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A KINETIC (NON-LINEAR) THEORY OF 

TURBULENCE IN INCOMPRESSIBLE FLUIDS + 

I.    Two-Dimensional Case 

by 

Toyoki Koga * 

Polytechnic Institute of Brooklyn, Graduate Center 

Farmingdale,  New York 

SUMMARY 

In principle,  a turbulence field is to be governed b> the Navier-Stokes equa- 

tions.   In orde- to avoid the difficulty of treatment due to the non-linear character- 

istics of the Navier-Stokes equations,  we begin with the assumption that a turbulence 

field may be represented by a proper distribution of many elementary vortex lines, 

each of which,  being a particular solution of the Navier-StoKes equations,   exhibits 

full characteristics of the non-linear equationc>.    Based on this assumption,  we 

introduce an equation which governs the distribution of those elementary vortex lines, 

in the same way AS the Liouville equation governs the distribution of particles.    With 

respect to a two-dimensional field,   it is shown that Taylor1 s parabolic correlation 

mode for short distances and Kolmogoroff s 2/J-power correlation mode   for moder- 

ate distances are unified to one correlation moae which is valid for the entire range 

of correlation distances.    With respect to three-dimensional caaefj,   introducing re- 

marks are given in the appendix. 
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I.    INTRODUCTION 

It has been widely felt that a satisfactory theory of turbulence must be 

one in which non-linear characteristics of fluid motion are fully taken into considera- 

tion.    It is the purpose of this paper to propose a theory attempted from the above 

viewpoint.     The medium is assumed to be incompressible, and detailed treatments 

are made only of a two-dimensional case. 

As is well-known, the significance of velocity correlation  as the cause of 

transport phenomena in a continuum was pointed out by O. Reynolds     in 1895,  and 

clarified by G.I. Taylor     in 19<il.    As we see in works published successively by 
i 4 5 6 Taylor   ,  Prandtl     von Karman   , Kolmogoroff     and others between then and 

World War II,  earlier treatments were mostly kinematical and phenomenological, 

being supported by similarity principle; physical characteristics of turbulence were 

described in terms of such quantities as mixing length,  size of eddy, and so forth 

in those works.    The nature of those characteristic lengths, as physical quantities, 

was known only vaguely and intuitively.    Among those achievements,  Taylor1 s 

experimental results of velocity correlation, his approach of coarse-graining the 

Navier-Stokes equations, Kolmogoroff' s correlation functions have given strong 

influences on modern turbulence studies. 

After the war, Heisenberg, Onsager,  Burgers,  Chandrasekhar and 
7-8 

ethers     advanced various theories in attempting to find feasible statistical laws 

governing the energy-spectrum characteristics of turbulence.    The approaches of 

these authors were inductive; they conceived mutual interactions among vortexes 

as the cause of thermalization or decay or irreversible transfer of energy among 

different spectrums, and attempted to formulate the transfer process by invoking 

statistical methods in the theory of Drownian motion. 



In those treatments before and after the war, we see that those authors 

were assuming,  if implicitly and intuitively,  that turbulence is a manifest of 

vortexes of complex distributions. 

Later, particularly in the last ten years, attempts h&ve been made by 

many authors (for example,see Refs.   9 and 10) to derive feasible laws governing 

the irreversible process in a turbulence field by applying statistical treatments 

to the Navier-Stokes equations.    Although the methods vary from one author to 

another, the principle is one:   A turbulence field may be described precisely in 

terms of the velocity correlation factors of all the orders (of an infinite number). 

As was suggested by Taylor, von Karman and others previously,  if one derives 

equations governing velocity correlation factors from the Navier-Stokes equations 

and solves them properly,  one may achieve his goal.    Tn this venture, however, 

one must meet great difficulties which are common in dealing with non-linear 

phenomena.    Most usual methods of expansion of variables in series are not feas- 

ible, because of the difficulty of convergency. 

We have had many experiences of overcoming the common difficulty of non- 

linear problems.    As Eyring       wrote recently,  science, in its various fields, has 

invented various models to make the best compromise between the infinite detail 

of reality and the limit of tractability.   It should be remarked that,  in general,  a 

model of a system is made of integrals (invariants) of motion of the syctem.    ( Of 

course, approximate integrals of motion may be useful,too. )   The present attempt of 

turbulence theory is made also in this sense. 

The gists of the present attempt are 1) to take into consideration the effect of 

non-linear characteristics of dynamical processes governed by the Navier-Stokes 

equations, and at the same time i) to avoid mathematical difficulties which are usual 



in treating significantly non-linear fields. 

