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ABS RACT

Previous work in the formulation of a matrix model for the

flow of data in a management information system is extended to

include three additional types of systems phenonena. These are:

(a) data filtering, both conditional and unconditional,

(b) internally generated items of data, and

(c) the semantic relation of denotation among items of data.

The concept of macro-model analysis vs. micro-model analysis is

introduced. Methods are given for solving the models for either

the number of paths connecting inputs to outputs or for complete

specification of all such paths.



CHAPTER I

INTRODUCTION

1. Models of Management Information Systems

A management information system is a complex structure of people,

equil•ment, facilities, supplies, data, documents, flow patterns,

organizational relatiorships and decision activities, operating within

a set of demands and constraints established by the nature of the

situation, management policy, laws and regulations, contractual

agreements, cost factors, and the pressures of the ecology. In the

analysis of such a system, existing or proposed, the intricacy of the

interrelationships among the many components makes the use of same

modelling technique almost mandatory.

Traditionally, systems analysts have favored the use of two types

of models to summarize and depict their knowledge of a management

information system. The first is a simple tabular arrangement of

information; the second a graphic model, or "flow chart". (Both

methods are frequently referred to by the camon label of "charts".)

The use of charting techniques is widespread, and is described in

many books on systems analysis (for example, [1; 4; 17; 18; 25; 32;

33; 35; 40]), in many pamphlets (for example, (7; 10; 11; 28; 30; 34]),

and in many papers and reports (for example, (12; 13; 21; 22; 29; 31;

41; 43]). The technique of charting has as its purpose the consolida-

tion of information about a system, and the display of that information

in a form such that correlations and sequential flow can be readily

observed. However, tabulations and flow charts have one characteristic
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in common with the verbal descriptions that they replace; they are

qualitative models. They cannot be subjected to mathematical manipu-

lation to yield quantitative descriptors or measures.

A quantitative management information systems model was proposed by

Lieberman [26 and expanded upon somewhat by Kozmetsky and Kircher

[24, Appendix 41. A weakness of that model was pointed out and a

generalized form was proposed by Homer [231. In these models, systems

are described in the form of matrices, and are subject to various

matrix manipulations. The matrices are concise descriptors of the

flow of information in a system. Used as qualitative models, they

offer an advantage over the often voluminous flow charts that depict

the flow of documents in a system. Used as quantitative models, they

offer an objective way of evaluating systems and the effects of changes

upon systems.

The purpose of this thesis is to evaluate prior work on matrix

models of management information systems, and to present the results

of research to incorporate further systems phenomena into the models.

2. Background

That quantitative management information systems models should have

taken the form of matrices is logical. In fact, the concept could have

developed from either tabular charts or flow charts, for both of these

devices are mathematically related to matrices. (This is not to say

that the development of the systems matrix model did actually proceed
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in such a logical fashion: there is no such indication in the literature.)

A table of numeric data bears a physical rezemblence to a matrix,

in that both are rectangular arrays of nUmbers. Rven tables of

qualitative data may have their entries encoded to yield numeric arrays.

Hadley 114, p. 6 01 states that a matrix "is simply a convenient way of

representing arrays (tables) of numbers". Thus, ".re -ay view a tabular

aTrangement of facts pertaining to an information system as a precursor

of the systems matrix model.

Several suach tables have appeared in the literature. Neuschel

mentions them (32, pp°196 -197; 33, pp. 196-19f], a.: does Barish

(1, pp. 160-1611. A similar chart was independently developed by

Homer [21; 22: pp. 61-661,

A typical tabular chart is shown in Figure 1. Here, each row of

the chart represents an item of data (or an aggregation of items of

data treated as a single item). Each column reiresents a form or

document. The cell entries are either "blank" or "X". An X in the

cell in the i-th row and the J-th column means that the item of data

named in the label of row i appears on the document named by the

label of column j; a blank in the cell indicates the contrary. It

remaiiu only to encode the cell entries in same numeric scheme to

have a rectangular array of numbers. For example, the number 0 might

be substituted for a blank and the number I for an X. The result

is a matrix if the numerical elements of the array are members of a

ring (37, p. 12], Figure 2 is the matrix derived from Figure 1 by

the above substitution.
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Graphic flow charts of information systems exist in a multitude of

formats. A very simple one is shown in Figure 3. These flow charts

can be visualized as directed graphs (15; 16] by considering each symbol

representing a processing step or a document to be a node, and each flow

line to be an arc oriented in the direction of the flow. Figure 4 is

such a representation of the flow chart of Figure 3.

It is known that directed graphs and matrices are isomorphic (15].

Particularly useful in systems analysis is the adjacency matrix (16, p.15],

A, which is defined as a square matrix with one row and one column cor-

responding to each node of the directed graph, and with a. = 1 if13

a directed arc exists from node i to node J, -"nd aij = 0 otherwise.

Figure 5 shows the adjacency matrix constructed from the network of

Figure 4.

An early application of this concept to systems analysis was made by

Hare [17, pp. 21-22]. However, Hare used the matrices he derived from

networks only to describe the system; that is, as tables of systems

characteristics, without any attempt at quantitative manipulations.

Even earlier, Warshall [41] had depicted computer flow charts as networks

from which he derived matrices. Warshal1's interest, however, was confined

to using the matrices for decomposition and simplification of computer

programs.

Whether or not a matrix derived from a chart is useful for any

purpose other than as an alternate way of storing and di3playing informa-

tion is a question that requires an analysis of the meanings of the
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numerical values in the cells and the nature of the connectivity

between the entities represented by the rows and columns of the

matrix. Davis states:

"But matrices are more than arrays of numbers. The individual
numbers stand in very special relationship to one another, and
their totality constitutes a mathematical object that will be
manipulated according to certain rules and regulations, inter-
preted in a variety of ways, and applied in still others." (5, p.2]

The first published model found which meets Davis' criterion for a matrix

is that of Lieberman [26]. This is the model that forms the foundation

for the work reported in this thesis.

It would appear that the systems matrix model has its roots in the

two most widely used techniques of traditional systems analysis; tabular

charts and flow charts. However, since there is nothing in the literature

indicating just how the matrix model was developed, it can only be con-

cluded that these roots are logical, but not necessarily historical.

3. Organization rf the Thesis

Chapters 2 and 3 are devoted to a review of prior work on matrix

models of information systems: Chapter 2 treats of Lieberman's work

and Chapter 3 of Hcmer's. Chapter 4 is a new treatment of the model

discussed in Chapter 3; a treatment designed to form the basis of

further work. It introduces a more formal description of the model

in terms of a relation between components called the "direct connec-

tivity" relation; it presents a network description associated with

the matrix model; it introduces a new proof of the validity of the
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algorithm for solving the model; and it presents a method of specifying

each path between components, rather than merely counting them.

Additional systems phenomena, previously untreated, are considered

in Chapters 5, 6 and 7. Chapter 5 takes up the case of incomplete

transfer of data between components, called "filtering", in both the

unconditional form and the conditional form. This is done by means

of a model which depicts connectivity between components with respect

to each item of data. Data which is generated within the system under

investigation is studied in Chapter 6, especially the case of data

generated from and replacing data received from outside the system.

In Chapter 7, the concept of "knowledge redundancy" due to semantic

relations among items of data is introduced into the model.

The thesis concludes with a stumnary, conclusions, and suggestions

for further research in Chapter 8.

Throughout this thesis, statements which are basic to further

development are preceded by a letter followed by a sequential number.

Letters have been assigned as follows:

Letter Statements refer to:

A algorithm for solving the systems-matrix

C connectivity relation

D denotation relation

M systems-matrix

P r-ths in the system

S system characteristics

T transmittance of connectivity
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CHAPTER 2

THE LIEBERMAN MODEL

1. The Basic Model

We present first a brief description of the concept of using matrix

methods to model management information systems. This section is based

primarily upon the work of Lieberman (26). The notation employed is

that of this author. In this first section we shall use as undefined

terms the words "item of data", "report", and "business function".

The Lieberman model takes the form of a series of matrices. The

first matrix, M, shows which items of data appear on each source

report, where a source report is the first form on which data is

entered within the systems under investigation, and is considered a

first-level report. The second matrix, M1 , shows which source reports

are used to prepare second-level reports. Each subsequent matrix, M

except for the last one, shows which j-th level reports are used to

prepare (j+l)-th level reports. The final matrix,, M, shows which

n-th level reports are used in support of each of the various business

functions within the scope of the system.

More formally, let:

d. = the i-th element of data in the system; il,2,...,pO.

Rk(j) = the k-th report at the j-th level; J=2)3,...,n; k=l,2,...,p .

Rk(1) = the k-th source report; kl,2,...,p 1 .

Bq = the q-th business function in the system; q7l,2,...,pfn+l).

M0 = a matrix containing a row associated with each d.

and a column associated with each Rk(1)" Then M110
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will be a p0 x p1 matrix. The element (MO)rs

will be 1 if dr appears on Rs( 1 ); 0 otherwise.

Mj i a matrix containing a row associated with each N(j)

and a column associated with each 'k(j+l)' ;J-,2,...,(n-l).

Then M will be a p3 X P( j+I) matrix. The element

(mj)r,s will be 1 if Rr(j) is used to prepare

Rs(j+l); 0 otherwise.

M a matrix containing a roxr associated with each k(n)

and a column associated with each Bq. Then Mn will

be a Pn X P(n+l) matrix. The element (ran)r,s will

be 1 if ýr(n) is used in the performance of Bs;

0 otherwise.

The matrices M describe the flow of information through a system

fron the first appearance of an item of data to the performance of the

various business functions. The set of matrices is a descriptive model

of information flow which is considerably more concise than a flow chart

depicting the same information. Figure 6 illustrates the Lieberman model

for a simple case, n = 3.

Corresponding to the example of Figure 6 is the directed graph shown

in Figure 7. Obviously, it is significantly more difficult to obtain

the flow information from the network than it is from the matrices. This

alone would lead one to conclude that the Lieberman model is a more

useful descriptive model than the corresponding flow chart. But, the

power of the Lieberman model is not limited to its usefulness as a

descriptive tool. This is a quantitative model, and can be subjected
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to matrix manipulation. For example, let:

b
H = IE 09 ~ a<b-n.a,b J=a

Such a product can always be found, since, by definition, the number of

columns of M is equal to the number of rows of M 0+l) and the

matrices are therefore compatible for multiplication.

The rcw labels of 2b are those of Ma and the column labels of

MI are those of Mb. Each element of •ab' (ab)i, can be

interpreted as the number of "paths", or routes, through which the

entity represented by row i reaches the entity represented by

column J. In particular, the elements of On represent the number0,,n

of times each d. is made available to each B
I q

In the illustrE.tlve example of Figure 6, the product

3
•03 -TIM.
0'3 j=O j

is shown in Figure 8. FRom this product we can see, for example, that

there is only one way in which d3 reaches B4 , but there are 27 ways

in which d5 reaches B5 * These paths can be determined from an

analysis of Figure 7, but only with considerable difficulty. For

comparison, the subgraph and path listing for the paths from d3 to

B4 and from d5 to B5 are shown in Figures 9 and 10, respectively.

It is obvious that the amount of effort that would be required to obtain

the total information contained in 03 by an analysis of a flow chart
0,3

or network would be considerable, since this almost trivially small.

illustrative example contains a total of 348 paths.
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2. Definitions

We return now to the question of the undefined terms "item of data",

"report", and "business function", as used in the above and in (23].

Lieberman (261 attempted some explanation of these terms, and some

further classification of entities. While he did not define "item of

data", he did distingu~ish between "identification type" and "quantitative

type" of information, which he symbolized by "ill and "q", respectively.

Although Lieberman maintained this distinction throughout (261, no

apparent purpose was served by the dichotony. Lieberman also distinguished

"source data forms" from "report forms". Again, this distinction appears

to be unnecessary to the Lieberman model. Finally, Lieberman defined

a "business function" to be "a set of managerial activities which are

assigned to a group according to types of duties" [261.

3. Additional Concepts

In Kozmetsky and Kircher [24, Appendix 4] there is an additional

concept, the time ordering of information- "This refers to the relative

time that information arises, or is made into a report, not the specific

date this occurs" [24, p. 277]. Following the definition, no further

mention is made of the concept except for the paragraph:

"The order of time is greater for the report forms on each
higher level, in each higher-level matrix. This is necessary,
since the system predicates that the reports on the higher levels
are using data taken from those on lower levels, and thus must
succeed them in time." (24, p. 2811

Kozmetsky and Kircher also introduce the concept of "the informal

communication channel", which "designates the transfer of items by

means other than documents" [24, p. 2781. Later in this work (24, p.285],
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the informal ccmmunication links are depicted by means of a connectivity

matrix on the set of business functions; i.e., a squar- matrix such that

each row and each column represent a business function (ordered identi-

cally) and each element, bi.j, is defined as:

I, if B, interacts with B,, i J,

0L, otherwise.

