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Summary 

The estimation problem is studied for a new two- 

parameter family of life length distributions which has 

been previously derived from a model of fatigue crack 

growth.    Maximum likelihood estimates of both parameters 

are obtained and Iterative computing procedures are given 

and examined.    A simple estimate of the median life is 

exhibited,  shown to be consistent and then compared, 

favorably, with the maximum likelihood estimate.    More 

importantly the asymptotic distribution of this estimate 

is shown co be within the same class of distributions 

as the observations themselves.    This model, and these 

estimation procedures,  are tried by fitting this 

distribution to several extensive sets of fatigue data 

and then some comparisons of practical significance 

are made. 
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1.     Introduction 

A new family of distributions was derived in  [1]  from 

considerations of the physical behavior of fatigue crack growth 

under cyclic loading.    The life length obtained was the mathematical 

representation of the number of cycles needed to force  the fatigue 

crack to exceed a critical value. 

Let us denote by    &   this two-dimensional parametric family 

of distributions of nonnegative random variables defined by 

F(t:a,S) -9U^ C(t/ß)]        for        t > 0 (1.1) 

where    a > 0, ß > 0    and 

C(t)  - t4 - Ch (1.2) 

and    91   is the distribution function of the standard normal variata. 

Of course,  there have been many families of distributions which 

have been suggested as candidates for the theoretical probability law 

governing fatigue life.     Excellent discussions and comparisons of many 

of these have been made by other authors,  see for example  [3],   [5], 

and  [6] and the references given there.     However,   the main intent of 

this study is to investigate  the parametric estimation problem for 

the family defined in  (1.1)  and not to argue its particular merits in 

such applications over other  families of distributions. 

In this paper, we derive  the maximum likelihood estimates of the 

parameters    a    and    ß    and develop some iterative numerical procedures 

for their computation.     We obtain a simple estimate of    ß,    which  is 
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shown to be consistent and shown,  for small values of   a,    to be 

virtually the same as the maximum likelihood estimate.    In all cases, 

It can be used as a good Initial guess for the Iterative procedures 

which compute the maximum likelihood estimate.    We also obtain the 

bias and variance of this simplified estimate under certain limiting 

conditions.    Two different numerical procedures for computing the 

maximum likelihood estimate of    ß    are proposed and their behavior 

compared by applying them to several large sets of observations with 

different, but known, values of the parameters.    We finally present 

the results of fitting this distribution by these estimation 

procedures to some rather extensive sets of fatigue data obtained 

from metal coupons cycled at various stress levels. 

In order to make this paper self-contained we now quote without 

proof some results given In [1], which will be used subsequently. 

Theorem 1.1.     If    T   has  the life distribution    F(a,S)     in   & 

then    1/T    has the distribution    F(a,—)    also in   0%    and for any 
P 

real    a > 0    the  random variable    aT    has a distribution    F(a,aß) 

in    &.    Moreover, 

2 
ET -  p(l + ^-) (1.3) 

9 s  2 

var(T) -  (aera + ^ (1.4) 

and If    Z    is a standard normal varlate,  then 

1 + ^r Z^ + ctZ/l + ^- Z2 (1.5) 

has  the distribution    F(a,l)    in    0, 

■v 
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2.    Maximum Likelihood Estimates and Their Computation 

For a given set of positive numbers    t. t      define the 

arithmetic and harmonic means by 

,     n ii  n      ii"l 

and the harmonic mean function K by 

^ I (x+t^"1)     for x > 0. (2.1.2) 

Now we can state the primary 

Theorem 2.1.    If    t.,,...,t      is a sample of independent 

observations each distributed by    F(a,ß)  e ^    then the maximum 

likelihood estimate    ß    of    8    is the unique positive solution 

of    g(x) « 0    where    g    is  the random function defined by 

g(x)  - x2 - x[2r + K(x)] + r[s + K(x)]. (2.1.3) 

Furthermore    r < 3 < s.    We can also express the maximum likelihood 

estimate    a    of    a,     defined in terms of    ß,    by 

a » /iL+ ^ - 2. (2.1.4) 

Proof. Consider the density for t > 0 obtained from (1.1) 

