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ABSTRACT

The scattering properties of a linear array of paraliel, center-loaded,
cylindrical elements have been investigated with the ultimate objective of ob-
tain. 1g information about the character of the array irom its scattered field.
To this end, a set of irtegral equations for the currents induced in the linear
array illuminated by an incident plane wave were derived from the equations
of Maxwell and the boundary conditions at the surface of the array. Using a
zero-order agnroximation to the form of the axial distribution of the induced
currents in the array, a pair of complex current coefficients were calculated
numerically for each element of the array using a technique incorporating
the set of integral equations. The approximation technique gives reasonable
accuracy in the calculation of the /~-plane, far-zone. scattered field from the
induced currenis, provided tne electrical half-length of the elements of the
array is less than 57 /4 radians.

The scattered field of an eight-element array was calculated for various
conditione of impedance loading and illumination of the array.

A significant result of this investigation was the discovery that the
ll-plane scattered field of a linear array of cylindrical elements illuminated
by a plane electromagnetic wave consists of two factors: a reflection factor
and an interference factor. The interference factor is simply the complex
array factor of the array when excited with a u.iform amplitude and an
element-to-element phase progrestior of 27 (¢ A) sin ¢,  radians, where
(¢ ) is the interelement spacing of the array ir. wavelengths ard <, _ is the
angle of incidence of the illumination. The reflection factor turns out i2 be
the #-plane ccattered field in the reflected direction where the interference
factor beco:ies unity.

From tke interference factor we determined the positions of the grating
lobes and the minima of the //-plane scattering pattern of the array fox vari-
ous plane-wave illuminations.

It was found that the plane cf polarization of an array, the number of ele-
merts, the interelement spacing, and, possibly, the resonant frequency of the
elernents can be determined from the //-plane scattering characteristics of
the passive linear array of cylindrical elements.

DPROBLEM STATUS

This is a final report on one aspect of the problem; work on the problem

is continuing.
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THE SCATTERING OF A PLANE EI.LECTROMAGNETIC WAVE
BY A LINEAR ARRAY OF CENTER-LOADED TYLINDERS

INTRODUCTION

The majority of the early theoretical investigations of electromagnetic scattering
involved the scatteri:g of a plane electromagnetic wave by a highly conducting, simple
geometric cbiject, such as a sphere or cylinder. Extensive references to this early work
can be fou: 1 King and Wu (1). In recent years a number of papers have appeared in
the literature which treated certain simple antennas as scattering devices; in particular,
the cylindrical antenna has received considerable at*ention by Chen and Liepa (2) and
others. Chen studied the effect of central loading on the induced current on a thin cylin-
der illuminated by a plane wave at normal incidence. By suitable variation of the load
impedance, Garbacz (3) determined : 2rtain antenna parameters, such as impedance and
power gain, from measurements of the scattering cross sect:cn of a single-port antenna
for fixed frequency, pelarization, and antenna orientation,

The literature contains extensive treatment of the antenna as a transmitter, that is,
as a transducer of current and voltage at a terminal pair {0 eiectric and magnetic fields
radiating into space. The inverse problem of the receiving antenna, that is, a transducer
of incide.t electric and magnetic fields into current and voltage at a terminal pair, has
not received a similar amount of attention. This coadition of the literature stems from
two facts: first, the mathematical problem involved makes the analytical study of tie
receiving antenna very difficult except in special instances, and, second, the quantity
almost invariably of interest in the receiving rase is the pcwer delivered by an incident
field tc the load connected across the antenna terminals. This quantity can be obtained
most conveniently from the transmitting properties oi the antenna by reciprocity consid-
erations, without a detailed knowledge of the complicated field and cu:rrent distributions
over the surface of the antenna. If, however, we are interested in the antenna as a scat-
terer, we are concerned not only with the power delivered to the load but also with the
distribution of the power density which the anteuna scatters into surrounding spacz. To
find *he scattered electromagnetic field, we need detailed information about the currents
induced on the conducting surfaces of \he anterna which radiate the scattered field.

Very little work on the scattexing of an electromagnetic wave by an antenna array
has appeared in the literature. To improve our knowledge and understanding of array-
scattering behavior, we decided to make a tbeoretical investigation of the scattering of a
plane electromagnetic wave by a simple linear array of A parallel, cylindrical, center-
loaded elements.

The approach used to solve the steady-state scattering problem is first to find an
aprroximation to the complex currents induced in the el>ments of the array by the inci-
deutt illumination. Cnce the current distribution, in amplitude and phase, along each ele-
ment of the array is determined, th» far-zone scattered field radiated by these currents
is easily calculated from the superposition of the radiation fields of the individual ele-
ments of the array.

1T bt
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THEORETICAL SKETCH
Theoretical Model

Consider a plane electromagnetic wave of wavelength \ with its electric vector po-
larized in the 2 direction incident in the // plane (s-y plane) of the linear arcay of
center-loaded cylinders of infinite conductivity positioned in srace as shown in Fig. 1
The electromagnetic wave is incident at an angle ;. to the normal to the plane of the
array. The central impedances Z, are lumped, or without physicz) dimensions. The
cylindrical elements of the array are identical, with the exception ct the load impedances,
each with a half-length 4 and a radius «. For the sake of simplicity, we assume the ele-
ments of the array to be very thin cylinders with half-lengths larger than 400 tiraes their
radius. Also, it is assumed that 27« » is lesy than 0.0100. In the theoretical model cho-
sen, only the induced curyents tnat flow along the length of cylinders contribyte signifi-
cantly to the far-zone scattered field; consequentiy, the induced currents maintain a re-
tarded vector potential possessing solely a z component. From the symmetry of the
array and the uniformity of the phase and amplitude of the incident electric field along
the entire length of each cylinder, it follows tihat the induced currents and their respec-
tive vector pcientials possess even Symmetry in =,

We use a complex notation with the time-dependence factor exp (.. ¢) of the incident
wave suppressed in the treatment of steady-state sca’iering. The rationalized mks-
couloumb system of units is used throughout the report. All alternating (oscillating)
quantities are complex unless otherwise indicated.

Derivation of the System of Integral Eauations of the Array Currents

Our ultimate purpose is to calculate the scattered fieid of the array; to do this cal-
culation we first find an approximation to the current induced in each element of the

Plrnee)
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Fig. | - The theoretical model
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array by the incident i{llumination. The induced currents must satisfy a system of linear
integral equations, which we shall derive in the following pages=.

The incident electric field tangential to the surface of the m-th cylinder may be writ-
ten in the form

EL, < B, expljtm), (1)

where £, and v, are, respectively, the real amplitude and phase of the incident electric
field, each of which is constant ainng the cylinder. The induced tangential electric field
at the surface of the m-th cylinder, maintained by the induced currents and charges on all
of the cylinders of the array, is given by

adp (z2)
ES gy = - 22

- Jed t2). @)

Az

where A1, is the tangential component of the retarded vector potential on the surfac2 of
the m-th cylinder due to all the array currents and ¢,, is the scalar potential on the sur-
1ace of the m-th elemant due to the charges on all of the cylindrical surfaces of the array.
In the steady state, ¢ _, can be eliminated by means of the Lorentz condition (4):

me

ad,,(2)
dz

v jet @ (2)

0 /tatme
-"-“Qmmz 2 (3)

where /7= 27 A is the phase constart of space, . is the radian frequency of the illumina-
tion, «_ is the permittivity of space, and ., is the permeability of space.

3

Combining Eqs. (2) and (3), we have

dt 4, tz)
Eoyiz) - -jlw A9) [—-—“— : ,-2,1,M(z)] : ()
dz?

