive 

communication systams. 

This report discusses the theory and design considera- 

tions, details of machine implementation, and details of opera- 

tion with examples. 

111 



I 
1 

.1 

] 

1 
1 
I 

TABLE OF CONTENTS 

1 
j Page 

ABSTRACT  iii 

LIST OF FIGURES  vii 

I. INTRODUCTION  1 

II. BACKGROUND  4 

III. TRAMP  12 

The Associative Data Structure  14 
Data Structure Storage  16 
Data Retrieval  17 
Data Structure—General Strategy  19 

IV. LOGICAL INFERENCE PACKAGE  23 

Implementation of Inference  26 

V. TRAMP INTERNAL ORGANIZATION  28 

APPENDIX A.  ÜMIST  A-1 

APPENDIX B.  TRAMP FUNCTIONS  C-l 

j          APPENDIX C.  EXAMPLES OF TRAMP  C-l 

..          REFERENCES  R-l 

Ü 



LIST OF FIGURES 

Figure 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10a 

10b 

11a 

lib 

Page 

Association by Tables  . 5 

Association by Lists  7 

Association by Rings  9 

Addition of Association with Rings  10 

Binary 4 Generation Male Relational Tree... 13 

Name Table Structure  20 

Associated Tables  22 

Defined Relation Name Table  33 

"FO" Questions  C-2 

Family Relationships/Nested Questions  C-3 

Relational Example, Associations Between 

Siblings...  C-3 

Output of Question Answering Program  C-5 

Question Answering Program  C~6 

vn 



I 
I 
I 

I 
1 
i 

I 
] 
I 

i 

] 
j 

I 
I 
I 

TRAMP:   A RELATIONAL MEMORY WITH AN 
ASSOCIATIVE BASE 

I. INTRODUCTION 

In recent years, the need for a content-addressable 

computer memory has become increasingly clear.  Larger and 

larger programs are being written which require a structured 

data base to operate with any efficiency.  Many of these could 

well benefit by replacing tedious searches with a fast, effi- 

cient, "content addressable" access of the data store.  A good 

example is the "key word" library search.  If we ask for a list 

of the books written by J.von Neununn, we do not expect the 

system to look at each title in its store and save only those 

written by von Neumann.  And, if there happens to be a catalog 

prepared, designed to answer this particular question, we do 

not want to have to do a binary search to find the correct 

section of the catalog—we want to retrieve the answer directly1 

There are many other problems which might find content- 

addressability advantageous.  Examples abound in Artificial 

Intelligence, where prohibitively large tree searches are en- 

countered; question answering machines; logical inference system?; 

graphic systems; and most conversational (timeshared) systems, 

which require immediate, direct access to a large data store to 

interact effectively.  To date, most investigations into content- 

addressable memories have been concerned with hardware; such 

memories have not yet proved to be economically feasible.  Even 

if they had, it is not clrar that the obvious gain in speed 

would compensate for the loss in generality and flexibility. 

For the moment, it can be said that software simulations ire a 

stopgap measure.  They are.  But it is not certain that they 

will be completely replaced by hardware in even the relatively 

distant future. 

Another function of an artificial language is to permit 

the programmer to phrase his problem in a natural manner.  For 

-1- 



i.i = 
-2- 

i 

Di 
i 

Hi 
many problems information is most naturally described as "rela- " 

tional triples"; e.g., in a graphics system, one might want to «, 

say:  <Picture in> <Window A> is <Line B>;or<Connected to> IJ j 

<Line B> is <Line C>.  The associative processor approach to 

content addressability allows this. 

Before proceeding, we shall explain some potentia ^y 

ambiguous terms. 

The essential feature of an associative processor is 

that it has, in the conventional sense, no explicit addresses. 

Reference to storage is made by specifying all or any part of " 

an associative cell, and all cells which match this fieid(s) »t 
jf 

are referenced.  The conventional computer store may be thought U 

of as a special (degenerate) case of an associative memory, 

in that the association is between the physical address and 

its contents.  However, reference can be made only by speci- 

fying the address—one cannot ask directly for all cells which 
Li 

are zero!  The true associative memory is accessed by speci- 

fying any of the  N  participants in the association.  Asso- 

ciative memories are often referred to as relational data struc- 

tures.  This is because an association between  N + 1  "objects" 

is most easily thought of, talked about, and manipulated by 

calling it an  N-place relation. 

The following example demonstrates why an associative 

processor can effectively be employed as an application of con- 

tent addressability.  Suppose we wish to know the phone number 

of Clark Kent.  It is simple to look it up in the '.ocal phone \ 

book.  It is, however, quite a different matter to find out if \ 

whose number is 764-6148 (using the same directory).  An as- 
i 

sociative processor would find both tasks equal.  In this '> | 

example, the "association" is between a subscriber's name and Ü j 

his phone number.  In translating this to a two-olace relation, 

"phone number of" could be the relation, and using the  <R,x,y> 

format we would say:  <Phone number of> <Clark Kent>   is 

<KR 9-8765>.  This is a type of associativity wherein we may 

fi 

i 
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now directly reference this triple by any of its content-address- 

able components or combination thereof.  If we use only the 

first component, phone number, in a search, what will be re- 

ferenced is the entire book.  If we specify two components: phone 

number and 764-6148, then we are referencing directly all assoc- 

iations  containing those two components, viz., the associations 

containing the name(s) of the person(s) having the phone number 

764-6148. 

We are, of course, working with a conventional com- 

puter memory.  The general strategy used to effect the simulation 

of an associative processor and an approximation to content 

addressability was that of hash-coding.t  For those unfamiliar 

with the term, hash-coding is simply a technique whereby an 

arithmetic transformation is applied to an external name to 

generate an internal address.  Hash-coding by itself provides a 

restricted but significant approximation to content addressa- 

bility, but hashing alone does not provide any kind of assoc- 

iativy, and there is always the problem of the "collision," 

i.e., when two distinct names hash to the same internal address: 

X ^ Y :  H(X) = H(Y) .  Hashing partitions the space of names 

into equivalence classes.  Hopefully, each class has onl ' one- 

element, but two or more names may be equivalent under this 

partition.* 

By providing an interpretive language with an assoc- 

iative data structure it is possible to achieve great flexi- 

bility.  To this end, we decided to use an existing interpreter 

and give it. a new data structure, rather than start at the bot- 

tom by designing a special purpose interpreter.  Principally, 

we were concerned with the data structure, and the vehicle for 

t  A good survey of this technique may be found in Robert Morns' 
article "Scatter Storage Techniques," which appears in the 
January 1968 issue of Communicat ions of the ACM. Vol. 11, 
No. 1 . 

*  Even restricting names to four characters of the Er.glish 
alphabet, a one-to-one transformation would require a table 
with 456, 976 entries to guarantee no collisions. 
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it «as initially felt to be unimportant, since the data struc- 

ture relies on the host only superficially.  In considering f 

the question of the interpreter,  e were faced with very little 

choice.  A major consideration was that of availability; fortunately     T 

this consideration led us to TRAG* T-64 Language.  It has 

proven to be a most elegant host, and credit for the power of f| 

the resulting system must be shared by both the interpreter »* 

and the associative memory given to it.  However, we feel that ^ 

the additional primitives are excellent vehicles which change 

the original processor into an efficient language for writing 

man-machine and machine-machine communication systems.  Famil- 

iarity with the TRAC language may be helpful in reading this 

article, but it is not prerequisite.  A brief summary of the 

basic components of the language is  found in Appendix A. 

II. BACKGROUND 

*  TRAC is the trademark of Rockford Research Institute, Inc., 
Cambridge, Mass, in connection with their standard languages. 
For details on TRAC T-64 language, see References 14 and 15. 

.i 

1 : 

An associative processor is one possible tool for u 

iiformation storage and retrieval, and its history should be rj 

discus5ed relative to such systems   Unfortunately, adequate U, 

comparisons of different types of data systems are difficult 

to make because they are predicated on different rules.  Thus 

the prime method of storage may vary from cards or paper tape, 

through magnetic discs and drums, to prime computer memory; U 

at the same time, the storage may be either random or ordered 

according to some schema; finally, the retrieval of the infor- 
j 

mation may be gross, such as the use of a mechanical sort 

based on some algorithm, or simple because the data were stored 
1 

for such answers or jecause there is a wel 1-developed language 

to address the stored data. 
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r^us we have three possible criteria for comparison 

of systems: the type of storage, the way of entering data into 

that storage, and the language for addressing that storage. 

The spectrum of potential systems is therefore large and varied. 

We will consider only thc-e which use main computer memory as 

the storage device (including virtual or paged memory). 

One inherent bias of computer design affects the 

storage of data: the use of sequential storage, wh-re the data 

are placed in numbered or ordered cells.  Because this organi- 

zation system allows the automatic indexing of information by 

means of some automatically varied register, the  preferred 

method of storage is tabular.  Fortunately, tables are excellent 

ways of storing information, for the parallel entries are ways 

of expressing associations between objects (see Figure 1). 

.* 

3 
J 

ITEM# NAME FATHtR OF BROTHER OF MOTHER OF 

1 JOHN EDITH; 
ARNOLD 

SAM;JOAN 

2 ARNOLD JAMES EDITH 

3 MARY ARNOLD 

A EDITH MELISSA 
»_  _.. . .J 

Figure 1.  Association by Tables. 

Hence an index may carry the association and we can respond to 

the query:  "Who is the mother of Arnold?"  by scanning the 

"mother of"  column, picking the Index 5 at the entry "Arnold" 

and returning "Mary" from the "3 position" of NAME. 

Such n-trieval systems are obvious and are in general 

use.  What, then, are the faults?  Part of the problem lies in 

the relative paucity of information—the large number of blanks 

in the tables.  Other problem:; occur at the t' me of search, for 
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the tables are not properly ordered.  In fact, the "best order" 

depends on what qv;?stion is expected to be asked.  For the 

question: "Who is the mother of...?"  the order 4,3,2,1 is 

prefPx-red, whereas  "Who is the father of...?"  prefers the 

order 2,1,3,4 or 1,2,3,4.  He-ce 'here is no order that is 

optimal for all questions.  Anothei major problem of tabular 

storage is its size limitation.  To be efficient, the table 

sizes musi be pre-specified, and hence a sudden request for 

extra space is potentially catastrophic. 

The need for easy addition and deletion led to the 

list proceicor, and many information systems stem from the ideas 

of IPL-V [16] and SLIP [21].  The former elucidated and refined 

the method of pointers and lists, and the ideas of association 

lists (Figure 2).  The use of lists fflakas possible dynamically 

extended tables.  A second use of lists is with association 

explicitly defined for certain objects.  Thus the illustration 

of Figure 2b could be written: 

<Attribute A> of <object a> = <value A> 

<Son> of <Arnold> is <James>   etc. 

I 
I 
I 
I 
I 

;i I 

y 

II   i 

Here we see that the question  "Who is the mother of Arnold?" 

is difficult to answer, because it was not explicitly stored 

on Arnold's association list.  This question may be answered 

by searching all association lists, un^ :1 one is found which 

has the pair  (Mother, Arnold}. 

SLIP was the first embedding of a list-processing 

capability within a higher-level language and was a formative 

ring structure.  The idea of rings was crystalized by 

Sutherland [20], and Roberts [17], and used with data syst 

designed primarily for graphics and computer-aided desigr 

Roberts has also d"veloped a language to refer to rings , Viass 

Orie ted Ring Associative Language:  CORAL).  In  ach lan- 

guages, the associations are built into the structure by allow- 

ing blocks of information to be threaded by rings which carry 

the associations between the blocks of data.  This is illustrated 

ft * 
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List Start 

L 
pointer to next 

v 
stop 

B C 

information 

a. Ordinary, single way list:  (A,B,C) 

Association List of 
object "Arnold" 

U 

_. y 
att SON 

stop 

value JAMES 

Stop 

att SISTE? 