F'(t:a,ß) = -^Wl-  C(t/ß)]C'(t/ß). aß   a 
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Taklng the natural logarithm of the joint density of the observations 

t.,...tt      we  obtain the  likelihood 1 n 

n „ _ 
L = -n £n a  - n £n ß +   2    (~% ^(2v) - h a" 5  (tj/ß)  + £n S,(ti/ß)}. 

n 

i-1 

Then 

alsL        2       1   v    .2 irfr-" -tJ^Vs» (2-2-» 

1L n -2   ? 1     ft    tjC'^t./S) 

But we notice  that 

C(t)  " ^"^ C2(t)  - t +i- 2 

C'Ct) - ■L~ j-fo (1-1/t2) (2.2.2) 

tg'^t) .    , + 1 t^l . _ 1 _ „L 
C' (t) 2  t+1 2      t+1 

Hence by substitution we have 

9ß      2ß 2     vß       r7       K(ß) 
to.  ß 

2a ß 3L 2 J    ,s       ß,    ,   2a26 
nW*-*    4   (? -P  +K(i)   ' 

By equating  (2.2.1)  to zero we  then have  the equation 

2      s   .  1 

and by equating   (2.2.4)  to zero 

(2.2.3) 

(2.2.4) 

r      2 (2.3.1) 

 -  - -  "^- ■——^—»—_—MMIil<MiMMMMBBMjBIMMaMMMM^jgg|| 
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3      r + K(ß)   ' 

Equating  (2.3.1) and (2.3.2) and simplifying we obtain 

(2.3.2) 

r      ■L + K(ß)   * 

2 
Substituting from (2.3.1) for    a      and simplifying we have that the 

maximum likelihood estimation of    ß    Is the solution of    g(x) - 0 

for    0 < x < oo    (presuming for the present It Is unique).    Now we 

will argue that    ß    Is unique and    r < 0 < s.    Note that    g(0)  - 

r(s+K(0)] - r(s+r)  > 0.    We check that    g(x) -> -»   as    x -► »,    by 
K(x) 

seeing that       * * ■*■ 1    and    [x-K(x)] -♦- -s    as    x -► ».    Then 

&i5i - K(x) + r ^^- - 2r + ^. 

so    g(x)/x ■+ -(s+r)    ae    x H. «.    Now 

g^x)  -  (x-r)[l-K,(x)] + x - r - K(x) 

and one sees  that 

(2.A.1) 

K'(x) - K2(x) ^Kx+t^"2, (2.4.2) 

and we know, since  (ElX|v) v is nondecreaslng In v for any r.v. X, 

we have K'(x) > 1.  Therefore, since x - K(x) is decreasing we see that 

K(x) > x-r for x > 0 and we have g'W < 0 for x > r with at most 

one change of sign.  Thus we have shown ß unique now calculate 

g(r) - r(s-r),   g(s) - (s-r)[s-K(s)]. 
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Agaln by the argument above we know that s > r,  .*. g(r) > 0. Thus 

there exists a unique solution to g(x) ■ 0, say ß, and B > r. But 

g(s) < 0 iff 

therefore g(s) < 0. Thus the unique solution 3 is such that 

(2.5) 

s > P > r. 

Now that we know the unique solution of g(x) ■ 0 exists we check 

that it Is indeed the maximum likelihood solution. Since by substituting 

(2.3.1) Into (2.2.3) we have 

n 3B 
(r-S) 

rs+a -2ßr 

3L 
it is sufficient to check that Tg" 

S-r 

K(0) 

ß-S 
< 0. By substituting 

into the above we find the first Is 1/K(r) > 0 and the second Is 

-1/s + 1/K(s) < 0 by Equation (4.5).|| 

We now present two methods of finding 3. 

Method I:  If the data satisfies the inequality 

2s < 3r + mln(t1,...,t ) (2.6) 

then the Newton Iteration procedure 

g(ßn) 
,,  " ß    - —TTS—r        n"0,l,... 

n+1        n      g   (ßn) 

will converge to ß for all Initial points r < ß. < s, where the 

function g was defined In (2.1.3). 

fa 

^^m^^mmt^mmm» Wtk 
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Proof. To assure ourselves that the Newton method will converge 

It is sufficient that g'tg" do not vanish for r < x < s since they 

are continuous. 