One other concept introduced in [24, pp. 285-286] is that of

establishing a matrix depicting the optimum data requirements of each

business function, and ccmparing this with the above defined Mt
0, n.

to ascertain excessive routing of data or lack of desirable data.
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CHAPTER 3

A GENERALIZATION OF THE LIEBERMAN MODEL

1. The Systems Structure

Perhaps the most obvious shortcoming of the Lieberman model (261,

pointed out by Homer (23), is the fact that a well-ordered data processing

structure must exist in order for the model to be applied. It is nec-

essary for the analyst to be able to assign "levels" to the various

reports (here, data items axe assumed to be at level zero and business

functions at level (n+l)) such that only entities of level (j-l) serve

as inputs to entities of level j, and, in return, entities of level

j become inputs to only those entities of level (j+l). When such a

structure does exist, the resulting matrices are such that the column

labels of M are identical to the row labels of M(j+1 ), and M

and M(j+l) are compatible for multiplication.

That such well-ordered structures seldom, if ever, appear in actual

practice is a conjecture that finds ready acceptance among experienced

analysts. Rather, the following conditions are frequently found in

actual cases:

1. Reports of level j are prepared not only ta'om reports of level

(j-l), but also from lower level reports.

2. Business functions are performed not only on the basis of n-th

level reports, but also on the basis of lower level reports.

3. Not all business functions are of the same level.

4. Data items enter the system at a level higher than the first.
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5. Reports prepared outside the scope of the study enter the

system at some level higher than the first.

6. Some reports are terminal at levels less than (n+l); that

is, they are not used by any business function within the

scope of the study.

All of these conditions lead to Lieberman matrices which are not

conformable for multiplication, for there is no longer a guarantee

that the row labels of M. will be identical to the column labels

of M(,_l). An example of such a system is shown in the form of a

network in Figure ll, and in the form of a series of Lieberman matrices

in Figure 12. (This example is from [23]).

2. Handling Non-Conformable Matrices - Method 1

Two methods of handling such situations were presented by Homer [23).

The first method calls for the formation of new matrices, NJ, from

the given matrices, MJ, b- the addition of "dummy" rows and columns

as required to insure compatibility for matrix multiplication. The

rules for the formation of the enlarged matrices are repeated below:

"l. Start with Mn . Add a row to Mn for each column in Mn.1

not already represented by a row in M . All elements of

added rows will be zero.

"2. For any row which contains only zeros, add a cclumn with the

identical heading. The new columns will have all elements

equal to zero, except that elements formed by the intersection

of identical rows and colu'nns will have the value 1.
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"33 Add a column to MnI for each row in Mn not already

represented by a column in Mn.1. All elements of added

columns will be zero.

"4. For any column which contains only zeros, add a row with the

identical heading. The new rows will have all elements

equal to zero, except that the elements formed by the inter-

section of identical rows and columns will have the value 1.

"5. Repeat steps 1 and 2 for matrix Mn.1. It may be necessary

to make further adjustments in Mn as a result of changes

in the columns of Mn. 1 .

"6, Repeat bteps 3 and 4 for matrix Mn- 2. Continue the process

bac'- through 11.0 [23, p. 505].

ApkJ~ying these rules to the matrices of Figure 12, we arrive at the

set of matri es shown in Figure 13. These, of course, can be successively

multiplied, since they have been constructed so as to be compatible. The

product,

%,2 -N - N1 . N,

is shown in Figure 14.

What this method actually does is to- imbed the problem in a higher

dimension space. For example, let us stppose that we wish to multiply

twov matrices, A and B, where A is 3 X 3 and B is 4 X 4. If

we consider the matrix A as the representation of a transformation in

3-space atud the matrix B as the representation o1' a transfo.rmation in

4-space, we see that the "product"; A'B, even though multiplication of

the matrices is not defined, is a transformaticn from 3-space t-ý '-space.
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If we create a new matrix, C, by adding a fourth row and a fourth

column to A, such that:

c4, =0; j =l, 2, 3,

ci4 =0O; i =l, 2, 3,

c4,4 = ;

and
"z = a. .; elsewhere,

the transformation represented by A is now represented by C, but the

3-space of A is now a 3-dimensional hyperplane in 4-space. The

transformation C.B is identical to the transformation A.B, and

multiplication of the matrices is defined.

From a practical standpoint, this method is not entirely satisfactory.

The task of setting up the new matrices, Nj, is a tedious one, and

the number of calculations required to obtain the desired result,

2 O,n' is increased due to the increased number of rows and columns

at almost every stage. Also, the analyst still has the burden of

carefully classifying all reports into levels, for the way in which

this is done may affect the complexity of the enlarged matrices.

3. Handling Non-Conformable Matrices - Method 2

A more direct approach to the problem is the second method of [23].

In order to explore this method further, we adopt a slightly different

vocabulary.
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The "items of data" of -he Lieberman model will be referred to as

system Inputs. More generally, we will accept reports as inputs to the

system, as well as items of data, for those reports which are prepared

outside the system under consideration. We remark also that an input

may be an aggregation of data items if it is more convenient for the

analyst to treat a group of data items as one entity.

Outputs from the system are any terminal activities of the system.

Thus, the business functions of the Lieberman model are system outputs,

as are terminal reports (historical records) generated by the system.

All components of the system which are neither inputs nor outputs

are intermediate entities. An intermediate entity is one which is

produced by the system from either inputs or other intermediate

entities or both, and which is used to produce other intermediate

entities or to facilitate an output. (Note that an intermediate

docnent may, in addition, be a terminal report, but that it is not

considered an output.) Lieberman's reports and source documents are

both intermediate entities. In this scheme it is not necessary to

classify intermediate entities into levels, and they may be symbolized

by the single-subscripted R k.

We establish one matrix, S, referred to in the following as a

systems-matrix, which will represent the entire information system

under consideration. The following rules are used for setting up S:

4£
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"tt. A row is established for each d. and for each Rk in the

system; i.e., for each component except the B 's.
q

"2. A column is established for each R and for each B in
k q

the system; i.e., for each component of the system except

the d.'s.

"3. As before, the number 1 will be inserted in each cell to

represent [one entity used in the production of another]

"4, Each Rk ,rill be represented by both a column and a row.

Into each cell formed by the intersection of an identical row

and column (rkk) , the value -1 will be inserted.

"5. All other cells will be labelled zero." [23, p. 508].

In Figure 15, we show an S matrix constructed for the example depicted

in Figures 6 and 7. Similarly, in Figure 16, we show an S matrix for

the case illustrated in Figures 11, 12, and 13. Note that the double-

subscript notation for intermediate entities is used in Figures 15 and

16, but only to facilitate comparison with previous figures.

The first advantage offered by the systems-matrix model over the

Licberman model is that S may be analyzed for consistency very rapidly.

A comparable examination of the Lieberman M.'s would be, at the least,J

cumbersome. The analysis consists of a rapid scan of S according to

the following rules:

"a. Should any column contain only zeros, the (entity] represented

is outside the scope of the problem being investigated, and the

column should be removed.
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"b. Should any row contain only zeros, the [entity] represented

is not a component of the system, and the row should be

removed.

"c. Should any column contain -1 as the only non-zero entry, the

component represented by that column is really an input to

the system. The column shiould be removed.

"d. Should any row contain -1 as the only non-zero entry, the

component represented by that row is really an output of

the system. The row should be removed." r23, p. 508].

These rules should be applied iteratively to S until no more changes

can be made. If in the process both a row and a column representing the

same entity are removed, this is an indication that that entity was not

a compcnent of the system under investigation.

It should be noted at this point that failure to apply the above

simplification rules or failure to apply them to completion will not

affect the final results, except to the extent that errors are made in

determining the correct solution area (see below).

When these rules are applied to the matrix of Figure 16, the columns

labelled R4 (1 ) and R6 ( 2 ) are removed, since these entities are system

inputs, and the row labelled R4( 2 ) is removed, since this report is

a sysi output. The reduced matrix Is showm in Figure 17.

The solution area of S is defined to be the set of all cells of
S, fjs., such that row i represents an input and column j represents

SL.

an outpub. A row represents an input if it does not contain an entry
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of -1. A column represents an output if it does not contain en entry

of -1. In Figure 17, the solution area is bordered by heavy lines.

Note that the cells constituting the solution area need not be adjacent

to each other.

We define the solution to the model to be a matrix, S*, with row

and column labels identical to S, containing the desired product in

the solution area and arbitrary entries elsewhere. In [231 it is

shown that S* may be obtained from S by performing only the following

elementary column operations on S:

1. Multiplication of a column by a scalar, and

2. Addition of columns.

These two operations are to be performed iteratively so as to vx1xuce to

zero all those cells which lie in output columns but not within the

solution area. Upon completion of these operations, S will have been

transformed to "*, and the desired results will appear in the solution

area.

Stated differently, we define a critical area of S to be a set of

cells of S, (Sk,d I such that row k represents an intermediate

entity and column I represents an output. Then, when the two

elementary column operations prescribed above are performed so as to

transform the critical area to all zeros, it will be found that the

solution area has been transformed so as to contain the desired results.

The "desired results" are, of course, the cells of n

IO
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Although we have not specified what that portion of S* not

included in either the solution area or the critical area should be,

the algorithm leaves them identical to S.

A demonstration of the mathematical validity of the systems-matrix

approach appears in (23, Appendix].

Figure 18 illustrates S* derived from S as shown ir Figure 17.

Note that the values within the solution area correspond exactly to

those of MO,2 in Figure 14.
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CHAPTER 4

A BASIS FOR EXTENSIONS TO THE MODEL

1. Introduction

In this chapter, we will develop a systems-matrix model of a

managemert information system which will be essentially the same as

the model developed in section 3 of Chapter 3 (Method 2 of [231), and

which Arill be used as the bavis for fur~their extensions. We will, how-

ever, adopt a slightly different scheme of notation than previously

employed. This scheme will be somewhat less cumbersome than that

previously used, since many of the distinctions of the Lieberman

model need not be retained. Sane restrictions will be placed on the

notation, but only because this will simplify later explanations and

discussion.

In this chapter, we wil2 define only those terms and concepts

necessary to discuss the model as developed so far. Additional defini-

tions will appear as additional ideas are presented.

Throughout the rest of this thesis, the symbol I will refer to tne

identity matrix, and the symbol Z will refer to the zero matrix. The

order of these matrices will be apparent from the usage.

2. System Cxnponents

We viei a management information system as being composed of three

classes of components: inpts, intermediate entities, and outputs, as

discussed in Chapter 3, section 3. These components are symbolized by

C s = 1,2,o..,n; where:
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nl = n3  + n4 + n15 -

and,

n3 = the number of inputs to the system,

n4 = the number of intermediate entities in the system, and

S5 = the number of outputs from the system.

(It is convenient to index the n's from 3 to 5, for in Chapter 6 we

will partition the class of inputs into two classes of sizes nI and

n2 n. + n2 = n 3 o) We reter to the set of all comp,'nents of the system

by:

C s = sc i' s : n}. n

Indexing of the components will be restricted, as a matter of convenience,

so that the index of any output will bc greater than the index of any

intermediate entity, which will be greater than the index of any input.

This allows us to use the following notation for subsets of components:

Sl. inputs: Cs3= tCs' T s 5 n)

S2. intermediate entities: C4 = (csI(n 3 +l) : s • (n 3+n4 )ý

S3. outputs: Cs5 = fcs(n 3+ý tl) • s r n }
Obviously:

a4. c. = Cs3 U Cs4 U Cs5

an.

S5. OCn c C nc -c =c fc l=s3 s4 = Cs3 s5 Cs4 s5 s3 n cs4 n s5c 5

where 4 indicates the null (empty) set. Stated in words, A4 and S5

mean that the sets of inputs, intermediate entities and outputs are

mutually exclusive and exhaustive.
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3. Direct Connectivity and Paths

if there is a flow of data directly from component ci to c we

shall say that c. is directly connected to c.. Direct connectivity1 -.-- 3

may exist only between members of classes of components as shown below:

Direct Connectivity

From To

Cl. Cs3  Cs4

C2. Cs3 Cs5

C3. Cs4 Cs4

c4. Cs4  Cs5

We impose the rule:

C5. If c. is directly connected to c., then i < j,1 3

as a Thnher convenient restriction on the indexing of components. This

rule follows for Cl, C2 and C4 from Sl, S2 and S3. That it is feasible

for C3 follows from Sl, S2 and S3, and from C6, C7 and P2, below.

Obviously, the direction of direct connectivity is significant.

Direct connectivity is a relation on the set C., symbolized by:

10 j'

(The denial of the r-elation is denoted by the symbol $O ") The

relation is:

C6. anti-symmetric: if ci c , then it must be

true that c &W0 c

C7. anti-reflexive: c. c
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C8. non-transitive: if C c. and c Ck

not necessarily true that c. C..

