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The Interaction Cf Finite Amplitude Deflection And
Stretching Waves In Elastic Membranes And Strings.

By D. F. Parker
Department of Theoretical Mechanics,
The University, Nottingham,
and
E. Varley
Center for the Application of Mathematics,
~ehigh University.

SUMMARY,

Disturbances produced by the motion of a driver which is
rigidly bonded to the edge of a plate are used to motivate parameter
expansion techniques which, when applied to the equations of finite
elasticity, generate approximating equations which describe low
frequency deflection and stretching waves travelling along stretched
elastic plates and rods in the limit when bending forces are
negligible compared with membrane forces. The structure of the
boundary layer at the driven edge and shock layers, where the low
frequency or filament approximations are locally invalid, are also
discussed.

The low frequency equations are used to discuss the interaction
between progressing finiite amplitude deflection and stretch waves
in the 1limit when the stretch rate is small compared with the angular
speed of the plate. The disturbance is locally that of a pure
deflection simple wave whose amplitude and frequency are modulated
by slow variations in the stretch. As the stretch increases the
frequency increases while the amplitude decreases. The stretch vave
is also modified by deflection of the plate: the speeds of wavelets
carrying constant values of stretch are always less than their

values in the pure stretch simple wa-re.
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ds Introduction,

This paper is in two parts. In the first part we describe
an expansion procedure which, when applied to the equations of
finite elasticity, generates equations which govern low frequency,
finite amplitude , deflection and stretching disturbances in
elastic plates in the membrane limit when, to a first approximation,
bending forces are negligible compared with membrane forces. The
first term in the expansion givesthe classical membrane, or flexible
string approximation, (see Cristescu (3) and (6), and Craggs (?».

In the second part, these low frequency equations are used to
discuss the interaction between finite amplitude deflection pulses
and stretching waves. Detailed analysis is given for plates and
is directly applicable (see Parker [10]) to stretched rods in the
'flexible string' limit when bending moments and torques are
negligible.

A region is a low frequency region for a deformation if:

(I) the strain rate and angular velocity of the plate at all
particles are (negligibly) small compared with the frequency defined
by the local sound speed C and plate thickness d;

(II) the plate curvature and stretch gradients at all particles
are small compared with at,

In section 2 the expansion procedures are motivated by considering
the disturbances which are produced when one edge of the plate is
rigidly bonded to a driver which deflects and stretches the plate.

It is supposed that the angular velocity and stretch rate at the
edge of the plate are proportional to uDd/C and wsd/C: for time
periodic motions these can be taken as the frequencies defined by
the varistions in direction and magnitude of the applied traction.
The dependent and independent variables are then non-dimensionalised
in such a way that, in terms of these variables, the governing
equations have formal regular asymptotic solutions which are valid
as w=nax{wn,wsl*0. These satisfy the traction free conditions on
the lateral surfaces of the plate, and describe deformations

satisfying conditions I and II. The lowest order approximation
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agrees with the classical filament, or long wave, approximation and
is anelogous to the long gravity wave approximation used in hydraulics.

The filament theory cannot satisfy the bonding condition imposed
at the edge of the plate since this is inconsistent with the Poisson
contraction which occurs in the low frequency region. A boundary
layer (called the first diameter by experimentalists (see Bell [1])
occurs in which conditions II are violated. In section 3.2 wve
introduce boundary layer variables and show how the low frequency
expansion must be modified. To a first order inertia effects are
negligible and the applied tractions and particle velocities are
continuous across the layer.

If the plate is not deflected the low frequency approximation
neglects the lateral inertia of the plate compared with its
longitudinal inertia. In section 3.1 we use the well known pure
stretching simple wave solutions to show how the strain rate and
lateral particle speeds can grow until the low frequency approximation
becomes invalid. A 'shock layer' forms in which both sets of
conditions I and TI are violated: in this layer the lateral and
longitudinal inertias of the plate are comharable.

In section 3.3 we exhibit solutions of the filament equations
which describe pure deflection simple waves; these deflect but do
not stretch the plate. Such progressing, non-distorting waves
cannot form shocks. The second half of the paper, section 4,
emphasises the role played by these waves when the stretch rate is
small compared with the angular speed of the plate. Such deformations
occur when €=ws/wD<< IR

The interaction between a deflection and stretch wave is
illustrated in section L4.1, where discontinuity analysis is used to
determine the variation in the angular velocity of the plate at a
front which separates the interaction region from a pure stretch
precursor wave. If the stretching wave extends (contracts) the

plate as it passes the front, the angular speed increases (decreases).
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In particular, when the plate is completely unloaded the angular
speed tends to zero, although the curvature of the plate increases
without bound until conditions II are violated and bending forces
become important.

In sections L.2 and h.3’motivated by the results of section
L.1 and previous work on pulse propagation by Varley and Cumberbatch
(13) and (14), and Varley and Rogers (15), we present expansion
techniques, which are valid as€—=»0, to des.ribe conditions in an
interaction pulse where the plate is being deflected much mole
rapidly than it is being stretched. No restriction is placed on
the amplitude of the disturbance, and the 'shapes' of the stretch
and deflection profiles are quite arbitrary. Even though the
expansions only describe conditions at a particle over a limited
time, no restriction is placed on the distance the pulse propagates
and the modulation of high frequency deflection pulses by slowly
varying stretching waves is described in detail. The deformation,
at any time, is locally that of a deflection simple wave with
amplitude and frequency modulated by the slow variaiicns in stretch.
Its amplitude increases as the local stretch decreases and becomes
unbounded when the tension is completely released. The stretching
wave is itself affected by the mean values of the deflecting
disturbance. Wavelets carrying constant values of stretch are
alvays slowed relative to their speeds in the pure stretch wave.