By referring to the formula for g'Cx) in (2.4.1) we see that 

for r < x < s, the first term Is negative since K* (x) > 1. The 

second term is x-r-K(x) which for x ■ r Is negative and decreases 

for x > r. Thus g1 (x) < 0 for r < x < s and cannot vanish in that 

interval. 

We now show that g"(x) > 0 for r < x < s. Note 

g'^x) - 2[1-K"(x)] - (x-r)K"(x), 

and by taking derivatives of Equation (2.4.2) we note 

2K3(x)   n     i      nK(x) l^ti)     ' 

Thus g"(x) > 0 for r < x < s iff 

KJ(x) 2KJ(x) 

But the left-hand side of  (2.6.1) is equal to 

Multiplying both sides of  (2.6.1) by     (x-r)      and letting    X    (in this 

argument only) denote the random variable which takes  the values 

(x-r)/(x+t1)    for    i"l,...,n    with equal probability, we find that  (2.6.1) 

is equivalent with 

EXEX2 -  (EX)3  > EXEX3 -  (EX2)2. (2.6.2) 
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Recalling that in  EX  Is convex In v we note that each side of 

the inequality (2.6.2) is positive. 

Since EX > 0, we can divide (2.6.2) by it and obtain 

EX2 - (EX)2 > EX3 - -^U- . 

But because (EX^1^ is nondecreasing in v we know that  (EX2)2 >_ (EX)4. 

Hence 

2 2 
EX3 - ^P  lEX3 - (EX)3 

and it is sufficient for (2.6.2) to show that EX2 - (EX)2 >_ EX3 - (EX)3, 

2 2 
or equivalently to show EX (1-X) ^L (EX) (1-EX). But for any convex i|/ we 

2   3 
know EKX) l'l'(EX). Thus v(x) - x - x  is convex for x < 1/3. 

Therefore, a sufficient condition that g"(x) not vanish on r < x < s is 

——— < -r   for all   i«l,...,n. 
x+t.  3 '  * 

(2.6.3) 

One can check that (2.6) implies (2.6.3) in the Interval needed. 

Method II:  If the data satisfies 

2r > s, (2.7) 

then for H ■ T-K, where K was Jefined in Equation (2.1.2), set 

A(x) = r + H(x) - ^(x)-r(s-r) (2.7.0.1) 

and for all initial points    r<ß0<s,    as    n -*■ *•    the iteration 

A       (ß0)     converges to    §. 

Proof.     Solve    g(x)  - 0    in the form 

x    - 2x[r+H(x)]  + r[s+2H(x)]  - 0 

V 

M^KaaaMMB^^aBaa^BtfMMMaaB^BM^MBM 
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by considering H(x) as a constant. Then using the quadratic formula 

and selecting the appropriate root we find the solution is A(x) as 

defined in (2.7.0.1). 

In order to assure ourselves that the values A(x) are real for 

x > r we need to show 

H(x) > /r(s-r) . (2.7.1) 

A sufficient condition that this is true is  (2.7) as we now show. 

At    x - r    (2.7.1)  is equivalent with 

but by the relationship of harmonic and arithmetic means we know 

r+ti      2^r      t^ 

and hence 

H(r)      n Z r+ti      2vr     r;      r * 

Thus by assumption  (2.7),  the inequality (2.7.1) will be satisfied 

since we know    H >  r   and    H' >  0    for all    x > 0. 

On«» notes that 

A1  - H* 1 - H 

/H2-r(s-r) 

and by the noted properties of    H    we see that    A'  <  0.    Hence    A    is 

monotone decreasing.    Thus If we can show for    r < ß« <  s    we have 

Av '(SQ)    bounded  (here  (2) Indicates composition with Itself)  then by 
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the uniqueness of the maximum likelihood estimate  (which we have seen 

previously) and the completeness of the real line we have    A      (ßn) ■* ß. 

