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A KINETIC (NON-LINEAR) THEORY OF
TURBULENCE IN (NCOMPRESSIBLE FLUIDS *

I. Two-Dimensional Case

by

Toyoki Koga ¥
Polytechnic Institute of Brooklyn, Graduate Center
Farmingdale, New York
SUMMARY
In princinle, a turbulence field is to be governed by the Navier-Stokes equa-

tions. In orde~ to avoid the difficulty of treatment due to the non-linear character-
istics of the Navier-Stokes equati;anu. we begin with the assumpticon that a turbulence
field may be represented by a proper distribution of many elementary vortex lines,
each of which, teing a particular solution of the Navier-Stokes equations, exhibits
full characteristics of the non-linear equations, Based on this asgsumption, we
introduce an equation which governs the distribution of those elementary vortex lines,
in the same way as the Liouville equation governs the distribution of particles. With
respect to a two-dimensional field, it is shown that Taylor's parabolic correlation
mode for short distances and Kolmogoroff's 2/3-power correlation mode for moder-
ate distances are unified to one correlation mode which is valid for the entire range
of correlation distances. With respect to three-dimensional cases, introducing re-

marks are givea in the appendix.

This research was suppcrted under Contract Nonr 8359(38) for PROJECT
DEFENDER, and the Advanced Research Projects Agency under Order
No. 529 through the Office of Naval Research.
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most helpful for materializing the theory.
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I. INTRODUCTION

It has been widely felt that a satisfactory theory of turbulence must be

one in which non-linear characteristics of fluid motion are fully taken into considera-

tion. It ie the purpose of this paper to propose a theory attempted from the above
viewpoint, The medium is assumed to be incompressible, and detailed treatments
are made only of a two-dimensional case.

As is well-known, the significance of velocity correlation as the cause of
transport phenomena in a continuum was pointed out by O. keynolds : in 1895, and
clarified by G.1. Taylor ¢ in 1921. As we see in works published successively by
Taylor 3, Prandtl 4 von Karman 5, Kolmogoroff b and others between then and
World War I, earlier treatments were mostly kinematical and phenomenological,
being supported by similarity principle; physical characteristics of turbulence were
described in terms of such quantities as mixing length, size of eddy, and so forth
in those works. The nature of those characteristic lengths, as physical quantities,
was known only vaguely and intuitively. Among those achievements, Taylor's
experimental results of velocity correlation, his approach of coarse-graining tke
Navier-Stokes equations, Kolmogoroff's correlation functions have given strong
influences on modern turbulence studies.

After the war, Heisenberg, Onsager, Burgers, Chandrasekhar and
cthers7-8advanced various theories in attempting to find feasible statistical laws
governing the energy-spectrum characteristics of turbulence. The approaches of
these authors were inductive; they conceived mutual interactions among vortexes
as the cause of thermalization or decay or irreversible transfer of energy among
different spectrums, and attempted to formulate the transfer process by invoking

statistical methods in the theory of Brownian motion.




In those treatments before and after the war, we sec that those authors
were assuming, if implicitly and intuitively, that turbulence is a manifest of
vortexes of complex distributions,

Later, particularly in the last ten years, attempts have been made by
many authors (for example see Refs, 9 and 10) to derive feasible laws governing
the irreversible process in a turbulence field by applying statistical treatments
to the Navier -Stokes equations. Although the methods vary from one author to
another, the principle is one: A turbulence field may be described precisely in
terms of the velocity correlation factors of all the orders (of an infinite number).
As was suggested by Taylor, von Karman and others previously, if one derives
equitions governing velocity correlation factors from the Navier -Stokes equations
and solvesthem properly, one may achieve his goal. In this venture, however,
one must meet great difficulties which are common in dealing with non-linear
phenomena. Most usual methods of expansion of variables in series are not feas-
ible, because of the difficulty of convergency.

We have had many experiences of overcoming the common difficulty of non-
linear problemms. As Eyring i wrote recently, acience, in its various fields, has
invented various models to make the best compromise between the infinite detail
of reality and the limit of tractability. It should be remarked that, in general, a
model of a system is made of integrals (invariants) of motion of the syctem. (Of
course, approximate integrals of motion may be useful,too.) The present attempt of
turbulence theory is made also in this sense.