Finally, in section 5, we discuss expansion techniques for
deformations in 'shock layers' in which both sets of conditions
I and I1 are violated. In general the speeds of these layers are
not those of thermodynamic shocks: dissipation is negligible and
the deformation is isentropic. The effect of a shock layer on the
low frequency deformation can be obtained by treating the layer as
a shock discontinuity across which conservation laws can be applied
to derive jump conditions. These laws are identical to those defined
by writing the filament equations in appropriate divergence form.
If a shock layer separates two low frequency regions with identical
deformations at the edge of the layer, conditions in the layer are

identical to those in a solitary wave.




(5]

2. General formulation,

Our aim is to construct a model which describes the main
features of the deformations produced in stretched elastic plates
and rods by 'low frequency' deflecting and stretching waves which
are controlled by the presence of traction free boundaries.

Detailed analysis is presented for plates, and the corresponding

results for rods quoted.
The deformation is described in the usual way by explicit

relations

x = x(X,1) (2.1)

- between the cartesian co-crdinates x of a particle at time 1 and

its co-ordinates X in some reference configuration R where the

plate occupies the region xllp' -d<X,<d, and -=<X,<», and is in
equilibrium under uniform hydrostatic pressure®*, uniform temperature,
and uniform density e- We consider adiabatic deformations, which
occur when the power generated by the heat flux or other energy
sources is negligible compared with the rate at which stresses do
work, and restrict our attention to elasti~ materials which are
isotropic and homoger..ous with respect to their states in R. For
such a material the internal energy is a function of the entropy

S and any three independenthvariants of the Cauchy-Green strain

1 tensor

o - PTP' (2.2)

——

where p, the deformation gradient tensor, has components

9X,

i
., = 90X, . 2.
Pjy / ] (2.3)
We con r plane-strain deformations for which
xl(xl,xz,r), x, = xz(xl,xz,T) and x, = X, (2.4)

1 * Tiia lu taken as the ambient pressure. In what follows all

st-e=zs+5 are measured relative to this hydrostatic stress.
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which for 1>0 are isentropic with S = S3. As the three invariants

of G we take

1 2 1 2 2
I = 3(tr.@-1), J = (det.g)%, and K = 2I+J -3[(tr.G) -tr.¢ J: (2.5)

in plane strain deformations K:=O.

The elastic material is specified by its internal energy
oE(I,J,K:S), where 0 is a characteristic constant of the material
with dimensions of stress, (e.g. Young's modulus at ambient strain),

and E is non-dimensional. If we define
w(1,J,S¢) = E(1,J,0:5¢) (2.6)

then, for plane strain isentropic deformations, (see Green and
Adkins (8), p.10kL), the two dimensional Piola-Kirchoff stress

tensor, non-dimensionalised by o, is

P P P -p oW
'I‘ = (le) = (aw/apij) = 11 12 aw/at* 22 21 /aJ, (2.7)
Py Fay P2 Py

where henceforth the subscripts take the values 1,2,
It is convenient to work with a system of first order equations

for T, p and the particle velocities

Bxi/
u, = at. (2.8)
Consequently, to equation (2.7), and the Euler equations

1375% = ¢72 Y575, (2.9)

where C = Yo/p is a characteristic speed defined by the material,

we add the compatibility conditions
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3piJ/ au./ Ip.

Ip.
31t = 1 axJ, and 1J/axk = 1k/axJ (2.10)

vhich, together with suitable initial conditions, imply (2.3)

and (2.8). During the deformation the surfaces of the plate
X, =+d are traction free so that (2.7), (2.9) and (2.10) are to

be solved subject to the conditions

T,, = T,, =0, on X, = +d. (2, 24)

The disturbance in the plate is produced by the forced
motion of its edge Xl=0. For definiteness we take this edge

to be rigidly bonded to a moving plate so that

f p,,~1 =p, =0, onX =0. (2.12)

f This driver transmits a total force per unit breadth to the
plate with varying magnitude F(t) and direction®(t). The
variation of F(T) stretches the plate, and the variation in
(1) deflects it. We suppose that the time variations of F and

& introduce two characteristic frequencies &S and &D so that

e —

BT 2doESF'(&ST), and 8'(71) = @ _6'(w

D DT), (2.13)

vhere F and 8 are bounded functions of their arguments with
piecevise continuous bounded derivatives. In the special case

of time periodic variations in applied force us and mD can be

taken as the frequencies defined by the variations of F and 9.

In order to make the statement 'low frequency wave' precise

we work with non-dimensional independent variables

t = w1, X = C, and Y = X,/d (2.14)




vhere m=max.{as,mD}. As non-dimensional dependent variables

we take T, p and

(vl,vz) = C  (u,, “2)' (2.15)

In terms of these variables conditions (2.7) are unchanged;

(2.9) are replaced by

3T CAJ aT
1 11
12/5y = Ty¢ - /5x) (2.16)
and
3T 3V 3T
22/ 5y = of 2/ 5y 2174y, (2.17)
wvhere
w = 2d/C, (2.18)

and (2.10) are replaced by

) v
pll/3t _ 3V ap21/at _ S

3X = 3X = 0, (2.19)

and

]

3P P
o 22/5x. (2.20)

9P/ op

e B IZ/BX,

21/ 4y =

The parameter w occurring in (2.16)-(2.20) is the ratio of
the maximum frequency of the traction imposed at the edge of the
plate to the characteristic frequency c/d defined by the material
and the stress free boundaries. Alternatively, it is the ratio of

plate thickness to a typical wavelength of the disturbance.
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Here we are interested in low frequency, long wave, disturbances

for which w<<l, More precisely, a region is a low frequency region
if as w+*0 the functions T(X,Y,t:w), p(X,Y,t:w) and v(X,Y,t:w) have
limiting values, satisfying the stress free conditions (2.11). These

functions have bounded derivatives which need nbt be identically zero.

