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ABSTRACT 

The multi-period open pit mine production scheduling problem 
is formulated as a large scale linear programming problem 
using the block concept.  A solution procedure is developed 
through decomposition and partitioning of the subproblem into 
elementary profit routing problems for which an algorithm is 
presented.  Many of the traditional mine planning concepts 
are discussed and suggestions for improvement through use of 
the techniques developed in this thesis are given. 

In the development of the solution procedure, those 
constraints which govern the mining system are considered as 
the master problem. The constraints which dictate the 
sequence of extraction are used as the subproblem. The 
properties of the single period subproblem and its dual are 
discussed, and the dual problem is shown to be equivalent to 
a bipartite maximum flow problem for which an algorithm is 
given.  The multi-period subproblem algorithm is developed by 
partitioning by stages and using the properties of the single 
period subproblcn. 

This treatment allows optimization of the complete mining- 
concentrating-refinlng system over the entire planning 
horizon and permits the system to dictate how and when to 
process a block of material. 
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CHAPTER 1 

INTRODUCTION 

1.1 MINE PLANNING 

The mining of mineral deposits In such a manner that at depletion the 

maximum possible profit Is realized has been an unsolved problem since man's 

discovery of the usable elements burled beneath the earth's surface.  In 

the days when high grade reserves were adequate to supply our needs the 

attention given this problem was negligible. The philosophy at that time 

was to extract the material In an orderly fashion, keeping In the high grade 

until depletion. Right or wrong, profits were high, so no question of 

optimum profitability confronted the operators.  Since World War II and the 

depletion of the most accessible of the world's high grade reserves, the 

mining Industry has been forced into working with lower grade material. 

The sequence of extraction has now become more Important; and, In many cases, 

has become a problem whose solution Is vital to the existence of a 

profitable operation. 

The planning of an extraction sequence over a particular time horizon, 

typically the life of the mineral deposit. Is commonly referred to as 

mine planning.    Mine planning is usually divided into three categories; 

long ränget short range>  and operational  [8]. 

A long range plan  defines the ultimate economic limit, or optimum 

pit limit. I.e., defines the size and shape of an open pit at the end of 

its life [8], [10], [16], [20]. The long range plan serves as an aid In 

the evaluation of the economic potential of a mineral deposit and delineates 

the economic ore body.  This analysis is essential In the planning for 

surface facilities such as treatment plants, waste dump, tailing ponds and 



other element:» complementary to the luinlng operation.    In some Instances 

the long range plan also serves as a guide for short range plans■ 

Short range plans are a sequence of depiction schedules leading froto 

the initial condition of the deposit  to the ultimate pit limit  [8],   [1]. 

These plans arc developed subject to physical, geological, operating, legal, 

and other policy constraints.    Each plan usually varies in duration from 

one to ten years and provides information necessary for forecasting future 

production and capital expenditures. 

Operational or actual production planning is concerned with the present 

operating state within the confines of the most recent short range plan. 

It is the operator's guide for orderly mining to gain the objectives of the 

present as well as the short range plans under the constraints of present 

conditions and policies.    The planning period is usually a year with stages 

of months, weeks,  or days. 

The division of mine planning into the categories described above 

closely follows the stages of evaluation, data refinement and development 

of an ore deposit.    For example, in the initial stages of an evaluation, 

only sufficient data is obtained from drilling, geological studies and 

other sources, to determine the economic feasibility of the deposit and 

hence whether or not it seems profitable to continue to Invest time and 

money in a particular deposit.    If such an investment is deemed profitable, 

more data is obtained through additional expenditures.    With this additional 

information the long range plans are refined, and the evaluation extends 

to the short  range planning stage. 

Operational planning is the final stage of planning and is based on 

the best possible Information available;  that is, Information from exploration, 

development and production drilling,  extensive geological studies,  production 



records, economic studies and forecasts and other sources. 

Since the characteristics of the material to be rn'.ned arc based 

. primarily on a sampling program and also since the mining process typically 

extends over a considerable number of years, there exists a great deal of 

uncertainty in the physical, economic and technological factors upon which 

planning is based. Also, management's objectives may vary over time due 

to changes in economics and technological conditions. Tnere is considerable 

interaction between the categories of mine planning each of which may have 

a different objective. Clearly as we progress from long range to operational 

planning, the degree of uncertainty decreases. 

For the reasons of uncertainty, changing objectives, and the increasing 

availability of more and better Information as the operation progresses 

discussed in the previous paragraph, the necessity of the different categories 

of mine planning and their continual revision is quite evident. 

As additional data becomes available and objectives change each category 

of planning is updated so as to reflect the refined information or changing 

conditions of the times. 

The primary problem to be considered in this investigation is open 

pit mine planning in the short range and operational stages. This La  what 

we will call open pit mine production scheduling. As will become clear to 

the reader, as he progresses through the development of the approach to this 

problem given in this study, the effect of uncertainty will be lessened; 

changes in economic and technological conditions and the integration of the 

planning stages may be accomplished with relative ease with our method. 

MBM 



1.2    TRADTTIÜNAr APPROACH TO MINE PLANNING 

The traditional method of mine planning Is the trlal-and-error, 

hand-calculated, cross-section approach. This method consists of tracing 

a trial pit limit on vertical and/or horizontal sections, taking Into 

consideration wall slopes, geology and plan objective. The material within 

the trial pit is divided into ore and waste on the basis of geological 

Interpretations and an economic or grade cut-off.  Volumes of material 

are determined by planimetering the areas on the sections and multiplying 

by a proper factor based on the distance between sections and geological 

interpretations. 

Grade analyses are assigned to the various types of material based on 

drill-hole data by various method of assigning drill-hole sample influence 

to a certain volume of material. The trial pits are expanded or contracted 

to meet desired requirements by considering the profitability of small 

increments surrounding the trial pit. 

The profitability of the Increments and trial pit is determined by a 

ratio of cubic yards of waste to tons of ore. This ratio is usually 

referred to as the break-even stripping ratio [20], or bottom stripping 

ratio [10]. This stripping ratio indicates the point where it is uneconomical 

to remove ore considering the amount of waste this necessitates in removing. 

The basis for this ratio is usually purely economic or empirical. 

Obviously, there are many faults In this method, and also in the basic 

foundations on which the many Judgements Involved are made, in particular, 

cut-off grade and stripping ratio. Thece shortcomings are discussed in 

[1], [10], [19], and [20]. The advent of computers Improved mine planning 

methods considerably as discussed in the following section. 

Cut-off grade:  the criterion, with an economic motive, normally eirployad 
in mining to discriminate between ore and waste in a mineral deposit. [14], 

[22]. (Section 1.4). 

_^ ^A  



1.3 GENERAL DESCRIPTION OF PROBLEM 

1,3.1 Problem Area 

Many of the shortcomings of the traditional long and short range mine 

planning methods have been overcome In the past few years. Much of the 

Improvement can be attributed solely to the speed of data manipulation and 

calculation with computers, since many of the methods, as reported in the 

literature [1], [20], are patterned after the conventional methods. 

Elimination of the emphasis on the stripping ratio is one of the Improvements 

made. The "block concept," which will be discussed In more detail later, 

Is a key to the improvements In the planning methods [1]. Very little has 

been accomplished in the area of operational planning. 

The operational mining system may be considered as a combination of 

three subsystems; mining, concentrating, and refining. The mine or group 

of mines Is the area in which the material is extracted from its position 

In the earth and this subsystem also usually includes the transportation 

to the concentrator or waste dump. The concentrator is a plant or group 

of plants where the crude ore is upgraded by various processes, depending 

on the type of ore, to a concentrate which Is amenable for refining. The 

refinery contains the finishing process which produces the product ready for 

the manufacturing market. Not all operations include all three subsystems 

and some may even Include more, such as the marketing phase. The model 

discussed in this work is general enough so that it conforms to any 

particular operation. 

The goal of management is usually to maximize some form of profit 

subject to the particular constraints of their operation. The form of profits 

Is usually total profits, present value, or immediate profit. 



The purpose of our rcsc.rch Is to develop an approach to production 

scheduling which improves on the trial-and-error concept still prevalent 

in present techniques, and does away with the present concept of cut-off 

grade or economic cut-off based on purely marginal analysis. This cut-off 

concept will be discussed in Section l.A of this chapter. 

The objective of production scheduling ie  .o determine a feasible 

extraction schedule which maximizes profits over the planning period. 

(The term profits here may be actually revenue minus costs, or present value; 

differentiation of these values is not necessary for purposes of this 

investigation.) A feasible schedule is one which satisfies a number of 

constraints on factors such as: orderly extraction, mining equipment 

capacity, milling capacity, refining or market capacity, grades of mill 

feed and concentrates, labor, and other physical, operating, legal, and 

policy limitations. 

To develop a model to investigate this problem, we need to expand 

on a key factor, the block oonoept. 

1.3.2 The Block Concept 

First of all, consider the actual methodology of open pit mining. Due 

to the type of equipment available and its capabilities, open pit mining 

usually proceeds along a series of benches as shown in Figure 1.1. The 

mining sequence usually consists of blasting a certain volume of material In 

a bench, loading this material into a haulage unit, and transporting It to s 

waste dump or concentrator. The blasting patterns usually are rectangular 

and material from the entire height of the bank is loaded Into a unit. Thus 

a very accurate description of a mining operation can be given In terms of 
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mine-able units or  "blocks"—remove a block of material from the deposit 

and transport it to its destination. One of the earliest reports on the 

"block concept" is given in [1]. Since the actual mining is accomplished 

by blocks, It follows that the concentrating and refining can be similarly 

described as a treatment of blocks. This idea is illustrated in Figure 1.2. 

Note the reduction in block size after concentrator, illustrating the 

removal of some waste material from the block. 

Since the process can be so accurately described in terms of blocks, 

it seems clear that the block concept should provide a very good estimate 

of the input and output to the system. The "block" then becomes the logical 

unit to which production scheduling can be applied. 

The block size is influenced by equipment capabilities, geological 

structure, allowable wall slopes, accuracy of sample data, manner of mining, 

desired use of block, and capability of manipulating a huge number of blocks 

[1], [11]. The smaller the block size, the more flexibility in planning 

is available and also more refinement possible, but the number of blocks 

increases. Actually, very small blocks are not very realistic, since Che 

economic and assay data upon which scheduling is dependent are based on 

samples from drill-holes which may range in separation from 40 to 1000 feet. 

The height of a block should usually be taken as the bench height since 

this is the way it is mined. Examples of block dimensions that have bean used 

in previous studies are: 100' x 100' x 40', 40* x 40' x 40* and 

100' x 50' x 50 [1], [10], [20]. 

1.3.3 Preliminary Block Development 

The manner in which a deposit is divided into blocks is a function of 

criteria similar to the block size. One could accomplish this by hand and 



MINE CONCENTRATOR REFINHKY 

FIGURE 1.2 

BLUCK CONCEPT ILLUSTRATION OF MINING, CONCENTRATING, ANT) REKJNJNG PROCESS 
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thus consider a great deal of geological detail» but the more realistic 

way is to do the Job with a computer. The reduction in labor usually far 

outweighs any refinement gained in the manual technique« 

Once the deposit has been divided Into blocks, the geological, physical, 

and economic characteristics of each block must be obtained before production 

scheduling can be undertaken. That Is, a mineralised block inventory 

providing the following data must be developed: 

1. Block Identification 

2. Volumes (crude, concentrate, etc.) 

3. Analysis 

4. Material Classification 

5. Mining Equipment Hours 

6. Treatment Plant Hours 

7. Economics 

The development of this data Is based on drill-hole samples, metallurgical 

test data, and economic and technological features of present or proposed 

mining systems. It is not the purpose of this work to go Into the development 

of this data since the methods are peculiar to each operation and examples 

of such methods are given in [1], [8], [19], and (20). 

Given this block Inventory which provides the necessary economic, 

technological, and geological data, we are ready for evaluation studies and 

production scheduling. 

• ■ 
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l./i TlIK CUT-OFF CONCEPT 

The cut-off concept is nn cconomlca] ly-basi-.d criterion wliic-h is 

normally used in raining to dljicrimlnatc betweon waste nnd ore in a  mineral 

deposit [8], [14], [19]. As presently employed, It is usually a static 

cut-off as compared to a dynamic economic cut-off wliicli will be proposed 

in this discussion. The essential difference in  that the dynamic cut-off 

is a function of the state of the mining system at the time a decision Is to 

be made as well as the future effects of this decision. This difference 

will be made clear in what follows. The profits of a mining operation can 

be appreciably affected by the choice of a cut-off aiul hence this is an 

important consideration. 

The traditional cut-off grade is a product of static or semi-dynamic 

marginal analysis. An extremely simple example of this is shown graphically 

In Figure 1.3.  In this figure, A could be any parameter with which one 

wants to Judge profits such as cut-off grade, volume, depth, etc.! If X 

represents cut-off grade, then X  would be the optimum cut-off grade. 

Note X  is the point where marginal revenue equals marginal cost, 
o 

This analysis is usually made without regard to the state of the 

mining system. Thus the cut-off grade is essentially determined independent 

of the mining sequence, capabilities of the mining system, and other 

operational constraints. K. F. Lane recognized the fallacy of this approach 

and proposed in [1A] that the capacities of the various subsystems should be 

considered as well as economics when determining a cut-off grade. He 

assumed the mining sequence to be known, even though the sequence may be 

influenced by the cut-off choice, sine»' the tools wun- not av-ti l.ihlt« for him 

to discu.'js th'i nor«: complex problem. 

The economic cut-off whieh m.iy be atrlbuted to the block concept has 

replaced the grade cut-off In some operations [1], [8], [10].  It Is an 



12 

v* 

. X 

(a) Total Cost and Revenue Versus Parameter X 
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(b)   Total Profit Veraui    X    (cut-off grade) 

FIGURE 1.3:    GRAPHIC MARGINAL ANALYSIS 
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Improvement over the trndltioual cut-off grnde In that It gives weiglit 

to factors such as location, material ch.uactirist Jcs; which affect operations, 

and other factors which are not easily taken care of with the grade 

approach.  The main objection to Its use is that it is normally a 

prejudgement.  That is, it is not based on the influencing factors of the 

mining system.  Usually a volume of material (block) is classified as 

ore or waste on the economics or characteristics of the single block itself 

without considering the system or the interaction of other blocks.  At times 

this practice may be Justified, but in general it is In error. 

As a simple example of where the static economic cut-off breaks down, 

consider the situation illustrated in Figure 1.4.  The value of the blocks 

as both an ore and a waste is shown. To obtain the bottom block, all of 

the top blocks must be removed.  Obviously, if it Is desirable from a system 

standpoint to have the bottom block, it is also more profitable to treat 

the top layer as ore if the system constraints permit.  Using the static 

economic cut-off, the top level would always go as a waste. 

ore waste 

-1  -3 

ore waste 

-1  -3 

ore 

A 

ore waste 

-1  -3 

FIGURE 1.4:  TYPICAL CONDITION OF STATIC ECONOMIC CUT-OFF FAILURE 

Also, if the system capacity was limited to only one more block and 

the constraints of the systen wore satisfied by any one of the four, the 

most profitable selection would be one of the top throe. 
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As reprcsiouU'd In [1], there has been some attempt to incorporate the 

system influence Into the classifying proccös, hut none that considers all 

the influencing factors. 

The real question to be answered in cut-off analysis Is what material 

to mine and what to do with it once it Is extracted, so as to maximize 

profits subject to the constraints of the mining system.  It is readily 

seen, as pointed out in [14], that the answer to this problem is greatly 

influenced by the state of the mining system, which varies over time. Thus 

any classification decision is influenced by economics, capabilities of the 

system, assay values of the material, mining sequence, desired products, and 

other operational constraints. These factors may interact in complex ways 

over time and hence cause a variation in the optimum economic or grade cut-off. 

Under the constraints of a mining system, the mining plan or sequence of 

mining may be influenced by the choice of cut-off, and hence there is an 

interaction betv/een these two elements. 

The objections mentioned in the proceeding paragraphs are eliminated 

by the linear programming model to be discussed in the following chapters. 

This model provides for alternate methods of classifying blocks and considers 

the system state in its decision process. Thus, linear programming in this 

sense is dynamic marginal analysis. 

To obtain a better understanding of why the model provides a more 

optimum cut-off decision, let us examine the cut-off problem from the 

viewpoint of a linear programming model: 

Maximize   ex « z 

(1.4.1) Subject to Ax = b 

x > 0 
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The dunl to this problem becomes; 

Minimize    nb = v 

(1.4.2) uA > c 

ir    unrestricted. 

The linear programming approach may be thought of as decomposing 

a system into a number of  elementary components,   (activities), describing 

the interrelationships of  the activities which may be used  to meet the 

requirements  (b), and to determine the level of activities    {x.}  ,  such 

that the requirements are satisfied at the maximum payoff.    In this sense, 

the columns,    A    , of   A    represent the input-output coefficients for 

activity   j    per unit of  activity level.    For example    a.,    could represent 

the amount of requirement    b.    produced by activity   J    per unit of 

activity level.    The    {c,}    can be considered as profits per level of 

activity   j  . 

In reference to the primal problem (1.4.1)   the dual variables are 

called multipliers or prices.    The interpretation of the dual variables as 

prices comes from the following economic interpretation of  the dual problem. 

"Given a unit profit    c.    for each activity    J    and a requirement    b. 

for each resource    1 , what must be the unit price    n    , of each resource 

•uch that the total value of the resources produced or consumed by   J    is 

greater than or equal to  the profit    c.   , and such that total value of the 

requirements,    nb , is minimal?" [21]. 