The electric field £, across the very small gap of width 2 at the center of the m-th cyl-
inder is related to the voltage drop across the center load as fullows:

A
f ES, dz - 71,00 . (5)
S &)

where Z, is the complex central load impedance and /,,(0) is the current at the center of
the m-th element of the array. For our dimensionless load, » must approach zero in the
limit, and we obtain from Eq. (5)

EL - Z,1,00) 2, (6)

where *(z) is the Dirac delta function.
With a perfectly conducting cylinder, the total tangential eleciric field vanishes at

the surface of the cylinder, excluding the infinitesimal region of the central load. This
means

-

Wt



4 0. D. SLEDGE
Eny + Epy =0 )]

L EL, i, Z,1(0) o(2). (8)

From Eqs. (1), (4), and (8) w. obtain ie following differential equation for 4, (2) valid
ovelr the entire length of the m-th cylinder:
d? Amz( 2) (9)

el B2 A, 02) = j(B2w) [Z,1,00) 5(2) - K exp(ji,)]

The general solution of the inhomogenous differential equation (9) consists of the
complementary function and a particular integral. The complementary function is given
by

[4n,02)] = (-j€)1(C, cos Bz + €, sin fS2). (10)

where C=1/(u,€,) ' "% is the velccity of propagation of electromagnetic waves in free
space and C, and C, are constants of integration. The constant ¢, is zero, since 4, ,(2)
possesses even symmetry in : in our theoretical model. A particular integral can be

written as follows:

{Aw(a)]’ =(~j/€) [(E, /A (1 - cos Bi) exp(jO,) - (Z,1,(0) /2) sinBel, for 0 <2 <k, (lia)
and

[Am(z)]p = (=j/C) EL/AUN - con Ba) expljl,) +(Z,.1,(0)/2) sinfz], for -k <2z <0. (1lb)

Equations (11) satisfy the differential equation (9) for -4 < » < 4. In order for Egs. (11)
to satisfy Eq. (9) at the infinitesimal gap in the ccnter of the m-th cylinder, it is neces-
sary that d4,,/d: possess a jump at z - 0 of a magnitude j 5°Z_/,(0) « which in turn as-
sures that 424,,/dz? contains a delva function of the correct magnitude to balance the im-
pulsive term appearing in the right-hand member of Eq. (8). In ghorthand form, the
gene.al solution of the differential equation (9) is given by:

A (2" = (=j/€)[C, cos Bz + (E,/5) (1 - con B2) explj£,) = (Z,,1,(0) 2) cin sjz]|]. for -h<z<h. (12)
Setting 2 = :4 in Eq. (12) yields the followirng expression for ¢, :
, = sec ;3/.{(,‘6.'2) (4,00 4, (-1 ] - (Eg:B) (Y - cos Bh) explj€) + (Z, 1,10} 2} sin ﬂh} . (13)

Since 4,,(z) is an even function, the expression for ¢, becomes

€, = wee b {i €A (B) = (B /) (1 = con ) exp(ify) + [2,1,(0) 2] nin 3h} . (14)
From Egs. (14) and (12) we obtain the following equatic.:
Ay (8) = Ay (B) = (=€) mec jth {20,001 2] min jiCh=12])
b €A (B) - (B, /A) exptif,)] teon fiz = con (B} . (15)

Iy, A 4 bl
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From its definition, the : component of the retarded vector potential just outside the
surface Of the m-th cylinder at a dista.ce 2 from the center of the cylinder is given ap-
proximately by the expression

N A
4,,(2 (py/4m Z J I (B2") K (e 2"y de’ (16)
Y

i=1
where
s . 12
cxp{-];d[(z-z Y2 (m-i)?d?] }

Kila, 2" = — . for mti
[Ce-2',2 + tm=-i)2d?)

and

e\[){‘ji'{(e-zl): ‘(1211 2}
ez, 2') = . for m=-i.
, R N
We-2")% + a?}

in which ¢ is the center-to-center spacing of the cylindrical elements of the array.

Equation (16) is an accurate representation of the vector potential, except at points
very near the ends or the center load of the element. By substituting Eq. (16) into Eq.
(15) and leiting - assume all integral values irom 1 to A, we obtain the following system
of linear integral equations foi the array of N cer er-loaded cyiinders:

N A

A ;
Z f itpa YK te 2y = Ktk 2') Jde' = - -R—o sec A {(Zmlm(o) 2) sin A= |2])
IR

‘ [,'EAW([,) - (E, el (~xp(j“m)1 {con "2 cos _[‘?h)}. m=1,2.% ..., A, (17)

where £, - (1., +,)' ?=1207 is the characteristic resistance of space.

Approximation Technique

The solution of the system of integral equations of the array to obtain the induced
currents in the cylindrical elements is indeed a formidable task and will not be attempted
here. Instead, we shall assume the induced currents can be represented by the zero-
order approxiination

f,G02) = U, Ceos "2 - cas h) ¢ ‘ﬁ, sin (k- lzh lla)
where 11, and #, are undetermined complex current coefficicnts. Note that Eq. (18) sat-
isfies the end conditions that /, vanish at - - :4, independe-! of finite u, and ®,. King(5)
suggests that Eq. (18) is an adequate approximation for use in the calculation of the far-

zone radiation field of an array of thin cylinders of electrical half-length .-/ less the 5= 1,

The scattered or reradiated field is relatively insensitive to small errors in the current
distribution on the array. The current coefficients ¢, and '3, can bs determined from the
se! of integral equations and, thus, take into account the mutual coupling or interaction
between the elements of the array.
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Using Eq. (18) in Eq. (17), the system of integral equations of the array becomes

N
> {Gi[b':"-(z) con B =M (W] Folz) ¢ B [Uhi(a) Fy2) con b = Ly B Iv'c(a)]}

(LD

= -;'(Zm/60)[(im( 1 -cos Bh) + B, sin ,Bb] F,(2) +j(E,/308) (cos I + jsintdyF.(2). m=1.2,3 .., N,
(19)
where

F.(2) = cos Bz - cos [h,

Fytz) = sin Blh- |2},
c .
Woi(3) = Mo (W) = Uoi(a) Foia),
Lpi(3) = Lo A = Uhi(a) Fy(2),

A
M, (2) = J {cos B2’ - cos Bh) K, (2 ') 42’
-h

A
L, (2) J sin BUA-l2]) Ki(2,2") d2’.
A

We desire to determine the complex constants G; and 8, fzrom Eq. (19) in sucha
manner as to cause our zero-order approximation to the induced currents to hold fairly
well along the entire length of the elements of the arrzay. In what nllows we employ a
technique similar to that of Chen and Liepa (2) in the determination of the current coeffi-
cients d; and 3,.

For a given value of 5, the real part of the dominant term (i = m) of the sums in Faq.
(19) involving #/5.(2) and U,(2) varies with 2 in a manner like F_(2) and F,(2}, respec-
tively, except near the center and the ends of the elements. Thus, to achieve our objec-
tive, it seems reasonable to divide Eq. (19) into the following two sets of equations:

N

Z{u.-[u;w con b =M, (h)] -%iL,m-(h)}- JUE,/308) (con 6, +j sin (), m= 1.2, .., N,
o (20)
and

N s D

Y Bl (2,) con b - <j( 260 [A00 - con @) e By win ] L omen2 B (21)

where 2, and 2, are reference values in 2. Eguations (20) and (21) are formed by re-
spectively equating the coefficients of F,(2) and F,(2} on opposite sides of Eq. (19). For
a given angle of incidence and value of /3, the current coefficients ¢; and #; are deter-
ined from Egs. (20) and (21) considered as a single set of simultaneous linear equations.
For best accuracy in the determination of the constants (; and R,, we choose 2, and 2,
such that the current distributior functions #.(z,) and ¥,t2,) remain as large as possible
over the range of interest in /. The reference values 2. and 2, are chosen as follows:
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F] F] 0. for 0 < .4 <01 2,
ard
2. Ound 2, A- 2. for 22 </ <25,
When the elements of the array are an odd multiple of half-waves in length, the ex-
pression for the element currents takes the simple forn.