The gists of the present attempt are 1) to take into consideration the effect of
non-linear characteristics of dynamical processes governed by the Navier-Stokes

equations, and at the same time 2) to avoid mathematical difficulties which are usual
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in treating significantly non-linear fields.

In other words, this is an attempt to (reat the structure of tu.bulence cor-
ceived by Heisel “erg, Onsager and others ir a rdeductive sense. The consideration
of non-linear characteristics is believed to be ezsential in a deductive approach to
turbulence theory, particularly when the turbulence is strong. While the proposed
deductive approach to turbulence may appear to differ from those of other workers,
it by no means contradicts or dismisses the existing understanding of turbulence as
accumulated over the past fifty years. Rather, the present attempt is seen to
constitute 2 natural and rationzl synthesis made of th. xnowledges achieved by the

pioneers.

11. ELEMENTARY VORTEX LINES

There are two effects which characterizz a flow field governed by the Navier-
Stokes eruations: 1) Non-linearity and &) stress due to viscosity. We begin our
investigation of turbulence by ignoring the effect of viscosity. This approximation
is valid if the characteristic Reynolds number of turbulence is sufficiently large,
insofar as turbulence is investigated in a free flow, (See section VI) On this ap-
proximation, we have to make an important choice between the following two views:

1. "A turbulence field is a field of vorticity, continuously but non-unif rmly
distributed in the configuration space. The strength of vorticity is fiuite. There-
fore, there is no discrete vortex line, or tube conceived by Helmholtz. Based on
this consideration, a turbulence field is to be treated as a continuous field of

vorticity governed by the Navier-Stokes equation'.

2. '""Due to initial and boundary conditions, such as an array of rods inserted




in a flow which is otherwise uniform, however, aggregations of vorticity may
exist. ishe tield of vorticity may be continruous in the precise sense. But in an
approximation, it is possible to represent the field as an ensemble of discrete
vortex lines or tubes. By conesidering kinetic theory of such discrete vortexes, it
may be possible to obtain essential characterisiics of a turbulence flow, evoen if
we may be ignoring the microscopic and detailed structure of the flow field.”

As supporting the second approach, we have the following two knowledges:

A vortex line, which may approximate a local aggregatiun of vorticity, is a particular
solution of the non-linear Navier-Stokes equations, or the Euler tquations on ignoring
the viscosity effect, and is invariant as governed by Helmholtz's three laws.
Secondly, we have a ~uccessful experience of kinetic theory of gases on the assump-
tion that a gas consists of discrete and stable particles in spite of the fact that the
most precise description of a gas as a whole is a quantum-mechanical wave function.
which is spread in the entire space. Treating a gas as described by a wave function
might appear precise, but in fact we may miss ite essential characteristics due to

its enormous complexity. Instead, the approximate model of particle structure
enal’es us to see main characteristics of a gas rather easily. This is the approach
of kinetic theory.

According to the above consideration, we assume that a turbulence field is
represented by an appropriate distributicn of elementary vortex lines; each
elementary vortex line is of the same intensity and behaves according to Helmholtz's
three laws. A turbulence field consists of such elementary vortex lines distributed
non-uniformly. A vortex tube of a large size may be composed as a cluster of many
elementary vortex lines of the same direction, It is noted that such a vortex tube
of a large size exlibits a sort of thermalization phenomenon due to> random migrations

of elementary vortex lines constituting the tube, as is illustrated in Fig. 1.
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{II. KINETIC EQUATIONS OF ELEMENTARY VORTEX LINES

We assume that a turbulence field consists of N elementary vortex lines which
are parallel to ths z-axis and of which one half is of the positive sign ancd the other
of the negative sign. We may define the distribution of the N vortex lines by

pM=ns @ - ) 6 @ -8 (3. 1)

% . : e . * ;
where r. i3 a function of time and denotes the position of vortex i, and 0; denotes tae

*
direction and intensity of vortex i. Of course, Q).

X is an invariant in the present case.

?i and Si are independent variables. If vortex Qj is at rj and induces velocity Vij

atT,, - = .
1 . . .
- _(Fi-Fi) x Q
Vi =t (3.2)
- TOET)
1f Vi is the velocity of the main (average) flow,

vitVi ¥ ) Vi (3.3)

-~

is the total velocity at ;i: the trajectory of vortex i at rj is governed by

dr; = v
dk ' (3.4)
Therefore D(N)de.‘ined by (3.1, atisfies
3 ,v ., 3 N)_
(Fe4), "i*‘s.r.’D =0 (3. 5)
i i

The above equation is similar to the Liouville equation of N particles.

