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ABSTRACT 

The scattering properties of a linear array of parallel, center-loaded, 
cylindrical elements have been investigated with the ultimate objective of ob- 
tain: ig information about the character of the array from its scattered field. 
To this end, a set of integral equations for the currents induced in the linear 
array illuminated by an incident plane wave were derived from the equations 
of Maxwell and the boundary conditions at the surface of the array. Using a 
zero-order approximation to the form of the axial distribution of the induced 
currents in the array, a pair of complex current coofficients were calculated 
numerically for each element of the array using a technique incorporating 
the set of integral equations. The approximation technique gives reasonable 
accuracy in the calculation of the //-plane, far-zone, scattered field from the 
induced currents, provided the electrical half-length of the elements of the 
array is less than 5^/4 radians. 

The scattered field of an eight-element array was calculated for various 
conditions of impedance loading and illumination of the array. 

A significant result of this investigation was the discovery that the 
//-plane scattered field of a linear array of cylindrical elements illuminated 
by a plane electromagnetic wave consists of two factors: a reflection factor 
and an interference factor. The interference factor is simply the complex 
array factor of the array when excited with a u: iform amplitude and an 
element-to-elemeit phase progression of 2-(</ M sin /ini radians, where 
(</ ) is the interelement spacing of the array in wavelengths and ;.r c is the 
angle of incidence of the illumination. The reflection factor turns out co be 
the //-plane rcattered field in the reflected direction where the interference 
factor becor.ies unity. 

From the interference factor we determined the positions of tlv grating 
lobes and the minima of the //-plane scattering pattern of the array for vari- 
ous plane-wave illuminations. 

It was found that the plane cf polarization of an array, the number of ele- 
ments, the interelement spacing, and, possibly, the resonant frequency of the 
elements can be determined from the //-plane scattering characteristics of 
the passive linear array of cylindrical elements. 

PROBLEM STATUS 

This is a final report on one aspect of the problem; work on the problem 
is continuing. 

AUTHORIZATION 

NRL Problem RG2-<4 
Project ARPA Order 820 
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THE SCATTERING OF A PLANE EI ECTROMAGNETIC WAVE 
BY A LINEAR ARRAY OF CENTER-LOADED CYLINDERS 

INTRODUCTION 

The majority of the early theoretical investigations of electromagnetic scattering 
involved the scatteri'g of a plane electromagnetic wave by a highly conducting, simple 
geometric object, such as a sphere or cylinder.  Extensive references to this early work 
can be fou;     <\ King and Wu (1).  In recent years a number of papers have appeared in 
the literature which treated certain simple antennas as scattering devices; in particular, 
the cylindrical antenna has received considerable attention by Chen and Liepa (2) and 
others.  Chen studied the effect of central loading on the induced current on a thin cylin- 
der illuminated by a plane wave at normal sneiderue.  By suitable variation of the load 
impedance, Garbacz (3) determined i artain antenna parameter.,, such as impedance and 
power gain, from measurements of the scattering cross section of a single-port antenna 
for fixed frequency, polarization, and antenna orientation. 

The literature contains extensive treatment of the antenna as a transmitter, that is, 
as a transducer of current and voltage at a terminal pair to electric and magnetic fields 
radiating into space.  The inverse problem of the receiving antenna, that is, a transducer 
of ipcideut electric and magnetic fields into current and voltage at a terminal pair, has 
not received a siaälar amount of attention.  This condition of ihe literature stems from 
two facts: first, the mathematical problem involved makes the analytical study of the 
receiving antenna very difficult except in special instances, and, second, the quantity 
almost invariably of interest in the receiving rase is the power delivered by an incident 
field tc the load connected across the antenna terminals. This quantity can be obtained 
most conveniently from the transmitting properties of the antenna by reciprocity consid- 
erations, without a detailed knowledge of the complicated field and current distributions 
over the surface of the antenna. If, however, we are interested in the antenna af a scat- 
terer, we are concerned not only with the power delivered to the load but also with the 
distribution of the power density which the antenna scatters into surrounding spac ;.  To 
find the scattered electromagnetic field, we need detailed information about the currents 
induced on the conducting surfaces of the antenna which radiate the scattered field. 

Very little work on the scattering of an electromagnetic wave by an antenna array 
has appeared in the literature. To improve our knowledge and understanding of array- 
scattering behavior, we decided to make a theoretical investigation of the scattering of a 
plane electromagnetic wave by a simple linear array of A parallel, cylindrical, center- 
loaded elements. 

The approach used to solve the steady-state scattering problem is first to find an 
approximation to the complex currents induced in the elements of the array by the inci- 
de.it illumination.  Once the current distribution, in amplitude and phase, along each ele- 
ment of the array is determined, the far-zone scattered field radiated by these currents 
is easily calculated from the superposition of the radiation fields of the individual ele- 
ments of the array. 
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THEORETICAL SKETCH 

Theoretical Model 

Consider a plane electromagnetic wave of wavelength v with its electric vector po- 
larized in the 2 direction incident in the // plane (.r-y plane) of the linear ar^ay of s 
center-loaded cylinders of infinite conductivity positioned in space as shown in Fig. 1. 
The electromagnetic wave is incident at an angle /;„, to the normal to the plane of the 
array.  The central impedances zi art lumped, or without physical dimensions.  The 
cylindrical elements of the array are identical, with the exception ci the load impedances, 
each with a half-length A and a radius a.   For the sake of simplicity, we assume the ele- 
ments of the array to be very thin cylinders with half-lengths larger than 400 times their 
radius.  Also, it is assumed that 2-na A is less; than 0.0100.  In the theoretical model cho- 
sen, only the induced cunents that flow along the length of cylinders contribute signifi- 
cantly to the far-zone scattered field; consequently, the induced currents maintain a re- 
tarded vector potential possessing solely a » component.  From the symmetry of the 
array and the uniformity of the phase and amplitude of the incident electric field along 
the entire length of each cylinder, U follows that the induced currents and their respec- 
tive vector potentials possess even symmetry in 2. 

We use a complex notation with the time-dependence factor txfij^t) of the incident 
wave suppressed in the treatment of steady-state scattering.  The rationalized mks- 
couloumb system of units is used throughout the report. All alternating (oscillating) 
quantities are complex unless otherwise indicated. 

Derivation of the System of Integral Equations of the Array Currents 

Our ultimate purpose is to calculate the scattered field of the array; to do this cal- 
culation we first find an approximation to the current induced in each element of the 

P(r.»,* ) 

?«.! K-l 
-*1 

<$*$) 

Fig. 1  - The theoretical model 
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array by the Incident illumination.  The induced currents must satisfy a system of linear 
integral equations, which we shall derive in the following page?. 

The incident electric field tangential to the surface of the m-th cylinder may be writ- 
ten in the form 

C ■■ £« "p(/"'»). (1) 

where fe'0 and 9m are, respectively, the real amplitude and phase of the incident electric 
field, each of which is constant aiong the cylinder.  The induced tangential electric field 
at the surface of ths m-th cylinder, maintained by the induced currents and charges on all 
of the cylinders of tne array, is given by 

where Ami is the tangential component of the retarded vector potential on the surface of 
the m-th cylinder due to all the array currents and <t>,u is the scalar potential on the sur- 
face of the m-th element due to the charges on all of the cylindrical surfaces of the array. 
In the steady state, 4>ra2 can be eliminated by means of the Lorentz condition (4): 

—;—       '-vW'^ 

---iß***,*. (3) 

where s- 2V/K is the phase constart of space,    is the radian frequency of the illumina- 
tion, e0 is the permittivity of space, and ^0 is the permeability of space. 

Combining Eqs. (2) and (3), we have 

f       •*)     -    -/(:.   ß  ^—   * r'A^i*)]  ■ W rf^2 ~      J 

The electric field t"^ across the very small gap of width 2' at the center of the m-th cyl- 
inder is related to the voltage drop across the center load as follows: 

I> /<•     z  /m(0) . (5) mi "m ' m 

where Zm is the complex central load impedance and /m<o) is the current at the center of 
the m-th element of the array. For our dimensionless load, " must approach zero in the 
limit, and we obtain from Eq. (5) 

C   - ZmVO)   •,^- (6) 

where HB) is the Dirac delta function. 

