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The   Interaction   Cf   Finite   Amplitude   Deflection   And 

Stretching   Waves   In   Elastic   Membranes   And   Strings. 

By   D.    F.   Parker 

Department   of   Theoretical  Mechanics^ 
The   University,   Nottingham. 

and 

E.    Varley 

Center for the Application of Mathematics^ 
i'^ehigh University, 

SUMMARY. 

Disturbances   produced  by   the   motion   of  a   driver  which   is 

rigidly   bonded   to the   edge   of   a  plate   are   used  to   motivate  parameter 

expansion   techniques   which,   when   applied  to  the   equations   of   finite 

elasticity,   generate   approximating   equations   which   describe   low 

frequency   deflection   and  stretching  waves   travelling   along  stretched 

elastic   plates   and  rods   in   the   limit  when  bending   forces   are 

negligible   compared with   membrane   forces.     The   structure   of  the 

boundary   layer   at   the   driven   edge   and  shock   layers,   where  the   low 

frequency   or   filament   approximations   are   locally   invalid,   are   also 

discussed. 

The   low   frequency  equations   are   used  to   discuss   the   interaction 

between   progressing   fini'-e   amplitude   deflection   and   stretch   waves 

in  the   limit   when  the   stretch   rate   is   small   compared with   the   angular 

speed   of  the   plate.     The   disturbance   is   locally   that   of   a pure 

deflection   simple  wave  whose   amplitude   and   frequency   are   modulated 

by   slow   variations   in  the   stretch.      As   the  stretch   increases   the 

frequency   increases  while   the   amplitude   decreases.      The   stretch wave 

is   also   modified by   deflection   of  the  plate:      the   speeds   of wavelets 

carrying   constant   values   of  stretch   are   always   less   than   their 

values   in   the   pure   stretch   simple   wa-,e. 
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1. Introduction. 

This paper is ~n two parts. In the f·rst part we describe 

an expansion procedure which, when applied to the equations of 

finite elasticity, generates equati ns which govern low frequency, 

finite amplitude , deflection and stretching disturbances in 

elastic plates in the membrane limit when, to a first approximation, 

bending forces are negligible compared with membrane forces. The 

first term in thP. expansion givesthe classical membrane, or flexible 

string approximatio~, (see Cristescu(~) and (~), and Craggs (!~· 

In the second part, these low frequency equations are used to 

discuss the interaction between f i n i te amplitude deflection p ulses 

and stretching waves. Detailed analysis is given for plates and 

is directly applicable (see Parker [10]) to stretched rods tn the 

'flexible string' limit whe n bending moments and torques are 

negligible. 

A region is a low freque n cy region for a deformation if: 

(I) the strain rate and angular vel oc ity of the plate at all 

particles are negligibly) small compared with the frequency defined 

by the local ~oun d speed C and plate thickness d; 

(II) the plate curvature and stretch gradients at all particles 
-1 are small compared with d . 

In secti on 2 the expansion procedureo are motivated by considering 

the disturbances which are produced when one edge of the plate is 

rigid y bonded to a driver which deflects and stretches the plate. 

It i s supposed that the angular velocity and stretch rate at the 

edge of the plate are proportional to wDd/C and w5 d/C: for tiae 

periodic motions these c an be taken as the frequencies defined b7 

the variations in direction and magnitude of the applied traction. 

The dependent and independent variables are then non-dimensionali&ed 

in &uch a way that, in terms of these variables, the governing 

equations have formal regular asymptotic solutions which are valid 

as w=max{wD,w5 }•0. These satisfy the traction free conditions on 

the lateral surfaces of the plate, and describe deformations 

satisfying conditions I and II. The lowest order approximation 
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agrees   with   the   classical   filament,   or   long  wave,   approximation   and 

is   anp.logous   to  the   long   gravity  wave   approximation   used  in  hydraulics 

The   filament   theory   cannot   satisfy  the   bonding   condition   imposed 

at   the   edge   of the  plate   since  this   is   inconsistent   with   the  Poisson 

contraction   which   occurs   in   the   low   frequency   region.     A boundary 

layer   (called the   first   diameter  by   experimentalists   (see   Bell   [l]) 

occurs   in   which   conditions   II   are   violated.      In   section   3.2  we 

introduce   boundary   layer   variables   and  show   how   the   low   frequency 

expansion   must  be   modified.      To   a   first   order   inertia effects   are 

negligible   and the   applied  tractions   and particle   velocities   are 

continuous   across   the   layer. 

If   the   plate   is   not   deflected the   low   frequency   approximation 

neglects   the   lateral   inertia   of  the  plate   compared with   its 

longitudinal   inertia.      In   section   3.1  we   use   the  well  known   pure 

stretching   simple  wave   solutions   to  show  how   the   strain   rate   and 

lateral   particle   speeds   can   grow   until   the   low   frequency   approximation 

becomes   invalid.      A   'shock   layer*   forms   in  which  both   sets   of 

conditions   I   and   II   are   violated:   in   this   layer  the   lateral   and 

longitudinal   inertias   of  the   plate   are   comparable. 

In   section   3.3 we   exhibit   solutions   of the   filament   equations 

which   describe   pure   deflection   simple  waves;   these   deflect  but   do 

not   stretch   the   plate.      Such   progressing,   non-distorting waves 

cannot   form   shocks.      The   second  half  of  the   paper,   section   U, 

emphasises   the   role   played  by   these  waves   when   the   stretch   rate   is 

small   compared with   the   angular  speed  of  the   plate.      Such   deformations 

occur  when   e = u)   /w   <<   1. 
D     D 

The   interaction   between   a   deflection   and   stretch   wave   is 

illustrated   in   section   U.l,   where   discontinuity   analysis   is   used   to 

determine   the   variation   in   the   angular   velocity   of   the   plate   at   a 

front   which   separates   the   interaction   region   from   a  pure   stretch 

precursor  wave.      If the   stretching wave   extends   (contracts)   the 

plate   as   it   passes   the   front,   the   angular   speed   increases   (decreases). 
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In   particular,   when   the   plate   is   completely   unloaded  the   angular 

speed  tends   to   zero,   although   the   curvature   of  the   plate   increases 

without   bound   until   conditions   II   are   violated   and  bending   forces 

become   important. 

In   sections   U.2   and   1+. 3   moti vated  by   the   results   of   section 

U.l   and  previous   work   on   pulse   propagation  by   Varley   and   Cumberbatch 

(13)   and   (lU),   and  Varley   and   Rogers    (15),   we   present   expansion 

techniques,   which   are   valid  as£-yO,   to   des:ribe   conditions   in   an 

interaction   pulse   where   the   plate   is   being   deflected   much   moie 

rapidly   than   it   is   being   stretched.      No   restric+ion   is   placed   on 

the   amplitude   of  the   disturbance,   and  the   'shapes'    of   the   stretch 

end  deflection   profiles   are   quite   arbitrary.      Even   though   the 

expansions   only   describe   conditions   at   a  particle   over   a   limited 

time,   no   restriction   is   placed   on   the   distance   the   pulse   propagates 

and  the   modulation   of high   frequency   deflection  pulses   by   slowly 

varying  stretching   waves   is   described   in   detail.      The   deformation, 

at   any   time,   is   locally   that   of   a   deflection   simple   wave   with 

amplitude   and   frequency   modulated  by   the   slow  variaLicrs   in   stretch. 