In 2 manner similar to that of the ordinary kinetic theory of particles, we may define
A oIN. T
Figl= o 29 9

N)a -
K#, j dfkdﬂk (3.6)

and so forth. Consideration of

F), j) - b

> = g lympxo

V., I o= =
a?l K ri (ri'rj)z
leads to
‘ 3 D(N)-.ﬂ‘a 3 NG -
.I- 'lj . ‘i‘:‘i- Cla.j ﬂ;- . (vljb &irj =0 (3. 7)
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Hencz, it is easily shown that Eq. (3.5) is reduced ‘o

3 L33 M N o A o)
(at+vii?l_)F (‘“Zvij'a—'r‘fp (ij) @x;=0 (3. 8)
j
where - -
dx.=dr,
xJ drl dnj (3.9)

a -y - - -
SRR VAR 3 e
-y a -
2 Wiesg * Ve Ay ) F b 4X=0

if_

jf-l. 2, ..., N (3.10)
and so forth, These equations constitute an indefinite series of equations tn a
manner s‘milar to that of the Bogoliubov-Born-Green -Kirkwooc .Yvon hierarchy

of equatiors governing the distributions of the molecules ¢ astituting a gas.

1IVv. MODES OF INTERACTION AMONG ELEMENTARY VORTEX LINES

1. Microscopic Interaction. If the interaction betw:en elementary vortex

lines i and j is strong, and they are fairly remote from the other voriexes, the

interaction is almost binary. In this case, Eq. (3.10) yields
ALY oD = 3 (2),. & _.
—+ V.. s o m— ,j) =0
5t * Vi AT PVii ST, VETL 5)

- -

(Vi=V;=0 is assumed) (4. 1)
4
According to the above equation, two vortexes i and j move along trajectories

such as illustrated in Fig. &.
Fig. 2 - A pair of elementary vortex lines

+ rotates if their signs are the same,
¢ ) but they move on two parallel lines
‘& \ ." if their signs are different.

U )
+
If i and j are of the same sign, they move on a circle, while, if their signs
are mutually opposite, they move on two parallzl lines. Their interaction does not

terminate unless they are disturbed by other elementary vortex line . We assume




that the strong correlation between i and j terminates in a finite and microscopic

time period due to weak but frequent pertubations due to ve." -ities exerted by other

vortexes such as represented by the last integral term in Eq. (3. 11). Acconding to

(4.1), we obtain 5
v .2 F ax 6.2 4o (2); .
f i 3T, J j ij 3’1"i + vji —3-"'_]_ ) FY4, ) dxj \

=ﬁ 5= - =2 G, jax, (4.2)

where d/dt is an operator meaning the differentiation along the trajectories of the

two vortexes i and j. Since it is shown that

1f* T Ly ()
*f USTF i ax)a
t j

is negligible, we obtain

T
2 = 2 Pl ) ax) ae
i ij 3T, j

1 .
1 P4 (2
rf fzf FOG, ) ax; at .
j[ F‘(z)(th)-l“(z)(t)]dx
i
:j[ P, + 3:1) F“)(;j+A;j)

= w0 = ] .
FUF) F rj) Jd:ﬁ {4. 3)

n

Here 4 ?i and ;j are the distances‘ traveled respectively by vortexes i and j during
a continuous correlation period of time I, The approach deriving Eq. (4. 3) and the
interpretation are the same as those employed for the Boltzmann collision integral
derived from the BBGKY hierarchy under the binary collision assumption, except

that 1) the integrand in Eq. (4. 3) is due to the non-unifermity of the vortex distribu-

tion in the configuration space while the integrand of the Boltzmann collision integral

is due to the non-uniformity of the particle distribution in the momentum space, and

that Z) the termination of the present interaction between vortex | and vortex j is
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caused by disturbances of other vortexes, while the termination of a collision between
two particles is due to the nature of Newtor's dynamics and the relevant force law.
(In case of charged particles, the terminati n of a binary collision is due to dis-
turbances of other particles “.)

2. interactions Among Semi-Stable Clusters of Elementary Vortexes.