The condition   max z ■ min v    is a consequence of the duality theorem, 

[6],   [21].     It  is also shown in  [6]   that If    nA^   <  c     ,   it  is profitable  to 

increase the  level of activity    j   .     In an economic  sense,  what   Is occurring 

is that an activity whose marginal return Is greater than Its marginal cost 
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in bt'lny substiluLod   for un activity WIIOSL' mnrglual return equals marginal 

profit.     When  this   is  not jiossiblc- with  present  prices,  the optimal  solution 

has been reached. 

In  the production scheduling model,   formulated in Chapter  2,  each 

activity with  its corresponding level    X.     represents a possible method 

of handling block     (j)     in the mining system over a particular  time period. 

Thus we have a set of  alternatives    Q      for each block    (j)    from which a 

convex combination of alternat'ves is  to be selected and combined with 

other convex combination.', from other    Q.      co meet the requirements  in  such 

a way  that maximum profits are obtained. 

Using a static  cut-off grade or economic  cut-off selects one element 

from    Q      without   considering its  true marginal  worth  to  the system.     In 

selecting an elcncnt of    Q      in this manner,  one is never quite positive 

that  there doesn't  exist  another  element    A     c Q      such  that     nA^  <  c. 

and hence profits could  be  increased.     Let     2    be the maximum profit when 

the    Q      are  restricted  to one  element  and     Z    maximum profit  with 

unrest   icted     Q.   .     The preceding argument   shows that     Z  <  Z   .     For details 

on linear prograr.ming  the unfamilar  reader  is  referred  to  [6]   or   [21]. 

It  is now clear  that  the static cut-offs presently used in mine planning 

do not  provide  for maximum profits and do not  y'eld  the best possible mining 

plan.    Yet all  is not  lost since,  as will be shown,  the model to be discussed 

In this paper utilizes a dynamic cut-off which fluctuates with the system 

and this yields a mining plan which is as close as presently possible  to 

the optimal mining plan with maximum profits. 
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1.5    PREVIOUS AND REUTED WOKK 

The use and potential of all the publlnhod  and  known work Jn mine 

planning has been limited to  the long and short range atages.    This la, 

however, closely related  to production scheduling.    All the previous 

approaches utilize the block concept except  the work by Meyer   [16],   [17J. 

The static cut-off Is Inherent In all approaches  to one degree or another. 

Meyer uses a pillar approach.    Ho formulates the problem of determining 

the ultimate pit limits  subject to wall   slope constraints as a mathematical 

programming problem with a nonlinear objective  function.    Meyer's formulation 

concentrates on the geometric problems  induced  by the slope constraints. 

He uses the principles of separable programming  to obtain a solution.    The 

pillar approach reduces  the number of restrictions and variables required, 

compared  to the block concept,  and hence may be  an attractive method of 

determining the ultimate pit  limits when accuracy may not  be too Important. 

However,  the pillar approach does not allow for any extreme variability, 

with depth, of costs, revenue, or geology,  and  thus loses accuracy.    When 

allowance for variability is  introduced  the formulation converges  to the 

block concept. 

Meyer's attempt to extend  the pillar concept  to short range planning  is 

not very successful.    The lack of variability with the pillars method limits 

Its use in this area.    His proposal is to maximize profits considering 

only the geometric and mining capacity constraints,   ignoring completely  the 

flow and form of products in the mining,  concentrating,  and refining process. 

Another objective is the prejudgement of what is ore and what  is waste, 

(a static cut-off). 
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Mine planning at   llio Kennocott   Copper Corporation as reported In 

(8]i   (19],   and  [20]  Is bast'd on  the block concept with simulated extraction 

by cones and   is patterned after   the  traditional  methods.     Similar to most 

block  concept  systems,   Kennocott's begins with a preparation of a mineralized 

block   inventory and an  econonic  evaluation of   the blocks.     The ore-waste 

evaluation   is based on  the net value of a block  (a static economic cut-off). 

The Kennocott open pit design system proceeds toward  the ultimate pit 

limit  by selecting an initial   trial  pit   (truncated cone) which conforms to 

the desired wall  slopes,  and  expanding the initial cone by adding conical 

increments   [20].    The pit  limit  is reached when no additional  increment can 

be found which increases  the  total  net value of  the material with an 

outline.     The viiluo of  a cone or   increment  is  obtained  by summing the values 

of  the blocks within  the cones or  incrcinents.    One of  their  special problems 

is the variable pit slopes that must  be maintained in some of  their operations. 

This  system can be essentially described as an economic evaluation subject 

to wall  slope constraints. 

Kennocott's short  range mine  planning system is  similar   to its long 

range system,  as it  is patterned after  the traditional manual method and 

subject  to constraints related  to operating slopes, boundaries, mine system 

capacities,   and operating capabilities.    It is a trlal-and-error method 

utilizing a  trial  start with  incremental stages.     Each increment or 

combination  of  increments  represents  a  stage  in  the development of the 

ore body.     A number of   trial plans are developed,  and  those which provide 

the highest  dollar value with desired ore volumes,  satisfactory metal 

grader.,   and  best  stripping  ratios,   are  selected.     This method  does not 

guaiMiiti-f ojit i!':  lity,   althougli   it   recognize:! most   of   the neoessary constraints 

M>aMMAHBtfianHaaaMHaate_Ba_a_MMaaaMaaMiMMBIi*BaMaMmMiii^BaMMaMiHi^ 
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rpquirtcl  Jn  r.liort  range ndninj; plannJnj; find   Is  pracllcal,   thus gaining 

acceptance liy  Lhc niiiu- operators. 

Another  Lri.il-aml-errni   Mock  concept   nyslem   Is  th.it   of  Minnesota  ÜJ'e 

Operations,   U.   S.   Steel   Corporation .is  reporti-d   in  flj.     This work  is 

probably one of   tlic  oarlicsl  USOK  of   the  block  coneepl   fm   wine  pl.iiming. 

Here  the preparation  of  a block  inventory   is   similar  to what   has  already  bee: 

described,   but   the r.iethod of economic  evaluation  of  the  blneks  recognizes  lb' 

fallacy of   a  pure grade  or economic  cut-off  based on  the  net   value  of  a 

block.     The Minnesota  Ore method  tak^s  cognizance of  the  f.'ict   that   once  a 

block of material   is   removed  from   the  earth,   there   is a  pesuibillly   that   it 

Is better  to  treat   this material   and  recover   some of  the  cent   rathor   than 

completely  dispose  of   it  at  additional   cost.     The objection   to   their   srhciiie 

arises  from  the   fact   that   this classification   is  doiu   on a  block  basis  and 

the influence of   the  entire mining-refining  process  is  not   taken   into  account. 

This method  also  considers  the possibility  of   treating an  ore  block   in  a 

number of ways.      (This nay  not  be  possible  at   some operations.)     Thus,   in a 

sense  this  approach  uses  a dynamic  cut-off  on  a   single blocl   basis.     For 

mine  planning  and   scheduling,  a  number  of   block.-   are  cor.ibined   into   fe.i.;Ibli. 

mining  increments  called   shovel  units.     The   devclopnivnt   of   the   shovel   'units 

is accomplished   through   the judgement  of  the mining  engineer  with   full 

knowledge of  the material  classification by  blocks,  equipment   requirements of 

blocks,  grades  and  profit  values.     The  shovel   units  are   the  entities  of 

scheduling and are  selected on a profit  basis  and  combined   into  a  plan  or 

schedule  subject   to mining system  constraints.     Alternate   schedules  are 

developed   to meet metallic  requirements  and  managenent   policies  on  ,i   iri.il- 

and-crror  ba .is. 
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The work of 11. Lcrchs and I. Grosum.in, (15], Is the first known 

nontrinl mid error ai>prc)ach to the problem of dctcrmlng the ultimate pit 

limits.  This work utilized the block concept and their assumptions Included 

equality of block size and predetermination of what was ore and what was 

waste.  The Grossman-Lerchs algorithm Is a directed graph algorithm which 

divides the set of blocks into mineable and nonmincablc subsets, positive 

and nonpositive subsets on the basis of profitability of each block. Their 

algorithm was implemented for use and is discussed further in [10]. 

Although their prltnciry objective was to determine the ultimate pit 

contour, they did recognize that there are many ways by which this may be 

reached.  To accomplish this scheduling they suggested the use of an 

arbitrary penalty parameter, by which the profitability of each block could 

be adjusted to determine the various stages of development towards the 

ultimate pit plan. This penalty parameter could be thought of as the 

assignment of Lagrange multipliers to the constraint set. 

While the penalty parameter is the "germ" of a good Idea, it is 

sometirps a difficult task to arbitrarily subset the proper penalty, 

especially when numerous constraints arc present. Also, unless some method 

of combining plans is available, the method does not always converge to 

the optimum plan since the optimum may not consist of entirely whole blocks. 

There are other proposals such as [7] and some unpublished work at 

the U. S. Bureau of Mines which has contributed to the area of mine planning. 

However, discussion of this work will not add greatly to what has already 

been given. 
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1.6    TIIK GROSSMAK-LKRCIIS ALGORJTI1M  [10],   [15] 

Because  the problem to which the GroKsman-Lerchs algorithm is 

intended  to be  applied and  the  sub-problem  to be discussed  in  Cluiptcr  3 

are equivalent,   the G-L algorithm will  be presented here as  paraphrased by 

Gilbert   [10]. 

Posltlvity  and  negativity  in  the  following refers   to positive  and 

negative, profits  of a subset of  blocks. 

Alp^ori tlim; 

Step 1.  Initialize: eacli block of the whole sei becomes a distinct subset 

of one element. 

Step 2.  If a positive subset A exists which is constrained by a negative 

subset  B , combine both to form a new subset  C = AUK .  1f no 

such subset A exists, go to Step 4, otherwise go to Stop 3. 

Step 3.  Lxamine only subset C  formed in Step 2 to determine if an advanca- 

geous split can be made.  A split will be advantageous if any negative 

subset  D exists which does not constraint its complement in C . 

If such a D exists, remove it from C and return to Step 2. 

Step A.  Stop.  The optimal pit is identified by all positive subsets. 

For the original presentation, which is considerably more mathematical 

in content the reader is referred to [15]. 

There are many interesting characteristics of this algorithm and the 

problem it solves, although they seemingly were not recognized by Lerchs 

. 

and Grossman.     The  characteristics  of  the  problem are  treated  extensivcly 

in Chapter   3.     It   is  felt  that   the method   to be proposed   in Chapter   3  is more 

efficient,   r.ore  readily  implemented  and  more adaptable   to  uniqual   blocks 

then  the Grossman-Lerchs approach. 



22 

CilAl'TI'R 2 

FORMULATION OF GENHRAl. MATII1MAT1CAI. MODKI. ' 

2.1     INTRODUCTION 
i 

The problem to be  investicntcd In this paper ns defined in Chapter 1  is 

to dererraino an "optimal"  production schedule  for an open-pit mining 

operation for a planning  horizon of    T    time perJods  (years, months, weeks, 

etc.).    The term "optimal"  refers here  to that  schedule which will result  in 

the maximum total   profit   over the planning horizon.    The term profit may be 

interpreted  to be discounted or undiscounted as  the reader desires. 

The    T    time periods  could vary in length depending on the range and 

purpose of  the scheduling plan.    For example,  one could view the problem as: 

to determine a yearly schedule for the next  ten  to  twenty years for the 
■ 

purpose of future economic planning.    Another possibility is to find a 

monthly schedule for one  to five years  for  the purpose of actual   production 

planning. 

As will be shown later,  the techniques  to be presented are also appli- 

cable to the problem of determining the so-called optimal pit limits used In 

mine evaluation.    Used  for this purpose,  the method would provide an optimal 

ultimate pit limit on the basis of present  technology and forecasted economic 

conditions.     In using  the proposed method  for determining the long range pit 

limit, consideration can be given to factors other  than economic  (mining 

costs and revenue)  and  the geometry of development,  such as the form and 

flow of products in the mining-refining system and other factors, which , 

cannot be given an exact numerical value. 



2.2    ASSUMPTIONS OF MOD),!, 

2.2.1     Stntciiicnt of Assumptions 

In order to obtain a workable matliomntlca]  model,  n numbor ot 

assumptions must bo made as  follows: 

?.< 

1. The mineral deposit  con be divided into a  finite number of 

mineable units  called  blocks,   such  that   the flow and  form 

of   the products  in the mining,  concentrating,  and  refining 

process can bo described  in tcmia of  these units. 

2. All blocks are  the  same size.     (Not truly essential ,  but 

makes development of  procedures easier.) 

3. There is a one-to-one relationship between the  removal  of 

a block which is restricted and  its restricting blocks. 

4. It   is possible  to describe the allowable mining sefiucnc.e, 

consistent with  required pit geometry,   in such a manner 

that  it is known precisely at any time what  blocl>; must  be 

removed before a particular block may be  removed.     Also 

this  sequencing  should  be  unifom throughout most  of   the 

probable mining area. 

5. The  restrictions  for mining capacity, milling,   capacity, 

required volumes of products at certain stages of  the 

process,  required grades  of mill  feed and  concentrate ami 

other operating,   legal,  and management conditions may be 

expressed as linear relationships of crude volume. 

6. One   is able  to assign  representative values  to  each  block 

for   costs,   revenue,   volumes,   av.says,   equipment   re';1! i ru- 

ments and other data necessary  for the  relationships   in 5. 
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2.2.2 Discussion of AssumpllonH 

Assumpllon 1: 

As discussed In Section 1.3.2, rectangular blocks provide an excellent 

means of describing the flow and form of products In the almost continuous 

mining, concentrating and refining process. Actually, open pit mining Is 

essentially accomplished in terms of blocks, hence this is not a very 

restrictive assumption for our model. The block concept has been used 

successfully for ore estimation in a number of cases as reported in 

[1, 8, 10, 15, 19, 20]. 

Assumption 2; 

Uniformity of block size yields some niceties in formulation, however, 

it is not a necessity for the treatment of the problem by the method to be 

proposed as will be seen in Chapter 3. In the Interior of the mineral 

deposit, this assumption docs not limit the description of the mining process 

except possibly for the wall s'ope requirements. This exception may be 

overcome by varying the configuration of blocks describing the allowable 

mining sequence.  Another objection which may arise is that it may be more 

advantageous for planning purposes especially where selective mining is 

employed to vary Che block size so as to conform more closely to geological 

breaks. However, the block is usually quite small relative to the entire 

amount of material to be removed in a planning period and also the geological 

breaks are not precisely defined (only estimates from drill hole data). 

Therefore, the inclusion or exclusion of a small amount of undesirable 

material in a block will not be detrimental to the overall optimal schedule. 

It would seem to balance out in the final plan. 

On the surface boundary, the situation is somewhat different.  Here Che 
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FICUKK  2.1:     X-SI.CTION  SIIOI.'JNC  I'.l.OCK  DK.FlUl'nATJUN 

Af;  sliown,   blocks     (1.1)     throuyli     (I,R)     vary  in  hej;-,!!!;; Juo   to  tlu- 

variation   in  tlic  surface.     This variation  can  easily  he  ovej come  liy a  simple 

change  in variable.     Let 

X. .   = actual   volume of block     (i,j)     mined 

X. ,   = adjustt-d  block volume mined. 

Since  block volumes  arc  assumed equal  to    K    and   the  actual   is    V If we 

know    X,.     vc  can  find     X..     by  the relation 

x     = x    --i Xij       Xij     K 

Hence, for any irregular block, the above transformation can bo used and 

all blocks can be regarded as having equal si^e.  This would be overwhelming 

if we had to do it on all blocks but with only surface blocks it Isn't too 

bad.  Of course, the coefficients of the various constraints which Include 

these transformed valuables will have to be adjusted also. 

A reasonable dimension for the block height is the height of the mining 

bench of thi' operation being studied.  This allow:; block r» pr-S'iit-i t ion of 
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the aciuul   luatcrlal  being luJ-n J.     l.» ,. i. 'u-J^lils in prcaonl  Minlnj'  practice 

are in the  nmgc of 40-bU foot. I 

The other two dlnu-nsions of a block arc Influouced by equipment 

capneitics,   gcologJcaJ  structure, wall slopes, mnnner of itiJnlng,  accuracy of 

sample data,  desired use of block,  and  tin»  incoiivenJoticu and  incapability of 

manipulating a large number of blocks.    It  is geometrically desirable, due 

to  tbo conical shape of the conflguralipn of blocks used  to  represent the 

allowable mining  sequence to make the other  two dimension« equal.     The value 

of this dimension will be called    w    in all  further discussion.    The value 

of    w    can usually be selected within  the  following  limits: 

■ 

equipment or mining method bounds    ,1 w j^   geological bounds. 

Some of  the geometrical conditions on    w   will be discussed in relation 

to the block configurations representing an allowable mining sequence since 

the problems are related. 

Assumption  3; 

A one-to-one  relationship here  is interpreted  to mean  that  for every 

unit volume which is minod from a block that is restricted  (overlaid) by a 

number of other blocks at least an equal volume must be removed from each of 

the restricting blocks.    For example,  in Figure 2.1, assume  that  to remove 
M 
; 

block  (2,A)  we must first of all have mined blocks  (1,3),   (1,4),  and  (1,5). 