With a perfectly conducting cylinder, the total tangential electric field vanishes at 
the surface of the cylinder, excluding th» infinitesimal region of the central load.  This 
means 
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♦ ff. .0 (7) 

along the cylinder, and in the central gap 

e*. ' **,< +''™ ' 2n/m(0)5(*). (8) 

From Eqs. (1), (4), and (8) w^ obtain i>e following differential equation for Anuie) valid 
ovei the entire length of the m-th cylinder: 

*ß*Am,{»)   -- Hß'fu,)  lZmlm{0)H*)   -K0"p(;tV], (9) 

The general solution of the inhomogenous differential equation (9) consists of the 
complementary function and a particular integral.  The complementary function is given 
by 

K«<*)]     r  (-/^HC,   co. fit  ♦  r2  sin  ßt), (10) 

where (?= i/(M0e0) 'Ms the velocity of propagation of electromagnetic waves in free 
space and c, and cJ are constants of Integration.  The constant ci is zero, since /i,uU) 
possesses even symmetry in i in our theoretical model.  A particular integral can be 
written as follows: 

[^»•t*>]    =(-;■/£) l(V/3)(l-co./3i) exp(;0m) •(Zm/m(0)/2) siBÄ],      '<"   0<z<h 
P 

and 

(lia) 

[.4^(^)1    =(-}/€) ÜEJßHl - *o» ß») exf{}ö) *[rmlm{0)/2) »in ß*\,      for-A<a<0.       (lib) 
'P 

Equations (11) satisfy the differential equation (9) for -A < ? < A.   In order for Eqs. (11) 
to satisfy Eq. (9) at the infinitesimal gap in the center of the m-th cylinder, »t is neces- 
sary Uat dA^di possess a jump at a = o of a magnitude iß2zmlm{0) w which in turn as- 
sures that diAnu dt2 contains a delva function of the correct magnitude to balance the im- 
pulsive term appearing in the right-hand member of Eq. (9). In shorthand form, the 
gene-al solution of the differential equation (9) is given by: 

'W*'   ; <->'£) U1, co«/5i f (e0//3)(l -co./J?) exp(;Sm) -(Zm/m(0)   2) «i n  iU | ], for  -A <« <A.   (12) 

Setting » = tA in Eq. (12) yields the following expression for C,: 

C, = •ec^[r;e/2) [Ami(h)*Am!(-h)\ - ( £„ /3)(l - o. W <■«?(/''„) MZm/m(0)   2} »in /3A} .      (13) 

Since A^z) is an even function, the expression for c, becomes 

r, = »re ßkUzA^h) -(£„ ^m -CO./3A) «-xpty^) ♦ [zffl/m(o) 2) »in /u} . (14) 

From Eqs. (14) and (12) we obtain the following equatici: 

A^t) -A^h)   -.  (-//£) «ec  ,'A {lZn/m(0)   2)   »in/3(A-|«|) 

►   (/(T/l^A) -(A.-,, /1)   <-«F!.;"m>)   (c«»  ri  -  co»  /?A)]   . (15) 

f^T 
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From its definition, the » component of the retarded vector potential just outside the 
surface of the m-th cylinder at a (list? ce * from the center of the cylinder is given ap- 
prcqcimately by the expression 

,V        -A 

AmAi ifu ißg') Kmi(*,*') di' (16) 

where 

A.,,, (*.?') 

cxp {-iß[(i- i')2  t   {.m- i)2 d2 

[^ - i1,2   <   (m- n2*/-!1 2 

D,  ,., 
and 

expj-ißi [a- *') ; .-■ -) 
for   m-i 

\{! ~ z' )2   t   a1 

in which </ is the center-to-center spacing of the cylindrical elements of the array. 

Equation (16) is an accurate representation of the vector potential, except at points 
very near the ends or the center load of the element. By substituting Eq. (16) into Eq. 
(15) and letting m assume all integral values irom 1 to A, we obtain the following system 
of linear integral equations foi the array of V cer er-loaded cylinders: 

N     -h 

El      ', < '* '> [A',,,, ( ^ ')  - Arai (A. . ') ] -^ '   =   -j   ~  -ec   ,/, { (2„/^(0)   2) «in pi/. -  Ui) 

*   [/t'.-l^fA)   -  (£■„ ß)   «•xp(;,m) '  (•<'* fU  -  i"s ■•A)|.     m- 1,2,3 \. 

where /?„   (M0 ' „'' 2 : i20n is the characteristic resistance of space. 

(17) 

Approximation Technique 

The solution of the system of integral equations of the array to obtain the induced 
currents in the cylindrical elements is indeed a formidable task and will not be attempted 
here.  Instead, we shall assume the induceo currents can be represented by the zero- 
order approximation 

/, (,-;)   = (.1.   (.«s n is  • /,)   t 'rt    sin .( A -   U!) , y\%) 

where '1, and fl, are undetermined complex current coefficients.  Note that Eq. (18) sat- 
isfies the end conditions that /, vanish at ?.    >.h, independe-.i of finite a, and Ä,.   King(5) 
suggests that Eq. (18) is an adequate approximation for use in the calculation of the far- 
zone radiation field of an array of thin cylinders of electrical half-length ■/. less the v   ». 
The scattered or reradiated field is relatively insensitive to small errors in the current 
distribution on the array.  The current coefficients d, and »V can be determined from the 
sei of integral equations and, thus, take into account the mutual coupling or interaction 
between the elements of the array. 

!  " 
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Using Eq. (18) in Eq. (17), the system of integral equations of the array becomes 

= -/{Z^/eOjrCIJI -co./3A) + Sm.in^A]F,(a)  +/(£0/30fl)( cos 5m + / »'s Öm)f0(»), «-1,2.3.   ...N. 
(19) 

where 

rcu) = co» /3» - co» ßh, 

f,(2)   =   sin ßih- i«|) , 

«mi«»»   -«mi<A>   =   ^i«^   ^»' 

Lmj(a)  -Lmi{h)  --  Vmi(z)   F,(.)( 

I «„;(«)     = (CO.   /3«'    -    COB   ßh)   Kmi(l    .')   '^' 

lmi(»)   --   \      Bin/3(A- U'|) Kmi{2,z') d*' . 
J-h 

We desire to determine the complex constants fl. and Bj from Eq. (19) in such a 
manner as to cause our zero-order approximation to the induced currents to hold fairly 
well along the entire length of the elements of the array.  In what "ollows we employ a 
technique similar to that of Chen and Liepa (2) in the determination of the current coeffi- 
cients (]< and :«(. 

For a given value of ,M, the real part of the dominant term (< = m) of the sums in Eq. 
(19) involving ',/£((«) and v'mAz) varies with z in a manner like FÖU) and Fs{z), respec- 
tively, except near the center and the ends of the elements. Thus, to achieve our objec- 
tive, it seems reasonable to divide Eq. (19) into the following two sets of equations: 

lMUi[0'c' '"»^-^(A)]    -IMm.(A>["   i^o'30^Uos(?m  */ «'"'V-      "•=   1-2 V. 
(20) 

and 

£ Mmi«»,> '"• ^ :: -i^m 60) [(!„,( 1   -  co» /</<)  t !Äm »in ,?Al m  :   1.2    N. (21) 

where »„ and t, are reference values in 2.  Equations (20) and (21) are formed by re- 
spectively equating the coefficients of Fe(z) and F,(t) on opposite sideF of Eq. (19).   For 
a given angle of incidence and value of TA, the current coefficients u, and rt, are deter- 
mined from Eqs. (20) and (21) considered as a single set of simultaneous linear equations. 
For best accuracy in the determination of the constants d, and 8,, we choose ic. and ?„ 
such that the current distribution functions Fc{ ic) and Fs{«,) remain as large as possible 
over the range of interest in  ■/.  The reference values tc and «., are chosen as follows: 
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zc       *„       0 Jor   0   <    Ji   < w 2 . 

^P       0  und   ^<        A   -   ».   t .       for   n  2   <  »Vt   <   ^r. . 

When the elements of the array are an odd multiple of half-wavea in length, the ex- 
pression for the element currents takes the simple forn. 

it ißt)    y, co» ßg. (22) 

The complex constants o, are determined from Eq. (19), which becomes, under this con- 
dition, 

,v 
-   ]r iljll^i*)       (-//m 60) l}m sinikT 2) * HK0  30/3)(co»  <n ♦ / sin  t'J,     «    1,2 N,   (23) 

where * is the odd number of half-wavelengths in the element length. Note that Eqs. (20) 
and (21) and the preceding discussion about the reference values of i do not apply to this 
special case. 