1; (fi2) ; con fa . (22)

The complex constants 0; are determired from Eq. (19), which becomes, under this con-
dition,

N
= YWY (-7, 60) B, win (kT 2) 4 fUE, 300 Lcon ot jnin G, mo1,2,.... N, (23)
[}

where & is the odd number of half-wavelengths in the element length. Note that Eqs. (20)
and (21) and the preceding discussion about the reference values of : do not apply to this
special case.

In the absence of experimental or theoretical information from independent sources
on the currents induced in an array of linear elements illuminated by 2 plane wave, it
was necessary to test the approximation technique used in this report to calculate the
induced currents in the array. The array currents found by this technique do not satisiy
the set of integral equations of the array; however, the approximate currents can be
checked in a sewmiquantitative manner. To achieve this end, we -btain a measure of how
much the approximate currents fail to satisfy the set of integral equations (19) of the ar-
ray. The method of evaluation of the approximate techuique and the results obtained for
several values of the electrical half-length of the elements are presented in Appendix A.
Frorm the work of Appendix A, it was coicluded that the approximate technique used in
arriving at the induced currents gives reasonable accuracy in the calculation of the scat-
tered field of the currents, provided the eiectrical half-length of the array elements does
not exceed 57 4,

Also, it is found from numerous calculations that the approximate solation to the
array-scattering problem presented in this report satisfies the reciprocity theorem of
electromagnetic fields to a high degree of accuracy.

The Far-Zone Scattered Field of the Array

We shall now proceed to the development of an expression for the far-zone scattered
field of the array. At the observation point P of Fig. 1, which is at a distance from the
array larger than 1000 times the largest dimensior of the array, th~ : component of the
far-zone retarded vector potential of the current in the i -th element of the array ie given
approximately by the expression

o expi-fir)
A S J li(ﬂe') exp l!',‘i(z'rnROOy'.'nin()nintﬁ)lde'. (24)
-A

iz Aup

The coordinates r, ¢, and ¢ locate the observation point, and ' andy - (i - 1'd are the
array coordinates. By virtue of the linearity of our physical system, it follows that the
vector potential of the array at 7 is simply the vector sum of vector potential~ at the ob-
servation point of the individual element currents of the array. Therefore, thu vecior
potential of the array at ” is given by
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. ? A
o exp i=jBr)
4, = -0—-47;—'— explj(i ~1dsinsin¢] j Fo(R2') exp Bz’ con i) da', (25)
i=1 -h

In the direction (¢, #), the far-zone scattered electric field of the array is related to
the vector potential by the exnression

EY = j5CA, sin UL (26)

Futting Eq. (25) in Eq. (28), and usiug the fart that the element current is an even function
of 5:', we obtain the finul form of the expre:s.on for the steady-:tate scuttered electric
field, namely,

H

N oA
E; ] -670 sin 6 exp(-jfr) Z [

zll

In the calrulation of the scattered field, it i»> convenient to make the results inde-
pendent of the distance from the center of the first element of the array to the point of
observation. . To achieve this condition, we multiply Eq. (27) by the reciprocal of the
quantity (60/¢) exp(~j3r) to obtain

I; (e) cos (u cos ) du]exp[j(i -1 Ad sin sin @), (27)

where v =5z,

N 8h
(E;)" = jsinb Z[J I;(x) cos (v cos 6) du]exp[j(i-l)/&lsiné-’sin\}-]. (28)
0

t=1
which is defined as the no™malized scattered ele~tric field.

The effective scattering coefficient of the i -th element of the array is defined as

BA
G; expljy) =j I; (u) cos (ucos?) du, (29)
0

where G, and ¥, are, respectively, the real amplitude and phase of the scattering coeffi-
cient, Introducing ¢, and y,, in Eq. (28), we obtain

N

(E5) = isinf ) G expliti =13 sin 0 sin ¢+ jy, (30)
n

=)

It should be uncierstood that both ¢; and v; are functions of 34, (d/3), the load impedances,
and the angle of incidence of the illumination.

Under most conditions of /-plane scattering, it is found from our calculatiors (Ap-
pendix B) iist the valucs of G, change only a small percentage across the array, and the
values of 7; change approximately linearly across the array. That is, »; can be expressed
in the form

Yi =W = 1)/d sin Pinc (31)
where ¢ . i8 the 2ngle of incidence of the illumination and y, is the phase of the sca 'r-
ing coefficien! of the first element for non-normal incident illumination or the average

phase of the scattering coefficients of the elements of the array in the case of normal in-

cidence. If in Eqg. (30) we replace ¢, by ¢, , its average value taken over the array, a.ad

av?
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»i by the expression given by Eq. (31), Eq. (30) becomes a finite geometric scries which
can be summed to yield the following approximate formula for the normalized, / plane,
scattered field:

[N ]

. sin (Ay 2) .
(Eﬂ) = Gnv [‘“n ] exp [I ()I ¢

n sin (4 2)

bAN- swﬁz)] . (32)

where = Adtsin ¢+ sin 4, ).

From extensive calculations we found that Eq. (32) agrees well in both amplitude and
phase with Eq. (30), except near the nulls of the function sin (Av 2) sin (y 2) and regions
in /4 whare the array exhibits resonance phenomena. Over the area covered by this in-
vestigatiop, we find that Eq. (32) is quite helnful in the exploration of the general charac-
ter of the scattered field. Equation (32) is particularly useful and fairly accurate in the
determination of the angular positions of the major or grating lobes and the minima of
the sca‘tered radiation pattern of the array.

The Positions of the Grating l.obes and the Minima of the //-Plane
Scattering Pattern of the Array

It is easily demonstrated from Eq. (32), for an array with fix2d physical dimensions
and load impedances, illuminated by a plane wave of a given wavelength and angle of in-
cidence, that the major, or grating, lobes of the //-plane sca'tering pattern are centered
approximately at the values of + which satisfy the relation

Y 2 = tam
or
(33a)

sin ¢ o= +(2a7 3d) - sin
wheren = 0,1,2,3,... is the orier of the grating lobe. According to Eq. (33a), the zero-
order grating lobe is located at the specular observation angle v - -+, ., independent of
the electrical interelement spacing .-#. The back-scattered grating lobes are centered
at s - ¢, . by definition. Setting + = :, _in Eq. (33a), we obtain the condition for the oc-

currence of a back-scattered grating lobe, namely,

= sar d. (33b)

Table 1 shows the angles of incidence where back-scattered grating lobes occur for vari-
ous interelement spacings in wavelengths.