A p exists from ci to c. if:

P1. C. c ., or
1 0 -

p2. there exists a set of components, { ; q = l.2,...,p;
i< kl< k2 < <k p <j; such that

c - C t Ck . .. &Ck cj
S0k1 %0k2 & k P

We say that the path is of length p and write:

C. 1O .I p p

Direct connectivity is a path of length zero, by P1.

4. Network Representation

The system, Cs, may be represented by a directed graph or network

wherein there is a node from each cs Cs, and a directed arc between

nodes whenever direct connectivity holds between the components associated

with the nodes. The direction of the arc agrees with the implied direc-

tion of the relation. Thus, if:

i oj

then the network will contain:

We will frequently refer to this network, but only as a conceptual aid.

The network should not be regarded as a part of the model.

We note that it is not possible for the network to contain a loop

(i,e., an arc directed from one component baAk to itself) because of C7.
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Neither can it contain a circuit (i.e., a path of non-zero length which

includes the same node more than once) because of the strict inequality

inmposed on the indices by P2.

5. Matrix Representation

The system, Cs, may be represented by a matrix, S, of order

(kj3 + n 4) X (na + n5 ), whose elements are defined as:

1 1: if c. c; i j,

Ml. S. -1; if i = j

0; otherwise

and:

1 i (n 3 + n4);

(n 3 + 1) ! j < n

This matrix is akin to, but not identical to, the adjacency, or incidence

matrix commonly associated with a directed graph [15;16, p.151. It

differs by the fact that S is not square and by the sub-diagonal of

-l's. Note also that the indexing of the columns assigns to the first

coluimn the value (n 3 + 1) rather than 1. This is a matter of con-

venience, not necessity. Each row of S is labelled ci, and each

columln of . is labelled c.. The matrix S may be decomposed into3

submatrices, as shown below, with the notation S indicating a

submatrix depicting the set L paths from the elements of the set C

to the elements of the set Co. (If t = 8 the submatrix represents

the set of paths among elements of the set C..)
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_ _ J=(n 3+l) (n3+n4) J=(n3+n_+l) ... n
I i ~= ]. s,

11 Ss3,s S

M2. S: n3

i (n3+l)

" Ss4,s4 -I Ss 4 ,s5

(n3+n4)

Obviously, the matrix S as described above is identical to the

matrix S as developed in (23] and described in Chapter 3, except for

notation. All the previous remarks about S clearly still e.pply. For

example, the scanning rules (23] quoted in Chapter 3 may be summarized

by the following:

M3. Drery row and every column of S shall contain at least one

Bntry of +1.

This is equivalent to s.ying that eveiy member of C. must be directly

connected to at least one other ccnponent.

6. Determination of S

We return now to a discussion of the submatrices, or bl;cýks, of S as

depicted by M2. These are listed below, with their orders:

Block Order

S s3,s4 n 3 X n4

S n, X n

(Ss4,,s4-I) n4 X n4

Ss4,s5 n4 X n5.
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The orders of the blocks are important in that 1,hey indicate which

combinations of blocks are conformable for multiplication, Thus, the
product (S is defined, but the product ).(S

is not.

The solution of the model, S*, is described in Chapter 3, In

terms of the notation employed in this chapter:

S* S*

s, ., s s s3,s53

S's4,s4 I S4

By analogy to the previous definition of S* (Ch.apter 3), we can specify

the blocks of S* to bo:

F I

i Ss3,s4- Z .s

where 5 Sis tev* v

Swhere S*s3,s5 is the previously defined '`solution area". Our problem

now is to determine the .lgebraic form of S*s3,35 *

The block Ss 4 ,s 4  is an adjacency matrix within the subset Cs4. We

define an adjacency matrix, A, for the entire system, Cs, to be an

n X n matrix, with elements:
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Slj=l..[n .i=(n3+l) ... (n3+n4) j=(n3+n4+l).n

1 = 1

- " S3,s4 Ss3,s4

i (n3+1)

A S 4, S 4 , 25

(nfl3n4)

i = (n3+n4+I)

The matrix A represents the number of paths of length zero in the system.

Each non-zero block, Set0 represents the number of paths of length zero

from components in C to components in C

k
It is well known (for example, [16, p.112]) that if B = Ak;

k 1, 2, 3, ... , then bij represents the number of paths of length

k-1 from c. to cj. Squaring the adjacency matrix, A, we obtain:

F Ks3,s S,s0 3,s 4 ,s5)

2 Z2

A(S 5  (4) H

• A2 = Z i' ( s4,s4) 2(Ss 4, s4) Ss4,,sS)

SZ Z _ TZ

Note that all products are defined. The blocks of A2 may be interpreted

according to this example: the product (Ss3,s4)*'(;s4 ,s5 ) reprc.sents

the number of paths of length 1 from a component in Cs3 to a component
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in Cs5o Continuing:

2
z (Ss3 ,s 4) (S4 ,s 4) (Ss3 ,s4) "(Ss4,s4) "(Ss4, s5)

(s)(Ss ' ( )•A3 Z s4s 3 I s4,4 2.(s,5

3 2

(s3, s4)*S4s s3,4 (Ss4,s4 s 4 )s

A4 . z S (S 443 (S

_ z z

And, by induction:

(s 53 k) k-2*-
(s3,s4)(Ss4,s4) s3,4) (s 4 4 )

AI Z (ss's4) "(ss41s4) "(ss4's5
Ak4 =Z (Ss 4' 4 ) k(s 5 4,s4)k1 "(Ss4,s5)

Z z z

k
In A , the interpretation of the upper right block is, clearly, the number
of paths of length (k-i) from C to C

s3 W5

The solution area of S*, denoted S*s3,s5, must contain the tr'qa!l

number of paths, of any length, from inputs (Cs3 ) to outputs (Cs),

which is the sum of the upper right blocks of all the powers of A; i.e.:
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.'* (S +( (S(,S
Ss3, (Ss3,s5) ss3,s 4) .(s4,s5) + (Ss3 ,s4) "(s4,s4)k )(ss 4,s 5 )

k=3
(4-1)

Earlier, we imposed rule 05, and showed that it was feasible for

case C3. Case C3 is represented in S by Ss4,s4O The application

of C5 to that submatrix means that Ss4,s4 is strictly upper triangular.

It is known ((9, p.81], for example) that a strictly triangular matrix

is nilpotent of index p, that is, there exists an integer, p, such

that:

( s4,s4)k= Z; for k k

and

(ss4,s 4)k Z z; for k < p.

This means that the summation in equation (4-1) is finite, and we may

write: P+l

S*s3,4 = (s 3,s 4) + (ss3,s4) "(Ss,5) + (Ss3,4 k__ (ss 4 ,s 4)k- 2)'(Ss4,s 5 )

=(ss3,s5) + (Ss3,s4)( Z (S4,s5 4) (sk ,s-)

k=2

p-i
= (S s3,s5) + (Ss3,s4)'( X (Ss4.,s4) k) (Ss4,s5) ,(4-2)

k=O

0
since (Ss 4 ,s 4 ) = I ,

and (Ss 3 ,s 4).(Ss4,s 5) = (Ss3,s4)II.(Ss4,s5) = (Ss 3 ,s 4).(ss4,s4)O. (Ss4,,sS)
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Since Ss4,s 4  is nilpotent, we know that

P-1

I (Ss4,s4)k- Ss4,s4)- (4-3)
k=O

(This is one of those facts of matrix algebra that is almost inevitably

left as "an exercise for the reader". See, for example.. L5, p.111;

20, p. 6 8 ].) Using equation (4-3), we may re-write equation (4-2) as:

S*s3,s5 = (Ss3,s5) + (Ss3,s4) -(i - 1

This permits us to specify the solution matrix, following i.5, as:

7 Ss3,s4 (Ss3,s5) + (Ss3,s4)'(I - Ss4,s4)- (Ss4,s)

L Ss4,s4-I j z(4

7. The Systems-Matrix Algorithni

We now postulate that there exists at least one matrix, T, of order

(n 3 + n 4) X (n 3 + n4), such th.t post-multiplication of S by T will

yield S*:

S-T-- S* (4-5)

In block notation, equation (4-5) is:

-l• T12

Ss3s_ Ss3s5 (n xn) (n x n4)

Ss4's4-I i Ss4,s5 T21  T2 2

L (4 xn3) (n4 xn4)

,S Ss3,s4 (Ss 3 ,s 5) + (Ss3,s4) (I - Ss4, s4)- (Ssl,s5)

L sLsks4 -1 I(-
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From equation (4-6), we can obtain the following equations by block

multiplication:

(s 5 3 ,s 4 )e(T1 1 ) '- (ss 3 ,s5)e(T 21 ) = s3,q4 (4-7)

(Ss4,s4. - I)°(Tu) + (ss4,4 5),(T 2 1) = s4,s4 - i (4-8)

(s3,s4),(Tl 2  + (ss3,s5) (T) - (ss 3 ,s 5) + (ss3,s4)'(I - sA4 ,sO-4 (s%4 , 5 ) (4-9)

(Ss4,s4 - I)-(T,2) + (Ss 4 ,s 5)-(T 2 2) = Z (4-10)

Equations (4-7) and (4-8) are satisfied by:

T =1 (4-11)

and

21= z (4-12)

(We do not claim that these values are unique.) Equation (4-10) may be

written:

- (I - s5 4 ,A4),(Tl) = (Ss 4 ,s 5 )-(T2)

whence:

T12 = (I - Ss4,s4 )• . (Ss 4 ,s 5 )(T 2 2) (4-13)

since the existence of (I - hS4,s4)-I bas already been demonstrated.

Substituting equation (4-13) in equation (4-9):

(ss3,s 4).(I - s34,s 4)-1. (s A,s5)"(T22  + (SS3,15 -(2ý

=(Ss3,s5,) + (s53,s4)'(I - s84,s4)-l. (s54,s5 ) (4-14)
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which is satisfied by:

T2 (4-15)

Then, from equation (4-13):

T2= (i - s 4., 4  . (Ss4,s5) (4-16)

By combining equations (4-11), (4-12), (4-15) and (4-316):

FI (I - Ss 4 ,s 4 )-I (Ss4,s5)
T=

0Lb ZI (4-17)

Obviously, from equation (4-17), T is an upper triangu~ar matrix,

with a main diagonal of all l's. Since det(T) = 1, T is non-singular.

It is well. known (for example, [8, pp.217-228 ; 9, pp.1 2 5-1 29; 19, pp.23-26,

202 pp.95-9 8 ; 37, pp.102-106 ] that:

a. a non-singular matrix is equivalent to the product of a

finite sequence of elementary matrices, and,

b. post-multiplication by elementary matrices is equivalent to

elementary column operations.

Therefore, S may be transformed to S* by performing a finite sequence

of elementary column operations on S. The algorithm is:

Al. Find an entry in Ss4,s5 which is non-zero. If there are none,

the algorithm is finished, and the desired results are in block

Ss3,s5. if one is found, call the row in which it occurs r and

the column t.

P?. Search row r for a negative entry. Call the column in which

one occurs d.
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A3. Add to column t the scalar product of column d and srt"

Go to Step Al.

8. The Validity of the Algorithm

For this algorithm to be ccn.f-ct, it must be true that:

a. it is always possible to perform the stated steps,

b. the algorithm will terminate, and

c. the correct solution will have been generated when the algorithm

terminates.

Steps Al and A3 are obviously always executable. Step A2 can be

performed if there exists an entry of -1 in the row being scanned. Since

S is strictly upper triangular and therefore contains only zeross4f's4

on its main diagonal, the submatrix (Ss4,s 4 - I) will contain entries

of -1 on its main diagonal. Only the rows of S are scanned.
s3.,s5

Therefore, for each row subject to scanning there is an entry of -1 in

the initial block ( s4,s4 - 1). This block is never changed, since

Step A3 operates only on columns in blocks Ss3,s5 and SsA, s,. Therefore,

Step A2 can always be executed.

The algorithm will terminate when the block Ss4,s5 has been redued

to Z. To see that this reduction to all zeros will always occur, we

select, without loss of generality, the bottam-most non-zero entry in

some column of Ss4,sS, say, Sr,t' in Step Al. Steps A2 and A3 will

reduce that entry to zero. In so doing, multiples of positive values

in column d will be added to column t, but any such additions to

column t will be above row r, because of the strict upper triangularity
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of Ss4,s4* As we repeat the steps of the algorithm on the same column,

we never add entries to column t in a rom already reduced to zero.

Therefore, we will, after a finite number of iterations, reduce the

entire column t to all zero entries in rows ,n 3 +l) to (n 3 ..n4 ).

This is true for all columns from (n 3 +n 4 +l) to rn. Therefore, S

can be reduced to all zeros and the algorithm will terminate.