From the definition,  using the first two terms of the binomial 

expansion we see, 

r + IH!?^ 
A(v ^+«(v (2.7.2) 

Applying    A   again we find 

Atr + fnon 1 -A(2)(6
O
)
 -Atr + H(ßo)1' 

But by  (2.7.2) we have 

For this argument let    Y    be the random variable taking the values 

t^    for    i-l,...,n   with probability    1/n,    now since the function of 

y    defined by    2/(x+y)     is convex in    y    and    EY - s    we have by 

Jensen's  inequality 

E(i) >-ir --t • H(x) Vx+Y/  - x+EY      x+s 

Applying this Inequality to the right-hand side of   (2.7.3): 

A(2)(ß  )   < 2r + s + r^s"r? A       ^0;  l/r + s + 2H(ßn)   ' 

Using  (2.7.1) we obtain a condition known to be sufficient for convergence. 

(2) r < A^^SQ)   < s + 2r + Vr(s-r) 

We claim that the conditions   (2.6)  and (2.7) are not stringent in 

practice and will nearly always be satisfied. 

^■■■riMU^MaMMi HMMHBBMtfHHBi 
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3. The Mean Mean 

Since all Iteration methods are functionally related to how 

close the initial guess is to the answer sought, we take ßn ■ ß  where 

ß = (SR)h (3.1) 

where S and R, now considered as random variables and written in the 

upper case, were defined in (2.1.1). We choose as the initial estimate for 

the median life ß the geometric mean of the harmonic and arithmetic means 

of the sample lives in the data: we call this estimate ß the mean mean. 

We assert that the great utility of this estimate which we shall demonstrate 

subsequently can be accounted for in the following coirarents. 

Theorem 3.1. ß is a consistent estimate for ß. 

Proof. By (1.3) and the strong law of large numbers, with probability 

one 

n 2 
Sn  n ^ Ti ^ ET = ß(1 + V   as   n " 00• 

1  1 n  1       1 
But also ]r" * r S (T"~) 

and T~ » by Theorem 1.1 has the distribution 
j n 1      i i 

F(a, —)    so that with probability one 
P 

r./l\ 1/1     j     Ot    x — -v ECjr) - -(1 + —)        as        n ->• ». 
n 

~    2 2 
Thus clearly    (ß)    ■ S R   -*■ 6      as    n-*-«    with probability one-l,1 

We now prove 

Theorem 3.2.  If ß is a fixed point of H - JsK,  then ß = ß. 
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Proof.     Using the hypothesis that    H(S)  «3      we find from 

(2.1.3) 

g(ß)  -   (ß)2  -  2ßr - 2(ß)2 +  (ß)2 + 2rß = 0 

but by definition g(ß) = 0 implies ß « ß, since ß is the unique 

solution of g(x) =0 for r < x < s.|| 

Theorem 3.3.  If ß is a fixed point of H = -r , then ß = ß. 

Proof.  By definition ß is a fixed point of A, hence 

ß = A(ß) = r + H(ß) - ^/H2(ß)-r(s-r) 

but by hypothesis H(ß) = ß so that ß - r + ß - /(ß) -r(s-r) and 

solving for ß shows that § = /rs.|| 

If in practice the conditions should obtain for which the mean 

mean is a fixed point of H, within a reasonable approximation, it 

would follow from the preceding two results that within that degree 

of approximation we could take the mean mean as the maximum likelihood 

estimate of g. 

We now present some sufficient conditions that the mean mean of 

a set of numbers be a fixed point of H. 

Theorem 3.4.  If t.,...,t„,  satisfy the relations 

^i-l = ^i*   t2i = ß/Ti   for   i=l.---.k (3.2) 

or the relations 

Ti 
t2i_1 = — ,   t2i = 7"    for   i=l....,k (3.3) 

where ß»^,...,!  are any set of positive numbers, then the mean mean 

13 from these samples satisfies exactly the identity H(ß) = ß. 

^mtmam^^maamm ■■■^MMMMMMMB 
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Proof.    By definition we must show that    1 ■ 23/K(ß)    but note 

that in the case  (3.2)  that    ß = 6    since 

_1_ 
2k 

k k     , 

K(ß) 

i     2k     „ 

2k    f ß+t. 2k 

k 
1 
1 l+i 

k 

+   1 
1    1+ 

-1 
ri    J 

Now in the case   (3.3) we see  that    ß = 1    and the remainder of the 

argument follows from that just given with    ß = 1. 