^ 

. . . 

stop 

value EDITH 

b.  One type of paired Association List: 

[(att A,val A)(att B,val B) 

Figure 2.  Association by List: 
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by Figure 3.  Dodd [1] has implemented a similar structure 

within  PL/I.  The duality of certain relationships, such as: 

"defined by"  and  "defines"  or  "to the left of"  and  "to 

the right of," etc., ied to the need for a connector block, 

here illustrated by the three NUBS.*  In essence, the NUB 

represents a two-way switch for transferring out of one ring 

and into another.  The subrout nes or macros pass along the 

ring until they arrive at a NUB.  They "switch" it, and pas 

into the other ring, passing along the second ring (and others 

as found) picking up information until they return to the 

original  MUB  and re-enter the first ring.  This allows 

answers to questions such as  "Who is the mother of Arnold?" 

as well as  "Who is the son of Mary?"  One of the major dis- 

advantages of these structures occurs on adding a new, not 

previously anticipated, association.  The operation either is 

impossible, requiring a complete recompilation, or else clumsy, 

patching on additional blocks (Figure 4) and requiring so- 

phisticated garbage collectors.  A recent survey by Gray [5] 

describes these and similar structures. 

Probably the first conception of a true relational 

data structure was Kcchen's AMNIPS [7,8] .  He dealt with the 

problem of logical inference rather than with data structures, 

but he recognized that conventional memories were inadequate, 

and turned to the relational structure, which unfortunately 

was never fully realized. 

A considerable amount of work has been done on 

various "question-answering machines."  Among the better early 

machines were Lindsay's SAD SAM [11] which can digest English 

statements about family relationships and construct a family 

trte, and the BASEBALL program of Green, et al. [6] which 

answers English queries about facts taken from a stylized 

t 

I 

y 

" 

H 

It is interesting to note that there is no need for NUBS 
if we are willing to store all inverse and similar relation- 
ships explicitly, with separate rings for each. 

i I 
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Name 

Sex 

Parent of 

Child of 

Generic "Person" 
Block 

John 

male 

Mary 

female 

Ml"- A 

Figure 3.  Associations by Rings. 
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baseball  "yearbook."  These investigations use conventional 

data structures, and their real cont.ributions were to the 

analysis of the English language nud   logical inference by 

computer.  Simmons [18] provides the most complete survey to 

date of this work. 

Maron and Levien [9,10,12] hive designed one of the 

most extensive and complete systems depending on a relational 

data file.  They deal with binary relations as their building 

bljcks, i.e., each association has three components:  one 

relation ard two operands.  In addition, they allow the naming 

of the entire association (triple) giving rise to a fourtn 

component.  Reference can be made using any of the four com- 

ponents, and there are four copies of each association—one 

copy for each word which can reference it. 

Feldman has recently used the ideas of hash- 

coding for association tables [5,4].  The associations 

are, of course, carried by a n^w table, referenced 

by a  "double hash"  technique.  Feldman's language, AL , is 

designtd to be compiled rather than interpreted.  AL  has been 

expa ided to be three languages in one:  a true ALGOL-type 

algebraic language with full numerical computation facilities; 

an associative processor; and a language which operates on 

sets as its basic entities with a full complement of set 

operations.  The language now allows tor certain kinds of re- 

stricted composition of associations.  Specifically, i ' a 

sentence is a triple  <A,0,V> , then  Ü  or  v  may itself 

be another triple.  This allows for generating  N'-piace rela- 

tions out of the basic biiary relations.  However, the language 

has, instead of dynamic inference, a  DO  loop which is slight- 

ly more cumbersome, and far less economical of storage,than 

are strict logical inference capabilities. 

Naturally, the simplicity in using data systems de- 

p.nds on the retrieval language.  We have already suggested 

that the problem is partially a function of explicit versus 

implicit storage.  If the family relationships are taken in 
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t-he binary male lineage tree of four generations (Figure 5), 

we have:  lo ^reat-grandfather—son; 24 grandfather—son; 28 

father—son; 14 brother; 24 uncle—nephew; 48 cousins, etc. 

Obviously, a large number of relationships must be explicitly 

stored for rapid access, compared with the cost of an implied 

relationship search with small storage requirement. 

The  "relational"  part of the TRAMP system is the 

means for retrieving implied relationships, while the  "assoc- 

iative"  part deals with the explicit relations. 

III. TRAMP 

TRAMP (Timeshared Relational Associative Memory 

Program) is two packages of functions:  the first—the data 

structure—may be used to enter, retrieve, and generally manip- 

ulate an associative data structure; the second—the relational 

memory—places an artificial structure on the  "associative 

triples," viz., the relational structure.  The relational 

package allows logical inference to be performed o» the data 

within the associative structure.  Specifically, rules may be 

entered, these will be followed by TRAMP, effectively expanding 

a "minimal" set of data to a workably large set; the number 

rf  associations that must be explicitly stored is thereby 

drastically reduced.  For example: oy   defining the relation 

"HUSBAND OF"  to be the converse of  "WIFE OF," the user need 

only store marital relations ir one direction, while effectively 

having them available in both directions.  More detailed ex- 

amples and the rules for using the relational package appear 

later. 

These machine-^oded functional packages are presently 

embedded in the UMIST* interpreter on the IBM./360 model 67. 

Although this existing union has proved most fruitful, the 

I 

II . 

UMIST is closely patterned after the standard TRAG T-64 
Language, and was implemented at The University of Michigan 
with the cooperation of Mr. C.N.Mooers, creator of the TRAC « 
T-64 language. 

J 
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data structure is totally independent of the interpreter and 

actually relies on it only for I/O.  The relational package 

is also independent, except that it relies on the type of re- 

cursion th t the interpreter provides.  The relational package 

is totally dependent on the associative data structure. 

n i 

The Associative Data Structure 

Feldman's initial work was a strong motivation in 

the design of this system, and led us to adopt his notation, 

viz., the generic entity: 

I 

A (0) --• V 

<Attribute>  of  <Übject>  equals  <Value> 

Thus the Associative Triple is:  <A,0,V> .  Each of the three 

components is a non-empty set.  To the data structure this is 

an ordered triple, but no interpretation or meaning is attached 

to the ordering, and all three are treated equally, giving none 

a priority.*  By appropriately designating ehe three components 

as being constant or variable, we can ask eight  "questions" 

of the data structure.  Again using Feldman's notation, with 

a slight re-ordering, they are: 

D 

F0 A (0)   =   V 

Fl A (0)   =   x 

F2 A (x)   =   V 

F3 A (x)   =   y 

F4 X (0)   =   V 

F5 X (0)   =   y 

F6 X (y)   =   V 

F7 X (y)  - z 

*     This is in contrast to the relational package which places 
an artificial structure on the triple, i.e., calling the 
first component a  "relation"  and the second and third its 
arguments. 

-. 

L 

J 
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where  [A,0,V]  represent constants, and  [x,y,z]  are variables 

Question F7 is not a question at all but a request for a dump 

of the associative memory, and in TRAMP such a dump is given. 

Question FO simply asks:  "Does  A (0) = V?"  and the answer is 

a kind of truth value.  In the case where  A, 0,  and  V  are 

all singletons, the truth value is a straightforward 1 or 0 de- 

noting whether or not the specified association can be verified 

by the data.  The interpretation is slightly ambiguous, however, 

when one or more of the three sets has cardinality greater than 

one.  To illustrate, assuming that the association 

COLOR (CAR) = RED; GREEN* 

has been stored, these five questior.s have the following truth 

values: 

1. COLOR (CAR) = BLUE 0 

2. COLOR (CAR) = RED; GREEN 1 

3. COLOR (CAR) = RED; BLUE 7 

4. COLOR (CAR) = RED 1 

5. COLOR (CAR) = RED;GREEN; BLUE 9 

Questions 1 and 2 are clearly false and true respectively, 

but questions 3 and 5 are each partially true and partially 

false; question 4 is only half true.  The interpretation which 

seemed most natural, and the one adopted by TRAMP, gives the 

truth values as shown, namely: 

if ALL  associations implied by the question are 
resident in memory, or derivable therefrom, the 
value is "1'' 

if none, the value is "0" 

if some, but not all, the value returned is "?" 

Since the comma already plays an important role as a TRAC 
language meta character, it is unavailable as a set clement 
delimiter.  Therefore the semi-colon (;) plays that role 
in TRAMP. 
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Questions F1-F6 simply ask the system to "fill in the blank(s)," 

i.e., to replace the variable with the set that is the answer to 
i I 

the question.  For example. Question Fl asks for the set of all 

Vs that  A (0)  equals.  Question F3 asks for the sets of all ff 

0s and  Vs  that have a first component "A."  Because of the »' 

recursive nature of TRAC, questions  F1-F6  may be nested in T_ 

any way, to any desired depth.  One may ask:  "How many fingers [| 

on a hand?";  "What figures are pointed to by the arrows in 

Window  Q?";  "How old are the fathers of the wives of Mary's 

brothers?"; or any questions composed in any way compatible 

with the stored data, nested to any level. 

For those totally unfamiliar with TRAC language, for 

this section it is necessary to know only the syntax of a func- 

tion call.  The sharp sign (#)  signals the start of a func- '- 

tion call, with the call itself enclosed in an immediately T, 

following pair of parentheses.  The arguments are separated Q 

by commas, and the first argument is the name of the function. 
- : 

n 
#(sub,ARG) 

is therefore aralagous to the FORTRAN 

CALL    SUB(ARG) fl 
y 

Data Structure Storage r-  a_ 

The name of the storage function is  d_r  and the 

syntax of the call is:  #(dr,A,0,V) .  Again, the three ar- n 

guments to  dr  are each non-empty sets.  Each point in the i. 

cartesian product of the three sets is stored, i.e., each 

element of each set is grouped with each pair of elements of 

the other two sets, and the resulting triple is stored.  Thus 

a single call on  dr  stores as many associations as the pro- 
L. 

duct of the cardinalities of the three sjts.  The storage 

dec laration: 
L 

#(dr,AGE,J0HN;MARY,64) 

j  5 
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would therefore store: 

AGE (JOHN) = 64 

AGE (MARY) = 64 

The actual storage is accomplished by pairing each  A  and  0 

to point to a list of  Vs ; each  A  and  V  point to a list of 

Os , etc.  These  "answer" lists are, strictly speaking,un- 

ordered, except that they retain the order in which they were 

•* stored.  That is, asking the question: 

{ "Whose age is 64?" 
,j 

-i would yield the answer: 

JOHN; MARY   not   MARY; JOHN 

I 
.1 It should be noted that this is a nure data structure, 

and it does not deal with semantics;  d_r  simply inserts associa 
t 

tions into mpmory in a way that they can be quicKly retrieved. 

TRAMP is not a question-answering system that checks for redun- 

dancies or inconsistencies of data. 

Data Retrieval 

The primary retrieval function has the name  r_l_ .  The 

syntax of the function call is identical to that of  <Tr  except 

for variable specification.  A variable in TRAMP is denoted by 

enclosing a name, possibly null, within asterisks  (*) .  Thus, 

#(rl,A,0,V)  has no variables and asks whether  A (0) = V ; 

# (rl ,A,0,*X*)  asks:  "What does  A (0)  equal?"  If the vari- 

able is Named, i.e., there is a name within the asterisks, then 

the function is Null Valued and the answer is stored in TRAC 

language form storage labeled by the Name.  ^(r1,A,0,*ANS*) 

would store the set of  Vs  which  A (0)  equals, under the 

label  "ANS."  If the variable is not Named,  #(r1,A,0 , * *) , 

then the answer is the Value of the function.  #(rl,A,*SET0*,"* 3 



18- 

:  in example of a two-variable question with one Named and 

01.  Unnamed variable.  The result in this case would be that 

the set of  Os  is placed in form storage under the label 

"SETO"  while the set of  Vs  is returned as the Value of the 

function. 

The two-variable questions  (F3, FS, F6)  simply use 

the Name table of one of the variables and index through that 

table, internally always asking the one-varisble questions. 