Consider repeating the steps of the algorithm only for the original

entries of Ss 4 ,s 5 . The effect of doing this is to change Ss4,s5 to

( s4,s5 + Ss4,s5. (Ss4,5 s 4 - I)) = (Ss 4 ,s55 S*4,24); and to change

s5 to (Ss 3 ,s 5 + Ss 3 ,s4. (Ss 4 ,s 5)). Call this cycle 1. Repeat

the algorithm, but only for the entries added to Ss4,s 5 by cycle 1.

When this has been done (cycle 2), the lower right block will have been

changed to (Ss4,s5' Ss4,s4 + Ss4,s5 's 4,s* (s4,s 4 - I)) = (Ss4,s5-(Ss 4 ,s 4) 2);

and the upper right block (the solution area) will have been changed to

(Ss3,s5 + Ss3,s4- (Ss4,s5) + Ss3,s4- Ss4,s4, Ss4,s5))

1

( s3,s5 + Ss3 ,s4" ( (ss4 ,s 4)k) Ss4,s5)-
k=O

It is obvious that at the completion of cycle p (where p is the index

of nilpotency of S s4,s), the lower right block will be Ss4,s5 * (Ss4,s4) Z;

and the solution area will be

p-i

(Ss3 3s5 + Ss3,s ( X (Ss4,s4) k) . S s4,s), wxiich is the desired

k=O

result.



9. The Determination of Paths

The solution area of the model developed in the previous sections

indicates the number of paths by which an input can reach an output.

An associated problem is to identify each of these paths, rather than

to enumerate them. This can be accomplished by a relatively minor change

in the model. We call the systems-matrix for this problem SP, and we

establish it exactly as we established S, except that wherever there

is an entry of -1 in S, we set

spi.i (I/ci) ,
where c. is a symbol for a component, not a numerical value. We also

1

impose the restriction that multiplication is not commutartive. This is

because we shall interpret the indicated products of symbols to mean

a path. If a cell in the solution area, say, sij' contains the entry

ca' %- cd we shall say that there exists the path of length 3:

cie cae cd . Because of C6., the product canot
be commutative.

In the algorithm, the only change necessary is to specify in Step A3

that to column t be added the scalar product of column d post-

multiplied by (cd . Srt We still take 1/ci to be the multiplicative

inverse of c. ; that is,1

-(1/c.). c. = -1

In Figure 19, we show the matrix SP for the case illustrated in

Figure ll. The solution area of SP*, arrived at by application of the

systems-matrix algorithm, is shown in Figure 2). (Note that in Figures 19



Fi9 ure 19

a- 0 0- 0 -i 0- 0 = ý - 1- -1 0

a rojooooo 0 ~i Fii
40 1311 CI

~le 0j~ !O -' I

0 )! 01-I V3 0

pCP a -I



Figu.re 20

I- Ru ...wRX2ko~ I

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .13(R3 W

d1  R3 3+I. .R()~c~~(2) + Re~RC)

1 7.

Clt 3l O LL)- I -l.

R3(,) (RI .I

'R6lt 0y, lj+ i)(SL tjx)A6 Rt-tflj rR()(,(4rRIa)

017*
d1  Rl 1 , t 1  fJ 5 1 t ej) R6 ( R1 3'(aLn) f?(R, 4 Iga)

A-



and 20, the notation of Chapter 3 has been retained ýo facilitate

comparison.)

%L :• I~okin• • ths cell reprrseating the connectivity from d to

R in Figure 2D, we find the single entry R3 ( 1 ). This depicts

the exisbenc- of c'niy one path, of length 1, connecting these two

components, namely':

d40-!. R~1  ~ R()

From d3 to B there is a path of length 2:

d3  5o R3(l) C" R2 ( 2) J0 B1 "

From d to B2 there are two paths of length 1:

and

d661 R1 (2 ) 191 B2

Similarly, there are two paths of length 2 from d4 to B1 . From d3

to B2 there are three paths of length 2, since

R3 (l) " (R5 ( 2 ) + R2 ( 2 ) + R1( 2 ))

= R3 (1 ) R5 (2) + R3(1) " R2 ( 2 ) + R3(l) . RI(2)-

From d to B2 , there are six paths, one of length 1 and five of

length 2. Finally, the entry of 1 indicates a path of length zero

(direct connectivity), and the entry of 0 indicates no path.
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It should be noted that the matrix SP and its associated algorithm

can be formalized to a "path algebra" with the operations "is directly

connected to" and "and" over the elements of the power set of Cs.

However, at this point, there is nothing to be gained by such a strategy.

Rather, that approach would hinder the mixed mcdels (numeric and symbolic)

that will be developed in a later chapter, and would inhibit rather than

help the type of intuitive understanding of a model that the analyst

should have.
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Chapter 5

INFORMATION FILTERING

1. Introduction

The systems-matrix model developed in Chapter 4 has incorporated in

it an assumption which is now challenged. In speaking of the direct

connectivity relation between two components in Cs4  or from a

component in Cs4 to a component in Cs5, denoted:

ci 0 cj,

we have implicity assumed that if a path exists from some input, ck,

to ci., then a path will !xist rom ck to cj. In other words, the

model assumes that whatever input items have been received by an inter-

mediate entity will be transmitted to every other component to which

that intermediate entity is directly connected. This assumption has

lead to the fact that, in our previous models, any input to a system

could be traced to one or more system outputs. In fact, the violation

of that rule was used as an indicator that what the analyst thought

was an intermediate entity was truly an output.

In practice, management information systems need not necessarily

possess this characteristic. Data may be "dropped", or "list" within

a system. In the preparation of c. from ci, not all of the input

items contained in c. may appear in cj* We shall refer to this

phenomenon as information filtering, or, simply, filtering.



Filtering may be classified as:

1. systematic filtering, if the filtering is a deliberate, planned

part of the management information system (or results in a

( deterministic fashion from a planned part of the system), or,

2. random filtering, if the loss of information results from noise,

error: equipment failure, or other non-planned, randomly

occurring events.

In this chapter, only systematic filtering will be considered, and the

term "filtering" will be interpreted to mean "systematic information

filtering".

Two types of filtering are recognized:

1. unconditional filtering occurs when certain specific items of

data (input items) in ci are never transmitted to c., and,

2. conditional filtering occurs when the transmittal or non-

transmittal of some or all of the items in ce to c is
1 j

conditioned upon the values of one or more input items

(called criteria input items). The criteria input items may

or may not be included in the set of input items subject to

filteri•g.

In the case of unconditional filtering, the filtering action is independent

of the data being processed, exactly which items of data are transmitted

and which are not transmitted is determined by systems design. The

two limiting cases of unconditional filtering are:

1. zero filtering: all of the data from c. are transmitted to each

c. to whiich c. is directly connected. This covers the
J o

assurmption of the previous models.
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2. total filtering: none of the data from c. is transmitted

to any c.. This is equivalent to saying that c. is not3 2.

directly connected to any cj. Then, this is the previously

aiscussed case wherein c. is a system outnut.

1

Front the above we can see that only those instances of unconditional

filtering lying between the limiting cases (i.e., partial filtering)

present a new problem.

In conditional filtering, not only the specific filtering action,

but also the filtering process itself may not be completely specified

by the systems design, but may be a functi.on of specific values of data

processed. It is possible that zero filtering may occur at some times,

total filtering may occur at other times, and various degrees of partial

filtering at still other times. Conditional filtering may involve a

change of state; should zero filtering occur, the process changes to a

non-filtering one; should total filtering occur, the process may change

to a non-filtering one with one or more intermediate entities becoming

outputs. Thus, in conditional filtering the limiting cases as well as

partial filtering must be considered. Furthermore, both non-filtering

and unconditional filtering are special cases of conditional filtering,

as will be developed in this chapter. Therefore, the discussion following

will concentrate on the conditional filtering problem.

2. The Relation of Micro-Direct Connectivity

The concept of direct connectivity as present in Chapter 4 is meaninglul

only when there is zero filtering unconditionally throughout the system.
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A model which employs such an assumption will be referred to as a

macro-model, and the analysis of such a system as macro-analysis.

In this chapter we will be concerned with micro-models and micro-

analysis, applied to systems wherein we must investigate the transfer

of information between components with reference to each item of data

in the system. The relation of direct connectivity tells us only that

there is, or is not, a transfer of some information from one component

to another. We need a more detailed relation between components to

indicate just which specific items of data are transferred.

Conceptually, the macro-model pictured a direct connectivity relation

from c. to c. as a single directed arc from the node labelled c.

to the node lU.belled c.. We now need a relation which can be depicted

as a group, or aggregation, of identically directed arcs between two

nodes. Each arc in the group will represent the transfer of one

specific item of data, and there will be one arc in the group for each

item of data transferred between the two nodes. Then we may say that

c.i is directly connected with respect to input ck to cy, if an arc

labelled ak is directed from ci to c on our conceptual network.

This will be symbolized:

k S0c 1, l5 k :! n3
ci 0

In order to distinguish between the aggregate and the detailed direct

connectivity relations, we will call the previously defined one macro-

direct connectivity, and the one defined in this section micro-direct

connectivity. We may state:



C9. The component ci is macro-directly connected

to component c if and only if ci is micro-

directly connected to c for at least one

item of data.

It can be readily verified that all the statements made in Chapter 4,

saction 3, about macro-direct connectivity, statements Cl through C8,

apply as well to micro-direct connectivity.

We also may extend our definition of a path to the micro-model.

The path previously defined in Chapter 4, section 3, P1 and P2, we will

now refer to as a macro-path. We say that a mi',ro-path with respect to

input ck exists from ci to c. if:

P3. ci &0 cj , or

P4. there exists a set of components, {cr } ;q = 1,2,...,p;
q

i < r1 < r 2 < ... < r < j ; such that

Xk k k k

1i Or Or 2  0 .. 0 r c0 "

We say that the micro-path with respect to ck is

of length p and write:

k
1i •

Micro-direct connectivity is a path of length zero, by P3.
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Since the relation of macro-direct connectivity holds between

two components which are micro-directly connected with respect to

at least one item of data, we can readily observe that:

P5. A macro-path exists between two components if and only
t

if a micro-path with respect to at least one item of

data exists between the same two components.

We may now define filtering in a somewhat more precise fashion. We

will say that filtering is a system characteristic:

S6. An item of data ck, is filtered out of the flow of

information from component ci to c if there does

not exist a micro-direct connectivity relation with

respect to ck from c.i to cj.

Note that this definition of filtering is worded so that if c. is not

macro-directly connected to cj (that is, if there is no flow of any

information from ci to cj) then we can say that total filtering

exists between ci and cj* Worded this way, we can use the corcept

of filtering as a characteristic of the macro-model as well as of the

micro.-model. This enables a systems analyst to change from macro-

analysis to micro-analysis, or vice-versa, with a minimum of difficulty,

and thereby increases the flexibility of the systems-matrix approach.

As an example, we depict, in Figure 21, the conceptual network

associated with a system which is to be subjected to micro-analysis.

V m~
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Note, for instance, that while c7 is macro-directly connected to

C9 , it is micro-directly connected only with respect to c3. At

the bottom of Figure 21, we display in a small matrix the total number

of micro-paths from each input item to each output. in this simple

example, that information may be readily obtained by direct examination

of the network. In more ccmplex cases, of course, such direct examina-

tion and enumeration would become unwieldy. It is our purpose to

apply the systems-matrix approach to generate this information as the

solution to the systems-matrix.

3. Transmittance Values and Vectors

The network scheme developed in section 2, above, is a good one

pictorially, but is difficult to work with mathematically because of

the varying number of arcs that may exist between each pair of

components. In the interest of uniformity we now put forth an alternative

way of indicating micro-direct connectivity. We will visualize each

node representing an intermediate entity to be connected to every other

node representing an intermediate entity and to every node representing

an output, and that the connection wrill consist of an aggregation of

n 3 arcs, one for each input in the system. On each arc will be a

number, or a v.riable, which denotes whether or not that arc transmits

the input item it represents between the nodes it connects. In the case

of unconditional filtering, that number will always be either a 1 (transmits)

or a 0 (does not transmit). Conditional filtering will be indicated by

a variable, which, when evaluated, will be either a 1 or a 0.
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More formally:

S7. From every system ccmnponent ci, n3 < i • (n 3 +n 4 ),

to every other system component cj, (n 3+i) : j : n, i j J,

there will be a set of k transmittance values, ti k,

1 S k ! n3y defined as follows:

0; if ck is never transmitted

from c. to c 1,

i~jyk - 1-vi; if ck is not transmitted from c.

to c under certain conditions,

1; otherwise

The symbolic value, 1-vi will be explained below (section 5 of

this chapter).

We may make the following statements about transmittance values:

Tl. If ti,j,k - 1, c. is unconditionally micro-directly

connected with respect to input ck to c..3

T2. If tij,k = l-v ,j, c. is conditionally micro-directly

connected with respect to iaput ck to cj.

T3. If ti,j,k - O, c. is not micro-directly connected with

respect to input ck to c .