The one-to-one assumption states that  for every unit volume of block (2,4) j 

mined at least one unit must be removed from each of  the blocks  (1,3),  (1,4),        ^ 

(1,5).     It   is conceivable,   therefore,   that  a plan would result  in only taking 

1/4 of  each  hln.l'   (1,3),   (1,4),  and   (1,5),  and  1/8 of   blocp   (2,4).     The 

■juestion will   .irisc  to tin- "ope rat or" iiow  t«> get   1/H of Moik   (2,4).     If 

ttieso blocks  occurred on a  boundary  of  a mininy cut  other  than  the  surface. 
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it   is;  iiiMic ly possible  to get such answer« and it would bo a mineable p'nrii 

For example, a  frnctiona]  block plan on a wall   slope  iß BIIOWII In Tlgurc 2.2. 

Although  the possibility of an unmineablc  situation CXIHIH,   H  1H 

thought  tliaL   inmost practical   problems its occurretu'o will  bo UfgligibJe. 

The rationale  for such  an opinion is based  upon the relatively largo voluneK 

that will be removed,   the occurrence of assay value  trends in n depoolt« and 

that  in general, all else remaining relatively  fixed costs tend to Increase 

with  the depth of mining. 

Assiiiiiption A: 

The allowable mining sequence is primarily a problem of geometry.  In an 

actual mining operation, the material is removed in such a way that the safe 

wall elope  is never exceeded in any direction.  The safe wall slope is 

defined as the angle between the sides of a mining cut and a horizontal plane 

at which the material will stand without support (angle of reposed.  The 

practice of benching gives the open pit mine a stop-like structure.  (See 

Figure 1.1.) These conditions justify the representation of the outline of a 

ining plan or the volume of the material to bo removed, consist.'nt with the 

wall slope constraints and mining practices, by a series of ■'OK'-finu-tytcn- 

cones   (see Figure 2.3a).  Considering the vertical sides induced by the 

block concept, a better configuration to work with is the •.rsk-acnj  shown in 

Figure 2.3b. 

The relationship between the radii of the respective disks ii. given by 

m 

2 2 
2  r] + rlr?+ r2 

when 
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FIGÜRK  2.2:     POSSIKLH FRACTIQNAI.  Br.nCK I'l.V, 
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a.    Cone-Frustrum-Cone b.     Disk-Cone 

FIGURE 2.3t     UNITS  FOR REPRESENTATION OF PIT GEOMF.TRY 
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r " nitlluH of disk (cylinder) which iwis equ.'il voJuiuc and lu'ight 

as  frustrum of regular cone wJlh rndll  r. nnd r„ , 

Other fiuthors dealing with rdiiU'd prublcmH (JO, l.r»J hove piu|ioscd a 

conical representation, but wlicn the block concept Is used, the repreHcnta- 

tlon^ arc lopologically Invarlcnt.  That is, OIK- ends up uslng the disk-cone 

eventually in both approaches. 

At this point, the problem Is to determine a block configuration that 

closely approximates; the shape and voirmc of the disk-cone.  A desirable 

configuration should be symmetrical and center on a bottom block. The block 

configuration is a function of the wall slope, 0 , the block dimension, 

w , and the height h . Attempting to determine a block configuration and a 

dimension w , which satisfy the geometric- constraints of the problem and 

minimize the volume difference as well as the penalty for having a large 

number of blocks gets to be a very messy problrni and it is not the function 

of this investigation to go into its solution. 

As we have bounds on w (Assumption 2), it may be well to consider w 

fixed and determine a block configuration that satisfies the desired 

conditions.  This can be accomplished graphically by drawing concentric 

circles, representing the disks, on a uniform grid of w by w squares and 

comparing the volumes generated by the disks and various patterns of blocks. 

Due to the symmetry and uniform grid considerations, the patterns will 

consist of combinations of a 9:1 configuration and a 5:1 configuration (10J. 

These configurations are shown in Figure 2.4. 

Two of the possible surface patterns generated by a cubic block 

configuration scheme of 1:5:9:5 for an overall 0 = 45 are shown In 

Figure 2.5.  The configurations and VOIIJ'IUM gen'.rat'-'d differ due- to the 

starting conditions (1:9:5:9:5 or 1:5:9:5:9). This is important since in the 
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5:1 9:1 

FIGURE 2.4:  UNIT BLOCK CONFIGL'RATION'S 
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formulation of  the problem we will want  to assign the block configuration 

representing  the allowable mining sequence a priori and hence may enter the 

configuration at any  level.     It was  reported  in  [10]  and confirmed by  the 

author that a  1:5:9 configuration gives an excellent approximation for the 

volume and shape  of  a diskical cone generated by a regular cone with a side 
o 

slope of A5 . 

The allowable mining sequence varies  from operation to operation due to 

the differences  in permissable wall slopes and operating practices.     Usually, 

the wall slope Is constant in any one operation but there arc cases where the 

wall slope varies in a single open pit.    As has been discussed,  the allow- 

able mining sequence  for any open pit mining operation can be closely 

approximated by selecting the proper configuration and block size.     In the 

cases where a number of slopes are used in a single pit,  it would be 

advantageous to vary the configuration rather than the block size.     In the 

case of single value slopes,  it appears a change in block dimensions would 

be the best thing to do.    For example, with 45    slopes,    w ■= h    appears to be 

a good choice, whereas with 30    slopes,    w » 1.3 h    is a good choice. 

Assumption 5: 

When developing a model for open pit mine production scheduling, 

consideration must be given to factors other  than the geometric conditions 

discussed under Assumption 3.    These factors provide further constraints for 

the model and may be classified Into the following general categories: 

1. Form of the material within a block and the method of 

treatment It will receive In the mining, concentrating, 

and refining system. 

2. Equipment availability and capacity. 
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3. Avullability and cnpacltlcr. of jiKinln. 

4. Man|)owi-r avnlluMllly. 

5* Orderly mining of tin* pit* 

6. Legal and physical boundarlea. 

7. Desired limit» on assays of phtnt  feed. 

8. Dcr.lrt'd form, quantity, and nsunya of final or intennediatc 

products of the system. 

As will be illustrated in the fo]loving discussion, most of the 

constraints in the above categories can tu* expresaod as linear rolationshlps 

of crude volume. 

The type and method of treatment of the material   in a Mock Is a very 

Important consideration.    All too often, the decision as to whether a block 

is ore or waste, and if either, exactly what treatment It should receive in 

the system,  is made without considering the influence of tlic entire system 

and other blocks in the system.    That is, the material is ore if its profit 

value exceeds a certain economic cut-off, and Its treatment is determined on 

the basis of metallurgical tests, which arc valid only when this particular 

material is in the system by itself.    A priori decisions such as these do 

not always lead to the best mining schedule.    The proposal here is to let 

these decisions be based on a block's effect on the prufitablllty of the 

entire system operation as discussed in Chapter 1. 

This proposal can be included in the model  by letting: 

X ^ • amount of material mined from block    h , 
used in (he system as material of typo 
r    and treated by method  (proccvus) »    p  • 
during period    t  , 

y      X,        <  1.   K  total   volume of  bldck, »     n      —   h r.p.t 
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Consideration of equipment availability and capacity loads to 

constraints on the amount of material that can be taken from the pit or 

certain areas of the pit, Tbcsc constraints can be expressed in terms of 

equipment hours per ton or yard of material.  Equipment used in an open pit 

mine which has an influence on the minlnß operation capability are shovels, 

haulage units, drills, and other auxllliary mining equipment.  Mining 

capacity may be limited in a certain area of the pit, say Q , since not all 

the equipment can be concentrated in one particular area.  This can be 

expressed for a single period as follows: 

I      ^^t, 1 hours available in Q  for each type of equipment 
heQg 

where a. ■ hours of equipment d required per unit volume of block (h) . 

Q , g ■ 1,2,3, ... could represent a number of small areas of the pit 

or it could be the entire pit operation, in which case the above constraint 

would be a limit on the total capacity for equipment type d . Also, the 

mining capacity may be limited by the capacity of a certain sub-system of the 

mining operation to handle a certain amount of material type r , for 

example, r « waste. This would yield: 

I        I  X. p <_ waste handling capacity in tons or yards, 
r-waste h 

If an operation had the option of stockpiling, there would be similar 

constraints for this. 

The capacity of plants such as the concentrator, refinery, and even the 

maintenance facilities, have an Influence on the capability of the entire 

system.  Examples of such constraints arc as follows: 
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Concvuirnler copaci ty 

j^       X,        <_ Lolitl   jjJmil   i.iii.uily 
r.h.p 

Conconlrator capacity  for malcrJ;!!     r 

^    X."    <_ material    r    jihint   capiiclty 
h,p 

Concentrator capacity Cor treatment     p 

)     X.        < treatment    p    capacity 
h.'r 

Refinery capacity 

I      rh^h     .1 refinery capacity 
r.h.p 

where    r.   - tons refinery feed per unit volume c>r block    (h) 

Maintenance  facilities 

r dw durpt  _ ..       r       • r       , • I        m    3  X,        f_ capoclLy of malntcnniu'e   funcu.on 
r,p,h,d 

where 

dw 
m.     ■ hours maintenance function    w    required   for equLpraent 

type    d    per hour    d    works in block    (h) 

a.     ■ hours of equipment    d    required per unit volume of 
n 

block    (h)  . 

Manpower is  a very  Important element   In a ::.iiiin,; oper ' 'on.     The 

availability  of maapower  r.ny  rc-KLrlct   tliv   (•.-■pn'. i 1 ; l ;. ■   MI    !!,•■   sy.tti;!,   or  due 

to union pressures  or otlmr  labor  relations,   unifomUy  of  op. rat ion may 
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have to be considered. There are a number of operations In open pit mining 

which can be expressed as functions of manpower availability. For example, 

blasting limitations could be expressed as: 

I PLX.       <_ available blasting man-hours 
h 

where    p,   ■ blasting man-hours required per unit volume of block    (h)   . 

Although not  directly expressed  in  terms of man-hours,   lower bounds may have 

to be  considered  for  plant  and equipment  availability  in  order  to  insure  a 

stable environment for the  labor force.     For example, 

2,      ^h^i.      — ^ower bound  for equipment    d     in hours in period    t 
r,p,h 

where    f.   = hours of equipment    d    required per unit volume of block    (h) 

£ b. "x, "    >^ lower bound for sub-system handling material     r    with 
h 

method    p    in period    t 

where 

b.     ■= hours of sub-system per unit volume of block     (h)     treated 

in process    p    as material    r  . 

Conditions other than the geometric factors discussed under Assumption   3 

may  influence the orderly mining of  the open pit.     These conditions may arise 

due  to operating procedures such as access  for transportation units or 

management operating policies.     Reasonable expressions  for constraints of 

this  type can be in terms of  ratios of material on different  levels or areas 

or just bounds on volume  from particular areas. 
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Legal and physical boundaries arc similar to the orderly mining 

constraints. These conditions may impose limits on mining volumes and on 

final and Intermediate products. They may be due to legal contracts such as 

those for royalties and other property agreements. Boundary constraints may 

also arise from management policies and locations of the physical plants. 

Desired limits on assays of plant feed and desired form, quantity, and 

assays of final or intermediate products arc essentially one class. They 

were separated in listing for the sake of emphnsizing tbc importance of 

control of plant input. Constraints in this category may be due to design 

characteristics of the concentrator and refinery. Also, they may arise from 

desired products as influenced by marketability. Design characteristics 

give rise to concentrator feed restrictions expressed as: 

Lower bounds on feed 

„ I    W ^ ° 
p,h,reore 

where q. ■ (crude analysis-lower assay limit) per unit volume of block (h) 

for element s , (s could be iron, silica, copper, etc., depending on a 

particular operation), or lower bound on the assays for a particular treat- 

ment of type r material. 

where q.^ ■ [crude analysis-lower assay limit] per unit volume of block (h) 

used as type r material In process p . 

Upper bounds on feed 

h i   w ^ ° 
p,h,rf.ore 
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where q^ •> (crude analysis-upper assay limit) per unit volume of block (h) . 

It may be desirable to have bounds on the form of concentrator input, which 

can be expressed as ratios of different materials. 

P»h      p,h 

where v   expresses the desired volumetric ratio of materials r and s 
rs   r 

Assay bounds on the concentrator product may be expressed as: 

P.h.r 

and 

Pfh.r 
-<?*T >- o 

where 

n ^ * [crude assay-(upper concentrator assay limit) recovery] 

per unit volume of block (h)  in process p for 

element s . 

n " «= [crude assay-(lower concentrator assay limit) recovery] 

per unit volume of block  (h)  in process p  for 

element s . 

Similar constraints can be expressed for other products as desirad. 

It is the opinion of the author that the constraint areas discussed in 

the preceding paragraphs cover most of the important conditions that 

influence the scheduling plan. Of course, there may exist some unusual 

conditions which are not adaptable to a linear expression, but it is felt 

that they would be of minor importance in determining the final plan.  Many 
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of  the management  objection which arise  from  the exclusion of  such  unusual 

conditions may  be  answered by  sensitivity  analysis.     Part of  the discussion 

in Chapter  3 will  cover  this  topic. 

One  condition which  is considered  important by  the operators  In  some 

cases  and has  not  been mentioned  in any discussion so  far is minimum pit 

bottom.     Some operators and authors have expressed the opinion  that   the 

constraint  structure must provide  for  a minimum pit bottom area  in order to 

allow wo^^lng  space   for equipment.     Even  though  it  can be  implemented quite 

easily in the proposed method of solution,   the author believes  that  it is 

unnecessary  for  two  reasons:     (1)   because of  geologic  trends,   it  is   felt 

relatively few blocks  in a plan would violate  this constraint,   and   (2)   in 

actual mining practice,   the expansion  to the minimum full working bottom is 

done essentially one block at a time.     Thus,  a plan which bottoms out in 

only one block can be thought of as the  initial stage or cut into the lower- 

most level. 

Assumption 6; 

Assignment of  the representative values  to each block required  for 

expressing the constraints discussed under Assumption 5 has been discussed 

in 1.3.3.    As  stated  there, a number of assignment procedures have been 

reported in  [1,  8,   19,  20].    The methods are dependent on the particular 

operation Involved,  and also on the basic data available.    Great care should 

be given this  phase,  and also to the collection of the basic data since the 

solution of  the scheduling problem is only as good as the data on which It 

is based. 
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2.3    MATHEMATICAL FORMULATION 

Based on the preceding assumptions,  the problem of detcrmlnJni, an 

extraction schedule for an open pit mine over a duration of   T     time  pc» fdds 

which will yield  the maximum profit may be formulated as a large stilt 

linear programming problem with the following structure; 

11 2  2 T T 
Maximize        c1X1 +cX +  ...  +cX 

Subject  to    D.X + DJC +  ...  + DV = d 

A^X1 = b 1" "1 

2x - b2 

(2-3a)                                     "        A VN K V C bN 

B11X
1 < 0 

B21X
1   + B22X

2 < 0 

B11X
1   + BT2X

2   + . . . + BTTX
T < 0 

r.P      np r,p 

X^' > 0 

where 

X, " ■ amount of material mined from block (h) used In thi 

material of type r and treated by method p during 

t . 
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X    -    X.p RPH x 1    component vector for each period    t - 1 T  . 

R - number of material  types. 

P ■ number  of possible methods of  treatment. 

H ■  UK " number of blocks. 

I ■ maximum level dimension. 

J ■ maximum column dimension. 

K ■= maximum section dimension. 

A. ■■ m. x n    matrix corresponding to the coefficients of the 

constraints discussed under Assumption 5 for period    1   .    n ■ RPIJK 

b. ■ m,  x 1    vector correspouc   ig to the right-hand side of  these 

constraints. 

0    ■ w x 1    zero vector 

D    ■= m    x n    matrix corresponding to the pe lod    1    portion of 

coefficients of constraints discussed under Assumption 5 which 

relate to the entire planning duration. 

d    ■ m    x 1    vector corresponding to the right-haod side of  these con- 

straints. 

c^ ■ 1 x n    vector of cost or profit coefficients for period    p . 

1.   ■ volume of block    (h)   . 

B. ■ w x n    matrix of coefficients  for the constraints which describe 

the allowable mining sequence as discussed under Assumption 4. 

For the purpose of explaining the detailed structure of the matrices 

B        It is convenient to change from the single subscript notation 

h "  1,2,   ...,  H    for each block,  to a more natural 3-dimensional notation 

1 ■ 1,2 I   ,  j - 1,2 J    and    k - 1,2,   ...,  K ,  as shown In 
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Figure 2.6.  Our block volume variables X.   now are designated by 

vrpt 
Xljk  • 

Consider the sequence extraction constraints for block (232) (directly 

below block (132)) assuming we must remove the five blocks restricting it 

as discussed under Assumption A. Also assume the schedule duration to be 

two periods, blocks to be classifiable as ore or waste, and that it is 

possible to treat the ore by two different methods. Then we have, in 

accordance with Assumptions 3, 4, and 5, the following constraints which 

illustrate the structural form of the B.  matrices: 
IP 

■ . 
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These relationships express the fact that to get at block (232) in 

Period 1, blocks (122), (131), (132), (133), and (142) must be removed in 

Period 1 irrespective of what is done with the material after it is mined. 

To obtain block (232) in Period 2, the sequence of blocks (122) - (142) 

can be removed In Period 1 or Period 2. 

It is easily seen from the coefficient matrix of (2.3.2) that each 

B.   can be expressed as: 
ip 

BJ  ■= [E E E E] 

by re-arrangement  of  the columns, where each    E    is a matrix with exactly 

one    - 1    and one    +1    in each row,  and  all other elements are zero. 