Since the data structure does not assign any priority to the 

three components, questions  F3, F5, and F6, although con- 

ixderab1v slower that the one-variable questions, are all 

equal among themselves.  The process of answering a two-vari- 

able question is less efficient because it must iterate on 

the one-variable questions, the number of iterations being a 

linear function of the size cf memory.* The 5peed with which 

the cne-variable questions are answered is not significantly 

affected by  he size of memory!  The three-variable question, 

# (rl ,**,**, **) , is, of course, th3 slowest of all and it is 

a full dump of the associative memory.  Alternatively, one can 

call:  # fdump). 

Going back to the earlier example of   N and MARY, 

the question:  #(r1,AGE,JOHN;MARY,* *)  shouxd have as its 

value:  64;64.  That is, redundancies can be valid and should 

be reported.  But there are certain times, particularly in 

the two-variable questions, when redundancies become quite a 

nuisance (and even threalen to overflow the interpreter). 

Tnerefore, the function  r_l_ will always return an answer set 

with all redundancies deleted.  A second entry point is pro- 

vided, with the name  "Ir , which is identical except that it 

dees not check for redundancies but returns the answer set 

as it finds it. 

Here, and subsequently, "size of memory" refers to the amount 
of data in the structure, rather than tne physical extent of 
tl.  system. 

.. 



19- 

rl  generates the union of the answer sets.  That is, 

the question:  # (rl,AGE,JOHN;MARY,**)  has two answer sets: 

the AGE of JOHN and the AGE of MARY.  rj_ simply forms the 

union of however many sets there might be.  int  is the func- 

tion (yet another entry point to the same routine) which 

generates the intersection of the several answer sets.  Thus, 

# (int,SOUTH;WEST,AUGUSTA,**)  generates the set of all things 

both south and west of Augusta.  #(rl,SOUTH;WEST, AUGUSTA,**) , 

on the other hand, would generate the set of ail thrngs either 

south or west of Augusta. 

data  Structure-General Strategy 

As stated in the introduction, hash-coding is the 

technique most basic to the data structure design.  A brief 

description of the use of nash-coding in TRAMP follows.  Sec- 

tion  v  gives a more technical and detailed description. 

The data structure uses three Name tables and three 

Association talles, one each for each of the three components 

of the association.  When the declaration:  ." (dr, WIFE , JOHN , 

MARY) is maae, each name that appears must be stored somewhere 

in memory.  The full name must be present so that it can be 

retrieved, and so that, when it is referenced, a collision can 

be identified and resolved.  The first hash,  H, , then is 

applied to the  "A"  component,  "WIFE," to generate a dis- 

placement from the A Name Table.  The designated table entry 

ia then inspected.  If the   entry is zero, then there is no 

collision and WIFE has never appeared before as an  "A"  com- 

ponent.  Accordingly, the table entry is now made to point to 

the Header for the name WIFE, see Figure 6.  If the table 

entry is not zero, the Header to which it points is inspected 

t.; see if it is the Header for WIFE.  If so, the  A  name 

haa been processed and we move on to the  0  component, other- 

wise there is a collision.  For a collision, instead of a 

single Header, there is an alphabetical list of Headers. 
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Thus, Name Table collisions are not rpally special cases:  if 

there is no collision, then there is a list consisting of a 

single Header, otherwise the list contains two or more Headers 

in alphabetical order. 

If the above process did not find the name, before 

it is actually placed in storage, a further check is made on 

the other Name Tables, thus avoiding redundant storage.  Any 

name will appear at most once in memory, with up to three 

Headers pointing to it. 

The same procedure is applied to "JOHN" and "MARY," 

the  0  and  V  of this example, on their respective Name Tables 

As a result of the Name Table processing, a unique pointer is 

associated with each of  A, G , and  V , namely the pointer in 

the Header which points t. the location of the actual name. 

It is this unique pointer that will be used for the second 

hash, H„ .  "WIFE"  must now be placed on the A Association 

Table.  To do this, the  0  and  V  pointers are hashed to- 

gether to generate a displacement from the Association Table. 

To be able to identify collisions, both pointers that were 

used to generate the hash are stored in the table entry de- 

signated by the hash.  Collisions are again resolved by ordered 

lists.  The Association Table entry has three pointers:  the 

first two are the pointers used to generate the displacement; 

the third points to the Answer List, i.e., the list of A's 

(in this case) with wh^ch 0  and  V  have been associated. 

Thus, "WIFE" is appended to the Answer List by placing the 

unique pointer to it at the end of the list.  No.e that  H 

is a function of the actual name, while  H,  is only a func- 

tion of where the .lame is stored and is independent of the 

name itself.  Figure 7 shows the Association Tables, both for 

the collision case [7b], and for the normal case [7a]. 
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IV LOGICAL INFERENCE PACKAGE 

The associative memory accomplishes a kind of content 

addressability by usinp two quick hashes to address data, and 

the access time is essentially independent of the size of 

storage.*  But for most, if not all, applications, many associa- 

tions will be implied by a single associative sentence.  This 

poses two real problems: 

2. 

The user must make sure that all associations that 

apply are actually inserted into the structure. 

This is extremely tedious and prone 10 error and 

omissions. 

Explicit storage results in gross inefficiency. 

To alleviate this, TRAMP provides the facility to define, in a 

characteristic way, what other associations may be derived from 

a given association.  This permits all of the information that 

might be contained in a single association or sequence of  as- 

sociations to be utilized instead of having to enter the same 

information redundantly in each of the several ways that it 

might be referenced.  The name of the function which makes the 

definition is  ddr .  The syntax of the function call is: 

#(ddr,(R = EXP)) , wl.ere  R  is the relation  ("A" component) 

to be defined, and  "EXP"  is a logical expression which is 

the definition. 

Before presenting examples of the use of  ddr , two 

relational operators must be defined: 

The first is converse, denoted ir TRAMP by  "CON." 

Converse simply inverts the order of the two rela- 

As the size of storage increases, there are more collisions, 
but they are quickly resolved, and do not cause a significant 
delay.  Even in extreme pathological cases, they involve only 
relatively minor list searches. 

-2 3- 



tional arguments:t 

RCx.y) ■+     .CON. R(y.x) 

Thus "CHILD OF" is the converse of "PARENT OF"; 

"WIFE OF" is the converse of "HUSBAND OF"; 

"SPOUSE' is its own converse; any symmetric rela- 

tion is its own converse. 

Re lative Product:  The relative product or compos it ion 

of two relations is common^ denoted by  R /R  , and 

this is the notation used by TRAMP. 

Yxvxaz [(R^RjHx.y) <- RjCx^z) A R2(z.y)] 

Less rigorously, but more specifically, 

#(ddr,(R3 = R^l^)) 

would tell TRAMP that  R-(x,y)  if a  "z"  can be foum 

such that  R.Cx.z)  and  R2(z,y) . 

Besides these two relational operators, three logical operators 

are available:  .A. (conjunction); .V. (disjunction);  .N. (nega- 

tion).  Finally, there are six equality operators:  .EQ.;   NE.; 

.GE.;  . LE.;  .CT.;  .LT. , with obvious meanings. 

Examples of TRAMP relational definitions are: 

#(ddr,(BIGGER = BIGGER / BIGGER)) Bigger is transitive 

#(ddr, (BIGGER(A,B) = BIGGER(A,Q) .A. BIGGER(Q,B))) 
exact same definition using expanded 
format—specifying dummy arguments. 

#(ddr,(SIB = BRO .V. SIS  V. .CON.SIB)) 
a sibling is a brother or a sister and it 

   is symmetric. 
The relational notation used by TRAMP is derived from the 
format  "R,x,y"  by enclosing the relational arguments in 
parentheses.  This is a slight distortion of the associative 
notation:  A(0) = V , but the order is preserved:  R(x,y) 
means that  R(x) = y . 
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# (ddr, (HUSBAND = .CON.WIFE))   Husband is the converse of Wife 

# (ddr,(BIGGER = LARGER)   Bigger and Larger are synonomous. 

# (ddr,(BROfCATN,ABEL) = SIBtCAIN,ABEL) .A. SEX(ABEL,"MALE"))) 
a brother is a male sibling. Note that 
constants are denoted by enclosing them 
within double quotes. 

# (ddr,(MALE(X) = SEX(X,"MALE")))   defined the unary relation 
MALE 

# (ddr,(BRO(X,Y) = FATHER(X,Z) .A. FATHER(Y,Z) .A. MALE(Y) 

.A. X.NE.Y)) 
a brother is a male offspring of the same 
father, other than oneself. 

# (ddr,(STEPMOTHER = FATHER / SPOUSE .A. .N.MOTHER)) 
a stepmother is the spouse of the father 
who is not the mother. 

# (ddr, (NEPHEW = SIBLING / SON))   a nephew is the composition 
of sibling and son. 

#(ddi,,UNCLE = .CON. (SIBLING/SON)))   in a male world, uncle 
is the converse of nephew and may be de- 
fined as the converse of the definition 
of nephew. 

# (ddr,(UNCLE = .CON.NEPHEW))   or simply as the converse of 
nephew. 

More complex examples will arise, and TRAMP is pre- 

pared to handle definitions of the above form to a level of com- 

plex ity virtually unlimited. One major constraint is placed on the 

definiticns:  relations must be defined so that at least one 

set is generated.  This generated set can then be intersected 

with or joined with another set, or otherwise manipulated. 

The intent of this constraint is that there be at least one 

reference set.  The "whole space" may never be used as a 

reference set. 

i 
I 

#(ddr,(R. N . R  . V R9)) is illegal since it specifies 
a global complement (of  R.), 
i.e., it references the "whole 
space." 
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#(ddr.(R, ,N.R1.A, R2)) is legal because it specifies 
a relative rather than a global 
complement, i 
constraint on 
whole space. 

R, 1 places a 
not on the 

Implementation of Inference 

The purpose of the inference mechanism is to allow 

the user to define under what conditions an implied association 

may be derived from data explicitly in memory.  This is ac- 

complished by generating where necessary (where defined) a more 

complex retrieval call from a simple one.  Specifically, if 

the following detinition had been entered: 

#(ddrf(STEPMOTHER = FATHER/SPOUSE .A. .N.MOTHER)) 

i 5   = 

then the following simple retr;  al call: 

#(rl,STEPMOTHER,JOHN,**) 

which asks for the stepmother of John, would be expanded by 

the system to be the following: 

#(rcom,#(rl,SPOUSE,#(rl,FATHER,JOHN,**),**),#(rl,MOTHER,JOHN,**)) 

#(rl,STEPMOTHER,JOHN,**) 

The exact call generated would be slightly different, but that 

is a technicality, irrelevant at this point.  The final re- 

trieval call in the sequence generated asks if the desired as- 

sociation was entered explicitly.  It is always assumed that 

a relation that has been given a definition may also appear 

explicitly.  The rest of ths   expanded call will find the answer 

if it is present implicitly.  This expanded call is t ■  re- 

turned to the UMIST processor, which in turn makes tM actual 

calls to the data structure.  The importance of this is that 

relations need be expanded only one level at a time, with the 

UMIST recursion automatically taking care of the possibility 

that any relation is defined in terms of more complex relations. 

■ 

m 

1 
I 
I 
f 
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etc, (this is the major difference between the call as it 

actually would be generated, and as it appears above—the above, 

taken literally, would specify an infinite recursion!)  Thus 

the inference compiler generates TRAMP procedures—they operate 

only within the TRAMP language—not at a lower, machine level. 

The definition, entered by  #{ddr), specifies what information 

the procedure is to derive and what rules may be used to   derive 

it; the compiler accordingly constructs such a procedure; and 

the interpreter (TRAMP inference interpreter—rather than UM1ST) 

expands the procedure at retrieval time, filling in information 

specific to th» call. 

At retrieval time, a retrieval "preprocessor" looks 

to see if the "relation" ("A" component) has been given a def- 

inition .  If not, the preprocessor exits and retrieval pro- 

ceeds as described earlier.  If the name is found to have been 

defined, then the "interpreter" is called in to interpret the 

program generated by the compiler at the time it was defined. 

This program tells the interpreter what TRAMP function calls 

are t" be made, and what the function arguments are to be. 