In the absence of experimental or theoretical information from independent sources 
on the currents induced in an array of linear elements illuminated by a plane wave, it 
was necessary to test the approximation technique used in this report to calculate the 
induced currents in the array.  The array currents found by this technique do not satisfy 
the set of integral equations of the array; however, the approximate currents can be 
checked in a semiquantitative manner. To achieve this end, we obtain a measure of how 
much the approximate currents fail to satisfy the set of integral equations (19) of the ar- 
ray. The method of evaluation of the approximate teclmique and the results obtained for 
several values of the electrical half-length of the elements are presented in Appendix A. 
From the work of Appendix A, it was concluded that the approximate technique used in 
arriving at the induced currents gives reasonable accuracy in the calculation of the scat- 
tered field of the currents, provided the ekectrical half-length of the array elements does 
not exceed s« ». 

Also, it is found from numerous calculations that the approximate solution to the 
array-scattering problem presented in this report satisfies the reciprocity theorem of 
electromagnetic fields to a high degree of accuracy. 

The Far-Zone Scattered Field of the Array 

We shall now proceed to the development of an expression for the far-zone scattered 
field of the array.  At the observation point /' of Fig. 1, which is at a distance from the 
array larger than 1000 times the largest dimensior of the array, th» 2 component of the 
far-zone retarded vector potential of the current in the i -th element of the array is gi ven 
approximately by the expression 

//„ expl-jßr) 
4"r 

f* 
/, (/k')  eip !j !U' ro» tf 4 y/ „in ff nine/)) 1 d*' . (24) 

The coordinates r, o, and </> locate the observation point, and 2' and y,'    (i - i)rf are the 
array coordinates.  By virtue of the linearity of our physical system, it follows that the 
vector potential of the array at P is simply the vector sum of vector potentials at the ob- 
servation point of the individual element currents of the array.  Therefore, tht vector 
potential of the array at P is given by 
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M0 "P W/3') V A 

/ _   exp [;(i   - 1 )/W si n''sin i/;]    1       /^ (/J2') exp ( j'/fl« ' co» (') rfi ' . (25) 

In the direction (t% 0), the far-zone scattered electric field of the array is related to 
the vector potential by the evoression 

£*   : jß&A,   si A   0. (26) 

Putting Eq. (25) in Eq. (28), and using the fa^t that the element current is an even function 
of ^'. we obtain the final form of the exprei^on for the steady- !tate scattered electric 
field, namely, 

fTg - j   —  »In  0 txf(-jßr)   2^     I       'i '0' cn8 (" co 

• ■ 1 y 0 
7) du exp [;'(t - \)ßd s'\n 6 a'\a (p] ,       (27) 

where «= /5^,. 

In the calculation of the scattered field, it is» convenient to make the re<"ilts inde- 
pendent of the distance from the center of the first element of the array to the point of 
observation. To achieve this condition, we multiply Eq. (27) by the reciprocal of the 
quantity (60/>) exp( -jßr) to obtain 

[ffg]     =  ; »in 0  £ 
-•'0 

) cos (u cos ö) du e x p [;' (i - 1) /i/ s i n t' s i n ^l (28) 

which is defined as the normalized scattered electric field. 

The effective scattering coefficient of the t -th element of the array is defined as 

Gi   exp(; / 7;)    =1 /( (u)    CO» 
•'0 

( L cos (?) du , (29) 

where c{ and r^ are, respectively, the real amplitude and phase of the scattering coeffi- 
cient. Introducing Gi and y^, in Eq. (28), we obtain 

(£j)     =  ;' »in (9  ^ <?;   «xp [;(i ~ l\ßd ain  6 *\n 4> + jyi 
(30) 

It should be understood that both Gi and >< are functions of ßh, (d/h), the load impedances, 
and the angle of incidence of the illumination. 

Under most conditions of //-plane scattering, it is found from our calculations (Ap- 
pendix B) Usst the values of Gi change only a small percentage across the array, and the 
values of ^ change approximately linearly across the array.  That is, >, can be expressed 
in the form 

yi   =  y,     '. ■ - DA/ »in  <#>(, (31) 

where ^.RC is the uigle of Incidence of the illumination and /, is the phase of the sea    r- 
ing coefficiert. of the first element for non-normal incident illumination or the average 
phase of the scattering coefficients of the elements of the array in the case of normal in- 
cidence. If in Eq. (30) we replace r., by «„,, its average value taken over the array, and 
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/, by the expression given by Eq. (31), Eq. (30) becomes a finite geometric scries H'hich 
can be summed to yield the following approximate formula for the normalized, h plane, 
scattered field: 

,   *> fsin   (Vv 2)1 f    / 
t  (\'- !)>/■ 2 (32) 

where Srfd 

^rom extensive calculation» we found that Eq. (32) agrees well in both amplitude and 
phase with Eq. (30), except near the nulls of the function «in (\ ' 2) »in (^ 2) and regions 
in ßh v'h-ire the array exhibits resonance phenomena.  Over the area covered by this in- 
vestigation, we find that Eq. (32) is quite helpful in the exploration of the general charac- 
ter of the scattered field.  Equation (32) is particularly useful and fairly accurate in the 
determination of the angular positions of the major or grating lobes and the minima of 
the scattered radiation pattern of the array. 

The Positions of the Grating Lobes and the Minima of the //-Plane 
Scattering Pattern of the Array 

It is easily demonstrated from Eq. (32), for an array with fix3d physical dimensions 
and load impedances, illuminated by a plane wave of a given wavelength and angle of in- 
cidence, that the major, or grating, lobes of the //-plane scat tering pattern are centered 
approximately at the values of t which satisfy the relation 

or 

»in   4   -   t(2n-T ßd)   -   «in   £■ (33a) 

where n = 0,1,2,3,... is the orier of the grating lobe.  According to Eq. (33a), the zero- 
order grating lobe is located at the specular observation angle ; = -<tioc, independent of 
the electrical interelement spacing   >/.   The back-scattered grating lobes are centered 
at 4 = 0ini  by definition.  Setting t = :ini in Eq. (33a), we obtain the condition for the oc- 
currence of a back-scattered grating lobe, namely, 

tn"     rf. (33b) 

Table 1 shows the angles of incidence where back-scattered grating lobes occur for vari- 
ous interelement spacings in wavelengths. 

Table 1 
The Angles of Incidence which Yield Back-Scattert d Grating Lobes 

Anglts of Incidence (degrees) 
n 

■ 0 1 2 3 4 5 6 

1/2 0 90 — _ _ _ . 
1.0 0 30 90 m . _ * 
3/2 0 19.5 41.8 90 _ . _ 
2.0 0 14.5 30 48.6 90 - . 
5/2 0 11.5 23.6 36.9 53.1 90 . 

: 3.0 0 9.6 10.5 30.0 41.8 56.4 90 

.   . 
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Also, from Eq. (32) it is observed that the position of the minima of the I»- '•lane 
scattering pattern are appraaimately determined by the condition 

W/2 ikv.     k= 1,2:3, 

or 

■ ■■ « =  ti2kv/Sßd) -mi. 4>imc 

provided (<l>/2) is not zero or an integral multiple of n. 

(34) 

THE RESULTS OF A THEORETICAL STUDY OF THE 
SCATTERED FIELD OF AN ARRAY 

The Model Used in the Investigation 

The model used in tb« investigation is shown in Fig. 1. The model involves an eight- 
element linear array wita uniform load impedances and an interelement spacing equal to 
the element length. The physical dimensions of ihe array are considered fixed, while the 
electrical half-length of the elements ßk changes linearly with the frequency of the inci- 
dent electromagnetic wave. The phase of the incident field at the a-th element of the ar- 
ray is given by 

'■-l)/8rf si. *. (35) 

The k.ero-phase reference in all the work to follow is the phase of the incident field at 
the first element of the array. la our scattering calculations, the ratio of the radius to 
the length of the elements is fixed at 0.001, and we keep £s* = 30 to determine the 
strength of the incident illumination. The numerical investigation of the scattered £ field 
is limited in this report to the ff plane of the array. 

The Results of the Investigation of Array Scattering 

A Typical Set of Array Current Distributions — As an example of the currents in- 
duced in the array, we present Fig. 2, which shows the distribution of the in-phase and 
quadrature components of the axial currents induced in the various elements of the model 
array of full-wave dipoles with central nonreactive load impedances of 72 duns by a 
plane wave incident at -20 degrees. It is evident that both amplitude and phase distribu- 
tion information is available from these graphs. 

