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CHAPTER I

INTRODUCTION

l. Models of Management Information Systems

A management information system is a complex structure of people,
equipment, facilities, supplies, data, documents, flow patterns,
organizational relatiorships and decision activities, operating within
& set of demands and constraints established by the nature of the
situation, management policy, laws and regulations, contractual
agreements, cost factors, and the pressures of the ecology. In the
analysis of such a system, existing or proposed, the intricacy of the
interrelationships among the many components makes the use of same

modelling techmique almost mandatory.

Traditionally, systems analysts have favored the use of two types
of models to summarize and depict their knowledge of a management
information system. The first is a simple tebular arrangement of
information; the second a graphic model, or "flow chart". (Both
methods are frequently referred to by the comon label of "charts",)

The use of charting techniques is widespread, and is described in

many books on systems analysis (for example, [1; 43 17; 18; 25; 32;

33; 35; 401]), in many pamphlets (for example, [7; 10; 11; 28; 30; 341),
and in many papers and reports (for example, [12; 13; 21; 22; 29; 31;
413 43]), The technique of charting has as its purpose the consclida-
tion of information about a system, and the display of that information
in a form such that correlations and sequential flow can be readily

observed, However, tabulations and flow charts have one characteristic




in common with the verbal descriptions that they replace; they are
qualitative models, They cannot be subjected to mathematical manipu-

lation to yield quantitative descriptors or measures,

A quantitative management information systems model was proposed by
Lieberman [26] and expanded upon somewhat by Kozmetsky snd Kircher
[21+, Appendix 4}, A weakness of that model was pointed out and a
generalized form was proposed by Homer [23]. In these models, systems
are described in the form of matrices, and are subject to various
matrix manipulations, The matrices are concise descriptors of the
flow of information in a system., Used as qualitative models, they
offer an advantage over the often voluminous flow charts that depict
the flow of documents in a system., Used as quantitative models, they
offer an objective way of evaluating systems and the effects of changes

upon systens,

The purpose of this thesis is to evaluate prior work on matrix
models of management information systems, and to present the results

of research to incorporate further systems phenomena into the models.

2, Background

That guantitative management information systems models should have
taken the form of matrices is logical. In fact, the concept could have
developed from either tabular charts or flow charts; for both of these
devices are mathematically related to matrices. (This is not to say

that the development cf the systems metrix model did actually proceed
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in such a logical fashion: there is no such indication in tre literature.)
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A table of mumeric da‘a bears a physical resemblence to 2 matrix,
in that both are rectangular arrays of murters, Zven tables of
qualitative data may have their entries enéoded to yield numeric arrays.
Hadley [1%, p.60] states that a matrix "is simply a convenient way of
representing arrays (tables) of mumbers". Thus, we mey view a tabular
arrangswent of facts pertaining to an iﬁfoma.tion system as a precursor

of the systems matrix model,

Several such tables have gppeared in the literature., Neuschel
mentions vhem {32, pp.196-197; 33, pp. 156-1961, a: dces Barish
[l, PPo 160-161), A similar chart was iudependently developed by

Homer [21; 22, pp, 61-661.

A typical tabular chart is shown in Figure 1. Here, each row of
the chart represents an item of data (or an aggregation of items of
data treated as a single item). Each column rerresents & form or
document. The cell entries are either "blank" or "X". Amr X in the
cell in the i-th row and the j-th column means that the item of data
named in the label of row i appears on the document named by the
label of column J; & blank in the cell indicates the contrary, It
remaias only to encode tae cell entries in scame numeric scheme to
have a rectangular array of mumbers, For example, the mumber O night
be substituted for a blank and the mmber 1 for an X. The result
is a matrix if the nmumerical elements of the array are members of a
ring {37, p. 12). Figure 2 is the matrix derived from Figure 1 by

the stove substitution,
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Graphic flow charts of information systems exist in a multitude of
formats. A very simple one is showa in Figure 3. These flow charts
can be visualized as directed grapis [15; 16) by considering each symbol
representing & processing step or a document to be a node, and cach flow
line to be an arc oriented in the direction of the flow. Figure L is

such a representation of the flow chart of Figure 3.

It is known that directed graphs and matrices are isamorphic [15].
Particularly useful in systems analysis is the adjacency matrix [16, p.15],
A, which is defined as a square matrix with one row and one column cor-
responding to each node of the directed graph, and with a'ij =1 if
a directed arc exists from node i to node j, ~and a; 5= 0 otherwise.
Figure 5 shows the adjacency matrix constructed from the network of

Figure k.

An early application of this concept to systems analysis was made by
Hare [17, pp. 21-22], However, Hare used the matrices he derived from
networks only to describe the system; that is, as tables of systems
characteristics, without any attempt at quantitative manipulations.

Even earlier, Warshall [41] had depicted computer flow charts as networks
from which he derived matrices, Warshall's interest, however, was confined
to using the matrices for decomposition and simplification of computer

programs.

Whether or not a matrix derived fram a chart is useful for any
purpose other than as an alternate way of storing and displaying informa-

tion is a question that requires an analysis of the meanings of the
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numerical values in the cells and the nature of the connectivity
between the entities represented by the rows and columns of the
matrix, Davis states:

"But matrices are more than arrays of mmmbers, The individual
mumbers stand in very special relationship to one another, and
their totality constitutes a mathematical object that will be
manipulated according to certain rules and regulations, inter-
preted in a variety of ways, and applied in still others.” [5, p.2]

The first published model found which meets Devis?! criterion for a matrix

is that of Lieberman [26]. This is the model that forms the foundation

for the work reported in this thesis.

It would appear that the systems matrix model has its roots in the
two most widely used techniques of traditional systems analysis; tabular
charts and flow charts, However, since there is nothing in the literature
indicating Jjust how the matrix model was developed, it can only be con-

cluded that these roots are lcgical, but not necessarily historical.

3. Organization ~f the Thesis

Chapters 2 and 3 are devoted to a review of prior work on matrix
models of information systems: Chapter 2 treats of Lieberman's work
and Chapter 3 of Homer's. Chapter 4 is a new treatment of the model
discussed in Chapter 3; a treatment designed to form the basis of
further work. It introduces a more fcermal description of the model
in terms of a relation between canponents called the "direct connec-
tivity" relation; it prezents a network description associated with

the matrix model; it introduces a new proof of the validity of the
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algorithm for solving the model; and it presents a method of specifying

each path between components, rather than merely counting them,

Additional systems phenomena, previocusly untreated, are considered
in Chapters 5, 6 and 7. Chapter 5 takes up the case of incamplete
transfer of data between components, called "filtering", in both the
unconditional form and the conditional form, This is done by means
of & model which depicts connectivity between camponents with respect
to each item of data. Data which is generated within the system under
investigation is studied in Chapter 6, especially the case of data
generated from and replacing date received fran outside the system,

In Chapter 7, the concept of "knowledge redundancy” due to semantic

relations among items of data is introduced into the model,

The thesis concludes with a summary, conclusions, and suggestions

for further research in Chapter 8.

Throughout this thesis, statements which are basic to further
development are preceded by a letter followed by a sequential number,

Letters have been assigned as follows:

Letter Statements refer to:
A algorithm for solving the systems-matrix
C connectivity relation
D denotation relation
M systems-matrix
P oaths in the system
S system characteristics
T transmittance of connectivity
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CHAPTER 2

THE LIEBERMAN MODEL

le The Basic Mcdel

We present first a brief description of the concept of uvsing matrix
methods to model menagement information systems. This section is based
primarily upon the work of Lieberman {26], The notation employed is
that of this author., In this first section we shall use as undefined

terms the words "item of data", "report", and “business function“,

The Lieberman model takes the form of a series cf matrices. The
first matrix, MO s Shows which items of data appear cn each scurce
report, where a source report is the first form on which data is
entered within the systems under investigation, and is considered a
first-level report, The second matrix, Ml, shows which source reports
are used to prepare second-level reports, Each subsequent matrix, M 59
except for the last one, shows which j-th 1level reports are used to
prepare (j+l)-th level reports, The final matrix, M, shows which

n-th 1level reports are used in support of each of the various business

functions within the scope of the system.

More formally, let:

o}
i

R(5)
R

B
q

MO o matrix containing a row associated with each di

the i-th element of data in the system; i=l,2,...,po.

the k-th report at the j-th level; j=2,3,ee.,0; k=l,2,...,pj.

the k-th source report; k=1,2,...,pl.

the g-th business function in the system; q=1,2,...,p,n+l) .
AN

and a column associated with each Rk( 1)° Then MO
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will be 2 p, x p; matrix, The element (mo) r,8
will be 1 if dr appears on Rs(l)3 0 otherwise,

M;) = & matrix containing a row associated with eacn Rla( 3)
and a column associated with each Rk( g41) 5 J=1,25400,(n-1).
Then M;] will be a P;] X p( 341) matrix, The element
(m;])r,s will be 1 if Rr(j) is used to prepare
Rs( j +1); 0 otherwise,

M_ = a matrix containing a row associated with each Rk( n)

and a column associated with each Bq. Then Mn will
be & p X P(n+1) matrix, The element (mn)r, g will
+, 3 3 3 .
e 1 1ft Rr(n) is used in the performance of Bs,

0 otherwise,

The matrices MJ describe the flow of information through a system
fram the first appearance of an item of data to the performance of the
various business functions, The set of metrices is a descriptive model
of information flow which is considerably more concise than a flow chart

depicting the same information., Figure 6 illustrates the Liebermen model

for a simple case, n = 3,

Corresponding to the example of Figure 6 is the directed graph shown
in Figure 7. Obviously, it is significantly more difficult to obtain
the flow information from the network than it is from the matrices, This
alone would lead one to conclude that the Lieberman model is a more
useful descriptive model than the corresponding flow chart, But, the
power of the Lieberman model is not limited to its usefulness as a

descriptive tool, This is a quantitative meodel, and can be subjected
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to matrix manipulation. For example, let:

b
m = HM Osa.(bsn.
a,b j=8, 3°

Such a product can always te found, since, by definition, the number of
columns of M, is equal to the mmber of rows of M( 341)7 and the

3

matrices are therefore compatible for multiplication.

The rcw labels of :ma p 8re those of M, and the column labels of
b
m
ma,b are those of M . Each element of ‘ma’b, ( a,b) 1,57 @B be
interpreted as the number of "paths", or routes, through which the
entity represented by row 1 reaches the entity represented by

column j. In particular, the elements or smo a represent the number
J

of times each di is made available tc each B q

In the illustrz.tive example of Figure 6, the product

-

J
o .= .
0,3 jfo "3

is shown in Figure 8. From this product we can see, for example, that
there is only one wgy in which d3 reaches Bh’ but there are 27 weys
in which d5 reaches B5 « These paths can be determined from an
analysis of Figure 7, but only with considerable difficulty. For
camparison. the subgrapk and path listing for the paths from d3 te

Bh and fraom d5 to ’BS are shown iIn Figures 9 and 10, respectively.
It is obvious that the amount of effort that would be required to obtain
the total information contained in ‘mo’ 3 by an analysis of a flow chart
or network would be considerable, since this almost trivially small.

illustrative example contains a total of 348 paths,
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2, Definitions

We return now to the question of the undefined terms "item of data',
"report"”, and "business function®, as used in the above and in [23],
Lieberman [2%6] attempted some explanation of these terms, and some
further classification of entities, While he did not define "item of
data", he did distinguish between "identification type" and "quantitative
type" of information, which he symbolized by "i* and "q", respectively.
Although Lieberman maintained this distinction throughout [26], no
apparent purpose was served by the dichotomy., Lieberman also distinguished
"source data forms" from "report forms". Again, this distinction appears
to be unnecessary to the Lieberman model., Finally, iieberman defined
a "business function" to be "a set of managerial activities which are

assigned to a group according to types of duties" [26],

3. Additional Concepts

In Kozmetsky and Kircher [24, Appendix 4] there is an additional
concept, the time ordering of information: “This refers to the relative
time that information arises, or is made into a report, not the specific
date this occurs" [24, p, 277]. Following the definition, no further

mention is made of the concept except for the paragraph:

"The order of time is greater for the report forms on each
higher level, in each higher-level matrix, This is necessary,
since the system predicates that the reports on the higher levels
are using data taken fram those on lower levels, and thus must
succeed them in time," [24, p, 281]

Kozmetsky and Kircher also introduce the concept of "the informal
communication channel', which "designates the transfer of items by

means other than documents" [24, p. 2781, Iater in this work [2k4, p.285],
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the informal communication links are depicted by means of a connectivity
matrix on the set of business functions; i.e., a squar~ matrix such that
each row and each column represent a business function (ordered identi-

cally) and each element, b, 37 is defined as:
2

b, . =

Zl, if B, interacts with By, i 43,
i,J

| 05 otherwise.

One other concept introduced in [24, pp. 285-286] is that of
establishing a matrix depicting the optimun data requirements of each
business function, and camparing this with the above defined m% o

2

to ascertain excessive routing of data or lack of desirable data.
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CHAPTER 3

A GENERALIZATION OF THE LIEBERMAN MODEL

le The Systems Structure

Perhaps the most obvious shortcoming of the Lieberman model [261,
pointed out by Homer [23] , is the fact that a welleordered data processing
structure must exist in order for the model to be applied., It is nce-
essary for the analyst to be able to assign "levels" to the various
reports (here, data items are assumed to be at level zero and business
functions at level (n+l)) such that only entities of level (j-1) serve
as inputs to entities of level Jj, and, in r2turn, entities of level
j became inputs to only those entities of level (Jj+1). Wken such a
structure does exist, the resulting matrices are such that the column

labels of Mj are identical to the row iabels of M and M

(3+1)° J

and M are compatible for multiplication.

(3+1)

That such well-ordered structures seldom, if ever, appear in actual
practice is a conjecture that finds ready acceptance among experienced
analysts. Rather, the following ccnditions are frequently found in
actual cases:

1. Reports of level j are prepared not only trom reports of level

(3=1), but also fram lower level reports.