Its   amplitude   increases   as   the   local   stretch   decreases   and  becomes 

unbounded   when   the   tension   is   completely   released.      The   stretching 

wave   is   itself   affected  by   the   mean   values   of  the   deflecting 

disturbance.      Wavelets   carrying   constant   values   of   stretch   are 

always   slowed   relative   to  their   speeds   in  the   pure   stretch   wave. 

Finally,    in   section   5,   we   discuss   expansion   techniques    for 

deformations   in   'shock   layers'    in   which   both   sets   of   conditions 

I   and   II   are   violated.      In   general   the   speeds   of  these   layers   are 

not   those   of  thermodynamic   shocks:      dissipation   is   negligible   and 

the   deformation   is   isentropic.      The   effect   of   a   shock   layer   on   the 

low   frequency   deformation   can   be   obtained  by   treating   the   layer   as 

a  shock   discontinuity   across   which   conservation   laws   can   be   applied 

to   derive   Jump   conditions.      These   laws   are   identical   to   those   defined 

by  writing   the   filament   equations   in   appropriate   divergence   form. 

If   a  shock   layer   separates   two   low   frequency   regions   with   identical 

deformations   at   the   edge   of  the   layer,    conditions   in   the   layer  are 

identical   to   those   in   a  solitary   wave. 
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2.   General   formulation. 

Our   aim   is   to   construct   a  model   which   describes   the   main 

features   of  the   deformations   produced   in   stretched  elastic   plates 

and   rods   by   'low   frequency'    deflecting   and   stretching  waves   which 

are   controlled  by   the   presence   of  traction   free   boundaries. 

Detailed   analysis   is   presented   for   plates,   and  the   corresponding 

results   for   rods   quoted. 

The   deformation   is   described   in   the   usual  way  by  explicit 

relations 

=   X(X,T) (2.1) 

between   the   cartesian   co-ordinates   jc   of   a   particle   at   time   T   and 

its   co-ordinates   X   in   some   reference   configuration   R  where   the 

plate   occupies   the   region   ^,^0,   -dOC.^d,   and   -»<X3<",   and   is    in 

equilibrium   under   uniform  hydrostatic   pressure*,   uniform  temperature, 

and   uniform  density p.      We   consider   adiabatic   deformations,   which 

occur   when   the   power   generated  by   the   heat   flux   or   other   energy 

sources   is   negligible   compared with   the   rate   at  which   stresses   do 

work,   and   restrict   our   attention   to   elastic   materials   which   are 

Isotropie   <ind  homogei.^ous   with   respect   to   their   states   in   R.      For 

such   a  material   the   internal   energy   is   a   function   of  the   entropy 

S   and   any   three   in dependenttwari ant s   of   the   Cauchy-Green   strain 

tensor 

G    =    p   p, (2.2) 

where   p,   the   deformation   gradient   tensor,   has   components 

3x. 

'ij 
1/3V (2.3) 

We   con r   plane-strain   deformations   for   which 

XJUJ.X^T),     x2   =   x2{Xl,X2tr)   and  x3  =   X3,      (2.10 

•   TV I •    I»   '.aken   as   the   ambient   pressure.      In   what   follows   all 

st-ess^s   are   measured   relative  to  this   hydrostatic   stress. 

■ i^^M^^B 
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which   for   T>0   are   isentropic   with   S   =   SQ-     AS   the   three   invariants 

of  G   we   take 

I   =  J(tr.G-l),   J  =   (det.G)J,   and  K  =   2I+J  -|[(tr.G)   -tr.Q   ]:   (2,5) 

in   plane   strain   deformations   K=0. 

The   elastic   material   is   specified by   its   internal   energy 

oE(I,J,K:S) ,   where   a   is   a  characteristic   constant   of  the   material 

with   dimensions   of  stress,   (e.g.    Young's   modulus   at   ambient   strain), 

and   E   is   non-dimensional.      If  we   define 

W(l,J,So)   =   E(l,J,O:S0) (2.6) 

then,   for   plane   strain   isentropic   deformations,   (see   Green   and 

Adkins    (8),   p.104),   the   two   dimensional   Piola-Kirchoff   stress 

tensor,   non-dimensionalised  by   o,   is 

T   = 3W =    (TJ   =    (-/-) (2.7) 

where   henceforth   the   subscripts   take   the   values   1,2. 

It   is   convenient   to   work   with   a   system  of   first   order  equations 

for   T,   p   and   the   particle   velocities 

3x 
u.    = 

i 
i/ 

3T (2.8) 

Consequently,    to   equation   (2.7),   and   the   Euler   equations 

9T. 
iJ/3X      =   C"2    3ui/3T, 

J 
(2.9) 

where   C   =   /o/P  is   a   characteristic   speed   defined  by   the   material, 

we   add   the   compatibility   conditions 



3p 
ij/ 3T    = 

aUi/ 3pi1/ dpik/ ^äX.   and J/3XU   =        ^^X. 

[7] 

(2.10) 

vhich,   together  with   suitable   initial   conditions,   imply   (2.3) 

and   (2.8).      During   the   deformation   the   surfaces   of the   plate 

X  «♦d   are   traction   free  so  that   (2.7),    (2.9)   and   (2.10)   are   to 

be   solved  subject   to  the   conditions 

T        =   T 22 12 0,      on   X2   =   +d, (2.11) 

The   disturbance   in   the   plate   is   produced  by   the   forced 

m   of   its   edge   X  =0.      For   definiteness   we  1 B        1 
to be   rigidly  bonded  to  a moving  plate   so   that 

motion   of   its   edge   X  =0.      For   definiteness   we  take  this   edge 

p      -l=p       =0,      onX     =0. 
^22 12 1 

(2.12) 

This   driver  transmits   a  total   force   per   unit   breadth   to   the 

plate   with   varying  magnitude  F(T)   an-d   di rection e( T ).      The 

variation   of  F(T)   stretches   the   plate,   and  the   variation   in 

6(1)   deflects    it.      We   suppose   that   the   time   variations   of   ?   and 

6   introduce   two   characteristic   frequencies    UQ   and  co^  so   that 

FMT)   =   2dousF, (igt),     and      ^'(T)    =   W^'^T^ (2.13) 

where   F   and   6   are   bounded  functions   of  their  arguments   with 

piecewise   continuous   bounded  derivatives.      In  the   special   case 

of time   periodic   variations   in   applied   force  a^   and  ü^   can  be 

taken   ^s   the   frequencies   defined   by   the   variations   of   F   and   6. 

In   order   to   make   the   statement    'low   frequency   wave'    precise 

we  work   with   non-dimensional   independent   variables 

t   =   it,      X   = 
üX / C,     and     Y   =   X   /d (2.110 
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whe: re     (I)=max. {iLp, ,u)   } .      As   non-dimensional   dependent   variables 

we   take   T,   p   and 

_ l 
(Vj,v2)   =   C"    (uj,   u2) (2.15) 

In   terms   of  these   variables   conditions   (2.7)   are   unchanged; 

(2.9)    are   replaced by 

3T 9V 3T, 
12 " v 1 / "11/        \ (2.16) 

and 

""/» - J^'at 
3T 

21/ ax). (2.17) 

where 

ü)   =   üd/C, 
(2.18) 

and   (2.10)   are   replaced  by 

3v 3V. äp"/3t."./3X=
3Pa./,t-

a-2/3x = o. (2.19) 

and 

,p'>/9v = „3P-'3x.    "-'» 
3P22/ u 3 X, (2.20) 

The   parameter  ui   occurring   in   ( 2 . l6 )-( 2 . 20 )   is   the   ratio   of 

the   maximum   frequency   of   the   traction   imposed   at   the   edge   of  the 
ristic   frequency   C/d   defined  by   the   material 