In other words,  this is an attempt to ireat the structure of turbulence con- 

ceived h) Heisei   erg, Onsager and others ir a deductive sense.    The consideration 

of non-linear characteristics is believed to be essential in a deductive approach to 

turbulence theory,  particularly when the turbulence is strong.    While the proposed 

deductive approach to turbulence may appear to differ from those of other workers, 

it by no means contradicts or dismisses the existing understanding of turbulence as 

accumulated over the past fifty years.    Rather, the present attempt is seen to 

constitute a natural and ration?.! synthesis made of th. Knowledges achieved by the 

pioneers. 

II.    ELEMENTARY VORTEX LINES 

There are two effects which characterize a flow field governed by the Navier- 

Stokes equations:   1) Non-linearity and I) stress due to viscosity.    We begin our 

investigation of turbulence by ignoring the effect of viscosity.    This approximation 

is valid if the characteristic Reynolds number of turbulence is sufficiently large, 

insofar as    turbulence is investigated in a free flow.   (See section VI)   On this ap- 

proximation,  we have to make an important choice between the following two views: 

1. "A turbulence field is a field of vorticity, continuously but non-unif rmly 

distributed in the configuration space.    The strength of vorticity is finite.    There- 

fore, there is no discrete vortex line,  or tube conceived by Helmholtz.    Based on 

this consideration, a turbulence field is to be treated as a continuous field of 

vorticity governed by the Navier-Stokes equation". 

i.    "Due to initial and boundary conditions,  such as an array of rods inserted 



in a flow which is otherwise uniform , however, aggregations of vorticity may 

exist,    ihe lield of vorticity may be continuous in the precise sense.    But in an 

approximation, it is possible to represent the field as an ensemble of discrete 

vortex lines or tubes.    By considering kinetic theory of such discrete vortexes, it 

may be possible to obtain essential characteristics of a turbulence flow,   evon if 

we may be ignoring the microscopic and detailed structure of the flow field. " 

As supporting the second approach, we have the following two knowledges: 

A vortex line, which may approximate a local aggregation of vorticity,  is a particular 

solution of the non-linear Navier-Stokes equations,  or the Euler equations on ignoring 

the viscosity effect, and is invariant as governed by Helmholtz' s three laws. 

Secondly, we have a successful experience of kinetic theory of gases on the assump- 

tion that a gas consists of discrete and stable particles in spite of the fact that the 

most precise description of a gas as a whole is a quantum-mechanical wave function, 

which is spread in the entire space.    Treating a gas as described by a wave function 

might appear precise, but in fact we may miss its essential characteristics due to 

its enormous complexity.   Instead, the approximate model of particle structure 

enal'es us to see main characteristics of a gas vather easily.    This is the approach 

of kinetic theory. 

According to the above consideration, we assume that a turbulence field is 

represented by an appropriate distribution of elementary vortex lines; each 

elementary vortex line is of the same intensity and behaves according to Helmholtz' s 

three laws.    A turbulence field consists of such elementary vortex lines distributed 

non-uniformly.    A vortex tube of a large size may be composed as a cluster of many 

elementary vortex lines of the same direction.    It is noted that such a vortex tube 

of a large size exhibits a sort of thermalization phenomenon due to random migrations 

of elementary vortex lines constituting the tube, as is illustrated in Fig.   1. 
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HI.   KINETIC EQUATIONS OF ELEMENTARY VORTEX LINES 

We assume that a turbulence field consists of N elementary vortex lines which 

are parallel to th* «-axis and of which one half is of the positive sign and the other 

of the negative sign.    We may define the distribution of the N vortex lines by 

D^rröfi -?*)6(n.     fi*) (3.1) 

.,* ♦ 
where r.  is a function of time and denotes the position of vortex i, and 0-  denotes the 

* direction and intensity of vortex i.   Of course, (V  is an invariant in the present case. 

r. and n. are independent variables.    If vortex  0. is at r   and induces velocity v.. 
11- J J J 

at r., 1 -      (ri.ri)xni 
v-=    ^TT- (3.^) 

If V. is the velocity of the main (average) flow, 
i 

v,=V i-i+IVij (3.3) 
j - , .       -   . is the totol velocity at ri:   the trajectory of vortex i at r^ is governed by 

drl      = v- 
■JK~ ' (3.4) 

Therefore D^de'ined by (3. i",   atisfies 

(| +y   v.. |    )D(N)=0 (3.5) 
' dt    /.     i    hi 

i ri 

The above equation is similar to the Liouville equation of N particles. 