2, Business functions are performed not only on the basis of n-th

level reports, but also on the basis of lower level reports.

3« Not all business functions are of the same level,

4, Data items enter the system at & level higher than the first,
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5. Reports prepared outside the scope of the study enter the
system at some level higher than the first.

6. Some reports are terminal at levels less than (n+l); that
isy; <chey are not used by any business function within the

scope of the study.

All of these conditions lead to Lieberman matrices which are not
conformable for multiplication, tor there is no longer a guarantee
that the row labels of Mj will be identical to the column labels
of M(j-l)' An example of such a system is shown in the form of a
network in Figure 11, and in the form of a series of Lieberman matrices

in Figure 12, (This example is from [23]),

2, Handling Non-Conformable Matrices - Method 1

Two methods of handling such situations were presented by Homer (23],

The first method calls for the formation of new matrices, N from

,j,

the given matrices, M bv the addition of "dummy" rows and columns

j’

as required to insure compatibility for matrix multiplication, The

rules for the formation of the enlarged matrices are repeated below:
"1, Start with Mn‘ Add a row to M for each column in M1
not already represented by a row in Mn' All elements of
added rows will be zero,

"2, For any row which contains only zeros, add a cclumn with the
identical heading, The new columns will have all elements

equal to zero, except that elements formed by the intersection

of identical rows and columns will have the value 1.

bR
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"3, Add a column to M .y for each row in M  no% already

1

represented by a column in Mn- All elements of added

1°
columns will be zero,

"L, TFor any column which contains only zercs, add a row with the
identical heading, The new rows will have all elements
equal to zero, except that the elements formed &y the inter-
section of identical rows and columns will have the value 1,

"5, Repeat steps 1 and 2 for matrix M, i+ It may be necessary
to make further adjustments in Mn as a result of changes
in the columns ot' Mn-l’

Y6, Repeat steps 3 and 4 for matrix Mn-2‘ Continue the process

becr ‘bhrough Eoo" [23, jo 50510

Applying these rules to the matrices of Figure i2, we arrive at the
set of matri =s shown in Figure 13, These, of course, can be successively
multip’ied, since they have been constructed so as to be compatible, The

product,

is shown in Figure 14,

What this method actuslly does is tn imbed the problem in a higher
dimension spaces For example, let us suppose that we wish to multiply
two matrices, A and B, where A is 3 X2 and B is kx4, If
we consider the metrix A as the representatica of a transformation ia
3-space and the matrix E as the representaticn of a transformation in
hespace, we see that the "product"; A*B, even though muitiplication of

the matrices is not defined, is a transTormaticn from 3-space i~ :=space,
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T

¢ we create a new matrix, C, by adding a fourth row and a fourth

column to 4, such that:

1, 2, 3

4,5 = %3

1, 2 3

c, =0y 3
ik 3 1

4 = 13

and

:i,j ai,j; elsevhere,

the tcrunsformation represented by A is now represented by C, but the
3-space of A 1is now a 3-dimensional hyperplane in k-space. The
trensformation C*BR  is identical to the transformation AeB, and

rultiplication of the matrices is defined.

From a practical standpoint, this method is not entirely satisfactory.
The task of setting up the new matrices, Nj’ is a tedious one, and
the number of calculations required to obtain the desired result,
mo,n, is increased due tc the increased number of rows and columns
at almost every stage., Also, the analyst still has the burden of

carefully classifying all reports initc levels, for the way in which

this is done may affect the complexity of the enlarged matrices.

3. Handling Non-Conformable Matrices - Method 2

A more direct approach to the problem is the second method of 23],
In order to explore thnis method further, we adopt a slightly Jjifferent

vocabulary.
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The "items of data" of “he Lieberman model will be referred to as
system inputs, More generally, we will accept reports as inputs to the
system, as well as items of data, for those reports which are prepared
outside the system under consideration., We remark also that an input
may be an aggregation of data items if it is more convenient for the

analyst to treat a group of data items as one cntity.

Outputs from the system are any terminal activities of the system.
Thus, the business functions of the ILieberman model are system outputs,

as are terminal reports (historical records) generated by the system.

A1l components of the system which are neither inputs nor outputs

are intermediate entities, An intermediate entity is one which is

produced by the system from either inputs or other intermediate
entities or both, and which is used to produce other intermediate
entities or to facilitate an output. (Note that an intermediate
document may, in addition, be a terminal report, but that it is not
considered an output.) Lieberman's reports and source documents are
both intermediate entities., In this scheme it is not necessary to
classify intermediate entities into levels, and they may be symbolized

by the single-subscripted Rk'

We establish one matrix, S, referred to in the following as a

systems~-matrix, which will represent the entire information system

under consideration. The following rules are used for setting up S:
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"l. A row is established for each d, and for each R in the
system; i.e., for each component except the Bq's.

"2, A column is established for each Rk and for each Bq in
the system; i.e., for each component of the system except
the di's.

"3. As before, the mumber 1 will be inserted in each cell to
represent [one entity used in the production of another] ...

"L, Each Rk will be represented by both a column and a rowv,
Into each cell formed by the intersection of an identical row
and column (rkk , the value -1 will be inserted.

"5, All other cells will be labelled zero." [23, p. 5031.

In Figure 15, we show an S matrix constructed for the example depicted
in Figures 6 and 7. Similarly, in Figure 16, we show an S matrix for
the case illustrated in Figures 11, 12, and 13. Note that the double-
subscript notation for intermediate entities is used in Pigures 15 and

16, but only to facilitate comparison with previous figures.

The first advantage offered by the systems-matrix model cver the
Licberman model is that S may te analyzed for consistency very rapidly.
A comparable examination of the Lieberman Mj's would be, at the ieast,
cumberscme, The anaiysis consists of a rapid scan ¢f S according to
the following rules:

“a. Should any column contain only zeros, the lentity] represented

is outside the scope of the problem being investigated, and the

column should be removed,
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Figure 156
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Figure 16
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"b. Should any row contain only zeros, the [entity] represented
is not a component of the system, and the row should be
remcved,

¢, Should any column contain -1 as the only non-zero entry, the
component represented by that column is really an input to
the system. The column should be removed,

d. Should any row contain -1 as the only non-zero entry, the
component represented by that row is really an output of
the system, The row should be removed." [23, p. 5081,

These rules should be applied iteratively to S until no more changes

can be made, If in the process both a row and a column representing the

same entity are removed, this is an indication that that entity was not

a component of the system under investigation.

It should be noted at this pecint that failure to apply the abcve
simplification rules or failure to apply them to completion will not
affect the final results, except to the extent that errors are made in

determining the correct solution area (see below).

When these rules are applied to the matrix of Figure 16, the columns
labelled Rh(l) and R6(2) are removed, since these entities are system
inputs, and the row labelled Rh(e) is removed, since this report is

a syst output. The reduced matrix Is shown in Figure 17,

The solution area of S is defined to be *he set of all cells of

S, {s:j}, such that row i represents an input and column J represents
- b

an output. A row represents an input if it does not contain an entry
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of -1, A column represents an output if it does not contain en entry
of -1, In Figure 17, the solution area is bordered by heavy lines,
Note that the cells constituting the solutica area need not be adjacent

to each other,

We define the solution to the model to be a matrix, S%, with row
and column labels identical to S, containing the dezired product in
the solution ares and arbitrary entries elsewhere, In [23] it is
shown that S% may be obtained from S by performing only the following
elementary column operations on S:

1. Multiplication of a column by a scalar, and

2, Addition of columns.

These two operations are to be performed iteratively so as to rvuuce to
zero all those cells which lie in output columns but not within the

solution area. Upon completion of these operations, S will have been
transformed to 3%, and the desired results will appear in the solution

area.,

Stated differently, we define a critical area of S to be a set of

cells of 8, {Sk,z} » such that row k represents an intermediate
entity and column £ represents an output. Then, when the two
elementary column operations prescribed above are performed so as to
transform the critical area to all zeros, it will be found that the
solution area has been transformed so as to contain the desired results.

The “desired results" are, of course, the cells of mb a°
2




T

38.

Although we have not specified what that portion of 5% not
included in either the solution area or the critical area should be,

the algorithm leaves them identical to S.

A demonstration of the mathematical validity of the systems-matrix

approach appears in [23, Appendix].

Figure 18 illustrates S* derived from S as shown ir Figure 17,
Note that the values within the solution area correspond exactly to

those of % in Figure 14.
0,2
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Figure 18
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CHAPTER 4

A BASIS FOR EXTENSIONS TO THE MODEL

l. Introduction

In this chapter, we will develop a systems-matrix model of a

managemert information system which will be essentially the same as
the model developed in sectior 3 of Chapter 3 (Metrod 2 of [23]), and
which will be used as the busis for furitn.r extensions, We will, how-
ever, adopt a slightly different scheme of nofation than previously
employed. This scheme will be somewhat Jess cumbersome than that
previously used, since many of the distinciions of the Lieberman
model need not be retained. Some restrictions wiil be placed on the
notation, but only because this will simplify later explanations and

discussicn,.

In this chapter, we will Gefine only those terms and councepts
necessary to discuss the model as developed so far, Additional defini-~

tions will appear as additional ideas are presented.

Throughout the rest of this thesis, the symbol I will refer to tne
identity matrix, and the symbol Z will refer to the zero mairix. The

order of these matrices will be apparent from the usage.

2, System Camponents

We viet a management information system as being compcsed of three

classes of components: inputs, intermediate entities, and outputs, as

discussed in Chapter 3, section 3. These components are symbolized by

¢ S = 1,2,040,n; Wwhere:
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n= n3 + 1) + 1,
and,
n3 = the number of inputs to the system,
n, = the number of intermediate entities in the system, and

n_ = the mmber of outputs from the system.

P

(It is convenient to index the n's from 3 %o 5, for in Chapter 6 we
will partition the class of inputs into two classes of sizes n, and

Dy, B, + 1, = n3°) We reter to the set of all compenents of the system
by:

CS={cs!l$s$n}.
Indexing of the components will be restricted, as a malter of convenience,
so that the index of any output wili bc greater than the index of any
intermediate entity, which will be greater than ihe index of any input.

This allows us to use the following notation for subsets of components:
S1l. inputs: 053 = {csl Sss n3}

Y. i i +1 i b4 . o= s -
S2, intermediate entities: qu {csl(n3+l) 5 s (n3+nh)}

S3. outputs: CsS = (Cs‘(nj*ni{*l) Ss<n } .

Obviously:

55. CsB n Coiy = Cs3 1 csS = Gy n CsS = Cs3 n Csly n CsS =3,

where & indicates the mull (empty) set. Stated in words, S4 and S5
mean that the sets of inputs, intermediate entities aad outputs are

mutually exclusive and exhaustive,
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3. Direct Connectivity and Paths

If there is a flow of date directly from component s to cj, we

shall say that 5 is @irectly comnected tn cj. Direct connectivity

may exist only between members of classes of' components as shown below:

Direct Connectivity

From o
Cl. CS3 Csh
ca. Cs3 CsS
C3. sl Cshy
Ch. Cyy Ces

We impose the rale:

€5, If cs .is directly comnected to cj, then i< j,
as a furcher convenient restriction on the indexing of ccmponents. This
rule follows for Cl, C2 and Ck from S1, S2 and S3. That it is feasible
fcr €3 follows fram S1, S2 and S3, and from C6, C7 and P2, below.

Obviously, the direction of direct connectivity is significant.

Direct connectivity is a reiation on the set Cs’ symbolized by:

c, @3 ey

(The denial of the ~elation is denoted by the symbol %’ .) The
relation is:
C6. anti-symmetric: if e, @6’05, then it must be

true that ¢ @vo ¢y

C7. anti-reflexive: ey @oci,




b3,

C8. non-transitive: if ¢, 9‘6 c, and oy @‘5 c
J

i k?

not necessarily true that cy 9—5 e

k

Am‘ch exists from ci to ¢, if:

J
Pl., c. 0—5

c.,, ar
i >t

J
P2, there exists a set of components, {ck}, Q= 1,2,000,03

i<kl<k2< coe <kp< j; such that
¢; &3 ckl@?) %, &F -+ O &gy
We say that the path is of length p and write:
c; @-pocj.

Direct connectivity is a path of length zero, by Pl.

4, Network Representation

The system, Cs » may be represenied by a directed graph or network
wherein there is a node from each Cg € Cs , and a directed arc between
nodes whenever direct comnectivity holds between the comporents associated
with the nodes, The direction of the arc agrees with the implied direc-
tion of the relation. Thus, if:

c; @3 o

then the network will contain:

We will frequently refer to this network, but only as & conceptual aid.

The netwerk should not be regarded as a part of the model,

We ncte that it is not possible for the network to copntain a loop

(i,e., an arc directed from one componeat back to itself) because of C7.
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Neither can it contain a circuit (i.e., & path of non-zero length which
includes the same node more than once) because of the strict inequelity

imposed on the indices by P2,

5« Matrix Representation

The system, Cs’ may be represented by a matrix, S, of order

(a3 + nh) X (a, + ns), vhose elements are defined as:

1: if ¢, Ocj;i;éj,
M1, Si,j = -1y if i =
0; otherwise ;
and:

£35S/ .
13 (ng + nh),
(n3 + l) s j Sn.

This matrix is akin to, but not identical to, the adjacency, or incidence
matrix commonly associated with a directed graph [15;16, p.15). It
differs by the fact that S is not square and by the sub-diagenal of
-1's, Note also that the indexing of the columns assigns to the first
coiumn the value (n3 + 1} rather than 1. This is a matter of con-
venience, not necessity. Each row of S is labelled Css and each
column of & 1is labelled cj. The matrix S may be decamposed into
submatrices, as shown below, with the notation Sa.B indicating 2
submatrix depicting the set ¢ paths from the elements of the set Ca

to the elements of the set Cg. (If @ =B the submatrix represents

the set of paths among elements of the set Ca')
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H j=(n3+1) cee (n3+n,+) j=(n3+n4+l) cee N
1
i i= 1 i
g ) i; S [
Soh Ts3,sh s3,55
|

n, !
R M2, S = - 3., — . e e e e |
{ is= (n3+l)
‘ R Seh,s5
l (agm)]

Obviously, the matrix S as described above is identical to the

—

matrix S as developed in [23] ard described in Chapter 3, cxcept for

notation. All the previous remarks about S clearly still 2pply, For
example, the scamning rules (23] quoted in Chapter 3 may be sumerized

by the following:

M3. Every row and every column of S shali contain at least one

sntry of +1,

This is eguivalent to saying that every member of CS must be directly

connected to at least onc other camponent.