If f denotes the limiting value of any variable f as w+o then

(2.11), (2.16) and (2.17) imply that

T =% = o0 (2.21)
12~ “22 © 7 '

so that, by (2.7), the components of 8 are implicitly related by

the conditions

3 p +p p =0 (2.22)
11 12 22 21
and
Szzaw/al + Sllaw/aJ = 0. (2.23)

(2.19), (2.20), (2.22) and (2.23) then imply that 3B/3Y = 0 so
that

(% Bk (2.24)

"do
"go

Conditions (2.22) and (2.23) imply that in the limit of low frequency
disturbances the families of fibres X = constant, Y = constant'which
are mutually orthogonal in R,remain orthogonal and in dirz2ctions of
principal stretch. Moreover, like the free surfaces Y = *1, any
surface Y = constant is stress free. If (A,u) denote the limiting
principal stretches and (%1,¥2) the principal Piola-Kirchoff stresses

then, in terms of

G(A_ oA :8 ) = W(z{a? + a2),x a :5 ), (2.25)
1 2 1 2 0




A and y are implicitly related by the condition

o
T 32 (A,u:s

) =0
2 0 ?
3\,
vhile
9 3G
T, = = (A,u:8q), = T(1) say,
1

wvhere the dependence of T on S¢ is not stated.

[10]

(2.26)

(2.27)

Relation (2.27),

with u(X) given by (2.26), is exactly the relation between force

per unit undeformed area (engineering stress) and extension for

simple static stretching of the plate with ambient temperature

GDadjusted so that

awW
® = - 055(1,3,0550).

(2.28)
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3.1 Asymptotic expansion for the low frequency region.

In the low frequency region p, T and y admit a formal

asymptotic expansion

N n
p = B(X,t) + ] " p(X,¥,t),
n=1

5 N
T = T(X,8) + ]
n=1

o™ B(x,1,t), (3.1)

and

When (3.1) is inserted, (2.16)-(2.20) imply that

av ap 3V 3p
Vax = W5y = 2/3; e T O (3.2)
and
; 5
aTlZ/ay _ av’/at ) aT"/ax
(3.3)
3%22/ 332/ 3321/
Y = at - ax.

Since the right-hand sides of (3.3) are independent of Y, and since

]
le =T72 =0 on Y: Il)

3~
"

5_3—
1]
o

12- "22° (3.4)
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and

2 ? v 7
3V
1ot = Wax e 20 = 2Yax .o, (3.5)

Equations (3.2) and (3.5), together with (2.7), (2.22) and (2.23),
provide a complete set of equations for the zeroth order variables.
They are the low frequency membrane equations which are usually
derived by postulating (2.21) and assuming p is independent of Y,
(see Craggs (7)). These conditions are more conveniently written if
we introduce as basic dependent variables the angle y between the
fibres Y = constant and the xl-axis, and (v,w) the components of
particle velocity along and normal to these fibres. 1In terms of

these variables, the stretch A, and the tension T(1),

M gy = WV ae - W3V 5y,

T'(2)
(3.7)
My 22 0x - WV oy,
and
T(0)?¥ ax = Mgt $3V/ 5,
(3.8)
W gy = a3V gy

Equations (3.7) and (3.8) are the equations governing the plane
vibrations of an extensible string with T(A) representing the tension
in the string. They also govern the one dimensional motion produced
wvhen an infinite heif-space of incompressible elastic material is

sheared at X=0 by a force which varies in strength and direction with

time (see Chu (2), and Collins (3»: then ) represents the shear strain,

T(A) the shear stress, y the direction of shear, and (v,w) the components

of velocity parallel and normal to the shear direction.

e
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We restrict a“tention to situutions when the plate is in tension
(T>0)'; when T<O bending forces are important. When T>0 equations

{3.7) and (3.8) are totally hyperbolic with characteristic Lagrangian

speeds
;
dx/dt =+ [T'(2)] , = % CS(A) say, (3.9)
and
1
dx/dt = * [T(A)/A]z’ = + CD(X) say. (3.10)

If equations (3.7) and (3.8) are formally linearized about A=)y,

and v=w=¢=0,the pair (3.7), which describes the stretching of the
plate, uncouple from the pair (3.8), which describes its deflection.
(A,v) and (¢,w) then satisfy the linear wave equations with constant
Lagrangian speeds CS(AO) and CD(AO). In particular, the linear
theory predicts that any disturbance entering a uniform region which
is prestrained by a tension T(AO) is generated by two progressing,
undistorted, noninteracting waves: & longitudinal wave composed of
wavelets, each moving with the same Lagrangian speed CS(AO), at which
(A,v) are constant, and a transverse wave with wavelets moving with
the same Lagrangian speed CD(XO) at which (y,w) are constant. 1In

terms of the driving conditions (2.13)

T = T(Ao) + F(ms[t = c;lx]), and y = B(wD[t - c‘lx]), (3.11)

D

where
wg = &s/&, and wy = &D/&. (3.12)

The only known exact solutions to the non-linear equations (3.7)

and (3.8) which describe disturbances moving into an undisturbed

region are the simple wave solutions. These are of two dinstinct
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types. Stretching (longitudinal) simple waves for which (A,v) vary
while (w,v) are constant, so the plate is not deflected;and deflection
(flexural) simple waves for which (y,w) and v vary while A is constant,
so the plate is not stretched. We might suspect that these also
provide a good 'local' description of deformations for which &s/bD>>l
and &S/&D<<l. In sections 3.1 and 3.3 we describe these simple waves
and in section 4 compare these with asymptotic solutions to (3.7) and

(3.8) as ws/mD+O.
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3.2 Stretching simple wave,

The stretching simple wave is governed by the non-linear

equations

- = - ' = 3.13
T'(A)ax/ax av/ g, ax/at 'y =0, ( )
vhich are discussed in detail by Courant and Friedrichs (k).
For such waves (A,v) are constant on wavelets which travel with
constant but distinct Lagrangian speeds. If g(X,t) = constant

is the wavelet which left X = 0 at t = B(»0) then

x = A(B) (3.14)
is arbitrary;
X = Ug(8)(t-8), (3.15)
vhere
ug(8) = cgln), (3.16)
and
ve=ov(x) = o f%s(r)dr, = V(8) say. (3.17)

The roles of these simple waves are well understood. Any
disturbance produced by a driver motion for which 6' = 0 is
generated by a stretching simple wave with A(B) determined from

the condition

). (3.18)

T(xA) = T ) + Flo

B
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If 8' = 0, but only streins satisfying

T'(A) > T/y, so C (a) > c (), (3.19)

D

are produced then, at any time, the disturbed region can be

separated inio two distinct regions? a region neighbouring
X =0 in which V¥,X, v and v may all vary, and preceding this
a simple wave region in which (y,w) are constant while (XA,v)
vary according to (3.14)-(3.17) for some A(B).