It should be noted that the compiler actually puts 

out two programs: one which, given  x  of  R(x,y) , builds 

a chain to generate  y ;  the other builds the appropriate 

chain in the opposite direction, from  y  to  x .  Thus ques- 

tion Fl:  #(rl,A,0,**)  generates a different sequence of 

function calls than F2:  #(rl,A,**,V) .  It may not be imme- 

diately obvious why this is necessary, but, in general, the 

two programs will be quite different.  This is always the 

case for composition.  Still, the compiler would only have 

to output one program, and the interpreter could decide how 

to interpret it.  Since the compiler will usually be called 

only once or twice for each relation, cr certainly fewer times 

than the interpreter, it is most efficient to let the compiler 

do as much of the work as possible. 

The compiler is prepared to handle definitions which 

are circular in the sense that a relation is defined in terms 

of itself.  That is, symmetric and transitive relations are 

perfectly acceptable.  However, the sequence: 
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#(ddr)(rHP = QQQ .V. ... ))  #(ddr,(QQQ = PPP .V. ... )) 

is invalid because of its circularity.  Were the compiler to 

attempt to generate code for that sequence, the code would 

specify an infinite recursion.  This situation is checked 

for ar'd flagged if detected. 

V. TRAMP INTERNAL ORGANIZATION 

In effect, TRAMP employs a triple storage technique 

to be able to reference an association in three different ways 

Thus, the association  A (0) = V  is stored on each of the  A 

0 , and  V  Association Tables.  This makes the answers to 

questions Fl, F2, and F4 equally accessible and optimizes 

retrieval time. 

TRAMP uses eight principal blocks of core.  Though 

it is designed to run under a timesharing supervisor wiiich 

continually swaps TRAMP on and off a drum, TRAMP itself makes 

no explicit use of drums, discs, or other secondary storage 

devices; that is, such use by the system is transparent to 

TRAMP as well as to the user.  The blocks of virtual core are: 

four Name Tables  [A, 0, V, and a Name Table for Defined Re- 

lations]; three Association Tables; and a General Storage list 

[GS]  (commonly called "Available Space" in many list proces- 

sors).  GS  provides all the working space for TRAMP and is 

by far the largest of the eight, in addition to storing all 

of the information indexed by the seven tables, GS  resolves 

any overflow (via collisions) from the tables. 

For purposes of illustration, let us follow the 

interpretation of: 

#(dr, HUSBAND,EVE,ADAM) 

I 
I 
I 
I 
I 
I 

First the Name Tables are processed.  "HUSBAND"  is hashed to 

produce a displ icement from the  "A" Nnme Table.  The actual 
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hashing scheme for  H   is to form a full word (4 bytes) by con- 

catenating the first, last, and middle two characters of the 

name, in that order.  A single- character may play only one of 

those roles, i.e., a name consisting of one character has no 

last or middle characters.  Any missing components are filled 

with hexadecimal zeroes.  Thus HUSBAND yields "HDBA"; EVE yields 

"E_;Vo"  and ADAM yields "AMDA."  The full word so generated is 

then transformed, with the transformation being little more 

than squaring and masking. 

A list is generated in  GS  to hold the  EBCDIC  re- 

presentation of the name:  C characters (bytes) per double word 

and a 2-byte pointer to the next unit in the list.  All units 

in  GS  are double words (64 bits).  Each name list is term- 

inated with a stop meta character.  All lists in TRAMP are 

terminated with a stop pointer, though the stop pointer is 

superfluous in the name lists because of the stop meta.  In 

the case of HUSBAND, two double word units will be needed: the 

first will hold the 6 characters  H-U-S-B-A-Nj   and a two- 

byte pointer to the next unit which will hold the character 

"D," the stop meta charc:er, and the stop pointer, with four 

bytes left over.  Since HUSBAND is used here as an "attribute," 

we are concerned with the  A  Name Table.  We lool   at the 

entry in this table designated by the hash.  If this entry is 

empty, i.e., zero, there is no collision, and HUSBAND has 

not been used previously as an attribute.  If not empty, we 

look at the list of Headers pointed to by the entry   This 

list is alphabetical, so we need look only until we find HUSBAND 

or its proper alphabetical position on the list.  Proceeding 

down this list of Headers, we compare the list generated above 

with the sublists pointed to by the headers.  If a match is 

found, simply return this temporary list to  GS  and increment 

the USE count for HUSBAND in its header.  If it is not found, 

insert it ... after checking the  0  and  V  tables for its 

occurren-e. Previously HUSBAND may have been used as, say, an 
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"ubject"   # (dl,SEX,HUSBAND,MALE) .  In this case the HUSBAND 

name list would already be resident in GS.  We therefore return 

the co;.y of it generated above, and insert a pointer to the 

first list on the  A  tab^e header list.  Thus a name never ap- 

pears in core more than once, though many pointers nay point 

to it, including up to four headers if a name appears on all 

four Name Tables. 

The above process is done for each HUSBAND, EVE, and 

ADAM.  The final pointer to the one name sublist of each is 

saved to generate the Association Table hash—H_ .  Let us 

follow the processing of the 0 Association Table.  HUSBAND and 

ADAM (A  and  V) are ha.hed together (multiplied and masked) 

to produce a displacement in the Assoc'-tion Table.  The actual 

hash is performed on the two unique pointers found during Name 

Table processing.  The designated Association Table entry is 

examined.  If zero, there is no collision, and HUSBAND and 

ADAM have never appeared together with another value.  The 

unique pointer to HUSBAND is placed in the first 2 bytes of 

the 6-byte entry.  The pointer to ADAM is inserted in the middle 

2 bytes.  A double word unit is picked off  GS  to be the start 

of the "Answer List," and the pointer to this Answer List is 

placed in the last 2 bytes of th ; table entry.  The Answer List 

elements consist of three 2-byt:e pointers to name sublists, the 

answers, and a 2-byte pointer to the next list element.  Ac- 

cordingly, the pointer to EVE is insertea in the Answer List. 

If the table entry was not zero, compare the first 4 

bytes of it with the two pointers that would go there.  If a 

u.<itch is made, then just add EVE to the end of the already 

started Answer List (polygamy is fine here), starting a new 

unit if necessary.  This is a simple unordered list, with new 

elements always being added to the right-hand end.  If the first 

four bytes of the table entry do rot match the pointers., is 

there a collision flag in the entry?  If not, a collision list 

is be£un.  This is an orderea list, with the ordering being 

I 
I 
I 
I 
1 

-\ ■ 
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the numerical  value of the full v.ord obtained by concatenation 

of the  A  and  V  pointeis (the f^rst A   bytes of the table 

entry).  Each element of the I4it is a double word as always. 

The lirot 6 bytes of this double woru are identical to the 

6-byte table entry.  The last 2 bytes point to the next element 

on the list.  When a collision occurs, the first 4 bytes of 

the table entry are so flagged and the last two bytes point to 

the list which resolves it. 

The entries of all the tables, ^.s well as all list 

pointers within  GS , puint to double word units in  GS .  All 

pointers are 2 bytes long (16 bits), but are capable of ad- 

dressing 128 pages of  GS .  (1 nage = 4096 bytes; 128 pages = 
19 

2 * bytes.)  For some applications this size is more than 

adequate,and for others (e.g., artificial intelligence) not 
l 9 

nearly enough.  With its present scheme (addressing 2   bytes 

with only 16 bits) TRAMP has an upper limit of 128 pages, which 

is a usable sizs   '■'or   the majority of cases, including many  AI 

applications.  There is obviously a trade-off here since the 

more ."ore that a pointer can address, the less percentage 

(though r.ot p'oportionately less) of that core is available! 

There is a second trade-off because the size of the units 

which must be addressed deters '.nes the number of bits needed 

to address them—the larger the unit, ihe fewer bits required, 

but generally, the less efficiently it is used.  We arbitrarily 

decided that the half-word pointers that TRAMP uses to address 

double words are, in a sense, optimal.  Should more experience 

prove us wrong, or if some special application should require 

much greater capacity, the structure could be augmented, e.g., 

to incorporate full 32-bit addresses, with little more trouble 

than alteration of an assembly parameter.  At this t^me it is 

not anticipated that explicit use will be made of any peri- 

pheral stor  e devices, other than the transparent swaoping 

performed by the timesharing supervisor. 
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Ihe sizes of the various Name and Association tables 

are another assembly parameter.  Currently the 7 tables occupy 

4 pages of core.  This figure was arrived at arbitrarily and 

will remain in force pending feedback which indicates that it 

is inappropriate. 

TRAMP is initially loaded into core with all of its 

tables, a one-page PSECT and 8 pages of  GS .  Thereafter, when 

more space is needed (GS  is the only unit that will require r] ; 

more space, since overflow from the ^ables is placed in  GS), ü | 
i 

TP.AMP requests it of the system in blocks of 8 pages until _. \ 

the maximum of 128 is reached, or the system is unable tc comply 

with the request. 

TRAMP is continually ronerating temporary lists which 

are immediately returned to  GS  when no longer needed.  As 

well, when an association is destroyed, or a lelational defini- 

tion erased (KR  and  KDR , Appendix B), as much storage as is 

being released is at that time returned to  GS .  Thus, un- 

used units are never left lying about core:  a unit is returned,        li 

not discarded, eliminating formal garbage collections by en- 
11 

sunng that garbage is never created. 
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APPENDIX A 

UMIST 

The following excerpts from the UMIST manual are re- 

produced with the permission of Mr. Tad Pinkerton, whose work it 

is.  What follows is partial and incomplete and is intended 

only to familiarize the reader with the structure of the 

language and enable him to follow the TRAMP definitions and 

examples.  A complete description of the UMIST language may 

be found in The University of Michigan Terminal System Manual: 

MTS, 2nd Ed., Vol II, The University of Michigan Computing 

Center, December 1967. 

A level of the TRAC language called  "TRAC 64"  is 

described in [l'*»].  It is the basic standard and point of 

reference for UMIST.  A good discussion of TRAC 64,s design 

goals and principles is given in reference [1-].  Much of the 

motivation for the development of the TRAC languag0 came from 

the work of Eastwood and Mclroy [2,13] at Bell Laboratories. 

A system similar to the TRAC language which was developed in- 

dependently in Great Britain is described by Strachey [19]. 

MODE OF OPERATION 

There are two kind of functions:  primitives, or 

machine-language subroutines that support the system in its 

environment.  The primitives are the basis for the second type 

of function, called forms, or named procedures in UMIST storage, 

which are character strings written like racro definitions and 

expan-lea, interpretively, when called.  When writing a function 

call, one specifies whether its value (replacing the call) is 

to be processed again as part of the input string (active call), 

or whether processing is to continue starting with the portion 

of the string to the right of the value returned (neutral call). 

A-l 
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A single processing cycle is completed when the scanning and 

evaluating process reaches the right-hand end of the string. 

Sequencing and evaluation in UMIST are inherently 

recursive:  function calls are evaluated from left to right, 

but may be nested to any depth in the arguments of other calls- 

Each function call is evaluated when, and only when, all of its 

arguments have been completely processed.  Thus the string be- 

ing processed is divided logically into two parts:  the active 

string, consisting of input text (possibly preceded by inserted 

functional values) which is yet to be scanned, and evaluated 

arguments of function calls which are not completely ready for 

evaluation.  This mode cf  operation, based on the completely 

interpretive execution of function calls, eliminates the   dis- 

tinction between program and data. 

SYNTAX 

Each function call in UMIST has the form of a spe- 

cially delimited argument list, in which the name of tne func- 

tion is always the first argument.  Calls may be open (a vari- 

able number of arguments) or closed.  A function call may be 

protected from evaluation by the use of literal delimiters. 