*
6. Determination of S

We return now to a discussion of the submatrices, or blecks, of S as

depizted by M2, These are listed beiow, with their oxders:

Biock Order
s Ss3,sh B3 X oy,
3 83,85 ny X ng
(Sgy D) m, X 0

Ssh,ss ny, X ns .
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The orders of the blocks are important in that {hey indicate which
combinations of blocks are confermeble for multiplication., Thus, the

. ° 3 o 3 . \
product (353’521\) (Ssh, s‘5) is defined, but the product (35,3,55) (Ssh, S5’

ig not,

The solution of the model, S%, 1is described in Chzpter 3, In

terms of the notation employed in this chapter:

U

b, 8% =

— —

By analogy tc the previous definition of S¥* (Chapter 3}, we can specafy

the Tlocks of S* 1o be:

sS,sk s3,s85

M5, S¥% =

2]

i

i

s4,sh -1 i
A

where S*S3 s5 is the previously det'ined ¥solution area". Our problem
2

T

now is to determine the i«.lgebraic form of 8*53 55 °
’o

The blcck S 4. sh i3 an adjacency matrix within the subset C,. We
5%,8 sh
define an adjacency matrix, A, for the entire systen, CS, to be an

n X n matrix, with elements:
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! ' ¢ ‘
I '“ ny d=(ngrd)..o(ngemy)  J=(ngm)..on o

Ss3,s14 Ss3,s1+

—_——l L, g e e =

[N
]
~~
Uob
+
&
4
(]
—

A [ Mo G

s

— -_n B I S ——

Y

The matrix A represents the number of paths of lengthk zero in the system.
Each non-2ero block, Sor g’ represents the number of paths cof length zero
3

from components in Ca to components in CB .

It is well known (for example, [16, p.112]) that if B = Ak;

k=1, 2, 3, ..., then bi represents the number of paths of length
2

J

k-1 from ci to c¢,. Squaring the edjacency matrix, A, we obtain:

J

-
L . |
w2 (hs3,s4) (Ssh,sh’ : (Ss3,sh).(ssh,s5) ’

—— et an g v — s . -
T v

2 ; ; 2 .(s

>

0

(W]
~~

sh,sh).(ssh,ss)

ST

.

Note that all products are defined. The blocks of A2 may be interpreted
according to this example: the product (Ss3,sh)'(ssh,ss) repr.sents

the number of paths of length 1 from a component in CS3 to a2 component




in Csso Continuing:

r-z 3 (s ! .

2
s3,sh).(sh,sh) ! (Ss3,sh)'(Ssh,sh)'(ssh,ss)

.____.._‘»._. -
3 ' 3 2,
A= ‘ z f (Ssh,Sh) (Ssh,sh) (Ssh,ss)
—
Z ! Z l Z ;
L ' —
A TN N NI
, 83,8k sh,sh 1 ‘s3,sh sh,sl/  *‘Psh,s5
Y 3 :
Ah = ! z (Ssh,sh) (Ssh,sh) '(Ssh,SE)
Z z l z |

]
—

And, by induction:

. i 1

L (S, ) Sg )T (8 ) (80 o) (S o5)
. VWs3,sk sb,sh s3,sk sh,sh sh,s5

t g o S

k
(Ssh,sh) (Ssh,sh)

- ——— P cm e et e e 4s e e m—

W
}
N

i_ 7 I 7
In Ak, the interpretation of the upper right block is, clearly, the number

of paths of length (k-1) from Cix to Cg

3 5°

The solution area of S*, denoted S¥ must contain the te*al

3,85’
aumber of paths, of any length, from inputs (Cs3) to outputs (CSS)’

which is the sum of the upper right blocks of all the powers of A; i.e.:
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«
/ k-2
S*s3,s5 = (Ss3,ss) + (Ss3,s1+) '\Ssh,s‘j) * (Ss3,s1+) +( Z (Ssh,sh) )'(Ssh,s‘j)
k=3
(4-1)

Earlier, we imposed rule C), and showed that it was feasible for
case C3. Case C3 is represented in S by Ssh sl The application
b
of C5 to that submatrix means that Ssh sk is strictly upper triangulaer.
2
It is known ([9, p.81], for example) that a strictly triangular matrix
is nilpotent of index p, that is, there exists an integer, p, such
that:
(s )k=Z' for k2 p
sk,sl > ?
and
(s )k¥Z° for k<p
sh,sk ’ °
This means that the summation in equation (4-1) 1is finite, and we may

write: o+1

. k-2
S¥s3,8l = (Ss3,sh) * (Ss3,sh) '(Ssh,s5) * (Ss3,sh)'(k; (Ssh,sh) )'(Ssh,s‘j)

p+l
k-2
= (Sg3,05) * (8g3,900+( . (89, 20D (5, 5o)

k=2
p-1
Y k
= (Ss3,s5) + (ss3,su)’\ Z (Ssh,sh) ) (Ssh,ss) ’ (k-2)
k=0
o
since (S"h si;) =1,
oy
0
and (Ss3,sh)'(ssu,s5) = (ss3’s,4).1.(ss,+,ss) = (ss3,sl+)'(ssu,su) . (ssu,ss)'




R

Sin s . . )
ee sh,sh 1S nilpotent, we know that
p-1

' X -1 .
z;(854:54) = (1 - Ssh,sh) (4-3)
k=0

(This is one of those facts of matrix algebra that is almost inevitably
left as "an exercise for the reader®. See, for example. (5, p.lll;
20, p.68].) Using equation (4-3), we may re-write equation (4-2) as:
S% o = (S )+ (So ) (T -8, )8, )
s3,85 53,85 s3,sk sh,sk sh,s5’°

This permits us to specify the solution matrix, folloving M5, as:

— _—
\ | -1 \
i Ss3,sh ‘ (Ss3,55) + (Ss3,sh) (T - Ssh,sh> '(Ssh,SBI
5% - | | I,
* 1
L Ssh, sh =1 | Z _
(4t
T. The Systems~Matrix Algorithn
We now postulate that there exists at least one matrix, T, of order
(n3 + nu) X (n3 + nh), such thut post-multiplication of S by T will
yield 5%
ST = % (4-5)
In block notation, equation (4-5) is:
r | -
— .o
] Tie T2 !
! ~
, SS3)5)'* g 853’35 i e | (n3 xn3) ' (n3{ nl.) !
! ——y T ; —
Ssh,sh—I i Ssh,sS i Toy Tz ‘
L - L(nu xn5) (ny, xn)) i
r— i . R
| Ss3,sk (Ss3,35) + (SSB,sh) (T - Ssh,sh) (Ssh,sﬁ)
= ‘ M

Ssh,sh -1 | z ___J (4-6)
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From equation (4-6), we can obtain the following equations by block
nultiplication:
(853:52*).('1‘11) ¥ (853,55).(T2l) = Ss3;el; (4-7)
(SSII-,S,-} - I).(Tll) + (ssh,ss)'(TZl) = Ssl{.,sh -1 (}*-8)

(53,60 (T12) + (S53,65) (Taa) = (Sy309) + (853, *(X = 8y, ) TSy o5) (-9)

(Sgy,a4 = D (T + (S, o5)*(Tpo) = 2 (4-10)

-~

Equations (4-7) and (4-8) are satisfied by:

Ty =1 (4-11)

and

Ty = 2 (4-12)

(We do not claim that these values are unique.} Equation (4-10) may be
written:
- (T -8y o) (T = (S5, 5)(To)) »

whence:

-1
Typ= (T - Ssh,sh) : (Ssl&,ss)'(TZ.?) ’ (k-13)

since the existence of (I - S.), sh) "1 has already been demonstrated.
2
Substituting equation (4-13) in equation (U4-9):

-1
(833’51‘).(1 B SS‘*:S“) : (Ssh,ss) (Top) + (ss3,ss)'(T22)

-1
= (553,85) + (SSB,SI#) (T - Ssh,sh) ° (ssll,SB) ’ (4-14)




-

52,
vwhich is satisfied by:
Top = I (4-15)
Then, from equatior (4-13):
-1
T)p=(T- ssh,sh) ) (Ssh,s5) * (4-16)
By combining eguations (4-11), (4-12), (L4-15) and {4-16): .
—- ! .
I | O Saa) (Sass)
T =
Z | I (4-17)

Obviously, from equation (4-17), T is an upper triangular matrix,
with a main diagonal of all 1's. Since det(T) = 1, T is non-singular.
It is well. known (for example, [8, pp.217-228; 9, pp.125-129; 19, pp.23-26,
20, pp.95-98; 37, pp.102-106] that:
a, @& non-singular matrix is equivalent to the product of a
finite sequence of elementary matrices, and,
b. post-multiplication by elementary matrices is equivalent to
elementary column operations,
Therefore, S may be transformed to S* by performing a finite sequence
of elementary column operations on S. The algorithm is:
Al, Find an entry in Ssu’ss which is non-zero, If there are none,
the algorithm is finished, and the desired results are in block
SsB, s5° if one is found, call the row in which it occurs r and
the column t.
A2, Search row r for a negative entry. Call the column in which

one occurs d.




PR

Tt

53.

A3. Add to column t the scalar product of colunn d and sr £
2

Go to stE? Al.

8. The Validity of the Algoritim

For this algorithm to be zcrrect, it must be true that:

a., it is always possible to perform the stated steps,

b. the algorithm will terminate, and

c. the correct solution will have heen generated when the algorii:hm-

terminates.

Steps Al and A3 are obviously always executable. Step A2 can be
performed if there exists an entry of -1 in the row being scanned. Since
Ssh,sh is strictly upper triangmlar and therefore contains only zeros
on its main diagonal, the submatrix (Ssh,sh - I) will contain entries

of -1 on its main diagonal. Only the rows of S are scanned.

83,85
Therefore, for each row subject to scanning there is an entry of -1 in

the initial block (Ssh b - I). This block is never changed, since
2

Step A3 operates only on columns in blocks S and Ssh s Therefore,
V.

53,55
Step A2 can always be executed.,

The algorithm will terminate when the block S has been redv<ed

shk,s5
to Z. To see that this reduction to all zeros will always occur, we

select, without losz of generality, the bottom-most non-zero entry in

some column of S say, S in Step Al. Steps A2 and A3 will

sh,s5’
reduce that entry to zerp. In so doing, multiples of positive values

r,t’

in column d will be added to column t, but any such additions to

column t will be above row r, because of the strict upper triangularity




She

of Ssh,sh‘ As we repeat the steps of the algorithm on the same column,
we never add entries to column t in a row already reduced to zero.
Therefore, we will, after a finite number of iterations, reduce the
entire column t to all zero entries in rows \n3+l) to (n3i-nh).
This is true for all columns from (n3+nh+l) to 1n. Therefore, Ssl&, s5

can be reduced to all zeros and the algorithm will terminate,

Consider repeating the steps of the algorithm only for the original

entries of S The effect of doing this is to change S to

sk,s5° sl,s5
(Ssh,ss + ssh,ss . (ssh,sh -1)) = (Ss’-l,ss . ssh,sb,); and to change

S to (S

s3,s85 Call this cycle 1. Repeat

3,55 * Ss3,s’+' (Ssl&,s‘j))'
the algorithm, but only for the entries added to Ssh s5 by cycle 1.
s

When this has been done (cycle 2), the lower right block will have been

= 2 *
changed to (bsh,ss ¢ Ssh,sh * Ssh,ss 'Ssh,sh' (Ssh,sh -1) = (Ssh,SB * (ssl&,sl&) )5
and the upper right block (the solution area) will have been changed to
(Ss3,s5 * Ss3,sl+' (ssh,ss) + ss3,sl&' Ssh,sh * Ssh,ss))
1

k
= (Ss3,55 + Ss3,si&' ( Z (Ssh,sh) ) Ssh,sS)’
k=0

It is obvious that at the completion of cycle p (where p is the index

3 1 + 3 . = M
of nilpotency of Ssl&,sh) . the lower right block will be Ssh,ss (Ssh’ sh) Z;
and the solution area will be

p-1

(883’55 + SsB,sh' ( z (Ssh,sh)k) . Ssh,s‘j)’ wnich is the desired
k=0

result,




9. The Determination of Paths

The solution area of the model developed in the previous sections
indicates the number of paths by which an input can reach ar output.
An associated problem is to identify each of these paths, rather than
to epumerate them. This can be accomplished by a relatively minor change
in the model. We call the systems-matrix for this problem SP, and we
establish it exnctly as we established S, except that wherever there
is an entry of -1 in S, we set

spi’i =- (l/ci))

where cs is a symbol for a component, not a mumerical value. We also
impose the restriction that multiplication is not commtetive. This is
because we shall interpret the indicated products of symbols to mean

a path, If a cell in the solution area, say, s contains the entry

i3’
Ca® % c d we shall say that there exists the path of length 3:
ey @boca &5 <, @-6 4 @-6 c 3¢ Because of C6, the product cannot

be commtetive.

In the algorithm, the only change necessary is to specify in Step A3
that to column t be added the scalar product of column 4 post-
mltiplied by (c a° sr t)' We still take 1/<:i to be the multiplicative

?

inverse of c_; that is,
i

In Figure 19, we show the matrix SP for the case illustrated in
Figure 1l. The solution area of SP¥, arrived at by application of the

systems-matrix algorithm, is shown in Figure 2. {Note that in Figures 19
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Figure 19
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and 20, the notaticn of Chapter 3 has been retained to facilitate

comparison.)