T4. c. is not macro-directly connected to c if and only ifSij

t i =0 for all k.
i,J.,k '

T5. The micro-path of length P with respect to input ck

as specified in P4 exists if and only if:

V
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t A 11 t riri+lk t J•
ti,rl~k Li=i trr trp,j,k 0

The definition of t in S7 is worded so as to remove one

cause of ambiguity. It is possible for an input item of data, ck P

to fail to reach c either because the flow frcm c. to c is

filtered (t. = 0), or because ck never reached c. . In the

latter casE, as will be shown below (section 5 of this chapter), the

value of t. is arbitrary. We have defined t. to be

independent of whether or not ck exists in the set of items that

reach ci; we will show that t is a function only of the

logic of the system structure.

In S7 we have left undefined the micro-direct connectivity of

input item-, to other components. It becomes a little difficult to

visualize an aggregation of n 3 arcs eminating from a component which

is the component represented by one of the arcs. One might puzzle

over the significance of the arc labelled, say, c 5 , directed from

the node, say, c 4 . Instead of trying to give meaning to this, we

will consider the entire set of input items, Cs 3 , as constituting

a single component with an aggregation of n3 arcs directed from this

"super-component" to every intermediate entity and to every output.

In order not to have to change the specification of the range of the

indices in S7, we must label this new component with an index number

greater than n3 , but less than (n 3+l). Arbitrarily, we will refer

to the component representing the subset Cs3 as c(n)3
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Obviously, the drawing of a network of even a simple system

according to the above scheme would be so complex in appearance as

to be a detriment to visualization. We will continue to draw networks

as before, but with the understanding that, in micro-models, each arc

drawn represents an aggregation of n 3 arcs. We will replace the

transmittance value which is connected with each individual arc with

a transmittance vector:

S8. The transmittance vector from ci to cj ; n3 < i ! (n 3 +n 4 );

(n 3 +l) < j < n; i j j; is defined as:

Tii,j = (tijI, ti,j,2' "'" , ij,k' ' ti,j,n 3 )

We note that we may further simplify the drawing of networks by omitting

an arc when its associated transmittance vector is:

T. . = (0,0, ... , 0).

Such will be the case, for example, when c. is not macro-directly

connected to c .

We digress momentarily to note that we will make frequent use of

vectors that have all elements equal to the same value. We will denote

such vectors by:

Vz(a) = (a, a, ... , ) ,

where the subscript z states the size of the vector. Thus, in the

preceding paragraph:

Ti,j = (oo, ... , 0) = n3(0).
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4. Input Content and Cargo

A remark in section 3, above, indicated that the question of whether

or not some intermediate entity has received some input item may be

significant. In order to be able to discuss such a question, we

introduce additional terms:

S9. The input contant of a component, ci, is stated by a vector,

Di, of size n3, defined as follows:

Di = (d 1 i, d1 , 2 , ... , dik, ... , din); (n 3+l) : i 5 n

wher d., k ee .,
where d ijk represents the number of paths by which ck can

reach c,, 1 ! k ! n3. We define the input content of

c(n +3) as:

D(n33+ = v 3 (1).

In an unconditional filtered system, each di,k will be a non-negative

jnteger. In a conditional filtered system, as will be shown below,

di,k may also assume a functional form (which becomes a non-negative

integer when the function is evaluated).

S10. The cargo from ci to c is the input content received by

c from ci, and is described by a vectcr of size n3

Ri., = (riIJI, rij ..- , ri,j,kr ..- , n3)

Obviously, Ri,j V n3 (0) when c is not macro-directly

connected to cj.

Dj
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The cargo from ci to Cj will be identical to the input content

of ci unless the transfer of one or more input items is prevented by

filtering. If this is the case for, say, ck from ci to cj, then
it will be indicated by ti 0,, and r should be zero.

Otherwise, t = 1, and r should be equal to d.i,Jyk i~j~k ,k
Therefore:

riJk= (di.).k (ti,j'k)

and,

R . ( d t..., (d )(t .

(This is in accord with customary usage in signal-flow graph theory;

for example, [3, p.1 8 7 ff; 6, p. 8 7 ff; 27, Chapter 1; 36., Chapter 1i.)

Again, we digress to introduce special notation for a case that will

appear frequently, If A and B are two vectors of the •ame size, z,

and if C = (ai.bi, aobb2, ... , azobz), we will denote this by:

C=A@B ,

where the operator @ indicates element-by-element vector multiplication.

Then we may write:

R .j= D; 0T i,1(5-1)Ri,j = i ® i,j 5i

Sll. The input content of cj, (n 3 +l) • j • n, is equal to the

sum of all the cargos terminating in cj:

Dj( R 5-2)
i
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Substituting equation (5-1) in equation (5-2):

D. (D= @ T ), (5-3)
i

and, from S9:

D(n ) = V (). (5-4)
3 3

Without loss of generality, we may stipulate that each of the

vectors we have discussed so far be a column vector. Then any D.j

for (n 3 +n 4+l) < j * n is a column from the solution area of !*;

i.e., S* (M4, Chapter 4, section 6). Equations (5-3) and (5-4)= -1 s3,s5

define the solution area recursively when applied to j such that

(n 3+n4+l) : j : n

5. Filtering Functions

The determination of a transmittance value (S7) is clear when the

system under study contains only unconditional filtering. For a system

including conditional filtering, the term 1-v.ij must be determined.

We will do this so as to be able to state a single definition for the

transmittance value, .i,jk regardless of the type of filtering

present. treating t. as a function of independent variables to

be introduced.

We define a filtering function on each micro-direct connectivity

relation in the system. This filtering function is based on two

elements, one of which indicates the conditions under which fir.tering
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takes place; the other, the input items affected by the filtering

action.

S12. The value of the filtering function is defined as:

1; if filtering takes place between c. and cj,

0; otlerwise .

S13. The blocking vector of the filtering function, B

describes which input items are filtered out if filtering

takes place. This is a vector of size n 3 , with the k-th

ccmponent defined as:

) 1; if ck is filtered out of the flow

b c. to c. when v. . = 1,

) 0; otherwise

S14. The filtering function, F.i, a vector of size n 3 , is

defined as the scalar product:

F. .v = v i.Bi ; n3 < i (n3 +n4);

(n3 +l) £ j : n; i # j

Thus, the k-th element of F.,j is:

v. .;if b. =1,

fi,j,k = 0: otherwise,

The value of vi, j is the truth value of the condition upon which

filtering takes place. Suppose, for example, that filtering occurs i-L

and only if the value of ck is less than sane quantity Q. Then we
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may say:

v -(c

i cj

iwhich is, of course, a logical propcsition. For multiple criteria,

we may have expressions such as:

v i~j= ( (c3< Q) A (c6- c7 ) ),

vi.9= ( (c 3 " c4) (c7 + c8 ) ),

.= ( (c,<Q) V (c 2 =0)),

vi., = (((c 2 i c7) A (c5 ' 0) ) V (c 2 = "inbound")),

and so on.

For an example of a blocking vector, consider a system with n3 = 7,

and the existence of F12,17 such that if vl2,17 = 1, all the informa-

tion contained in c1 2 is transmitted to c1 7 except for c4 and c6 .

Then:

B12,17 = (0,0,Ol,0,1,0),

and

F 12,17 = (0,0,0,v 1 2 , 17, 0, v 1 2 , 17, 0).

For unconditional filtering, vij = 1. For zero filtering, vij = 0;

but in this case we need not recognize the existence of F. For

total filtering, Bi,j = Vn 3(1).

More complicated filtering functions may occur. It is possible that

the filtering action may take several different forrms, depending on the

values of several criteria. As an example, consider the following set

of blocking vectors, each of which may become the controlling blocking



76.

vector between c. and c upon the satisfaction of its associated

criterion:

(0, 1i, i, 1, ,1 0,0); if c2 < 0,

B = (0, O 11 i, 1, , ,1 0); if c2 = ',

(0, O, O,0, 1,0 , 1); if c2 > 0.

We can express each condition as a sub-function, G i~jh; h = 1, 2, .,:

G i = vj,l)'(0,1l,1,1,1,O,O); vi,j,l = (c 2 < 0),

ij,12 (viA.,2) i,j,1j,2 = (c 2 = 0),

G iA,3 =(v i,,3).'(0,,0,0,l,0,l); vi,j, 3 = (c 2 > 0).

Then:

F ij = ZGijh (5-5)

h

In this example,

Fi'j = (0, v.i~jl, (vili,1 + vi , 2 ), (vi.i,1 +.V i,j,2),

i (vi'j'l + vi, J,3)' v~i'j2 viS,J)"

In this example, we were careful to define the criteria such that they

were mutually exclusive and exhaustive; i.e.,

Z vi,j,h = 1,

for all possible values of the criteria. This is an important point

in order to avoid ambiguity. In this way no element of F. will be

anything other than 0 or l, after the v. 's have been evaluated.

1'
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It is this which permits us to couple the v i,js by arithmetic

operations rather than logical operators.

It is important here to note that the constraints of information

flow in the system under study, which in the macro-model resulted in

some components being connected, others not, are depicted in the

micro-model by filtering functions. Thus, in the model of Chapter 4,

we might have a situation with the following characteristics:

a. n3 = 4

b. c1  is macro-directly connected to c5

c. c 2 is macro-directly connected to c 5 and c6

d. c 3 is macro-directly connected to c6  and c7

e. ch is macro-directly connected to c6  and c7

In the micro-model of this chapter, the description of these characteristics

is:

a. ci is micro-directly connected to c5 , c6  and c7 , through the

filtering functions described below:

b. F*, 5 = (i).(0,0,ii) (0,0,1,i)

c. F 1, 6 = (l)'(i,0,0,0) (1i,0,0,0)

d. FI•, 7 = (i).(ll,0,o) (1,1,0,0).

In cases involving the macro-direct connectivity from an intermediate

entity to another component, systems design will impose either zero

filtering or total filtering; i.e., either Fi Vn or

respectively.

In addition to these system design imposed unconditional filtering

functions, there may be one or more conditional filtering functions on

an arc. In this case, equation (5-5) governs.
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The transmittance of an arc is either 0 or 1; that is, an input

item, Ck, is either transmitted from c. to c (ti~j = 1) or

it is not (t k = 0). In order for t, to be equal to 1, the

filtering function, Fi,j, must be inopeý'ative on ck . This, in turn,

will occur when v. . = 0 and b is arbitrary, or when b k = 0
iji.,j~k i..j.k 0

and v. is arbitiary. In either case, fi, k = 0. In order for

tiyj,k to be equal to zero, F. must be operative on ck, which

means that both v and bi,jk must be equal to 1, and, therefore,

fi,j,k - 1. Thus, it can be seen that:

t i,j,k =1 f i,j,k

or,

T i,j = Vn 3 (1) - Fi "(5-6)

In the case of zero filtering, by definition:

V. .0~

F .= v. .'B =v (0C),
Fi1,j v ,j *B i, j Vn I(0

and, therefore,

T. =:Vn(1) - E =V F(.)
1yj n 13-'

In the case of total conditional filtering, by definition:

B. .=V (1),
s,j n 3

so that, when vi,j = 1,
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F =v i'jB i, = Vn (1)Fi,j = i,j Bi,j -Vn 3 (1

and

Ti, = V3 (1) - ij = V3 (0)

6. Matrix Representation of a System with Filtering

The matrix S, developed in Chapter 4, has as elements, s,,j, the

values 1 or 0, depending upon whether macro-direct connectivity does

or does not, respectively, exist from ci to cj. However, the development

of the model in this chapter will not permit such a simple matrix repre-

sentation, for now we must depict the micro-direct connectivity relation

from c. to c., which is an n3 -tuple rather than a single figure.

We could use the previously developed matrix S as a guide for

constructing a similar, but larger, matrix to represent the micro-model.

Since there are n3 possible micro-direct connectivity relations between

two intermediate entities, the intersection of c. and c. in the matrix1 3

will be an (n3 X n13) submatrix instead of a scalar. Each row of the

submatrix, ci,k will correspond to a single arc leaving c., each

column, CJ,k, to a single arc reaching c... The intersection of

intermediate entities and outputs will also be represented by (n 3 X n3 )

submatrices. Input components will be represented by a set of n3 rows,

as in S, the entire set representing c(n+i). The resulting matrix,

which we will call SF', will be of order (n3+n3°n4 ) X (n 3 -n 4 +n3-n 5).

The entries in this matrix will be similar to those in S. Let sf' ijpk

be the cell formed by the intersection of the row representing ci,k

and the column representing cj,k. This cell will be set equal to

t i~jk, which represents the k-direct connectivity from c. to cj;
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unless i = J, in which case the cell will be set equal to -1. All

other cells will be set equal to 0.

Obviously, each submatrix of SF' will be either Z or an (n3 X n3)

diagonal matrix. A cell of a submatrix not on the major diagonal repre-

sents the micro-direct connectivity from one input item contained in

ci to a different input item in cj* No such connectivity exists.