Another delimiter signals the right-hand end of the input 

string.  These considerations lead to a syntax in which there 

are seven special symbols, whose occurrences are deleted from 

the string during syntax scanning and whose presence indicates 

the beginning or end of a substring.  The character strings 

enclosed in brackets below are the UMIST special symbols: 

■ 

I 

1. Beginning of neutral function call  [*#(J 

2. Beginning of active function call   [#(] 

3. End of argument  [,] 

4. End of call  ()] 

5. Beginning of literal  [(] 

6. End of literal  [)J 

7. End of input string ['] 
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Note that the three beginning-of-substring s/mbols 

##( and #( and ( are terminated by the occurrence of the same 

end-of-substring character, ).  UMIST has a "parenthesis 

balanced" syntax, in the sense that an occurrence of the right 

parenthesis matches only the last previous occurrence of any one 

of the beginning-of-substring special symbols.  Whenever a 

literal substring is encountered, the UMIST processor removes 

the enclosing parentheses, but only the outer set is removed 

if more than one matching pair occurs.  Thus a string initially 

protected from evaluation may be evaluated if scanned a second 

time, and, in general, evaluation can be controlled to occur 

the n-th time the substri g is scanned. 

READ STRING AND Pf.INT STRING 

The value of a  "read string'  function call 

* (.rlS) 

is an input string accepted from the current input device. 

The  'print string'  function 

#(PS,X) 

causes the display of the second argument, here symbolized by 

X , on the current output device, and has a null value. 

When the UMIST processor is first given control, 

and at the end of every processing cycle, the idling procedure 

##(PS,#(RS;) 

is automatically loaded as an input string.  This procedure 

first causes a read from the input device, with the input string 

becoming the second argument of th" 'print string' call.  Thus 

the string, if any, remaining when the input string has been 

completely processed, is finally printed before the idling 
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procedure is again loaded.  For example, if the input string is 

#(PS,ABC) ' 

then after the  'read string'  has been evaluated the proces- 

sor is scanning the string 

##(PS,#(PS.ABCJ) 

and the inner call produces the output  ABC ; the outer call 

nothing, since the inner  'print string'  has a null value 

DEFINE. CALL. AND SEGMENT STRING 

Any character string in UMIST can be given a name 

and placed in storage, from whence it can be called by using 

its name.  Tne null-valued  'define string' function 

#(DS,A,B) 

places the string  B  in storage with the name  A .  A  is 

called a form with value  B .  At most one string can be de- 

fined with a given name at any one time:  use  of the same 

name replaces a former definition.  The value is retrieved 

with the  'call string'  function 

#(CL,A) . 

A form name, like a value, is any character string 

The only restriction on length is that of the total string 

capacity of the processor. 

The occurrence of strings in storage is deleted 

with the  'delCie definition'  function 

11 

# (DD,N1,N2, . . .) . 

This null-valued function removes the names  Ni,N2, 

forms and discards their values. 

as 
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Once defined, a form can be  "parameterized," or 

segmented, using the  'segment string'  function: 

# (SS,A,X1,X2, . . .) 

This null-valued function scans the form  A , searching for an 

occurrence of the string  XI  as a substring.  If  XI  matches 

a part of  A , that part is excluded from further matching, 

creating a  "formal variable," or segment gap.  The rest of the 

form is also compared with  XI  to create, if possible  more 

segment gaps, all of which are assigned the ordinal value one, 

identifying the argument matched.  The (separate) substrings 

of the form not already taken for segment gaps are next scanned 

with respect to the string  X2 , and any occurrences of the 

latter substring in  A  create segment gaps of ordinal value 

two, etc. 

Thus, the 'define string' and 'segment str-ng' func- 

tions together create a "macro" in which the segment gaps 

locate the "formal parameters."  The "macro" is expanded by 

supplying the "actual parameters" in a call on the 'call string' 

function mentioned above: 

#(CL,A,Y1,Y2, . . .) . 

The value of the 'call' is generated by returning the form  A 

with all the segment gaps of ordinal value 1,2,... replaced 

by  Y1,Y2,...  respectively.  If extra arguments are given 

in a  CL , they are ignored.  If some are missing, null strings 

are used as their values. 

i 
i 
I 
I 

THE EQUAL FUNCTION 

A decision function is provided for character strings 

#(EQ.A,B,T,F) . 
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If the string  A  is identical to the string  B , then the 

value of this function is the fourth argument, T ; otherwise 

the value is the fifth argument, F .  Since the strings  T 

and  F  may be any UM1ST procedures, this primitive is the one 

normally used for branching. 

-. 

I 
I 
I 
\ 
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APPENDIX B 

TRAMP FUNCTIONS 

I.  This appendix is intended as a reference manual for TRAMP and 

provides full specifications for using the various functions 

available in it.  This section assumes a working knowledge 

of UMIST (Appendix A), as well as familiarity WJth the design 

goals of TRAMP as set foith in the body of this paper. 

1 

I 
I 
I 
I 
I 
i 
I 

II. Running TRAMP in MTS (Michigan Terminal System) 

TRAMP is invoked in the normal way be specifying it as the 

object file of a "RUN" command.  The input is taken from the 

logical device SCARDS; output is put on the logical device 

SPRINT; and error comments (TRAMP, not UMIST) appear on the 

logical device SERCOM.  While all three are global run para- 

nuters, the active in^ut/output dev.ces may be switched from 

SCARDS/SPRINT to some other logical device, dynamically with- 

in UMIST, via the  #(par> function. 

The "RUN" command can accept, besides these keyword para- 

meters, a parameter "list" (via "PAR=") consisting of the 

following three global parameters., whose default values 

are underscored: 

a.  NOPRIME  or  PRIME 

This parameter specifies whether or not the prime 

(') will be required to terminate TRAMP input lines. 

If  PAR^PRIME , then the program is in the normal UMIST 

mode of operation:  an input line is not terminated 

vintil the prime is encountered   Otherwise, a prime will 

automatically be appended to the end of each input line 

(if not already there), as delineated bv a carriage re- 

turn or other device-dependent end-of-record signal, by 

TRAMP before it is passed on to UMIST, which is still 

I 
B-l 
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operating in the normal mode.  If an input record has 

as its last character an ampersand  ($) , then that is 

taken to be a continuation .ark:  the ampersand is 

deleted from the line, which is passed on to UM1ST 

without a prime.  If the ampersand is followed by a 

blank, then it is not a continuation mark; it must be 

the last character, not just the last non-blank char- 

acter ! 

The mode of operation is initially set with this 

parameter, but may be dynamically altered during exe- 

cution via the PRIME function, fully described in tms 

Appendix. 

*UMISTL or  *UMIST 

This parameter specifies which version of UMIST 

is to be used as t^.e host interpreter.  Presently the 

above two files are the two versions of UMIST avail- 

able.  These two, and any other that might becone 

available, may be used. 

NOW  or  LATER 

This parameter specifies when the TRAMP functions 

are to be loaded.  If  PAR=LATER , then only UMIST will 

be loaded initiall/, with the loading of TRAMP being 

deferred until a call on  #(tramp), further explained 

below. 
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NAME: 

PROTOTYPE: 

PURPOSE: 

DESCRIPTION 

EXAMPLES 

DR 

#(DR.A.0.V) 

This is the associative storage function—the 

function  that inserts the data into the struc- 

ture. 

The three arguments, A, 0 , and  V , are each 

non-empty sets.  The set element delin.ter in 

TRAMP is the semicolon  (;)  because of the im- 

portant role played by the comma in UM1ST-  The 

triple is ordered and interpreted as meaning: 

A (0) = V .  Each  '^ment of each set is grouped 

with each pair of elements of the other two sets, 

and the resulting triple is stored, i.e., each 

point in the cartesian product is stored.  The 

three sets are ordered sets only inasmuch as 

the order .n which they appear in the storage 

declaration is retained. 

DR  simply inserts the data into the structure 

in a way in which it can be efficiently re- 

trieved.  No check is made for inconsistency 

of d^ta or for redundancies. 

#(DR, COLOR,CAR.RED;GREEN) 

ll (DR., AGE, MABLE; EUNICE, 39) 

this would store:   "JE (MABLE)    = 59 

AGE (EUNICE)  = 59 
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NAME : 

PROTOTYPE: 

PURPOSE: 

DESCRIPTION: 

EXAMPLES: 

KR 

tftKR.A.fl.V) 

To undo what  DR  did—to erase an association 

from memory. 

The syntax of this function is exactly the same, 

and the effect exactly the opposite, of  DR . 

#(KR,COLOR,CAR,CHARTREUSE) 

#(KR,AGE,#(RLR,AGE,**,*X*),#(X)) 

This would delete  ALL  associations containing 

"AGE" as the  "A"  component [s'-.e  RLR , below]. 

IJ 

I 
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NAME : 

PROTOTYPE 

PURPOSE: 

DESCRIPTION; 
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RL 

#(RL,A,0,V) 

This is the associative retrieval function. 

"Questions" are asked of the data structure 

by calling  RL and specifying which, if any, 

among  A, 0 , and  V  are variables 

Variables are denoted by enclosing a name, pos- 

sibly null, within asteriks  (*) .  To ask the 

question:  "What color is the car?" , one would 

write:  # (RL , COLOR , CAP. ,** )  or  # (RL , COLOR , CAR , 

*NAME*) .  The "answer set" in this example  is 

the set of all third components of associations 

having  "COLOR"  as the first component and 

"CAR" as the second.  In the first instance 

above, the variable is not Named [nothing 

between the asterisks].  In this case, the 

answer set i. "he Value of the function.  fn the 

second instance, the variable is Named, which 

results in the function being Null Valued, and 

the answer set being stored in UMIST form 

storage labeled by the Name within the asterisks 

Thus, the following two statements are exactly 

equivalent: 

#(DS,ANS,# (RL,COLOR,CAR,**)) 

#(RL,COLOR,CAR,»ANS*) 

If there are no variables, e.g.,  #(RL,COLOR, 

CAR,RED) , then the question being asked is: 

"Does  A(0) = V?", or in this case,  "Is the 

car colored red?"  No answer set is generated, 

rather a  "truth value"  is retuiiied as the 

value of the function.  If the specified associa 

tion is in f ct rcsidon.. in the structure, or 
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derivable thereof, then the value is  "1"; if 

not, the value is  "0."  An ambiguity arises 

when one or more of the three sets has cardi- 

nality greater than one.  Suppose  #(DR,COLOR, 

CAR,RED)  had been entered.  Then, 

#(RL,COLOR,CAR,RED) would have the value "1" 

#(RL,COLOR,CAR,BLUE) " " " " "0" 

#(RL,COLOR,CAR,RED;BLUE) "    "    "    "    "?" 

That is, the first association is found in storage, 

and the answer is  "1."  The second is not found, 

and the answer is  "0."  But two associations are 

specified by the last example, one is verified, 

the other not, and TRAMP returns the value  "?" 

If there is one variable, then TRAMP is being 

asked to "fill in the blank." The one variable 

may be in any of the three positions of the 

triple.  The variable may be either Named or 

Unnamed, with the respective consequences des- 

cribed above. 

I 
I 
I 
I 
I 

m 

m 

If there are two variables, then two answer sets 

are generated.  One of the variables is picked as 

the index variable, and values are ono-by-one 

substituted for it, internally iterating on the 

one-variable question.  The one constant may 

again be in any of the three positions of the 

triple.  If both variables are named, the func- 

tion is Null Valued, and the two answer sets 

are stored and labeled by their respective 

names.  If one is Named and the other Unnamed, 

then the set corresponding to tit  Named variable 

is stored and the other answer set is the Value 
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of the function.  It is syntactically valid for 

both variables to be Unnamed, but this should 

not be done since then the Value of the function 

would be the concatenation, not union, of the 

two answer sets. 

The two-variable questions generate two answer 

sets—not a set of ordered pairs!  Soon a varia- 

tion of this function may be offered which will 

allow the generation of ordered pairs.  In the 

meantime, if this is desired, the user will have 

to write a short UMIST procedure to pick out 

the proper subset of the cartesian product of the 

two answer sets. 