Iceoking et ths cell represeating the comnectivity f{rom dl to
RL}(E} in Figure &0, we find the single entry R3(l)' This depicts
the existeacz of caly one patk, of length 1, connecting these two

componentc, pamely:

d, 5—-6&,

31) P Ry(z)

Fronm d3 to By there is a path of length 2:

1y @ Ryqy @% Ry $p By -

From d6 tc 32 there are two paths of length 1:

% & B PP B2
and
4 &Y Ry &% B -
Similarly, there are two paths of length 2 from dh to Bl' From d

to B2 there are three paths of length 2, since
- (R R + R
B3) - (Rs(2) * Re(g) + Ryg))

= . + . . + « R .
B3(1) * Bs(2) * R3(1) * Fe(2) * F3(1) " *u(2)
From d2 to 32’ there are six paths, one of length 1 and five of
length 2. Finally, the entry of 1 indicates a path of length zero

(direct connectivity), and the entry of O indicates no path.
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It should be noted that the matrix SP and its associated algorithm
can be formalized to a "path algebra™ with the operations "is directly
connected to" and Yand" over the elements of the power set of Cqe
However, at this point, there is ncthing to be gained by such a strategy.
Rather, that approach would hinder the mixed mcdeis (numeric and symbolic)
that will be developed in a later chapter, and would inhibit rather than
help the Type of intuitive understanding of a model that the analyst

should have.

T w ey




Lk daadac® ad M 3
P Mgy

60.

Chagter 5

INFORMATION FILTERING

l. Introduction

The systems-matrix model developed in Chapter 4 has incorporated in
it an assumption which is now challenged. In speaking of the direct
connectivity relation between two components in Csl& or from a

component in csh to a component in C s5° denot=d:

c, @'ac.,

1 J
we have implicity assumed that if a path exists from some input, ck,

to Y then a path will =xist Jrom ¢, to cJ.. In other words, the

k
model assumes that whatever inpuil items have been received by an inter-
mediate entity will be transmitted to every other component to which
that intermediate entity is directly connected. This assumption has
lead to the fact that, in our previous models, any input tc a system
could be traced to one or more system outputs. In fact, the violation

of that rule was used as an indiicator that what the analyst thought

was an intermediate entity was truly an output.

In practice, management information systems need not necessarily
possess this characteristic. Data may be “dropped”, or "1l.st", within
a system. In the preparation of ca. from Css not all of the input

items contained in ci mey appear in ¢ We shall refer to this

5°

phenomenon as information filtering, or, simply, filtering.
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Filtering may be classified as:

1.

systematic filtering, if the filtering is a deliberate, planned

part of the management information system (or results in a
deterministic fashion from a planned part of the system), or,

random filtering, if the loss of information results from noise,

error, equipment failure, or other non-planned, randomly

occurring events.

In this chapter, only systematic filtering will be considersd, and the

term "filtering" will be interpreted to mean "systematic information

filtering".

Two types of filtering are recognized:

1.

unconditional filtering occurs when certain specific items of

data (input items) in c; are never transmitted to Cys and,

conditional filtering occurs when the transmittal or non-

transmittal of some or all of the items in ci to ¢ is

J

conditioned upon the values of one or more input items

{called criteria imput items)., The criteria input items may

or may not be included in the set of input items subject to

filtering.

In the case of unconditional filtering, the filtering action is independent

of the data being processed, exactly which items of date are transmitted

RS

and which are not transmitted is determined by systems design. The

two limiting cases of unconditional filtering are:

1.

zero filtering: all of the data frcm cy are transmitted to each

cj to which cs is directly connected. This covers the

assuuption of the previous models.
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2. total filtering: none of the data from ¢y is transmitted

to any cj. This is equivalent to saying that s is not
directly connected to any cj. Then, this is the previously

discussed case wherein e, is a system outvut.

From the above we can see that only those instances cf unconditional
filtering lying between the limiting cases (i.e., partial filtering)

present a new problem,

In conditional filtering, not only the specific filtering action,
but also the filtering process itself may not be completely specified
by the systems design, but may be a function of specific values of data
processed, It is possible that zero filtering may occur at some times,
total filtering may occur at other times, and various degrees of partial
filtering at still other times. Conditional filtering may involwve a
change of state: should zero filtering occur, the process changes to a
non-filtering one; should total filtering occur, the process may change
to a non-filtering one with one or more intermediate entities becoming
outputs. Thus, in conditional filtering th= limiting cases as well as
partiel filtering must be considered. Furthermore, both non-filtering
and unconditional filtering are special cases of ccnditional filtering,
as will be developed in this chapter. Therefore, the discussion following

will concentrate on the conditional filtering problem,

2, The Relation of Micro-Direct Connectivity

The concept of direct connectivity as present in Chapter U4 is meaningful

only when there is zero filtering unconditionally throughcut the system.
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A model which employs such an assumption will be referred to as a

macro-model, and the analysis of such a system as macro-analysis.

In this chapter we will be concerned with micrc-models and micro-
analysis, applied to systems wherein we must investigate the transfer
of information between components with reference to each item of data
in the system. The relation of direct commectivity tells us only that
there is, or is not, a transfer of some information from one component .
to another., We need a more detailed relation between components to

indicate just which specific items of data are transferred.

Conceptually, the macro-model pictured a direct connectivity relation
from c; to cj as a single directed arc from the node labelled cs
to the node lubelled cj. We now need a relation which can be depicted
as a group, or aggregation, of identically directed arcs between two
nodes. Fach arc in the group will represent the transfer of one
specific item of data, and there will be one arc in the group for each

item of data transferrsd between the two nodes, Then we may say that

ci is directly connected with respect to input ck to ¢ 57 if an arc

labelled o is directed from Cs to ¢ 3 or our conceptual network, °

This will be symbolized:

k
Sk s
e, @-B’c 5 15k ng .
In order to distinguish between the aggregate and the detailed direct

connectivity relations, we will call the previously defined one macro-

direct connectivity, and the one defined in this section micro-direct

connectivity. We may state:




C9. The component N is macro-directly connected
to component c 3 if and only if ¢y is micro-

directly connected to ¢ 3 for at least one

item of data.

It can be readily verified that all the statements made in Chapter L,
section 3, about macro-direct commectivity, statements Cl through c8,

apply as well to micro-direct connectivity.

We also may extend our definition of a path to the micro-model.
The path previously defined in Chapter 4, section 3, Pl and P2, we will

now refer to as a macro-path. We say that a mi<ro-path with respect to

input Sy exists from cs to cj ifs

k
P3. c; @'gcj s OF

P4, there exists a set of components, {Cr } 38 = 1,2,400,P3
q

i<r1<r2< vos <rp<j 3 such that
[ k k k k
ci @-’o crl @'—.o crz @’6 XX %’crp Q_O’Cj .

We say that the micro-path with respect to C is
of length p and write:

k

c; @;cd .

Micro-direct connectivity is a path of length zero, by P3.

P
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Since the relation of macro-direct connectivity holds between
two components which are micro-directly connected with respect to
at least one item of data, we can readily observe that:

P5. A macro-path exists between two ccmponents if and only
'

if a micro~-path with respect to at least one item of

data exists between the same two components.

We may now define filtering in & somewhat more precise fashion, We
will say that filtering is a system characteristic:
S6. An item of data ) is filtered out of the flow of
information from component cs to ¢ j if there does

not exist & micro-direct connectivity relation with

respect to x from cs to ¢ 3
Note that this definition of filtering is worded so that if s is not
macro~directly connected to c 3 (that is, if there is no flow of any
information from e; to ¢ j) then we can say that total filtering
exists between ¢y and c 3 Worded this way, we can use the corcept
of filtering as a characteristic of the macro-mcdel as well as of the
micro-model., This enables a systems analyst to change from macro-
analysis to micro-analysis, or vice-versa, with a minimum of difficulty,

and thereby increases the flexibility of the systems-matrix approach.

As an example, we depict, in Figure 21, the conceptual network

associated with a system which is to be subjected to micro-analysis.
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Figure 21
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Note, for instance, that while ¢, is macro-directly connected to

7

C it is micro-directly connected only with respect to c3. At

9,
the bottom of Figure 21, we display in a small matrix the total number
of micro-paths from each input item to each output. In this simple
example, that information may be readily obtained by direct examination
of the network. In more camplex cases, of course, such direct examina-
tion and enumeration would become unwieldy. It is our purpose to

apply the systems-matrix approach to generate this information as the

solution to the systems-matrix.

3. Transmittance Values and Vectors

The network scheme developed in section 2, above, is a good one
pictorially, but is difficult to work with mathematically because of
the varying mumber of arcs that may exist between each pair of
components. In the interest of uniformity we now put forth an altermative
way of indicating micro-direct connectivity. We will visualize each
node representing an intermediate entity tc be connected to every other
node representing an intermediate entity and to every node representing
an output, and that the connection will consist of an aggregation of
n3 arcs, one for each input in the system. On each arc will be a
number, or & variable, which denotes whether or not that arc transmits
the input item it represents between the nodes it connects. In the case
of unconditional filtering, that number will always be either a 1 (transmits)
or a O (does not transmit). Conditional filtering will be indicated by

a variable, which, when evaluated, will be either a 1 or a O.
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More formally:

S7.

From every system component c., ng <is (n3+nh) s
to every other system component css (n3+l) Sjsn, i#3,
there will be a set of k transmittance values, ti 3,k
dJ2

1sks N3, defined as follows:

0; if Cy is never transmitted

from c, to cj,

1,5,k " 1-v; 45 if ¢ 1is not tramsmitted from c,

to ¢, under certain conditiocns,

J

1; otherwise

The symbolic value, l-vi 37 will be explained below (section 5 of
3

this chapter).

We may make the following statements about transmittance values:

Ti.

T5.

If ¢ 1, cs is unconditionally micro~-directly

1,3,k

connected with respect to input Cx to cJ..

If 4, = l-v, c. 1is conditionally micro-direct
i,d,k i,J’ 1 Ly d

connected with respect to iaput ) to ¢ 3°

If t, ., =0, c¢. 1is not micro-directly connected with
i,j,k i

respect to input ¢, to cj.

k
c, 1is not macre-directly connected to c¢, if and conly if

i J
t. =0 for all k.
i,3,k

The micro-path of length P with respect to input ck

ac specified in P4 exists if and only if:
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p=-1 *
t. ol I ¢ ot 0.
1,rl,k =1 ri,ri+l’k rp,;],k
The definition of ¢t in S7 1is worded so as to remove one

i3,k

cause of ambiguity, It is possible for an input item of data, S
to fail to reach c¢ j either because the flow fram 5 to ¢ 3 is
filtered (ti’ 3,6 " 0), or because ¢, mnever reached c; . In the
latter case, as will be shown below (section 5 of this chapter), the
value of t, is arbitrary, We have defined +t, to be
i,Jd,k v i,k
independent of whether or not C) exists in the set of items that
reach ci; we will show that ti 3,k is a function only of the
IJ2

logic of the system structure,

In ST we have left undefined the micro-direct connectivity of
input items to other components. It becomes a little difficult to
visualize an aggregation of n3 arcs eminating from & component which
is the component represented by one of the arcs. One might puzzle

over the significance of the arc labelled, say, c directed from

5,
the node, say, Cp . Instead of trying to give meaning to this, we
will consider the entire set of input items, Cs 3 as constituting

a single component with an aggregation of n3 arcs directed from this
"super-camponent" to every intermediate entity and to every output.

: In order not to have to change the specification of the range of the

indices in S7, we must label this new component with an index number

greater than B3, but less than (n3+1). Arbitrarily, we will refer

to the camponent representing the subset C$3 as c(n3+§) .
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Obviously, the dra.wing'of a network of even a simple system
according to the above scheme would be so complex in appearanée as
to be a detriment to visualization. We will continue to draw networks
as before, but with the understanding that, in micro-models, each arc
drawn represents an aggregation of n3 arcs, We will replace the
transmittance value which is connected with each individual arc with

a transmittance vector:

S€. The transmittance vector from c; to ¢ j 3 B3 <is (n3+n,+) H

(n3+l) £ 3jSn;i#f j; is defined as:

. = t. t. csoe tn o0 t.
Tl:j ( 153,207 "1,3,2° ? 1,5,k ’ 1:39n3) .

We note that we may further simplify the drawing of networks by amitting
an arc when its associated transmittance vector is:

Ti,j = (0,0, [ XX K] O)o

Such will be the case, for example, when c; is not macro-directly

connected to ¢

j L ]
We digress momentarily to note that we will make fregquent use of

vectors that have all elements equal to the same value, We will denote

such vectors by:

Vz(a) = (2, 8, eee 5 &) ,

where the subscript 2z states the size of the vector. Thus, in the
preceding paragraph:

Ti,j = (O}O) seey O) = Vh3(o)°
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4, Input Content and Cargo

A remark in section 3, above, indicated that the question of whether
or not some intermediate entity has received some input item may be
significant., In order to be able to discuss such & question, we

introduce additional terms:

S9. The input contont of & component, Css is stated by a vector,

Di’ of size n3, defined as follows:

- . £4is
Di (di,l’ di,2’ XYY di,k, eooy di,nB), (n3+l) 1 n

where di X represents the number of paths by which ¢, can
2

k
reach c,, 1 £k =< Dge We define the input content of

c(n3+%) as:

D(n3+%) - Vns(l) .

In an unconditional filtered system, each di K will be a non-negative
H
integer, In a conditional filtered system, as will be shown below,
di x TeY also assume a functional form (which becomes a non-negative
b

integer when the function is evaluated),

510, The cargo from c; to ¢ 3 is the input content received by

] b from ci, and is described by a vectcr of size n,:

3

R. = \Y, r soe . oo r.
i,3 ( i,3,1° "1,),2 ? Ti,3,k? °°° 7 Ti,3,n

3)’

Obviously, R, ,=V_(0) when c., is not macro-directly
i,] n3 i

connected to c,.

