——




Quality Control Under Markovian Deterioration

by

Sheldon Ross

TECHNICAL REPORT NO. 110

June 14, 1968

Supported by the Army, Navy, Air Force and NASA under

Contract Nonr-225(53) (NR-042-002)

with the Office of Naval Research

Gerald J. Lieberman, Project Director

Reproduction in Whole or in Part is Permitted for

any Purpose of the United States Government

Department of Operations Research
and
Department of Statistics
Stanford University
Stanford, California

e S TR O




ed e B P D D G & oS

8 max

[ SSN )

— c— ] _— [ ouug G

Quality Control Under Markovian Deterioraticn

by
Sheldon Ross

1. Introduction

This paper considers the following model: A production process
produces items at the beginning of distinct time periods t = 0,1,2,...
It is supposed that at any time t the production process may be in any
one of a countable number of states 0,1,2,... and that the quality of
the item produced is a function of this underlying state. It 1is also
supposed that the state of the process of time t is not known and can
only be determined by sampling the item produced. If the process is in

state 1 then a cost I, is involved in sampling the item. The purpose

i
of sampling is not to replace poor items by good ones but rather to
check the manufacturing process.

Thus at the beginning of a period one must decide whether to inspect
the item produced or not. Also one may decide to revise the process.
This might be done, for inatance, if an item had been sampled the
previous period and had shown that the production process was in a poor
state., The cost associated with revising a process in state 1 is Ri’

It is supposed that if the process is revised at the beginning of
period t then it will be in state O at the end of period t. Also it

is assumed that no item i1s produced during that period. If the process

is in state 1 at the beginning of period t and is not revised then it
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will remain in state i during the remainder of that period. If a
process is in state 1 at the end of a period then with probability Pij
it will be in state j at the beginning of the next period.

If the process in in state i and an item is produced without inspec-
tion then there is a cost Ci incurred. (The inspection cost Ii may
be thought of as already including a production cost). However we
suppose that this cost does not directly become known and thus
cannot be used to indicate the state of the process. It is assumed
that all costs and transition probabilities are known, and that all
costs are bounded.

In this paper a framework is provided for handling problems of
this nature. In Section 2 a method of indicating the (observed)
"state" of the system at any time t is given and some theorems relating
to the convexity of the optimal inspection and revision regions are
proven. In section 3 a two-state production process is considered
and the structure of the optimal policy is determined. An interesting
sidelight of this is that the optimal policy doesn't necessarily have
the simple form which intuition might lead one to predict. In
section 4 we treat the case where one of the parameters of the model is
not fully known.

The general model considered here is similar to one considered in
[2). However, both the methods employed and the results obtained are
different. It should also be mentioned that the above model need not
be interpreted solely in a quality control context but may also be
interpreted as a model for machine deterioration when inspection is

costly.




21 General Model

We s"all say that the system is in state P = (Po,Pl,...) if with

probability P, the underlying process is in state i, 1 = 0,1,... We

i
let S = {P -(}‘0.1’1,.....):Pi >0, [ P, =1} denote the state space

i
of the system. Thus we are allowin; for the possibility that at time
t = 0 we only know the underlying state of the production process up
to some arbitrary probability distribution.
Let xt denote the state of the system at the beginning of
period t; anl let At: denote the action chosen at t- either produce

without inspection (P), produce with inspection (1), or revise the

process (R).

Let i P,C, if X = (Py,.....) and A =P
C(X,,8,) = i P,I, 1f X = (Py,.....) and A = L
i PR, 1if X = (Po,.....) and 6, =R

A policy is any (measurable) rule for choosing actions. For any

policy R and Be(0,1) let w(P,8,R) = I BtER[C(X ,8,) | X, = Pl, and
w0 t’ t

let VB(P) = inf y(P,8,R) PeS. Thus VB(P) is the expected cost incurred
R
when an optimal policy is employed given that the system starts in

state P and future costs ar= discounted by a factor B.
For any PeS, let TP = ((TP)O,(TP)l,...) where (TP):L = .‘)l: Piji
i
i=0,1,... and let e = (Pio’ Pil"") i=0,1,...