«4 

I f 

The present form of the two-variable questions- 

generating two answer sets—is very often  used 

to find all "objects-" associated with some other 

"objects," without regard for the third component 

of the triple.  For example, to find all those who 

have sons, one could say: 

#{rl,SON,**,*>'*) 

with the set of all sons now being stored in the 

form  "X."  In general, this generated set, here 

the set  X , will not be further used and is not 

wanted.  TRAMP recognizes one special Named 

Variable for two-variable questions:  "§,"  as 

denoting that the corresponding answer set is 

not to be generated.  Thus, 

# (rl.SON,**,*SONS*) would return the s^t of all 
those Wiio have sons, and 
store the set of all Sons 
in the form "SONS" 



B-8 

#(rl,SON,**,*§*) wou^d likewise t--turn the 
set of all those who have 
sons, but would discard the 
set of Sons. 

If there are three variables it is interpreted 

as being a request for a dump of the associative 

memory.  If any of the three variables are Named, 

the names are ignored.  Alternatively, one can 

simply call:  #(DUMP). V, 

EXAMPLES #(RL,*REL*,JOHN,HARVEY) 

#{RL,SON,CLYDE,**) 

#(RL,COLOR,**,»COLOR*) 

#(RL,*X( Z*) 

put the set of all re- 
lations that associate 
John with Harvey in the 
string  "REL." 

return the set of 
Clyde's sons, 

return the set of all 
objects that have the 
attribute "COLOR," and 
place the set of all 
colors in the string 
"COLOR." 

give a dump of the as- 
sociative memory. The 
three names are ignored 

#(RL,AGE,#(RL,FA,#(RL,WIFE,#(RL,BRO,MARY,**), 

*WIVES*)#(WIVES),**),**) recursively asks the 
question: "How old are 
the fathers of the wives 
of Mary's brothers?" 
Also, the set of the 
wives of Mary's brothers 
is now in the string, 
"WIVES." 

#(rl,COLOR, return the set of all ob- 
jects that have the at- 
tribute "COLOR," but do 
not generate the set of 
colors. 

Ui 

i I 

I 
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* (rl,COLOR,CAR,*@*) put the set of the colors 
of the car in the string 
"@."  "8" is a special 
symbol only in the two- 
variable questions. 



NAME: 

PROTOTYPE: 

PURPOSE: 

DESCRIPTION; 

EXAMPLES: 
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RLR 

MRLR.A^.V) 

To retrieve answer sets that may contain re- 

dundancies . 

This function is identical to  RL  except that 

any redundancies are reported.  RL  returns non- 

redundant answer sets, while RLR does not check 

for redundancies, and is therefore significantly 

faster. 

#(RLR,AGE,EUNTCE;GLADYS.**) 

if they are both 31, then the value will 
be:  "SljSl." 

I 
I 
i 
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NAME: INT 

PROTOTYPE:     # ( INT,A,0,V) 

PURPOSE:      To generate intersections of answer sets. 

DESCRIPTION:   This function has the same syntax as the  one- 

variable question of RL .  RL generates the 

union of the answer sets, while  INT generates 

the intersection 

#{rl.SOUTH;WEST,TOLEDO.**)  generates the set of 
all things either 
south or west of 
Toledo. 

#(int,SOUTH;WEST,TOLEDO**)  generates the set 
of all things both 
south and west of 
Toledo. 

If both constant sets are singletons,  INT  and 

RL will yield identical answer sets   The vari- 

able may again be in any of the three positions 

and may be either Named or Unnamed,  This func- 

tion must have exactly one variable. 

EXAMPLES:      #(int,NORTH;EAST,CHICAGO,*NE*1 

place the set of everything both north 
and east of Chicago in the string "NE." 

#(int,**,JOHN;MARY,CLARA) 

return the set of all relations that 
John and Mary commonly share with Clara 
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l-KOTOTYPE: 

PURPOSE: 

DESCRIPTION: 

EXAMPLE 
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RCOM 

#CRCOM,SETl,SET2,NAMfi) 

To compute the relative complement of two TRAMP 
sets. 

The third argument is logically subtracted 

from the second argument, with the disposition 

of the resulting set determined by the fourth 

argument: if it is present, the function is null 

valued and the set is stored in UMIST form 

storage labeled by the name; if the fourth 

argument is omitted, the relative complement 

of the other two argume-its is returned as the 

value of the function.  The set computed con- 

sists of all elements of "SETI" that are not 
elements of "SET2." 

#(RCOM,#(RL,AGE,*»,40),#(RL,SPOUSE,**,*§*), 
SPINSTER) 

this would store in the string 
"SPINSTER" all those wh . are 40 
years old and not married. 

i 
I 
I 
I 
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NAME: 

PROTOTYPE: 

PURPOSE: 

DESCRIPTION: 

EXAMPLE: 

B-13 

SYMD 

^(SYMD,SETI,SET2,NAME) 

To compute the symmetric difference of two sets. 

The symmetric difference of two sets is defined 

to be the set of all things that are in either 

of the two sets, but not in both (exclusive OR) 

The syntax of SYMD is identical to that of RCOM, 

with the fourth argument determining what will 

be done with the generated .-«et. 

# (SYMD, #CRL,BP.0,**,*8*),#(RL, SIS. **,*§*)) 

this would return the set of all those who 
have siblings, but siblings of only one 
sex. 

Ü 

3 
i 
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NAME: 

PROTOTYPE: 

PURPOSE: 

DESCRIPTION; 

EXAMPLES: 

INT 

# (INT,SETIfSET2,NAME) 

To intersect two TRAMP sets. 

This function h s the same syntax as the other two 

set operators: RCOM and SYMD: the two operands are 

the second and third arguments (SETI and SET2) and 

the fourth argument specifies the dispositton of the 

result: if it is present, it will be used as the 

name of the form into which the answer will be placed; 

if omitted, the answer will be returned as the value 

of the function. The answer is  a straight set inter- 

section, except that any redundancies (e.g., introduced 
by a call on RLR) are deleted. 

Note that this function has the same name as the 

retrieval function INT.  There is no ambiguity and 

there should be no confusion, since the two func- 

tions have dissimilar syntax!  The retrieval 

function INT is called by specifying exactly 

three functional arguments, of which exactly one 

is a Variable; the Set Operation INT is invoked 

by giving either two or three functional argu- 

ments, oT which exactly zero are Variables! I.e., 

a variable specifies retrieval—if there is no 

variable then a question is not being asked. 

#(int,#(int,NORTH;EAST,CHICAGO,**), 

#(int.SOUTH;WEST,MAINE,**)>UNHUH) 
recursively uses both forms of INT to place the 
set of all things both northeast of Chicago and 
southwest of Maine in the string "UNHUH." 

#(int,#(X),#(X),X)  remove all redundancies from 
the string "X." 

#(int,#(rl,AUTHOR,**,GEORGE),#(rl,SUBJECT,**,SEA)) 

return the sec of everything George wrote 
about the sea. 

i. 
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DUMP 

#(DUMP)   or   »(Ri^**^**^ **j 

To obtain a coraplete listing of everything 

that is explicitly stored in the data structure. 

All associations explicitly stored are printed 

out. using the  "A (0) = V"  format.  A  and  0 

are singletons and V  is the set of all "values" 

associated with the A/0  pair.  Any redundancies 

in the V  set are printed.  Implied associations 

are not listed in the dump.  After all of the as- 

sociations are listed, all of the current rela- 

tional definitions [entered by  Di'R , below] 

are displayed. 

#(DUMP) 

#(RL,**,** **) 

#(RLR,*X*,**,**) 



NAME: 

PROTOTYPE: 

PURPOSE: 

DESCRIPTION; 
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ERM 

#(ERM) 

To completely erase the memory for a fresh 

restart. 

It is not anticipated that this fucntion will 

he called very often, if ever, and to prevent 

its being invoked unintentionally, via mis- 

spelling, etc., confirmation is required by 

TRAMP before it actually erases the structure. 

This is similar in form and in content to the 

confirmation that MTS requires before EMPTYing 

a file:  an exclamation point  (!) , or the 

two letters  "0K"  are positive confirmation. 

Anything else cancels the request. 

I 
I 
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PROTOTYPE: 

PURPOSE: 

DESCRIPTION; 

EXAMPLES: 
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USE 

# (USE,NAME) 

To obtain the number of explicit associations 
that the NAME is used in. 

The value of the function is the total number 

of associations that the name in tne argument 

is used in.  Any implied associations are not 

included in the USE count.  There is no break- 

down as to how the name is used within the as- 

sociations, simply a count of the triples in 
which it appears. 

#(USE,JOHN) 

*(USE,COLOR) 

How many objects have the attribute color? 
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NAME : 

PROTOTYPE: 

PURPOSE; 

DESCRIPTION: 

EXAMPLES: 

CT 

#(CT,SET) 

To determine the cardinality of a TRAMF set. 

This is a very simple function that is signifi- 

cantly faster and more convenient than a UMIST 

procedure thac  would do the same thing.  It 

distinguishes between: a missing argument; a 

null set; and a singleton (set with no semicolons); 

but otherwise is sim^ y an efficient way to count 
semicolons. 

#(CT,#CSET))   what is the cardinality of 'SET?" 

#(CT,#(RL, SON; DAUGHTER, SHERMAN*^)"» 

How many , .ildren does Sherm«,.* have? 

I 
I 
I 
I 
I 
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NAME: TABLE 

PROTOTYPE:     #(TABLE,X) 

PURPOSE:      To obtain the contents of one of the Name 

Tables. 

DESCRIPTION:   The argument, X , specifies which of the four 

Name Tables is desired: 

A - attribute 

0 object 

V - value 

D - defined relation 

The set of names found on the particular table 

is returned as the value of the function. 

EXAMPLES:      # (TABLE,A) 

#(TABLE,D) 

# (room,#(table,A),# (table,D)) 

return the set of all nam^s that have been 
used as "attributes" but have not been given 
definitions.  The Defined Relation Name 
Table is always a subset of the "A Name 
Table!" 

#(int,#(int,#(table,A),#(table,0)),#(table,V)) 

return the set of all things that have been 
used at some time in each of the three 
positions of the associative triple, 

#(symd,#(table,A),#(table,V)) 

return the set of all names used as either 
"attributes" or "values" but not as both. 
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PRIME 

#(PRIME,[ON,OFF]) 

To set or invert the mode of operation regard- 

ing the prime that terminates all UMIST input 
lines. 

An internal switch in TRAMP determines whether 

or not a prime is required to terminate an in- 

put line.  This switch is initially set by the 

parameter in the RUN command.  The function 

PRIME may be used to alter dynamically the set- 

ting of this switch during execution. 

The argument to PRIME may specify that this 

switch is to be turned ON or OFF, or simply 

inverted from its present setting.  ffCPRIME.ON) 

turns the prime ON, i.e., it specifies that a 

prime will be required to mark the end of a 

line.  #(PRIME,OFF) sets the switch the other 

way; equivalent to:  PAR=NOPRIME.  Full details 

of operation with the switch off appear in the 

introduction to this Appendix. 

#(PRIME,OFF) 

#(PRIME) 

#(PRIME,ON) 

#(PRIME,X)  an unrecognizable argument inverts 
the switch. 

0 

01 
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NAME: 

PROTOTYPE: 

PURPOSE; 

DESCRIPTION: 

TRAMP 

# (TRAMP) 

To load TRAMP if PAR specified that loading was 

to be delayed. 

If PAR=LATER, then only UMIST will be loaded 

initially.  When ready for TRAMP, the user 

issues this function call which loads and links 

up all the TRAMP functions. 

The function "TRAMP" is defined only when PAR= 

LATER, and then only until it has been called. 
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NAME: SAVE 

PROTOTYPE :     # (SAVE, FUNAME,RLI.G, ID) 

PURPOSE:      To save the current state of the data structure 

on an auxiliary device so that at a later date * 

the structure can be initialized to contain the n 
pr«. jevt data, U 

DESCRIPTION:   FDNAME is the name of the file or device onto r| 

which the data are to be SAVEd.  RLNG is an U 

optional argument specifying the record lengths 

to be written.  If this argument i? eit.' si omit- 

ted or specifies ir>o large a record length for 

the particular device, the following default 

values, which ?r3 the respective physical 
maximums, will >e used: 

PUNCH 80 

FILE 255 Ul 

TAPE       32,760 

If RLNG * 80, either explicitly or by default, 

then each record will contain 72 bytes of in- 

formation and 8 characters of sequential identi- 

fication, the first 4 of which may optionally fl 
be specified in the last argument, ID.  If 

more than 4 characters are given, extra char- n\ 
acters on the right will be truncated.  If 

less than 4, trailing blanks will be appended. 