J
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The cargo from cs to ¢ 3 will be identical to the input content
of ¢y unless the transfer of one or more input items is prevented by

filtering., If this is the case for, say, Cye from ¢y to c;] s, then

it will be indicated by t. =0, and 7. should be zero,
v l,j’k ’ l,'j’k
Otherwise, ti,j,k = 1, and ri,j,k should be equal to _di,k'
Therefore;
e )Gy D
%kaMk 1,3,

R- : = d. t. XX d. ] °
iyd [( 1:1)'( 1:3:1>, > ( 1)n3)'(ti,Jan3)
(This is in accord witk customary usage in signal-flow graph theory;

for example, [3, p.187 £f; 6, p.87 £f; 27, Chapter 1; 36, Chapter 1].)

Again, we digress to introduce special notation for a case that will
appear frequently. If A and B are two vectors of the :ame size, 2z,

and if C = (a.i'bi, 85'Dpy ees;y 8.° bz)’ we will denote this by:

C = A ® B ’
where the operator ® indicates element-by-element vector multiplication.
Then we may write:

R, ,=D ®T (5-1)

i,d 2d
S1l. The input content of ¢ 32 (n3+1) < j<n, is egual to the

sum of all the cargos temminating in ¢

»
.

J

D =2'R. .. (5-9)
i
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Substituting equation (5-1) in equation (5-2):

Dj = 2{ (Di ® Ti,j)’ (5"3)

and, from £9:
Magh) = T (e (5-4)

Without loss of generality, we may stipulate that each of the
vectors we have discussed so far be a column vector. Then any Dj
for (n3+n!++l) £ j<n is a column from the solution area of 8%;
i.ed, 5*53, s5 (M4, Chapter 4, section 6). Equations (5-3) and (5-k)
define the solution area recursively when applied to J such that

(n3+nh+1) Sj<n.,

5. Filtering Functions

The determination of a transmittance value (S7) is clear when the
system under study contains only unconditional filtering. For a system
including conditional filtering, the term 1-v,

i,J
We will do this so as to be able to state a single definition for the

must be determined.

transmittance value, o5 3,k regardless of the type of filtering
2J2

present, treating ti 3ok as a function of independent variables to
IV

be introduced.

We define a filtering function on each micro-direct connectivity

relation in the system. This filtering function is based on two

elements, one of which indicates the conditions under which fi“tering




Y

takes place; the other, the input items affected by the filtering
action,

S12, The value of the filtering function is defined as:

{l; if filtering takes place between c; and ¢ 3

C; otlerwise .

813, The blocking vector of the filtering function, Bi 5
}

describes which input items are filtered out if filtering

takes place, This is a vector of size n with the k~th

3:
camponent defined as: l

k

¢c. toe, when v, . =1,
1 J 1,J

\ 1; if ¢, is filtered out of the flow
b, .
i,jrk =

03 otherwise ,

S14. The filtering function, F. . @ vector of size ag, is
2d
defined as the scalar products
= . < 3 5 .
T R i D
(ngtl) £ §Sn;iéj.
Thus, the k-th element of Fi j is:
2
IR LA
Ti,dsk " <
2ds ! C; otherwise,
1<ksSn,.
3
The value of v, is the truth value of the condition upon which

i,3
filtering takes place. Suppose, for example, that filtering occurs ii

aad only if the value of ck is less than sane Guantity Q. Then we




T T R,

may say:

vi’j = (ck < Q)’
which is, of course, a logical propcsition., For multiple criteria,
we may have expressions such as:

= < =

vi,5= ((e5<Q) Alcg=cp) ),

Vig T ( (c3o cu) 2 (c7 + c8) )

vi,j = ( (cl< Q) v (02= 0) ))

vi,3= (((egf cp) A (cg #0) )V (cp= "inbound")),

and so on.

For an example of a blocking vector, consider o system with n3 =T,
and the existence of F12, 17 such that if v12,l7 = 1, all the informa-

tion contained in ¢ is transmitted to ¢

12 17 except for c), and Cge
Then:
312’17 = (0,0,0,1,0,1,0),
and
F12,17 = (°’°’°’V12,17’ o, V12, 17° 0).
For unconditional filtering, Vi’ j= 1. For zerc filtering, vi’ 3= 03

but in this case we need not recognize the existence of Fi For

23"
total filteri B. .=V (1).
mg) l,j n3( )

More complicated filtering functions may occur. It is possible that

the filtering action may take several different forms, depending on the

values of several criteria. As an example, consider the following set

of blocking vectors, each of which may become the controlling blocking
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vector between N and c¢, upon the satisfaction of its associated

J
criterion:
(o, 1, 1, 1, 1, 0, O); if 02<O,
Bi,j = (o, 0, 1, 1, 0, 1, 0); if ¢y, =0,
(o, 0, 0, 0, 1, O, 1); if c2> O.
We can express each condition as a sub-function, Gi,,j,h; h=1, 2,
Gi,,j,l = (vi’j,l)-(o,l,l,l,l,o,o); Vi1 " (c2 <0),
Gi,j,2 = (vi’j,g)'(o,o,l,l,o,l,o); Vi 32" (c2 = 0),
Gi’j,3 = (vi’j,3)-(o,o,o,o,1,o,1); Vi 3,3 " (e, > 0)s
Then:

N
i,J Glijh
h

In this example,

F, .= (0, v

+
1,

. o V. + VvV, V. V. .
i3,V ( i,3,1 1:3:2)’ ( 1,3,1 1{3;2),

V. + V. V. . V. .
(1:391 1:3:3)’ 1:3:2, 1’3:3)

In this example, we were careful to define the criteria such that they
were mutually exclusive and exhaustive; i.e.,

L¥,5m= b

h
for 211 possible values of the criteria, This is an important point
in order to avoid ambiguity. In this way no element of Fi . will be

2

anything other than O or 1, after the \ j's have been evaluated.
>

o 3¢

(5-5)
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It is this which permits us to couple the vy 's by arithmetic

2d

operations rather than logical operators.

It is important here to note that the constraints of information
flow in the system under study, which in the macro-model resulted in
some components being connected, others not, are depicted in the
micro-model by filtering functions, Thus, in the model of Chapter Y,

we might have a situation with the following characteristics:

8. ng= L

be ¢y is macro~directly conmnected to cs

Ce Cy is macro-directly connected to c5 and °6
4. 03 is macro-directly connected to % and c..,
e, cl-L is macro-directly connected to % znd c7 .

In the micro-model of this chapter, the description of these characteristics
is:
a. clé is micro-directly connected to c5, % and c7, through the
filtering functions described below:
b. F%,s = (1)+(0,0,1,1)
Ce F%’s = (1)+(1,0,0,0)
de F%,.? = (1) +(2,1,0,0)

In cases involving the macro-direct connectivity from an intermediate

(0,0,1,1)

i

i}

(1,0,0,0)

(1,1,0,0) .

1]

entity to another component, systems design will impose either zero

filtering or total filtering; i.e., either F.

" v, (0) or Fi,j = Vn3(l),

3

respectively.

In addition to these system design imposed unconditional filtering
functions, there may be one or more conditional filtering functions on

an arc, In this case, equation (5-5) governs,
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The transmittance of an arc is either O or 1; that is, an input

it is not (t,

is either transmitted from c¢. to ¢ t,
1 J ( i,k

C). In order for t, to be equal to 1, the

1k - i,j,k

filtering function, Fi 57 must be inopelative on cy. This, in turn,
b4 <
will occur wvhen v, . =0 and b, ., is arbitra or when b, ., =
1,4 i,k * s i,j,k
and v, . 1is arbitrury. In either case, f, = 0. In order for
1,3 i3,k
ti,j,k to be equal to zero, Fi,j must be operative on Cy s which
means that both v, . and b, ., must be equal to 1, and, therefore,
1, i,j,k
f. . . =1. Thus, it can be seen that:
i,d,k
t., .. =1-1T. .
i3k i,j,k?
or,
T. .=V (1) -F, . . -6
1,J n3( ) i,) (5-6)

In the case of zero filtering, by definition:

F. .=v, B. .=V_(0
i,J 1,5 71,3 nq‘) ?

and, therefore,

T. .
1,J

vn3(1) - Fi’j = vn3(1) .

In the case of total conditional filtering, by definition:

Bis Vn3(l) ’

so that, when v,

. 1
1xd ’
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F, = v, .,*B, =V 1
1,5 V1,5’ 85,3 = Va0

3

and

Ti, 5= vn3(1) - Fi,j = vn3(o) .

6., Matrix Representation of a System with Filtering

The matrix S, developed in Chapter %, has as elements, the

S.
i3’

values 1 or O, depending upon whether macro~direct connectivity does

or does not, respectively, exist from cy to ¢ 5 However, the development

of the model in this chapter will not permit such a simple matrix repre-
sentation, for now we must depict the micro-direct connectivity relation

from c, to cj s Wwhich is an n3-tuple rather than a single figure.

We could use the previously developed matrix S as a guide for
constructing a similar, but larger, matrix to represent the micro-model.
Since there are n3 possible micro-direct conmectivity relations between
two intermediate entities, the irtersection cf c; and ¢, in the matrix
will be an (n3 X n3) submatrix instead of a scalar. Each row of the
submatrix, ci,k will correspond to & single arc leaving Css each

column, c P K’ to a single arc reaching cj. The intersection of
2
intermediate entities and outputs will also be represented by (n3 X n3)

submatrices, Input components will be represented by a set of n3

as in S, the entire set representing S(n _’%). The resulting matrix,

Tows,

1 i 3Ft i 7] . X . . .
which we will call SF', will be of order (n3-i-n3 n,+) (n3 my+ag ns)

The entries in this matrix will be similar to those in S, Let sf’i i,k
IJ

be the cell formed by the intersection of the row representing 5 %
2

and the column representing c This cell will be set equal to

JrX
t. . ,, which represents the k-direct connectivity from c., to c,;
i,J,k 1 J
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unless i = j, in which case the cell will be set equal to -1, All

other cells will be set equal to O,

Obviously, each submatrix of SF' will be either Z or an (n3 X n3)
diagonal matrix. A cell of a submatrix not on the major diagonal repre-
sents the micro-direct comnnectivity from one input item contained in

c, to a different input item in e No such connectivity exists.

j.
Therefore, all cells not on the major diagecnal must be O, It is known
(for example, [9, p.81]) that the product of two square diagonal

matrices of the same size is a square diagonal matrix of the same size.

Furthermore, the diagonal elements of the product are the products of

the corresponding elements of the two diagonal matrices being multiplied,

If X and Y are two diagonal matrices of size (z X z), then:
XY = YeX=W

and

xi,j'yi,j; for i=}j,

W, .

1, =

0; otherwise,

Let X', ¥Y', and W' be column vectors of size 2z, formed of the

diagonal elements of X, Y and W, respectively:

X! =X .

1 1,2

Y' =Y, .

1 1,1
and

W' = W F)
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and let
W= XY,
Then it can be seen that
Ww=X'eyY',
where ®, as befcre, indicates the element-by-element multiplication

cf two equal size vectors.

The foregoing permits us to represent each (n, X n3) submatrix
J
of SF' by a column vector of size n3, and to represent the operation
of ordinary matrix multiplication by the operation ®. Thus, each
submatrix of SF' collapses to V_ (0), V. (-1), or T, .. The
ng ny i,J

collapsed systems-matrix is then of order (n3 + n3'nh) X (nh + ns).
However, we can consider this as an (1 + nu) X (nh + n5) matrix
by entering in place of the elements of each column vector the symbol

denoting that vector. This new matrix, with vector cell entries,

we will call SF, whose elements are defined as:

M6. V. (-1); if i= 3,
3

T. .; otherwise,
i,Jd

n3<i$(n3+nl+);(n3+l)$j$n.
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SRR | S Y S, e ——— e

M- e lj e M - R LJ gt e 0
i=(ng+ ) SFS3,§_L; | SFs3_,_35_ o "
ey D l "
SF = : ' SFg), gt + I(V(-1)) SFsh,s5
(ng + nh)‘ |

on
O

where I(V(-l)) is a symbol for a diagonal of vectors v, (-1).

3

M8. Every row and every column of SF will contain at least one entry

not equal to either V_ (0) or V_ (-1).
ng n

M9.

SF% =

M10,

SF*

il

The proof that SF*

on SF follows the same

3

—
SF*s3,sl+ l SF*s3,55 _l:
SF¥sh, sh 1 SF¥sh, 55 J

— T
SFs3,sh iSF*s3,55 !
SF, o * IVC-D) | 2 _i

can be developed by elementary column operations

arguments as theose used in Chapter 4, section 7,

for the transformation of S¥ fram S.

In Figure 22, we depict a simple system with zero filtering and the

corresponding matrices

S and 5% . 1In Figure 23, we introduce filtering,

both conditional and unconditional., In the interest of visual simplicity

we have omitted arcs te which we know are associated T, J.‘s of ‘v’s(O) .

’
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Figure 23
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Figure 23 (contd/
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NOTE S

1. MWhere no arc appears between nodes, the fillering
functionmay be assumed tolbe Vi(U); T ; = V5(0).

2. Where no filtering function is listed for an arc which does
appear, it may be assumed tobe V3 (0); T, ; =V (D),

3. For (=), T‘d = Vs(-1).




e

86.