Alternatively,   it   is   the   ratio   of 
plate to the characte 

nd the stress free t 
ilate   thickness   to  a   typical   wavelength   of   the   disturbance 

and  the   stress   free  boundaries 
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Here   we   are   interested   in   low   frequency,   long  wave,   disturbances 

for  which   U)<<1.      More   precisely,   a   region   is   a   low   frequency   region 

if   as   üJ-^O   the   functions   T(X,Y,t:u),   p(X,Y,t:ü))   and  v(X,Y,t:ü))   have 

limiting  values,   satisfying  the   stress   free   conditions   (2.11).      These 

functions   have   bounded   derivatives   which  need  nbt   be   identically   zero, 
 0  

If f  denotes the limiting value of any variable f as ü)-»-O then 

(2.11), (2.16) and (2.1?) imply that 

o 
T. 12 

o 
T. 22 0, (2.21) 

so   that,   by   (2.7),   the   components   of  p   are   implicitly   related  by 

the   conditions 

00 00 
P     p        +  P     P 

1112 22    2 1 
=   0 (2.22) 

and 

0      3W/   _ o 
p 31   +   p 

22 11 

3W/ 
3J   =   0 (2.23) 

(2.19),   (2.20),    (2.22)   and   (2.23)   then   imply   that   3p/3Y   =   0   so 

that 

p   =   p(X,t ) . (2.210 

Conditions    (2.22)   and   (2.23)   imply   that   in   the   limit   of   low   frequency 

disturbances   the   families   of   fibres   X   =   constant,   Y   =   constant   which 

are   mutually   orthogonal   in   R   remain   orthogonal   and   in   dir3ctions   of 

principal   stretch.      Moreover,   like   the   free   surfaces   Y   =   ±1,   any 

surface   Y   =   constant   is   stress   free.      If   (X,u)   denote   the   limiting 
o       o 

principal   stretches   and   (T   ,T   )   the   principal   Piola-Kirchoff   stresses 
1      2 

then,    in   terms   of 

GU    ,X    :S    )   =   W(i(x2   +   X2),A   A    :S    ), 
1    2 

(2.25) 

«M 
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X and u are implicitly related by the condition 

3G T  = ™    (X.p.-Sj = 0, 
ax 

(2.26) 

while 

Tj = __ (x ,VJ : S0 ) , 
3XJ 

T(X ) s ay, (2.27) 

where the dependence of T on S0 is not stated.  Relation (2.27)» 

with u(X) given by (2.26), is exactly the relation between force 

per unit undeformed area (engineering stress) and extension for 

simple static stretching of the plate with ambient temperature 

(fl) adjusted so that 

®= - o||(l.J.0;S0) (2.28) 
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3.1 Asymptotic expansion for the low frequency region. 

In the low frequency region p, T and v admit a formal 

asymptotic expansion 

N    n 
p = |(X.t) *   I   u     p(X,Y,t), 

n«! 

T = T(X,t) + J u)n T(x,Y,t), 
n=l 

(3.1) 

and 

N n n. 
v = v(X,t) + J u  v(X,Y,t) 

n=l 

When   (3.1)    is   inserted,   (2.16)-(2.20 )   imply   that 

o o o 
3V1/ 3P11/ 3V2/ 'ax -    'at =   'ax 

ap 
21/ at = o,    (3.2) 

and 

31 a? 
o 

aT, 
12/aY =  ^at -  11/ ax 

aT 
c 

av 
o 

aT. 
22/aY =  2/at -  21/ ax, 

(3.3) 

Since   the   right-hand  sides   of   (3.3)   are   independent   of   Y,   and  since 
i t 
T       = T       = 0   on    YT  f | 

12 ''I •* 'l 

$        H T^    =   0, 
12 22 ' 

(3.U) 
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^ 
1/ at - n/ 

0 
3V 

3X   = 2/ 
3t   - 

o 
T, 

V 8X   =   0, (3.5) 

Equationss   (3.2)   and   (3.5),   together  with   (2.7),   (2.22)   and   (2.23), 

provide   a  complete   set   of  equations   for  the   zeroth   order   variables. 

They   are   the   low   frequency   membrane   equations   which   are   usually 

derived  by  postulating   (2.21)   and  assuming  p   is   independent   of  Y, 

(see   Craggs   (T)).      These   conditions   are   more   conveniently  written   if 

we   introduce   as   basic   dependent   variables   the   angle   ty between   the 

fibres   Y  =   constant   and  the   x  -axis,   and   (v,w)   the   components   of 

particle   velocity   along   and  normal  to  these   fibres.      In   terms   of 

these   variables,   the   stretch   X,   and  the   tension   T(X), 

T.(X)3X/
3X = 8v/3t - w^at. 

3X/
3t   =3v/

3X-wa^X, 

(3.7) 

and 

T(X)^/3X   =   3w/
3t   +   v3^t. 

x^at = 3w/ax + v^ax. 

(3.8) 

Equations   (3.7)   and   (3.8)   are   the   equations   governing  the   plane 

vibrations   of   an   extensible   string with   T(x)   representing  the   tension 

in   the   string.      They   also   govern   the   one   dimensional  motion   produced 

when   an   infinite   hp.lf-space   of   incompressible   elastic  material   is 

sheared   at   X=0   by   a   force   which   varies   in   strength   and   direction   with 

time   (see   Chu   (2),   and    Collins   (3)):      then   X   represents   the   shear   strain. 

T(x)   the   shear   stress,   iji   the   direction   of   shear,   and   (v,w)   the   components 

of   velocity   parallel   and  normal   to   the   shear   direction. 
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We   restrict   attention   to   situations   when   the   plate   is   in   tension 

(T>0)';   when   T<0   bending   forces   are   important.      When   T>0   equations 

(3.7)   and   (3.8)   are   totally   hyperbolic   with   characteristic   Lagrangian 

speeds 

dX/ dt 

i 
i   [T' (X)]    ,   =   ±   CS(X)   say. (3.9) 

and 

dX/dt   =   t    [T(X)/X]*.   =   t cD(x) say (3.10) 

If   equations    (3.7)   and   (3.8)   are   formally   linearized   about   ^-^Q. 

and   v=w=^=0   the   pair   (3.7),   which   describes   the   stretching   of  the 

plate,   uncouple   from  the   pair   (3.8),   which   describes   its   deflection. 

(X,v)   and   (i^w)   then   satisfy   the   linear  wave   equations   with   constant 

Lagrangian   speeds   C   (X    )   and   C   (X    ).      In   particular,   the   linear 

theory   predicts   that   any   disturbance   entering   a  uniform   region  which 

is   prestrained  by   a  tension   T(X    )   is   generated  by   two  progressing, 

undistorted,   noninteracting  waves:      a   longitudinal   wave   composed   of 

wavelets,   each   moving   with   the   same   Lagrangian   speed   C   (X    ),   at  whicl 

(Ajv)   are   constant,   and   a   transverse  wave   with   wavelets   moving  with 

the   same   Lagrangian   speed   C   (X    )   at   wh; 

terms   of  the   driving   conditions   (2.13) 

the   same   Lagrangian   speed   C   (X    )   at   which   (^,w)   are   constant.      In 

T   =   T(xol   +   FCu)s[t   -   C^X]),   and   ij;   =   9 UD [ t   -   C^X]), (3.11) 

whe re 

Wg   =   Wg/w,   and   ID     =   i   /w. (3.12) 

The   only   known   exact   solutions   to   the   non-linear   equations   (3.7) 

and   (3.8)   which   describe   disturbances   moving   into   an   undisturbed 

region   are   the   simple   wave   solutions.      These   are   of  two   dinstinct 
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types.  Stretching (longitudinal) simple waves for which (x,v) vary 

while (tj/^v) are constant, so the plate is not de flecte d* and deflection 

(flexural) simple waves for which (ij;,w) and v vary while \   is constant, 

so the plate is not stretched.  We might suspect that these also 

provide a good 'local' description of deformations for which w„/i >>1 

and d) /w <<1.  In sections 3.1 and 3.3 we describe these simple waves 

an d   In   section   U   compare   these   with   asymptotic   solutions   to   (3.7)   and 

(3.8)   as   Wg/oo^O 
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3. 2   Stretching   simple   vave. 