An Example of a Polar Scattering Pattern of the Array — Figure 3 shows a polar di- 
agram of the amplitude of the scattered electric field   e^  of an array of eight half-wave 
elements with a nonreactivt load impedance of 72 ohms when illuminated by a plane elec- 
tromagnetic wave incident at -40 degrees. Note the major scattering lobes in the re- 
flected direction of 40 degrees and in the forward scattering direction. Also, notice the 
symmetry of the pattern about the line of the element centers. In reality, the scattered 
energy in the forward direction is slightly less than in the reflected direction, because 
the induced surface current density on the shadowed half of the cylinders is slightly less 
than on the illuminated half of the cylinders.* 

*Uaing the claaaical formulas (see King and Wu (1), Eq. 13.3, page 39) for the surface 
current density induced on an infinitely long cylinder of infinite conductivity by a plane 
electromagnetic wave, we find (for ßa = 0.01) that the surface current density at the 
center of the shadowed half of the cylinder is reduced in amplitude by 6% ar.d shifted in 
phase by 11 degrees relative to the current density at a point diametrically opposite in 
the center of the illuminated half of the cylinder. 
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Fig. 3 - A //-plane polar scattering diagram of the model array 

The Distribution of the Normalized. Amplitndf of the Scattered Electric Fteld in ^2 — 
In Fig. 4 we present a universal graph of The distribution of the amplitude of the normal- 
ized scattered field of the eight-element array under study.  The figure shows the re- 
flected lobe centered at 0/2 = 0 &.& the first-order grating lobes centered at ^2 -1". The 
solid curve represents 'he field distribution given by the approximate Eq. (32), while the 
indicated points are derived from the more accurate formula of Eq. (30).  The agreement 
is quite good considering that the conditions for the points were chosen deliberately to 
show the greatest possible disagreement between the two formulas. Near the element 
resonance at ßh ■■ 1,57 and at ßh = 3.64, where the reactance of the load impedance ap- 
parently resonates the antenna elements, Eq. (32) is not as good an approximation to Eq. 
(30) as elsewhere in ßh (see Appendix B). 

The effect on the scattering pattern of the array resulting from a change in the load 
impedance is portrayed in Fig. 5. The change in the nonreactive load impedance from 72 
ohms to 600 ohms has only a small effect.  The points calculated from Eq. (30) again fall 
closely on the solid curve representing Eq. (32). 

It is evident fiom our study that the normalized solid curve of Fig. 4 holds essentially 
independent of the load impedance, the angle of incidence, and the frequency of the illumi- 
lation. Supplemental to the information of Figs. 4 a i 5, the actual amplitude of the scat- 
tered electric field, obtained from Eq. (30), in the reflected, or specular, direction of 
observation (>/> = 0) under various conditions is presented in Table 2. 
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Table 2 
£/ at the Center of the Reflected Lobe of 
the Scattering Pattern of the Model Array 

Load Impedance 
z (ohms) 

ft'/ for Various V alues of ■i;iic 

0° -10ü -20° -30ü -40° 

Bh -77/4 

72 + jO 0.201 0.201 0.202 0.203 0.205 
150+ j0 0.196 0.197 0.197 0.198 0.200 
300+ j0 0.182 0.182 0.182 0.183 0.184 
600 +JO 0.147 0.147 0.147 0.148 0.148 

72 + \ [3^0/3A - (740//3A)] 0.116 0.117 0.117 0.117 0.118 

ß A = 77/2 

72 + jO 2.390 2.36 2.28 2.15 1.98 
150+10 1.480 1.47 1.44 1.39 1.32 
300+J0 0.859 0.855 0.845 0.829 0.805 
600+j0 0.466 0.465 0.462 0.457 0.450 

72 + j [300/3A - (740//3A)l 2.390 2.36 2.28 2.15 1.98 

ß \ - 377/4 

72+iO 0.955 0.927 0.799 0.895 0.933 
150+ i0 0.925 0.899 0.767 0.830 0.861 
300+JO 0.875 0.853 0.720 0.736 0.755 
600 + 10 0.811 0.790 0.675 0.636 0.642 

72 + j [300/3A - (740/^A)] 0.347 0.345 0.334 0.358 0.364 

ßh = v 

72 + jO 0.564 0.723 0.782 0.796 0.785 
1                                 150+ i0 0.568 0.727 0.791 0.806 0.794 

300 +JO 0.607 0.784 0.866 0.887 0.870 
600+JO 0.749 1.010 1.15 1.19 1.16 

72 + J [300/3A - (740//3A)] 0.455 0.472 0.539 0.563 0.543 

ß A = 577/4 

72 + J0 0.657 0.370 0.612 0.607 0.583 
150 +JO 0.720 0.614 0.670 0.665 0.628 
300 +JO 0.877 0.728 0.808 0.802 0.747 
600+JO 1.08 0.875 0.985 0.976 0.902 

1% + J f300/3A - (740//3A)] 1.73 1.31 1.55 1.53 1.37 

The Angular Distribution of the In-Phase and the Phase-Quadrature Components of 
the Scattered Field—In Fig. 6 we present some examples of the angular distribution of 
the in-phase and the phase-quadrature components of the //-plane scattered electric field 
in the half-space on the illuminated side of the linear array. These graphs are obtained 
from Eq. (30). Vote the near symmetry of the field components about the reflected d rec- 
tion of observation for normal incidence and the iack of j ymmetry exhibited for an angle 
of incidence of -40 degrees.  The effect of changing the load impedance is seen, on com- 
paring Figs. 6a and 6c, to result in merely a change in the level of the scattered field 
without appreciable change in the angular distribution of its in-phase and phase- 
quadrature components. 



NRL REPORT 6681 15 

-80 -60 -40        -20 0 20 40 
ANüi-E OF   OBSERVATION  (DEGREES) 

60 80 

(a) Normal incidence; load impedance = 72 + jO ohms;   '/i    v 2 

Fig. 6 - The angular distribution of the in-phase and 
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Fig. 6 - The angular distribution of the in-phase and 
the phase-quadrature components of the //-plane 
scattered electric field (Continued) 
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Fig. 6 - The angular distribution of the in-phase and 
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The Scattered Field Disiributton In ßh — In this section we present graphs which 
show how the amplitude and phase of the //-plane scattered electric field of the model 
array vary with the frequency of the illumination or the electrical half-length of the ele- 
ments of the array. The direction of observation of the far-zone scattered field is cho- 
sen as either the reflected direction or the back-scattered direction. All the results 
presented in this section are calculated from Eq. (30). 

In Fig. 7a we show the characteristics of the steady-state scattered Meld observed 
in the reflected direction for normal incidence and a nonreactive load impedance of 72 
ohms. Note the element resonance at ßh = 1.58 manifested by the maximum of the 
scattered-field strength. In Fig. 7b we present the flh characteristics of the reflected 
field for normal incidence and a certain type of reactive load impedance. Again we ob- 
tain a maximum of scattered field at ßh ■ 1.57, where the elements resonate. In addition, 
a large resonance peak occurs at ßh s 3,64, where evidently the reactance of the load 
resonates or tunes out the reactance of the impedance of the elements.. 

In Figs. 7a and 7b and in the figures to follow we find that the scattered field be- 
comes quite weak for ßh smaller than 0.40. 

In Figs. 7c through 7f we show the field scattered in the reflected direction by the 
model array plotted versus the electrical half-length of the elements of the array. In 
Fig. 7c the central load impedance of the elements is a pure resistance of 600 ohms, and 
the illumination is incident normal to the plane of the array. The large load resistance 
appears to have obliterated the element resonance peak, leaving a slowly increasing am- 
plitude of the scattered field with ßh, except for a small dip at /3A = 3.2.  Figure 7e is 
similar to Fig. 7c, as might be expected, since only the angle of incidence of the illumi- 
nation differs in the two figures. In Fig. 7d we present the field scattered by the model 
array of eight elements with nonreactive load impedances of 72 ohms when the illumina- 
tion is incident at -40 degrees. The scattering characteristics exhibited resemble those 
for the same loading but with normal incidence, as shown in Fig. 7a. The element reso- 
nance appearing at /% = 1.57 is the salient faature of Fig. 7d. 