Therefore, all cells not on the major diagcnal must be 0. It is known

(for example, [9, p.81S) that the product of two square diagonal

matrices of the same size is a square diagonal matrix of the same size.

Furthermore, the diagonal elements of the product are the products of

the corresponding elements of the two diagonal matrices being multiplied.

If X and Y are two diagonal matrices of size (z X z), then:

X*Y = Y°X = W

and { xi.j.Y,j; for i = J,

w.i.

0; otherwise.

Let XV, Y', and W' be column vectors of size z, formed of the

diagonal elements of X, Y and W, respectively:

X!=X.

1 1ý'1

and

W=W.I l~i



and let

W =X'Y.

Then it can be seen that

W1 = X' @ Y'

where 9, as before, indicates the element-by-element multiplication

cf two equal size vectors.

The foregoing permits us to represent each (n 3 X n3 ) submatrix

of SF' by a column vector of size n3 , and to represent the operation

of ordinary matrix multiplication by the operation S. Thus, each

submatrix of SF' collapses to V (0), V (-1), or T. .. The

collapsed systems-matrix is then of order (n 3 + n3 -n4 ) X (n 4 + n5 ).

However, we can consider this as an (1 + n4) X (n4 + n5) matrix

by entering in place of the elements of each column vector the symbol

denoting that vector. This new matrix, with vector cell entries,

we will call SF, whose elements are defined as:

M6. V if i= J,

sfiJ = otherwise,

and:



M7 n4) (n n........ ... ...... . n

(n3 + SFSF 5  - -I

whreIV(I ) sasmo oradaoa fvetr n(i

M9. F~3 s4 , s 3,s S%,3

"(n + )

SF SF4,.s4 + SSFs
4

s,

(n, n4)I

where vis a symbol for a diagonal of vectors Vn (-1).

M8e Every row and every column of SF will contain at least one entry

not equal to either V (0) or Vn (j).

M9. SF[*s3, s4 SF*s3,s5
SF* =4S SF`* s4,s5 J

M10. SF 5 3 , 5 4F s3,s4s3,,s5

SFFS4,S4 + I(V(-z)) z

The proof that SF* can be developed by elementary column operations

on SF follows the same arguments as those used in Chapter 4, section 7,

for the transformation of S* from S.

In Figure 22, we depict a simple systcm with zero filtering and the

corresponding matrices S and S* . In Figure 23, we introduce filtering,

both conditional and unconditional. In the interest of visual simplicity

we have omitted arcs to which we know are associated T. 's of V(O).
lj5
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Figure 22

0---IO

i: C, le C C9 c 0 , C6 C7 ca C9 C/

cS 1010 0 010~oi! 3
-~T-1

csL10 0 0 1~'j 1 0? 3



Figure 2384

Fs Fsplc& ca

_~~~~ to~__ ____

I ~ ~ 0 G,1 ,Z 0,, 1, 1. 4~*VgO0 r c l.e.si g"rczn
51,60 c.> ~ U0, 0 -_______ I___ I I__

~~, C3 ( <,q)0 0, 0,01, 0, 0 ,0,If v,,,. 0, 4i tierv, ac .3
1, Iegjjsl 0O, 0;itt

i 0, 0,o1,'d



85.

"Figure 2 3 (co4/WIY
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Beneath the drawing we indicate the nature of each filtering function.

Cases of arcs without filtering functions listed represent the trivial

cases of F =V5(). Fran these F. I's we compute the T IS

by equation (5-6). The desired solution is Dlo, which we compute

using equations (5-3) and (5-4):

D6 = T55., 6 = v5 (1) T5 .,6 -.

D7 -V 5 (1) 0 T + D vs(0) =5,

D8 = v5 (1) 9 T5 , 8 + D6 T6,8 + D 7 V5 (0)

= T 51.8 + T 4, 6 0 T,

D9 = V5(1) 0 V5(0) + D6 0 V5(1) + D7 0 V5(1) + D8 V5(0 )

=D6 +D7 = T~6+TjY

Dl Crv 5 (1) 0 T•,O + 0D 0 v5 (o) + D7 0 v5 (o)

8 T8,10 9 910

= T5½,1o + (T5., 8  + T5 -*,6  ® T6 ,8) 0 T8,10

+ (T5j, 6 + T5*, 7) 0 T9 ,40 • (5-7)

Evaluating equation (5-7), which is the desired solution:
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In Figure 24, we show the matrix SF, corresponding to the network

of Figure 23. We show this in two forms, first, symbolically, secondly,

with each vector symbol expanded. The second representation is only to

aid the reader perform subsequent computations. The solution area is

outlined in heavy lines in Figure 24.

We modify the algorithm of Chapter 4, section 7, so that it is

applicable to SF:

A4. Find an entry in SFs4,s5 which is not all zeros. If there are

none, the algorithm is finished, and the desired results are

in block SF *s5o If one is found, call the row in which it

occurs r and the column t.

A5. Search row r for an entry of the form Vn (-a). Call the
-J

column in which one occurs d.

A6. Add to column t the element-by-element product of the vector

entries in column d and the vector entry in sr,t . Go to

Step A4.

Applying this algorithm to the matrix SF of Figure 24, we obtain

the matrix SF* shown in Figure 25. We note that the block SF*s3, s5 is

equivalent to equation (5-7); therefore its evaluation will be identical

to equation (5-8). This solution is, of course, largely in functional

form, in that it models the number of paths from an input to an output

in terms of the logical v. .Is. To depict this in a form useful to the

systems analyst, we employ the format of a truth table, e-raluating each

functional expression in SF*s3,s5 for all possible combinations of

values of the v. Is. Of course, when a numeric value only appears in
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a cell of the solution area, that indicates a deterministic number of

paths, independent of any conditional filtering action. In Figure 26

we display the truth table expansion of the solution shown in Figure 25,

showing the values of each element of D for every possible combina-

tion of values of the logical v 's.

7. Path Determination

We can determine the paths by which an input reaches an output for

a system with filtering in the same way as we did for the macro-model

of Chapter 4. We form the matrix SFP in the same way as SF, except

that:

spf.i .V (-1/c.)
3

instead of Vn 3(-1). We also impose the non-commutative restriction on

the operation @ . Applying this method to the system in Figure 23,

we arrive at the SFP shown in Figure 27t, and the SFP* and evaluation

of D1 0  shown in Figure 28. In Figure 29 we display th. truth table

expansion of D1 0 , but in a different form than was used in Figure 26.

In Figure 29 we expand each element of DIO in a separate table, using

only those v. 's which affect that element. The result is five tables

instead of one, but each is easier to interpret. Note the further

simplification through the use of "else" columns and "don't care"

entries ( -
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Figure 2 6

(Z -n

I~ tK
-~ -s- V

-J I

I~ ~-i N..r..j r-

N m e
-- v -$ * ~To,



93.

'Figure 27
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Figure 25
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CHAPTER 6

INTERNALLY GENERATED DATA

1. Sources of Data

In the models proposed so far, we have considered data as being

infornation coming from outside the system under consideration, and

we have referred to such datt as input items. However, data may also

be generated within a system. It is the purpose of this chapter to

explore this phenomenon and to incorporate it into the systems-matrix

model.

Data which is generated outside the scope of the system being

modelled will be called external data; that which is generated by ane

system, internal data. Internal data may be of two types:

a. meta-data, data about data, or data about the system;

b, resultant data, data which is formed by operations on other

data.

Some examples may help clarify the use of these terms.

Consider a system set up to process invoices. Inputs to the system

are data regarding shipments to customers, selling process of commodi-

ties, and discounts to various classes (f trade. Outputs are invoices

and various managemenr reports, Ali input items are, obviously,

external data. If one of the management reports contains the numrber

of typing errors per typist, that information is internal meta-data.

If the external data includes the quantity shipped and the unit price
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of a cC. .odity +he Pxtended prioe on the invoice (arrived at by

multiplying the two specified input items) is internal resultant

data.

For our purposes in the model proposed, all meta-data may be

treated as input items, since we do no'; require that input be limited

to any one "level". Internal resuitant data must be further discussed.

2. Processes for Generathing Iternal R~esultant Data

Two types of internal resultant data processes must be recognized:

a. an additional resultant data process is a process which

generates one or more new items of data from data received

by the process, and transmits both the neq items and the

items from which the resultant data were generated.

b. a replacement resultant data process is a process which

generates one or more new items of data from data received

by the process, and transmits the new items but not the items

from which the resultant data were generated.

Thus, an additional process furnishes to some direct connected

component both the resultant data and the data which generated the

resultant data. It suffices, as a matter of fact, that only enough

of the original data be transmitted to permit the reconstitution of

all of the original data by means of an op,:ration which is the inverse

of the. operation which formed the resultant data. An example might be

a process which receives an 'ole" inventory balance (OB) and the
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quantity received into stock IR); computes the new inventory balance

(NB); and transmits any one of the following sets of data items:

(OB,R,NB] ,

(C)EONB, ,

(R,.NB).

A replacement process dues not transmit enough information for

the original data to be reconstituted. In the above example, a

replacement process would transmit NB only. Perhaps a better example

is a process which receives all invoices and transmits only the number

of invoices' and the average dollar amount per invoice.

3. Resultant Data Components in the Model

The problem introduced by the recognition of resu-tant data is

twoold. First, we must assure ourselves that if the generating process

is a replacement process, our model automatically "blocksh the flow

of the data which was used to compute the resultant data. Second,

regardless of the type of generating process, we should, in some way,

indicate that when an item of resultant data is received by another

ccmponcmnt in the system, it carries with it scme information about the

data from which it was generated, even though it may not carry that

information in a way which will permit reconstitution of the original

data. We propose to incorporate this phenomenon into our systems-matrix

model by a single mechanism regardless of whether a process is additional

or replacement.
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Let ch ne a conponant of Cs which is an item of data formed

within the system by a combination of other data elements; i.e., an item

of internal resultant data. We will treat this component as if it had

been produced by a replacement process, for an item of resultant data

produced by an additional process may be depicted as the result of two

processes, one a replacement process, the other a direct connectivity

process that transmits the original information to the same component

that receives the new data item. This decomposition, incidentally, gives

us the additional flexibility of easily depicting partial additional

processes, by inserting a filtering function on the flow of the original

information. In Figure 30, we depict, as networks, both replacement and

additional processes viewed in This way.

This resultant data component, ch, is an intermediate entity with

respect to the input components from which iti is generated, However,

from the vi-,Epoint of the componcnts to which ch is directly connected,

it is an input. Since such ambiguity cannot be allowed to persist, we

will classify resultant data as secondary inputs, calling externally

generated components primary inputs. Thus, the components called

simply "inputs" in previous chapters will now be called "primary inputs".

We will assume that a system contains n1  items of primary inputs and

n2 items of secondary inputs, and that

nw + n  t2 = n tl,

where, as before, n 3 represents the total number of inputs to a system.
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Figure 30
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4. Macro-Model with Resultant Data

Our fir& ý model incorporating internally generated data will be

a macro-model; i.e., a model without filtering, and, therefore, without

consideration of individual data item flow between components. We

will modify the model of Chapter 4 to accommodate secondary input items.

By extension of previous usage, we use the following additional subset

notation:

S15. primary inputs: Cs= {cs1ll s ! nI }

S16. secondary inputs: Cs2 = {cs1(n 1 + 1) <s < (n1 + n 2 ) = n 3 }

S17. C -s sl UCs2

S18. csl n cs2= 0 .

Note that the above, taken with Sl, S2, and S3, imposes on the

indexing of components the following restriction: if c. C Ci sl'

ch e C£s2, c C s4 and ck e Cs5, then:

l• -i<h< j<k!'n .

In our new model, direct connectivity is permitted, in addition to

C1, C2, C3, and C4,, between the following sets:

Direct Connectivity

From To

C9. Csl Cs2

Cl0. Cs2 Cs2

Cl. Cs4 Cs2
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Statement Cll implies that we can no longer stipulate C5. Instead,

we impose:

C5a. Direct connectivity may not exist in such a fashion as to

form a loop or a circuit; that is, no path may include tae

same component more than once.

Note also that S17 may be applied to Cl and C2 to yield:

Direct Connectivity

From To

Cla. Csl Cs4

Clb. Cs2 Cs4

C2a. Csl C5

C2b. Cs2 Cs5

The problem involved in depicting the flow of data in a management

information system with internal data generated by a replacement process

is one of blocking paths from primary inputs to secondary inputs to

outputs, yet in some way indicating that intelligence based upon certain

primary inputs is included in the flow along the path from secondary

inputs to outputs. We elect to use a scheme similar to the SP matrix

of Chapter 4., section 9. We will describe a matrix SR, which will

employ a mixed notational scheme; that is, a combination of non-negative

integers and symbols. An element of the solution area, SR*sl,5s 5, might

contain the entry:

sr. + yc
I., c h
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where:

(nl+l) g h n 3,

(n 3+n4+l) -- n

and where O, O, and y are non-negative integers. This expression may

be interpreted as:

a. c* reaches c. in its original form through Ot paths.

b. ci reaches ch through 0 paths.