The   stretching   simple   wave   is   governed  by   the   non-linear 

equations 

T'(X r    '3X 
3X/.y   -   3v/.+   =   3X/,+   -   ^ \Y   =   0. at at ax (3.13) 

which are discussed in detail by Courant and Friedrichs (}*) • 

For such waves (A,v) are constant on wavelets which travel with 

constant but distinct Lagrangian speeds.  If ß(X,t) = constant 

is the wavelet which left X = 0 at t = ß(>o) then 

A(ß) (3.1U) 

is   arbitrary; 

X = us(e)(t-e), (3.15) 

where 

Us(ß)   =   CS(A), (3.16) 

and 

'(A)   =   _ / Cs(r)dr, V(ß)   say (3.17) 

The roles of these simple waves are well understood.  Any 

disturbance produced by a driver motion for which 6* = 0 is 

generated by a stretching simple wave with A(ß) determined from 

the condition 

TU) = T('. ) + F(a)qß ) 
0 ü 

(3.18) 
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If   6'    =   0,   but   only   strains   satisfying 

T' (X)   >   T/x,      so   C   (x)   >   C   (x) . (3.19) 

are   produced   then ,   at   any   time,   the   disturbed   region   can   be 

separated   into   two   distinct   regions!      a   region   neighbouring 

X  =   0   in   which   ^,* ,   v   and  w   may   all   vary,   and  preceding   this 

a   simple   wave   region   in   which   (i^.w)   are   constant   while   (X,v) 

vary   according   to   (3.1^)-(3.IT)   for   some   A(ß). 

In   the   simple   wave   region   the   displacement   field   is   given 

by 

0 

wx   /d  =   A(ß)X+VU)t   + J rA'(r)U_(r)dr,      and   x./d  =   JJ (A)   Y      (3.20) 
1 o ■i 

where ß(X,t) is given implicitly by (3.15).  In particular the 

equations of the free surfaces Y = + 1 are given by 

x2/d = ± w(A) (3.21) 

Conditions   (3.20)   imply   that   to   a   first   order   in   the   low 

frequency   region 

ll. = w' U )    rx_ 
vTH 31 

S X / V 
so  that   in   regions   where 3t   is   bounded      'Vf  ®   (a,)   as   w^O- 

However,   as   is   well   known,   (3.l'+)   and   (3.15)   predict   that   either 

all   compressive   or   all  expansive  wavelets  begin   to   coalesce   and 
3 X / 

3t may become unbounded.  In section 5 we show that wavelets 

are in fact prevented from coalescing by the formation of a 

'shock layer1 in which the low frequency expansion (3.1) is not 
3X /       . . 

valid.  In this layer     3t = 0(1) as w-^O and the lateral and 

longitudinal inertias of the plate are of the same order. 
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In section h   we discuss how a 'rapid* long wavelength 

deflection disturbance modifies a stretching simple wave of 

much lower frequency.  Such disturbances are produced at X=0 

when F(t) varies slowly compared with e(t).  The front sep- 

arating this disturbance and the pure stretch simple wave is 

necessarily a characteristic wavelet moving with Lagrangian 

speed 

CD(X), = UD(6) say, (3.23) 

I f ö<.( X , t ) = constant is any such wavelet moving in a direction 

of increasing X then (3.1'*), (3.15) and (3.23) imply that 5: 

can be chosen so that 

X  =   X   (ß)-äX1(ß). 

and (3.2k) 

where 

t = tQ(e)-s-tl (e). 

x -u (t -e) = x - u t   = o . 
0S0 1 SI ' 

(3.25) 

and   (t    ,t   )   satisfy   the   ordinary   differential   equations 

(US-UD)tö   +   UsS-^V    =    (WM    +   "S1!   =   0' (3-26) 

s ubJect   to 

to(o)   =0,     tj(0)   =   1, (3.27) 
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3. 3 First diameter effect 

In addition to the shock layer region, where the lateral and 

longitudinal inertias of the plate are of the same order, the low 

frequency expansion is, in general, invalid in some vicinity of 

the driven edge X=0,  There the imposed conditions are not, in 

general, compatible with (2.22) and (2.23).  For example the pure 

stretch simple wave solutions, given by (3.12)-(3.18), satisfy 

the boundary conditions (2.13) with 6' = 0, but produce varying 

strain fields which do not satisfy the bonding condition (2.12) 

which requires that p  =1 at X=0.  In fact a boundary layer in 

which X=Q((i)) occurs where the stress and strain gradients are 
/ -1 N larger than these in the low frequency region by a factor 0(w  ). 

In this boundary layer, which is called the first diameter by 

experimentalists (tee Bell (l))the deformation depends upon the 

precise details of the loading distribution on X=0. 

In the boundary layer region the variations of the dependent 

variables in the Xj and X- directions balance.  If we introduce 

the boundary layer variable 

X = w" X = X /d (3.28) 

equations (2.l6), (2.1?) and (2.20) become 

3T  ,     3T  ,      3V, 
^^X +   12/3Y = w  l/3t' 

21/3X +   22/3Y = U  2/3t (3-29) 

and 

3Pll/,y- aP'^x= ^"n - 3P"'3X = °- 
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rhere   T   =   T(p)   is   given   by   (2.7).      Equations   (2.19)   yield 

3v 
",x- u

^P',^t•    *"a    3V2'3x = „SP2"af        <3-30> 

To the zeroth order inertia effects are negligible and the 

only time dependence is introduced by the boundary conditions 

at X = 0 and the usual matching conditions (see Van Dyke (13)) 

which require that as X-*co 

N 
v ^ ^(0,t) + I   w" v(0,Y,t) 

n=l 

and (3.31) 

N 

p -y   f(0,t) +   I    i»*   p(0,Y,t) 
n=l 

Equations   (3.30)   and   (3.31)   imply   that   to  the   zeroth   order 

v=v(Q,t)   throughout   the   layer,   while   (3.29)   imply   that   the   stresses 

satisfy   the   equilibrium   equations 

3T       . 3T       , 3T       , 3T      , 
2l/3x   + 22/ 3Y (3.32) 

The   boundary   layer   deforms   like   a   semi-infinite   plate   rigidly 

bonded  at   X=0   under   a   load   2doT(x)    [cosiji,   sinij*]   applied   at 

X = °°.      This   static   elastic   deformation   has   not  been   quantitatively 

determined.       However,   because   of   the   divergence   form   of   (3.29)   the 

total    load   at   time   t    is   transmitted   across    this    layer.      Consequently, 

this   layer   does   not   affect   either   the   velocity   or   load   transmitted 

to   the   low   frequency   region,   and   conditions    (2.13),   or   equivalent 

conditions   on   the   velocity   field,   can   be   specified   as   boundary   data 

on   X = 0   for   equations    (3.7)   and   (3.8). 
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3.^   Deflection   simple   wave. 