A two-dimensional turbulence field is produced by an array of rods placed perpen-
dicularly in a flow which is otherwise uniferm. In origin, each rod produces a
street of vortexes similar to von Karman's vortex street. Of course, there are
interactions among those streets formed by many neighborir.g rods. Each vortex
constituting the vortex streets is considered as a cluster oi elementary vortex lines
and may be initially simulated by a vortex tube of finite diameter instead of a vortex
line, (8ee Fig. 1), Let us suppose that two vortex tubes are in interaction. Because

of the finiteness of the diameter of a tube, their interaction is8 more complex than an

interaction between two vortex lines.
Fig. 3 - A is a cluster of elementary vortex lines of

A — negative sign, and B is of positive sign. Initizlly,

\ : their cross-sections were circular. As they move

on two parallel lines, their cross-sections are

deformed: The part of A cioser to B proceeds faster
than the other part of A, etc.
a - @

In Fig. 3, two vortex tubes of different signs, A and B, are in interaction. They are

mutually driven on two parallel lines in the first approximation, but the part of vor-
tex A remote from B proceeds slower than the part close to B. Similarly, the part
of B remote irom A praceeds slov.er than the part close to A. Furthermore, each
vortex tube is rotating by itself. As a result, the cross-section of each vortex tube
is deformed as time passes. Similar and more complex deformations are caused on
a vortex tube surrounded by many ot. er vortex tubes. Thus a cluster (tube) decays
from its outer fringe toward its center. As a cluster decays, those elementary
vortexes which have drifted outward may be mixed with elementally vortexes of the

’. -
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opposite sign which have drifted from another cluster. Those twc groups o1 elemen-

tary vortexes of different signs may be mixed at random, and in eiffect the diameter

of a vortex cluster becomes smaller. As this process of decay prcceeds, each
cluster becomes thinner and the effect of each cluster deforming other clusters be-
comes weaker, This situation is conceivable if we notice that a vortex lins, instead
of tube, is not deformed at all by other vortex lines. This may be the reason for the
existence of an almost homogeneous and steady turbulence field indifferent of its
initial method of formation. According to the above consideration, however, there is
no homogeneous and steady turbulence in the strict sense. A seemingly homogeneous
turbulence is still on the process of decay, although the rate of decay may be small.

3. Interactions of the Vlarov Type. If a distribution of elementary vortex

lines is non-uniform in the microscopic sense, the integral term in Eq. (3. 8) dnes
not vanish even when the microscopic correlation betweeu i and j is ignored; that
is, .

}T v F(l)(j)dxj a—':'i )

J

does not vanish and gives the effect of macroscopic interaction.

V. CORRELATION OF VELOCITY FLUCTUATIONS
DUE TO CLUSTERS
As is described in the last section, clusters of elementary vortex lines are
assumed to constitute a homogenous turbulence field. Based on this model, it would
be possible to calculate the correlation between fluctuations at two different positions
in the space. Such correlations were first observed experimentary by G. 1. Taylor

in 1935. A schematic correlation curve is given in Fig. 4.

v v Fig. 4 - 1; Parabolic law by Taylor; 1II; 2/3
S —E&— power law by Kolmogoroff; the
. present theory gives the solid
"\\‘ line.
~
~—
N 1 R .
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Taylor could derive the correlation curve from the Navier-Stokes equations for
distances between two positions which are short as compared with the size of eddy;

that is the paratolic law:

Vax VBX‘=Q(1-RZ) .
Later, Kolmogoroff gave a forrnula of correlation valid for a broader range of dis-
tances of two positions where the correlation is considered, by means of a dimension-
al consideration; that is
Vaxvpase (1= R4 u
but so far, no rational attempt has been successful in deriving the correlation
function which is valid over the entire domain of R. In the following, it will be show
that our present model is useful tur the derivation.

We assume that each cluster consists of n elementary vortexes and is a
circular cylinder of diameter d; one-half of the number of the clusters is of the posi-
tive sign and the other half of the negative sign. They are distributed at random
in the configuration space with a uniform density. We also assume that the measure-
ment of velocities is made with respect to a coordinate axis system which is moving
with the velocity of the main (average) flow. First,it will be shown that the velocity
fluctuation at a position is attributed mainly to the nearest neighboring vortex cluster.

Secondly, we calculate the velocity correlaticn at a pair of positions.