In the simple wave region the displacement field is given

by
8
wx /d = A(B)X+V(p)t + IrA'(r)US(r)dr, and x,/d = u(A) Y (3.20)

where B(X,t) is given implicitly by (3.15). In particular the

equations of the free surfaces Y = *+ 1 are given by
x,/a = % u(A). (3.21)

Conditions (3.20) imply that to a first order in the low

frequency region

A v
so that in regions where /at is bounded 2/vl= 0 (w) as w-0.

However, as is well known, (3.1h4) and (3.15) predict that either
all compressive or all expansive wavelets begin to coalesce and
ax/at may become unbounded. In section 5 we show that wavelets
are in fact prevented from coalescing by the formation of a

‘shock layer' in which the low frequency expansion (3.1) is not
valid. In this layer ax/at = 0(1) as w+*0 and the lateral and

longitudinal inertias of the plate are of the same order,.
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In section 4 we Jdiscuss how a 'rapid' long wavelength
deflection disturbance modifies a stretching simple wave of
much lower freguency. Such disturbances are produced at X=0
wvhen F(t) varies slowly compared with 8(t). The front sep-
arating this disturbance and the pure stretch simple wave is
necessarily a characteristic wavelet mov.ng with Lagrangian

speed

c.(r), = Uu,(8) say. (3.23)

Ife(X,t) = constant is any such wavelet moving in a direction
of increasing X then (3.14), (3.15) and (3.23) imply that &=

can be chosen so that

X = x (g)-ax (g),
and (3.24) |
t =t (8)-7t (8),
vhere
X -Ug(t -B) = X - Ut =0, (3.25)

and (to’tl) satisfy the ordinary differential equations

(US—UD)té + Ut —(BUS)' = (Ug-U )t + ult, =0, (3.26)

S0

subject to
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3.3 First diameter effect

In addition to the shock layer region, where the lateral and
longitudinal inertias of the plate are of the same order, the low
frequency expansion is, in general, invalid in some vicinity of
the driven edge X=0. There the imposed conditions are not, in
general, compatible with (2.22) and (2.23). Fcr example the pure
stretch simple wave solutions, given by (3.12)-(3.18), satisfy
the boundary conditions (2.13) with 6' = 0, but produce varying
strain fields which do not satisfy the bonding condition (2.12)
which requires that p22=1 at X=0. In fact a boundary layer in
which X=0(w)} occurs where the stress and strain gradients are
larger than those in the low frequency region by a factor O(w_l).
In this boundary layer, which is called the first diameter by
experimentalists (:ee Bell (1))the deformation depends upon the

precise details of the loading distribution on X=0.

In the boundary layer region the variations of the dependent
variables in the X, and X, directions balance. If we introduce

the boundary layer variable

X a4 1X=X]/d (3.28)

equations (2.16), (2.17) and (2.20) become

aT11/3; + ale/aY = wavl/at,
aT21/37 + aT22/aY = wavz/at (3.29)
and
ap11/aY - aplz/ai = ap21/BY = apzz/ai =0,




4
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where T = T(p) is given by (2.7). Equations (2.19) yield

v < 9P v — & apzl 0
Vg = JP1 . and 2105 = o (3.30)

To the zeroth order inertia effects are negligible and the
only time dependence is introduced by the Loundary conditions

at X=0 and the usual matching conditions (see Van Dyke (13))

wvhich require that as X+

n
wn y(oyYQt)
1

D =2

v -+ %(O,t) +

- n

(3.31)

and

N

n
~ Plo,t) + § w" plo,Y,t).
n=1 -

g

Fquations (3.30) and (3.31) imply that to the zeroth order
y=§(0,t) throughout the layer, while (3.29) imply that the stresses
satisfy the equilibrium equations

aT 37 3 aT

T
11/,7 ¢ 12/5y = 21/ 35 * 22/4y = 0. (3.32)

The boundary layer deforms like a semi-infinite plate rigidly
bonded at X=0 under a load 2doT(A) [cosy, siny] applied at
X==. This static elastic deformation has not been quantitatively

determined. However, because of the divergence form of (3.29) the

total load at time t is transmitted across this layer. Consequently,

this layer does not affect either the velocity or lcad transmitted
to the low frequency region, and conditions (2.13), or equivalent
conditions on the velocity field, can be specified as boundary data

on X=0 for equations (3.7) and (3.8).
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3.4 Deflection simple wave.