Then P {xt+l = TPIXt =P, 8 = P} = 1
.|
P{X,, = el|x, =P8 =1} = P  1i=0,1,....
0
P{X, = el =P A =Rl =1

It 1is well known (see [1]) that VB(P) is the unique solution to
(1) V_(P) = min {IP,C, + BV,(TP); IP,I, + BIP,V,(el);
B 171 B 4 171 i'8 ’

IP R, + sz(eo)} Pe$S

i
and any rule RB which when in state P selects an action which minimizes

the right side of (1) 1s B-optimal - i.e. w(P,B,RB) - VB(P) for all Pe$S

{P:VB(P) = IP,C, + BVB(TP)}

Definition: The B-optimal produce region

The B-optimal inspect region = -{P:VB(P) = IP,I, + BI PiVB(ei)}

0
{P:VB(P) = IR, + BVB(e )}

Lemma 2.1: VB(P) is a concave function of P - i.,e. i1f P = APl + (l-A)P2

The B-optimal rev:.se region

Then Vg () > Wy (B1) + (1-1)V, (P%).
IP, 1., zpiki}

> R |
n n-1 n-1 1,
VB(P) = min {ZPici + BVB (TP); IP, I, + BEPiVB (e7);

Proof: Let V;(P) = min {ZPic

n-1, 0
zpiRi + sv8 (e )}

Then Vé(P) being the minimum of three concave functions is concave.

n—

8
' !
same reason since T(AP + (l-A)Pz) = AT(P ) + (1-1) T(PZ). Thus, by

Assuming that V 1(P) is concave we get that V;(P) is concave for the

induction, VE(P) is concave for all n. But VE(P) is just the minimal

expected costs incurred over n stages and thus VE(P) + VB(P).

QED,

&~




Theorem 2.2: Both the B-optimal inspect and revise regions are convex.

1 1 i
- zpici + BEPiVB(e )
2 2 2 i
and VB(P ) = XPiCi + BEPiVB(e )
4 1 2
and let P = AP + (1-))P°. Then

VB(P)

|v

1 2 i
VB(P ) + (l-A)VB(P ) = ZP1C1+ BEPiVB(e )

but by (1) we get the reverse inequality. The same method

I
l
[
| Proof:  Suppose V,(2))
|
I
I

works for the revise region.

L QED.

Often one is interested in an optimality criterion which does not
discount future costs. Such a criterion is the long-run expected average
cost per unit time. So for any policy R define

n
¢(P,R) = 1im sup I ER[C(X A )|X0 = P]/n. Fix some PoeS and let
n+o t=0 Bt

/ fB(P) = VB(P) - VB(PO). The following theorem was proven by Ross in (1].

Theorem: If {fB(P): PeS,Be(0,1)} 1s a uniformly bounded equicontinuous
. family of functions then

(a) There exists a bounded function f(P) and a constant g such that

(2) g+ £(P) = min {EP,C, + £(TP); £P,I, + £P £(e’); IP

0
- 4G4 R, + f(e')} PeS

i

(b) g = lim (l-B)VB(P) for all PeS; and for some sequence Br + 1
g1

£(P) = lim fB
r+ °r

(P)

(c) If R* 18 any rule which when in state P selects an action which

minimizes the right side of (2) then

G Ul s bus




g = ¢(P,R*) = min ¢(P,R) for all PeS
R

From (b) of the above and Lemma 2.1 we thus have

Lemma 2.1': If {fB(P)} is uniformly bounded and equicontinuous then

f(P) is a concave function of P.

Theorem 2.2': 1If {fB(P)} is uniformly bounded and equicontinuous then

both the average-cost optimal inspect and revise regions are convex.
Proof: Same as Proof of Theorem 2.2. (The average-cost regions are
defined by using equation (2) in the same manner as equation (1) was

used in the B-discount case).

3. A Two-State Production Process

In this section we shall suppose that there are two underlying
states - 0 (the good state) and 1 (the bad state). If the process is
in the good state at time t and, if the process isn'® revised, then with
probability 7 it will be in the bad state at time t+l where it will
remain until it is revised - 1i.e, POO =] -7, Pll =],

The cost of producing without inspection will be taken to be zero
for the good state (C0 = 0) and C for the bad state (C1 = C). The
inspect cost I and the revise cost R will be assumed not to depend on
the underlying state - i.e, I0 = Il =I,Ry= Rl = R, It shall be
assumed throughout that C < I < R (this conditions is natural since the

inspect cost 1is supposed to include some cost due to production).
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We will only consider the discounted-cost case and will be
concerned with determining the structure of the optimal policy rather
than with computational algorithms.