(a) Normal incidence; load impedance = 72 + jO ohms 

Fig. 7 - The '/-plan'.; scattered electric field 
observed in the reflected direction as a function 
of the electrical half-length of the elements of 
the array (Continued) 
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Figure 71 showe the amplitude and phase of the field scattered in the reflected di- 
rection by the model ar»*ay loaded with the indicated reactive impedances when the illu- 
minating plane wave is incident en the array at -40 degrees. These characteristics 
closely resemble those shown in Fig. 7b over the interval 0.4 to 2.5 in ßh.  Intuitively, 
the similarity seems reasonable, because the two sets of curves give the scattering 
properties of the same array but at different angles of incidence of the illumination. 
However, in the range extending from 2.5 to 4.4 neither the amplitude nor the phase 
characteristic of Fig. 7f resembles closely the corresponding curve in Fig. 7b.  An ex- 
planation of this divergence is unavailable.  The fairly sharp peak at ßh = 1.57 is, as 
usual, associated with the fundamental resonance of the elements of the array. The very 
high and narrow peak at ßh = 3.54 comes about by virtue of the reactance of the load tun- 
ing out the reactance of the impedance of the elements of the array at the frequency cor- 
responding to this value of ßh. 

We present in Fig. 8 the amplitude and phase of the electric field back-scattered 
by the model array with various load impedances at the element centers when illuminalsd 
by a plane electromagnetic wave incident at -40 degrees. In all three sets of back- 
scattering characteristics we have a large peak in the vicini*; of ßh = 2.44, where a fixst- 
crder grating lobe occurs according to Eq. (33b).  The results shown in the figure exhibit 
interference b-.Vveen the scattered-field components radiated ^y the individual elements 
of the array. The interference manifests itself by the appearance of the periodic minima 
in the amplitude of the field and the concurrent rather rapid advances in the phase of the 
scattered field.  The interference effects naturally are absent in Fig. 7 because in the 
rv.iected direction the component scattered fields of * he elements of the array are nearly 
in time phase with each othe;'.  In fact, the general nature of the ßh characteristics of the 
/»-plane scattered field observed in any direction can be explained best with the aid of 
Eq. (32).  From Eq. (32) it ic seen that the scattered field for a given load impeduice and 
angle of incidence consists of two factors:  the reflection factor \Gav exp [/(y, + n/z) ] and 
the interference factor [»in (AW2)/;v »in (^2)] exp[;(\'-i)0'2], where 0 =/3</(8in*+sin^inc). 
In the reflected direction, the scattered field becomes the reflection factor only, since in 
this direction the interference factor becomes unity. In direction^ other than the re- 
flected direction, the effect of the interference factor appears along with the effect of the 
reflection factor. The magnitude of the interference factor is shown in Fig. 4 as the solid 
curve plotted versus <p/2.   As stated earlier, Eq. (32) does not give accurate results near 
the nulls of the interference factor, as indicated by the presence of minima instead of 
nulls in Fig. 8.  However, the positions of the minima and of the grating lobes in Fig. 8 
almost coincide with the locations of the nulls and grating lobes, respectively, of the in- 
terference factor. The amplitude curves of Figs. 8a and 8b resemble the general shape 
of the magnitude of the interference factor (see Fig. 4), except for some asymmetry in- 
troduced by the appropriate reflection factors shown in Figs. 7d and 7e.   In Fig. 8c 
the element load impedances are reactive, and the amplitude characteristic does not re- 
semble the magnitude of the interference factor.  Figure 7f, portraying the correspond- 
ing reflection factor, accounts for the distortion.  The high narro* peak at ßh = 3.55 in 
Fig. 8c corresponds to a similar peak in Fig. 71, whei e the reactance of the load tunes 
out the reactance of the element of the array. 

SOME PARAMETERS OF A PLANE-POLARIZED LINEAR ARRAY OF 
CYLINDRICAL ELEMENTS DEDUCED I.   >M ITS SCATTERING 
PROPERTIED 

Up to this point v/e have made a study of the //-plane scattered field of a linear array 
of cylindrical elements illuminated by a plane wave incident in the // plane ol the array. 
In other words, we have been concerned with the problem of determining the scattered 
field given the character of the array and its illumination.  Now, let us consider the in- 
verse problem of the determination of some of the parameters of an unknown plane- 
polarized linear array of cylindrical elements from the character of its // plane scattered 
field and the known character of its incident Ulumination. 
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Fig. 8 - The //-plane back-scattered electric 
field as a function of the electrical half-length 
of the elements of the array (Continued) 
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Let us assume that the plane of the array is known; then one can determine the plane 
of polarization and, hence, the // plane of the array by the following well-known method. 
Illuminate the array with a linearly polarized plane wave, incident on the array at some 
convenient fixed angle of about 60 degrees or more. Rotate the plane of polarization of 
the incident wave and vary the frequency of the illumination until a sizable back-scattered 
field of the same polarization as the incident field is obtained.  Now, with the frequency 
fixed, maximize the amplitude of the back-scattered field by further rotation-tuning of 
the plane of polarizatic i of the incident wave.  At this point, the plane of polarization of 
the array is approximately the same as that of the illumination. 

Now that the // plane of the array, a plane orthogonal to the plane of polarization of 
the array, is determined, it is possible to deduce further information about the nature of 
the scattering array from the knowledge and information obtained from the study of the 
scattering properties of a linear array presented in the preceding sections of this report. 
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The further Information about the array deouclble from its scattering properties consists 
of the number of elements in the array, the interelement spacing, the //-plane radiation 
pattern, when used as a uniformly excited transmitting array, and, possibly, the funda- 
mental resonant frequency of the elements of the array. 

In the following determinations we assume an illumination-array setup like that 
shown in Fig. 1. The scattered field is examined only in the H plane of the array 

As one continuously increases the frequency of the illumination of the array with a 
fixed angle of incidence of -40 degrees and ZM for the load impedance of each element, 
the amplitude of the back-scattered field resembles that of Fig. 8a. It follows simply 
from Eqs. (33a) and (34) that the number of elements in the array is one plus the number 
of minima lying between successive grating lobes in the back-scattered fieid.   From 
Figs. 8a and 8b, one observes thai the scattering array has eight elements. 

To determine the interelement spacing d, we make observations on the amplitude of 
the back-scattered field at the f&r-zone observation points P, and P2 of Fig. 9.   From 
point P, we illuminate the array from a direction 4>i degrees from a reference direction 
with a plane electromagnetic wave and observe the amplitude of the back-scattered field 
at P, as the frequency of the illumination is scanned through several grating lobes spaced 
uniformly in frequency by an amount A/, .   At point Pi we repeat the experiment with <P2 
equal to <P1 plus 90 degrees and find the grating lobes separated by a frequency increment 
A/2.   It is easy to show from Eq. (33b) in conjunction with Fig. 9 that the element spacing 
d must satisfy the following transcendental relation: 

sin-'K? 2A/.rf]   +  sin-'lC/^A/ d]   =  v/2 . (36) 

For good accuracy the positions of the observation points P, and P2 are chosen so that 
A/, and A/2 do not differ by more than 50% of the smaller of the two frequency incre- 
ments. The element spacing can be found from Eq. (36) by a well-known graphical 
technique. 

With the number of elements and their spacing determined, it is a simple matter, 
from the theory of a» rays, to find the //-plane radiation pattern of the linear array when 
used as a uniformly excited transmitting ~tiay at a given frequency. 

When one measures the amplitude of the field scattered by the array in the reflected 
direction as a function of the frequency of the illumination, more than one resonance 

LINEAR ARRAY 

(REF) 

Fig.  9 - Arrangement for the determination 
of the element spacing of the array 
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makes an appearance, because tiie load impedance of the elements usually exhibits some 
reactance.   Figures 7b and 7f show examples-of this situation.  To determine the reso- 
nant frequency of the elements from these reflection ^ characteristics it becomes nec- 
essary to identify the elenent-resonance peak.  Apparently from the figures cited above, 
the size of the element-reb^nance peak (at ßh -- n/i) changes, much less percentagewise 
than the other resonant peaks, associated with the reactance of the load, as the angle of 
incidence of the illumination undergoes a change from 0 to -40 degrees.  With this crite- 
rion, we may determine the resonant frequency of the elements of the array, which is 
also the design frequency of the array. Whether this criterion for ti e selection of the 
element-resonance peak is reliable for various kinds of reactive loads can only be an- 
swered by further investigation. 