The   deflection   simple   wave   has   not,   to   our   knowledge,   been 

discussed  previously.      X   does   not   vary,   so   the   membrane   is   not 

stretched,   while   i|/,   w,    and   v   are   constant   on   wavelets   Br(X,t) = 

constant   which   move   with   the   same   Lagrangiar   speed   C   (X).      Since 

U'    5   IP;   0,   (3.210   -   (3.27)   integrate   to   give 
o u 

= (>-UB/"s) 
-1    _ 
ß      -a,      X   = M-V"s) i

1- us<, 

or,   eliminatingft 

The   deflection   angle 

V   "   X   =   ^S^D^' 

ij, = y(a) 

is   arbitrary,   while 

v  +   (XT)      =   icosty-y   and 

(3.33) 

(3.310 

(3.35) 

(3.36) 
w   =   -qsin^-Y 

where   q   and "jj   are   constant   Riemann   invariants.      Conditions   (3.35) 

imply   that   to   a   first   order   the   velocity   field   is   given  by 

v     =   -(XT)2Cost|;   +   qcosY ,   and  v. ( XT )2siniJ;   +   qsinY , (3.37) 

which   produces   a   displacement   field 

/d   =   tqcosY-(XT)1/acosY(r)dr,      andU3(       'd   -   VJ(X)Y)   =   tqsiny 

-(XT)|/ff'sint(r)dr. (3.38) 

UJX . 

IM 
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If   the   simple   wave   is   moving   into   a   uniform   region   where   H
I
 = 0 

then 

=    (XT)*      and K    =0 (3. 39) 

so   that   conditions    (3.36)   become 

vi   =   (AT) "(1-cos*) ,     and     v     =   -(XT)   siniji (3.^0) 

Deflection   simple   waves   can   occur   adjacent   to   a   uniform 

region   which   is   prestrained  so   that   0*0.      They   completely   define 

the   disturbance   in   a   membrane,   or   string,   which   is   produced  by 

changing   the   direction   but   not   the   magnitude   of  the   applied 

traction.      Then   F'   -   0   and 

US/ viw) =  e[(  b/uD - DTT] 

We   now   show  how   the   statements    (3.33)   -    (3.1»0),   which   are   exact 

when   X   is   constant,   may   be   modified   to   provide   a   good   description 

of   disturbances   in   which   X,   q   and   y   are    'slowly'    varying   compared 

with   ii.      Su.cn   distrubances   are   produced  when   u)   /u   <<1. 

i 
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14. 1   Modulation   of   finite   amplitude   deflection   pulses   by   slow 

stretching  waves. 

The   deformations   described   in   sections    3.2   and   3.^   correspond 

to   exact   solutions   of  equations    (3.7)   and   (3.8).       They   are   generated 

by   special   motions   of   the   edge   X=0.      Although   the   pure   stretch   waves 

are   produced   quite   naturally   by   simple   rectilinear   motions   of  the 

drive:,   the   pure   deflection   waves   are   produced   only   by   driving  motions 

which   rotate   but   do   not   stretch   the   membrane   at   X=0.      These   edge   motions 

produce   no   variation   of   stretch   at   other   values   of   X   and   are   somewhat 

artificial.      If,   however,   we   consider   those   driver   motions   for  which 

F(t)   varies   slowly   compared  with  9(t)    (   s'il)p)<<l)    and  which   produce 

progressing   disturbances   such   that   the   stretch   X,   at   some   station 

X=X0   at   time   t = t0 is varying   'slowly'   compared   with   iK    it   is   not 

unreasonable   to   expect   that   in   some   interval   around   (Xo.to)   the 

disturbance   is   'approximately'    described  by   a   simple   wave   solution 

(3.35)   and   (3.36)   with   appropriately   chr   en   Riemann   invariants   X,   q 

and   y.      The   problem  then   is   to   construct   a  procedure   for   'enveloping' 

these   local   simple   waves   to   obtain   a   global   statement    for   conditions 

in   a   progressing   wave   in   which   X,   q   and   y   vary   slowly   compared  with   i|i • 

Of   course   we   cannot   expect   any   one   simple   procedure   to   apply   for   all 

F(t)    and   e(t)   at   all   (X,t).      To   illustrate   these   procedures   we 

investigate   conditions   in   an   interaction   pulse   which   is   preceded   by 

an   arbitrary   pure   stretch   simple   wave   described   in   section   3.2. 

We   construct   formal   asymptotic   solutions   to   (3.7)   and   (3.8)    as 

p   -►   Q   which   describe   how   a   pure   deflection   wave   is   modulated  by 

slow   variations   of  the   stretch   X.      Even   though   the   solutions   are   valid 

at    a   given   X   only   for   a   finite   time   interval    after   the   passage   of   the 

interaction   front   a = ü   of   ( 3.2 U),   no   restriction   is    imposed   on   the 

distance   this   pulse   propagates.       Conditions    in   the   pulse   are   related 

to   ö(t)    and   to   conditions    in   the   pure   stretch   wave   which   precedes    it: 

at   X=0   the   pulse   lasts    only   while   X    changes    by   0(E)    although   0   can 

change   by   any   amount. 

e/SA, 

*■ 
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The interaction is best described in terms of new dependent and 

independent variables.  Ar dependent slow 'Riemann' variables we take 

an d 

a = XCD = (AT) 

and   as   our   fast   variable 

$   =    ^    -    Y (U.l) 

These   are    related   to   v   and  w    as    in    (3.36),   where   the   slow   variables 

are   Riemann   invariants.      As    independent   variables   we   take   character- 

istic   parameters    (a,n)   where   the   a(X,t)   =   constant   and   n(X,t)   = 

constant   wavelets   propagate   with    local   speed   a,    or   Lagranglan   speed 

C   ,   in   directions   of   increasing   and   decreasing   X.      The   characteristic 

parameters   are   chosen   so   that   a>0   in   the   interaction   pulse   and   u<0 

in   the   precursor   simple   wave   region,   while   n^t   on   the   interaction 

front   a=0.       In   terms   of   the   variables   q,   y,   a,   ^   and 

3 a/ 3 n 
—,   and   the   material   function*   sinH(a) 

equations    (3.T)    and   (3.8)   are    replaced   by 

dlnX 
din a 

2        2 
CS-CD 

2       2 
(I4.2) 

3a 
9a 

=   ficose cH {^- COS (Ji 
9n 

qsin*fj-j, (h.3) 

91 ,    •    ,, 3 a r-*-   =    Sis inHcos ij»—-   . 
9 a 9 n (h.k) 

Ix  -   n    •    11    •    ^      -13a r-1-  =   nsinHsm'Ji   q      r— « 
9 a 9 n (14.5) 

an d 

2aii  +    (2a-qcos*)^  +   sin*,ll  =   Q 
9n 9n T9n 

(^.6) 

This   relation   is   readily   established  by   using   (U.l)   and   (3.9 
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while the definitions of (a,n) imply that 

3X 
3n " CD an' 

at   . ax and T— 3a 
C  ^ {U.l) 

3 t 9 t „   =   -—  and   tn   = -—   are    regarded   as   dependent   variables   then 
a3a " 3n 

lated   by the    compatibility   conditions 
If t 

they are re 

9 a    3n 

(I4.8) 

while elimination of X from {U.D   implies that 

^-inH^.fft^ {h.9) 