In a manner similar to that of the ordinary kinetic theory of particles, we may define 

F<& ow- d; do. 
*■ 

\ i 

FW(i. j)=   D^iJ^A <3-6) 
arid so forth.    Consideration of 

 • v        = . r    ■ 

'i J ri       (r;-ri> 

leads to 
.(N) 

f,..   .iU-  D^ä,.iV-.   (v..D<N^. = ö (3.7) 
J      »J      ^rj JJ^r"     x    »J        ^ J 



Hencj.  it is easily shown that Eq.  (J. 5) is reduced *> 

<ir+vi|fr)^,(i)^vij.i?_Fw(ij)<iXjS0 (3.8) 

where 
dxrdridnj (3.9) 

+I (;;ik-^- + ;;
jk-T7r,F(3)<i'^)dvo 

k 

l f- j [=1.  -i,  ....  N (j. io) 

and so forth.    These equations constitute an indefinite series of equations tn a 

manner s-milar to that of the Bogoliubov-Born-Green Kirkwooc  Yvon hierarchy 

of equations governing the distributions of the molecules c  istituting a gas. 

IV.    MODES OF INTERACTION AMONG ELEMENTARY VORTEX LINES 

1.    Microscopic Interaction.    If the interaction between elementary vortex 

lines i and J is strong, and they are fairly remote from the other vortexes,  the 

interaction is almost binary.    In this case, Eq.  (3.10) yields 

tT +v..  •JJ-+v.. .JL- 
1 J 

(V.=V.^0 is assumed) (4. 1) 

According to the above equation,  two vortexes i and j rr.ove along trajectories 

such as illustrated in Fig.  i. 
Fig.  i.  - A pair of elementary vortex lines 

.     ——-—    rotates if their signs are the same, 
t^ but they move on two parallel lines 

'   «£*   ^V •* if their signs are different. 

— +v.. -AT  ) F(ii)(i. j) - 0 

W /' ^_-.) 

+ 
If i and j are of the same sign, they move on a circle, while. If their signs 

are mutually opposite, they move on two parallsl lines. Their interaction does not 

terminate unless they are disturbed by other elementary vortex line .    We assume 



that the strong correlation between i and j terminates in a finite and microscopic 

time period due to weak but frequent pertubations due to ve*  cities exerted by other 

vortexes such as represented by the last integral term in £q.   (J. II).    According to 

(4.1), we obtain 

where d/dt is an operator meaning the differentiation along the trajectories of the 

two vortexes i and j.    Since it is shown that 

O F      (i.j)dx)dt 
j 

is negligible, we obtain 

,— F*c,(i.j)dx\  dt 

/[ 
TTT3 "—rrrs—:;~~ 

Fxl,{r. + ^r.) F;i'(r+ar.) 1 i i J      J 

-F^iT) W^) ]dx (4.3) 

Here i  r. and l r. are the distances traveled respectively by vortexes i and j during 

a continuous correlation period of time r.    The approach deriving Eq. (4. i) and the 

interpretation are the same as those employed for the Boltzmann collision integral 

derived from the BBGKY hierarchy under the binary collision assumption,  except 

that 1) the integrand in Eq.   (4. 5) is due to the non-unifcrmity of the vortex distribu- 

tion in the configuration space while the integrand of the Boltzmann collision integVal 

is due to the non-uniformity of the particle distribution in the momentum space,  and 

that   <J) the termination of   the present interaction between vortex ; and vortex j is 



caused by diaturbances of other vortexes, while the termination of a collision between 

two particles is due to the nature of Newtor' s dynamics and the relevant force law. 

(In case of charged particles,   the termination of a binary collision is due to dis- 

turbances of other particles      . ) 

i.    Interactions Among Semi-Stable Clusters of Elementary Vortexes. 

A two-dimensional turbulence field is produced by an array of rods placed perpen- 

dicularly in a flow which is otherwise uniform.    In origin,   each rod produces a 

street of vortexes similar to von Karman* s vortex street.   Of course,  there are 

interactions among those streets formed by many neighboring rods.    Each vo-tex 

constituting the vortex streets is considered as a cluster ox elementary vortex lines 

and may be initially simulated by a vortex tube of finite diameter instead of a vortex 

line,   (dee Fig.  1).  Let us suppose that two vortex tubes are in interaction.    Because 

of the finiteness of the diameter of a tube,  their interaction is more complex than an 

interaction between two vortex lines. 

I      ^\     Fig.  3 - A is a cluster of elementary vortex lines 
\   A' \ negative sign,  and B is of positive sign. 
V     / their cross-sections were circular.    As tl 

of 
Initi£.lly, 

they move 
on two parallel lines,   their cross-sections are 
deformed: The part of A closer to B proceeds faster 
than the other part of A,   etc. 