Since there are only two states we may let S = {P:P¢[0,1]}; and
we say that xt = P if P is the probability that at the beginning of
period t the underlying process is in the bad state. Also in this
specialization of our general model we have that TP = P + 7 - 7P

and

3) VB(P) = min {CP + BVB(TP); I+ BPVB(l) + B(l-P)VB(w); R + BVB(n)}

Pe[0,1].

Lemma 3.1: VB(P) is monotone non-decreasing in P,

Proof: Let
Vt(P) = min {CP,I,Kk} and recursively
(4)

v‘;(p) = min {cp+sv‘;‘1('r1>); I+ epvg‘lu) + s<1-p)v‘;‘1(n); R + avg'l(n)}

Then it is easily seen by induction that VE(P) is monotone for all n and

thus that VB(P) is monotone.

QED.

Lemma 3.2: Every B-optimal policy produces at all P such that 0 <P < m,

Proof: Suppose some optimal policy inspects at Pe[0,7n]. Then

VB(P) = I+ BPVB(I) + (1-P)V(m) > I + BVB(“)'z I+ BVB(P)

by monotonicity. Thus VB(P) > I/1-8.




However by (3) Vg(") < C + BVy(1) and thus c/1-8 > VB(l) Z'VB(P) > 1/1-8
which is a contradiction. A similar kind of contradiction is arrived at
if an optimal policy revises at Pe[0,7].

QED.

Theorem 3.3: An optimal policy RB may be determined by three numbers
PisPyyPy TP <Py <Py < 1 such that RB produces for 0 < P <P,,
inspects for Py < P < PZ’ produces for P2 P <P, and revises for P > P3.
Proof: By Lemma 3.1 and (3) it follows that the B-optimal revise
region may be taken to be a right-hand interval. The result then follows

from Lemma 3.2 and Theorem 2.2.

QED.

Thus the B-optimal poliry may be described graphically as follows:

Produce Produce
without without
inspection Inspect inspection Revise
r +- e - y
0 P1 P2 P3 1

It is however somewhat counter-intuitive to have two disjoint produce
regions. Intuitively it would seem likely that the second produce
reglon could always be taken to be vacuous. That this is not so, and
thus that sometimes four distinct regions are necessary to characterize

the B-optimal policy, is shown by the following example.
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Example: C =4, 7= ,1, R=10, I =6.

Then by letting B = 1 and using (4) we can show that

20.87 P + 7.13 P < .471
vI(P) = { 8.13P +13.13 .470 <P < .493

17.13 P > .493

and thus

min {22.78 P + 9.22; 7.91 P + 15.22; 19.22} for P < ,412

Vg(P) = ¢ min {11.31 P + 13.94; 7.91 P + 15.22; 19.22} for .412 < P < .437

min {4 P + 17.13; 7.91 P + 15.22; 19,22} for P > .437

thus

’

22,78 P + 9,22 P < .404 (P)
8 7.91 P + 15.22 .404 < P < ,489 @
Vl(P) =

4P + 17.13 .489 < P < .521  (P)

19.22 P > .521 R)

L

Thus for B near 1 the B-optimal eight-stage policy starts off by producing

for Pe[0,.404), inspecting for Pe[.404 .489), producing again for Pe[.489, .521),
and revising for P > .521. Thus we see that four distinct action regions

mir t be necessary. The next theorems give sufficient conditions for the
optimal policy to have a simpler form than the general one givey by Theorem 3.3.

For n>1 let T%° = T(T" 'P) where T°P

= P, then
1
TP = % 4+ (1-71)P
T2P = g4 (l-m)n + (l-n)zP
TP = 14+ (L-mm + ..o + (-0 10 4 (1-m)Pp

1 - (1-P) (2-m)"

9




Let RO be the policy that always produces without inspection (always

takes action P).

Then (8,P,8%) = 1 8%I" = Cc r 8" (1 - (1-P) 1-1)™)

n=0 n=0
C Cc(1-p)
(5) = - g
1-8 1 - B(1-m)
0 C
Theorem 3.4: (a) R is B-optimal if and only if R 2 18-1)

C
(b) If R < 1B (1-1) then every B-optimal policy revises

for P near 1.