Thus    E    is the transpose of  the node arc  incidence matrix of a network- 

flow problem,   [see Appendix or  [2],   [21]] 

Before giving a theorem which will demonstrate an important advantage 

of  this structure,  consider  the constraints: 

r.p    iJk      rfp    ljk r.p    ^ "    ^ 

Dividing each of these constraints by ^ ,.  gives 
1 j K 

i ^ji+ i x'p? +... + i im < ^      ijk        ^       ijk L      ilk - 
r,p r.p r,p      J 

where 

xrpt 
-rpt m \& 

W      ^ijk 



A 7 

This same transformation can be carried out for each constraint of 

2.3.1 and Is possible because of Assumption 2,  (1J41 " K) .  Note the 

trices D. , A, , and B   remain unchanged, but the b.  and d are ma 

transformed to b. - -:  and d =   .  In all further discussion, 
1      ^IJk Äljk 

problem  (2.3.1) will be considered  in this transformed  form unless stated 

otherwise. 

Theorem 2.1; 

If the Dantp.ig-Wotfe Decomposition technique, is used to solve (2.3.1) 

with 

B11X 

B21X1        + B22X2 

< 0 

< 0 

(2.3.3) BT1X1       + BT2X2        +  ... + B^X1        < 0 

I    XJP1 +    I    Xjp2 +  ...  +    I    xJpT <  1 for all    ijk 
r.P r.P 

*KPt > 0 h      - 

r.P 

as the sub-problem constraints,   then the actual sub-problem to be solved 

can be reduced to: 
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(2.3.4) 

where 

and 

-11      -2 2 -T T 
Maximize        d Y.  + d Y* + ... + d Y. 

h h h 

Subject  to    EY1 < 0 

EY1 + EY2 < 0 

12 T 
EY    + EY        +  ...  + EY    < 0 

12 T 
Y.     + Y. +  ...   + Y.      <  1 

n n n    - 

YJ > o 
n - 

vt      vsut /-sut -rpt 
Y,   «= X.      / c.       = max c. r 

n        n   /     n h 
r,P 

•zt      -sut        sut      „„hsut .hsut 
dh " C h    " Ch      • QDt        " \kt 

Proof: 

From the structure of each B. * {E,E, ..., E} , It is seen that only 

one of the rp variables X^  can appear in the basis solution of (2.3.3), 

otherwise the basic columns would be dependent, contradicting the Independence 

su t 
of a basis. If some X^   does occur in the basic optimal solution at a 

positive level, it must correspond to cfU - max c.P . This is true since 
n        n 

r.P 

the columns corresponding to the set of variables X.^ ,r • 1, ..., R , 

p " 1 p , are all the same and at optimality 

T 
- v «sut  -sut   p - „hsut ^ -rpt  r - „hrp     .   ,, 
0 - ch    " ch    " /  "^t    I V   * I Vu for a11  r'P • 

£«t 
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Hence,   to solve problem of   (2.3.3). we need only consider  those col 

corresponding to: 

umnK 

v* « vsut / isut -rpt 
h      Xh    /  ch      " Inax c^ 

> J' 

Doing this we get   (2.3.4). 

Q.E.D. 

Theorem 2.1 will be used to great advantage In  the chapters  to follow 

since It provides considerable simplification to problems  in the form of 

(2.3.3). 
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CHAPTER 3 

THE SINGLE PERIOD PROBLEM 

3.1     INTRODUCTION 

In order  to  Investigate the properties of  the scheduling problem as 

formulated  in Chapter  2 and to simplify  the development of a solution 

technique for a T-perlod problem,  the single period problem will first be 

considered. 

The one-period problem has  the  following  form: 

Maximize cX 

Subject to      AX - b 

BX < 0 
(3.1.1) 

r,p        >    for all ijk 

The single-period problem is similar to the ultimate pit limit problem 

of which a number of reports have appeared in the literature as indicated in 

Chapter 1; [1, 5, 10, 16, 17, 18].  The problem as considered by these 

authors excludes the constraint set AX = b and considers only an aprlorl 

classification of the material which is essentially setting B - E .  (E • 

transpose of node arc incidence matrix, see Appendix). This type of an 

approach yields a rough idea of the mineable reserves and is valuable in a 

preliminary evaluation study of a deposit. However, it is the opinion of 

the author that it is more desirable to study the "reserve picture" under 

the Influence of the constraints which limit the form and flow of products 

in the entire system. 

The approach presented in this paper is applicable to the ultimate pit 

■ 
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limit problem as woll as many extcntlons which may be valuable In the 

evaluation and design of a mining, concentrating and refining system.  For 

example, it may be important to know the ultimate pit limits, or reserve 

tonnage for a particular time horizon when volume restrictions are Imposed on 

various components of the system and/or when the average assay of mill feed 

or concentrates are limited to a particular range.  Markets for the system 

products may also impose constraints which will influence tlie total reserves. 

There are many other problems which may be investigated by the methods of 

this paper but those presented seem sufficient to point out the versatility 

of the approach. 

The linear programming problem (3.1.1) will in most practical 

situations, exceed the capabilities of presently available linear programminc 

codes and computing facilities, due to the dimension of the B matrix. 

(Recall from the discussion in Chapter 2 that there are approximately seven 

constraints in BX = b per block. The A constraints will be relatively 

few in number (less than 40).) Because of these limitations, it seems 

desirable, even necessary, to seek other, more compact, methods of solution. 

m^am 



 — 
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3.2 ANALYSIS OF THE PROBLEM 

3.2.1 Decompoiltlon of Problem 

Due Co the «trueture of problem (3.1.1), the relatively email alia of 

the A matrix and the simplified structure of the B matrix which can be 

reduced by virtue of Theorem 2.1, It appears attractive to examine the 

application of the Dantslg-Wolfe decomposition principle [6] to this problem. 

Applying the decomposition principle to problem (3.1.1) using 

BX    < b 

£ Xiik 2 1 > *' the constraint set 
ir.p 1JK 

Xrp   > 0 

of the subproblem yields the following full master problem: 

(3.2.1.1) 

k v1 
Maximize 

h         i 
Subject to I  x4tcr - b 

i-i  1 

L 

1-1  1 

\    i0 * 

where    X     is an extreme point solution of the subproblem.    For optlmality 

It is required that    eX   - irAX   - a < 0   for all    1 .    Here   IT    is the 
L . 

1 x m   vector of multipliers for the equations     £    A.AX   - b   and   a   is 
1-1 

the scalar multiplier corresponding to the equation 
L 
Z    A    - 1    (61. 

1-1    x 

Therefore,  the subproblem becomes 
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Haxlmum    (c - nA)X 

Subject to  BX    < 0 

(3.2.1.2) f Y'P « i 

Vljk 

The general procedure (as given In [5, 6J) assuming ve have at hand 

an initial feasible solution to the restricted master (3.2.1.3) 

Maximum 

(3.2.1.3) 

? 
i-1 

AjCX1 

! 
i-i 

A^1 - b 

! 
i-i 

Xi - 1 

h iO Ijl, .... q 

is to determine n , s by solving 

«AX + s - cX       for i ■ 1 q 

Then solve the subproblem (3.2.1.2)  to determine if maximum   ex - nAX < s . 

If this holds,  then the optimal solution to problem (3.2.1.1) has been 

obtained and hence to problem (3.1.1)  through 

i-i i 
I • ) Ä.X1 

If maximum cX - nAX > s then it is profitable to Introduce the new vector, 

/AX\ with cost coefficient cX , into the basis. 

After introducing the new vector, new n , s are determined and the 

process is repeated. 
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Once the tuibproblun has been solved, introducing a new vector into the 

master problem and solving It is relatively simple, since the master is 

rather a small (less than 40 constraints) linear programming problem. 

3.2.2    The Subproblem 

The problem remains how to solve the subproblem (3.2.1.2) since as it 

appears it is a large linear programming problem.    Fortunately, it can be 

reduced by employing Theorem 2.1.    By virtue of this theorem the new sub- 

problem becomes 

Maximize        (c - nA) Y - cY - Z 

(3.2.2.1) Subject to EY < 0 

0<Y< 1 

S - (c - nA)* -   (cj"    - itA1Jk8u)    such that 

su .ilksu / rp .i1krp\ 
r»p 

(a) 

(b) 

(c) 

where 

and   Y - {Y    k}    such that   Y ,8U 

ijk     "ijk which corresponds to    c 
ijk* 

Lemma 3.2.2.1; 

There always existe an optimal aoiution to the problem (3.2,2.1). 

Proof; 

A feasible solution   Y ■ 0   always exists and any feasible solution is 

bounded    (Z jf »)  .    Therefore as a consequence of the Duality Theorems of 

linear programming (see [5,  21]),  it is known that the dual of this problem 

always has a feasible solution, and an optimal solution to both problems 
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exists such that max Z ■ mln (the value of the dual problem). 

Q.E.D. 

Due to Lemma 3.2.2.1 there need be no concern for any ^ > 0 other 

than those which satisfy I X. ■ 1 in the master problem. 
1 1 

The dual  to problem (3.2.2.1) is: 

Minimize  P ■ J p... (a) 
ijk 13K 

Subject to uE + pi > c (b) 

u.p > 0 (c) 

It is immediately clear that a feasible solution to problem (3.2.2.2) 

is: 

u - O.Pjjij - "ax ^»^ijk^ for a11    i^k 

Lemma 3.2.2.2; 

The following bounda exist for   max   Z    of problem (3.2.2,1): 

{    h/c. >0 

(a) 

(b) 

Proof; 

Part (a) is obvious since max Z > cY for any feasible Y and Y - 0 

is feasible for (3.2.2.1) hence max Z > 0 . 

To show (b), the weak duality theorem, [5, 21], states that; 

P » ][ p. > cY ■ Z for any feasible p , Y , and u . Hence setting: 
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u ■ 0 

ph.0   If   ch<0 

and 

Ph-Ch   1£   ch>0 

results in 

IPi I  Kt* 
h/ch>0 

for all feasible   Y   and hence for an optimal   Y   corresponding to   max   Z . 

Q.E.D. 

The necessary and sufficient optlnallty conditions for problems 

(3.2.2.1) snd (3.2.2.2) are: 

EY < 0 ■ 

0 < Y < 1 ■ a 

uE + pi > c 

u > 0 . p > 0 

u(EY) - 0 

p(I - Y) - 0 

{c - uE + pl}Y - 0 

Primal Feasibility 

Dual Feasibility 

Complimentary Slackness 

3.2.3    Properties of Primal and Dual Subproblems 

An investigation of the properties of the subproblem will lead to a 

better understanding of  the problem and aid in stating an efficient method 

of solution. 
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As was pointed out in Chapter 2, the structure of the matrix E in 

problems (3.2.2.1) and (3.2.2.2) has the characteristics of the transpose of 

a node-arc incidence matrix of a network or graph,at most two*nonzero 

elements per row. 

Examining the dual problem (3.2.2.2), it is seen that each block (ijk) 

corresponds to a node in the network. The arcs corresponding to the 

variables, p , are incident out from the set Y * {(ijk)} . The arcs 

corresponding to the variables, u , are: 

incident into node (ijk) if the coefficient of 

u  in the E matrix is -1 
q 

and 

incident out from node (ijk)  if the coefficient of 

u  in the E is +1 . 
q 

The variables   p   and    u    can be thought of as flow variables on their 

respective arcs.    Taking the dual constraint set and adding nonnegative 

slack variables yields: 

uE + pi - vl ■ c , 

the conservation equations of the network corresponding to the dual problem. 

The variables v ■ tv... } correspond to flow on arcs leading into each node. 

Each component c .  of c corresponds to a given quantity of flow into or 

out of each node depending on the sign of c... . 

This assignment is as follows: 
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If c^ > 0 o flow Into node (IJk) - a demand of c... 

if c^ < 0 ■> flow out of node (Ijk) - a supply of c... . 

To clarify these relations, consider the small two dimensional system 

of blocks shown in Figure 3.1. The block number appears In the upper left 

corner and c...  at the bottom of each block. Assume the allowable mining 

sequence Is such that for any block (1J) or partial block removed from a 

level (other than level 0) the block directly above It (1-1,J) and its 

neighboring blocks (1-1,j-1) and (1-1,j+1) muat also be removed. 

The network corresponding to the dual problem for this system of blocks 

is shown In Figure 3.2. 

The first thing one notes when looking at the network is that there are 

no arcs corresponding to the variables {p .,1}*0} and (v.-.J-S) . In 

other words, these variables have been set equal to zero and their corres- 

ponding arcs ignored. This is a general characteristic of the networks 

represented by the dual problem and is the result of the following lemma. 

Lemma 3.2.3.1: 

The problem 

Minimize il '»* 
Subject to uE + pi - wl 

u,p,v > 0 

has an optimal solution that 

'ijk 
0 for all p.^ , 1 i< 0 and 

v... ■ 0 for all v... , 1 + max 1 if there exists 
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FIGURE 3.2:    NETWORK REPRESENTATION OF BLOCK SYSTEM IN FIGURE 3.1 
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a "froe path" from node    (ijk)    to node    (i-ltjtk),    A "free path" ia 

defined aa a path for which there ia no aaaooiated ooet. 

Proof; 

From Lemma 3.2.2.1, it is known that the above problem always has an 

optimal solution. Assume that there exists and optimal solution with 

P - Ujk/Pijk > O.i^O) and P0 - {Ojk} and V+ - {ijk/v<41f > 1 ^ max 1} 

and Vn - {max i.J.k) . 
'Uk 

From the statement of the lemma, all nodes are accessable from the set 

V  by a free path. Hence for some par e V  so that v   ■ e . Set pqr 

v   "0 and for some (stv) e V  such that (stv) > (pqr) c V . Set pqr 

v   « 6   + e and change the flow along the path from (stv) to (pqr) 

by +e in each arc. Also it is clear that there exists a free path from 

all (ijk) c P+ to P0 . Hence setting p k « 0 for (ijk) e P+ and 

p0pr " 60pr + Ei1k for *i;*h* >  ^0pr^ and lncreasln8 flow by e
ijk «long 

this path gives the desired result. 

Q.E.D. 

It should be noted that this problem could be treated as a minimum cost 

flow problem and solved by use of the out-of-kilter algorithm. This does 

not seem particularly attractive with the present form of the problem. 

Accessability: If n. and n. are nodes such that there is a path from 

n. to n  then n  is "accessable" from n. written as n. > n . The 

accessable set D(n.)  is the set of all nodes accessable from n. , 

(n. e 0(n ) . Define DCn.) « D(n ) + n . The work "path" used In the 

above explanation is: a sequence of arcs {a., .... a  , a.,., ..., a ) 
i      i   i+i      n 

such that the terminal node of each arc coincides with the Initial node of 

the succiViHiu', arc; i.e., all arcs In the path luve a similar orientnt ion. 
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however, due to the large number of.arcs one would have to consider. 

The primal variables,   Y...    are called node numbers or node potentials 

in their relationship to the network formulation of the dual problem. 

Y...   ■ 1   mnana a block is to be mined while   Y...  ■ 0   means the block 

(ijk)    will be left.    As will be shown later (Theorem 3.3), the solution to 

the subproblem is in terms of blocks to be mined    (Y1..   ■ 1)    or left 

(Y...  ■ 0) .    It will be deer that the subproblem provides a system of 

blocks to the master problem which selects and combines the systems into the 

optimal mining plan. 

The theorems to follow characterize the solutions to the primal and dual 

subproblems,  (3.2.2.1) snd (3.2.2.2) and hence aid in presenting a method of 

solution. 

Theorem 3.1; 

If for any node corresponding to a block which ie not restricted by 

any other block, the condition   ö,  > 0   holde, then   Pi. > 0   and   Xu m I   in 

the optimal eolution of problem 3.2.2.1, 

Proof; 

Looking at the dual equations for any node,   h , which is not 

restricted by other nodes (such ss the nodes on level   "0"    in Figure 3.2) 

it is seen that the arcs incident on   h , excluding the arcs corresponding 

to   p.    and    c.    are all incident into node   h .   Now if    c.   > 0    (incident 

into   h) the    p.    is the only possible flow leaving   h .    Hence fron the 

dual inequality for node   h , 

- [ ulh + Ph i'h 
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I.t is clear that p. > c. > 0 . From the complimentary slackness condition 

ph(l - Y.) «= 0 it is clear that Ph > 0 => Y. «= 1 . 

Q.E.D. 

Theorem 3.1 provides a means of classifying unrestricted blocks by 

immediate inspection of    c.    .    There may be blocks in level    "O"    that are 

to be selected    (Y.   ■> 1)    for other reasons which will be brought out by the 

theorems to follow. 

Theorem 3.2: 

If some ft. = I » then every Y, corresponding to (k) c D(h) is I 

in the optimal solution. 

Proof; 

Let D. (p) ■ <q/(p,q) e A > . Where A = set of arcs incident out 

from node p . From the primal equations: EY < 0 we have that if 

Yh - 1 then Yk » 1 for k c D.(h) . Then consider i c D^D.W], again 

from the primal relationships Y. > 1 . Continue in this manner until the 

nodes on level "0" are reached for which the accessable set is empty and 

the theorem is proven. 

Q.E.D, 

The next theorem is important in that it shows that we need only concern 

ourselves with potentials ^^i) of    0 or 1 .  Thus the primal 

subproblem solutions are sets of zeros and ones as indicated previously. 

Before giving the next important theorem, we must discuss briefly the 

unimodular property of matrices. A matrix A is called unimodular it the 

dotcnuinant of every square submatrix of A equals 0 , +1 or -1 . 