Table 1
The Angl»s of Incidence which Yieid Back-Scattered Grating Lobes

Angles of Incidence (degrees)

d > :

0 1 2 3 4 5 6
1/2 0 90 - - - - -
1.0 0 30 90 - - - -
3/2 0 19.5 41.8 90 - - -
2.0 0 14.5 30 48.6 90 - -
5/2 0 11,5 23.6 36.9 53.1 90 -
3.0 l 0 9.6 12.5 30.0 41.8 56.4 90




10 O. D. SLEDGE

Also, from Eq. (32) it is observed that the position of the minima of the #- >lane
scattering pattern are approximately determined by the condition

Ny/2 = sk, k=1,273,...,
or

sis ¢ = t(2kn/NAD) -sin &, . (34)

provided (y/2) is not zero or an integral multiple of =,

THE RESULTS OF A THEORETICAL STUDY OF THE
SCATTERED FIELD OF AN ARRAY

The Model Used in the Investigation

The model used in th2 investigation is shown in Fig. 1. The model involves an eight-
element linear array wita uniform load impedances and an interelement spacing equal to
the element length. The physical dimensions of \he array are considered fixed, while the
electrical half-length of the elements S84 changes linearly with the frequency of the inci-
dent electromagnetic wave. The phase of the incident field ut the a-th element of the ar-
ray is given by

Oy = ‘m—1)5d sin 3, . (35)

The »ero-phase reference in all the work to follow is the phase of the incident field at
the first element of the array. In our scattering calculations, the ratio of the radius to
the length of the elements is fixed at 0.001, and we keep £,A = 30 to determine the
strength of the incident illumination. The numerical investigation of the scattered £ field
is limited ir this repuct to the # plane of the 2rray.

The Results of the Investigation of Array Scattering

A Typical Set of Array Current Distributions — As an example of the currents in-
duced in the array, we present Fig. 2, which shows the distribution of the in-phase and
quadrature components of the axial currents induced in the various elements of the model
array of full-wave dipoles with central nonreactive load impedances of 72 chms by a
plare wave incident at -20 degrees. It is evident that both amplitude and phase distribu-
tion information is available from these graphs.

An Example of a Polar Scattering Pattern of the Array — Figure 3 shows a polar di-
agram of the amplitude of the scattered electric field E; of an array of eight half-wave
elements with a nonreactive load impedance of 72 ohms when illuminated by a plane elec-
tromagnetic wave incident at -40 degrees. Note the major scattering lobes in the re-
flected direction of 40 degrees and in the forward scattering direction. Also, notice the
symmetry of the pattern about the line of the element centers. In reality, the scattered
energy in the forward direction is slightly less than in the reflected direction, because
the induced surface current density on the shadowed half of the cylinders is slightly less
than on the illuminated half of the cylinders.*

*Uling the classical forrulas (see King and Wu (1), Eq. 13,3, page 39) for the surface
current density induced on an infinitely long cylinder of infinite conductivity by a plane
electromagnetic wave, we find (for Sa = 0.01) that the surface current density at the
center of the shadowed half of the cylinder is reduced in amplitude by 6% ar.d shifted in
phase by 11 degrees relative to the current density at a point diametrically opposite in
the center of the illuminated half of the cylinder,
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Fig. 3 - A H-plane polar scattering diagram of the model array

The Distribution of the Norinalized Amplitnde. of the Scattered Electric Field in /2 —
In Fig. 4 we present a universal graph of the distribution of the amplitude of the normal-
ized scactered field of the eight-element array under study. The figure shows the re-
flected lobe centered at v/2 = 0 #:.a the first-order grating lobes centered at y/2=:», The
solid curve represents ‘he field distribution given by the approximate Eq. (32), while the
indicated points are derived from the more accurate formula of Eq. (30). The agreement
is quite good considering that the conditions for the points were chosen deliberately to
show the greatest possible disagreement between the two formulas, Near the element
resonance at 54 : 1,57 and at 5h = 3,64, where the reactance of the load impedance ap-
parently resonates the antenna elements, Eq. (32) is not as good an approximation to Eq.
(30) as elsewhere in 34 (see Appendix B).

The effect on the 3cattering pattern of the array resulting from a change in the load
impedance is portrayed in Fig. 5. The change in the nonreactive load impedance from 72
ohms to 600 ohms has only a small effect. The points calculated from Eq. (30) again fall
closely on the solid curve representing Eq. (32).

It is evident from our study that the normalized solid curve of ¥ig. 4 holds essentially
independent of the load impedance, the angle of incidence, and the frequency of the illumi-
aation, Supplemental to the information of Figs. 4 a 1 5, the actual amplitude of the scat-
tered electric field, obtained from Eq. (3(), in the refiected, or specular, direction of
observation (y - 0) under various conditions is presented in Table 2.
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Table 2
£, at the Center of the Reflected Lobe of
the Scattering Pattern of the Mode! Array

g

Load Impedance E, for Various Vilues of ¢, _
¥A (Ohms) oo -10° -20° J -30° -40°
Bh=n/4
72+3j0 0.201 0.201 0.202 0.203 0.205
150+ 30 0.196 0.197 0.197 0.198 0.200
300 +j0 0.182 0.182 0.182 0.183 0.184
600 +jO 0.147 0.147 0.147 0.148 0.148
72 +§ (32056 - (740/534)] 0.116 0.117 0.117 0.117 0.118
ﬂh =n/2
72 +j0 2.390 2.36 2.28 2.15 1.98
150 + jO 1.480 1.47 1.44 1.39 1.32
300 +jO 0.859 0.855 0.845 0.829 0.805
600+ jO 0.466 0.465% 0.462 0.457 0.450
72 + § [30044 - (740/5)] 2.390 2.38 2.28 2.15 1.98
Bk =31/4
72 +30 0.955 0.927 0.799 0.895 0.933
150 +)0 0.925 0.899 0.767 0.830 0.861
300 +j0 0.875 0.853 0.720 0.736 0.755
600+ {0 0.811 0.798 0.875 0.636 0.642
72 +j [300/-"h - (740/[5h)] | 0.347 0.345 0.334 0.358 0.364
Bh=mn
72 +j0 0.564 0.723 0.782 0.796 0.785
150 + jO 0.568 0.727 0.791 0.806 0.794
300+ j0 0.607 0.784 0.866 0.887 0.870
600 +jO 0.749 1.010 1.15 1.19 1.16
72 +j [300Bh - (740/[3h)] 0.455 0.472 0.539 0.563 0.543
Bk =5n/4
72+j0 0.657 0.570 0.612 0.607 0.583
150+30 0.720 0.614 0.670 0.665 0.628
300+ 30 0.877 0.728 0.808 0.802 0.747
600 + jO 1.08 0.875 0.985 0.976 0.902
72 + § [30053h - (740/[3h)] 1.73 1.31 1.55 1.53 1,37

The Angular Distribution of the In-Phase and the Phase-Quadrature Components of
the Scaftered Fleld —In Fig. 6 we present some examples of the angular distribution of
the in-phase and the phase-quadrature components of the H-plane scattered electric field
in the half-space on the illuminated side of the linear array. These graphs are obtained
from Eq. (30). Note the near symmetry of the field components about the reflected d'rec-
tion of ohservation for normal incidence and the iack of : ymmetry exhibited for aa angie
of incidence of -40 degrees. The effect of changing the load impedance is seen, on com-
paring Figs. 6a and 6¢c, to result in merely a change in the level of the scattered field
without appreciable change in the angular distribution of its in-phase and phase-
quadrature components,
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The Scattered Field Distribution in 54 —In this section we presert graphs which
show how the amplitude and phase of the //-plane scattered electric field of the model
array vary with the frequency of the illumination or the electrical half-iength of the ele-
ments of the array. The direction of observation of the far-zone scattered field is cho-
sen as either the reflected direction or the back-scattered direction. All the resuits
presented in this seciion are calculated from Eq. (30).