If RLNGsSO and this argument is omitted, t'.e 

4-character MIS signon ID will be u?^d.  If 

RLNG « X , A )< 80 , then there will be X 
bytes of information with DO Identification. 

Ü 

al 
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EXAMPLES:      »(SAVE.MYI-LE) 

write 255-byte records into the file 

#(SAVE.MYFILE,80,IDX) 

write 80-byte records into the file with 
the specified ID.  Caa now be copied to 
a card punch. 

#CSAVE,♦PUNCH*,,IDZ) 
f punch the data onto cards with  "IDZ" ID, 

#(SAVE,*PDN1*,80) 

3 write 80-byte records onto tape using 
MTS ID. * 

#(SAVE,*PDN2*,25S3 

write records on tape that can be copied 
into a file. 

^ 



NAME: 

PROTOTYPE: 

PURPOSE: 

DESCRIPTION: 
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COPY 

#(COPY,FDNAME) 

To reed back in what has previously been SAVEd. 

COPYing in a new structure completely erases 

anything that might be in the structure at the 

time the COPY i, called.  There is no direct way 

to merge two TRAMP data files.  (See Appendix C.) 

n 

0 
0 

I  5 5 
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NAME: 

PROTOTYPE: 

PURPOSE: 

DESCRIPTION: 
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PAGE 

#(PAGE) 

To ascertain what size file will be required 

to SAVE in and/or how much core the data 

structure is occupying. 

PAGE is a null-valued printing function which 

prints on the current output device.  The out- 

put is the number of pages currer  y in core 

that will have to be saved, and  w many exten- 

sions have been made to TRAMP. \he  sizes of 

the various tables used by TRAMP are assembly 

parameters and are likely to change.  Presently 

the tables occupy a total of 4 pages of core. 

The information printed by PAGE is the amount of 

core being used in addition to the tables (tables 

cannot grow during execution) . 

TRAMP is initially loaded with an Available Stor- 

age List  8 pages long (32, 768 bytes).  As this 

is used up, more is acquired from the system in 

blocks of 8 pages, called extensions.  There can 

be up to 16 extensions (presently meaning that 

a maximum of 132 pages - 540,672 bytes would 

have to be SAVEd).  These 8-page blocks are 

never broken up—SAVEir.g requires that the 

entire block(s) 'on  written.  In summary, (assum- 

ming 4 pages for tables) there is a minimum of 

12 pages (= 49,152 bytes) and a maximum of 132 

pages (= 540,672 bytes), with the minimum ap- 

proaching the maximum in steps of 32,768 bytes. 
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NAME: 

PROTOTYPE 

PURPOSE: 

DESCRIPTION; 

DDR 

#(DDR,(REL » EXP))  or  #(DDR,(REL :« EXP)) 

To define a relation in terms of other rela- 

tions, thereby creating implicit associations 

in the data structure. 

REL is the relation being defined, a^d EXP 

is an expression which is the definition.  The 

equal sign is the delimiter and must be present. 

In the prototype the entire argument to DDR is 

enclosed in parentheses, i.e., a UMIST "literal." 

Depending on the particular definition, this 

may or may not be necessary, but it will never 

hurt, and it is good practice always to paren- 

thesize the argument. 

EXP is composed of one or more relations joined 

by the logical connectives:  .A. conjunction; 

.V. disjunction; .N. negation; two relational 

operators:  / (slash) relative product or com- 

position; .CON. converse; and s^x equality 

operators: .EQ.; .NE.; .GE.; .LE.; .GT.; .LT.; with 

obvious meanings. 

The "RCx.y)" format Is the relational format 

adopted by TR'vMP and is Interpreted to mean 

that  R (x) = y . 

"Converse" simply Inverts th« order of the two 

relational arsuments:  R(x,y) -*"♦• .CON.R(y,x) . 

Thus, "child of" Is the converse of "parent  of," 

any symmetric relation Is Its own converse, etc. 

Composition Is defined:  Vx Vy 3 z [ (S/T) (x,y)^ 

S(x,z) A T(z,y)l .  Specifically, the declaration: 

#(DDR,(R:= S/T)) would tell TRAMP that  R(x,y) 

if for some  z: S(x,z) and T(z,y). 

I 
I 

! 

U i 
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DDR is the only TRAMP function that allows spurious blanks. 

Before compiling the definitita, all blanks are removed.  In 

all other functions (except EDIT, below, which is another 

entry to this function), blanks are valid EBCDIC characters 

ard are treated like any other.  Definitions may be either 

abbreviated:  #(DDR,(R1 = R2 .V. R3)) ; or in an expanded form: 

#(DDR,(R1(X,Y) = R2(X,Y) .V. R3tX,Y))).  There is the restric- 

tion that any one definition be consistent.  #(DDR,(R1 » R2(X,Y))) 

is not legal.  The two relational operators, composition and 

converse, may be used only in abbreviated definitions where there 

are no explicit relational arguments.  On the other hand, the 

equality operators may only be used with relational arguments 

as their operands.  A constant which is to be ust . as a rela- 

tional argument is denoted by enclosing the name of the constant 

in double quotes ("). 

Precedence of operators:  The precedence ordering of 

the various operators is as follows: 

/ composition 

.CON.       converse 

.EQ. etc.   all equality operators have the same 
precedence 

.N.        negation 

.A.        conjunction 

.V.        disjunction 

i 
I 
I 

The above precedence ordering may be altered in the usual way 

by the appropriate use of parentheses. 

One major constraint is placed on the argument to 

DDR: relations must be defined so that at least one set is 

generated.  The Intent of this constraint is that there be 

at least one reference set.  The "whole space" may never 

be the reference set! 

ff(DDR,(R = .N, Si)  is illegal, since it specifies a 
global complement, i.e., it references 
the "whole space." 
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I 
#{DDR,(R = .N. S .A. T))  is legal, since it first generates 

a reference set via T , and then p 
places a constraint on that reference      || 
set, not on the whole space. 

Besides the choice of using the "expanded"  vs y 

"abbreviated" notation for defining a relation, the user has 

the option of specifying whether or not the implication is one 

way, or specifies an if and only if condition. 

Husband ■ .CON. Wife u 

is an iff condition whereby it is implicit that: 

Wife = .CON. Husband ,-, 

Q 
the equal sign will be used to denote this kind of equivalence 

which can be interpreted as meaning iff. 

On the other hand. 

Parent :»  Father or Mother 

is one-way implication, giving information about the relation fl 

'parent" while giving none about the relations "father" or " 

"mother." To denote this the "assignment symbol" (:«) is used.        r. 

In general, if the assignment symbol is used then no U 

attempt will be made to extract information about the relations 

on the right side of the equation.  If the equality symbol is 

used, such an attempt will be made.  This attempt will not, 

of course, always be successful: 

Parent = Father .V. Mother n 

U 
gives us no information about "father" or"mothei" even through 

the equality sign is used. f 

If a relation is defined, and later a new definition fci 

is given for that same relation, TRAMP simply OR's the two 

definitions together.  If there is a syntactic error in the 

second definition, a diagnostic is printed and the earlier 

definition is retained. 

0 
D 
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EXAMPLES: 

#(DDR,(BIGGER » BIGGER / BIGGER)) 

BIGGER is transitive 

#(DDR,(BIGGER(A,B) « BIGGER(A,C) .A. BIGGER(C,B))) 

same definition using expanded format.* 

#(DDR,(SIB ■ BRO .V. SIS .V. .CON.SIB)) 

a sibling is defined to be a brother or a sister 
and it is symmetric 

#(DDR,(HUSBAND = .CON. WIFE)) 

husband is the converse of wife 

#(DDR,(3RO(CAIN,ABEL) = SIB(CAIN,ABEL) .A. SEX (ABEL,"MALE"))) 

a brother is a male sibling.  Constants are enclosed 
in double quotes 

#(DDR,(BIGGER = LARGER)) 

bigger and larger are synonymous 

# (DDR,(MALE(X) = SEX(X,"MALE"))) 

unary relations may be defined 

#(DDR,(BROTHER(X,Y) = FATHER(X,Z) .A. FATHER(Y,Z) .A. MALE(Y) 

.A.X.NE.Y)) 

a brother can be defined as a male offspring of the 
same father, other than oneself 

#(DDR,(PARENT = FATHER .V. MOTHER)) 

#(DDR,(NEPHEW = SIBLING / SON)) 

a nephew is the composition of sibling and son. 

# (DDR,(UNCLE = .CON.(SIBLING / SON))) 

in a male world, uncle is the converse of nephew and 
may be defined as the converse of the definition of 
nephew. 

#(DDR,(UNCLE = .CON. NEPHEW)) 

or simply as the converse of nephew. 

The dummy arguments used in expanded definitions may be 
up to eight characters long. 

* 
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# (DDR, (STEPMOTHER = FATHER / SPOUSE .A. .N,MOTHER)) 

a stepmother is the spouse of the father who is not 
the mother. 

n i 
i I ! 
I!  I 

n 

NAME: 

PROTOTYPE: 

PURPOSE: 

DESCRIPTION: 

EXAMPLES: 

KDR 

#(KDR,REL1,REL2, ...,RELn) 

To  erase definitions made by  DDR . 

KDR may have any number of arguments.  The 

definition for each of the relation names given 

as argument} is deleted. 

»(KDR.SIBLING) 

# (KDR,NEPHEW,UNCLE,SPOUSE) 

#(DS,X.#(TABLE>D))#(SS,X,;)#(KDR,#{X,(,))) 

would erase ALL definitions 

n 

D 
J 

 i  
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NAME: SHOW 

PROTOTYPE:     »(SHOW,RELATION) 

PURPOSE:      To display the current definition of a relation. 

DESCRIPTION:   SHOW will display the definition of the relation 

specified by its argument exactly as it was 

entered by the user, except that blanks will 

have been removed.  If more than one definition 

has been given for the r lation, they will all 

be concatenated, separated by a break character, 

and displayed in a continuous line.  Three actions 

may be taken b/  SHOW :  if the relation has 

been successfully defined, its definition will 

be displayed on the current output device; if 

TRAMP has never hea^d of the relation, the com- 

ment: "RELATION XXX HAS NOT BEEN DEFINED."  will 

be printed; if the relation was unsuccessfully 

defined, or was erased, via KDR, the comment: 

•'RELATION XXX IS UNDEFINED."  will be printed. 



NAME: 
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EDIT 

"0T0WE:    ,(5DII(llEWTI 

PURPOSE-       T '•■■•PAT"«N.REPUCBMENT) 

DESCRIPTION; 
The second argument is the name of the relation 

that is to be EDITed.  The third argument is the 

pattern within the definition., as displayed by 

SHOW, that is to be altered.  If this argument 

is null, it matches the void immediately to the 

right of the relation name in the definition 

string.  The last argument is the string that 

replaces the pattern specified by the third 

argument.  Ar;- blanks in the PATTERN or REPLACE- 

MENT will be ignored.  If the last argument is 

omitted, the pattern is simply deleted.  If the 

string specified by the third argument occurs 

more than once in the definition, only the first 
occurrence is changed. 

Calling EDIT implicitly calls SHOW to display 
the EDITed definition. 

EXAMPLES:      #(EDIT,SIB,(.V.},(.A.)) 

change tne first OR  to AND  in the de- 
finition of SIB .  Like  DDR , it is good 
practice to enclose the argument in 
parentheses. 

#l£DIT,REL,C.A. R4)) 

finm^V^"« "■A-R4" "o. th. „.. 
D 
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NAME: 

PROTOTYPE: 

PURPOSE: 

DESCRIPTION; 

DDEF 

#(DDEF) 

To display all current relational definitions. 