CONCLUSIONS 

A significant result of this investigation is the discovery that the «-plane scattered 
field of a linear array of cylindrical elements illuminated by a plane electromagnetic 
wave consists, to the first approximation, of two factors:  a reflection factor and an in- 
terference factor. The interference factor, defined as 

«•-  (\V'/2) 
 —f    e»p[/(\-1)^/2] , 
■ in  (■/' 2) 

where 4, - ßd(a\n <t> * • in ^nc), is of the same form as the array factor of a uniform lin- 
ear array 01 .V elements excited with uniform amplitude and element-to-element phase 
progression.  In the reflected direction, where 4> - -0inc and ^ vanishes, the scattered 
field becomes equal to the reflection factor, since the interference factor becomes unity. 
More physically speaking, the components of the scattered field contributed by the indi- 
vidual elements of the array are in time phase in the reflected direction.  The reflection 
factor is calculated from an approximation technique incorporating the set of integral 
equations characterizing the array and the incident illumination. It follows that the re- 
flection factor is a function of the electrical half-length of the elements, the electrical 
spacing of the elements, the load impedance, and the angle of incidence of the illumina- 
tion. With the aid of the interference factor of the approximate formula lor the scattered 
field, it is possible to discern much about the nature of the //-plane scattered field, for 
example, the positions of the grating lobes and the minima of the scattering pattern for 
various plane-wave illuminations. 

From the scattering characteristics of a passive linear array of cylindrical ele- 
ments, one can de<. uce its plane of polarization, the number of elements in the array, the 
interelement spacing of the array, the //-plane radiation pattern of the array, when used 
as a uniformly excited transmitting array, and, possibly, the resonant frequency of the 
elements of the array. 

No doubt the technique described in this report for the calcuh lion o* the scattered 
field of a linear array can be extended to the study of the scattering properties of planar 
arrays of cylindrical elements. 
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Appendix A 

THE EVALUATION OF THE APPROXIMATION TECHNIQUE OF 
CALCULATING THE CURRENTS INDUCED IN AN ARRAY 

BY AN INCIDENT PLANE WAVE 

To test the induced currents calculated using Eqs. (20) and (2l) for a given angle of 
incidence, array loading, and value of ßh, we substitute the current coefficients (ii and *, 
into the set of integral equations of the array, Eq. (19), and compare the complex values 
of the right and left members of e?ch equation of the set for various values of ß*.   In 
Table Al, we present some examples of the comparison of the right and left members of 
the set of equations (19).  The percentage magnitude difference is defined as 100 times 
the ratio of the absolute value of the difference between the magnitudes of the right and 
left members to the average of the two magnitudes.  The symbol m designates the equa- 

1 tion associated with the m-th element of the array. 

Graphs of the percentage magnitude difference and the absolute value of the angle 
difference, both averaged over the array, as well as the normalized currant amplitude of 
the fourth element are shown in Fig. Al plotted versus the position along the array ele- 
ments. It is assumed for this discussion that the normslized-current amplitude distri- 
butions do not change appreciably from element to element in the array or with the angle 
of incidence.  For a given Viuue of ßh, it is observed from both the table and the giaphs 
that the margin by which the calculated currents fail to satisfy Eq. (19) is in general, 
greatest for the larger load impedances and angles of incidence.  The graphs also show in 
general that the margin of failure to satisfy Eq. (19) becomes large in the regions where 
the normalized current aic;v' ide is small   An exception occurs in the case of ßh - 3. o, 
where the margin of failure to satisfy becomes fairly large in the vicinity of /3» = o for 
the larger load impedances, although the current is large in this region. Since the am- 
plitude of the electromagnetic field radiated by a given differential length within a cylin- 

| drical element vares linearly with the amplitude of the current in the elementary length, 
it follows that one should obtain a more realistic error criterion, as far as the scattered 
field is concerned, if both the percentage magnitude difference and the angle difference 
are multiplied at each point in ßz by the normalized current amplitude as a weighting 
factor.  Because of this weighting factor, the large margins of failure to satisfy Eq. (19), 
which occur in low-current regions of ßt, do not introduce large errors when one calcu- 
lates the scattered field of an array with the numerical approximation technique described 

I in this report. 

Needless to say, this method of evaluation of our approximation leaves much to be 
desired. A much more worthwhile evaluation can be made by comparing the calculated 
results with either the experimental or theoretical results of other research workers. 
Unfortunately, such results are not available at present in the antenna literature as far 
as the author has been able to determine from a limited amount of literature search. 

27 
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Table Al 
The Degree to Which the Calculated Array Currents /all to Satisfy the Set of Integral 
Equations of the Model Array at Various Points along the Length of the Elements 

* 
> 

Magnitude Difference 
(%) 

Angle Difference    { 
(degrees)          j M 

Magnitude Difference Angle Difference 
(degrees)           | 

ßk m l.S; B> m 1.2; Z • 72 + JO ohms; 
<t>iw. » -40 degrees 

ßk - 3.0; ßt • 2.5; *   , > 0 degrees;                1 
Z« 600 + JOohms                               | 

1 

2.0 

5.1 
2.5 
2.5 
2.7 
3.3 
3.5 
3.0 
2.0               1 

1 
2 
3 
4 

12.8 
9.6 
8.3 
7.6 

2.3 
2.2 
1.5 
1.2 

ßk • 3.0; ßt » 2.5;   *Uc ■ -40 degrees; 
z> 600+JOohms                               | 

1   8 

14.0 
16.3 
16.0 
16.0 
16.0 
16.1 
15.9 
16.6 

1.4 
2.0 
2.1 
2.1 
21 

2.1 
2.2 
1.0 

ßK • 1.5; ßt « 1.2; *U( - 0 degrees; 
z . 72 + JO ohms 

1 
2 
3 

4 

3.7 
e.o 
5.5 

3.0 
2.4 
2.7 
2.6 

ßk - 1.5; ß» » 1.2; *,.<: - 0 degrees; 
z> 600 +JO ohms 

ßk - 3.0; ßt • 0; *,BC = -40degrees;                1 
Z'600 +JOohms 

1 
i    2 

3 

4 

12.2 
14.3 
14.0 
13.8 

2.4 
1.8 
3.0 
2.0 

1   1 11.8 
13.2 
13.9 
13.5 
13.7 
13.5 
M 
..2 

5.9               [ 
7.1 
6.8 
6.7 
6.8 
6.9 
6.7 
7.5 

1        - - — - -                  uuv \n mj AUUWM j 

{             ßk . 1.5; ß» m 1.2; «„c « -40 degrees. 
1                                Z"600 + J0ohm8 

14.4 
8.0 
7.7 
O.S 

12.0 
13.5 
8.6 
7.7 

]                ßk » b.0; ßt '0; (h,,. • Odegrees; 
Z - 72 + j (653) onms 

1 

3 

4 

14.7                                    8.3 
16.7                                     8.9 
16.7                                     6.6 
16.7                  1                 6.6 

1                                                                             U1IV    \Jk    BJIMAUVVAJ                                                                                                             [ 

1               ßk m 1.5; ß, m 1.2: *i,c " 0 degrees; 
1                            Z . 72 - 1 (43.5) ohms 

{               ßk » 3.0; ßt m 0; *i.c « -40degrees; 
|                             Z « 72 + J (653) ohms                              | 

1    1 
2 

3 
4 

3.7 
6.6 
■:..a 
5.» 

1                                     14«     «.•   «•«.«•A**« 

3.5 
2.8 
3.1 
3.0 

12.4 
13.2 
13.0 
13.0 
13 .U 
l'i.7 
13.1 
14.5 

10.4 
13.1 
14.0 
13.0 
13.3 
13.1 
13.2 
12.5 

f               /8* - 3.0; ä « 2,5; *i,r ' 0 degrees; 
1                               z ■ 72 + JO ohms 

1 
2 
3 

4 

1.8 
2.9 

1:1 
K»     «*     «.».MA*». 