In Fig. 7a we show the characteristics of the steady-state scattered field observed
in the reflected direction for normal incidence and a nonreactive load impedance of 72
ohms. Note the element resonance at 54 = 1.58 manifested by the maximum of the
scattered-field strength. In Fig. Tb we present the 54 characteristics of the reflected
field for normal incidence and a certain type of reactive load impedance. Again we ob-
tain a maximum of scattered field at 84 = 1.57, where the elements resonate. In addition,
a large resonance peak occurs at 54 = 3,64, where evidently the reactance of the load
resonates or tunes out the reactance of the impedance of the elementst.

In Figs. 7a and 7b and in the figures to follow we find that the scattered field be-
comes quite weak for s54 smaller than 0.40.

In Figs. 7c through 7f we show the field scattered in the reflected direction by the
model array plotted versus the electrical half-length of the elements of the array. In

Fig. 7c the central load impedance of the elements is a pure resistance of 600 ohms, and
the illumination is incident normal to the plane of the array. The large load resistance
appears to have obliterated the element resonance peak, leaving a slowly increasing am-
plitude of the scattered field with 54, except for a small dip at 54 = 3.2. Figure 7e is
similar to Fig. 7c, as might be expected, since only the angle of incidence of the illumi-
nation differs in the two figures. In Fig. 7d we present the field scattered by the model
array of eight elements with nonreactive load impedances of 72 ohms when the illumina-
tion is incident at -40 degrees. The scattering characteristics exhibited resemble those
for the same loading but with normal incidence, as shown in Fig. 7a. The element reso-
nance appearing at 64 = 1,57 is the salient f2ature of Fig. 7d.
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Figure 7{ showe the amplitude and phase of the field scattered in the reflected di-
rection by the model array loaded with the indicated reaciive impedances when the illu-
minating plane wave is iucident on the array at -40 degrees. These characteristics
closely resemble those shown in Fig. Tb over the interval 0.4 to 2.5 in 34, Intuitively,
the similarity seems reasonable, because the two sets of curves give the scattering
properties of the sime array but at different angles cf incidence of the illumination.
However, in the range extending from 2.5 to 4.4 neither the amplitude nor the phase
characteristic of Fig. 7f resembles closely the corresponding curve in Fig. Tb. An ex-
planation of this divergence is unzvailable. The fairly sharp peak at 34 = 1,57 is, as
usual, associated with the fundamental resonance of the elements of the array. The very
high and narrow peak at 84 = 3.54 comes about by virtue of the reactance of the load tun-
ing out the reactance of the impedance of the elements of the array at the frequency cor-
responding to this value of Ga.

We present in Fig. 8 the amplitude and phase of the electric field back-scattered
by the model array with various load impedances at tne element centers when illuminated
by a plane electromagnetic wave incident at -40 degrees. In all three sets of back-
scattering characteristics we have a large peak in the vicini*; of 54 = 2.44, where a first-
o-der graiing lobe occurs according to Eq. (33b). The results shown in the figure exhibit
interference b ‘veen the scatterecd-field components radiated hy the individual elements
of the array. The interference manifests itself by the appearance of the periodic miaima
in the amplitude of the field and the concurrent rather rapid advances in the phase of the
scattered field. The interference effects naturally are absent in Fig. 7 because in the
rv.aected direction the component scattered fields of the elements of the array are hearly
in time phase with each othe.'. In fact, the general nature of the 34 characteristics of the
i-plane scattered field cbserved in any direction can be explained best with the aid of
Eq. (32). from Eq. (32) it ic seen that the scattered field for a given load impedance and
angle of incidence consists of two factors: the reflection factor NG, exp lity, +7/2)) and
the interference factor [sin (Ny/2) /N sin (y/2)] exp[j(N- Dy 2], where y = fd(sind+sing, ).
In the reflected direction, the scattercd field becomes the reflection factor only, since in
this direction the interference factor becomes unity. In directions other than the re-
flected direction, the effect of the interf~rence factor appears along with the effect of the
refle~tion factor. The magnitude of the interference factor is shown in Fig. 4 as the solid
curve plotted versus ¢’2. As stated earlier, Eq. (32) does not give accurate results near
the nulls of the interference factor, as indicated by the presence of minima instead of
nulls in Fig. 8. However, the positions of the minima and of the grating lobes in Fig. &
almost coincide with the locations of the nulls and grating lobes, respectively, of the in-
terference factor. The amplitude curves of Figs. 8a and 8b resembie the general shape
of the magnitude of the interierence factor (see Fig. 4), except for some asymmetry in-
troduced by the appropriate reflection factors shown in Figs. 7d and 7e. In Fig. 8¢
the element load impedances are reactive, and the amplitude characteristic does not re-
semble the magnitude of the interference factor. Figure 7f, portraying the correspond-
ing reflection factor, accounts for the distortion. The high narrcw peak at 54 = 3.55 in
Fig. 8c correspouds to a similar peak in Fig. 7f, wheie the reactance of the load tunes
out the reactance of the el2ment of the array.

SOME PARAMETERS OF A PLANE-POLARIZED LINEAR ARRAY OF
CYLINDRICAL ELEMENTS DEDUCED F. M ITS SCATTERING
PROPLRTIES

Up to this point we have made a study of the //-plane scattered field of a linear array
of cylindrical elements illuminated by a plane wave incident in the # plane o! the array.
In other words, we have been concerned wilh the problem of determining the scattered
field given the character of the array and its illumination. Now, let us consider the in-
verse problem of the determination of some of the parameters of an unknown plane-
polarized linear array of cylindrical elements from the character of its / plane scattered
field and the known character of its incident illumination.
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Let us assume that the plane of the array is known; then one can determine the plane
of polarization and, hence, the / plane of the array by the following well-known method.
Mluminate the array with a linearly polarized pline wave, incident on the array at some
convenient fixed angle of about 60 degrees or more. Rotate the plane of polarization of
the incident wave and vary the frequency of the illumination until a sizable back-scatterad
field of the same polarization as the incident field is obtained. Now, with the frequency
fixed, maximize the amplitude of the back-scattered field by further rotation-tuning of
the plane of polarizatic i of the incident wave. At this point, the plane of polarization of
the array is approximately the same as that of the illumination.

Now that the ¥ plane of the array, a plane orthogonal to the plane of polarization of
the array, is determined, it is possible to deduce further information about the nature of
the scattering array from the knowledge and information obtained from the study of the
scattering properties of a linear array presented in the preceding sections of this report.
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The further information about the array deaucible from its scattering properties consists
of the number of elements in the array, the interelement spacing, the #-plane radiation
pattern, when used as a uniformly excited transmitting array, and, passibly, the funda.
mental resonant frequency of the elements of the array.

In the following determinations we assume an illumination-array setup like that
shown in Fig. 1. The scattered field is examined only in the # plane of the array

As one continuously increases the frequency of the illumination of the array with a
fixed angle of incidence of -40 degrees and Z(«) for the load impedance of each element,
the amplitude of the back-scattered field resembles that of Fig. 8a. It follows simply
from Eqs. (33a) and (34) that the number of elements in the array is one plus the number
of minima lying between successive grating lobes in the back-scattered fieid. From
Figs. 8a and 8b, one observes thai the scattering array has eight elements.