C. Ch reaches c. (and, thereby, intelligence about c
1

reaches c.) through y paths.

As usual, if a is 0, it may be omitted; if either 0 or y are 1,

they may be omitted; and if either 0 or y are 0, the entire term

containing ch may be omitted. (If all terms are 0, an entry of a

single 0 is indicated.) The y arises through application of the

non-commutative multiplication process; the 0 through the application

of the rule: ch + ch = 2ch.

Since secondary inputs may form paths, an expression such as:

sr fc(l~c V+(~ + 0 c ))
ri,j = ch1 + O1Ch2 3 + ch32k2 2 h2

may occur. This would be interpreted:

a. c. is connected to c through one path,1h

b. ch is connected to cj through oil paths, to ch2 through

01 paths, and to Ch through one path,
3
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c. c h is connected to c* through y paths,

d. c h is connected to c. through v2 paths, and to Ch

through 02 paths.

The system with secondary inputs may be represented by a matrix,

SR, of order (n3 +n4) X (n 2+n4+n5 ), whose elements are defined as:

MI I. 1i if c i • c j; i / ,

'-1; if (n 3+l) : i = j < (n 3 +n),

sr -( ci) ; if (nl+l) < i = j g n2 ,

0; otherwise

and:

1 g i g n+n)

(n+l) <5j < n

Each row of SR is labelled c.; and each column, c.. Thus, all primary

inputs are represented by rows; all outputs by columns; and all secondary

inputs and intermediate entities by both rows and columns. We may

decompose the matrix SR into blocks:

'I i '1

M12. j=(nl+l) ... n3  j=(n 3 +l) ... (n3 +n4) j=(n 3 +n4 +l) ... n

a= 1

* SRs 1 ,s 2  SRsl,s4 SRslk5

n1

i = (n1+1)

SR = .R s 2 's2 -I(C) SRs 2,s 4  SRs 2 ,s 5

n 3
i (n 3 +l)

SRs4,s2 SRs4,s4-I SRs4,s5

_(n3- -n4 ) . -.
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where I(C) is a symbol for the diagonal matrix with entries of

1/ci.

Obviously:

M13. Every row and every column of SR will contain at least one

entry of +1.

Both a partial solution matrix, SR*, and a solution matrix, SR ,

are recognized. Following the development of Chapter 4:

M14. SRsl,s 2  SRsl,s4 S"*sl, s5

SR* = SRs 2 _2(c) SR5 2 ,s 4  SR~s

s2,s2I(C) *Js4 s5

SR ss4,s2 SR s4,s4-I z

M15. SRsl,s2 Ssl,s4 SR* sl,s5

SR* = SR I(C) S.R, Z

; Z
SRss SRs4 s-

The interpretation of the two solutions are as follows:

a. SR* displays in SR~s2,s5 the number of paths through which

each secondary input reaches each output; and, in SR~sls5,

the number of paths through which each primary input reaches

each output in its original form.

b. SR* displays in SR*sl~sS in the previously described mixed

notational scheme, the number of paths through which primary



inputs reach each output.

It can be readily seen that SR is, in a sense, a hybrid of S

and SP. The algorithm for manipulating S can be applied to SR

to transform it into SR*; then the algorithm for manipulating SP can
.

be applied to SR. to transform it into SR . Thus, we are applying

the path-finding technique of Chapter 4, section 9, to the problem of

identification of primary inputs replaced by secondary inputs.

Figure 31 is a network drawing of a macro-model of a system which

has four primary inputs and two secondary inputs. The matrix correspond-

ing to this network, SR, is shown in Figure 32. The partial solution

matrix, SR*, is shown in Figure 33, and the solution matrix, SR*, in

Figure 34. Note that we have employed the device of indicating secondary

inputs by a bar over the component symbol: C-h, (nl+l) : h < (nl+n2 ).

This is a convention of convenience, not necessity, since the indexing

of the components is unique; it simply permits rapid identification of

secondary inputs.

It is quite obvious that we can employ the method of Chapter 4,

section 9, to generate the identity of each path. To do this requires

that we set up a systems-matrix, SRP, identical to SR, except that

wherever a -1 appears in row i of SR, we set:

s2i,, = -(i/ci)

For the system illustrated by the network of Figure 30, Figure 35

depicts SRP; Figure 36, SRP.; ard Figure 37, SRP* together with simplified

equivalent expressions for the solution.
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Figure 31
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Figure 32
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Figure 
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Figure 311
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Fig�ure 36
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Fi gtre 37
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5. Micro-Model ,rith Resultant Data and Filtering

To depict a. system which contains both internal resultant data

generation processes and conditional or unconditional systematic

information filtering requires a combination of the foregoing techniques

and those of Chapter 5. As in Chapter 5, the vehicle for the trsnsition

from macro-to-micro-moel will be the relation of micro-direct connectivity.

Unlike tha work in Chapter 5, the range of k will differ between different

classes of compcnents. We list below, the subsets between which the micro-

tiaent conectivity relation is permitted, and the range of k in each

ase :

Micro-Direct Connectivity

From To k

C12. Csl (s2

C13. C C 1 } k .n1

C14. Csl Cs5

C15. C C

C16. C 2s2 Cs4 (nl+l) k s (nl+n2  n
C17. C s2 Cs5

Ca8. Cs4 Cs2 s

C19. C" C 4  S k 5 n3

c20. CSb Cs5
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Figure 38 is a pictorial representation of the conceptual network

associated with this model. We have drawn the arcs between nodes

as if they were cables, each containing the indicated number of wires.

In the several cases where two cables are "spliced" to form a third,

the third cable contains a number of wires equal to the sun of the

wires in the two cables joined to form it. Furthermore, each wire in

each cable is labelled with a value according to C12 through C20, so

that each wire is associated with input ck.

Basically, our model will follow closely the micro-model of

Chapter 5, modified as required to account for the new class of

secondary inputs and the difference in size of the micro-direct

connectivity relations. We will follow the statements of Chapter 5,

modifying them whaen necessary.

S19. The tranbmittaeuce values, ti,jk.k may assume the values

described in S7. However, the range of k will vary

according to C12 thrcugh C20.

As in Chapter 5, we ccnsider a subset of input items as a component,

except that now re confine the subset to primary inputs; that is, the

set Csl. We call this component c(n,.,). The component c(ny+J)

refers to Cs2, the subect of seconda•r" inputs.

Statements Tl through T5, Chapter 5, section 3, hold here. However,

in this case, T,.J is not defined for i g n1 .
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S20. The transmittance vector, Ti.61 will be as described in

S8, except for the size, which will vary according to C12

through C20.

S21. The input content of a component is as in S%# except that

C12 through C20 will govern the size of D.; and, we define:

D -- vnl(1) ,

and

D( n ) -V (1).

S22. The cargo of a micro-direct connectivity relation is as

described in S10, except that the size of R. is governed

by C12 through C20.

Statement SlU holds, as do equations (5-1) through (5-3).

With respect to filtering functions, S12 and S13 hold.

S23. S14 holds except that the size of the vector, F,,,, is the

same as the size cf Ti.

The matrix model of the system with internal data generating and

filtering processes may be described by a matrix, SRF, of size

(2 + nr4) X (1 + n4 + n5).

M16. Vn(-1) ; if (n3+l) -; i (n+n

srf i,= T. j-(l/cj) ej; i = (n3+J) and

(n+l j (nl+n2 ) - n3,

T,,J; otherwise,
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and: nI < i < (n 3+n4); (nl+l) 5 j 5 n,

where: e. is the j-th unit vector; i.e., a vector of all3

zeros except for the j-th element, which is 1.

M17. j (n +a') j=(n l)...(n 3+n) j=(n 3+n4+l)...n

i=(nl+j) SRFsl, s2 SRFsl1 s4 SRF sl.,s5

i=(n14 SRF 5 , S52 R

Y" sn) RFs2 ,s2 -I(C) SRF 2 ,s4 s2,s5

i=(n 3 +l)

!1SRFs4 SRFs' Ss,5
sFs2  s 4+I(v(-1)) SR% 41S5

(n.+nj,)

where: i(V(-1)) is a symbol for a diagonal of vectors, Vn 3(-),

as in M7, and,

I(C) is a symbol for the diagonal matrix with

entries (1/c,), as in 1412.

M18. Ever-y row and every cclvPnn of SRF will contain at least one

entry not equal to V (0), V (-1), or

i].9oF SRPis
s1's l,s4 ____is5

S SRFsls2 i SR•SRF*s
SRF. = SRFs2, s 2- I (C) SRFs 2 ,s 4  j *s?,s5

I--, -I ,+T(V(-l)) j Z
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M20. SRF sl,s 2  SRF , s4 SRF*sl,s5

SRFP s 2 ,s 2-I(C) SRFs 2 ,s4 Z

SRF s4 ,s 2  SRF s4 , sI(V(-) ) Z

The interpretation of the partial solution and the solution is as

previously described.

The application of the algorithm for micro-models represented by

SF will reduce SRF to SRF* if we consider the first and second rows

of blocks of SRF to be one row of blocks, to form column vectors of

size n3 * At this stage, the first row of SRF* will contain vector

entries of size nl; and the second row, vector entries of size n2 .

We now consider the first row as an nl-row submatrix, and the second

row as an n2-row submatrix, both with scalar entries, and apply the

algorithm developed for the macro-model, S, to reduce SRF to Z.

The result will be SRF*.

The proof of this follows the same arguments used in Chapter 4,

section 7.

In Figure 39, we show the network drawing of a system containing

both internal data generating and filtering processes. The associated
*

matrices, SRF, SRF•., and SRF are shown in Figures 40, 41, and 42,

respectively. A full evaluation of the results depicted in Figure 42

can be obtained in truth table format as was done in Chapter 5.
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A combination of methods previously developed leads to a path-

determining model for a system with both intermal data generating and

filtering processes. A matrix, SPRF, is required, identical to SRF,

except that:

sPrfi,i = Vn 3(-i/ci) for (n 3 ti) - i s (n3 +n4)

This model is not further explored herein, since its construction and

use are obvious from the foregoing.



CHAPTER 7

SE4ANTIC RETATIONS AMOT!G PRIMARY DATA

1. Knowledge Bedumdancy

It is the prupose of .his chapter to examine the items of data that

constitute the primary inputs to a system from the standpoint of their

senantic content. Particularly, we are interested in the fact that:

a. an item of data refers to some object, and

b. in a given set of data items, more than one item may have the

same referend.

When this occurs, there exists a form of redundancy in the system which

may be referred to as "knowledge redundancy", rather than "data redundancy".

If two items of data each reach a certain system output through one path,

there is no data redundancy. However, should these two items of data

have the same referend, then che system output has received the same

knowledge (although not the same item of data) twice. It is our

objective to incorporate this phenomenon within the framework of the

systerms-matrix and the algorithms developed so far.

2. The Denotation Relation

The particular semantic relationship treated herein will be called

the denotation relationship. The following definitions, which follow

[2, p.191],introduce the relationship:

A system is concerned with entities. An entity is an object, a

person, a concept, a thought, an instance, an event, an occurrence, etc.

A data processing system is concerned with one or more classes of entities
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(i.e., employees, customers, products) and with certain selected

properties of these classes of -ntities. For example, a system might

be concerned with the class of entities "employees" and the properties

"ttemployee number", "age", "sex", "name", "Job number", and "hourly wage

rate". Each property has assigned to it a set of values. Thus the

value set associated with the property "age" might be the set of

integers from 18 to 65, inclusive, and the value set associated with

the property "sex" might be ("male", "female" ). As is postulated in

[2, p.191], every property ralue set must include at least two values:

S(undefined, or not relevant) and e (missing, relevant but not

known). Then, [2, p.192], every member of an entity class has assigned

to it one and only one value from each property value set.

In the models we have been developing, each I rimary input represents

a property, and associated with each primary input is a property value

set. If U(ci), 1 1: i :! nl, is the property value set of property ci,

U(ci) = (Uli, u 2 i, ... , uq-), then associated with any specific entity,

A, is a specific value of c,, uAi, 1 • A • q, 1 r i : nI. We may now

state:

S2 14. If, given a specific entity, , and given uti c U(c.), we can

determine uL, C U(c.) by means of soe finite procedure

within the system, then we may say that uAj is denoted by

uVi. If this is true for all entities, we may say that cj 4

is denoted by ci, or, symbolically, cj c..

j!

-1I

! i
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Denotation is a binary relation in the set-theoretic sense

[39, pp.23-251, and may be expressed as a set of ordered pairs

(cj c C'-

Denotation has the following properties:

Dl. reflexive. c + c..

DP2. transitive. If' c.i cj, and c.j Ck, then ci. 'k

D3. non-symnetric. If c. , then it ray or may not be true

that c j " c.