The deflection simple wave has not, to our knowledge, been
discussed previously. A does not vary, so the membrane is not
stretched, while ¢, w, and v are constant on wavelets ¥(X,t)=
constant which move with the same Lagrangian speed C_()). Since

v = UB = 0, (3.24) - (3.27) integrate to give

5
U -1 . U -1
_ D/ = - D/ - U.a (3.33)
t = (1- US)B -3, X = UD(l- US)B U,

D

or, eliminatingp 5

Upt - X = (Ug-Up)T. (3.34)
The deflection angle
v = Yla) (3.35)
is arbitrary, while
v + (AT) = jcosy-Y and
(3.36)
v = -qsiny-Y
where q and ¥ are constant Riemann invariants. Conditions (3.35)
imply that to a first order the velocity field is given by
1 IL ;
v, = -(XT)2cosy + gcosy, and v, = -(AT)3siny + gsinY, (3.37)

which produces a displacement field

X

o 2
wx,/d = tqcosY—(XT)%facosV(r)dr, and W( /d - u(r)Y) = tgqsiny

~(x1) ¥/ Fsinv(r)ar. (3.38)

e
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If the simple wave is moving into & urniform region where y=0

then
qQ = (xT)*, and { =0 (3.39)

so that conditions (3.36) become

1

Vg = (XT)L(I—cosw), and v, = —(AT)isinw. (3.40)

Deflection simple waves can occur adjacent to a uniform

region which is prestrained so that C >Cs. They completely define

D
the disturbance in & membrane, or string, which is prcduced by
changing the direction but not the magnitude of the applied

traction. Then F' = 0 and

v(x) = o[( 3y - 1)7]

We now show how the statements (3.33) - (3.40), which are exact
when A is constant, may be modified to provide a good description
of disturbances in which A, q and vy are 'slowly' varying compared

with ¥. Sucn distrubances are produced when BC/QD<<1.

3
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L.1 Modulation of finite amplitude deflection pulses bty slow

stretching waves.

The deformations described in sections 3.2 and 3.4 correspond
to exact solutions of equations (3.7) and (3.8). They are generated
by special motions of the edge X=0. Although the pure stretch waves
are produced quite naturally by simple rectilinear motions of the
drive:, the pure deflection waves are produced only by driving motions
which rotate but do not stretch the membrane at X=0. These edge motions
produce no variation of stretch at other values of X and are somewhat
artificial, If, however, we consider tpose driver motions for which
F(t) varies slowly compared with B(t) (wS/GD<<1) and which produce
progressing disturbances such that the stretch A, at some station
X=X, at time t=ty is varying 'slowly' compared with ¢, it is not
unreatonable to expect that in some interval around (Xo,,to) the
disturbance is 'approximately' described by a simple wave solution
(3.35) and (3.36) with appropriately chr en Riemann invariants A, q
and y. The problem then is to construct a procedure for 'enveloping'
these local simple waves to obtain a global statement for conditions
in a progressing wave in which X, q and y vary slowly compared with .
Of course we cannot expect any one simple procedure to apply for all
F(t) and 6(t) at all (X,t). To illustrate these procedures we
investigate conditions in an interaction pulse which is preceded by

an arbitrary pure stretch simple wave described in section 3.2.

We construct formal asymptotic solutions to (3.7) and (3.8) as
w
S/

€= p * Q which describe how a pure deflection wave is modulated by

slow variations of the stretch A. Even though the solutions are valid
at a given X only for a finite time interval after the passage of the
interaction front a=0 of (3.24), no restriction is imposed on the
distance this pulse propagates. Conditions in the pulse are related
to 8(t) and to conditions in the pure stretch wave which precedes it:
at X=0 the pulse lasts only while X changes by O(e) although 6 can

change by any amount.




The interaction is best described in terms of new dependent and
independent variables. Ac Jdependent slow 'Riemann' variables we take

q, y and

and as our fast variable
¢ = ¥ - v. (4.1)

These are related to v and w as in (3.36), where the slow variables
are Riemann invariants. As independent variables we take character-
istic parameters (a,n) where the a(X,t) = constant and n(X,t) =
constant wavelets propagate with local speed a, or Lagrangian speed
CD’ in directions of increasing and decreasing X. The characteristic
parameters are chosen so that a>0 in the interaction pulse and a<O

in the precursor simple wave region, while n:t on the interaction

front a=0. In terms of the variatbtles q, y, &, y and

2 2
i c.-C
= GY il, and the material function®* sinH(a) = 1 _d]nx = —B (hp)
3af 3In d'na 2 2
c.+C
S D
equations (3.7) and (3.8) are replaced by
9B = Bl 39 _ GsinedX
T QcosecH{cDn cos¢an q51n®an}, (L.3)
99 _ ~ da
T 8251an0$¢an ) (L.4)
e I L
= Rsinfsinge 7 ==, (L.s)
and
?a_?_ D B_Y_ 3 9_9:
ass + (2a qcoso)nn + 51nfan 0, (L4.6)

* This relation is readily established by using (L.1) and (3.9).
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while the definitions of (a,n) imply that

X _ 2t X 3t
i CD T and == = -Cq5 7o (L.7)
If t s, 120 and tp = cheh are regarded as de endent variables then
a Jda n " 3n € P r

they are related by the compatibility conditions

3t, = 3ty, (L.8)
da an

while elimination of X from (4.7) implies that

ata L o[22 4 28t )-
cazs? + 51rﬂi(anta Aies ;) 0. (4.9)

In what foll>ows we take (4.3) - (L.6), (4.8), (4.9) and

tg = Qtp (4.10)

as a complete set of equations for ¢’E’Q’tha’tn and . These are
to be solved for &>0 subject to the condition that the front a=0

borders an arbitrary stretching wave which implies that on a=0

tg - 1 =Y = ¢ = 0, (L.11)

while by (3.17) and (3.36)

q (n) = a(0,n), and ao(n) = a(0,n) (L.12)

vary so that

q) = [1 + cosH(ao)]a;, wvhere % < H < %l (4.13)




(25]

Note that the only material function which occurs in the
complete set of equations (L4L.3) - (L.6) and (L.8) - (L.10) is

2 2
sinH(a). In the important practical case when 2CD/C can be

neglected compared with unity®* we can take H="/zin t:ese
equations which then are identical for all materials. Of course,
even in this limit, the determination of X(2x,n) from (L4L.7), and
the placing of the characteristics in (X,t) space involves the
material function A(a). However, at constant X conditions (L.T)

imply that n varies with a so that

Q

5—(})(= Qla,n). (L.1h)

Accordingly, the variations with t, at constant X, of the variables
in (b.3) - (L.6) and (L.8) - (L.10) can be determined if one point

on the (n,a) curve defined by (L4L.14) is known; this could, for

example, correspond to the arrival time n of the front a=0 at X,
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L.2 Acceleration front.