To determine the interelement spacing 4, we make observations on the amplitude of
the back-scattered field at the far-zone observation points P, and P, of Fig. 9. From
point P, we illuminate the array from a direction ¢, degrees from a reference direction
with a plane electromagnetic wave and observe the amplitude of the back-scattered field
at P, as the frequency of the illumination is scanned through several grating lobes spaced
uniformly in frequency by an amount Af,. At point P, we repeat the experiment with ¢,
equal to ¢, plus 80 degrees and find the grating lobes separated by a frequency increment
4f,. It is easy to show from Eq. (33b) in conjunction with Fig. 9 that the element spacing
d must satisfy the following transcendental relation:

sin~1[C/20f,d] + sin~'[€/20f,d]) = m/2. (36)

For good accuracy the positions of the observation points P, and P, are chosen so that
4f, and Af, do not differ by more than 50% of the smaller of the two frequency incre-
ments. The element spacing can be found from Eq. (36) by a well-known graphical
technique.

With the number of elements and their spacing determined, it is a simple matter,
from the theory of a.rays, to find the #-plane radiation pattern of the linear array when
used as a uniformly excited transmitting ...ay at a given frequency.

When one measures the amplitude of the field scattered by the array in the reflected
direction as a function of the frequency of the illumination, more than one resonance

ol
-0—0—0- -0 A0—-0—0—0 «@— LINEAR ARRAY

DIRECTION (REF)

= J

(REF)

Fig. 9 - Arrangement for the determination
of the element spacing of the array

LT

sorakesn

et

b 44 LT U LSO 101 LT BB B




NRL REPORT 6681 25

makes an appearance, because {une load impedance of the elements usually exhidits some
reactance. Figures 7b and 7f show examples of this situation. To determine the reso-
nant frequency of the elements from these reflection » characteristics it becomes aec-
essary to identify the eleraent-resonance peak. Apparently from the figures cited above,
the size of the element-reuonance peak (at 4 = n/2) changes, much less percentagewise
than the other resonant peaks, associated with the reactance of the load, as the angle of
incidence of the illumination undergoes a change from 0 to -40 degrees. With this crite-
rion, we may determine the resonant frequency of the elements of the array, which is
also the design frequency of the array. Whether this criterion for ti e selection of the
element-resonance peak is reliable for various kinds of reactive loads can only be an-
swered by further investigation,

CONCLUSIONS

A significant result of this investigation is the discovery that the n-plane scattered
field of a linear array of cylindrical elements illuminated by a plane electromagnetic
wave consists, to the first approximation, of two factors: a reflection factor and an in-
terference factor. The interference factor, defined as

ain (N‘J’/’z)
sin (y/2)

expli(N-1Dys2],

where ¢ = Bd(sin ¢ + sin¢,, ), i8 of the same form as the array factor of a uniform lin-
ear array of » eleme.ats excited with uniform amplitude and element-to-clement phase
progression. In the reflected direction, where ¢ = -, . and ¢ vanishes, the scattered
field becomes equal to the reflection factor, since the interference factor becomes unity.
More physically speaking, the components of the scattered field contributed by the indi-
vidua! elements of the array are in time phase in the reflected direction. The =2flection
factor is calculated from an approximation technique incornorating the set of integral
equations characterizing the array and the incident illumination. It follows that the re-
flection factor is a function of the electrical half-length of the elements, the electrical
spacing of the elements, the load impedance, and the angle of incidence of the :llumina-
ticn. With the aid of the interference factor of the approximate formula tor the scattered
field, it is possible to discern much about the nature of the #-plane scattered field, for
example, the positions of the grating lobes and the minima of the scattering pattern for
various plane-wave illuminations.

From the scattering characteristics of a passive linear array of cylindrical ele-
ments, one can de: uce its plane of polarization, the number of elements in the array, the
interelement spacing of the array, the #-plane radiation pattern of the array, when used
as a uniformly excited transmitting array, and, possibly, the resonant frequency of the
elements of the array.

No doubt the technique described in this report for the calculi tion n¢ the scattered
field of a linear array can be extended to the study of the scattering properties of planar
arrays of cylindrical elements,
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Appendix A

THE EVALUATION OF THE APPROXIMATION TECHNIQUE OF
CALCULATING THE CURRENTS INDUCED IN AN ARRAY
BY AN INCIDENT PLANE WAVE

To test the induced currents calculated using Eqs. (20) and (2i) for a given angle of
incidence, array loading, and value of 54, we substitute the current coefficients d; and 3,
into the set of integral equations of the array, Eg. (19), and compare the complex values
of the right and left members of each equation of the set for various values of 5z. In
Table Al, we present some examples of the comparison of the right and left members of
the set of equations (19). The percentage magritude difference is defined as 100 times
the ratio of the absolute value of the difference between the magnitudes of the right and
leit members to the average of the two magnitudes. The symbol = design~.es the equa-
tion associated with the m-th element of the array.

Graphs of the percentage magnitude difference and the absolute value of the angle
difference, both averaged over the array, as well as the normalized current amplitude of
the fourth element are shown in Fig. Al plotted versus the position along the array ele-
ments. It is assumed for this discussion that the normalized-current amplitude distri-
butions do not change appreciably from element to element in the array or with the angle
of incidence. For a given viiue of A4, it is nbserved from both the table and the g aphs
that the margin by which the calculated currents fail to satisfy Eq. (19) is in general,
greatest for the larger load impedances and angles of incidence. The graphs also show in
general that the margin of failure to satisfy Eq. (19) becomes large in the regions where
the normalized current am;'‘:1de is small An exception occurs in the case of 34 = 3.0,
where the margin of failure to satisfy becomes fairly large in the vicinity of 3z = 0 for
the larger load impedances, although the current is large in this region. Since the am-
plitude of the electromagnetic field radiated by a given differeniial length within a cylin-
drical slement varies linearly with the amplitude of the current in the elementary length,
it follows that one should obtain a more realistic error criterion, as far as the scattered
field is concerned, if both the percentage magpitude difference and the angle difference
are multiplied at each point in 2 by the normalized current amplitude as a weightin
factor. Because of this weighting factor, the large margins of failure to satisfy Eq. (19),
which occur in low-current regions of 5z, do not introduce large errors when one calcu-
lates the scattered field of an array with the numerical approximation technique described
in this report.

Needless to say, this method of evaluation of our approximation leaves much tc be
desired. A much more worthwhile evaluation can be made by comparing the calculated
results with either the experimental or theoret.cal results of other research workers.
Unfortunately, such results are not available at present in the antenna literature as far
as the auther has been able to determine from a limited amount of literature search.
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Table Al
The Degree to Which the Calculated Array Currents sail to Satisfy the Set of Integral
Equations of the Model Array at Various Points along the Length of the Elements