Corollary 3.A.    The conclusion is  the same  if 

in case  (3.2) we add    tok+i = ^»    an^ 

in case  (3.3) we add    Tob+i = !• 

We now claim that any sample from a distribution  in    &   tends 

to act like the sets of numbers described in  (3.2)  and   (3.3).    If 

T.,...,!».     are independent  random variables each with  the distribution 

F(a,ß)    in   &,     then by Theorem 1.1 we see that    ~ »•••» :r~     each has 
1 k 

the distribution    F(o(,l)    which Is exactly the same as  the distribution 
T T 

k+1 2k 
of    —-— ,..., ~~r~ .    Thus we  see that a sample tends  to satisfy   (3.2). 

p P 

But on the other hand.   If    T1 T, ,  ,..., "Z—   are all 
■L k     ^+1 ^k 

independent and identically distributed by    F(a,l),     then    ßT..,.,.^. 

have distribution    F(a,ß)    while rp »   •   •   *   »      rr, 

k+1 2k 
also have the same 

common distribution.  Again we see that a sample tends to satisfy (3.3) 

Thus we see why ß should be near a fixed point of H. 
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We now state 

Theorem 3.5.  If T has the distribution F(c(,l) in £7, then 

£(—■) - 1   for all   a > 0. 

Proof.  By definition 

1 

0 

E(l+T) " / 1+t dF(t:a'1> + /  dF(t:a.l) " / i^ dF(t:a,l). 

Making the change of variable y - 1/t in the third integral and 

realizing that F(— : a,l) ■ 1 - F(s:a,l) we find that the first and 
s 

third terms cancel.  Hence 

EO^) -1 -mo) -± .|| 

We use this theorem to obtain a result which says that under any 

conditions, for a sufficiently large sample, ß will be nearly a fixed 

point of H. This is because ß/H(ß) approaches unity as the sample 

size approaches infinity. Note that this result is not obtainable 

directly from Slutsky's theorem, given e.g., p. 255, Ref. [4], since H 

itself is a random function depending upon the sample size despite our 

suppression of this fact with our notation. 

Theorem 3.6.  The random variable ß /H(ß ) converges in probability 
—^———— n   n 

to 1 as n ->• oo. 

Proof.    For this argument let us set 

where each    T      has distribution    F(a,ß).     Of course we see that 

S (g  )  =  g /H(ß  ).     It is sufficient to show, by Theorem 3.5,  that 
n    n n        n 

Now 

MMBM 
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P(|Sn(ßn)-S(ß)|   >. e]   <. P[|Sn(3n)-S(ßn)|  ^ e]  + P[ | S(ßn)-S(ß) |   >_ e]. 

Since 

E<^Jf>2 -   /      ^ dF(t:cx,ß/x)  <   1 
X1 ^0    (1+t)^ 

we conclude that    var(S   (x))  < —    uniformly In    x. n —  n * 

By Chebyscheff's  Inequality as    n ->■ <» 

var Sn(ßn)        C 
P[|S  (ßn)-S(ßn)|   >  E] <  2_n_ < _i_^ 0 n    n n -      2 

ne 

But,  of course,   the second term approaches zero by the consistency of 

ßn    for   ß.|| 

The asymptotic behavior of maximum likelihood estimates such as 

ß    is well know.    We now prove an important result  concerning the 

asymptotic distribution of  the mean mean    ß. 

Theorem 3.7.    For    n    sufficiently large  the estimator    ß      is 

asymptotically distributed by    F(— ,ß)    in    0   where 
/n" 

e2 = (l + -^)/(l + 4
)2- (3.3.1) 

n- n-      1 
Proof.     By definition    ß    = ßv^   where    Y    =   ( V T.)/( V TT  ) 1 nn n^r^T^ 

with    T,    independently and  identically distributed by    F(a,l).     Let 

/ 2    ? 
U.   = Z./l + v- ZT        for        1=1, 
i        1 4     i 

(3.4) 

where Z. are Independent ^(0,1) variates.  By (1.5) we may write 

Y  = (1 + aX)/(l - ax ) 
n        n       n (3.5) 
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where 
n 

^Xn 2   : . (3.6) n i.    n    n 

To prove the result it is sufficient to show that as    n -> "»j 

— ttT) *^ [U)h - an)~
k] (3.7) a        ß a n n 

2 
converges  in distribution to the      91(0,6 )    law. 