In Fig.   3,  two vortex tubes of different signs,  A and B,  are in interaction.    They are 

mutually driven on two parallel lines in the first approximation,   but the part of vor- 

tex A remote from B proceeds slower than the part close to B.    Similarly,  the part 

of B remote from A proceeds slov.er than the part close to A.    Furthermore,   each 

vortex tube is rotating by itself.    As <x result,   the cross-section of each vortex tube 

is deformed as time passes.    Similar and more complex deformations are caused on 

a vortex tube surrounded by many ot  er vortex tubes.    Thus a cluster (tube) decays 

from its outer fringe toward its center.    As a cluster decays,   those elementary 

vortexes which have drifted outward may be mixed with elementally vortexes of the 



opposite siijn which have drifted from another cluster.    Those twc groups ox elemen- 

tary vortexes of different signs may be mixed at random,  and in effect the diameter 

of a vortex cluster becomes smaller.   As this process of decay proceeds,  each 

cluster becomes thinner and the effect of each cluster deforming other clusters be- 

comes weaker.    This situation is conceivable if we notice that a vortex line,  instead 

of tube,  is not deformed at all by othei vortex lines.    This may be the reason for the 

existence of an almost homogeneous and steady turbulence field indifferent of its 

initial method of formation.    According to the above consideration, however,  there is 

no homogeneous and steady   turbulence in the strict sense.    A seemingly homogeneous 

turbulence is still on the procesp of decay, although the rate of decay may be small. 

3. Interactions of the Vlapov Type. If a distribution of elementary vortex 

lines is non-uniform in the microscopic sense, the integral term in Eq. (J. 8) does 

not vanish even when the microscopic correlation between i and j is ignored; that 

is, 

Y   v    F(1 W .4: F^U) 
j 

does not vanish and gives the effect of macroscopic interaction. 

V.    CORRELATION OF VELOCITY FLUCTUATIONS 

DUE TO CLUSTERS 

As is described in the last section,  clusters of elementary vortex lines are 

assumed to constitute a homogenous turbulence field.    Based on this model,   it would 

be possible to calculate the correlation between fluctuations at two different positions 

in the space.    Such correlations were first observed experimentary by G.  I.  Taylor 

in 1935.    A schematic correlation curve is given in Fig.  4. 

Fig.  4 - I; Parabolic law by Taylor;   II; ili ^. fig,   t  -   l, faraoouc law  oy   layxur,    ii;  f./ 
-v power law by Kolmogoroff; the 

Vvv   j present theory gives the solid 
XN line. 

x 

^T"^ 
10 

**9m&. M^a - ■ 



Taylor could derive the correlation curve from the Navier-Stokes equations for 

distances between two positions which are short as compared with the size of eddy; 

that is the parabolic law: 

vAx vBx^a(i.R<i) I 

Later,  Kolmogoroff gave a formula of correlation valid for a broader range of dis- 

tances of two positions where the correlation is considered,  by means of a dimension- 

al consideration; that is 

but so far,  no rational   attempt has been successful in deriving the correlation 

function which is valid over the entire domain of R.   In the following,   it will be show 

that our present model is useful tor the derivation. 

We assume that each cluster consists of n elementary vortexes and is a 

circular cylinder of diameter d; one-half of the number of the clusters is of the posi- 

tive sign and the other half of the negative sign.    They are distributed at random 

in the configuration space with a uniform density.    We also assume that the measure- 

ment of velocities is made with respect to a coordinate axis system which is moving 

with the velocity of the main (average) flow.    First, it will be shown that the velocity 

fluctuation at a position is attributed mainly to the nearest neighboring vortex cluster. 

Secondly, we calculate the velocity correlation at a pair of positions. 

1,    Localization of the Random Distribution of a  Cluster.    As discussed pre- 

viously,  a cluster of elementary vortex 1 nes is produced by a proper boundary and/or 

initial conditions .        Since the velocity of a cluster is finite and the time period in 

which a cluster passes through the fi«ld domain under investigation is also finite,   the 

probability distribution of the cluster is localized.    The local domains of space in 

each of which a cluster is present with uniform probability density are patched to- 

gether and constitute the entire space domain under consideration.    This consideration 

may be feasible,   if the formation of the turbulence field is done in a proper way;as such 