In   what   follows   we   take (U.3)   -   (14.6),   (U.8),   (14.9)   and 

ta = ntn 
(U.10) 

as    a   complete   set   of   equations    for   I(I , a, q , y , t a , t n    and   ^.      These   are 

to   be   solved   for   ci>0    subject   to   the   condition   that   the   front    a = 0 

borders    an   arbitrary   stretching   wave   which   implies   that   on   0=0 

Y   =   *   =   0, (I4.ll) 

while   by   (3.1?)   and   (3-36) 

(n)   =   q(0,ri),   and   ao(n)   =    a(0,n) 
(14.12) 

rary   so   that 

[1   +   cosH(ao)la;,   where   f  <    H   <   ^ (14.13) 
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Note   that   the   only   material    function   which   occurs   in   the 

complete   set   of   equations    (^.3)   -    (^.6)    and    ( I4. 8)    -    (^.10!    is 
2      2 

sinH(a).       In   the   important   practical   case   when   2C   /C      can   be 

neglected   compared   with    unity*   we   can   take   H=1,/;, in   these 

equations   which   then   are   identical   for   all   materials.      Of   course, 

even   in   this    limit,   the    determination   of   X(3,n)    from   (^.7),   and 

the   placing   of  the   characteristics   in   (X,t)   space   involves   the 

material    function   Ma).       However,    at    constant   X   conditions    (^.7) 

imply   that   n    varies   with   a   so   that 

In. 
3a 

Q(a,n ih.lk) 

Accordingly, the variations with t, at constant X, of the variables 

in (1».3) - ih.6)   and (U.Q)   -   (U.IO) can be determined if one point 

on the (n,a) curve defined by (U.llt) is known; this could, for 

example, correspond to the arrival time n of the front a=0 at X. 

i^MM 
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U.2   Acceleration   front. 

The   expansion   procedure   used   to   determine   conditions    in   the 

pulse   is   best   motivated   by   considering   conditions   at   the    front 

a=0   whose   trajectory    is   given   by   (3.2U)   with   ä=o   and   [X0 (6 ) , 10 (ß ) ] 

determined  by   conditions   in   the   precursor   wave   by   (3.2^)   -   (3.27)- 

At   the   front   the   dependent   variables   in    (U.3)   -   (^.6)   and   (U.8)   - 

(U.10)   are   continuous,,   and  so,   according   to   ( ^. 3)   -   (^.6),   are 

IS.     il  and   ^-     which   are   given   by    (U.3)    -    (U.6)   and   (^.13)   as 
3a      3a 9a 

<la        notaniH(a0)a;,     |^ =   Q. s 1 nH ( a0 ) a],, Ba 3a 
and  T-1- 

3 a 
(U.15) 

where,   by   (14.9),    (^.11)   and   (^.13),    no( n) = ri( 0 , n ) = t a( 0 , n)    varies 

so   that 

^0exp   [/2/   r-1 sin^H (r)sin7(H(r)   +   f-) dr ]   =   constant,   =   c   say.       {U.l6) 

Note   that   Q0,   regarded   as   a   function   of  ji,   is   proportional   to   tj , 

wh : :h   satisfies    (3.26).    41   is   the   only   dependent   variable   which   may 

have   a   discontinuous    first   derivative   at   the   front.      If   (U.6)    is 

differentiated   with   respect   to   a,   and   the   results   (I4.15)   are   used, 

then   an   ordinary   differential   equation   for   T-*-(0,n)   =   r^-(0,n)    is 
3a'     3 a 

obtained which integrates to give 

U.17) r-^-(0,n)exp    [/   r      cos22H(r)dr]   =   constant,   =   k   say. 
3 a 

In   the   special   case   when   H        7-,   (U,l6)    and   (^.17)   simplify   to 

give 

534. 
a0fi0   =   E,      and      a——(0,n)   =   k. (U.18) 0 3 a 

The   results    (U . 16)    -   (I4.18)   can   be    used   to   compute    and   compare 

the   values   of  rr-(t,X)   and7-r(t,X)    at   the   passage   of   the    front.      These 
d t o ^ 

are   given   in   terms   of   a   (n)   as 
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|A = (2^)-' ^(0,n), and |f 4 ( l + t en^H ( a0 ) ) a; ,      (14.19) 

which when H   ^r can be simplified to pive 

30;    1-12 
j^- = ike  a0   and   - ■= -i,', 3a 

3t ' ■," 
(U.20) 

Conditions   (^.19)   and   (U.20)   imply   that   if   the   stretching   wave 

extends    (contracts)    the   plate   as   it   passes    the    front,   so   that   a0 

increases    (decreases),    the    | TT|    increases    (decreases).      In   particular 
o t 

r-rl    -♦   0   as   the   plate   is    unloaded   (a   "*•()). 3 t ' o 
However,   since   at   the   front 

1 
.1 

il =   _x(a   )a-1   ^   ,   =   -ikE-1X(aJa'   when 
3X 3t 

(14.21) 

the   low   frequency   theory   predicts   that   as   &0-*Q   the   curvature   of   the 

plate   become   unbounded.      Again   this   is   prevented  by   the   formation   of 

a   layer,   the    'bending   layer' ,   in   which   the    low   frequency   membrane 

approximation   is   invalid   and   bending   forces   are   important.      In   this 

layer   the   stretch   varies   across   the   plate   and   as   w-*"0   the   ratio   of 
.    _ 1 , 

plate   curvature   in   the   layer  to   plate   curvature   outside   is   CM"      ). 
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^.3   First   Order   solutions^ 

Conditions    (U.19)   and   {U.20)   show   that   at   the   front,   at   times 

when   (Bo) '    is   bounded,   :rr/Tr  can   be   made   arbitrarily   large   by   taKing o t / 3 t 
c/k   sufficiently   small.      Motivated by   this   result,   and  by   previous 

work   on   finite   amplitude   pulses   by   Varley   and   Cumberbatch   ( 1 ^ ) ,    (15), 

Varley   and   Rogers   (l6),   and  Seymour   and  Varley   (11),   we   seek   asymptotic 

solutions   to   (I4.3)   -   (^.6)   and   (U.Q)   -   (I».10),   which   satisfy   (U.ll)   - 

(^.13)   for   arbitrary   a0(ri),   which   are   of   the   form 

N N      n 

a-a   (n)   =   V   c   a   (a,n),     q-q   (n)   =   T   c   q   (a,n), 
1 1 

N N N 
>   =   I   c   Y    (oi,n),      t-n   =   [   e   t   (a,n),      n   =   I   t^   (a,n) 

1 1 n 1 n 
(U.22 

N 
eind  41  =   i   Ca.n)   +   Y   c   $   (a,n). 

1 

These   solutions   describe   deformations   in   which   a   varies   slowly 

compared  with (1».      This   is   best   seen   by   noting  that   at   constant   X 

3a. 
at /3t 9a 3ri/3oi 3n (U.23) 

which,   together  with   (l».3)   and   (U.22),   implies   that   |rl||-  =   0(E) 

as   e-+0,   (except,   perhaps,   at   isolated  points). 