1. Localization of the Random Distribution of a Cluster. As discussed pre-

viously, a cluster of elementary vortex l'nes is produced by a proper bounda~y ard/or
initial conditions . Since the velocity of a cluster is finite and the time period in
which a cluster passes through the fi:ld domain under investigation is also finite, the
probability distribution of the cluster is localized. The local domains of space in

each of which a cluster is present with uniform probability density are patched to-
gether and constitute the entire space domain under consideration. This consideration

may be feasible, if the formation of the turbulence field is done in a proper way;as such

11
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it ig made with an array of rods. The linear dimension of such a local domain is
denoted wita 4, which is of the crder of the distance of two neighvoring rods. By
denoting the number density of clusters with n, n'l“is of the order of the distance
between two neighboring clusters. Assuming that an observer is moving with the

velocity of the main flow V, and considering that the fluctuating part of velocity

of a cluster v is smaller than V, we have

L (the distance which the observer travels during

his observation) - 4
. v
A
Ls-s n-l/&
Hence
L - Lv .V_ n'l/Z
v v
Since L <1, we may assume that
v
v té (5. 1)

is the condition of our observation. This relation may be given based on von Karman's
vortex street theory. This is also the condition that an arbitrary position in the field
has- the same probability, as the averaged ons, to be occupied by a cluster. A similar
condition is realized in the special case where each cluster is distributed with a uni-
form probability density all over the field. In both cases, the probability densities

of clusters are the same. With respect to fluctuations in density, however, the two
cases are different: In the former case, a space domain of linear dimension larger
than { cannot be completely void of any one cluster at a moment of time. Ona the
other hand, in the latter case, it is even possible that the entire field, except for

one spot at least, is void of any cluster.

Z. Signifizance of the Nearest Neighboring Cluster.

The most significant contribution of velocity fluctuation at a point p i8 made by

the cluster which is the nearest neighbor of p. The reasons are:

12




1. The nearest distance and hence the largest induced velocity.

2. The location of a cluster is localized even though the precise location
at each moment is unknown. We should notice the difference between the uniform
probability distribution of a cluster and the localized probability distribution of the
cluster. To explain the lifference, we suppose that cluster a of strength w is local-
ized in domain A and the cluster b is in domain B, If they are of the same sign and
of the same strength and A and B are mutually symmetric with respect to P where
induced velccities are observed, the order of the fluctuation induced by the two

clusters at P is
W A8
2L, 2 (5.2)

where £ ¢ is the angle with which A and B is seen from P, and L is the approximate
distance of A and/or B from P, On the other hand, if they are completely at random

with respect to direction, the order of fluctuation is to be of the order of

2mL {5. 3)

In order to investigate the order of the magnitude of fluctuations at P induced

by clusters surrounding the point, we assume that 1 14 is of the order of (density

of clusters)-l. Also,we assume that Lz is the area of the domain in which a cluster

moves at random during the time period of our investigation.

Fig. 5 - The space is divided with co-centric circles of

~ which the center is at P, where the velocity
fluctuation is observed, and the radii are ¢,
34, 5¢4, ...

1!
0 Fal
We divide the space with co-centric circles of which the center is at P and the

radii are 4, 34, 5{,... The domain of the smallest circle is named domain l.
Domain 2 is the domain encircled by the smallest circle and its neighboring circle.
Similarly we may define outwardly domain 3, domain 4, ..., domain5,...

Domain Z,which is between the circle of radius { and radius 3 is divided by radial

13




lines into cells of the same area TTL‘,' which is the area of domain 1. The number of

the cells is

W(jt)z-ﬁ 4 -8

hEa

Suppose that a cluster of the same sign is confined in each cell. The velocity fluc-
tuation at P induced by the cluster in domain 1 is of the order of

v1 = W . (5. 4)
PLT AR

The total fluctuation of velocity at P induced by the eight clusters in domain & is of

the order of v w
% o=1— A9, (¢88,) (406,)
2
where
- A
Lestt Loyzg =%
It is easily shown that

v, =0.11 x v, (5. 5)

Similarly we may consider the effect of the clusters in domain 3. The number of the

cells is TSLP -7 (3102 -
ni?

and

v,ys h a8y (208,) (408,) (82 6,)

2mh,
where
n

Ly= 41, 08,= Fopg *Tp-

Hence

"s”azl"%"l"s:v" (5. 6)

In general, the effect of the clusters of the Vth domain is given as follows: The number

of the cells is (2 v-1p12 _n(d\;_”‘i@_s( 1)
=8 (y-
mye
Gt 18 = LT =0 R SIR)
Vo 2 x8(v-1) 8(v-1),

Hence -1

vaeY (a0, 2., 2K (5.7)

vV &nLV .