Beneath the drawing we indicate the nature of each filtering function,
Cases of arcs without filtering functions listed represent the trivial

cases of F, , = V.(0). From these F, .'s we compute the T. .'s
i 5 1,J 1,

J

wvhich we compute

»J
by equation (5-6). The desired solution is D

2

10’
using equations (5-3) and (5-4):

D6 = D5% ® Ts‘&,S = '\fs(l) ® T5§',6 = TB%’6

Dy = V(1) @ Tgy o + Dg @ V(0) = Ty o

Dg = v5(1) BT, g+ D ® T6,8 + D, ® VS(O)

53,
= TS%,S + Tﬁi’6 ® T6,8

D9 = v5(1) ® V5(°) + D ® v5(1) + D7 ® Vs(l) + Dg ® V5(°)

= D6 + D7 = T5‘%,6 -+ T5%37

D. = v5(1) ® Tsi’lo + D ® vs(o) + D7 ® V5(°)

+Dg®Tg 1o+ Dy & Ty 1
T53,20 + (Tog o+ Tog c® T, o) ®T
’ 54,8 7 52,6 ~ 6,8 8,10

+ (Tﬁ,6 + T,j%,?) T ,10 * (5-7

Fvaluating equation (5-7), which is the desired solution:
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In Figure 2k, we show the matrix SF, corresponding to the network
of Figure 23, We show this in two forms, first, symbolically, secondly,
with each vector symbol expanded. The second representation is only to
aid the reader perform subsequent computations. The solution area is

outlined in heavy lines in Figure 2L,

We modify the algorithm of Chapter 4, section 7, so that it is
applicable to SF:

A4, Find an entry in SF which is not all zeros. If there are

sh,s5

none, the algorithm is finished, and the desired results are

in block SF If one is found, call the row in which it

s3,s5°
occurs r and the column t.

A5. Search row r for an entry of the form V (-a), Call the

(€]

column in which one occurs d.
A6, Add to column t the element-by-element product of the vector

entries in column 4 and the vector entry in s Go to

r,t*
Step Al.

Applying this algorithm to the matrix SF of Figure 24, we obtain

the matrix SF* shown in Figure 25. We note that the block SF*s3 s5 is
2

equivalent to equation (5-7); therefore its evaluation will be identical
to equation (5-8). This solution is, of course, largely in functional
form, in that it models the number of paths from an input to an output

in terms of the logical vy j’s. To depict this in a form useful to the
)

systems analyst, we employ the format of a truth table, evaluating each

functional expression in SF¥* for all possible combinations of

83,85

values of the vy j's. 0f course, when a numeric value only appears in
2
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Figure 24

Torea i - | O o o
L I~ ) o o |
) - 0 Q o __ e
t |- o ' 0 o ~
o - c i o o |
{ 0 - 0 0 “_
! V) P~ o Q 1
. ! e [ - o | o 1@
;I 0 - o | o
. oBA -y 0 - o o i ) _ _ _ I
"o _ Q -.-;_.n-----;mi-.-r_!i,i T.@ (I-FA: @m\:?%?@a?_ 6
e AL S EACIE
i 0 I A o = L | _ |
o _ o ! - o {0)A a&:ifhi%\t L
: o bor o I~ 0 i = I..T-IM T e z 4C
o T e [T @, (D *Lioh (B, 9
- b : Sl
o o o 1o PE]on T va | te
0 $on - 0 i - A i S ;.:,iLTI
0 o o ! I- ) 0l 6 Q N. _
—s oy e o _ | |
t 0 1 o &L
_ fo) IR 7N | WAy .Ndm.
6 o | |
: — 0 — -.P...Il o
llluwl S N ..Lw —
g | L 9 |
ii i I




SF.3

3,55

——e - ——

8

Figure 25

() T |8 10

Teno* .0 OTgo+Tsi,2 @7;,10

i Tic 1Ta7 Tﬁ,s | +Toks ©( oo +T; 08T s0)

6 YO s |10
7 T\v/;(o}gvf(—-i)_; volyol v

8 %V,(o) ACINACURAD)) Vi (0)
9 [volvale|ve v

) 3-2 vy ]
2~ Vo~V Ve Vg
} 3= LVt~ Vegr Ve g tVyy ¢” Vs = Do
1
2- Vsiio = Va,10




91.

a cell of the solution area, that indicates a deterministic number of
paths, independent of any conditiomal filtering action. In Figure 26
we display the truth table expansion of the solution shown in Figure 25,
showing the values of each element of DlO for every possible cambina-

tion of values of the logical v. .'s.

i,J

7. Path Determination

We can determine the paths by which an input reaches an output for
a system with filtering in the same way as we did for the macro-model
of Chapter 4, We form the matrix SFP in the same way as SF, except

that:

spf, ; = Vn3(’l/°i)

-2

instead of Vn (-1). We also impose the noa-commutative restriction cn
the operation 3® o Applying this method to the system in Figure 23,

we arrive at the SFP shown in Figure 27, and the SFP*¥ and evaluation
of Dy, shown in Figure 28. 1In Figure 29 we display th. truth table
expansion of D,,, but in a different form than was used in Figure %.
In Figure 29 we expand each element of DlO in a separate table, using
only those vi,j's which affect that element., The result is five tables
instead of one, but each is easier to interpret. Note the further

simplification through the use of "else" columns and "don't care"

entries ( - ).
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CHAPTER 6

INTERNALLY GENERATED DATA

l. Sources of Data

In the models proposed so far, we have considered data as being
information coming from outside the system under consideration, and
we have referred to such dat~ as input items. However, data may also
be generated within a system, It is the purpose of this chapter to
explore this phenomenon and to incorporate it into the systems-matrix

model.

Data which is generated outside the scope of the system being

modelled will be called external data; that which is generated by .ne

system, internal data. Internal data may be of two types:

a. meta-data, data about data, or data about the system;

b. resultant data, data which is formed by operations on other

data,

Some examples may help clarify the use of these terms,

Consider a system set up tc process invoices., Inputs to the system
are data regarding shipmenis to customers, selling process of commodi-
ties, and discounts to various classes f trade., Outputs are invoices
and varicus managemenc reports, All inpuv items are, obviously,
external data, If one of the management reports contains the number
of typing errors per typist, that information is internal meta-data.

If the external data includes the quantity shipped and the unit price
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the invoice (arrived at by

off a coammnditar
ol & commoalzty, Bl 2 1qaeaq L

multiplying the two specified input items) is internal resultant

data.

For our purposes in the model proposed, 81l meta-data may be
treated as input items, since we dc no” require that input be limited

to any one “level"., Internal resuttant dota must be further discussed.

2. TFrocesses for Generating Internal llesultant Data

Two types of internal resultant date processes must be recognized:

a. an additional resultant data process is a process which

generates one or more new items of data from data received
by the process, and transmits both the new items and the
items fram which the resultant data were gsnerated.

b. a replacement resultant data process is a process which

enerates one or more new items of data from datu received
by the process, and transmits the new items but not the items

fram which the resultant data were generated.

Thus, an additional prccess furnishes to same direct connected
ccmponent both the resultant data and the data which generated the
resultant data. It suffices, as a matter of fact, that only enough
of the original data be transmitted to permit the reconstitution of
&ll of the original data by means of an operatioa which is the inverse
of the operation which formed the resultant data. An example might be

a process which receives an "o0l@" inventory balance (OB) and the




g

98.

quantity received into stock 'R); computes the new inventory balance
(NB) ; and transmits any one of the following sets of data items:
{CB,R,NB} ,
{0B,NB} ,

{R,NB} .

A replacement process dues not transmit enough information for
the original data to be reconstituted., In the above example, a
replacement process would transmit NB only., Perhaps a better example
is a process which receives all invoices and transmits only the number

of invoicers and the average dollar amount per invoice.

3. Resultant Data Components in the Model

The problem introduced by the recognition of resultant data is
twoTold, First, we must assure ourselves that if the generating process
is a replacement process, our model automatically "blocks™ the flow
of the date which was used to compute the resultant data, Second,
regardless of the type of generating process, we should, in some way,
indicate that when an item of resultant dafa is received by ancther
component in the system, it carries with it some information about the
data from which it was generated, even though it may not carry that
information in a way which will permit reconstitution of the original
data., We propose to incorporate this phenamenon into our systems-matrix

model by a single mechanism regardless of whether a process is additional

or revlacement,
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Let ¢, beu componant of Cs which is an item of data formed
within the system by & combination of other data elements; i.e., an item
of internal resultant data. We will treat this component as if it had
been produced by a replacement process, for an item of resultant data
produced by an additional process may be depicted as the result of two
processes, one a replacement process, the other a direct comnectivity
process that transmits the original information to the same component
that receives the new data item, This decamposition, incidentally, gives
us the additional flexibility of easily depicting partial additional
processes, by inserting a filtering function on the flow of the original
information, In Figure 30, we depict, as networks, both replacement and

additional processes viewed in this way.

This resultant date component, 2 is an intermediate entity with
respect to the input components from which 1t is generated. However,
from the vievnoint of the components to which SN is directly connected,
it is an input. Since such ambiguity cannot be allowed to persist, we

will classify resultant data as secondary inputs, calling externmally

generated components primary .nputs. Thus, the components called

simply "inputs" in previcus chapters will now be called “primary inputs".
We will assume that a sysiem contains n, items of primary inputs and
n, items of secondary inputs, and that

n, +n, = n3 ’

where, as before, n3 represents the total number of inputs to a system.
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4, Macro-Model with Resultant Data

Our first model incorporating internally generated data will be
a macro-model; i.e., & mcdel without filtering, and, therefore, without
consideration of individual data item flow between components, We
will modify the model of Chapter 4 to accommodate secondary input items.
By extension of previous usage, we use the following additional subset

notation:

- - . _de1sss
§15. primery imputs: C_; = Lcsll s nl}

; . = Ssgs =
816. secondary imputs: C_, = {csl(nl +1) Ss (nl +n) = ng } .

S17. C83 = Csl V) Cs2 .

si8. csl n Co=0.

Note that the above, taken with 81, S2, and S3, imposes on the
indexing of components the following restriction: if ¢ € Csl’
ch € Cs2’ cj € Csb' and ck € CsS’ then:

1€£i<h<j<k<Sn.

In our new model, direct conmectivity is permitted, in addition to

Cl, C2, C3, and Ch, between the following sets:

Direct Connectivity

From To
9. Cs1 Ce2
C10. C82 C52
c1l. Co Cs2




Ll

L3

102,

Statement C11 implies that we can no longer stipulate C5. Instead,
we impoce:

C5a. Direct comnectivity may not exist in such a fashion as to
form a loop or a circuit; that is, no path may include tae
same component more than once,

Note also that S17 may be applied to Cl and C2 to yield:

Direct Connectivity

From To
Cla, Csl Csh
Clb, Cse Csh
Caa, Csl CSS
C2b, Cs2 ) Cs5

The problem involved in depicting the flow of data in a management
information system with internal data generated by a replacement process
is one of blocking paths from primary inmputs to secondary inputs to
outputs, yet in same way indicating that intelligence based upon certain
primary inputs is included in the flow along the path from secondary
inputs to outputs, We elect to use a scheme similar to the SP matrix
of Chapter L, section 9. We will describe a matrix SR, which will
employ a mixed notational scheme; that is, a combination of non-negetive
integers and symbols. An element of the solution area, SR*sl, s5? might
contain the entry:

sri,j = a + Bch'y R
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where:
1sis n,,
(nl+l) <£hs ng,
(n3+nh+1) £jsn,
and where @, B, and ¥ are non-negative integers. This expression may
be interpreted as:
8, c:,L reaches cj in its original form through ¢« paths,

b, ¢, reaches c, through B rpaths.

Ce reaches cj (and, thereby, intelligence about c,
reaches cj) througn Y paths,
As uswal, if o is 0, it may be omitted; if either B or ¥y are 1,

they may be omitted; and if either B or ¥ are O, the entire term

containing ¢, may be anitted. (If all terms are O, an entry of a
single O is indicated.) The Yy arises through application of the
non~commutative multiplication process; the B through the application

of the rule: ch + ch = 2ch.

Since secondary inputs may form paths, an expression such as:
1,5 °hl(°’1 + Blchz L °h3‘°’2 + Bzche"))
may occur. This would be interpreted:

a. ¢y is connected to ch through one path,
1

b, ¢ is connected to c¢, through @, paths, to %, through
hy J 1 2

Bl paths, and to ch3 through one path,




s | et ey

104,

Co ch is connected to cj through Y paths,
2

do. ¢ is connected to c¢, through o, paths, and to ¢
h3 3 e h,

through B » Dpaths,

The system with secondary inputs may be represented by a matrix,
SR, of order (n3+nh) X (n2+nb{+n5) , whose elements are defined as:
Mil, 1; if c; @6 ¢y i3,
~l; if (n3+l) £i=3s (n3+nh),
Sy, .= . P s
i,J -(1/ci); if (n+1) <i=j<ny,

03 otherwise

and:
1sis (n3+n,+),
(nl+1) SjsSn.
Each row of SR is labelled C;3 and each column, Cj’ Thus, all primary
inputs are represented by rows; all outputs by columns; and all secondary
inputs and intermediate entities by both rows and columns. We may

decompose the matrix &SR into blocks:

| i ! "

Mi2, ,3=(nl+l) eeelig J=(n3+1) cee (n3+nu) j=(n3+nu+1) ceoll
5= 1T - ' T T
* SRsl,SZ SRsl,sl& SRsl,: 5
%
i= (nl+l)
= qQ -
SR . , .,Rs(?,s2 I(C) SRsz’su SRSQ,SS
3
i=(n
( 3+l)

SRSh’SQ SRSL}’SLF-I ' SRSh,SS
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where I(C) is a symbol for the diagonal matrix with entries of
l/ci.
Obviously:
M13, Every row and every column of SR will contain at least one
entry of +1l.
Both a partial solution matrix, SR,, and a solution matrix, SR*,

are recognized. Following the development of Chapter L:

r |
M1k ' SRs1,s2 SRs1,sh ' SPxsi,ss |
% — !
SR, = : SRS2’82-I(C) SRsz,su | SR*s2,s5 '
, . : I
; ' | :
i SRSLI»,SQ | SRsh,sl&-I i Z !
L _
— -

!