The following lemma is given by Hoffman and Kuhn in [13]. 
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Lemma  Qloftnian and Kuhn); 

If in a syetem of linear inequalitiee with integral ooeffioientB and 

constant terms, every nonsingular eubmatrix of the ooeffioient matrix hae 

determinant   +1 , then every extreme eolution ie integral. 

T Since it Is well known that every matrix   [E I]    is unimodular if   E 

is,the next theorem follows immediately. 

Theorem 3.3; 

y, » I or   0   in the optimal eolution of the subproblem: 

Maximize   cY 

Subject to EY < 0 

0 < Y < 1 

v; 
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3.3 EQUIVALFNT FORMULATIONS OF SUBPKOBLKM 

The subproblems, (3.2.2.1) and (3.2.2.2), analyzed in Section 3.2 were 

stated as follows: 

Primal: Maximize   cY - Z (a) 

(3.3.1) Subject to EY < 0 (b) 

0 < Y < 1 (c) 

H 
Dual: Minimize   p " I Pi («) 

hBl 

(3.3.2) Subject to uE + pi > c (b) 

u,p > 0 (c) 

From a network-flow point of view the objective in solving the dual 

problem (3.3.2) is to induce flow into the network in such a way that the 

requirements of the c.  are satisfied and as little as possible goes through 

the arcs corresponding to the p.  variables. As indicated in Section 3.2.3, 

flow is forced into the network by the positive c. and taken from the 

system by the negative c. . For any node (h)  there are only two ways for 

flow that is forced in (condition when c. +    J[    u.. > 0) to get out, 

l/hcDjd) 

one way is to route flow along an arc corresponding to   u.,   , i.e.,  to 
nk 

another node k , or remove flow via a p.  arc. Therefore, flow leaves the 

system (or reaches the sink) only through the p  arcs or through the arcs 

corresponding to c. < 0 . This Indicates we may replace all paths from a 

node (h) such that c. > 0 to a node (k) with c. < 0 by a single arc 

(h,k) . Considering all nodes (h) with c. > 0 and connecting them to 

all k such k e D(h)  and c. < 0 we have constructed a bipartite 
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graph    with the nodes corresponding to positive   c.     as one set of nodes and 

the nodes with nonpositive    c.     as the other set.    Note that all arcs lead 

from the positive set to the nonpositive set.    Figure 3.3   illustrates the 

original network and its bipartite equivalent. 

The structure of the equivalent bipartite graph of the network 

corresponding to the dual problem  (3.3.2) resembles that of a simple trans- 

portation problem.    The problem could be solved as a transportation problem 

but in doing so by the primal-dual method of Ford and Fulkerson [9] one 

essentially only need solve a maximum flow problem which by itself seems the 

most attractive method of solution. 

Consider the following maximum flow problem and Its dual where we assume 

c    > 0   and    -c. > 0 . 
i J ■ 

• 

Maximize       \ f 

(3.3.3) 

.i+pij    "0 Vi 

i£ij + fjT-0 VJ 

.i         *<i V i/c1 > 0 

f JT ^ "'J 
V J/^ > o 

f.l  i 0   »   fiT i 0   •   fH   I 0 
JT U 

Bipartite graph:    A graph    C *  (N,A)    in which the node set    N    decomposes 

into two disjoint sets    V ■  <n./ 

12 

and V ■ {"]) such that each edge 

/ 1 2 \ 2  - 
(n^n.) c A joins a node n. e V and a node n. e V . 

mmm 
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(a)    Original 

(b)    Equivalent Bipartite 

FIGURE 3.3:     EXAMPLE OF ORIGINAL AND EQUIVALENT BIPARTITE GRAPHS 



»t(cl -f.i> - 0 

Y-h i - V - 0 

<«i- \ ■ »'.i - 0 

<«t- V'ij - 0 

<xJ + ^tit - 0 

■ 
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The dual to this problem Is: 

Minimise      J g c - I  he 
1 x 1   J J J 

Subject to    -x. + g. > 1 VI 

(3.3.4) xi - x > 0 

Xj + h j > 0 V J 

Si > 0 , hj > 0 

The complimentary slackness conditfonü for this set of problems are for 

all 1 and J : 

(a) 

(b) 

0» 1,51 Cg,£ - *s ~ l)tm4 * 0 . (c) 

(d) 

(a) 

I 
It is well known that the coefficient matrix of problems (3.3.3) and 

(3.3.4) is unlmodular [2, 13]. 

The unlmodular property Insures that the optimal values of the dual 

variables are integers but not that they are only   "0"    or   +1   which la 

required to relate problem (3.3.4) and (3.3.1).    The following theorem will 

aid in establishing the zero-one property of problem (3.3.4). 

Theorem 3.3.1; 

If   Cx.) , (x.)  ,  (i.)   end   (h.)   are the optimal variablea for 

problem (3.3.4),  then: 
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g. » 0    or    1 ; x. ■ 0   or   -1 

and 

h.■ 0    or    1 j  x.  ■ 0   or   -1 

Proof: 

For feasibility   g.  > 0    so assume   g    = 6 > 1 .    From the complimentary 

slackness conditions (3.3.5a) and  (3.3.5c),  this Implies    f   .  ■ c.  > 0    and 

hence    x.  = g.-l"o>0.    By the primal feasibility conditions, we must 

have some    f..   > 0    ami by condition  (3.3.5d)    x.  «= x.  ■ a > 0 .    Since 

f.. > 0 , it must be that    f _ > 0    which makes    -h. «■ x. « o > 0   by 

(3.3.5e)  so that    h    < 0    which contradicts the feasibility constraint 

h    > 0 .    Thus,    Ö < g   < 1   must hold.    Since   -c. « 0   has no effect on the 

problem we can safely assume that all    -c.  > 0   and then a similar argument 

goes through for    h      showing that,     ^ < h    < 1 .    By the unimodular property, 

the Kuhn-Hoffman Lemma given in Section 3.2.3 and the bounds Just shown for 

g      and    h.    we have that  in the optimal solution of  (3.3.4): 

g. •= 0    or    1 

and 

h    « 0    or    1 . 

Also we have that 

-x. > 1 - g . > 0 or x. < 0 , 
1 «   *si ■       J ■ 

XJ ^ -hJT I -1 

and 

0 i "j > Xj > -1 . 
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Hence   -1 < x. < 0   and   -1 < x. < 0 .    Then similarly to   g.    and    h.  , 

x. ■ 0   or   -1   and    x. - 0   or   -1 , 

Theorem 3.3.2; 

Q.E.D. 

The optimal solution to the eubproblem (3.3,1) may be obtained from the 

optimal solution of (3,3,4) by letting: 

»i • l - «i 

"j - hj 

Proof; 

Making the subsltuation as given above for g. and h. in (3.3.4) and 

using the bounds established in Theorem 3.3.1 yields: 

Minimize I     *i-       I     Vi 
1>0    i^^ 

- Y. 

1     c^-v (•) 

> 0 (b) 

io (c) 

+ ¥^0 (d) 

(e) 

(f) 

Subject to -x. 

(3.3.6) xi ' xj 

0 ^ ^ i ! 

Since the objective functions of (3.3.6) and (3.3.1) are equivalent, we 

need only establish the equivalent feasibility of the respective optimum 

solutions. Because (3.3.1c) end (3.3.6e,f) sre the same, only the 

equivalent feasibility of (3.3.1b) and (3.3.6b.c,d) need be considered. 

Let D(h) - D'(h) U D+(h) with respect to the dual network of (3.3.1). 

Where: 

y& 
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D"(h) « {j/h > j and c < 0} 

and 

D+(h) - {1/h > 1 and c1 > 0) . 

Every feasible solution, hence every optimum solution, of (3.3.1) Is 

feasible for (3.3.6) since (3,3.1b) requires that If Yh " 1 then ^ " 1 

for all k c 0(h) and all that (3.3.6blc,d) requires is Y .■ 1 for all 

J c D+(h) cD(h) . 

To show every optimum solution of (3.3.6) Is feasible for 3.3.1, we 

observe that the conditions (3.3.6b,c,d) Imply that: 

Y1 - 1 *> x1 - -1 => x - -1 *> Y - 1    V J c D"(l) 

This leaves only to establish that if Y. ■ 1 then Y ■ 1 for 

k e D (h) . If this condition were not true, then the value of the objective 

function (3.3.6a) could be decreased, since c. > 0 , contradicting the 

optiroallty assumption. 

Q.E.D. 

It has now been established that solving the maximum flow problem 

(3.3.3) and using the dual variables thus generated will provide a solution 

to the subproblem (3.3.1).    An efficient method for solving problem (3.3.3) 

is essentially the labeling procedure developed by Ford and Fulkerson [9,  21]. 

From the complimentary slackness conditions  (3.3.5),  for problems  (3.3.3) 

and  (3.3.4), we know that if It Is Impossible to saturate any arc    (s,i)   , 

that Is when    f      < c      in the optimal solution,  then    g.  * 0   and hence 

Y.   « 1    from Theorem 3.3.2.    Also If some    f _ < -c.     then    h   • 0   and 

Y    ■ 0 .    From Theorem 3.2, we know that if    Y    ■ 1  ,  then    Y.   - 1    for all 
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then k c D(l)  .    It also follows that If.   f .T < -c      Implying that   ^ ■ 0 

Y.  - 0   for all   h   such that   j e D(h)  .    These conditions are key factors n 
in the algorithm to be discussed and presented in the following sections; 

. 
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3.A PROPOSED METHOÜ OF SOLUTION 

The proposed method for solving the original subproblem (3.2.1.2) Is to 

transform it into problem (3.3.1); transform this into problem (3.3.3) shd 

solve (3.3.3) as a maximum flow problem. Since the network corresponding to 

(3.3.3) is bipartite, actual labeling of the nodes is unnecessary and a flow 

equal to min (c. ;-c.) for k > J can be allocated at each iteration. If 

it is impossible to route all flow away from a node when c. > 0 then 

Y. ■ 1 and from Theorem 3.2 all Y - 1 for p e D(k) . Once a set 
» P 

Y - (k/Yk - 1} with f ik - 0 ^or k e Y , i ^ Y has been determined it may 

be removed from all further consideration. The vslues of 1.. must be 

recorded since re-routing of flow may be required. Re-routing may be 

necessary if for some c.  the following conditions held: 

ck> i .(vN 
j€D(k)ns 1       ' 

and    f     > 0   for    it D(k)  , J c D(i) 0 D(k)    where    s' - {J/c   < 0}  . 

The transformation from (3.3.1) to (3.3.3)  is depicted In a network 

sense in Figure 3.4.    Although the network for (3.3.3) looks like a maze, 

hence making the problem difficult to deal with in this form, this is not the 

case, since given any node number and the allowable mining sequence, we 

know exactly which nodes to look at.    In this sense,  the solution procedure 

deals with the network in Figure 3.4a in a node-path manner. 

The dual problem (3.3.2) variables    (p.)    are Just   p. ■ 0   for 

c. <. 0   snd   p1 " c. - f  .    otherwise.    In effect, we have solved problem 

(3.3.2) neglecting the    (p }    variables and determined them from the slack 

in the equations corresponding to   c    > 0 . 
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(a) Example (3.3.1) Network (All Unattached Area Leading Out, 
Go to Sink; Pointing Into a Node Are From Source) 

(b) Example (3.3.3) Network [The (O.kij) on the Arcs Indicate 
the Lower and Upper Flow Bounds] 

FIGURE 3.4: EXAMPLE NETWORK FORMS FOR PROBLEMS (3.3.1) AND (3.3.3) 
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■ 

The other dual variables i\1
i.)   may be obtained from the flow 

variables Uj..) in problem (3.2.2) as follows: 

f.. ■ flow in path from i to J in both networks. 

Consider any arc (pfq) in a path from 1 to J . Set p  ■ '..j 
pq   1J 

if (p,q) is not in any previously considered path; u      m V     + f.. If pq   pq   ij 

(p,q) is in a previously considered path. 

An outline of the subproblem algorithm developed in the above 

discussion follows. 

• 



c. ■ c. - f. .    «nd delete    i    from   D(k) 

\mh' fki 

(c)   When   c.   ■ 0   delete    (k)    from    S     and go to Step 2. 

Otherwise, 3(«). 

Step 4.    Determine Profitable Blocks: 

(s)    If    Zu > V(k) + T f..  - V(k) 
)<k)        iJ 

JcD(l)nD(k) 

Set Y - 1 for p e D(k) end delete D(k) from S+ U S' p - 

ci - c1 + f   for 1 i D(k) , J i D(k) and repeat 

f 
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3.5 SUMMARY OF SUBPROBLEM ALGORITHM 

Step 1. Initialize: 

Let S+ - {1/^ > 0) 

S" - {J/Cj < 0} 

Y - {Y. } - 0 

Step 2.    Scan Node   Hin k c S    : 

i 
If    S    - 0 , go to Step 5. 

If   ck < I -Cj - V(k)  , go to Step 3. 

JeD(k)ns' 

Otherwise, Step A. 

Step 3.    Allocate   c.   : 

(a) Let   c. •     «ax - c 

JeD(k)ns" 

(b) Set    fkl - min ic^cj 

k iip?k)        ^ 
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\  ' 

Steps 2-A for such i when f  > 0 . Then go to 

Step 2. 

(b)  If ck < V(k) , let Q - {i/1 \  D(k) , f^ > 0 , j c D(l) D D(k)} 

For each 1 e Q and all j e D(l) fl D(k) with f  > 0 , let 

Afj «= mln (^ifjj , Äfkj - min (ck,-(c - ^JJ^ • 

fkj ' fkj + Afkj and \'\-  Afkj ' Then wlth flj ' flJ " 

Af   and c. = Af   repeat Step 2. Terminate examination of Q 

if c. «= 0 and go to 3(c). If Q - 0 and c. > 0 go to 

Step 4(a). 

Step 5. Terminate: 

Y ■ {Y. } solves the subproblem with value I "* Y. ■  L. ^u " z » 
o _ . k c!s     . keS 

where — - original c. , and c. • modified c. " c. ~ I ^j for 

k E S+ •= {k/cj^ > 0} . 

It is quite obvious the algorithm terminates in a finite number of 

steps since S  is finite and each iteration through Steps 1-4 eliminates at 

+ + least one element from S  and the procedure is stopped when S * 0 . 

Now that a rather simple method of solving the subproblem has been 

developed the entire problem (3.1.1) can be solved by the decomposition 

principle as described in Section 3.2.1.  In actual computational scheme, it 

may be wise to terminate the subproblem algorithm once Z > S and Introduce 

the corresponding {Y} into the master basis even though the subproblem Is 

not optimal.  If the set S  is large, this is especially recommended. 

A general flow chart of the subproblem algorithm follows. 
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GENERAL FLOW CHART OF SUB-PROBLEM ALGORITHM 

I InttlaUze"] 

(I Have all blocks ith positive value 
been scanned?  

£ 
KD 

Not now< 

Scan remaining positive 
block (k), nearest surface: 
Is It profitable to mine 
block (k)? 

Allocate profits 
of block (k) to 
Its restricting 
blocks. D(k). 

Remove block (k) 
from set of posi- 
tive value blocks, ( 

Will value of 
block (k) support 
its own removal? 

>-Yes 

teeds Help 

Select some block (l)CQ. 
for each block (J)   in 
both D(k) and 0(1) with 
fij > 0. allocate profits 
from (k) to (J) and from 
J    to    I  ,  then to some 
other block in 0(1)   If 
feasible. 

/U It i 
UYes/ locate 

\block 

Define blocks.  (I) - Q, 
not  In 0(k)  from which 
profits have been al- 
located to blocks (j) , 
in 0(k)  . 

possible to 
all profits 

(k) by rerou 
from   >— 

ittnq?/ 
No 

1 
Terminate, 
have solution 

Classify block (k) 
and Its restricting 
set (D(k)) as 
mineable. Remove 
these blocks from 
further consideration. 

If profits were 
allocated to D(k) 
from other blocks 
outside this set 
redistribute such 
values to original 
blocks and restore 
original blocks to 
positive value set. 
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3.6 NUMERICAL EXAMPLE OF SUBPKOBLFM 

As an example to demonstrate the algorlttun, consider the problem In 

Figure 3.4. 

Step 1; 

6 
10 
11 
12 
13 
14 
15 

s -C1 

1 3 
2 2 
3 1 
4 3 
5 5 
7 1 
8 1 
9 2 

Step 2; 

c, •= 4 ^ -c. - c- ■ 5 . Therefore, go to Step 3. 

Step 3; 

f61 ■= 3 , f62 «= 1 , c6 - 0 , -c1 - 0 , -c2 - 1 . Since D(k) - 0 , 

go to Step 2. 

Step 2; 

c.- " 1 <. c. - c_ " 8 , therefore, go to Step 3. 
'4   5 

Step 3; 

f10,5 ' 1 ' f10.4 " 0 • c10 " 0 

D(k) * 0 , go to Step 2. 

-c- ■ 4 , -c, « 3 . Since 
5       4 

Step 2; 

c11 - 5 > -c1 + (-c2) + (-c3) + (-c7) «=0 + 1 + 1 + 1-3. 

Therefore, go to Step 4. 