Magnitude Difference Angle Difference Magnitude Difference Angle Difference
& (%) (degrees) = (%) (degrees)
Shal5; s =12, Z=1T2+ )0 onms, A = 3.0; s = 2.,3;¢,. = 0degrees;
¢,.. » -40 degrees Z = 600 + jJohms
1 1.4 5.1 1 12.8 2.3
2 11 2.5 2 9.8 2.2
3 2.2 2.5 3 8.3 1.5
4 3.2 2.7 4 7.6 1.2
5 3.2 3.3 ff eeeee---- line of symmetrye---«----
[] 2.2 3.5 A " |
7 1.4 30 BA=3,0; Bs =2.5; #,. =-40 degrees;
8 2.0 2.0 Z = 803 + j0ohms
- - 1 14.0 1.4
BA = 1.5; 8 = 1.2; 9, = 0 degrees,; 2 163 2°0
Z= 172 + j0 ohms 3 16.0 21
1 3.7 3.0 4 18.0 2.1
2 8.0 2.4 5 18.0 2.1
3 5.2 2.7 8 16.1 2.1
4 5.5 2.6 7 15.9 2.2
--------- line of symmetry--<-----< 8 16.6 1.0
BA = 1.5; s = 1.2; $;,. = 0 degrees; £h = 3,0; B2 = 0; ¢, = -40degrees;
Z= 600 + jOohms Z= 800 + j0ohms
1 12.2 2.4 1 11.8 5.9
2 14.3 1.8 2 13.2 7.1
3 14.0 3.0 3 13.9 8.8
4 13.8 2.0 4 13.5 8.7
COCO00000 lire of symmetry - -------- 5 13.7 6.8
BA = 1.5; fu = 1.2; é1,. = -40 degrees g o oG
Z= + jOohms 8 2 7.5
1 14.4 9.4 .
BA ¥ 3.,0; fa = 0; ¢, = Odegrees;
: 59 H Z= 12 + { (653) ohms
4 9.5 3.2 1 14.7 8.3
5 12.0 3.1 2 18.7 8.9
8 13.5 5.2 3 18.7 6.6
7 8.6 5.7 4 18.7 6.8
5 8 1.1 44 | cecew---- line of symmetry---------
BA = 1.5; fs » 1.2 ¢iac u 0 degrees, BA = 3.0; B2 = 0; ¢juc = -40 degrees;
Z =12 -} (43.5) ohms ’ 5272 +') 853) ohme =
1 3.7 3.5 1 12.4 10.4
2 6.6 2.8 2 13.2 13.1
3 1@ 3.1 3 13.0 14.0
4 5.8 3.0 4 13.0 13.0
wesemcmaa linc of symmetry----c-<c.-- : }'Sg }gi
BA = 3.0; fs = 2.5; ¢iac * 0 degrees; Lo i
2= 12 + 10 Ghins ’ 143 25
1 1.8 10.3
2 2.9 1.9
3 2.8 8.6
4 2.8 8.2
--------- line of symmetry«--------
BA = 3,0; fs = 2.5;¢;ac = -40 degrees;
Z =72 + j0 ohms
1 9.8 16
2 10.6 20.9
3 13.6 22.9
4 15.5 19.2
5 12.5 20.0
] 11.8 20.1
7 15.3 20.4
8 5.8 20.0
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Appendix B

THE AMPLITUDE AND PHASE OF THE EFFECTIVE SCATTERING
COEFFICIENT OF THE ELEMENTS OF THE MODEL ARRAY

We list in Table Bl the amplitude G; and the phase », of the effective scattering co-
efficient of the i-th element of the model array, where i runs from one to eight. In these
tabulations DFA means the deviation from the average and DF5 means the deviation from
3, where 5 = Sd in ¢, (8ee Eq. (31) of the text). At the bottom of each table for nor -
mal incidence, we show the rins value of the percent DFA of the G, and the rms value of
the DFA of the 7, both taken over the array. In the case of incidence at -40 degrees, the
rms value of the D¥3 of Ay, is given.

The tables bear out the statement made in the text that the values of ¢; remain ap-
praximately invariant over the array 2ud the y, approximately linear along the array.
Tables B1(k), B1(l), and Bl (n) exhibit the largest deviation from this condition because
they involve the resonances atSi = n/2and near 8A = 3.6. Note that the element reso-
nance ha« little effect when the )sad impedance is 600 ohms as in Tables Bl (qQ) and
B1(r).

Table Bl
The Amplitude and Phase of the Effective Scattering
Coefficient of the Elements of the Model Array

DFA of G, % DFA of 7, By, DS of Ay,
: Gi ®) (degrees) | (degrees) | (degrees) | (degrees)
(a) 2= T2 + jO ohms; 5 = 1.0; ¢;,. = 0degree ’
1 0.0522 3.0 71.0 -0.1 - -
2 0.0503 -1.0 76.5 -0.6 - -
3 0.0495 -3.0 78.0 0.9 - -
4 0.0508 1.0 77.1 0.0 - -
---------------------- lne of symmetry ----cccccacccccccaaa--
5 0.0568 1.0 7.1 0.0 - .-
6 0.0495 -3.0 78.0 0.9 - -
7 0.0503 -1.0 76.5 -0.6 - -
8 0.0522 3.0 71.0 -0.1 - -
rms value - 2.24 - 0.543 - -
(Table B1 continues)
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Table B1 (Continued)

! (%) (degrees) | (degre.s) | /degrees) (degrees)
(b) Z = 72 + jO ohms; 34 = 1.0; ¢,,. = -40 uegrees
1 0.0532 2.1 78.6 -
-76.5 -2.8
2 0.0535 2.7 2.1 -
-74.5 -0.8
3 0.0529 1.5 -72.4 -
-74.9 -1.2
4 0.0523 0.4 -147.3 -
1 -72.9 0.8
5 0.0511 -1.9 -220.2 -
-74.0 -0.3
6 0.9512 -1.7 -294.2 -
-71.9 1.8
1 0.0503 -3.4 -366.1 -
-75.2 -1.5
8 0.0520 -0.2 -441.3 - - -
rms value - 2.00 - - - 1.52
(c) z = 300 + jO ohms; 34 = 1.0; ¢,,. = 0 degree
1 0.0417 2.2 56.6 -0.5 - -
2 0.0404 -1.0 56.8 -0.3 - -
3 0.0403 -1.2 58.1 1.0 - -
4 0.0408 0.0 57.1 0.0 - -
|
---------------------- line of symmetry = =«--ccccccccccccacan-
rms value - 1.35 - 0.579 - -
(d) z = 300 + jO ohms; 84 = 1.0; ¢,,. = -40degrees ]
1 0.0427 | 3.4 57.6 -
3 -76.0 -2.3
. 2 0.0422 2.2 -18.4 -
o -74.1 -0.4
£ 3 0.0417 1.5 -92.5 -
£ 144 -0.7
i 4 0.0411 0.0 -166.9 =
i -72.7 1.¢
: 5 0.0406 -1.2 -239.6 -
] -73.9 -0.2
6 0.0406 -1.2 -313.5 -
& -72.1 1.6
€. 7 0.0404 -1.7 -385.6 =
5.5 -1.8
i 8 0.0411 0.0 -461.1 - - -
' rms value - 1.75 - - - 1.35
; {(Table Bl continues)
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Table Bl (Coatinued)
’ . DFA of G, ¥ DFA of v, by, nEd of Ay,
. f (%) (degrees) | (degrees) | (degrees) (degrees)
(e) z = 600 + jO ohms; i = 1.0; ¢, . = 0 degree
1 0.0294 1.4 45.0 -0.6 - -
2 0.0287 -1.0 45.4 -0.2 - -
3 0.0288 -0.7 46.3 0.7 - -
4 0.0290 0.0 45.0 0.0 - -
---------------------- lire of symmetry ---------ccccccccaaaa-
rms value - 0.929 - 1,472 - -
(f) Z= 600 + jO ohms; 34 = 1.0; ¢, ,,. = -40 degrees
1 0.0299 2.8 45.6 -
-75.3 -1.6
2 0.0296 1.7 -298.7 -
-73.9 -0.2
3 0.0293 0.7 -103.6 -
-74.0 -0.3
4 0.0289 «0.1 -177.6 -
-12.9 0.8
5 0.0287 -1.4 -250.5 -
-73.9 -0.2
6 0.0287 -1.4 -324.4 -
' -72.5 1.2
1 0.0287 -1.4 -396.9 -
-75.1 -1.4
8 0.0290 -0.3 -472.0 - - -
rms value - 1.49 - - - 0.845
(g) Z="1% + j0 ohms; SA = 3.6; ¢,,. = Odegree
1 0.0823 1.4 -63.1 -4.4 - -
2 0.0798 -1.17 -59.5 -0.8 - -
3 0.0807 -0.6 -56.8 1.9 - -
4 0.0820 1.0 -55.5 3.2 - -
---------------------- line of symmetry - ~-----cccccccccnccan-
rms value - 1.25 - 2.91 - -