If   (U.22)   is   inserted  in   (U.6)   this   integrates   to   give 

tan 51^     =   tan^c^   =   A(ao)G(a), {h.2h) 

where   the   signal   function   G(a)   is   arbitrary,   and  the   amplitude 

modulation   function 

A(ao)   -   expl-/   r      cos   jH(r)dr], 

(U.25) 
a  2   when   H    ST. 
"0 * 
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Note   that   the   zeroth    order   approximation    {U.2h)   gives   the   exact 

variation   of   |^(0,n)    for   all   a0 ,   when   K=2G,(0).       If   now    (»4.22)    is 

inserted   in    (1*. 9 ) ,    and   {U.3)   and   ( U. 1U )    are   used,   an   ordinary 

differential   equation   is   obtained   for   the   variation   of   ^^aa1    on 

the   a=constant   vavelets:      this   integrates    to   give 

Ül = exV[-J   /2r"1{sintH(r)sin4(H{r)+y) + V2cos4H(r).A2(r)G2(a)[l + A2(r)G2(a)]"1 | dr ^ 

=   al^l+a^G^a)] - 1 2 i x „   sec   2 4' o   when H j. (14.26) 

In   terms   of   r2,(n,a),   to   a   first   order, 

a 
E"

1(t-n)   =   /n   (n,s )ds, 
o   1 

a 
I 12 

=   a"    [a + a~   /G   (s ) ds ]   when   H   =   f-. 

while,   according   to   (U.7 ) , 

X (a0) (X(0,n)-X)   =   a0(t-n), 

(^.27) 

whe re 

a   (r)dr 
x(0'n) =   rrrrfT) (»4.28) 

Note   that   n   and   X(0,n)    are   related  to   conditions   in   the   precursor 

wave   on   a=a = 0   by    (3.2I4)   so   that 

n   =   to(ß),      and     X(0,n)   =   Xn( (14.29) 

The   statements    (U.?h)   -   (I4.28)   provide   a   first   approximation    for 

the    variation   of   i|/(X,t)    in   terms   of   the   arbitrary   functions    a   (n)    and 
o 

G(a).      If   (l4,2l4)   is   inserted   in   (3.36)    and   (3.37),   and   if   it   is   noted 

that   to   a   first   approximation   Y^O,   these   then   provide   a   first   approxi- 

mation    for   (v,w)    and   (v   ,v   ).      In   the   special   case   when   ao(n)=0   th; 

^mm 
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first 'approximation' is an exact solution and describes the pure 

deflection waves of section (3.3). Note, however, that if a~(n)$0 

the e~pansion (4.22) is only appropriate for a pulse. For at a 

particle X the assumed expansion for ~· together with (4.14) which 

shows that ~:lx = O(c), implies that the expansion only describes 

cond i tions over a time interval after the passage of the front in 

which~ changes by O(c). The variation of~ in this time interval 

i s, however, unrestricted. Decause the expansion (4.2 2 ) only 

describes conditions at constant X over a limite~ time it cannot, 

in general, be U$ed to relate a
0

(n) and G(a) to the driving con

ditions (2.13) at X=O. In a future paper Parker, using techniques 

analogous to those described in recent work of Whitham (17) and 

Luke (2), will discuss high frequency expansion procedures which 

allow a f inite time variation at const ant X. 

If the p l ate is only atretehed so that CD/C < 1, which corre

sponds to f<H<n ·, and so that a;
2

a; is bounded, t~e ~xpansion (4.22) 

is valid for all t in some region behind the front a=O, and (4.24)

(4.28) describe how a bending pulse is modulated by the passage of 

loading and unloading waves shich vary a.. Condition (4.24) iapliee 

that a s the plate is loaded (unloaded) at an a=constant wavelet, 

whic h o c curs when a increases (decreases), !tanfll decreases 

(increases) wh ile, to a first order, the magnitude of the angular 

veloc ty of the plate at a particle 

1f 
2 • 

( 4. 30) 

in c reases (decreases). In particular, as the plate is unloaded 

(a. -+ 0), (4.24) and (4.30) predict that ojl-+±n and that ff -+0. However, 

s i nce in this limit tht filament theory predicts that ll and t,"he 
ax 

curvature of the plate are unbounded it is locally invalid. A bending 
layer forms in which the radius of curvature and thickness of the plate 

are ~f the same order as w-+0. 
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So far we have considered how a deflection pulse is modulated 

by a stretching wave, and havr shown that to a first order current 

conditions at a wavelet u are determined by conditions at u at any 

one previ ous time, and by current conditions in the stretching wave 

at the front u=O. To a first approximatio the deflection also 

interacts with and changes the mode of propagation of the stretching 

wave. This interaction is illustrated by comparing the Lagrangian 
dX 

speed. drla• of wavelets carrying constant values of~ with the 

Lagrangian-speed c8 of the S=constant characteristic wavelets: in 

the precursor wave, and whenever; =0 • these are equal. For since 

( 4. 31 ) 

(4.3), (4.13) and (4.22) imply that to a first approximatfon 

C~~:~~!z l-2sin 2 ~~~aniH(l+tan!H)- 1 (sin 2 ,++!tanlH(l-tan!HJ-l (4.32) 

= 0 when H 

• l when H = w. 

According to (4.32), if CD/C <1 in the bending pulse the wavelets 
s ) 

carrying constant values of a are sl~wed relative to the B=constant 
-1 dX C 

wavelets though CD dtl!>l. When D/c
8

=1 the ~=constan t · wavelets, 

the B=constant wavelets and the a=constant wavelets move with the 

same Lagrangian speed CD. 
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4.3 Higher order approximations 

Further terms in the ~xransions (4.2 2 ) can be obtained by 

applying a simple iteration procedure to (4.3)-(4~5) and (4.8)

(4.10). We insert the expressions (4.3) and (4.10) for~: and ta 

int o (4.9) and regard this as an ordinary differential equation (I) 

for n on the a=constant wavelets with coefficients depending on 

~·q•Y•~•tn and their n-derivatives. The nth order approximat i on 

for n then satisfies the equation obtai ned by replacing the c oeffi

cients in (I) by their (n-l)th approximations. The nth order 

approximations for !_.q,y and tn are ohtained by replacing n by its 

nth order approximation, and its coefficient by its (n-l)th order 

approximation. and its coefficient by its (n-l)th order approximation. 

in the right hand sides of (4.3)-(4.5) and (4.8): the resulting 

equations are then integrated from the front a=O along the n=constant 

wavelets. Finally. the nth order approximation for ~ satisfies the 

ord.nary differential equation obtained by replacing the coefficients 

in (4.6) by their (n-l)th approximations. We note. but do not further 

discuss. that according to (4.3) this iteration scheme. and the formal 

expansions (4.22). must be modified if H~w which occurs when CD+c
5

. 

As an illustration, which is physically important ~nd also avoids 
w 

messy algebra, we apply the iteration scheme when H=2 to calculate the 

first approximation for the 'slow' variabl~ s !.•~ and y in th~ pulse. 

These approximations, together with the results already established, 

give the first approximations for the time variat i ons of all dependent 

variables at a particle X as the pulse passes. In particular, they 

give the first approximat i on to the strain rate aAfat· We obtain, 

to a first approximation. 

-1 
at{a 

1a a 
a = ao + ao + 3a~ J G ( s ) ds } , 

0 (4.33) 
-1 ' 

1 a 2 
q = ao + ao a 0 {a a~ J G ( s ) ds} , 

0 

and 

y= -!· , 1 ( ) 2ca 0 a 0 G s ds. 
0 
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The   results    (^-3?)    indicate   that   our   formal   iteration   scheme 

can   only   bo   valid   in   a   puise;    that    is    for   Ica^al^l.       Note   that 

whereas,   to   a   first   approximation,    the   variation   in   the    fast 

variable   i^   at    an   u=constant   wavelet   is    independent   of   conditions 

at    all   precurs'  r   wavelets,    in   any    finite   rmplit ude   disturbance   the 

slow   variables    are    influenced   by    conditiot.5    at   all   precursor   wave- 

lets. 