DDEF iteratively calls on SHOW for each name 

found in the Name Table of Defined Relations. 

DDEF is an entry to the second half of DUMP, which 

bypasses the listing of the associations. 

1 
I 

Ther. TuRAMP  ^  n0 W8y alterS   an^hing  internal   to  UMIST inere  are  throia  MUTCT  * *••»*   uu  uniai. 

*- -ce t::;:::L
£:::::r:t

t!::srrbe—— 
#(DSS) 

#(DA) 

*(RES)  
as a subsetj 

::r.:::::b-:: :::rr-the fui1 — -— 
Define Special Sytbol 

Delete All (including TRAMP) 

Restart - contains  #(DA) 

I 
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APPENDIX C 

EXAMPLES OF TRAMJ- 

This Appendix gives both simple and more complicated 

examples of the use of TRAMP.  The most relevant information 

about UMIST necessary to understanding the examples is found 

in Appendix A.  Complete understanding of the more complicated 

example of the question-answering program (Fig. lib) requires 

mor' detailed knowledge of UMIST, which may be found in the 

citud references. 

The first set of examples (Fig. 9)   show the "FO" 

questions of Part III.  First, we define the COLOR of CAR to 

be RED and GREEN.  Then the various Boolean questions are asked; 

the answers given by the system are on the line immediately 

following the "question." 

The next examples (Fig. 10a) describe the family 

tree information of Fig. 1.  Two relatively complicated ques- 

tions are then asked.  The first may be stated as: "Who are 

the people who have brothers whose age is 64?"  To illustrate 

this in depth, we first ask "Who is aged 64?", then "Who are 

the people who can call this 64-ye3r-old 'brother'?"  0b\ .ously, 

for one of these people (Mary), there is no answer, for no one 

calls her "brother."  The second question asks: "What is the 

age of the father of the brother of Melissa's mother?"  Store 

the answer (this age) in the form called "NUM."  Now Melissa's 

mother is Edith, Edith's brother is Arnold, Arnold's father 

is John, who is 64 years old.  Hence, a call for the string 

NUM prints "64.'' 

C-l 
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n I 

# < DR* COLOH« CAR« REDI GREEN > « 
# CRL* COLOR« CAR* BLUE) * 
0 
#<RL# COLOR« CAR, REOi GREEN> * 
1 
f(RL*COLOR« CAR« GREEN1RED)* 

1 
f <RL« COLOR« CAR« RED! BLUE) • 
7 
#(RL« COLOR« CAR« RED)* 
t 
#<RL« COLOR« CAR« REDI BLUE; GREEN > * 
? 
f CRL* COLOR« CAR« YELLOWl BLUE) » 
0 

I 
ii 

Figure 9. "FO" Questions. 

I 
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# COR*FATHER«ARNOLD« JOHN) 
i COR« FATHER« JAMES« ARNOLD) 
#CDR#BROTHER, SAM; JOAN« JOHN) 
# COR«BROTHER« EDITH«ARNOLD) 
f COR«MOTHER« ARNOLD«MARY) 
# CDR^HOTHER«HELISSA«EDITH) 
# COR«AGE« JOHNiMARY« 64) 
# CDR« AGE« ARNOLD« 39) 
#COR«AGE«EDITH«33)* 
#CRL«BROTHER«*««#CRL«AGE«**«64})* 
SAM!JOAN 
fCRL«AGE«**«64)* 
JOHN;MARY 
#CRL, BROTHER«**, JOHN)» 
SAM;JOAN 
# CRL«BRO THER« **«MARY) • 

#CRL«AGE«#CRL«FATHER«#CRL«BROTHER«#CRL,MOTHER«M£LISSA«**)«**)« 
♦ ♦)#*N^«♦)• 
#Ca«NUM)* 
64 

Figure 10a.  Family Relationships / Nested Question 

# COR«SISTER«JOAN«ALICE)* 
#CDDR«CSIB ■ BROTHER .V. SISTER .V. .CON.SIB))* 
#C8L«SIS,ALICE,**)* 
JOAN 
#(DDR,CSIBCX«Y) = SIBCX«Z) .A. SIBCY«Z) .A. X.NE.Y))* 
#CRL«SIB«ALICE«**)* 
JOAN! JOHN; SAM 

Figure 10b.  Relational Example. Associations Between Siblings 

H. 
■  ■. 
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The examples of Fig. 10b show the first use of ddr, 

where we add to the family of Fig. 10a the sisterhood of Joan 

and Alice.  The first definition of Sibling now allows the 

retrieval of one of Alice's siblings, though Sibling has never 

appeared explicitly in an association.  The second definition 

entered completes the job, and TRAMP is now able to return 

all of Alice's siblings. 

As a more complicated example of the use of TRAMP, 

a rudimentary "question-answering system," with thesaurus, 

was coded.  It should be noted that this illustration is not 

intended to constitute a good system—in fact, it represents 

a total of less than one hour's coding and debugging time. 

The job of the system is to parse input commands 

and, from them, generate TRAMP statements.  In this regard 

the system is grossly incomplete, i.e., it uses a most un- 

sophisticated parsing algorithm.  The generated TRAMP calls 

are realistic, nonetheless.  The complete program, used as 

the question-answering system (QAS), is shown in Fig. Hb.* 

The output from  an actual session is shown in Fig. Ha. 

To enable the reader easily to follow the dialogue, 

each statement issued by the QAS is initiated by the word: 

"ANSWER."  Everything else was typed at the terminal by the 

user.  QAS has been given a thesaurus to relax the format of 

The code for th^ question-answering program is shown as it _ 
would appear for a processor for the standard TRAC T-64 I 
language, rather than for the locally used dialect UMIST, • 
but the differences are very slight indeed. 
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INPUT AUTHOR OF HÜCKFINN  WAS MARKTWAIN» 
SYNOWYM MARKTWAIN   IS  SAMCLEMENS» 
WHAT  CID  SAMCLEMENS  WRITE ?• 

ANSWERS 
SYNONYM  WRITE «  AUTHOR» 
WHAT DID  SAMCLEMENS  WHITE 7' 

ANSWER!   HÜCKFINN 
DID TWAIN WRITE HÜCKFINN  7» 

ANSWERS  NO 
SYNONYM MARKTWAIN AND TWAIN* 
DID TWAIN  WRITE HÜCKFINN 7» 

ANSWER«  YES 
INPUT AUTHOR OF TOMSAVTYER  IS TWAIN» 
INPUT AUTWR OF THESTRANGER  WAS  SAMCLEMENS» 
HOIWANY BOOKS  DID MARKTWAIN  WRITE 7» 

ANSWER«   3 
WHAT  DID TWAIN  WRITE 7* 

ANSWER«  HUCKFINNJTOMSAWYER;THESTRANGER 
INPUT MODEL OF /360  IS 67* 
SYNONYM /360   IS  IBM» 
WHICH MODEL OF  IBM  DO   WE HAVE 7 • 

ANSWER«   67 

Figure Ha.  Output of Question-Answerin«; Program, 

■ ■;■■- ...;■■ ^-::- 
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QUESTION-ANSWERING PROGRAM 

# CDS* START* Cf <DS#FF, #(RS> >#(SS* FF#   )#CCL# ##<CS*FF> >#<a.# START) > > • 

#<DS*SYN«(#COS#i#X)#(EQ«##CCC«0)***X. (##(RL«SYN*X«*<i>>)n}#CSS«SYN«X>t 

#(DS#CK#(##CHL*SYN*X,*f*)#CEQ###<CL/e)*#<#(DR#SYN,X#X)X), 
(##(CL*»>>>)>#CSS#CK#X)* 

#CDS*OR#C#CDR##(CL#CK*A>«#CCL*CK>0>*#(CL#CK*V>}}>#CSS«OR#A«0«V>' 

#(DS,m,*<#(RL,#(CL,Sm,A),#CCL#SyN,0)*#(CL#SYN,V))))#(SS,RL*A,0,V)* 

# <OS* INPUT, (#(CL#DRj##CCS*FF)*#(PS*###<CS#FF>)##<CS#FF)* 
#CPS*###<CS#FF>>##CCS#FF)>))* 

#CDS*SYNONYM* (#COSJ0«##(CS«FF>}#(PS**##(CS«FF})#(OR*SYN###CCS#FF> 
*##(a,#9>}#(0R*SYN###(CL*«)*##(CL*«>)}>t 

# CDS* WHAT* C#CPS*  ANSWER!   #(PS** ##<CS*FF) )#CDS*f* ##(CS*FF) ) 
fCCL*RL* ##<CS*FF)****##(CL* 9)>>))* 

#(DS*WH0*(#CPS*  ANSWER!   #CPS**##CCS*FF>>#(CL*RL*##CCS*FF>* 
#CPS**##(CS*FF)>##CC?*FF)*♦♦)))>• 

#CDS*HOWMANY*(#CPS*   ANSWER!   #<PS** ##(CS*FF)#f (CS*FF) > 
#(CT*#(CL*RL*#CDS*t*##(CS*FF>)##(CS*FF)*♦**##<CL*•J>)))), 

#<DS*IS*(#<PS*   ANSWER!   #(EC* #CCL*RL* ##(CS*FF)* #CPS** ##CCS*FF> ) 
##CCS*FF)*##(CS#FF)>*0*NO*yES>>))• 

#CDS*DID*(#(PS*   ANSWER!   #<DS*»* #f CCS*FF))#(EQ* #(CL*fiL* ##CCS*FF)* 
##<CS*FF)*##(CL*f)>*0*NO#YES))))• 

#(DS*WHICH*(#CPS*   ANSWER!   #<CL*fiL«##CCS*FF)* #(PS** ##(CS*FF>) 
##CCS*FF)*♦*)>>), 

#CCL* START)» 

7 i 

11 

n 

Figure  lib.     Question-Answering Program. 

n 

n 
ii  % 
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statements.  This thesaurus, as well as all data, is held in 

I the TRAMP structure.  To make a thesaurus entry, the user types 

the command "SYNONYM" followed by the two synonymous names. 

A datum is entered by the command "INPUT."  The questions are 

self-explanatory. 

I 
I 
I 

I 

Merging TRAMP Data Files 

The following procedure shows one way that two TRAMP 

data files can be merged.  This sort of thing is necessaiy be- 

■ cause the COPY function erases the current memory while it is 

3 writing in a new one.  Thus, assume that files DATA1 and DATA2 

are two TRAMP data files that are to be merged: 

I $RUN TRAMP PAR=NOPRIME 

#Ccopy,DATAl) 

#(par,FDO,SCRATCH)*(dump)#(pai,FD0,*SINK*) 

| #(copy,DATA2) 

#(ds,PARSE,C#(ds,X,##{rs))#(eq,##(cc,X), ,(#(ss.X, )fi 

1 #(dr,##(cs,X),#(cs,X),#{nl,##(cs,X))##(cs,X))#(PARSE)),§ 

(#(par,FDI,*SOURCE*))))) 

#(par.FDI,SCRATCH((2)))fr(PARSE) 

By way of a superficial explanation: the procedure 

"PARSE" simply reads in the "dumped" information and parses 

those lines to extract the three arguments to DR,  The process 

. must start at line #2 because the first line of a dump is always 

* a label.  The procedure recursively calls on itself until an- 

1 other "label" is encountered, signaled by not having a blank 

I 
I 
I 

I 
~~     
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in the first column.  Segmenting the dumped line for blanks, 

the first segment will be the "A" component; the second seg- 

ment will be the "0" component (stripped of the parentheses 

by calling CS actively); the next segment will be the equal 

sign and is discarded via the NL (null) function; the last 

segment is the "V" component.  Note that PAR must equal NOPRIME 

(default case) in order for PARSE to be able to i--ad the dumped 

lines in sequence, since they do not have primes on the end. 

An analogous procedure could be written 2nd called 

by PARSE to read in the rest of the dump, which would contain 

the relational definitions, and make those definitions via 

generated calls on DDR. 
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