The expansion procedure used to determine conditions in the
pulse is best motivated by considering conditions at the front
a=0 whose trajectory is given by (3.24) with @=0 and [X,(8),t (8)]
determined by conditions in the precursor wave by (3.25) - (3.27).
At the front the dependent variables in (L.3) - (L.6) and (b4.8) -

(4.10) are continuous, and so, according to (L.3) - (L.6), are

35, 39 ang &X' which are given by (L4.3) - (4.6) and (L.13) as
da’ 3da da

da _ 4 da _ 1 8y _ (
= Qotaan(ao)a;, & Q,sinH(ao)ao, and J © 0 (L.15)

vhere, by (4.9), (4.11) and (4.13), a2, (n)=0(0,n)=t _(0,Nn) varies
so that

8, _
Qoexp [/2f r lsin%H(r)sin%(H(r) + %)dr] = constant, = ¢ say. (L.16)

Nocte that Q,, regarded as a function of a, is proportional to t,,
wh'  *h satisfies (3.26). ¢ is the only dependent variable which may
have a discontinuous first derivative at the front. If (L.6) is
differentiated with respect to a, and the results (4L.15) are used,
then an ordinary differential equation for %%(O,n) = %%(O,n) is
obtained which integrates to give

8y

%%(O,n)exp [f r_lcosz%H(r)dr] = constant, = k say. (L.17)

In the special case when H - o, (4.16) and (L.17) simplify to

give
1
39 ¢
a0, = €, and aoau(O,n) = k. (L.18)
The results (4.16) - (4.18) can be used to compute and compare

3
the values of %%{t,x) and E%(tvx) at the passage of the front. These

are given in terms of ao(n) as
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%% = (290)_l %%(O,n), and %E =%(1+tan%H(ao))aé . (4.19)
which when H ; can be simplified to give

e he_laé and 3% = ag (4.20)

Conditions (4.19) and (4.20) imply that if the stretching wave

extends

increases (decreases), the |%%| increases (decreases).

(contracts)

the plate as it passes the front, so that a,

In particular

I%%I + Q0 as the plate is unloaded (ao*O).

However, since at the front
Ay _ -1 3y _lye-! i
31 -)\(ao)ao T -3k€” A(a_)a_ when H = 7 , (4.21)

the low frequency

theory predicts that as a,*0 the curvature of the

plate become unbounded.

Again this is prevented by the formation of

a layer,

the

'bending layer',

in which the low frequency membrane

approximation is

layer the stretch

invalid and bending forces are important.

In this

varies across the plate and as W*0 the ratio of
1

plate curvature in the layer to plate curvature outside is 0(w™ ).
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L.3 First order solutions,

Conditions (L.19) and (4.20) show that at the front, at times
when (a%)' is bounded, %%/%% can be made arbitrarily large by taking
€/k sufficiently small. Motivated by this result, and by previous
work on finite amplitude pulses by Varley and Cumberbatch (1k), (15),
Varley and Rogers (16), and Seymour and Varley (11), we seek asymptotic
solutions to (4.3) - (L4.6) and (L.8) - (L.10), which satisfy (4.11) -
(L.13) for arbitrary a,(n), which are of the form

% [o}

N N
a-a_(n) = § ¢"a_(a,n), q-q (n) =] cnqn(a,n),
1 1

N N N
y = Z ey (a,n), &=n = X et (a,n), @ = Z &0 (a,n) (L.22)
1 n 1 - 1 n

N n
and ¢ = ¢ (a,n) + ] ¢ ¢n(a,n).
1

These solutions describe deformations in which a varies slowly

compared with Y. This is best seen by noting that at constant X

aa 20 _ (2a, gda)f 28, 20
2afog (2, gde) (3, g2, T

which, together with (L4.3) and (L4.22), implies that %% %% = 0(¢)
as ¢+0, (except, perhaps, at isolated points).

If (4.22) is inserted in (L4L.6) this integrates to give

tan%wo = tan%¢o = A(BO)G(G), (L.24)

where the signal function G(a) is arbitrary, and the amplitude
mocdulation function

a,
exp[—f r_]cosz%ﬂ(r)dr],

A(ao)
(L.25)

-1 n
ao? when H = ».
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Note that the zeroth order approximation (L.24) gives the exact
variation of %%(O,n) for all a,, when K=2G'(0). If now (k4.22) is
inserted in (4.9), and (4.3) and (L.1L) are used, an ordinary
di fferential equation is obtained for the variation of Ql=%%1 on
the a=constant wavelets: this-integrates to give
a
Ql=exp[—f ;2r-1{sintﬂ(r)sin%(H(r)+%J+JQCOSZ%H(r)-Az(r)GZ(G)[l+A2(r)GZ(0)]_l}er

1

= agl[l+a;162(a)] = a, sec2%¢o vhen H - =—. (L.26)

In terms of Q,(n,a), to & first order,

a
e~ (t-n) = fa (n,s)as,

o |

a
-1 =1 2
a_ [a+ao fG (s)ds] when H = &,
(o]

while, according to (L.T),

x(o,n) = . (L.28)

Note that n and X{(0O,n) are related to conditions in the precursor

wave on a=a=0 by (3.2L4) so that

and X(0,n) = X_(8B). (L.29)
The statements (L.24) - (L4.28) provide a first approximation for

the variation of ¢(X,t) in terms of the arbitrary functions ao(n) and

G(a). If (b.2h) is inserted in (3.36) and (3.37), and if it is noted
that to a first approximation y=0, these then provide a first approxi-

mation for (v,w) and <V1’V2)' In the special case when al(n)z0 t!:
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first 'approximation' is an exact solution and describes the pure
deflection waves of section (3.3). Note, however, that if a;(n)ﬁt)
the expansion (L4.22) is only appropriate for a pulse. For &at a

particle X the assumed expansion for a, together with (L.14k) which
an

dal X
conditions over a time interval after the passage of the front in

shows that = 0(e), implies that the expansion only describes
vhich a changes by 0(e). The variation of y in this time interval
is, however, unrestricted. DBecause the expansion (L4.22) only
describes conditions at constant X over a limitecd time it cannot,
in general, be used to relate a (n) and G(a) to the driving con-
ditions (2.13) at X=0. In a future paper Parker, using techniques
analogous to those described in recent work of Whitham (17) and
Luke (9), will discuss high frequency expansion procedures which

allow a finite time variation at constent X.