When the denotation relation exists between ci and cj, we say

that there is a semantic relationship between c. and cj. We do not

mean necessarily that c. and c are synonymcus, but merely that,

directly or indirectly, both items of data point to the same referend.

If c.i and cj are sbe-oymcus, then thc2 denotation relation between

them will be syranetric, which we indicate by writing:

c. #-# d M (c. #*cj) and (cj" ci).

As an example., we consider the following denotation relations:

(customer account number) - (customer name) (7-1)

(salesman name) '- (customer name) (7-2)

(salesman number) - (salesman name> (7-3)

By applying D2 (transitivity cYAracteristic) to the above:

(salesman name) - (customer account number> (7-4)

(salesman number> (customer name> (7-5)
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Another application of D2 to (7-3) and (7-4) yields:

(salesman number > - (customer account number) (7-6)

The significance of this relation can be seen in the following:

Suppose it were necessary for all four of the items of data mentioned

in the example aboye to be included in some report; and that the

information needed to prepare this revort was communicated over a

costly channel, with the cost being proportional f- the number of

characters transmitted. Then, by establishing a proper reference

file at the receiving end of the channel, the desired information

for the report could be obtained if only customer account number

were transmitteýd, since all other ii ems are denoted by this one.

(The customer name has the same power, but we assume that the

customer account number has fewer characters.)

3. Incorporating Denotation in the Systems-Matrix

The denotation relation on 4 set of primary inputs, Csl, may be

depicted by an (n 1 X nl) matrix, A, such that:

{ 1; if i= j (by Dl),

a = 1; if c. - ci.,

0; otherwise . (7-7)

To construct such a matrix, we must make sure that all denotation

relations, both those stated and those derivable from the stated ones

by the transitivity characteristic (D2), are represented by l's in

the appropriate cells. Such a matrix is called a reachability matrix,

and its construction has been described by Harary, et.al. [16, pp.115-122].
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We start by forming a matrix according to equation (7-7) from

the given relations. This matrix we call A0 , and, since it contains

entries of only 0 or 1, we treat it as a Boolean matrix. We form A1

by multiplying A by itself in a Boolean sense. Boolean matrix

multiplication is identical to ordinary matrix multiplication except

for the rule: 1 + 1 = 1. Thus, A1 will also be a Boolean matrix.

A2  is formed by multiplying A1 by A0, in a Boolean sense. In

general:

A i = A i O)•Ao0 i = i, 2y ... ,

where 9 indicates Boolean matrix multiplication. Eventually, we reach

a point such that [16, p.121]:

A(n+l) =- An 0 A=An•

Then, A is the reachability matrix of the denotation relation. The
n

(i,J)-th cell of A will be 1 if cj 0- c. either directly or by
n

repeated application of the transitivity characteristic (D2); 0,

otherwise.

For the example stated above, let:

c = customer account number

c2 = customer name

c3 = salesman name

c4 = salesman number

Then, from equation (7-7) and equations (7-1), (7-2) and (7-3):
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IcI c 2 , 3 ,c4

c 1 0 01

c2 1, 1 0 0A c - -- -3 . . ..; l . . . . . . ..i. i ------ I

C I0 1 1 1 1
3 . 0 0 --.i - ,

and,

i i 0 0

AI = Ao G•AO = 011 o
1 1 1 1.

Two cells of A contain l's not contained in corresponding cells of

A0; namely, (al)3 ,I and (al)4 , 2 . The interpretation of these l's

are equations (7-4) and (7-5), above. Continuing:

F 1 10 0"

A=A OA= K 10
2 1 0 iA2:AI A° i 1 1 li

Here, we have gained one additional 1 in (a 2 )4 , 1, which corresponds

to equation (7-6) above. Finally:

A3 A 2 OA 0 A2

and An AO

n A 2 .
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The effect of the denotation relation on the flow of information

in the system can be shown by pre-multipl•ying the previously defined

solution area of any of the systems-matrices (S*, SP*, SF*, SPF*,

SR*., SRF*, or SPBFH) by An. This can be readily done by incorporating

A into the systems-matrix as follows:n

Let S' be one of the matrices S, U2, SF, SPF, SR, SRF or SPIF.

Denote by dotted lines the rows of S' corresponding to primary

inputs and the columns of S' corresponding to outputs:

Outputs

Then, define:

StA= A,, Z' "

Z It

where the solution area is indicated by heavy lines. Application of

any of the previously described algorithms will produce the desired

results.

The effect of adding A. to the systems-matrix is as follows:

Suppose that, before A. is applied, it is disclosed that an input,

ci, reaches an output c., through o paths, and that another input,

J-
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Ck, reaches c.j, through P paths. Suppose that c k ci. Then,

An will contain a 1 in (a n)ki . The effect of pre-multiplying

the solution area by A n ill be to change the indication of then

number of paths through which ck reaches c from 0 to (I + P).

This can be seen by observing that A is the sum of elementary
n

permutation matrices, and the effect of pre-multiplying a matrix by

an elementary permutation matrix is to add one row to another.

4. An Alternative Representation

The resulting figures, of the form (a + P), may be confusing to

the analyst. He does not know, without considerable additional analysis,

what portion of a particular number in a cell in the solution area is

due to redundancy of information flow and what portion is due to

knowledge redundancy. Therefore, it might be advantageous to indicate

the solution in the form:

k,j
i

where P is the number of paths through which ck reaches c due to

information flow only, an• a. is the number of paths through which
1

knowledge of the referend of ck reaches c. due to the denotation

relation ck q- C.. The mechanism for doing this is simply to replace

An by At n, where:

n n
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1; if i=j,

(al) i,j c c if i and (an) ,ji., 1

0; otherwise .

by way of illustration, Figure 43 depicts a system with denotation

relations. Considering a macro-model (S) of the system, Figure 44

shows the matrix SA', and Figure 45, SA'*.
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CHAPTER 8

SUMMARY, CONCLUSIONS, AND RECG4ENDA.TIONS

1. Summary

The flow of data in a management information system can be depicted

in the form of a matrix, and matrix and scalar arithmetic operations

can be used to transform the original matrix to one which contains

certain defined characteristics or measures of the system. The

matrix which depicts the system takes different forms depending

upon the specific system characteristic or measure to te computed

and the system factors to be included. The computing algorithm is

essentially the same for all cases.

In the foregoing chapters we have used the model to compute two

system characteristics:

a. the number of paths by which each system input reaches

each system output, and,

b. the exact specification of each path by which each system

input reaches each system output.

In addition, it has been shown that systems with more complex structures

may be most adequately described by a combination of the above charac-

Steristics, and this has been done.

The models used may be categorized into two groups:

a. macro-models: depicting simple connectivTity relations among

inputs, intermediate reports, and outputs, and,
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b. micro-models: depicting complex connectivity relations; that

is, the connectivity among all system components with respect

to each system input.

The use of micro-models permits the systems-matrix model to incorporate

phenomena which had not been considered in earlier models. This thesis

explores.

a. information filtering, conditional and unconditional,

b. internally generated information, and,

c. the semantIc relation of denotation among items of data.

More specifically, this thesis has presented the following models:

Model Chapter Systems Factors Included Computes-/

S 4 simple connectivity N

SP 4 simple connectivity P

SF 5 complex connectivity, filtering N

SPF 5 complex connectivity, filtering P

SR 6 simple connectivity, internally NP
generated data

SRF 6 complex connectivity, filtering, NP
internally generated data

SPRF 6 complex connectivity, filtering, P
internally generated data

S'A 7 those of S,, plus semantic denotation see St

where S' is any of the above models.

1. N means "number of paths".

P means "specification of paths"

NP means "combination of number of paths and specification of paths".
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2. Conclusions

Our basic conclusion is that it is feasible and desirable to

establish mathematical models of management information systems

within the framework of matrix algebra.

In this thesis, we started with a previous model and algorithm,

and progressively expanded the model to include several additional

systems phcnomena, formulating models of increasing scope and power.

Yet this was accomplished with a logical expansion of the ideas upon

which the original model was based. This, we feel, demonstrates that

our approach is feasible. It leads us to believe that further extensions

can be accomplished by the same method of building logically upon the

foundations laid.

That mur approach is desirable was demonstrated in Chapter 2, section

1 and Figures 6 through 10. We feel that the concept of matrix models

of management information systems, a concept first proposed by Lieberman

(26] and adhered to in our work, is the first breakthrough in the attempt

to quantify the analysis and synthesis of management information systems

and to replace intuition by measurement.

3. Suggestions for Further Research

The research reported in this thesis, while useful in itself, is not

terminal. Several additional areas of investigation are proposed in the

following paragraphs. No attempt is ma.e to be exhaustive.
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In our description of the models we have emphasized that the

conceptual networks associated with the matrix contain no cycles or

loops. This assured us that the matrices would be strictly triangular

matrices, and, thusly, that the summation term in Equation (4-2) was J

finite and that the inverse in Equation (4-3) exists. Should the sub-

matrix Ss4,s4 represent a network that does contain loops or cycles,

the algorithm will fail. (Note the restriction of the prohibition to

that part of the network represented by Ss4,s 4. Thus, in Chapter 7,

the matrix A does contain loops and possibly cycles, but does notn

cause the algorithm to fail since it is not part of Ss4 A4.)

It is quite easy to find countless examples of information systems

which do contain cycles. One example might be the case of an inventory

control system, wherein the primary input data included demand, the

secondary input data included re-order point and standard order quantity,

and the outputs included replenishment orders and recalculated values of

re-order points. Replenishment orders are triggered by a comparison of

available quantity and re-order point, and recalculation of the re-order

point is triggered by too small a time interval between the current and

the most recent previous replenishment orders. This seems to give rise

to a cycle, since the decision to order at time t is a function of

the re-order point, and the re-order Doini is a function of t.

In essence, however, this does not constitute a true cycle. There

is a separation in time between the event "place an order" and the event

"change the re-order point". Therefore, it is not immediately obvious
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that our algorithm will fail if we set up a model reflecting the time gap.

We have not, as yet, fully explored this problem. We think, however,

that it might be appropriate to consider a system represented by a series

of matrices, each single matrix representing the system at some particular

time. The ccnnectivity from an output to some intermediate entity would

be a relation from an output at time t (represented by matrix St) to

an intermediate entity at time t', t < t', (represented by matrix St,).

The conceptual network associated with such a model wculd be a three-

dimensional one, with each node being a cylinder whose longitudinal

axis was parallel to the time axis. Each matrix, St, would be

associated with a plane of the network, perpendicular to the time axis

and cutting it t units from the origin. Such a model would contain no

loops or cycles in one plane.

The concept of a series of matrices in time introduces the possibility

of investigating the dynamic behavior of systems. Suppose we introduce

a change in the structure of an information system. For a while, the

system will go through a transition phase until it reaches a state of

equilibrium in the new structure. A series of systems-matrices,

separated by time, might be a useful technique for studying transients.

Chapter 7 merely introduces the topic of one semantic relationsnip,

denotation. This area is worthy of further research. One application

of the concept which the author has used elsewhere is to answer the
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question: "Given a list of items of data which must appear on a report,

and a list of denotation relations, what is the minimum amount of data

which must be transmitted to the originator of the report?" This

question can be answered, and is a form of the "covering problem" found

in the minimization of Boolean functions, for the simple denotation

relations of Chapter 7. The cambinatorial problem gets rapidly out of

hand, however, if more camplex denotation relations are permitted; such

as:

c.• c.ENck

where the operator 0 may represent an ar4.tbmetic operation or a set

operation. In fact, under these conditions, it is no longer necessarily

true that some power of A0 will give all denotation relations arising

through transitivity. Examples of such non-elementary denotation re-

lations, which are quite ccmmon-place, are:

(total price> - (unit price> x (quantity shipped) ,

(catalog number) - (product number> A (color code>

Also in Chapter 7 mention was made of a paper by Bosack, et.al.[2].

It is our op'ion that this is a work of major importance, which has

received far less notice from other researchers than is warranted. One

reason for this might be its abstract nature: systeas analysts, by

and large, are not attracted to such approaches, and those who can

appreciate the paper are not usually interested in the still pragztic

area of systems analysis. We believe that further research can be done

to connect the work of Bosack with the methodology of the approach taken
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in this thesis. This would give the systems-matrix model a more formal

basis in abstract algebra, and would give the abstract formalism of

Bosack a method of implementation.

Finally, we feel that much more can be done in the area of

applications of the systems-matrix model. As examples, we cite three

projects currently being pursued by the author:

a. The use of the systems-matrix model to investigate the effect

upon information flow of changes in organizational work assign-

ments.

b. The determination of the inherent delay time in a system, from

receipt of input to issuance of output.

c. The propogation of errors throughout a system.

We feel that this list of futrther research topics will be increased

in size with exnerience in the use of the model. Thus, we view the

model technique proposed in this thesis as an open-ended research area.

I
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