Substituting  (3.5)  into   (3.7)   and applying the binomial expansion, 

which is valid for    n    sufficiently large we find 

/n  _y n»       /n  T  v     . 3V3   .       ■, 
aß a n        J     n 

where ck = 2 | ^^ ^p ^"^    for k odd• It follows from  (3-6) 

since EU. - 0, var(U,) - 1 + ^7- ,  that E(/n X  ) ■*  0, var(v/n X ) ■* e2, 
1 1 t* n n 

and /n X      converges in distribution to a normal law. | | 

Combining this result with Theorem 1.1 we have the immediate 

Corollary 3.8. For n sufficiently large, with 6 defined in 

(3.3.1), 

Eß -ß[l + -^] n /n 

and 
2       2 2 

/2 \   (aep) ri . 5a 9  , var(ß ) = v 'i       1 +  .„  ]. n     n        nn 

Having examined the behavior of ß  for n sufficiently large, in 

particular its mean and variance, we now fix n and determine the mean 

and variance of ß  for a small.  Note that for a    small we have n 

9       2 
6 - 1 - ~+ 0(a), 

which  is  nearly unity. 

•V 

!    I     '      '    ■■- '^ 
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We also state 

TheoreHLM.    The estimate    ßn    is for each fixed    n    biased 

by a factor    b      which,   for    a    sufficiently small, is given by 

bn.l+^+0(a4) 

with 

var(ß ) = l£&-+ 0(a4). 
n n 

Proof.    The proof follows using similar techniques and notation 

to that utilized in Theorem 3.7. 

For    n    fixed,   any real    h    and any random variables    U,     i"l n 

h 1     n      h 
wc define    <U > = -   S    U..    The bias factor of    3      is    b    » E/T*,    where 

i        n   .^.     i n n n 

Y     was defined in   (3.A).     From  (3.5) we have 

a2 -1 
Xn ' ^   [1 +   2   <Zi>] (3'8) 

n 
where here the U.  are as defined in (3.4).  On the set  B = ^ [|Z. I < — 1, 

i«l 
we may apply the binomial expansion to the conditional random variable 

/2 

<V|B    =   I      (1J)(f)2j<zJJ+1>, 1      a      jto      J    2 1 

2 2 
Since    B    C [<Z.>  < — ]    by using  (3.8) we have,  after applying the 

a 
binomial expansion and sinplifying, 

v   In V      2k    V 72J+1     y2 M Xn|B    =    2    a        1    c     <Z J     ><Z  > 
n    a     k=0        j=0    K:)    1 1 

where for notational  simplicity we set    c, .  =   (?)(,    ,2)A J2-,     .     From the 
'kj       vj/vk-j 

definition  (3.5) 

v^ =   (1 + aX   YHl  - aX  )~^, n n'    ' nJ 

«^ 
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agaln since    B   c [ |X  |   <    —],    by expanding and simplifying we obtain 

n      a      1-0    J        n 1-0     i n 

By rearranging we have 

where 

By definition 

^~ |B    =    S   akc.Xk 
n   '   a      ,   n        k n k»0 

ck = J0 WS™1- 

b    -    S    akc,E[X ^B   r]k + E[/FlBC|] n       .^        k  l  n*  a' l    n '   a* i"0 

where      fß^     IS the indicator function of that set    B.     Note 

(3.9) 

£[•7" fBC/]   <   (EY )[1 - P(B  )] n «   a*    —        n l v a 

and    P(B ) - [9K—) - S?K—)]n •* 1    as    a - 0. a a 

Using  (3.7) 

Xn|Ba = <Zi> + a
2c10<zJ><Zi> + a2c11<zJ> + 0(aA) 

[Xn|Ba]2 - <Zi>2 + 2a2c10<Z2><Zi>2 + 2a2c11<Z^><Z1> + 0(aA) 

[Xn|B  ]3 = <Z.>3 + 0(a2) n'   a i 

and  for    k > 4 

[XlB  ]k - OO^"1). n'   a 

m 

 -■■'-' ■ -■" ■■■' ...-..^.^^i.—-.— m—m mlmmm 
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Taking the expectation and realizing that Z. |[|z | < — ] is a 

Symmetrie random variable we see 

E[Xn|Bj]  -0(a4) 

EtxJBar " 0(a^ 

Since c0 " c. ■ 1, c2 = c7 = T we conclu^e from (3.8) that (3.A) 

holds. 