11 



it ie made with an array of rods.    The linear dimension of such a local domain is 

denoted with **, which is of the order of the distance of two neighboring rods.    By 

denoting the number density of clusters with n,    n~       is of the order of the distance 

between two neighboring clusters.    Assuming that an observer is moving with the 

velocity of the main flow V, and considering that the fluctuating part of velocity 

of a cluster v is smaller than V, we have 

L (the distance which the observer travels during 
his observation) _^^___^_^^_____  -       j 

v 

L > > n 

V 

-l/i 

Hence 
.     Lv v      -1/a i, =      > ■> — n 

V V 

Since —   < 1 ,  we may assume that 

l^n'lU (5.1) 

is the condition of our observation.  This relation may be given based on von Karman's 

vortex «treet theory.    This is also the condition that an arbitrary position in the field 

has the same probability,  as the averaged one,  to be occupied by a cluster.    A similar 

condition is realized in the special case where each cluster is distributed with a uni- 

form probability density all over the field.    In both cases,   the probability densHies 

of clusters are the same.    With respect to fluctuations in density,  however,   the two 

cases are different:   In the former case, a space domain of linear dimension larger 

than i cannot be completely void of any one cluster at a moment of time.    On    the 

other hand,   in the latter case,  it is even possible that the entire field,  except for 

one spot at least,   is void of any cluster. 

I.    Significance of the Nearest Neighboring Cluster. 

The most significant contribution of velocity fluctuation at a point p is made by 

the cluster which is the nearest neighbor of p.    The reasons are: 



1.    The nearest distance and hence the largest induced velocity. 

£.    The location of a cluster is localized even though the precise location 

at each moment is unknown.    We should notice the difference between the uniform 

probability distribution of a cluster and the localized probability distribution of the 

cluster.    To explain the  lifference, we suppose that cluster a of strength w is local- 

ized in domain A and the cluster b is in domain B.    If they are of the same sign and 

of the same strength,and A and B are mutually symmetric with respect to P where 

induced velocities are observed,   the order of the fluctuation induced by the two 

clusters at P is 

^TTL       £ (S.d) 

where £9 is the angle with which A and B is seen from P,  and L is the approximate 

distance of A and/or B from P.   On the other hand,  if they are completely at random 

with respect to direction,  the order of fluctuation is to be of the order of 

<!n L (5. J) 

In order to investigate the order of the magnitude of fluctuations at P induced 

by clusters surrounding the point, we assume that rr ^    is of the order of (density 

of clusters)' .    Also.we assume that n t    is the area of the domain in which a cluster 

moves at random during the time period of our investigation. 

Fig.   5 - The space is divided with co-centric circles of 
" "    which the center is at P,  where the velocity 

fluctuation is observed,  and the radii are 4, 
3^.   51.   ... 

1 
i i 

-* *-zl 
We divide the space with co-centric circles of which the center is at P and the 

radii are ^,   3i,   5-t., ...  The domain of the smallest circle is named domain 1. 

Domain i is the domain encircled by the smallest circle and its neighboring circle. 

Similarly we may define outwardly domain 3,   domain 4, . , . ,  domain 5, .. . 

Domain Z,which is between the circle of radius  / and radius 3| is divided by radial 

13 



linea into cells of the same area rr-t ' which is the area of domain 1.    The number of 

the cells is .        . 
"(3 0    -TT^        ^  & 

nl2 

Suppose that a cluster of the same sign is confined in each cell.    The velocity fluc- 

tuation at P induced by the cluster in domain 1 is of the order of 

v, =    w (5.4) 
1      irrlU ' 

The total fluctuation of velocity at P induced by the eight clusters in domain <J is of 

the order of 
^=   iul       M3  (^ea)(4A93) 

a 
where . 

L, =i t.    A ea ^ 7irs- = -J-. 

It is easily shown that 

va=0. llxvy (5.5) 

Similarly we may consider the effect of the clusters in domain 3.    The number of the 

cells is 

and 

where 

Hence 

'JtLllim  = 16 

v,=   aq3 (^93) (4A93) (8A 93) 

L3= 4*. Aö
3
=   ix Ik =-f5- 

V3=va^(^)4x8=^. (5.6) 

In general,  the effect of the clusters of the vth domain is given as follows:   The number 

of the cells is 

TTt3 

and .i9   =-^-2      =—       Lv=Mv-l)t 
v     ^ x 8fv-i)       8 (v-l) , 

Hence . k  -i 
v =—11—  (A9v)vl,  2 ^v (5.7) 

14 
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Here 

*ikv=8 (v   1) (5.8) 

1^ as a function of v is tabulated as follows ; 

v            <J            3            4            5           6            7           8 9 

kv           J            4        4<5           5          5<6       $<(>'    5-6" 6 

where 5<6,   for example,   ^neans a value between 5 and 6. It is an easy matter to 

see that 
vi     va   •     v3 '      •• 

constitute a series which converges very quickly,  and v. is a good approximation 

of the entire fluctuation. 