■M^M^^MB ^A 
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Step Aa; 

c-, - 5 > 3 + 0 . The last term Is aero since all f  - 0 for all 

J e D(ll) and 1 i  D(ll) . Hence, ^ ■ 1 • ^ " *2 • Yj - Y6 - Yy - 1 

and these nodes can be deleted from S  and S~ . At this point» the 

problem has been reduced to: 

„+ w s Ci 

12 4 
13 1 

14 1 
15 1 

S~ 'S 
4 3 
5 4 • 

8 1 
9 2 

■C5 " f10.5 

Since ST la not empty, return to Step 2 and scan node 12. 

Step 2; 

CJ2 " * i -c^ + (-Cg) - 4 . Therefore, go to Step 3. 

Step 3: 

fi9 /. " 3 » 'i9 a " ! » c12 - 0 , -c^ - 0 , -c0 - 0 k12.4 12,8 8 

Step 2; 

^3-11 -c4 + (-c5) + (-c8) + (-H9) - 5 ; go to Step 3. 

Step 3; 

'JJ 5 " ^ » "c5 " 3 i c.. - 0 ; others unchanged. 

Step 2t 

«14 • ! 1 -c4 
+ (-c5) + (-c8) + (-c9) - 5 ; go to Step 3. 

*5 
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Step 3; 

f14.5 - ! • ^5 ^ 2 ' ^14 ■ 0 

Step 2; 

15 
1 1 -cA + (-cs) + (-cQ) = 4 ; go to Step 3. 

Step 3; 

f -, - « 1 , -cs = 1 , c., " 0 , Now all nodes of ST have been 

examined so that S  is considered empty so go to Step 5. 

Step 5. Terminate: 

The following {Y } give the optimal solution with value max Z ■ 2 : 

original final 

s+ 
'Ci Yi h 

6 1 0 
10 0 0 
11 1 2 
12 0 0 
13 0 0 
14 0 0 
15 0 0 

original final 

s' -'1 Y1 -'c2 

1 0 
1 0 
1 0 
0 0 
0 1 

1 1 0 
8 0 0 
9 0 2 

NOTE: I  c1Y1 + J cjYj -  J ^ 

l€S+ 
(final) - max Z . 

The values of the flow variables are: 

f61 " 3 ' f62 • 1 • f10.5 ' 1 • f11.2 ■ l  • f11.3 " 1 ' f11.7 " l • 

f12,4 - 3 • f12.8 " 1 ' f13.5 ' 1 ' f14.5 " 1    and fl5.5 ' 1 * 

Hence, the u   are: 



82 

u61 " 3 • U62 " 2 ' U73 " 1 » U84 " 3 ' U95 ' 2 » "lO.S " 2 

U11.6 " 1 ' "11.7 " 2 • u12,8 " A • "13.9 " 1 ' U14,9 " 1 ' 

U15.10 " 1 • 

•nd all others zero. 
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3.7 MODIKTCATJON OF PROCEDURE WHEN ASSUMPTION 2 IS RELAXED 

Assumption 2, as discussed in Chapter 2, constrained the blocks of the 

• problem to be all of equal size.  The result of this was that the 

coefficients of the dual subproblem variables (PJ)  (sec problem 3.2.2.2) 

were all ones. 

The method of solution proposed in that last section actually neglected 

the set of variables {p.} .  This indicates that a similar procedure will 

work when the block size differs in certain areas of the deposit. It may be 

desirable to have different block sizes in various zones of a pit due to 

physical elements such as varying pit slopes. 

Consider, for example, the case with two block sizes B. and B. 

(volumes).  In this situation, the coefficients of the variables {p.} 

, would be B  and B. .  From a network viewpoint, we then have two sets of 

nodes defined as: 

Nj - {j/block (j) has volume B^ 

N2 - {j/block (j)  has volume Bj . 

The maximum flow algorithm of Section 3.A can now be used to solve the 

problem.  First apply the algorithm to the set 

Nj U (k/k e N2 , D(k) 0 N1 »« 0}  (assume Bj^ < B ) .  This yields 

Yl " Yl U Y2 ' Where 

YJ - {YJ/YJ - 1 , D(j) 0 N2 - 0) 

and 

Y2 " {VYj " 1 • ^(j) H N2 >< 0} 
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Now apply the algorithm to the.set of nodes N2 U tJ/Y. c YA  . The 

solution here gives Y. ■ (Y./Y. ■ 1} . The solution to the aubproblem Is 

then provided by Y: U Y? setting 

and 

Yj ■ BJYJ      J . N2 . 
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CHAPTER 1» 

GENERAL T-PERIOD PROBLEM 

^.1  INTRODUCTION 

Open pit mine production scheduling as defined in Chapter I is a 

very real problem that concerns most mine operating management. The best 

schedule for the entire planning horizon of T-periods is usually not attain- 

able by repetitive single-period scheduling because of the dependence of 

the future on the past and present. Thus, the effect of any single-period 

schedule on future period schedules must be considered in a multi-period 

scheduling problem. The following formulation, developed in Chapter 2, 

illustrates this dependence. 

Maximize   CjX1 + zfi2  + . . . + c XT 

Subject to DjX1 + 02X
2 +...••■ DTXT    - d 

V1 ■ "i 

•   A/       -bT 

CO.!) BX1 SO 

BX1 + BX2 SO 

BX1 + BX2 + BX3 + . . . + BXT  SO 

E Xj1 + E Xj
2 * . . . + E XJ

T  S I ¥ h 
q    q        q 
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Most of the concepts  in this chapter will  be examined  in the context 

of a two-period problem.    General  extent ions will  be presented only when 

they do not follow directly.    Thus the problem to be considered has thr 

form: 

Maximize       CjX1 + c^} (a) 

Subject to   OjX1 + 02X2 - d (b) 

A/ - b, (c) 

A2X2 - b? (d) 

(4.1.2) BX1 SO (e) 

BX1 + BX2 SO (f) 

Z Xj1 + E Xj2    S  I (g) h       _    h %3/ • 
<l <l 

xj1 ^ 0 (h) 

In any practical  situation this problem, as   in the case of the prob- 

lem discussed in Chapter 3» rapidly exceeds the capabilities of available 

linear programming codes, even with the most modern Computing facilities, 

and a more compact method of solution is necessary.    Because of the special 

structure of the dynamic constraints  (U.l.2),  and especially of the    B 

matrices,  some form of decomposition seems promising. 

kjl    DECOMPOSITION OF GENERAL PROBLEM 

There are many ways to decompose  (lt.1.2).     The problem as formulated 

has essentially  two parts:     (1)  the blending and allocation portion corres- 

ponding to the    JD.{    and   JA   {    ,  and (2)  the allowable mining sequence 
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portion characterized by  the    B    matrices.    The most attractive decomposi- 

tion approaches  to the problem appear to be those which permit the reduc- 

tion of  the B-structure by virtue of Theorem 2.1,  and allow  isolation of   - 

the    EY    £ 0   as sub-problems,   hence using their  simplified structure to 

advantage.    It   is reasonable to expect  that  the blending and allocation 

part of the problem    [4.1.2  (b)  -  (d)]  , will be of such a dimension that 

it can easily be solved as a  linear program,  either as a master or sub-master. 

This rationale  leads  to the following master problem: 

(4.2.1) 

Maximize S      Xi    [c^'1 + c2X2ll 

L 
Subject to       £      XI 

I »  I 

"l    D2 
A,    0 

0     A2 
X21 

- 

d 

.b2. 

L 
Z   Xi 

I » I 

Xi 5 0 

Where the    | X    « X    ,  X     t      is the set of extreme points of the convex 

polyhedron defined by: 

BX1 * 0 

BX1 + BX2 SO 

.qi q2 EX^'  + ZX^' S I 
<i q 

C*° 
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1 

so that   the  sub-problem becomes: 

Maximize        c.X    + c_X 

Subject  to    BX S 0 

• 

BX1 +  BX2 SO 

(^.2.2) E X^'  + 2 X?2    SI    ¥ n n 
q q 

<"> 

By virtue of Theorem 2.1   this can be reduced to 

Maximize        c Y1 + c2Y2 

Subject to    EY * 0 

(a) 

(b) 

(^2.3) 

EV1 + EY2 s 0 

IY' + IY2 s 1 

< 
K 0 

(c) 

(d) 

(e) 

Where    ct « {cM    such that    cj    « max 1^    and   Y1 • M |   such that 

Y.   ■ X.       which corresponds to    c ^  . n       n $t 

The problem as given in (14.2.3)  has many   less variables  than (^.2.2) 

and has a structure that  is much easier to deal with.    This reduction step 

amounts  to a classification and selection of  the method of treatment of a 

block  If   It   is  to be mined.    It  reduces  the  sub-problem strictly to a 

scheduling problem  In which the remaining decisions are  if and when  to 

select a block for mining. 
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4.3    SUB-PROBLEM SOLUTION 

The sub-problem (4.2.3).   is still a rather   large problem and not easily 

solved in a straightforward manner.    The triangular structure could be em* 

ployed to some advantage but  is somewhat cumbersome due to the dimension 

of the problem. 

By making the proper  substitution of variables  (4.2.3) can be trans- 

I '        k formed  into a more workable form.    Let    w   ■      E      Y    .    Then (4.2.3) 
k -  I 

becomes: 

Maximize        (c. - cjw + c-w (a) 

Subject  to   Ew1 S 0 (b) 

Ew2 S 0 (c) 

(4.3.1) Iw2 S I (d) 

Iw' - Iw2 SO (e) 

w' £ 0 (f) 

In (4.3.1). (e) and (f) replace (4.2.3)(e). Thus the transformation 

has increased the constraint set, but the problem now has a more computa- 

tional efficient structure. 

In Chapter 3 an efficient method was proposed to solve a problem of 

the form 

Maximize       cY 

Subject to   EY S 0 

(4.3.2) IY S I 

Y   $ 0 
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which used the structure of  the matrix    E    to odvantnge.     It seems attrac- 

tive  to again  isolate problems of  the form ('♦.3.2)  and thus use the method 

developed   in Chapter 3.     It   Is clear from the structure of problem (^.3.1) 

that  the decomposition principle could be applied again   in a straightforward 

manner with the constraints  (4.3,le) as the master problem with    P    sub- 

problems each with a  form corresponding to {k.}.2).     In such a scheme the 

master  problem would be  relatively  large and even  though  the constraints 

are simple   it would  require sufficient calculations  to  Introduce the sub- 

problem solutions   into the master  basis  to make  this  suggestion unattractive. 

It   is  known from the Theorem of Heller-Thompkins-Gale given  in [f3] 

that the coefficient matrix for problem (4.3.1)   Is unlmodular and hence from 

the Hoffman-Kuhn Lemma,  [13],   stated  in section 3.2.3  that   the optimal 

%w.  ?   are zeros and ones.    This fact and the  implications of the constraint 

set  (4.3.le)   lead to an efficient method of solution through decomposing 

by both  rows and columns.    The constraint set  (4.3.le)   implies that problem 

(4.3.1) may be solved by considering a sequence of problems   In the form of 

lc t h 
(4.3.2) but need only consider those w.  In the k   stage problem which 

k + 1 
correspond to w.    » I. To solve problem (4.3.1), first consider; 

2 
Maximize   c.w 

2 
Subject to Ew  £ 0 

(4.3.3) Iw2 S 0 

w2  * 0 

9    2   2 Solving this problem yields an optimal solution w  = W U W 

x; 

■ - 
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where 

and 

Next,  consider 

CO.M 

where 

'♦" fi / "* " 'j 

w2 
■{;h /;h "o| 

Maximize    (c.  - c2)w 

«' S 0 

1«' S 1 

«' E 0 

w1 -jw^/^    -  ij 

The optimal  solution of this yields    £      - W' U w] , with   W1 c wj    . 

In the terms of a mining schedule, problem k.3.3) determines those 

blocks which are profitable for mining  in periods    1    and    2  ;  then solving 

problem (k.l.k) selects from this group those which are best taken  in 

period    1  . 

Next we must consider blocks which were not profitable for mining  In 

period    2    but whose value In period    I    may be such that they can be pro- 

fitably taken  in period    I  .    This may also force blocks, which have already 

been selected for period   2 ,  to be rescheduled  Into period    I   . 

To determine such blocks consider only the set   W      and adjust  the cost 

coefficients of these variables as follows: 



'). 

Solve 

a? - £?) if h\ w1 nvi' 

if h c w1 n w2 

Maximize        c.w 

Subject   to    Ew      r5 0 

Iw      s  ) 

w        5 0 

giving  the optimal   solution    w'      .    Then alter  the sets    W    ,    W    ,    W 

2 
and W      as follows: 

h / Wh    = ^ wl < ' {w, 
wl-jw^/w;'  -oj 

..2^2.-2        .     - 
W

+ 
e|wh / \    s]' wl 

These  sets provide  the optimal   solution to problem (4.3.1). 

The steps of  the algorithm will  now be presented   In terms of the 

general  T-perlod sub-problem (4.3.5) where    ^b ' ^ - c .  . 



-2-2 -    T 
Maximize       c.w   + c.w   +  .   .   . + c_w 
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Subject  to    Ew 

(^.3.5) 

Ew 

*      Ew' 

Iw' 

S 0 

S 0 

S 0 

S 1 

Iw    -  Iw S 0 

Iw2 -  Iw3 S 0 

w* * 0 

'Iw1"1  -  IwT    SO 
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OUTLINE  OF   SUB-PROBLEM ALGORITHM 

STLP   I.     INITIALIZE 

Set,       Vk .{,,, .;} 

T    = T 

Yk = ()  ,   Yk =|aM    wk I   for all     k  . 

STEP 2.     SOLVE STAGE     k    PROBLEM: 

Maximize        c. w 
k 

k 

Subject to    Ew      § 0 

Iw      S  I 

w        SO 

Let    w      be the optimal  solution and define; 

..k -   1      )  k -  1   . 
V * <wh / 

|wh / "h =  ^ 

Add    Wk    to    Yk    and delete from    Yk    and   if    k » T    add    Wk    to 

Y*    and delete from   Y*    for    t « k +  1 T . 

• 

STEP 3. 

If    f =   1,   terminate.    The  sets Yk    and Yk    for    k «  I,  2,   ...   T 

solve  the  sub-problem,     if    k = I,   set     k =  t    and go to STEP '♦. 

If    Vk '   '  >< {)  .   set    k = k -   1 and go  to STEP 2.    Otherwise go 

to STEP b. 
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STEP *♦. ADJUST c^ _ , 

Set 

c} . , - cj , , ♦ cj  for h € Yt 

Set 

k - k - 1 

Vk « Y1 " ' 

t ■ t - I and go to STEP 2. 

THEOREM k.\:   The. Aab-pKoblm aZgofUXhm tvoninatti in a fcnUe. nmbvi 

oi 6ttp6 mXh the. optvnal notation, oi pnoblm  (4.3.5). 

Proof: Since the algorithm starts with period T (t ■ T, k ■ T) and pro- 

ceeds step by step through period 1 (T « 1)  it Indeed terminates in a 

finite number of steps. 

Because the conditions of the algorithm always Insure feasibility of 

problem (<*.3.S)i to demonstrate optimality it must be shown that there does 

not exist a node (h) such that 

(a) w. » 0 , k ■ maximum t / w. ■ 0 and c. •*■   £   c. > 0 
h h        k  I 6 0(h) k 

or 

(b) w?; - 1, z « minimum t / w* - 1 and h € 0(1) / c' ♦   Z        cq < 0 
h h *  q€0(l) 
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Clearly the algorithm does not allow all these conditions to hold. For 

example, consider the case where T » 2 . When wh ^ 0 and k "= 2 then 

2 
the Initial pass through STEP 2 prohibits condition (a) by Insuring w. ■ 1 

- i k 
If   E   c' > 0 . If w* » 0 and k «= I , then by the algorithm 

I € 0(h) Z h 

c. +   D   c. < 0 , thus condition (a) cannot hold. When w. ■ 1 and 
1   I € 0(h) ' n 

z « 2 , then as before the Initial STEP 2 assures h C 0(1)  such that 

c! *       S    c!J > 0. If vv «= I and z •= I , then either both 
q € D(i) 

S1 +   Z cj > 0 for t - 1 and 2 or for (i) € Y, such that 
1      q€0(l) t 2 

h C 0(i) , c' +     Z     cj S 0 and (I) for period 1 is such that 
2  q € 0(1) U Y2 ^ 

fi! +   E   c? - c! > 0 so that ci - li - S     cj * c! > 0. 
1  q € 0(1)  '   ' '   Z  q € 0(1) U Y2 

Z   ' 

Hence condition (b) cannot hold and Theorem Is proven. QE0 

k.k    NUMERICAL EXAMPLE OF 2-PERI0D SUB-PROBLEM 

Consider the  following networks corresponding to a 2-perlod sub-problem 

In the form of  (^.2.3).    The number   in the  lower half of the circle repre- 

sents the    <c   >   while the node number   Is shown   in the upper half. 

(a)    Period  I (b)    Period 2 

FIGURE l*.k.\:     EXAMPLE NETWORKS FOR TWO-PERIOD PROBLEM 
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I    '   k 
Using w B  E  Y  and transforming the problem to the form of 

k = 1 
(^.3.1) gives the corresponding networks shown in Figure 4.4.2. 

(a) Period 1 (b) Period 2 

FIGURE k.k.2:     EXAMPLE NETWORK FOR TRANSFORMED TWO-PERIOD PROBLEM 

Applying the algorithm to the problem represented In Figure k.k.2 

for f ■ 2 gives 

W2 * 
2      2     2     2      2      2   \ 

W2, W^, W^, W^, Wg, Wj2 i 

after STEP 2 

( I  I  I  I  I  1 ) 
<w2, Wj, w^, w^, Wg, w]2 > 

2        2 
Y - W . 