M15. SRsy, 52 SRs1, sk SR%s1,s5
= - . 1A
SR¥ = 31152’52 I(C) SRse,sh

; SRsh,sQ i SRsh,sh-I I z .
L —1

The interpretation of the two solutions are as follows:

a. SR, displays in SR

%52, 55 the number of paths through which

each secondary input reaches each output; and, in SR, =2
s1,s5
the number of paths through which each primary input reaches

each output in its original form.

b. SR* displays in SR¥ in the previously described mixed

sl,s5’
notational scheme, the number of paths through which primary
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inputs reach each output.
It can be readily seen that SR 1is, in a sense, a hybrid of S
and SP. The algoritim for maninulating S can be applied to SR
to transform it into SRy then the algorithm for manipulating SP can
be applied to SR, to transform it into SR . Thus, we are applying
the path-finding technique of Chapter 4, section 9, to the problem of

identification of primary inputs replaced by secondary inputs.

Figure 31 is a network drawing of a macro-model of a system which
has four primary inputs and two secondary inputs. The matrix correspond-
ing to this network, SR, is shown in Figure 32, The partial solution
matrix, SR,, is shown in Figure 33, and the solution matrix, SR*, in
Figure 34, Note that we have employed the device of indicating secondary
inputs by a bar over the component symbol: Eh; (nl+l) Shs (nl+n2).
This is a convention of convenience, not necessity, since the indexing
of the components is unigue; it simply permits rapid identification of

secondary inputs,.

It is quite obvious that we can emplcy the method of Chapter 4,
section 9, to generate the identity of each path. To do this requires
that we set up a systems-matrix, SRP, identical to SR, except that
wherever a -1 appears in row i of SR, we set:

sTp; 4 = -(l/ci) .

For the system illustrated by the network of Figure 30, Figure 35

depicts SRP; Figure 36, SRP,; ard Figure 37, SRP* together with simplified

equivalent expressions for the solution.
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Figure 32
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Figure 39
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5. Micro-Model with Kesultant Data and Filtering

To depict o system which ccntains both internal resultant data
generation processes and conditional or unconditional systematic
infermation filtering requires a combination of the foregoing techniques
and thnse of Chapter 5. As in Chapter 5, the vehicle for the trznsition
from macro-to-micro-molal will be the relation of micro~direct connectivity.
Unlixe tn2 work in Chapter 5, the range of k will differ between different
classes of components. We 1ist below, the subsets between which the micro-
direct conzeehivity relation is permitted, and the range of k in each
case:

Micrc-Direct Connectivity

From To k
cl2. CSl 052
2 S ks
Cl3o l.csl CSZ# 1 X n:L
cik, Cqy c85
C15. Cs2 CSL
cib. C C N . \
g <k s -
2 sh (ni+l) k S (n,+n,) B,
cl17. Cs? CSB
3
ci8. Coy C.o
1 , <% s
Cig, CL Csh 1 k n3
bmo CS"! CSS
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Pigure 38 is a pictorial representalion of the conceptual network
associated with this model. We have drawn the arcs between nodes
as if they were cables, each containing the indicated number of wires.
In the several cases where two cables are "spliced" to form & third,
the third cable contains & number of wires equal to the sun of the
wires in the two cables joined to form it. Furthermore, each wire in
each cable is labelled with a value according to C12 through C20, so
that each wire is associated with input Clee
Basically, our mndel will follow clcsely the micro-model of
Chapter 5, modified as required to account for the new class of
secondary inputs and the difference in size of the micro-direct
connectivity relations. We will follow the statements of Chapter 5,

modifying them when necessary.

S19. The transmitteuce values, ti,j,k’ may assume the values
described in S7. However, the range of k will vary
&ccording to C1l2 thrcugh C20,

As in Chapter 5, we ccasider a subset of input items as a component,

except that now we confiune the subset to primary inputs; that is, the

set csl’ We call this component c(nl_:_%). The component c(n3+%)

refers to Cse, the subsct of secondary inputs.

Statements T1 through TS, Chapter 5, section 3, hold here. However,

in this case, T. is not defined for i = 0y,
1,4
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S20. The transmittance vector, T, 3
2

S8, except for the size, which will vary esccording to C12

will be as described in

through €20,
§21, The input content of a ccmponent is as in S9, except that

C1l2 through C20 will govern the size of Di5 and, we define:

D(nl+%) = an( 1) ’

and

D =V (1) .
(n3+%) n,
522, The cargc of a micro-direct connectivity relation is as

described in S10, except that the size of Ri is governed
s

]
by C12 through C20,
Statement S11 holds, as do eguations (5-1) through {5-3).
With respect to filtering functions, S12 and S13 hold,

823, S14% holds except that the size of the vector, F 1S the

is3’
same as the size ¢f T. ..
1,J

The matrix model of the system with internal data generating and
filtering processes may be described by a matrix, SR¥, of size

(2 + ) X (l+n,++n5).

M6, vn3(-1); if (n3+l) f£i=3s (nj+nh),

srf.

]

Ti,j'(l/cj) ey i= (n3+%‘) and

(ry+1) < 3 S (n#ny) = ng,

Ti,j ; otherwise,
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and:

M17.

M18 L]

:A19.

n

vhere:

where:

1 <is (n3+nh); (nl+l) £3js<n,

118.

ej is the Jj-th unit vector; i.e., & vector of all

zeros except for the j-th element, which is 1.

| . !

B :r-; = (?3+§) i j=(P3+l)...(n3+nh) : j={n3+n4+1)..,nf

i=(nl+%) SRFSl,82 SRFS]_’SLl. SRFS:L’SS
. 3 . '

i=(ngt3) SRF p 5o71(C) SRF 5 o), SRE s
i=(n3+l) ‘
° ?' ]

’ J SRFsh,s2 ; SRFsh’sh+I(V(-l)) ; RFsh’55
(ngn)) | :
- T i I [

I(v(-1)) is a symbol for a diagonal of vectors,

as in M7, arnd,

I(C) is a symbol for the diagonal matrix with

entries (1/c.), as in Ml2.

V. (-1
a (2

Every row and every cclumn of SRF will contain at least one

entry not eyual to V {0), V (-1), or ~(l/ci) .

—
' ? i
| SRFsl,s2 : SRp;l,sh
! e e e -

I 1

SRF, = , SRFS2 52 I(C) SRFS2 sh
‘ S =1
| SRF SRR, G+ 1(V(-1)) |

i_ sll s2
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M0, SRF SRF SREF¥

sl,s2 51,8l sl1,s5
SRF* = SRFsa,se-I(C) SRFse’ Sk z
SRFsl},s2 SRFsh,sh+I(V(-l)) Z

The interpretation of the partial solution and the solution is as

previously described.

The application of the algorithm for micro-models represented by
SF will reduce SRF to SRF, if we consider the first and second rows
of blocks of SRF to be one row of blocks, to form column vectors of
size n3. At this stage, the first row of SRF, will contain vector
entries of size n,; and the second row, vector entries of size np.

1

We now consider the first row as an n,-row suomatrix, and the second
row as an n,-row submatrix, both with scalar entries, and apply the

algorithm developed for the macro-model, S, to reduce SRF

*s2, 55 to 2,

The result will be SRF%,

The proof of this follows the same arguments used in Chapter U,

section 7.

In Figure 39, we show ths network drawing of a system containing
both internal data generating end filtering processes, The associated
matrices, SRF, SRF,, and SRF are shown in Figures 40, L41, and 42,
respectively. A full evaluation of the results depicted in Figure 42

can be obteined in truth table format as was done in Chapter 5.
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Figure 39

/._,___ .. —_—
// ‘

n, =2 csr = { ¢ el

Ny= 4+ Csz = {‘:J,G!: cs, €}

ng s 6 Csy = {ci‘cl,c",c". ‘s, <g }
ng = 4 csq = {cr.98, ¢y, €10}
ng = 1 Css ° {Cu}

n= 1]

(conle)




s |

R st e
—

61,9 .

163 10

;I' () !l l._]

1., 1‘\/3_3;1 :A 7,5
0,1 : 7:1 |

0 l | 8 o
e ]- -

0,1,0,0 911

e ee e mmmmme— . ,r._._... e}

O, I-Vt," l V-fl”' l

TNy
Lo

Figure 39 (rontd)

o

1,0 '85

HIO 11

- ey o= et sy

! 1 1’\/35,1 1 1 1

— et o tmee ——

Tc',j

l
|
Vs ¢} !

F N T

\/6 (1) '

Ve (1)

-

Vo (D

I
-4
)

1111\/,":11

Ve (1

*'_'."_':.' ==

|
i Té',j -(I/n.,)(ej)

NOTE: Orl non-zere T.'s [isted.




122,

Fi 9Ui‘e 40

JRIeT -— - v -

I | J P | e
LN I @70 «ew> «23 §.> @; 3.\, §.> 2
- ..I:I...a.*l PO " . s —
m :.wéﬁ - VA @M@ A, 3“3§“> §,>_§,> e
(@) \Q?«e MEIN Su\: ! f A @7 10) .> >
.li lllllllll I.!.l»\«» - - 3 O ..l.o.ﬂs.-..lll -
(5N @ 3> § PiEIN 3,\, (1°A ao\, 3,\, s
_ m —_ T...iw. ................. .1.-}:- — = 4Y¢
m u | “ _ @. ” w...., ,.,w J
o Py 6P| T e
! ! “ )
_ ; -,.w ~ - _ e
- g _.T,. L
w] o) SR 9 CH 0, Lo €] B
o - i St S *th-! - u.n*...x.... #I.u- .unr... S
hy 015 (65 | 85 | Ly 9y s> b5 6 mm
_ A T
| ! i I ' ! i




123.

P, 7402)
e e
(03 ’A (DN @A [0 °A@ON @ NN @A @A 2
! L R R e e e e
_ (03 °A @A TN ON@N@OA|ON@R(@N] ©°
—_ ©3A ON@NCINDR| > LON NN ¥
A“e “ — R A SR — —— S
m (©)° ' @K @N@AFIN QN ONDN @A +2
v | ! N _
e = . = "JYS
= | S S e
) oSy Lo l.. . ‘- .
F ._.°>go..¢>~. ? or39] m.«o._._ @@ I “”.. .._.c... to>
v ltu N Mﬂ
LT I SR
@1 €7 ) Lo @@ | T
ol ﬁ.U * 8-> Ly ON h.N .'.N G.N

-

it 3% s e g g ey ans may 1o o




s
.

Figure 41 (conld)

Computation of solutior area of SRF,

i

_V(o; T
I
_T;!’:'"J § i i
- 0] !r-l T Iy
o | |o 1
C O {

+ +! @ 1+
I‘Vq,lla i 1 l"Vsu
1~vs o 1

1 i O | 1
AR S T R A
_ ) _
' 2= v
o

T
Té‘i,'/
Vo (0)
R

124,




%‘ -
l — —— —— oo um——
.;?; [ononanoNeRon] >
?3 @N@NON @ONONEN! ©
) N0 NI NN L 0% 39%5__ >
ON@H A ORON@R *
e = o .w..ljth -wl .‘.: g =
Y oo“o;!wo_o_oﬁ. 2
tolo'2. 1ol s
v ojojoio!=-11'01l "2
3 TTeTeTo ol o e «4MS
T T T |
qu 0 “0 0 _ 0.0 _.:,?%w..._ €2
E» - p IS I B e A
2 A.\\) -D+ A..C?Q\ A cvuoﬁo\h\, 152 ) ss«&)“ m | | " .
[ D268 2202+ 1I(A-T) ¢ T ? _ RO 00 _ L
ﬁ‘th) thu 1." } M ] ~ _m M. T
‘Tooirioraiolny
- r N -u....»- H.H‘............IH...:!.“.......... TR, - -
" ST T
3 "y e *nu 8> > 1t “ou uu_ > > [€2 |
. R R
R T L e SR cud HUNUTRIUIE NIRRT o eakg vl = ommm—




T

126,

A combination of methods previcusly developed leads to a path-
determining mcdel for a system with both internal data generating and
filtering procecses, A matrix, SPRF, is required, identical to SRF,
except that:

sprt‘i,i = Vn3( -l/ci) for (n3+l) $is (n3+nu) .

This model is not further explored herein, since its construction and

use are obvious from the foregoing.

PRy
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CHAPTER 7

SEMANTIC RETATIONS AMCNG PRIMARY DATA

l. Kinowledge Redundancy

It is the prupose of chis chapter to examine the items of data that
constitute the primary inputs to a system fram the standpoint of their
semantic content, Particularly, we are interested in the fact that:

a, an item of data refers to same object, and

b, in a given set of dats items, more than one item may have the

same referend.
When this occurs, there exists a form of redundancy in the system which
may be referred to as "knowledge redundancy”, rather than "data redundancy".
If two items of data each reach a certain system ocutput through one path,
there is no data redundancy., However, should these two items of data
have the same referend, then the system output has received the same
knowledge (although not the same item of data) twice. It is our
objective to incorporate this phencmenon within the framework of the

systexs-matrix and the algoritims developed so far.

2. The Denotation Relaticn

The particular semantic relationshnip treated herein will be called

the denotation relationshin., The following definitions, which follow

[2, Pe lQl],introduce the relationship:

A system is concerned with entities. An entity is an object, a
person, a concept, a thought, an instance, an event, an occurrence, etc.

A data processing system is concerned with one or more classes of entities
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(i.e., emnloyees, customers, products) and with certain selected

properties of these classes of - atities, For example, a system might
be concerned with the class of entities "employees" and the properties

"employee number", "age", "sex", "name", "job number", and "hourly wage

rate”, Each property has assigned to it a set of values. Thus the
value set associated with the property "age" might be the set of
integers from 18 to 65, inclusive, and the value set associated with
the property "sex" might be {"maie™, "female"™ }. As is postulated in
[2, p.l9l}, every property ‘ralue set must include at least two values:
1 (undefined, or not relevant) and ¢ (missing, relevant but not
known). Then, [2, P.192], every member of an entity class has assigned

to it one and only one value from each property value set.