3.    Correlations of Velocities. 

In order to see consequences of the above consideration,  we calculate cor- 

relations between velocities at two positions A and B,  induced by cluster C which 

is the common nearest neighboring one of the two positions A and B.    It is assumed 

that A and B are moving with the main flow. 
Fig. 6 -   We calculate 

y ' correlations between 
velocities at two 
positions A and B, 
induced by Cluster C 

A-iL    o + K 

The distance between A and B is R.    R is assumed to be changed from zero to in- 

finity.    If R is larger than I,  the nearest neighboring cluster of A is different from 

that of B.    Then,   in the approximation of ignoring those clusters other than the 

nearest neighboring one,   there is no correlation between the fluctuations at A and B. 

We also assume that the radius a of a cluster is finite and is sufficiently smaller 

than I.    A and B are on the x-axis with the o-igin of the coordinate system at the 

center of 7ÜBT    It is often convenient to give the position cf C in terms of r,   the 

15 



distance from the origin O and 0,  the direction angle with respect to the x-axis. 

Also   we define 

PA= "XC. PB= EC" 

eA=<CAO. eB=n-<CBO. 

1.    The velocities at A and B. 

(i)   ^0 A'B > O»    we have for the velocities at A and B induced by cluster C 

of intensity JJ 

v        -     ^ Ax " r—-—   sin (? . 
tr.P . A 

A 

v     = - -JS   cos 9A 

A 

vw   = S  sin 9B 
a 2np B 

v     = '£. cos 9R 

By ^B 
It is a simple matter of geometry to find 

PA = r  (-4-)^+ r^+Rr cose] 
1/i 

B=r  (-j-)^ r2- Rr cose] 

sin eA= r sin 3 
0 

A 
cos eA = 

Y-+ r cosG 

PA 

sin 9   = r sinö coa e  = - 
^— + r cosO 

n   B 
0B 

CUB   «g 

PB 

16 

(5.9) 



Hence v      - ^ r Bin B 
'Ax-  rFT r 

^ n    ^- + r-+Rr cos 9 

v Ay" 

R 
i« 

-U) 
(-^ + r cos 9 ) 

2TTnJ+
l
r3 +Rr cos 9] 

V             "S 

m r sin 9 
vBx 

2n[-r%r3-Rrc089 
( -4- +r cos 9) 

VBy fR8.    ,     - 

(ii)   If 0 > AC,   we have 

V .        = uu x         ■      oin 6 A Ax 
^ n a 0 

uu 
<J TT a8 

vAy = - ^naa 
(-^-+1- cos e) 

Similarly,  if 0 > pa   , 

In the following we calculate the average values 

(5. 10) 

(5.11) 

vT,x=_liL_    rsin 
Bx     ^a 

w       =-2L     (-Ä + rco*) 
y      ^^o3 ^ (5.12) 

'vAx3,  vAy , VAxVAy. VAxvßx,  vAxVBy,  etc. 
■ 

when the cluster C changes its position around A and B during our observation, 
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It is r       .ly seen,  in view of the symmetry of the field,  that 

V»   a     = V,,  a      = V Ax*     =VAy
3      -VB>?     =VBy 

VAxVAy   = VBxVBy   = VAxVBy    = VAyVBx = 0- 

^    <* 

—   a  _rr   I uu r sin ö I   a
n 

VAx    yjl 77&  +^+^0086)5 
r d r d e 

JT I—±1^1- 
JJll   |       t" a 

J\3% * jf\X        y* 

n r d r d 9 

1 n - — 
Here 

n - 

and the domain of integration I is the domain between two co-centric 

circles of radius *• ano radius a with center at A.    Domain II is the domain 

encircled by the circle with radiuc a and with center    at A nsidering 

(5. 9), wc have 

•^PA^        ^n pA' nPAdPAd9A 
<VAV)T=//   "      I   ^ 8in9APA    I - 

-äL-  r^ysin3   eA dBAf     -i-   d p 
4TT2    J. J a  PA       A 

3 , 
—2 n rr log — 
4 n n 
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Ax II      4n'a4   J A   Vc 
9 . d 9J    p .   dp 
A" A/    rA      MA 

4 TT    (, 

Hence 

uu 0 ♦ 
-T—     nTT -3" ,4 4 

A« = 17? [108 ^+ T] 

Ax Ay 

It   is easily shown that this correlation factor vanisl es: 

3 
ai.^   H A ^ y^ a n  A 

n d p   A d 9   *t A" -uu   sin 9Aco8 gA 
v...vA.   =/ r 7~a ""H  A" "A VAxvAy f /        n yJpA=oJ 9A=D 

•'PA"       ^9 = 

4 TT PA 

uu    n •* 
P»    sin  d   d 9    d 

A 

= O. 