If the plate is only stretched so that "D/, <1, which corre-
sponds to %<H<w, and so that a:za; is bounded, the expansion (4.22)
is valid for all t in some region behind the front a=0, and (L.2k)-
(L.28) describe how a bending pulse is modulated by the passage of
loading and unloading waves shich vary a,. Condition (L.2L4) implies

that as the plate is loaded (unloaded) at an a=constant wavelet,
which occurs when a increases (decreases), |tan%&| decreases

(increases) while, to a first order, the magnitude of the angular
velocity of the plate at a particle

v
at

-13¢,
(2ch) l;&
(4.30)

c_]aO;[a +6%(a)17%6" (a) when H

m
N':l

increases (decreases). In particular, as the plate is unloaded
(a,»0), (4.24) and (L4.30) predict that ¢->+n and that'%% +0. However,

since in this 1limit the filament theory predicts that 3¢ and the
X

curvature of the plate are unbounded it is locally invalid. A bending

layer forms in which the radius of curvature and thickness of the plate
are c¢f the same order as w-0.
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So far we have considered how a deflection pulse is modulated
by a stretching wave, and have shown that to a first order current
conditions at a wavelet a are determined by conditions at a at any
one previous time, and by current conditions in the stretching wave
at the front a=0. To a first approximatio the deflection also
interacts with and changes the mode of propagation of the stretching
wave. This interaction is illustrated by comparing the Lagrangian
speed, %%'a‘ of wavelets carrying constant values of a with the

Lagrangian—ﬁpeed C. of the B=constant characteristic wavelets: in

S

the precursor wave, and wheneverf)=0 these are equal. For since
ax, ., dn dn
e = o032, -"/‘mg“’- (4.31)

(4.3), (4.13) and (4.22) imply that to a first approximation

o'y . l-2sin2}¢xaniﬂ(l+taniﬂ)-l(sin25¢+étnniﬂl1-tan§ﬂ]-l (4.32)
S atla

= 0 when H = 7, (o40),

= 1 when H = n,

According to (L4.32), if CD/C <1 in the bending pulse,the vavelets

carrying constant values of a are slcvwed relative to the B=constant
-1 dX

D dtlg

the B=constant wavelets and the a=constant wavelets move with the

wavelets though C >1. When CD/CS=1 the a=constant wavelets,

same Lagrangian speed CD'
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L.3 Higher Order approximations

Further terms in the expansions (L.22) can be obtained by
applying a simple iteration procedure to (4.3)-(4.5) and (4.8)-
(4.10). We insert the expressions (4.3) and (4.10) for %% and tgq
into (4.9) and regard this as an ordinary differential equation (I)
for % on the a=constant wavelets with coefficients depending on
g,q,y,¢,tn and their n-derivatives. The nth order approximation
for Q then satisfies the equation obtained by replacing the coeffi-
cients in (I) by their (n-l)th approximations. The n*? order
approximations for a,q,y and tn are obtained by replacing by its
nth order approximation, and its coefficient by its (n-l)th order
approximation, and its coefficient by its (n-l)th order approximation,
in the right hand sides of (4.3)-(4.5) and (L4.8): the resulting
equations are then integrated from the front a=0 along the n=constant
wavelets. Finally, the nth order approximation for ¢ satisfies the
ordinary differential equation obtained by replacing the coefficients
in (4.6) by their (n-l)th approximations. We note, but do not further
discuss, that according to (4.3) this iteration scheme, and the formal

expansions (4.22), must be modified if H*"™ which occurs when Cp*Cs-

As an illustration, which is physically important and also avoids
messy algebra, we apply the iteration scheme when H=% to calculate the
first approximation for the 'slow' variables a,4y and y in the pulse.
These approximations, together with the results already established,
give the first approximations for the time variations of all dependent
variables at a particle X as the pulse passes. In particular, they
give the first approximation to the strain rate aA/3t. We obtain,

to a first approximation,

-1 =1
a=a, + ag ab{a + 3a°lfG'(s)ds},
[+]

(L.33)

e}
n

-1 4 1% 2
a0 + 85 a{a - a5 (G (s)as},
o
and

a
Y= 2€a;§a;]0(s)ds.
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The results (L.3?) indicate that our formal iteration scheme

can only be valid in a puise; that is for |ea4a]|<<l. Note that
whereas, to a rirst approximation, the variation in the fast
variable y at an a=constant wavelet is independent of conditions

at all precurs:r wavelets, in any finite rmplitude disturbance the

slow variables are i1ntluenced bty conaitions at all precursor wave-

lets.




b Shock layer

In section 3.1 we pointed out that according to the low
frequency or long wave theory a stretching simple wave can develop
limit surfaces. which are envelopes of B-wavelets, on which strain
gradients and strain rantes become unbounded. However, shortly
before this occurs the lateral velocities beccme comparable with
the longitudinal velocities so that the underlving assumpticn or
that theory is violated. In analogy with the laminar bore of
hydraulics a 'shock layer' is generated in which the strains and
velocities vary rapidly. This layer is driven forward to seperate
two low frequency regions. By introducing a new expansion procedure
to describe regions of rapidly varying strain, we can obtain the
equatieons governing the structure of such a layer and can, in
general, relate its speed of propagation to the jump in strain
across it.