Since V f* ^ , set k • 1 , return to STEP 2 and solve the problem 

represented by the network In Figure '♦.'♦.3. 
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FIGURE k.k.3:     NETWORK FOR PR03LEM IN FIGURE k.k.2 

WHEN f «= 2 AND k = 1 

On this pass STEP 2 yields 

and 

W1 «|wj. wjj 

Y1 ■«' 

Since k « 1  In STEP 3 proceed to STEP k  which yields the network shown 

in Figure k.k.b  with T ■ I and k = I . 

FIGURE k.k.k:     EXAMPLE NETWORK FOR T - 1 AND k « 1 
■ 
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Another STEP 2 provides 

ul      (   I       1       1       1       I       I       I 1 
= jwI' "V *$' "6* "7* w9' w10( 

and sJnce    f = I   ,  termlnatJon  is reached  In STEP 3 with 

vl      )   1       I       I       I      )      I       I       I       I   | 

w,,,  w|2> 

In other words the optimum mining plan for this sub-problem  is to take 

blocks  1-7, 9.  10  in period I and blocks 8,   11,   12  in period 2. 

I      I   I 

2 

Y'-^, 

Y 
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^♦.5 GENERAL COMMENTS AND PROCEDURAL SUMMARY 

The type of decomposition utilized In the algorithm presented In sec- 

tion ^.3 reduces the size of the problems with the form (^.3.2) which need 

to be solved at any one time by the methods of Chapter 3.  In this sense 

It reduces the average number of paths incident out from any positive node 

and hence should decrease computation time considerable. Even though com- 

putational experience is not available at present to verify this assertion, 

there seems to be a strong Indication that this is true.  In [10], Gilbert 

deals with a comparable scheme and his conclusion Is (from the viewpoint 

of this paper) that the ability to partition the problem (4.3.2) Into 

separate parts would be computationally efficient. Even though he Is not 

actually dealing with the same form of the problem, his conclusions seem 

applIcable here. 

The extension of the methods described In section 4.3 to the case of 

unequal block size can be accomplished with ease In a manner similar to 

that discussed In Chapter 3. 

With the developments of Chapters 3 and k,  the T-perlod open pit mine 

production scheduling problem can now be handles quite nicely by employing 

the decomposition principle of Datzig and Wolfe, thus taking full advantage 

of efficient network techniques permitted by the simple structure of the 

sub-problems. 

The procedures and the algorithms developed In this present investi- 

gation may be used for all phases of mine planning; optimum long range planning 

and optimum short range planning as well as optimum operational or actual 

production scheduling. 

In order to utilize the methods of this study, one must first of all 

formulate the scheduling problem as a large scale linear programming problem 
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considering the constraints which govern the system as discussed  In Chapter 

2.     Next,  the decomposition principle   is used to decompose the problem  Into 

a  rather simple  linear programming problem,  called the master problem,  and 

a sub-problem which can be easily solved by the methods developed   in Chapters 

3 and k.    The master problem  is first  solved to obtain the  fUcU f    ^   anc| 

s  ,  from which the profit coefficients for the sub-problem are determined. 

After  the subproblem  is  solved for a mining plan based on the profit coef- 

ficients, the value of this plan,    cY  ,  (see problem ^.2.3)   is compared to 

the price,    s  ,  for optimabiIity.    If    cY > s     it   is profitable to  include 

the present plan  in the master problem.    This procedure  is repeated until 

the optimality condition,    cY S s ,   is realized.    The master program selects 

a convex combination of the sub-problem plans which satisfies  the given con- 

straints and maximizes total  profits.    To  initiate the master problem an 

Initial  feasible mining plan  Is  required.    Such a plan  is readily available 

since any mining scheme which satisfies the allowable mining sequence con- 

straints wilI  do. 

To aid the presentation of the complete procedure  the following flow 

chart   Is given. 

In the next chapter the flexability and general  utilization of the 

proposed methods will  be discussed and  illustrated through numerical 

examples. 

•MMH 
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Yes 

GENERAL FLOW CHART OF COMPLETE PROCEDURE 

Init ial Ize;   select 
initial   feasible solution 
for sub-problem. 

Solve master problem. 
(Find optimal   [\\] and 
prices,    n    and    s  .) 

I 
Determine sub-problem 
profit coefficients, 

I 
Select most profitable 
way (mat'1 type and 
process) to treat each 
block,     (max c*V    and v  q      qt 
corresponding variable 

Lvlj _"  

Transform sub-problem 

i    ?  k 
by w =  E Y  into 

k - I 
form for algorithm. 

1 
Is it profitable to 
consider new sub-problem 
plan in master? (cY > s) 

Terminate: 
Have optimal 
mining schedule. 

(Xh * * K'<  ) 

Solve stage k 
problem for mineable 
and non-mineable 
blocks using algorithm 
given in Chapter 3. 

/pe 
Have a 11 
periods beer 

\ examined? 

XL:') 

Yes 

• 

Have a 11 blocks 
found profitable for 
period    t    been scheduled 
(k -  I  or Vk "  '  - |))? 

Adjust profit 
coefficients,    i 
for examination 
of next period 
(t - f -  1). 

T -   I 
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CHAPTER 5 

MINE PLANNING AND SYSTEM MANAGEMENT 

5.)     INTRODUCTION 

Mine planning and system management contribute greatly to converting a 

mineral deposit   into an economically feasible mining operation.     If manage- 

ment's goal of maximum profit   is ever to be attained,  scientific decision 

tools similar to those developed  in this   investigation must be substituted 

for present mine planning practices. 

Besides providing that open pit mining schedule which maximizes profit, 

the model and the method of solution discussed  In previous chapters yields 

other benefits as well.    The techniques of sensitivity analysis by parametric 

variation of costs or constraints, provides much valuable  Information to 

aid management   In evaluating their policies,  mining techniques,  system de- 

sign,  and technological  changes.    In a sense,  solving the model   is a "lab 

experiment,"  In which many different possible plans resulting from various 

policies,  practices and technologies may be  rapidly expanded to evaluate the 

ensuing patterns of development.    The procedures presented  In this  study may 

also affect some of the traditional  concepts used  in mine planning such as 

cut-off grade or economic cut-off  in the sense  they are presently known to 

be applied as discussed   in Chapter  I.    Also one can view the entire planning 

horizon through the model and thus consider the   interaction of demands of 

period schedules.    This   insures the attainment of the maximum total  profit 

goal   If a feasible plan exists.    This goal  of maximum total profit may not 

be attainable by sequential sub-optimization:    maximizing profits for each 

period   in succession subject to only the constraints of that period. 

In order to  illustrate some of these concepts some simple numerical 

examples will be presented. 
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5.2    NUMERICAL EXAMPLES ' 

5.2.1 Modul  Sett iiuj • 

A   two dimensional  model   based on the data   in Table  5.1  will   serve  to 

illustrate how mining programs   (schedule:.)  may vary with management objec- 

tives  and  the constraints   induced  by  the  system or  management policies. 

The  system considered  here   is  a mine and a concentrator.     It   is as- 

sumed  that   the concentrating process   is  not varied   to change output   but  that 

it   Is operating within   its'   most efficient   range.     The valuable constituent 

within  the ore will   not be  designated,  but   if  the  reader desires  he may  think 

of  the ore as an  iron-bearing material.    The assay values are then per-cent 

iron. 

5.2.2 Example   1 

The ultimate pit limit obtained by using the method of Chapter 3 (with-    * 

Out constraints) is shown in Figure 5.1.  The totat mimbiz fiZAeAvz   as in- 

dicated by the ultimate contour has a value of $232,320 (96.8 x 2400) 

(profit before taxes).  This itAtAvz   includes 9600 cubic yards waste and 

110,400 tons crude ore yielding 42,219 tons concentrate with an average 

grade of 66.05. 

Note that within the ultimate limit there are blocks, for example (1,4) 

and (0,12), which are designated as ore even when their profit values are 

negative.  These blocks are such that their value as an ore is greater than 

their value as waste.  Such ore blocks with negative values will only be 

mined if the underlying blocks cover the loss of the negative ore.  For ex- 

ample if block (1,4) had been designated waste, it would have been uneconomical 

to recover block (?,5), ^nd hence total profits would have been reduced to 

96.0 instead of 96.8 .  (These valuos are the profit index values.  The true 
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Blk. 
Vol 

* 
ume %  Crude 

Analysis 

% Rec 
Tons Cone/ 
Ton C rd. 

Cone 
Tons 

% Cone 
Analysis 

Pit Hrs 
per yd. 

Profit Faetor/yd. 
eu. yds. 

Cone Waste 

0.1 2400 0.0 -4.0 
0,2 i 0.0 -4.0 
0,3 30.0 44.8 2150 67.0 .015 9.3 -4.0 
0,4 20.0 30.4 1460 66.0 .015 3.2 -4.0 
0,5 15.0 23.8 1140 63.0 .020 - .1 -4.0 
0,6 10.0 19.8 930 52.0 .020 -4.2 -4.0 
0.7 25.0 39.2 1880 64.0 .020 5.0 -4.0 
0.8 40.0 58.1 2790 69.0 .025 14.1 -4.0 
0,9 35.0 51.8 2480 68.0 .015 10.8 -4.0 
0,10 35.0 51.8 2480 68.0 .015 11.2 -4.0 
o.n 10.0 16.7 800 60.0 .012 -4.2 -4.0 
0.12 15.0 24.2 1160 62.0 .018 -1.7 -4.0 
0.13 0.0 -4.0 
0,14 0.0 -4.0 

1.2 0.0 -4.2 
1.3 20.0 32.3 1550 62.0 .020 2.9 -4.2 
1.4 15.0 23.5 1130 64.0 .020 -1.7 -4.2 
1.5 10.0 15.9 763 63.0 .020 -4.3 -4.3 
1.6 5.0 12.5 600 40.0 .020 -7.5 -4.3 
1.7 15.0 25.0 1200 60.0 .020 -1.2 -4.3 
1.8 20.0 31.8 1520 63.0 .020 1.7 -4.3 
1.9 20.0 31.8 1520 63.0 .020 1.2 -4.2 
1.10 25.0 40.5 1940 62.0 .020 4.6 -4.2 
Ml 20.0 30.4 1455 . 66.0 .020 2.1 -4.2 
1.12 15.0 22.7 1009 66.0 .020 -1.2 •4.1 
1.13 0.0 "4.1 

2.3 20.0 31.7 1500 64.0 .012 .8 -4.1 
2.4 22.0 33.9 1625 65.0 .012 1.0 -4.1 
2,5 20.0 24.4 1412 68.0 .015 2.5 -4.2 
2.6 35.0 51.5 2470 68.0 .010 9.6 -4.2 
2.7 40.0 58.9 2820 68.0 .015 12.9 -4.2 
2.8 40.0 58.0 2880 69.0 .015 13.3 -4.3 
2,9 35.0 52.4 2510 67.0 .015 9.2 -4.2 
2,10 i i 25.0 37.9 1830 66.0 .015 4.3 -4.2 
2,11 f 30.0 46.1 2220 65.0 .012 8.3 -4.2 
2,12 2400 30.0 46.1 2220 65.0 .012 8.0 -4.2 

Yards to tons eonversion factor » 2 tons/yard. 
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profit may be obtained by multiplying by 2^00.)  In all further discussion 

the index profit values will be used. 

Now let us assume that we are going to mine this deposit over a time 

horizon of three periods. Also assume that the restrictions on the system 

are only on mining capacity per period. These restrictions are that not 

more than 8 block units may be taken in period I and not more than 10 

in each of the remaining periods. 

The problem now is to plan the operation such that the restrictions 

are not violated, but so that we maximize total profit.  It is known from 

the unrestricted ultimate plan that the maximum profit realizable from this 

deposit is 96.8. If this can be obtained by a mining program that satisfies 

the capacity restrictions, such a program is optimal. 

From Figure 5.2 it is seen that there are at least three different 

schedules which meet these criteria. Any of these plans is optimal with 

respect to our assumed model and could be obtained by the methods proposed 

in this study. The optimal solution in this case is not unique and a post- 

optimal analysis of the model would provide all the possible variations of 

the optimal solution. 

In plan 1, Figure 5.2a, the profit values for periods 1 and 2 are more 

nearly equal then in the other plans. In plan 2 the concentrate tonnages for 

periods 1 and 2 are approximately the same. The cumulative schedules for 

periods 1 and 2 are identical for plan 2 and the plan   shown in Figure 5.2c, 

yet for the Individual periods the mining plans differ. 

Figure 5.2c shows the mining schedule which maximizes the profit in 

period 1 subject to the mining capacity constraints and then from what remains, 

provides the maximum profit in period 2, again subject to the capacity con- 

straints. The remaining material within the ultimate contour is recovered 

in period 3 and also satisfies the capacity constraints. This last plan 
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illustrates sequential   sub-optimization which  in  this case also maximizes 

total  profit.    This situation  is not always true as will be  indicated  In 

• the next section. 

The mining programs  shown  in Figure 5.2,  thus  illustrate that there may 

be a number of feasible plans which satisfy the overall objective of maxi- 

mum profit.    However, as also  is shown,  there may be other objectives or con- 

siderations such as to equalize production among periods or even to maximize 

profits  in a particular period.    Many times these considerations may be due 

to what  is termed the ifUultivt miünQ appfioadi    or the «^ orf mining . 

With the techniques developed   in this  investigation many of these practices 

may be studied and evaluated. 

5.2.3    Example 2 

In order to Illustrate,  to a greater extent,  the effect and cost of 

system constraints and management policy  let us now  Impose further restric- 

tions on the example model.    Assume together with  the mining capacity con- 

stralnts of the previous example we have the followii j restrictions on the 

concentrator and concentrator product: 

1. Available concentrator hours for period  1  S 2k0. 

2. Available concentrator hours for periods 2 and 3 - ^80. 

3. Average grade of concentrate be between 6^.0 and 66.0 in each 

period. 

The objectives will be to maximize total profit. 

As was   indicated  in the discussion of the ultimate contour,  the average 
> 

grade of the total  ultimate reserve was 66.05,  hence the  last  restriction 

may be somewhat unrealistic.    But for the sake of   illustration we will as- 

sume this  is the result of some management policy.     Because of this grade 
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resirict ion or,  v7i.il  a.-,   the others wc know that  our lotal  prol'it  may be   less 

tlvin 96.8 c-ind  one  of   the  foUowing or  bcith arc  going to occur.     First   in 

order  to meet   the  grade   restriction of 66.0   it  may be necessary   to blend   In 

some waste material  with  the ore.    Another way   to possibly achieve  this   limit 

Is to extend  the mining  operation beyond  the  optimum ultimate contour.     Using 

the methods  developed   in  the present   investigation the best way  to meet   the 

given  restrictions will   be selected  from  these  alternatives. 

Shown   in Figure  5.3 are two mining plans   for our three period problem 

which satisfy   the constraints on mining  capacity,  concentrator  capacity and 

management's grade  restrictions.    These  plans were obtained by  using  the 

procedures developed   in Chapters 3 and U.     To start, one of the plans  given 

In Figure 5.?.  was used as an  initial  feasible  subproblem solution,  which 

even though   infeasible  for the master problem provided   initial   prices.     After 

a few  iterations  of  the master problem and  the  subproblem routine,  plan  I was 

obtained. 

In plan   I   the period schedules  remain within the ultimate   limit  but  some 

of the material,   blocks   (0,6)  and  (0,11),  which was previously designated 

as waste has been utilized as ore.    The  total   profit    at  this  stage of   the 

master problem   is 96.715. 

Plan 2,  Figure 5.3b,   is the  result  of another  iteration through  the sub- 

problem routine and  the master problem.     The pricing mechanism of  the master 

problem has   indicated  that profits may be   increased to 96.756 by  remaining 

with the waste  designation of blocks  (0,6)  and  (0,11),  except  for a small 

amount  of block  (0,6),   but extending the mining operation beyond  the optimum 

ult imate   Iimit. 

Figure 5.^   illustrates the optimum mining schedule for  the  three period 

problem which was  obtained after one more   iteration.     The .-»verage  grade   in 

each period   is  66,0.     This plan   is similar  to plan 2,  but  note  now that all 
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of both blocks (0,6)  and  (0,1)) are designated as waste and the extension 

beyond the ultimate   limit   is slightly  less  than  in plan 2.    The total maximum 

profit  is 96.781 and thus some restriction has caused a decrease  In profit 

from that of the ultimate   limit.    Since as   is shown  in Table 5.2 there still 

Is concentrator (plant)  capacity remaining for each period,  the conclusion 

is  that the decrease  In profit  is mainly due to the grade restriction. 

The previous example has demonstrated how the cost and effect of system 

constraints and management policies may be evaluated.    Even though the given 

grade restriction may not have been realistic considering the average grade 

of the entire deposit,   it still brings out the value of such an analysis. 

Many of the system constraints and policies are unavoidable,  but knowing their 

cost and effect may be a  tremendous aid to management. 

Figure 5.5 shows the mining plan for period 1 which yields the maximum 

profit subject to the mining capacity, concentrator capacity and grade con- 

straints of the previous problem.    This  is  the  initial phase of determining 

a mining plan by sequential  sub-optimization  in that the constraints for the 

other periods were  Ignored.    This plan for period  I differs considerably from 

that of the period I plan within the maximum total  profit plan.  (Compare 

Figures S.k and 5.5)    Note that in the plan of Figure 5.5 it  Is more pro- 

fitable totreatsome waste blocks (0,6) and (0,11) as ore rather then ex- 

end the mining beyond the ultimate contour. 