10.3 
7.9« 
6.6 
6.2 

|              ßk « 3.0; £• < 2.5;4>i.c • -40 degrees; 
j                                 Z . 72 + JO ohms 

9.8 
10.6 
13.6 
15.5 
12.5 
11.8 
15.3 
5.8 

16 
20.9 
22.0 
19.2 
20.0 
20.1 
20.4 
20.0 

-   * 
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(a) ßh =   1.5;   Z =  72  + jO ohms 
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(b)/3A = 1.5; Z= 72 - J43.5 ohms 

0 degree 
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(c)/3A = 1.5; Z= 600 + jOohms;     I0* 

S0.4| 

*o.zj 

Fig. Al - The magnitude difference and the absolute 
value of the angle difference, both averaged over the 
array, shown as functions of position along the length 
of the elements of the model array (Continued) 
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'I 
UJ 

61" 

|     (ö) ßh =   1.5; Z  =  600  + jOohms; 
u *inc = -40 degrees 

(e) ßh = 3,0; Z =  72 + jO ohms 

— MAGNITUDE DIFFERENCE 
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a    * 
u     3 

*i8i 4     s u     * 

«I« I s  5 

2.0 24 23 S.2 

Fig. Al - The magnitude difference and the absolute 
value of the angle difference, both averaged over the 
array, shown as functions of position along the length 
of the elements of the model array (Continued) 
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(g) ßk = 3.0; Z = 72 + j653 ohms 

(h) ßh = 3.6: Z=7       jO ohms; ^^ = 0 degree 

1*^ 

lacf- 
E 
B 

.^ 

ntaxKfßj.yo 

f—ANGLE 
\   OlFFCRENCt 

«MGWTUOC 
OFFEHEMCE 

U -^-, ^  ' tr 
(i) /3Ä = 3.6; Z = 72 + jO ohms; ^illc - -40degrees 

Fig. Al - The magnitude difference and the absolute 
value of the angle difference, both averaged over the 
arrayt shown as functions of position along the length 
of the elements of the model array (Continued) 
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(k) ßh = 3.6; Z = 72 + j874 ohms; «in    = Odegree 

Fig. Al - The magnitude difference and the absolute 
value of the angl*- difference, both averaged over the 
array, shown as lunctions c.i position along the length 
of the elements of the model array (Continued) 
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2« J? 

(1) ßh = 2.6; Z = 600 + jO ohms; ^jnc = Odegree 

I 
| I I 
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0.4 1.2 I« 2.0 
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_I I I i        I za 

(m) ßh = 3.6; Z - 600 + jO ohms; ;in<,  = -40degrees 

Fig. Al - The magnitude difference and tht absolute 
value of the angle difference, both averaged -«••jr the 
array, shown as functions of position along the .ength 
of the elements of the .nodel array 



Appendix B 

THE AMPLITUDE AND PHASE OF THE EFFECTIVE SCATTERING 
COEFFICIENT OF THE ELEMENTS OF THE MODEL ARRAY 

We. list in Table Bl tho amplitude c^ and the phase ^ of the effective scattering co- 
efficient of the i-th element of the model array, where » runs from one to eight. In these 
tabulations DFA means the deviation from the average and DFS means the deviation from 
S, where i - ßd ai» <i>imc (see Eq. (31) of the text). At the bottom of each table for nor - 
mal incidence, we show the rms value of the percent DFA of the CJ and the rms value of 
the DFA of the ^ both taken ovor the array. In the case of incidence at -40 degrees, the 
rms value of the DFS o( A^ j^ given. 

The tables bear out the statement made in the text that the values of (^ remain ap- 
proximately invariant over the array snd the yj approximately linear along the array» 
Tables Bl (k), Bl (1), and Bl (n) exhibit the largest deviation from this condltioo because 
they involve the resonances atßh - n/2and near ßk = 3.6. Note that the element reso- 
nance ha«-, little ettect when the load Impedance is 600 ohms as in Tables Bl (q) and 
Bl(r). 

Table Bl 
The Amplitude and Phase of the Effective Scattering 

Coefficient of the Elements of the Model Array 

1              i c* 
DFA Of C. 

(%) (degrees) 
DFA Of ?; 
(degrees) (degrees) 

DF8 of A^   1 
(degrees) 

(a ) Ä = 72 + JO ohms; ßk - 1.0; *jl,c « Odegree 

1       i 0.0522 3.0 77.0 -0.1 — — 

2 0.0503 -1.0 76.5 -0.6 — — 

l          3 0.0495 -3.0 78.0 0.9 — — 

4 0.0508 1.0 77.1 0.0 — — 

line of synu» ntra  ------------  .._...._ gljy  
1 

5 0.05C8 1.0 77.1 0.0 — -- 

6 0.0495 -3.0 78.0 0.9 — — 

7 0.0503 -1.0 76.5 -0.6 — —        1 
8 0.0522 3.0 77.0 -0.1 — — 

rms value 2.24 — 0.543 — — 

(Table Bl continues) 

34 
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Table Dl (Continued) 

Gi 
UFA of C, >i »A Of >< A>i Wi Of Ay^ 

(%) (degrees) (degre.s) (degrees) (degrees) 

(b)> ' = 72 + jO ohms; ßfi = 1.0; ^inc = -40 cegrees 

1 0.0532 2.1 78.6 - 
-76.5 -2.8 

2 0.0535 2.7 2.1 — 
-74.5 -0.8 

3 0.0529 1.5 -72.4 — 
-74.9 -1.2 

4 0.0523 0.4 -147.3 — 
-72.9 0.8 

5 0.0511 -1.9 -220.2 — 
-74.0 -0.3 

6 0.0512 -1.7 -294.2 — 
-71.9 1.8 

7 0.0503 -3.4 -366.1 — 
-75.2 -1.5 

8 0.0520 -0.2 -441.3 — — — 

rms value - 2.00 — — — 1.52 

(c) ^ = 300 + jO ohms; ßh = 1.0; *inc = 0 degree 

1 0.0417 2.2 56.6 -0.5 " — 

2 0.0404 -1.0 56.8 -0.3 — — 

3 0.0403 -1.2 58.1 1.0 — — 

4 0.0408 0.0 57.1 

line of symm 

0.0 - — 

-l»J _ 

rms value — 1.35 — 0.579 — — 

(d); ' = 300 + jO ohms; ßh = 1.0; ^inc = -40degrees 

1 0.0427 3.4 57.6 — 
-76.0 -2.3 

2 0.0422 2.2 -18.4 — 
-74.1 -0.4 

3 0.0417 1.5 -92.5 — 
-74.4 -0.7 

4 0.0411 0.0 -166.9 — 
-72.7 1.0 

5 0.0406 -1.2 -239.6 — 
-73.9 -0.2 

6 0.0406 -1.2 -313.5 — 
-72.1 1.6 

7 0.0404 -1.7 -385.6 — 
'5.5 -1.8 

8 0.0411 0.0 -461.1 — — — 

rms value — 1.75 - - - 1.35 

(Table Bl continues) 

» - 
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Table Bl (Continued) 

DFA 01 Cj >i DFA Of y. A?, DK5 Of Ay, 
ö< 

(%) (degrees) (degrees) (degrees) (degrees) 

(e) z = 600 + jO ohms; ßh = 1.0; 4>iac = 0 degree 

1 0.0294 1.4 45.0 -0.6      ! - — 

2 0.0287 -1.0 45.4 -0.2 — — 

3 0.0288 -0.7 46.3 0.7 — — 

4 0.0290 0.0 

  

45.0 

line of symmi 

0.0 mm — 

-"j 

rms value — 0.929 — u.472 — ~ 

(t)z = 600 + jO ohms; ßh = 1.0; 4>iac = -40 degrees 

1 0.0299 2.8 45.6 — 
-75.3 -1.6 

2 0.0296 1.7 -29.7 — 
-73.9 -0,2 

1          3 0.0293 0.7 -103.6 — 
-74.0 -0.3 

4 0.0289 -0.7 -177.6 — 

-72.9 0.8 
5 0.0287 -1.4 -250.5 

-73.9 -0.2 
6 0.0287 -1.4 -324.4 — 

-7^.5 1,2 

7 0.0287 -1.4 -396.9 — 
-75.1 -1.4 

8 0.0290 -0.3 -472,0 — — — 

rms value - 1.49 — — - 0.845 

is ) z = 72 + jO ohms; ßh = 3.6; *jnc = 0degree 

1         1 0.0823 1.4 -63.1 -4.4 — — 

2 0.0798 -1.7 -59.5 -0.8 — — 

1          3 0.0807 -0.6 -56.8 1.9 - — 

i          ^ 0.0820 1.0 -55.5 3.2 — — 

line of symm siiy --------------- 

rms value — 1.25 — 2.91 — — 

(Table Bl continues) 
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Table Bl (Continued) 

I 

I Gi 
DFA of Gi 

(%) (degrees) 
Dr'A of >< 
(degrees) 

Ay, 
(degrees) 

CFS Of A>< 

(degrees) 