(Table Bl continues)
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Table B1 (Continued)
; . DFA of 6, Y ' hiA of ¥ Ay, T LFé of A7,
: (%) (degrees) l (degrees) | (degrees) | (degrees)
——
(h) Z = 72 + jO oums; SA = 3.6; ¢,,. = -40 degrees
1 0.0817 -3.7 -71.9 -
-263.6 -2.9
2 0.0873 3.0 -335.5 -
-267.6 3.7
3 0.0867 2.2 -603.1 -
-264.6 -0.4
4 0.0853 0.6 -867.7 -
-265.8 1.0
5 0.0851 0.4 -1133.5 -
-264.5 -0.2
6 0.0824 -2.8 -1398.0 -
-262.7 -3.8
7 0.0826 -2.6 -1660.7 -
-262.9 -4.0
8 0.0871 2.7 -1923.6 - - -
rms value - 2.50 - - - 1.74
(i) Z = 600 + jO ohms; 8k = 3.6; ¢,,. = Odegree
1 0.128 3.4 -38.1 -6.6 - -
2 0.121 -2.3 -32.9 -1.4 - -
3 0.122 -1.5 -28.7 2.8 - -
4 0.124 0.2 -26.4 R.1 - -
---------------------- line of symmetry ---ccccecccccaaacac-an--
rms value - 2.1¢ - 4.45 - -
() z = 600 + jO ohms; 34 = 3.8; ¢,,. = -40 degrees
1 0.132 -5.0 -51.5 -
- -262.3 1.6
2 0.144 3.6 -313.8 -
-268.9 -2.4
3 0.145 4.3 -582.7 -
-264.8 0.6
4 0.141 14 -847.5 -
-266.2 -0.6
5 0.141 1.4 -1113.7 -
-265.0 0.7
6 0.135 -2.9 -1378.7 -
-261.4 .5
7 0.132 -5.0 -1640.1 -
-261.2 2.3
8 0.142 2.2 -1901.3 - - -
rms value - L 3.51 - - - 2.77

(Table Bl continues)
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Table B1 (Continued)
; . DFA of G, 7 DFA of y, Ay, Did of Ay,
! (%) (degrees) | (degrees) | idegrees) (degrecs)
(k) z = 72 + j {30034 - (740/54)lohms; Sk = 3.6; ¢, . = 0 degree
1 0.390 10.2 -2.9 -13.9 - -
2 0.340 -4.1 6.5 -4.5 - -
3 0.336 -5.2 17.4 6.4 - -
4 0.352 -0.7 23.0 12.0 - -
---------------------- line of symmetry ccc-ccccncccccccccc---
rms volue - 6.01 - 10,22 - -
(1) z="12 + j[300B3A - (740/84)]ohms; 3k = 3.6; ¢, . = -40degrees
1 0.480 -8.9 -33.5 -
-258.4 -6.8
2 0.567 7.6 -291.1 -
-273.2 8.0
3 0.587 11.4 -565.1 -
-264.9 -0.3
4 0.554 5.1 -830.0 -
-267.1 1.9
5 0.558 5.9 -1097.1 -
-266.4 1.2
6 0.505 -4.2 -1363.5 -
-258.4 -6.8
7 0.458 -13.1 -1621.9 -
-254.8 -10.4
8 0.508 -3.6 -1876.7 - - -
rms value - 8.13 - - - 6.21
(m) z = 72 + jO ohms; 8h = 7,/2; ¢, . = 0 degree
1 0.278 -17.0 -7.1 -4.3 - -
2 0.313 4.7 -0.5 2.3 - -
3 0.300 0.3 -2.2 0.6 - -
4 0.305 2.0 -1.6 1.2 - -
---------------------- line of symmetry -----ccccecccccccccca--
rms value - 4.34 - 2.53 - -

(Table Bl continues)
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Table B1 (Continued)
. | oEA of o, v, DFA of Ay, DF5 of Ay,
1 G, [} [} [}
‘ l (%) (degrees) | (degrees) | (degrees) (degrees)
(n) Z = 72 + jO ohms; 4 = =/2; ¢,,. = -40degrees
1 N.289 16.5 -21.2 -
-110.7 5.0
2 0.233 -6.0 -131.9 -
-109.5 6.2
3 0.240 -3.2 -241.4 -
-115.5 0.2
4 0.258 4.0 -356.9 -
-118.8 3.1
5 0.265 6.8 -475.7 -
-118.7 =3.0
6 0.255 2.8 -594 .4 -
-115.3 0.4
7 0.233 -6.0 -709.7 -
-104.8 10.9
8 0.213 -14.1 -214.5 - - -
rms value - 8.83 - - - 5.24
(0) z = 300 + jO ohms; 3k = =/2; ¢, .. = Odegree
1 0.105 -2.0 =3.0 -1.95 - -
2 0.109 2.0 0.3 1.35 - -
3 0.107 0.0 -1.0 0.05 - -
4 0.108 1.0 -0.5 0.55 - -
---------------------- line of symmetry «--c-vcccccarcccccac. -
rms value - 1.50 - 1.22 -1 -
(p) Z= 300 + jO ohms; Sk = 7/2; ¢, . = -40 degrees
1 0.109 8.4 -8.6 -
-114.7 1.0
2 0.0986 -1.6 -123.3 -
-112.5 3.2
3 0.0974 -3.6 -235.8 -
-114.4 1.3
4 0.101 0.4 -350.2 -
-117.0 -1.3
5 0.104 3.4 -467.2 -
-1i8.0 -2.3
6 0.104 3.4 -585.2 -
-116.5 -0.8
7 0.0985 -2.6 -701.7 -
-1114 4.3
8 0.0932 -7.6 -813.1 - - -
rms value - 4.66 - - - 2.36

(Table Bl continues)




40 O. D. SLEDGE
Table Bl (Continued)
; . DFA of G, 7. DFA of ¥, By, DF3 of Ay,
¢ (%) (degrees) | (degrees) | (degrees) | (degrees)
(a) Z = 600 + j0 ohms; 34 = n/2; ¢ . = Odegree
1 0.0575 -1.3 -1.71 -1.13 - -
2 0.0567 0.8 0.24 0.82 - -
3 0.0583 0.1 -0.60 -0.02 - -
4 0.0585 0.4 -0.26 0.32 - -
---------------------- line of symmetry - cc---cccccccenncanaa.
rms value - 0.791 - 0.716 - -
(r) z = 600 + jO ohms; 84 = n/2; ¢, . = -40 degrees
1 0.0589 4.65 -4.8 -
-115.4 0.3
2 0.0558 -0.85 -120.2 -
-113.9 1.8
3 0.0551 -2.1 -234.1 -
-114.6 1.1
4 0.0561 0.32 -348.7 -
-116.3 -0.6
5 0.0574 1.99 -465.0 -
-117.2 1.5
(] 0.0574 1.99 -582.2 -
-116.4 -0.7
7 0.0558 -0.85 -698.6 -
-113.4 2.3
8 0.0538 ﬁu -812.0 - - -
rms value - - 2.82 - - - 1.36
%
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