4.V   A A
UO

A
Q

PA 

(5. 14) 

4.    v.   /„ Ax Bx   . 

In order to calculate this factor, v.   v       is to be integrated over the 

domain of r,       in which a point is within distances less than i both from A 

and B.    The manipulation may be complicated,  depending on the relations 

among R, c and i. 

(i).    If *- <rR,  A and B do not have any common nearest neighboring 

clusv^r.    He.ice   
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(ii).    If R ■> (,,  R - -£• > a,   it is easy to calrulate v.   v     .    The 

integration is tobe made over the domain abed   indicated in Fig.   V.    The 

maximum value of i for given 6 is the solution of 

rm + <7-)S+^T-)rmCÜ89^3 

-Rco-e 
m . 'SI 

± <, [l + _A_ (cos a 6 - I)] 

(5. 16) 

Vre take only the positive value of r    . 

Fig.   7-    If R > I,  the clusters only in the domain 
"""   abed   contribute to the correlation between 

A and B. 

i i 

Then we have „    f^ 

VAxVBx      4 n / 
n u)      I / r  sin   Ar d r d 9 

9=0     r=0        [^-+ r8]8.R%3cosae 

Since R is always larger than r,  we expand the integrand in powers or r/R. 

16 nu)      /1    <*   -    a. t .   « r^      .    w     r a 16 nun3    //    J 

4TT   R •'•' 

[ir] 
VEX =7^JJ '•'» Mi-et-t 16 ir "" 

4 

+ 0|-i—I   y drdS 

Noting that 

r. 
f. 

m 1   ..I    ,    ^ R r-dr^^j     L^l  cos9+o[^-]j 

m 
1.65,    3 R 

r 

7/ 
dr =it°    l-^JL  cos 9+. 

sin 9  d r d G =  i 
4 
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// 
r sin2 e ( - J^ + 16 -S2| 

= -in J_6   R 

3
 9 

) drdS 

we obtain 

VAx VBx 
-_ 16 nou3 

4 TT3R^ 

= a,^3 

TT'R* 

'r^-4"^—) 
( l-8   "t3     + (1 iiry + "■ 

etc. 

(5. 17) 

(iii) R << o </,.    The condition ia illustrated in Fig.   8.    A and B 

have a common nearest neighboring duster.    The domain where r < ais 

called domain I. 
Fig.  P -If P«^,  A and B have 

a common nearest 
neighboring cluster. 

If C is in domain I, we have 

r3  sin"Ö si in?P 

[f * A *     »3 -R'r3    cosae 

,   ,   R2       x R3 
1-i       +      COS2 p 

4 r3        r3 

+ °m 
Hence , 

4   .     JJ irRa
+ ral'.RSracosS 

4173 
^L_ rlog ^_ + JLR8(»    1 )] 

^1 



If C is inside the domain II where r <a. A and B are present within the 

core of a cluster.    Hence, 

{vAxVBx ^-^s/T   r* sirf 0 r d r d 9 
Ml _       U)3 

Therefore, we readily have 

-H —+T "T '^ -"^ VAxvBx 
ID' 

4TTat: 

(5. 18) 

Fig.   - 4 - I;   Parabolic law by Taylor; 
II; <J/J power law by 
Kolmogoroff; the present 
theory gives the solid line. 

a B     Y 

VA VB    given by (5. 18) is valid for R <a and is in agreement with the 

experimental result obtained by Taylor (Fig. 4, f» Xv.   v_       given by 

(5. 17) is valid for R > I + a> and '8 in agreement with the part Y in Fig. 

4.    It is naturally expected that part ß in the same figure must be obtained 

if we carry out th»^ calculation,  with no particular difficulty,  by a means 

of a compu'ng machine. 
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VI.    DISCUSSIONS AND CONCLUDING REMAkKS 

1. The common difficulty in ordinary approaches of turbulence theory 

is that equations of correlation functions derived from the Navier-Stokes equa- 

tions i. re not closed.    The difficulty becomes serious due to the fact that the 

Navier-Stokes equations are non-linear.    In order to have a closed set of equations 

or correlation functions,   it is necessary to ignore some terms in some equations. 

In general,  however,  there is no assurance that those ignored terms are really 

igrorable without any significant errors. 

2. By noticing that a vortex line is a singular sedation of the Navier-Stokes 

equations where viscosity is ignored and that a vortex line is invariant in the 

sense of Helmholtz,  we assume that a turbulence field constitutes  many similar 

(elementary) vortex lines.    On this assumption,  we regard a turbulence field to 

be a discontinuous field of velocity.    By so doing,  however,   the non-linearicy 

of the field is tractable. 