(h) z = 72 + jO ohms; ßh = 3.6; 0iIlc = -40 degrees 

1 

2 

3 

4 

5 

6 

7 

8 

0.0817 

0.0873 

0.0867 

0.0853 

0.0851 

0.0824 

0.0826 

0.0871 

-3.7 

3.0 

2.2 

0.6 

0.4 

-2.8 

-2.6 

2.7 

-71.9 

-335.5 

-603.1 

-867.7 

-1133.5 

-1398.0 

-1660.7 

-1923.6 

-263.6 

-267.6 

-264.6 

-265.8 

-264.5 

-262.7 

-262.9 

-2.9 

3.7 

-0.4 

1.0 

-0.2 

-3.8 

-4.0 

rms value - 2.50 — - — 1.74 

(i) z = 600 + jO ohms; ßh = 3.6; sfrinc = Odegree 

1 

2 

3 

4 

0.128 

0.121 

0.122 

0.124 

3.4 

-2.3 

-1.5 

0.2 

-38.1 

-32.9 

-28.7 

-26.4 

line of symm« 

-6.6 

-1.4 

2.8 

s.l 

- 

— 

1       " "'                 -     | 

rms value 2.19 - 4.45 — 

Ü) z = 600 + jO ohms; ßh = 3.6; ^inc = -40 degrees 

1 

2 

3 

4 

5 

6 

7 

8 

0.132 

0.144 

0.145 

0.141 

0.141 

0.135 

0.132 

0.142 

-5.0 

3.6 

4.3 

1.4 

1.4 

-2.9 

-5.0 

2.2 

-51.5 

-313.8 

-582.7 

-847.5 

-1113.7 

-1378.7 

-1640.1 

-1901.3 

— 

-262.3 

-268.9 

-264.8 

-266.2 

-265.0 

-261.4 

-261.2 

1.6 

-2.4 

0.6 

-0.6 

0.7 

;'.5 

2.3 

rms value — 3.51 - 
■              ■!                        ■                          ■                                                -J 

- 2.77 
(Table Bl continues) 

• 
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Table Bl (Continued) 

« Gi 
WA Of 6, 

(%) (degrees) 
DFA Of > 
(degrees) 

Ax, 
vdegrees) 

Wh of A/.    j 
(degrecf) 

(k) z = 72 + j [300/3A - (740/pA)]ohms; ßh = 3,6; <pinQ = 0 degree                      1 

1 

2 

3 

4 

0.390 

0.340 

0.336 

0.352 

10.C 

-4.1 

-5.2 

-0.7 

-2.9 

6.5 

17.4 

23.0 

-13.9 

-4.5 

6.4 

12.0 

1 

rms vlue — 6.01 - 10.22 
1 

(1) z = 72 + jtauOySA - (740//3A)]ühms; ih = 3.6; 0inc = -40degree8 

1         1 

2 

1         3 

4 

5 

6 

7 

8 

0.480 

0.567 

0.587 

0.554 

0.558 

0.505 

0.458 

0.508 

-8.9 

7.6 

11.4 

5.1 

5.9 

-4.2 

-13.1 

-3.6 

-33.5 

-291.1 

-565.1 

-830.0 

-1097.1 

-1363.5 

-1621.9 

-1876.7 

— 

-258.4 

-273.2 

-264.9 

-267.1 

-266.4 

-258.4 

-254.8 

-6.8 

8.0 

-0.3 

1.9 

1.2 

-6.8 

-10.4 

rms value — 8.13 — — — 6.21 

(m) z = 72 + jO ohms; ßh = 77 2; *ir#c = 0 degree 

1 

2 

3 

4 

0.278 

0.313 

0.300 

C.305 

-7.0 

4.7 

0.3 

2.0 

-7.1 

-0.5 

■ 2.2 

-1.6 

line of symtm 

-4.3 

2.3 

0.6 

1.2 

- 

! 1 
rms value - 4.34 — 2.53 - ~ 

(Table Bl continues) 
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Table Bl (Continued) 

n DFA of Cj >i DFA Of yi A>i DKS Of Ay, 
(degrees) ''i (%) (degrees) (degrees) (degrees) 

(n)- J = 72 + jO ohms; ßh - IT/2 ; *in<, = -40 degrees 

1 0.289 16.5 -21.2 — 
-110.7 5.0 

2 0.233 -6.0 -131.9 — 
-109.5 6.2 

3 0.240 -3.2 -241.4 — 
-115.5 0.2 

4 0.258 4.0 -356.9 - 
-118.8 -3.1 

5 0.265 6.8 -475.7 — 
-118.7 -3.0 

6 0.255 2.8 -594.4 — 
-115.3 0.4 

7 0.233 -6.0 -709.7 — 
-104.8 10.9 

8 0.213 -14.1 -814.5 — — — 

rms value — 8.83 — — — 5.24 

(o) z = 300 + jO ohms; ßh - * /2',4>inc -0degree 

1 0.105 -2.0 -3.0 -1.95 — — 

2 0.109 2.0 0.3 1.35 — — 

3 0.107 0.0 -1.0 0.05 — — 

4 0.108 1.0 -0.5 0.55 — — 

rms value — 1.50 — X.22    , — 

(P)2 = 300 + jO ohms; ßh = n/: i;<t>inc = -40 degrees 

1 0.109 8.4 -8.6 — 
-114.7 1.0 

2 0.0986 -1.6 -123.3 — 
-112.5 3.2 

3 0.0974 -3.6 -235.8 — 
-114.4 1.3 

4 0.101 0.4 -350.2 — 
-117.0 -1.3 

5 0.104 3.4 -467.2 — 
-118.0 -2.3 

6 0.104 3.4 -585.2 — 
-116.5 -0.8 

7 0.0985 -2.6 -701.7 — 
-111.4 4.3 

8 0.0932 -7.6 -813.1 — — — 

rms value - 4.66 — — — 2.36 

(Table Bl continues) 
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Table Bl (Continued) 

DFA Of 6', >, W\ Of v. Av- »'« Of Ay, 6. (%) (degrees) (degrees) (degrees) (degrees) 

(q) z = 600 + JO ohms; ßh - " 2; 0inr = Odegree 

1 0.0575 -1.3 -1.71 -1.13 — — 

2 0.0567 0.8 0.24 0.82 — — 

3 0.0583 0.1 -0.60 -0.02 - — 

4 0.0585 0.4 -0.26 0.32 — —         1 
 ..__ i ine of symmc ury  

rms value — 0.791 — 0.716 — — 

(r)z = 600 + jO ohms; ßh = ^ 2 ;*inr = -40 degrees 

1         1 
0.0589 4.65 -4.8 _ 

-115.4 0.3         1 
2 0.0558 -0.85 -120.2 — 

-113.9 1.8 

1          3 0.0551 -2.1 -234.1 — 
-114.6 1.1 

1          4 0.0561 0.32 -348.7 — 
-116.3 -0.6 

5 0.0574 1.99 -465.0 — 
-117.2 1.5 

6 0.0574 1.99 -582.2 — 
-116.4 -0.7         | 

7 0.0558 -0.85 -698.6 — 
-113.4 2.3 

8 0.0538 -4.4. -812.0 — — — 

rms value — f2.62 — — - 1.36 

%L 
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II.   AaiTHACT 

The scattering properties of a linear array of parallel, center-loaded, cylindri 
cal elements have been investigated with the ultimate objective of obtaining informa- 
tion about the character of the array from its scattered field.  To this end, a set of 
integral equations for the currents induced in the linear array illuminated by an in- 
cident plane wave were derived from the equations of Maxwell and the boundary 
conditions at the surface of the array.  Using a zero-order approximation to the 
form of the axial distribution of the induced currents in the array, a pair of complex 
current coefficients were calculated numerically for each element of the array using 
a technique incorporating the set of integral equations.  The approximation technique 
gives reasonable accuracy in the calculation of the //-plane, far-zone, scattered field 
from the induced currents, provided the electrical half-length of the elements of the 
array is less than 5V4 radians. 

The scattered field of an eight-element array was calculated for various condi- 
tions of impedance loading and illumination of the array. 

A significant result of this investigation was the discovery that the //-plane 
scattered field of a linear array of cylindrical elements illuminated by a plane 
electromagnetic wave consists of two factors:  a reflection factor and an 
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interference factor.  The interference factor is simply the complex array factor of 
the array when excited with a uniform amplitude and an element-to-element phase 
progression of 2rrUA) sin ^inc radians, where (d/K) is the intereiement spacing of 
the array in wavelengths, and ^inc is the angle of incidence of the illumination.  The 
reflection factor turns out to be the //-plane scattered field in the reflected direc- 
tion where the interference factor becomes unity. 

From the interference factor we determined the positions of the grating lobes 
and the minima of the //-plane scattering pattern of the array for various plane- 
wave illuminations. 

It was found that the plane of polarization of an array, the number of elements, 
the intereiement spacing, and, possibly, the resonant frequency of the elements can 
be determined from the //-plane scattering characteristics of the passive linear 
array of cylindrical elements. 
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