14




Here
Mv=8 (v 1) (5. 8)

l‘) as a function of vis tabulated as follows ;
v 2 3 4 5 6 7 8 9 516
kv 3 4 45 5 5<6 5<6/ 5-6” 6 cee
where 5<6, for example, means a value between 5 and 6. It is an easy matter to

see that

constitute a series which converges very quickly, and vy is a good approximation

of the entire fluctuation.

3. Correlations of Velocities.

Ta order to see consequences of the above consideration, we calculate cor-
relations between velocities at two positions A and B, induced by cl uster C which
is the common nearest neighboring one of the two positions A and B. It is assumed

that A and B are moving with the main flow.

Fig. 6 - We calculate

Yy T~ correlations between
velocities at two
positions A and B,
induced by Cluster C

The distance between A and B is R. R is assumed to be changed from zero to in-
finity. If R is larger than {4, the nearest neighboring cluster of A is different from
that of B, Then, in the approximation of ignoring those clusters other than the
nearest neighboring one, there is no correlation between the fluctuations at A and B.
We also assume that the radius ¢ of a cluster is finite and is sufficiently smaller
than {. A and B are on the x-axis with the o-igin of the coordinate system at the

center of AF. It is often convenient to give the position of C in terms of r, the

15
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distance from the origin O and ¢, the direction angle with respect to the x-axis.

Also we define

PA=K'C'. P,= BT

9A=< CAO, GB=W-<CBO.

1. The velocities at A and B.

(i) 1f QA;B > O, we have for the velocities at A and B induced by cluster C
of intensity y

v = @ .
Ax o, sinfy

v, = -2 cos 9
Ay *

AHDA
w .

Vg = - sin 6
B 2P B

v, = - =% __ cos§
By &TT;B e

It is a simple matter of geometry to find

1/2
P A=[ (_%_)a+ r£+ Rrcos 6]

1/2
P B‘[ (_f’,{_)£+ ra- Rr cos 6]

R

e +r cosb
sin 9A=%‘l—a , cos 6A= T R

A A
. r sin® -§—+rc039
sinf9_= , cos 8_=

B o B
B B

(5.9)

16




v, = w r 8in 6
[ é
Ax 2 F}—+r=~+Rr cos 9]

Hence

(3 + 71 cos §)

=W

v =
Ay
2 TT[-%— +|ra + Rr cos e]

w r sin §
v =
B¢ 2 n[%-a +r3-Rr cose]
" (--5{— +rcos§)
Vo o5 -
By F)
’ gn[-%— +1r3 -Rr cos 9] (5. 10)

(ii) 9 > AC, we have

w pA

2na Y

sin 6 A

n
L

Vax

= W

(r sin €)
ch’

V, 5= (R + ¢ cos §) 5. 11
cha T ( )

Similarly, ifo > Dp / .

27g

r sin 9

Bx

w o (--&+rcos¢3)

By  ,ng2 2 (5. 12)

In the following we calculate the average values

. 2 Y B
Yax , YAy, Yax YAy, Yax'Bx, Yax'By, etc.

when the cluster C changes its position around A and B during our observation.

17




It is r :ly seen, in view of the symmetry of the field, that

= = = = 0.
vAvay vavBy vAvay vAvax

-z
v .

2.
. r sin 8 :
v, ?= wz nrdrdg
b3 I zn(% +r® +Rrcosf) |
f‘[ ‘ mrsme nrdrd?®
zﬂd

3
={ VA:? 'I + (vAx)

4

Here 1

and the domain nf integration I is the domain between two co-centric
circles of radlus 4 anc radius owith center at A. Domain II is the domain
encircled by the circle with radiue 0 and with center at A nsidering
(5. 9), we have

=2
P A~ 7 .
v )f wsindapp |,
Ax 1 o =0

A 2T pal npadpadfy
F] {4 )
= D n sir? eAd9A i dpA
4 2 o ] PA
Qg
- 2

T2 nnilog S
4N c

18




Ak

o
w n o] 4
= n —
4 'rr’ 04 4
Hence
- 3 { 1
3 _ W
3. vAvay

It is easily shown that this correlation factor vanisl es:

2 »
— =L n - s'maeAcoseA ndpAdeA
AX Ay - =D 41 o,
PATY fa
[of
v —a. P “ein o dg . a
0ac 4.2 a“ A A AT Pp
& A

(5. 14)

In order to calculate this factor, VaxVBx is to be integrated over the

domain of r, in which a point is within distances less than j both from A
and B, The manipulation may be complicated, depending on the relations

among R, ¢ and ;.