The period I profit   In the sequential  sub-optimization plan (Figure 5.5) 

is 1*1.1*27 which Is nearly triple that of the period i plan given In Figure 

5.1*.    This looks quite good until we consider the mining system over the 

entire planning horizon of three periods and the objective of total maxi- 

mum profit. 

First of all we must recall that any deviation from the optimum ultimate 

contour plan costs money.     Since the average grade of the remaining material 
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lABLt:   5.2;     FRACTIONAL   «LOCKS  FOR  MAX.   TOTAL PROFIT & MAX, 

PERIOL)   1   PROKI1   PLAN'S   (RESTRICTED  CASE) 

Max. 1 oral Profi t Plan 

Max. Profit 
BIk. Frac tion of Bl ock 

Period 1 Plan 

Period I Pe r i od 2 Period 3 

0,2 .1875 
0.3 .2348 .7652 1.000 

0,4 .7936 .2064 

0.5 .5588 .4412 
0.6 1,0000   .2512(ore) 

0.7 .7936 . 2064 1.000 
0.8 .8320 .1680 .3990 

0,9 .6224 .3776 1.0000 
0,10 1.0000 1.0000 

0,11 1.000   1.0000 
0.12 .6523 .3478 
0.13 .6733 .3267 
1.3 .1875 
1.4 .0919 .9081 

1.5 1.000 
1.6 1.000 

1.7 1.000 
1.8 .2348 .7652 

1.9 .2348 .7652 
1.10 .0750 1.000 I.0000 

1.11 .3267 .6733 
1.12 .0919 .9081 
2,4   .1875 
2.5 1.0000 
2.6 1.0000 

2,7 .6285 .3715 
2.8 .6507 .3493 
2.9 .3267 .6733 
2,10 1.000 

2.11   1.000 

Total 6.7304 9.9430 9.9967 6.650 

Pit Hrs 225.17 403.92 4J7.60 240.0 

1.1478 ore 
.8522 wastej 

^^MaaaMaaaaaBaaaai^aBaaHaaaaaMaai 
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in the  sequent io I   pidfi   is tiuSb we would expect   that   the  grade   restrictions 

j 

could be met.  We would also expect to stay within the concentrator capacity 
t 

limitations.     However,   consider   the inining capacity constraints.     As   indicated 

' in Figure 5.5,  a  total  of 6.65 blocks were  taken  in period  1.    This   leaves 

20.35 blocks  to be mined  in the  remaining  two periods   If we are  to adhere to 

the optimum ultimate plan.    The condition could be relieved by taking some 

waste blocks   In period   1.    This would of  course decrease period   1  profit. 

No further ore material  could be  treated   in period  1  since the concentrator 

is at maximum capacity.     By shifting waste blocks we would not effect  the value 

of possible  total  profits. 

Next consider the value of  the  remaining material within  the  ultimate 

contour.    This   Is  found to be 55.279 and  together with the maximum profit of 

^l.'*27 from period  1   gives a possible maximum profit of 96.706.     This   Is 

i less than the 96.781  profit value achieved   in  the maximum total  profit  plan. 

Since 96.706   Is an upper bound o" the  total  maximum profit  for  the sequential 

f.  - 
suboptimization schedule it is clear that In this case such an approach would 

be costly. 

The   last  example  has   illustrated   the possible profit  effect  of  sequ- 

ential   sub-optimization.     Even when discounting we cannot  be  certain of at- 

taining  the goal   of maximum total  profit  unless  consideration   Is  given  the 

mining system over  the  entire planning  horizon. 

5.3    MANAGEMENT CONSIDERATIONS 

The model   and  techniques developed   In   this   thesis provide management 

with a new decision tool.     Besides  yielding  the  optimal  production  schedule 

and an evaluation of  the mineral   deposit,   policies,   technological   changes 

and system design  features may be evaluated as   demonstrated by   the   numerical 

examples of the previous   section. 
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Tho  cost and effect  of policies con be  readily obtained by   inserting 

constraints describinc;  such policies.    Sensitivity analysis or parametric 

analysis will aid the determination of the effect of constraints on profit. 

For example, assume for one  reason or another a  1 im it has  been  Imposed on 

capital  expenditures of a certain type,  say electric shovels, thus  limiting 

available  shovel   hours per period.    By examining  the multiplier or price 

corresponding to this  restriction,   the  increase or decrease  in profit  re- 

lated to a variation of  such a constraint could be   indicated. 

Such an analysis  could be helpful   in determining a capital   investment 

plan.     If policy constraints are  not tight,   they are not  effectual   in 

governing the plan and hence need not concern management  or operators  until 

the conditions change.    Among the many management considerations which may 

be studied are orderly depletion policies,  equipment  relocation,  marketing 

and  labor agreements which effect  the operation. 

Technological changes  such as those which affect  the method and results 

of mining,  concentrating or  refining can be evaluated by considering them 

as a new activity or possibly only effecting the profit coefficients of 

present activities.     For  example,   if a new method of concentrating   Is de- 

veloped,   this could be considered as adding a new element  to each    Q.    as 

discussed  in Chapter   1.     Thus using the present  prices,   the economic value 

of the  new technology could be evaluated. 

System design features such as mining methods,  concentrator design, 

haulage systems and  location of  surface facilities may be evaluated 

through use of the proposed model.    The design variations could be  Incor- 

porated   into the original  model   by  introducing new activities or evaluated 

as  separate syster.^.     The   location of  surface  facilities  such as waste 

dumps,   concentrator and other  shops can be  studied by employing  the model. 

Problems of relocating existing  facilities,  which may  for some reason be 
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within  the area of the possible mineable  reserve,  can be  solved by using 

a dummy block with a cost equal   to the  relocating cost  [10].    The best  time 

for relocating would also be a product of  the model with this  technique. 

Since the coefficients of the model  are based on drill  hole samples, 

their estimates may not always be precisely accurate.    This  fact makes 

sensitivity analysis [5,  21] extremely   important [12].    Many of  the co- 

efficients may be the result of a  statistical analysis,   thus using sen- 

sitivity analysis   in conjunction with the confidence   intervals  for these 

coefficients could aid  In determining where expenditures  should be made 

to obtain better estimates.    Also,   sensitivity analysis  is   important due 

to the variability that occurs   in a mining operation.    Some of this  Is con- 

trollable while   in other cases uncontrollable circunv tances may cause dis- 

ruptions   in the optimal plan.    Knowing the effects of variability  through 

sensitivity analysis could aid greatly once a disruption occurs   in the 

plan of operat ion. 

The great effect mine planning has on corporate profits certainly 

| Justifies a  scientific approach to the problem.    The cost  associated with 

a poor mining plan may far exceed  the cost of development  and utilization 

of new scientific decision techniques which greatly   improve mine planning 

and production scheduling.     Even though the trial  and error  techniques which 

have been developed recently have   improved mine planning,   they still contain 

many of the   inherent erroneous concepts of the traditional  methods as has 

been pointed out   in this work.    Often with  the trial  and error methods, 

many of the   important factors   influencing profit are neglected and  there 

is always  that element of doubt concerning how the chosen plan rates with 

regard to the "best possible." 

j As a readily adaptable suggestion  to those who are presently  utilizing 
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extensive trial and error methods we present the following. Formulate the 

system constraints as a linear programming master problem and use present 

techniques of selecting a plan to solve the subproblems. The master prob- 

lem will select and combine the trial plans into a feasible schedule and 

the pricing mechanism will guide the trial plan selection towards the op- 

timal. Although not as desirable as the methods developed in this study, 

such a scheme should Improve the trial and error method with very little 

additional work. 

The model and the method of solution developed through this research 

have great potential application. Their flexibility greatly improves present 

methods of mine planning. The profit derived from the system approach to 

the cut-off alone may pay for the cost of practical implementation.  It 

Is hoped that the tools provided by these techniques will be a benefit to 

engineers, operators, mine and corporate management through Increased ef- 

ficiency and effectiveness In planning, scheduling, evaluating and managing 

their operations. 

^  mmm *—mm mmmmmmmm 



119 

REFERENCES 
l 

[1]       Axelson, A.  H. ,  "A Practical Approach to Computer Utilization in Mine 
r Planning," presented at   the International  Symposium - Applications 

of Statistics, Operations Research ciiid Computers in the Mineral 
Industry,  Colorado School of Mines,   (October 1964). 

[2]       Berge,  Claude,  THE THEORY OF GRAPHS AND ITS APPLICATIONS,  translated 
by Alison Dolg, Methuen and Company,  Ltd.,   London,   (1966). 

[3]       Berge,  Claude and A.  Ghouila-llouri,  PROGRAMMING,  GAMES, AND TRANS- 
PORTATION NETWORKS. 

lA]       Busacker and Saaty,  FINITE GRAPHS AND NETWORKS:    AN INTRODUCTION WITH 
APPLICATIONS,  McGraw-Hill,   (1965). 

[51       Dantzig, G.  B., LINEAR PROGRAMMING AND EXTENSIONS,  Princeton University 
Press, Princeton,   New Jersey,   (1963). 

[6]       Dantzig, G.  B.  and P.   Wolfe,   "Decomposition Principle  for Linear 
Programs," Operations Research.  Vol.   8, No.   1,   (January 1960). 

[7]       Duer, B.   C.,  "Optimization of the Design of Open Pit Mining Systems," 
^ Thesis  (Doctor of Engineering,   Industrial Engineering), 

University of California,  Berkeley,   (June  1962). 

[81       Erickson, J.  D.  and M.   T.  Pana, "Preparation of  Short-Range Mining 
Plans by Computer at the Utah Mine of Kennecott   Copper Corpora- 
tion," Scientific and Engineering Computer  Center Report, 
Kennecott Copper Corporation,  Salt Lake City, Utah,   (1966). 

[91       Ford, L.  R.  and D.   R.   Fulkerson,  FLOWS IN NETWORKS,  Princeton 
University Press,   Princeton, New Jersey,   (1962). 

[101    Gilbert, James W.,   "A Mathematical Model  for the Optimal Design of 
Open Pit Mines," M.S.  Thesis,  Department of  Industrial Engineering, 
University of Toronto,   (September 1966). 

[Ill    Hartmen, R.  J.,  "The Design of a Mining Engineering System for 
Computer Applications,"  presented at  the University of Minnesota 
Mining Symposium,   (January 1967). 

[121    Johnson, Thys B.,   "Maximizing Returns from Mine  Products through Use 
of Operations Research Techniques,"  to be published as U.S. 
Bureau of Mines Report of  Investigations. 

[131    Kuhn, H. W.   and A.  W.   Tucker,  LINEAR INEQUALITIES AND RELATED SYSTEMS, 
Annals of Mathematical   Studies,  No.   38,  Princeton University 
Press, Princeton,  New Jersey,   (1956). 

[141    Lane, K.  F.,  "Choosing the Optimum Cut-Off Grade,"  International 
Symposium - Applicationb of Statistics, Operations Research and 
Computers  in  the Mineral  Industry,   Colorado  School of Mines 
Quarterly. Vol.   59, No.   4,   (October 1964).   "           "       "" 



1 

120 

[15]    Lerch,   Helmut   and I.  F.  Grossman,  "Optimum Design of Open-Pit Mines," 
Canadian Mining and MetaJlury.lcal  Bulletin.  Vol.   58,  No.   633, 
pp.   47-54,   (January 1963). 

[16]    Meyer, Manfred,  "A Mathematical Programraing Model for Optimum Design 
of Open Pit Ore Mines," Management  Sciences Research Group 
Report No.  93, Carnegie Institute of Technology, Graduate School 
of  Industrial Administration, Pittsburgh,  Pennsylvania, 
(December 1966). 

[17]    Meyer, Manfred,  "Some Computational Experiences with a Mathematical 
Programming Model for Optimum Design of Open Pit Ore Mines," 
Management Sciences Research Group Report No.   99, Graduate School 
of Industrial Administration,  Carnegie Institute of Technology, 
Pittsburgh, Pennsylvania,   (March  1967). 

[18]    Ore,  Oystein,  THEORY OF GRAPHS,   American Mathematical Society 
Colloquium Publications, Vol. XXXVIII, Providence,  Rhode Island, 
(1962). 

[19]    Pana, M.  T.,  "The Simulation Approach to Open-Pit Design," presented 
at  the Fifth Annual Symposium on Computer Applications in the 
Mineral Industry, Tucson, Arizona,   (March 1965). 

[20]    Pana, M.  T.,  Carlson, O'Brian and Erickson, "A Description of Computer 
Techniques Used in Mine Planning at the Utah Mine of Kennecott 
Copper Corporation," presented at  the Sixth Annual Symposium on 
Computers and Operations Research, Pennsylvania State University. 
(April 1966). 

[21]    Slmonnard, Michel, LINEAR PROGRAMMING,   translated by William S.  Jewell, 
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,   (1966). 

[22]    Vickers,  Edward L., "The Application of Marginal Analysis in the 
Determination of Cut-Off Grade," presented at the Annual Meeting 
of A.I.M.E., St.  Louis, Missouri,   (February 1961). 

-^ 

L   '      ■ ,.       ■ -  . ' -J 



t 

A.l 

APPEN'DIX A 

NETWORK DEFINITIONS 

The following definitions of network or graph  terminology are an aid to 

the interpretation of the development in the main text. 

1. Graph or Network  (Directed)  the system,    E ■  (x,A)    formed by a 

set of elements    x.  c x    called nodes, and a set of ordered pairs 

(x. ,x.)  e A    called arcs. 

2. Sub graph of    (x,A) - a graph    (Y.A)    where    Y c x    and 

A   ■ {(x.x.)/(x1x ) G A/x ,x    e Y}    in other words it conslata 

of a subset,    Y    of   x   and all the arcs in   A   which connect the 

nodes in   Y . 

3. Partial graph of    (x,A) - a graph    (x,Ap)    formed by the set    x 

and the set of arcs   Ap c A ;  i.e., a partial graph contains all 

the nodes of the original graph and a partial set of arcs. 

4. Partial subgraph of    (x,A) - a partial graph of a subgraph of the 

form    (Y,A    )  , where   Y c x    and    A     C A   c A . 
yp yp     y 

Remark; 

An arc (x ,x4) or (i,J) will always be assumed to be directed from 

x- or' i to x. or j . 

5. Edge    [x.,x.]    of the graph    (x,A) - a pair of nodes    (x-.x. 1    is 

an edge if    (x. ,x.) e A   or    (x. ,x.)  e A . 

6. Adjacent nodes -  two distinct nodes Joined by an arc. 

7. Adjacent arcs  (edges) - two arcs  (edges) with a common node. 

8. Path - a sequence of arcs    {a  , a     ,  a...   , a  }    such that the 

terminal node of each arc coincides with the inl  ial node o? the 
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succeeding arc; i.e., all arcs in the path have a similar orienta- 

tion. 

A path Is compound if it uses the same arc more than once. 

A path is ele* jntary if it does not pass through the same node 

more than once. 

9. Circuit - a path {a, ..., a } such that the initial node of a. 

and the terminal node of a  coincide. 
n 

10. Strongly connected graph - a graph in which for any two nodes 

x. and x. , x. ^ x. there exists a path connecting x  with 

11. Accessible sets ~ when x. and x. are nodes such that there is a 

path from x. to x , then x  is accessible from x  written 

as x > x . The accessible set D(x ) is the set of all nodes 

i 

accessible from x 
1 ' 

Note: 

By definition x. { T)(x.)   also define D(x ) - D(xi) U x. 

12. Chain - a sequence of edges (*]• *4 >£i+<* •*•» O 8uch that each 

of the intermediate edges £. is attached to 1... at one of its 

extremities and to t. . at the other. 

13. Cycle - a chain beginning and ending at the same node. 

14. Connected graph - a graph in which for any pair of nodes x. and 

x. there exists a chain connecting them. 

15. Antisymmetric graph - a graph (x,A) such that 

(x1,x ) c A o (x.,x1) i A . 

16. Incidence - an arc whose initial node Is x is said to be "incident 

out from" x - an arc whose terminal node is x is said 
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to be "incident Into" x . 

given the set of nodes x , then the arc a. * (x,y) . 

is incident into x if y c x , and x | x . 

and incident out from x if x c X and y { $ . 

The set of arcs incident into x is denoted aa A(x) and 

i 
the set incident out from   x   aa   A(x)  . 

17. Co-boundary - the nonempty set of arcs   A(x) U A(x)  . 

18. Co-circuit - a co-boundary in which all arcs are In the same set, 
+ - 

either in   A(x)    or all in   A(x)  . 

19. Tree - a connected graph which contains no cycles; it is connected 

and has n-nodes and n - 1 arcs. 

20. Node-arc incidence matrix (E) - given a graph or network    {x,A} 

the node-arc incidence matrix is formed by: 

1. Listing all nodes vertically s row index 

2. Listing all arc horlzontially s column index 

3. The elements    £^   of    E   are formed by 

.     i+l    if arc    J    is incident out of node    1 
£^ • {- 1    if arc    J    is incident into node    1 

0   otherwise 

For example the node-arc incidence matrix for the network in 

Figure A.l is 
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(x1x2)    (x^j)    (x2x3)    (x^x^)    (x3x2)    (x3xA) 

110 0 0 0 

-10 11-10 

0-1-1 0 1 1 

0 0 0-10-1 

FIGURE A.l:    EXAMPLE NETWORK 
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