Consider the variance of ß .  We know n 

var(i ) = ß2(EYn-b^). n       n n 

Proceeding as before have 

Y   IB    " 1 + 2aX    + 2cx2X2 + 2a3X3 +• • • 
n1   a n n n 

2 
EY tB I - 1 + ~+ 0(a4) n«  a* n 

and by squaring (3.4) and subtracting we obtain (3.5).|| 

This completes our theoretical study of the behavior of the mean 

mean.  In summary, we have seen that  ß  is a consistent estimator of 

3 which for a small, say less than 1/2,  is almost unbiased while 

2 
having a variance of approximately  (aß) /n. Moreover, we claim that 

under this condition, which we shall later empirically verify,  ß  is 
n 

virtually the maximum likelihood estimator whose optimal properties 

are well known. 

3      ,w 2N I 
I 
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A.    Numerical Examples and Comparisons 

Let us first perform an empirical comparison of the two iterative 

procedures for obtaining the maximum likelihood estimator    ß,    and check 

to see if  the known consistency of this estimate is of practical 

significance.    We shall obtain a set of observations from the random 

variable defined by  (1.5) by selecting    a,8    and  then using a library 

machine program for the IBM  360 to generate the pseudo-random normal 

observations.    We know that  the computed random variable has a distribution 

in    ^. 

For given    t. ,...,1      generated by this method we  compute the sample 

mean mean    ß ■ vsr,    where    s    and    r    are defined in   (2.1.1).     (As we know 

ß    is  itself a consistent estimate of    6.)    We stop  the iteration when the 

successive iterates agree within a prescribed    e. 

The results of this simulation are presented in Table I.    Method II, 

which computationally is  the simpler, appears to work as well for    a <_ .5 

as  the well-known Newton procedure, however,  it does not work at all for 

values of   a   as large as    2. 

The important point is  that  for    a <   .5    there is no real need to 

compute anything but    3    since both estimates agreed to within three 

significant digits.     It is  doubtful that any further iteration by either 

method would really improve  the accuracy of the estimate. 

The computational simplicity of the estimate    ß,     as well as the 

advantages of its asymptotic distribution being in the class    &,    not to 

mention the properties which were set out in the last paragraph of the 

proceeding section,  can all be utilized if the range of    a    which is 

■ mi   .i *—*^*m mtm 
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encountered in practice is no larger than say 1/2. Thus in fatigue 

studies it would be desirable that the appropriate value of a were 

within this  range. 



a=.5 

a=l 

a=2 

-22- 

Table I 

arison of methods to find MLE within E  for ß = 100, £ = .oc 
sample 
size 

n ß ß 

number of iterations 
for convergence within e 

a      I    II 

5 105.119 105.117 .184 2 2 

10 99.611 99.580 .358 2 3 

25 87.279 87.281 .602 2 2 

50 110,117 110.125 .497 2 2 

100 101.201 101.194 .590 2 2 

250 99.676 99.702 .496 2 3 

500 100.215 100.207 .476 2 2 

5 79.180 79.200 .363 2 2 

10 67.302 68.584 .986 3 8 

25 113.710 116.176 1.095 3 10 

50 86.470 86.225 1.091 2 7 

100 113.666 114.202 .866 2 6 

250 105.•968 106.156 .964 2 6 

_500 9A.973 95.042 1.016 2 5 

5 305.983 310.994 1.748 3 * 

10 48.948 52.314 1.654 3 * 

25 125. S"1? 131.245 1.796 3 * 

50 96.638 99.622 1.652 3 * 

100 87.675 88.032 2.110 2 * 

250 99.848 99.634 2.030 2 * 

500 96.640 96.696 2.127 2 * 

*Method II failed to be applicable since for some point ß  in the 

iteration we have K(ß ) < r(s-r) and 3 .,  is no longer real. 
n n+i 

IH^Ma_a_ 
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We now confront this family 9   of distributions with some actual 