(i). 1 <R, A and B do not have any common nearest neighboring

clus..r. He.ce
VaxVBx =0 (5. 15)
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(ii) R>y, R-1>50, itis easy to calculateVv The

Ax'Bx'
integration is to be made over the domainabcd indicated in Fig. 7. The

maximum value of 1 for given 6 is the solution of
r? +(R ) +£(R)r cus 8=La
m ‘2 T 'm

or 3

-R con § "‘L[l+
2 84

(cos 9 - 1)]

(5. 16)
We take only the positive value of L
Fig. 7- If R > ¢, the clusters oniy in the domain

abcd contribute to the correlrtion between
A and B.

I
|
|
]
""“——R-——d

Then we have 2n
- f o am ardrdsg
Ax Bx 3

r=0 T+ ra}a-Rar 2cos?y

Since R is always larger than r, we expand the integrand in powers or r/R.

l6nw r e 3
Vax® Bx r sin e 18—3--+ 16 —5 cos® 3

R
L.] i drd®
R4

Noting that

mr" dr=lL~: ]_AR coae+01—lig
7 4 1
0

m

r dr- 31- cos 8+...$
0
ff' sin’3 drdG-__q_L
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6
= -z—ﬂ ia—
3 R etc.
we obtain
_ 16 ny? n 6
Vax VBx T T e, P

_ Wt 8 ¢°
2Lt (1-3 %7 +--- ) (5.17)

(iii) R << 0 <¢. The condition is illustrated in Fig. 8. A and B

have a common nearest neighboring cluster. The domain where r < gis

called domain 1.

Fig. & -1f F«/. A and B have
a common nearest
neighboring cluster.

1f C is in domain I, we have

.2 . 5
Rra 8in” 0 _ sin®3 1-e B R S G
a : 2
[— + ra] ‘R cos’8 r S 39
4 R
+0f ]$
r.

Hence,

Ax Bx), = nw? ff r2gin? dgdr

I[R + r2 -Rzracosza

3
Y L 1 gl _l
eyl 1 B SR Y
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If C is inside the domain Il where r <g, A and B are present within the

core of a cluster. Hence,

(Vax BX)IIWII r"am’ardrdg

16rr=l,=

Therefore, we readily have

—_— w? * 1 _ R 1 1
Vax'Bx 4313 [log o ¥ o '_']

4 8 ) La
(5. 18}

Fig. -4 - I; Parabolic law by Taylor;
11; 2/3 power law by
Kolmogoroff; the present
theory gives the solid line.

Vax'Bx given by (5. 18) is valid for R <0 and is in agreement with the

experimental result obtained by Taylor (Fig. 4, g )'vAvax

(5. 17) is valid for R > ¢ + 0, and is in agreement with the part vy in Fig.

given by
4. It is naturally expected that part p in the same figure must be obtained

if v'e carry out the calculation, with no particular difficulty, by a means

of a compu’ ‘'ag machine,

22




V1. DISCUSSIONS AND CONCLUDING REMALKS

1. The common difficulty in ordinary approaches of \urbulence theory
is thac equations of correlation functions derived from the Navier-Stokes equa-
tions . re not closed. The difficulty becomes serious due to the fact that the
Navier-Stokes equations are non-linear. In order to have a closed sei of equations
or correlation functicns, it is necessary tu ignore some terms in some equations.
In general, however, there is no assurance that those ignored terms are really
igrorable without any significant errors.

2. By noticing that a vortex line is a singular sc.ation of the Navier-Stokes
equations where viscosity is ignored and that a vortex line 18 invariant in the
sense of Helmholtz, we assume that a turbulence field constitutes many similar
{elementary) vortex lines. On this assumption, we regard a turbulence field to
be a discontinuous field of velocity. By so doing, however, the non-linearity
of the field is tractable.