L M. MM 
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5. Shock l.ayer 

I n section 3.1 ve pointed out that according to the low 

frequency or long vave theory a stretching simple wave can develop 

:i mi t surfaces , which are envelopes of a-wavelets, on which strain 

gradients and strain r~tes become unbounde d . However, s hortly 

before this occurs the lateral veloc i t i e s b e c o me c ~ mparab le with 

he long it udina l vel o cities so tha t t he under lyi ng assumpt i on o t 

. hat t he o ry i s v :!. o 1 a t e d. I n analo gy wi th t h e l ami n ar b o re o f 

hydraulic s a ' sh o k l ay e r' is generat ed i n whic h t h e strai ns and 

ve l oc i ties vary rapidly. Th is layer i s dr i ven forward to seperate 

t vo l ov frequency reg i ons. By intro ducing a new expansion procedure 

t o des c ribe regions of rapidly varying strain, we can obtain the 

equatfons governing the structure of such a layer and can, in 

general, relate its speed of propagation to the jump in strain 

a c ross i t. 

In a layer where the strains vary rapidly {compared with their 

values in the l ow frequency region) the weighted scales {2.14) are 

not appropriate: the right hand sides of {2.16), {2.17) and {2.20) 

are not vanishingly small as w~o. If the shock layer is centred 

about the shock trajectory X=S{t) then in terms of the shock layer 

variables Y, t and 

X = w - l {X- S { t) ) 

equations ( 2 .16), (2.17), (2.19) and {2.20) become 

~(T +S ' (t)v) + aT1 2 = 
dA 1 1 1 dY 

~(T +S'(t)v ) 
dA 21 2 

~T 

+ ___ll_ = 
aY 

dp11 = W---
dt 

ap21 
= w-

~ .. 

dV 
w--1 

dt 

{ 5. 1) 

{ 5. 2) 

( 5. 3) 
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l ? 

IX 

3 p. 

FT 
2 2 3P; ' i o. (5.1* 

In addition to (5.2) - (5.M, the st.esses are related to the 

deformation gradients by (2.7) and satisfy the stress free boundary 

conditions T   = T   = Ü on Y = +1.  As X>'»(-co) the solutions to 

(5.2)-(5.1+) tend to the solutions of the low frequency equations as 

X-*S(t) from X>5(t) (<S(t)), see Van Dyke (196M). 

Conditions (5.3), together with the boundary data at X = -0°, 

imply that to the zeroth order in the shock layer 

+ S'p 
1 l 

c (t) ,  and  v  +S'p g2(t) (5.5) 

so   that   at   any   time   v      +   S'p and   v      +   s'P2l    are    con'tinuous   across 

the   layer.      To   this   order,    (5.5)    imply   that   the   strain   field   satisfies 

the   compatibility   conditons    (5.M   and,    from   (5.2),   the   equations 

iVr^-s'X 
3T 3T 

■(T )    + 3Y 3XlT21    S      P21,    +   9Y 

22 =   0)     (5.6) 

which   are    identical   to   the   equilibrium   equations    of   finite   elasticity 
3p 3p 

o 11 7   1 
with   a   body    force   -S"    (rr , —= ).       If   the   divergence   theorem   is 

applied   to   (5.6),   and   if  the boundary   conditions   at   the   stress   free 

surfaces   Y   =   +1   and  those   at X   =   1°°   are   used,   we   obtain   the   result 

that   throughout   the   layer 

/ [T]i(X,r,t)    -   S'2?^ (X,r,t)]dr   =    f   (t). 

an d (5.7) 

.1 
/   [T2ia,r,t)    -   G,?p?1 (X,r,t)]dr   =    f 2 ( t ) 
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dei.ote the differences in values of v , v 

at X = t» and X = -=f, and if it is remembered that these differences are 

independent of Y, (5.5) and (5.7) imply that 

1 1 = [vj + S' PT 0, (5.8) 

and that 

= [T21] Ü . (5.9) 

Conditions (5.8) and (5.9) are trivially satisfied, with no 

restriction on S', if (5.6) have solutions which are symmetric about 

X = 0.  Such solutions describe s cli tary waves.  After the passage of 

a solitary wave conditions at a particle return to those which existed 

prior to its arrival.  Note that if the speed of such a wave is constant, 

solutions to ( 5 • ^ ) and (5.6) satisfy ( 5 . 2 ) - ( 5 . M exactly. 

When the passage of a shock layer changes conditions at a 

particle, (5.8), (5-9) and (3.6) relate conditions in the low 

frequency disturbance which occurs immediately after the passage of 

the shock layer to S' and conditions in the low frequency disturbance 

which existed immediately before its arrival.  The shock layer is a 

narrow region in which the low frequency approximation is locally 

invalid.  The propagation speed, given in terms of the Jumps in 

physical variables by (5.8) and (5-9), is not that of a thermodynamic 

shock; in the layer dissipation forces remain negligible and the 

entropy is unchanged.* 

If we are not interested in the structure of the shock layer 

but only in h' :.    it »ffects the deformation in the low frequency 

region, we may regard this shock layer as a discontinuity rurface 

• The deformation in the shock layer may, however, produce velocity 

gradients which are large enough for dissipation to be important. 

Then thermodynamic shocks may be formed or, in ^he language of 

hydraulics, the laminar bore may degenerate into a breaking bore. 
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across   which   the   Jump   conditions    (^.8)   and   (5-9)   hold.      Then 

(5-9)   state   that   the   change   in    force   balances    the   change   in 

momentum,   while    (^.8)   state   that   the   position   of   a   particle   is 

unchanged  by   the   passage   of  the   shock.      These   Jump   conditions   are 

identical   with   those   defined   by   the   conseivation   equations    (3.2) 

and   (3.3)   which   govern   the    low   frequency   deformation.      This   result 

was    anticipated   by   Whitham   (IB)    in   his   work   on   magnetohydrodynamlc 

wave;.       He   also   noted   that   the   use   of   the   Jump   conditions   defined 

by   the    conservation   laws    (3.2)    and   (3.3)    can   only   be   Justified  by 

either   having   a   model   for   the   shock   structure,   or   using   sound 

physical   arguments.       Equations    (3.2)   and   (3.3)    can   be   rewritten   in 

many   alternative   ways   as    conservation   laws   and   these   would   define 

Jump   conditions   which,    in   general,   would   be   incorrect.       If,    for 

example,   t   and   the   Eulerian   co-ordinate   x   of   a   particle   are   used   as 

independent   variables   and   the   equations   are   written   in   the   usual 

form   as   conservation   laws   the   associated   Jump   conditions   are 

incorrect.       (In   hydraulics   the   hydraulic   Jump   conditions   are 

derived   from   sound  physical   arguments   and  not   from   the   conser- 

vation-type   differential   equations   governing   the   flow,    (see   Stoker 

(12)). 

There   are   two   possible   ways   of   satisfying   the   Jump   conditions 

(5.8)   and   (5.9).      The   longitudinal   shock,   across   which    (i|),w)   are 

continuous   but    (X,v)   are   discontinuous,   for  which 

/[T] 
JTTT (5.10) 

Such a shock can be generated from an initially shockless pure 

stretch simple wave.  The transverse shock, across which X is 

continuous but (v,w,^) are discontinuous, which moves with 

characteristic speed 

-ih (5.11) 
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Thiz   chock cannot be generated from an initially shockless pure 

bending wave and must be regarded us the mathematical limit of a 

nen-distorting simple wave. 
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