In a layer where the strains vary rapidly (compared with their
values in the low frequency region) the weighted scales (2.14) are
not appropriate: the right hand sides of (2.16), (2.17) and (2.20)
are not vanishingly small as w+»0. If the shock layer is centred
about the shock trajectory X=S(t) then in terms of the shock layer
variables Y, t and

X = w ' (x-58(t)) (5.1)

equations (2.16), (2.17), (2.19) and (2.20) become

3 3T12 avl
’ =
FX(T1*8° (t)v)) + =5 “3t
. (5.2)
AT v
2 22 2
T +6% (¢t +
PELT,, ¢80 (t)x ) » AL s o
ap
3 . 11
gn R ele,, ) = g
(5.3)
ap

21

%(VZ¢S'(t)p21) = w

-
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and
3 Aap A J
200 & L (5.4)
3 X T3y T 3k 3Y ) ’
In addition to (5.2) - (5.L), the st.esses are related to the

deformation gradients by (2.7) and satisfy the stress free boundary
conditions T,, = T, = 0 on Y = *1. As X+o(-o») the solutions to
(5.2)-(5.4) tend to the solutions of the low frequency equations as

X+S(t) from X>5(t) (<5(t)), see Van Dyke (196L)).

Conditions (9.3), together with the boundary data at X = oo
imply that to the 2zeroth order in the shock layer
aQt = + g = t
v, o+ 8'p gl(t), and v, P, gz( ) (5553
so that at any time v, *+ S'p11 and v, + S'p21 are continuous across

the layer. To this order, (5.5) imply that the strain field satisfies
the compatibility conditons (5.L4) and, from (5.2), the equations

aT aT

2

) a2 . 2 _
3Tt Ty =8 e ) gy = ax(T, 78 e,y ) ¢ T (5.6)

which are identical to the equilibrium equations of finite elasticity

ap ap
with a body force -S'?(SYLL, aXZl)' If the divergence theorem is

applied to (5.6), and if the boundary conditions at the stress free

surfaces Y = +1 and those at X = +® are used, we obtain the result

that throughout the layer

jA[Tll(f,r,t) - s'?pll(i,r,t)]dr SRR (X))
-1
and (S%51)

1
S lr, (X,r,t) - s p, UK, nLERaR =i (1)
-1
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If [VI]’ [vy], ... dernote the differences in values of v ,, Vv,,...
at X=« and X=-o and if it is remembered that these differences are

A

independent of Y, (5.5) and (5.7) imply that
(v,] + 5'0p, 1= lv,]+5s'lp, ] =0, (5.8)

and that

(5.9)

+
]
<
|
1i
o

[1,,1 + s'[v,]

Conditions (5.8) and (5.9) are trivially satisfied, with no
restriction on S', if (9%.6) have solutions which are symmetric about

o~

X=0. Such solutions describe sclitary waves. After the passage of

a solitary wave conditions at a particle return to those which existed
prior to its arrival. Note that if the speed of such a wave is constant,
solutions to (5.4) and (5.6) satisfy (5.2)-(5.4) exactly.

When the passage of a shock layer changes conditions at a
particle, (5.8), (5.9) and (3.6) relate conditions in the low
frequency disturbance which occurs immediately after the passage of
the shock layer to S' and conditions in the low frequency disturbance
which existed immediately before its arrival. The shock layer is a
narrow region in which the low frequency approximation is locally
invalid. The propagation speed, given in terms of the jumps in
physical variables by (5.8) and (5.9), is not that of a thermodynamic
shock; in the layer dissipation forces remain negligible and the
entropy is unchanged.®

If we are not interested in the structure of the shock layer
but only in h-w it affects the deformation in the low frequency

region, we may regard this shock layer as a discontinuity rurface

* The deformation in the shock layer may, however, produce velocity
gradients which are large enough for dissipation to be important.
Then thermodynamic shocks may be formed or, in lhe language of

hydraulics, the laminar bore may degenerate into a breaking bore.
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across which the jump conditions (9.8) and (5.9) hold. Then
(5.9) state that the change in force balances the change in
momentum, while (5.8) state that the position of a particle is
unchanged by the passage of the shock. These Jjump conditions are
identical with those defined by the conseiyvation equations (3.2)
and (3.3) which govern the low frequency dceformation. This result
was anticipated by Whitham (18) in his work on magnetohydrodynamic
wvave:. He also noted that the use of the jump conditions defined
by the conservation laws (3.2) and (3.3) cen only be justified by
either having a model for the shock structure, or using sound
physical arguments. Equations (3.2) and (3.3) can be rewritten in
many alternative ways as conservation laws and these would define
Jump conditions which, in general, would be incorrect. If, for
example, t and the Eulerian co-ordinate x of a particle are used as
independent variables and the equations are written in the usual
form as conservation laws the associated Jump conditions are
incorrect. (In hydraulics the hydraulic jump conditions are
derived from sound physical arguments and not from the conser-
vation-type differential equations governing the flow, (see Stoker
(12)).

There are two possible ways of satisfying the Jjump conditions
(5.8) and (5.9). The longitudinal shock, across which (y,w) are

continuous but (X,v) are discontinuous, for which

s' = %%% o (5.10)

Such a shock can be generated from an initially shockless pure
stretch simple wave. The transverse shock, across which X is
continuous but (v,w,y) are discontinuous, which moves with

characteristic speed

5'=l%- (5.11)
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This shock cannot be generated from an initially shockless pure

bending wave and must be regarded ac the mathematical limit of a

ncn-distorting simple wave.
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The low frequency equations are used to discuss the interaction
between progressing finite amplitude deflection and stretch waves in
the limit when the stretch rate is small compared with the angular speed
of the plate. The disturbance is locally that of a pure deflection
simple wave whose amplitude and freguency are modulated by slow varia-
tions in the stretch. As the stretch increases the frequency increases
while the amplitude decreases. The stretch wave is also modified by de-
flection of the plate: the speeds of wavelets carrying constant values
of stretch are always less than their values in the pure stretch simple

wave.
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