3. The effect of viscosity is ignored. One should note, however, that the
effect of viscosity of a vortex line i8 not to extingui.h any amount of vorticity;
the vorticity concentrated on an elementary vortex line diffuses finally due to
viscosity, but the total vorticity is invarfant. If this broadening of a vortex line
due to viscosity does not seriously affect the main characteristics of the field
under consideration, it would be feasible to ignore the viscosity effect. The
situation depends on the time and space scales on which a field is considered.

It is well-known chat the distribution of vorticity initially concentrated on a filament

is given by w=1:‘ exp(-ﬁ)
4t
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where v is ¥iscosity coefficient) / (fluid density), r the distance from the filament

and t the time. ( See L. Prandtl, the Mechanics of Viscous Fluids, in Aero-

dynamic Theory edited by W. F. Durand, Vol. IIl, p. 68.) According tc this for-

mula, the order of the broadening of a filament is given by
r=(vt 1/2

If r given here is sufficiently smaller than the linear dimension of our close

6. 1)

observation ¥, our assumption of neglecting viscosity would be feasible. In this

case, it would be proper to take for t the duration of our observation; that is,
1

t = -—;—- ’ L >r
v
where V is the intensity of velocity fluctuation. Substitution of the above in

(6. 1) leads to -
LV

> 1. (6. 2)
)
Our present treatment made by ignoring viscosity is feasible, if (6.2) is satisfied.

4. In a three-dimensional turbulence field, the behavicr of a vortex line
is complex and the equation of the distribution of vortex line :8 also complex as
is shown in the Appendix.

5. The present article is merely a conceptual introduction. The treatment
of the basic 2quation introduced here may vary significantly depending on the
characteristics of boundary and initial conditions with which a turbulence field
exists. The situation may be similar to that of the Boltzmann equation in cases
of rarefied gxs dynamics.

6. We note that there is a resemblance between the present theory and
the ordinary kinetic theory of particles. Specifically, Eq. (3.5) is similar to the
Liouville equation of many particle systems. In spite of the similarity of forma-

lism, there is a significant difference betweer. the present theory and the ordinary
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kinetic theory of particles. At the kinetic stage of coarse-graining, before
fluid-mechanical stage, the effect of interaction among vortaxes result in
"diffusion" in the configuration space. On the other hand, the effect of inter-
actions among molecules causes friction and diffusion in the momentum space,
as is well seen in a Fekker-Planck type equation which may be derived from the
Boltzmann equation,

7. Tt should be noted that a field of vorticity is not always a field of turbu-
lence; it is possible for a field of vorticity to be stable., Phenomena in a stable
field of vorticity, for example, laminar boundary layer, are out of the scope of
the present investigation. Our investigation begins with the assumption that a

iield under consideration is turbulent.
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APPENDIX
THREE-DIMENSIONAL TURBULENCE

in a three-dimensional turbulence flow, an elementary vortex line is not a
straight line; it forms often a closed line as is schematically illustrated. in Fig.
9. Let us cut the closed line into segments of equal length 4,

Fig. - 9 - A three-dimensional

T~ vortex line may be
closed. We cut the
closed line into seg-
ments of equal length,
and investigate the
distribution of those
elementary segments.

We investigate the distribution of elementary segments., The strength of an
elementary vort:x segment is invariant, but the direction, the length { and also
the curvature change. If there is no large non-uniformity of vel~-{.y in the flow,
{ may be almost invariant; if the segment is sufficiently short, we may ignore

the curvature. By assuming these we have

Vi.=n __._3.__1( Ti T Tj) x

i = 3
(rirj)

As similar to Eq. {3,2) here ;i is the position of the center of elementary segment

i and r, of elementary segment j; x is a function of ; which accounts for the finiteuess
J

of length 4. Then we have for the basic Liouville equation

[_Q_. +z ;i' 3_. +;‘ (o - avi__ -—-a:-—)]D(N):O
3t AT = Ary aOi

(A. 1)

as similar to Eq. (3.5).

O AR
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The last term in the left hand side is the effect of changes in the directions of

elen.entary segments; note that

-t

d-. Qi 0~ v - .
UL . LA N 11X
dt P Ar; a1y

As is illustrated in Fig. 9, elamentary segment i and its neighboring segment j
which belong to the same vortex line have a correlation. This situation may be
accounted for effectively by the consideration that the probable distribution of

a segment is localized.
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