fatigue data. We choose some extensive data on the fatigue life of 

6061-T6 aluminum coupons cut parallel to the direction of rolling and 

oscillated at 18 cycles per second. Some of this data has been reported 

earlier in [2], 

For a maximum stress per cycle of 31,000 psi we give the 101 

-3 
observations of lifetimes in cycles X10 

SAMPLE SIZE = 101 

70 90 96 97 99 100 103 104 
104 105 107 108 108 108 109 109 
112 112 113 114 114 114 116 119 
120 120 120 121 121 123 124 124 
124 124 124 128 128 129 129 130 
130 130 131 131 131 131 131 132 
132 132 133 134 134 134 134 134 
136 136 137 138 138 138 139 139 
141 141 142 142 142 142 142 142 
144 1A4 145 146 148 148 149 151 
151 152 155 156 157 157 157 157 
158 159 162 163 163 164 166 166 
168 170 174 196 212 

Setting E = .0001 we find using Method I, starting with ß = 131.819454 

that in three iterations 

I =  131.81903 

v =   .17037302, 

while with Method II, with the same value of ß as initial guess, we 

find that in two iterations 

6 = 131.81895 

a = .17037022. 
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From the graphical comparison of the fitted dip ribution to the 

empiric cumulative in Figure 1, we see that 9 provides an adequate 

explanation. 

40 60 80 100 120 140 160 

Cycles X   10"3 

180 200 220        240 

Figure 1 

The empiric cumulative  and the distribution    F(a,§)    for fatigue  life 
at a stress of  31,000 psi. 

■M mmmam 
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u 

Figure   2 

The empiric  cumulative  and  the distribution     F(n,i-)     for  fatigue  life 
at  a stress of  26,000 psi. 
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For a maximum stress of 26,000 psi we give the 102 observations 

-3 
of lifetimes in cycles X10 

SAMPLE SIZE = 102 

233 258 268 276 290 310 312 315 
318 321 321 329 335 336 338 338 
342 342 342 344 349 350 350 351 
351 352 352 356 358 358 360 362 
363 366 367 370 370 372 372 374 
375 376 379 379 380 382 389 389 
395 396 400 400 400 403 404 406 
408 408 410 412 414 416 416 416 
420 422 423 426 428 432 432 433 
433 437 438 439 439 443 445 445 
452 456 456 460 464 466 468 470 
470 473 474 476 476 486 488 489 
490 491 503 517 540 560 

Again choosing e = .0001 we find using Method I starting with 

ß = 392.765189, that in two iterations 

6 = 392.76367 

a = .16141957 

and that for Method II in two iterations 

ß *  392.76416 

a = .1614195. 

See Figure 2   for a graphical comparison. 
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For a maximum stress of 21,000 psi we have 101 observations of 

-3 
lifetimes in cycles X10 

SAMPLE SIZE = 101 

370 706 716 746 785 797 844 855 
858 886 886 930 960 988 990 1000 

1010 1016 1018 1020 1055 1085 1102 1102 
1108 1115 1120 1134 1140 1199 1200 1200 
1203 1222 1235 1238 1252 1258 1262 1269 
1270 1290 1293 1300 1310 1313 1315 1330 
1355 1390 1416 1419 1420 1420 1450 1452 
1A75 1478 1481 1485 1502 1505 1513 1522 
1522 1530 1540 1560 1567 1578 1594 1602 
1604 1608 1630 1642 1674 1730 1750 1750 
1763 1768 1781 1782 1792 1820 1868 1881 
1890 1893 1895 1910 1923 1940 1945 2023 
2100 2130 2215 2268 2440 

With e *  .0001, ß - 1336.56547 we find that in fifty-one iterations 

Method I failed to converge yielding as values at that time 

§ = 1336.3779 

a - .31029648, 

but that Method II converged in three iterations to 

g - 1336.3784 

a = .31029648. 

We believe that the extreme stringency of e and round-off error 

in the machine arithmetic caused Method I to fail to converge and not a 

theoretical deficiency in the method itself. 

We can tentatively conclude from this evidence that in fatigue 

applications the appropriate range of a is sufficiently small as to 

allow the use of 6 as an estimate of the median ß and thus one can 

utilize the properties which we have previously discussed. 
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