In the models we have been developing, each primary input represents

a property, and associated with each primary input is a property value
set, If U(ci) ,15is n,, is the property value set of property Csy
u( ci) = (uli’ Upss eves uqi)’ then associated with any specific entity,
2, is a specific value of Cyr Ugss 1s4sgq,15is n,. We may now
state:

s2h, 1If, given a specific eatity, £, and given uy. € U(ci)’ we can

determine Uys e U( Cj) by means of some finite procedure

within the system, then we may say that u‘t,‘_.i is denoted by

g If this is true for alil entities, we may say that c

J

is denoted by Ci» O, symboiically, c, * Cyo

3
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Denotation is a binary relation in the set-theoretic sense

[39, PP.23-25], and may be expressed as a set or ordered pairs

(cj,ci) € - .

Denotation has the following properties:
Dl. relflexive, ey ~C,e

Dz, transitive, If cs c;j’ and c‘_j - ) then c; “ &% *

D3. npon-symetric. If ¢y = c 37 then it may or may not be true
that c.*c, .
J i

When the denotation relation exists between cs and ¢ 57 we sy

that there is a semantic relationship between s and c,. We do not

J
mean necessarily that c; and ¢, ars synomymcus, but merely that,

J
directly or indirectly, both items of data point to the same referend.
Ir ¢y and c 3 are synonymcus, tnen th¢ Jenotation relation between
them will be symmetric, which we indicate by writing:

c; d;j = (ci — cj) and (cj .- ci).

As an exaupie, we copcider the following denotation relationps:

{customer account number) ~— {customer name) (7-1)
{salesman name) ~ {customer name) (7-2)
{salesman number) ~~ {salesmap name) (7-3)

By applying D2 (transitivity charactericstic) to the above:
(salesman neme? = {cusiomer account number) (7-4)

(salesman number) = {customer name) (7-5)
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Another application of D2 to (7-3) and (7-4) yields:

(salesman number ) * {customer account number) (7-6)

The significance of this relation can be seen in the following:
Suppose it were necessary for all four of the items of data mentioned
in the example aboyve tc be included in scme report; and that the
information needed to prepare this revort was communicated over a
costly channel, with the cost being proportional t. the number of
characters transmitted. Then, by establishing s proper reference
file at the receiving end of the channel, the desired information
for the report could be obtained if only customer account number
were transmitt:>d; since all other iiems are denoted by this one.

(The customer name has the same power, but we assume that the

customer account number has fewer characters.)

3. _Incorporating Denotution in the Systems-Matrix

The denotation relation on a set of primary inputs, Csl’ may be
depicted by an (nl X nl) matrix, A, such that:
1; if i=3 (oy D1),
ai,j = 1; if cj < 5
0; otherwise . (7-7)

To construct such a matrix, we must make sure that all denotation
relations, both those stated and those derivable from the stated ones
by the transitivity characteristic (D2), are represented by 1's in

the appropriate cells. Such a matrix is called a reachability matrix,

and its construction has been described bty Harary, et.al. [16, pp.115-122],

PR 2




R St v AT

)

LA

131.

We start by forming a matrix according to equation (7-7) from
the given relations. This watrix we call Ao’ and, since it contains
entries of only O or 1, we treat it as a Boolean matrix. We form Al
by multiplying Ao by itself in & Boolean sense. Boolean matrix
multiplication is identical to ordinary matrix multiplication except
for the rule; 1 + 1= 1. Thus, Al will also be & Boolean matrix.
A2 is formed by multiplying Al by Ao’ in a Bcolean sense., In
general:

Ai = A(i-l)@AO; 1= l’ 2, XXX}

where @ indicates Boclean matrix multiplication. Eventually, we reach

a point such that [16, p.121]:

A(I'.H'l) =An@Ao=Ano
Then, An is the reachability matrix of the denotation relation. The
(i,j)-th cell of An will be 1 if ¢ 3 CoYy either directly or by
repeated application of the transitivity characteristic (D2); O,

otherwise.

For the example stated above, let:

c:L = customer account number

c, = custoamer name

¢, = salesman name

3

ch = salesmnan number .

Then, from equation (7-7) and equations (7-1), (7-2) and (7-3):
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Two cells of Al contain 1's not contained in corresponding cells of
- 3 3 4
A ; namely, (al) 3,1 and (al) y,2° The interpretation of these 1's

are equations (7-4) and (7-5), 2bove. Continuing:

!—1100

..;: -
=
o
o

._’-.‘-
[
=
|

[
»
-

-

Here, we have gained one additional 1 in (8'2)!:, 1» which corresponds
2
to equation (7-6) above. Finally:
Ay=h, OA =4y,
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The effect of the denotation relation on the flow of information
in the system can be shown by pre-multiplying the previously defined
solution area of any of the systems-matrices (S*, SP¥, SF*, SPF¥,

13, { SR¥, SRF¥, or SPRF*) by A . This can be readily done by incorporating

An into the systems-matrix as follows:

; Iet S* be one of the matrices §, Sr, SF, SPF, SR, SRF or SPRF.
3 Denote by dotted lines the rows of S* corresponding to primary

inputs and the columns of S' corresponding to outputs:

ovtputs
—"=
(o {,_.._.., .- ,
tnpuls t
|
i
/ | !
S
‘ .
| o
‘ S S
Then, define:
- S'A = An | A Z
: = i
—— e = — =~ = = -
L L R

where the solution area is indicated by heavy lines, Application of
. any of the previously described algorithms will produce the desired

! results,

The effect of adding An to the systems-matrix is as follows:

Suppose that, before An is applied, it is disclosed that an input,

GRS AP

Csy reaches an ocutput cj, througan « paths, and that another input,

Padrols k4 9 omies

Yo byspiiy
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Cpr reaches cJ. , through B paths. Suppose that C T Cye Then,
A~ will contain a 1 in (an) ki * The effect of pre-multiplying
the solution area by An will be to change the indication of the
mmber of paths through which c, reaches ¢y fram B to (o + B).
This can be seen by observing that An is the sum of elementary
permutation matrices, and the effect of pre-multiplying a matrix by

an elementary permutation matrix is to add one row to another,

i, An Alternative Representation

The resulting figures, of the form (a + B), may be confusing to
the analyst. He does not know, without considerable additional analysis,
what portion of a particular nmumber in a cell in the solution area is
due to redundancy of information flow and what portion is due to
knowledge redundancy. Therefore, it might be advantageous tc indicate

the solution in the form:
‘—i
N
)% =
(s*) )i 5+Z‘dici,
i

where B is the number of paths through which Cx reaches ¢ 3 due to

information flow only, anr. @, is the number of paths tarough which

knowledge of the referend of e reaches c,j due to the denotation

relation Cx - ci. The mechanism for dcing this is simply to replace

t .
An by An’ where:
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1; if i=3,

(a"n)i,j = OF if i3 and (an)i,:j =1,

R,

0; otherwise .

by way of illustration, Figure 43 depicts a system with denotation
relations. Considering a macro-model (S) of the system, Figure 4li

shows the matrix SA', and Figure 45, SA'*,
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Fi gure 43

NOTE: Broken ares represent denotation ralations :
Cq = c,
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CHAPTER 8

SUMMARY, CONCLUSIONS, AND RECQMMENDATIONS

l. Summary

The flow of data in a management information system can be depicted
in the form of a matrix, and matrix and scalar arithmetic operations
can be used to transform the original matrix to one which contains
certain defined characteristics or measures of the system, The
matrix which depicts the system takes different forms depending
upon the specific system characteristic or measure to te computed
and the system factors to be included. The computing algorithm is

essentially the same for all cases,

In the foregoing chapters we have used the mcdel to compute two
system characteristics:
a. the number of paths by‘ which each system input reaches
each system output, and,
b. the exact specification of each path by which each system
input reaches each system output.
In addition, it has been shown that systems with more complex structures
may be mozt adequately described by a combinaticn of the above charac-

teristics, and this has been done.

The models used may be categorized into two groups:
a, macro-models: depicting simple connectivity relations among

inputs, intermediate reports, and outputs, and,
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b. micro-models: depicting complex connectivity relations; that
is, the connectivity among all system components with respect
tc each system input.

The use of micro-models permits the systems-matrix model to incorporate
phenomena which had not been considered in earlier models., This thesis
explores.

a. information filtering, conditional and unconditional,

b. internally generated information, and,

c. the semantic relation of denotation among items of data.

More specifically, this thesis has presented the following models:

jodel Chapter Systems Factors Included Computesy

S 4 simple connectivity N

SP L simple conmectivity P

SF 5 complex connectivity, filtering N

SPF 5 complex connectivity, filtering P

SR 6 simple connectivity, internally NP
generated data

SRF 6 complex connectivity, filtering, NP
internally generated data

SPRF 6 complex connectivity, filtering, P
internally generated data

S'A T those of S*', plus semantic denotation see S*

where S! is any of the above models,

1. N means "number of paths",
P means "specification of paths"

NP means “"ccombination of mumber of paths and specification of paths".

S T
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2, Conclusions

Our basic conclusion is that it is feasible and desirable to
establish mathematical models of management information systems

within the framework of matrix aigebra.

In this thesis, we started with a previous model and algorithm,
and progressively expanded the model to include several additional
systems pheaomena, formulating models of increasing scope and power.
Yet this was accomplished with a logical expansion of the ideas upon
which the original model was based. This, we feel, demonstrates that
our approach is feasible. It leads us to believe that further extensions
can be accomplished by the same method of building logically upon the

foundations laid,

That sur approach is desirable was demonstrated in Chapter 2, section
1 and Figures 6 through 10. We feel that the concept of matrix models
of management information systems, a concept first proposed by Lieberman
[26] and adhered to in our work, is the first breakthrough in the attempt
to quantify the analysis and synthesis of management information systems

and to replace intuition by measurement.

3. Suggestions for Further Research

The research reported in this thesis, while useful in itself, is not
terminal, Several additional areas of investigation are proposed in the

following paragraphs. No attempt is muce to be exhaustive,
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In our description of the models we have emphasized that the
conceptual networks associated with the matrix contain no cycles or
loops., This assured us that the matrices would be strictly triangular
matrices, and, thusly, that the summation term in Equation (4-2) was
finite and that the inverse in Equation (4-3) exists. Should the sub-
matrix Ssh,sh represent a network that does contain loops or cycles,
the algorithm will fail. {Note the restricticn of the vrohibition to
that part of the network represented by S sh, sk Thus, in Chapter 7,
the matrix An does contain loops and possibly cycles, but does not

cause the algorithm to fail since it is not part of S_) sh°)
2

It is quite easy to find countless examples of information systems
which do contain cycles. One example might be the case of an inventory
control system, wherein the primery input data included demand, the
secondary input data included re-order point and standard order quantity,
and the outputs included replienishment orders and recalculated values of
re-order points, Replenishment orders are triggered by a comparison cf
available quantity and re-order point, and recalculaticn of the re-order
point is triggered by too small a time interval betwesn the current and
the most recent previocus replenisiment orders, This seems to give rise
to a cycle, since the decision to order at time t is a function of

the re-order point, ard the re-order poinil is a function of t.

In essence, however, this does not constitute a true cycle. There
is a separation in time between the event "place an order™ and the event

"change the re-order pcint". Therefore, it is not immediately obvious

Sarnank b ik 2k

bl 5 )
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that our algorithm will fail if we set up a model reflecting the time gap.

We have not, as yet, fully explored this problem. We think, however,

P
’

that it might be appropriate to consider a system represented by a series
of matrices, each single matrix representing the system at some particular
time., The ccnnectivity from an ocutput to some intermediate entity would
be a relation from an output at time t (represented by matrix S t) to
an intermediate entity at time t', t < t', (represented by mairix st,) .
The conceptual network associated with such a model wculd be a three-
dimensional one, with each node being a cylinder whose longitudinal

axis was parallel to the time axis, Each matrix, S would be

't’
associated with a plane of the network, perpendicular to the time axis
and cutting it t wunits from the origin. Such a model would contain no

loops or cycles in one plane,

The concept of a series of mai:rices in time introduces the possibility
of investigating the dynamic behavior of systems. Suppose we introduce
a change in the structure of an information system. For a while, the
system will go through a transition phase until it reaches a state of
equilibrium in the new structure, A series of systems-matrices,

separated by time, might be a useful technique for studying transients.

Chapter 7 merely introduces the topic of oune semantic relatiorsaip,
denotation., This area is worthy of further research. OCne application

of the concept which the author has used elsewhere is to answer the
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question: "@Given a list of items of data which must appear on a report,
and a list of denotation relations, what is the minimum amount of data
which must be transmitted to the originator of the report?" This
question can be answered, and is a form of the "covering problem" found
in the minimization of Boolean functions, for the simple denotation
relations of Chapter 7. The combinatorial problem gets rapidly out of
hand, however, if more complex denotation relations are permitted; such
as:

e ciE]ck,

where the operator @ may represent an arithmetic operation or a set
operation, In fact, under these conditions, it is no longer necessarily
true that some power of Ao will give all denotation relations arising
through transitivity., Examples of such non-elementary denotation re-

lations, which are qurite cammon-place, are:

{total price) « (unit‘price) X {quantity shipped) ,
( catalog number) (_product number) A {color code) .
Also in Chapter 7 mention was made of a paper by Bosack, et.al. {21,

It is our opiusion that this is a work of major importance, which has
received far less notice from other researchers than is warranted, One
reason for this might be its abstract nature: systems amalysts, by
and large, are not attracted to such approaches, and those who can
appreciate the paper are not usually interected in the still praguatic
area of systems analysis., We believe that further research can be done

to connect the work of Bosack with the methodology of the approach taken
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in this thesis, This would give the systems-matrix model a more fcrmal
basis in abstract algebra, and would give the abstract formalism of

Bosack a method of implementation,

Finally, we feel that much more can be done in the area of
applications of the systems-matrix model, As examples, we cite three
projects currently being pursued by the author:

a, The use of the systems-matrix model to investigate the effect
upon information flow of changes in organizational work assign-
ments.

b. The determination of the inherent delay time in a syste;m, from
receipt of input to issuance of output.

c. The propogation of errors throughout a system,

We feel that this list of further research topics will be increased
in size with experience in the use cof the model., Thus, we view the

model technique proposed in this thesis as an open-ended research area,
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