3. The effect of viscosity is ignored.    One should note,  however, that the 

effect of viscosity of a vortex line is not to extinguish any amount of vorticity; 

the vorticity concentrated on an elementary vortex line diffuses finally due to 

viscosity,  but the total vorticity is invar-ant.    If this broadening of a vortex line 

due to viscosity does not seriously affect the main characteristics of the field 

under consideration,   it would be feasible to ignore the viscosity effect.    The 

situation depends on the time and space scales on which a field is considered. 

It is well-known chat the distribution of vorticity initially concentrated on a filament 

is given by ^ =^_ exp ( --^   ) 
t 4v.t 

^5 



where vis Viscosity coefficient) / (fluid density),   r the distance from the filament 

and t the time.    ( See L.  Prandtl,  the Mechanics of Viscous Fluids,   in Aero- 

dynamic Theory edited by W. F.   Durand,  Vol.  Ill,  p.  68. )   According to this for- 

mula,   the order of the broadening of a filament is given by 

r = (v t) lU (6. 1) 

If r given here is sufficiently smaller than the linear dimension of our close 

observation ^,   our assumption of neglecting viscosity would be feasible.    In this 

case,   it would be proper to take for t the duration of our observation; that is, 
I 

t = -— .     I >r 
v 

where v is the intensity of velocity fluctuation.    Substitution of the above in 

(6. 1) leads to — 

  > 1. (6.2) 
v 

Our present treatment made by ignoring viscosity is feasible,   if (6. i.) is satisfied. 

4. In a three-dimensional turbulence field,  the behavior of a vortex line 

is complex and the equation of the distribution of vortex line      s also complex as 

is shown in the appendix. 

5. The present article is merely a conceptual introduction.    The treatment 

of the basic  equation introduced here may vary significantly depending on the 

characteristics of boundary and initial conditions with which a turbulence field 

exists.    The situation may be similar to that of the Boltzmann equation in cases 

of rarefied gis dynamics. 

6. We note that there is a resemblance between the present theory and 

the ordinary kinetic theory of particles.    Specifically,   Eq.   (3. 5) is similar to the 

Liouville equation of many particle systems.    In spite of the similarity of forma- 

lism,   there is a significant difference between the present theory and the ordinary 

24 



kinetic theory of particles.    At the kinetic stage of coarse-graining,   before 

fluid-mechanical stage,   the effect of interaction among vort^xee result in 

"diffusion" in the configuration space.    On the other hand,   the effect of inter- 

actions among molecules causes friction and diffusion in the momentum space, 

as is well seen in a Fokker-Planck type equation which may be derived from the 

Boltzmann equation. 

7.    It should be noted that a field of vorticity is not always a field of turbu- 

lence; it is possible for a field of vorticity to be stable.    Phenomena in a stable 

field of vorticity,   for example, laminar boundary layer,  are out of the scope of 

the present investigation.    Our investigation begins with the assumption that a 

field under consideration is turbulent. 
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APPENDIX 

THREE-DIMENSIONAL TURBULENCE 

in a three-dimensional turbulence flow,  an elementary vortex line is not a 

straight line; it forms often a closed line as is schematically illustrated, in Fig. 

9.    Let us cut the closed line into segments of equal length I. 

Fig.   - 9 - A three-dimensional 
vortex line may be 
closed.    We cut the 
closed line into seg- 
ments of equal length, 
and investigate the 
distribution of those 
elementary segments. 

We investigate the distribution of elementary segments.    The strength of an 

elementary vort JX segment is invariant,  but the direction,  the length I and also 

the curvature change.    If there is no large non-uniformity of vr^'.Wy in the flow, 

^ may be almost invariant; if the segment is sufficiently short,  we may ignore 

the curvature.    By assuming these we have 

( ri " ri) x k^ vi.=K i_i—J;..r  ,1 
( r.-r.) 

i    J 

As similar to Eq.   (3.2) here r. is the position of the center of elementary segment 

i and r. of elementary segment j; ^is a function of i which accounts for the finiteness 

of length i.    Then we have for the basic Liouville equation 

r_i.+y v.. -i—+y (*..*% i-)lD(N>=o 

as similar to Eq.   (3. 5) 

(A. 1) 

"«*-»-*f S-B,^^,^ , 



The last term in the left hand side is the effect of changes in the directions of 

elementary segments; note that 

dt      n ^      »   ^ ri 

As is illustrated in Fig.  9i  elementary segment i and its neighboring segment j 

which belong to the same vortex line have a correlation.    This situation may be 

accounted for effectively by the consideration that the probable distribution of 

a segment is localized. 
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