Proof: I” R then it can be checked by direct substitution

C
2 T8 m
0 0 0
that y(P,B,R") satisfies (3) and thus R  is optimal. If R 1is optimal

then by (3) we have that

W(I,B,Ro) <R+ Bw(n,B,Ro) which implies by (5) that

< g
18 <R*@TB®a-sam
C
o R z 1-8(1-m)

To prove (b) we note by (3) that if an optimal policy doesn't revise

gnC
(1-8) (1-8(1-m))

for P = 1, then Vy(1) = Jog < R + 8V,(r) <R+ 8u(n,8,R%) = R +

which implies that R > The result follows for all P near 1 by the

—C
1-(1-m) °
continuity of VB(P)' (The continuity of VB(P) is proven in the next Lemma).

QED.

10
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The following Lemma will be needed in the sequel.

| 1 - (8(-1)"
1 - B(1-m)

n n
Lemma 3.5: |Vs“’1) - VB(P2)| < c|1>1 - P

all Pl’PZ' all n.

Proof: The proof is by induction; the result is trivial for n = 1.

So assume it for n - 1. There are now three cases:
(1) V (P ) = Ccp, + BV (TPl) which implies by (3) that

ve a(Py) - v (p,) < c|p, - P+ B[vg'l(rpz) s vg‘l(rpl)]

< clp, - B |+ Bc-m |, - P,| &= (BQ-m)™"
1 - 8(1-m)
1- B(l-n)

(11) Vg(Pl) = I+ 8P Ly +8a-p 3 v 1(n) which implies by (3) that

1 B

-1

Ve, - V() < 8lp, - Byl (V)T - V(M)

1 - (8(1-1))"L
1 - g(l-m)

< 8lp, - B,| c@-m)

1 - (8Q2-m)"
1 - B(1-7)

= clpy - B,

(114) vg(P R + ev 11) which implies that

)"
n n
VB(PZ) - VB(PI) < 0.

The result then follows by interchanging P1 and P2.

QED

11




The following corollary is immediate

C|P1-P2| ) clpl-pzl

Corollary 3.6: V. (P,) =V (P,))] < <
BT 1 B2 1 - 8(1-1) n

Theorem 3.7 (Sufficient Conditions);

(1-8) (R+6V (1)) R -1
<

(a)

s is a sufficient condition
c B(Vg(1) - Vy(m))

for the existence of a 8-optimal policy which produces for P < Pl'

inspects for P, < P < P, and revises for P > P, for some n < P, < P, < 1.

c R-1 R
() I+ 8(Vg() - Vg(m) 2 or <= (1-g(2-m)
1 - B(1-m) B(Vg(1) - Vg(m) C

is a sufficient condition for the existence of a R-optimal policy which
produces for P < P1 and revises for P > P, for some Pp2rm - i.e. no
inspection region.

Proof: (a) Let P, and P, be such that CP, + BVB(TPI) =R+ BVB(n) and
I+ BPZVB(I) + 5(1-P,) VB(w) =R + BVB(n). If such a P, doesn't exist
then let it be infinite, 1 = 1,2. Then using the fact that CP + BVS(TP)
is monotone and concave it follows that a necessary condition for every
g-optimal policy to have four distinct action intervals is for P, > PZ'

(See figure 1).

12
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CP + BVB(TP)

R + BVB(n)

| I
| P i R

| [l

Figure 1

But 1if P1 > P, then VB(PI) =R+ BVB(n) and thus by monotonicity

VB(TPI) = R + BVB(w). Thus CPl + B(R+BVB(n)) =R 4+ BVB(ﬂ) or

(1-8) (R+BV, (7))

Pl = . . Thus P; > P, implies that
(R#BVB(W)) R-1
(1-8) ———— > and thus (a) is proven.
c B(VB(l) - Ve(ﬂ))

(b) In order for every f-optimal policy to inspect at P we must have

6 I+ BPVB(l) + B(l—P)VB(n) <R+ BVB(n) and

(7) T+ RV (1) + B(1-P)Vy(m) < CP + BV, (TP).

13

I+ BPVB(l) + B(l-P)VB(ﬂ)




Now (6) implies that P < R-1I . From (7) and

BV, (1) - Vg(m)

Corollary 3.6 we get

I+ 8PV, (1) + B(1-P)V, (1) < CP + B[V, (n) + —= (1-1)P)
B B B
1-8(1-m)
which implies that
I
P > C . Thus we would need both that
T8(-m - B(Vg1) - Vg(m)
R -1 s - 1 and
B(VB(l) - VB(N)) T80 - B(VB(l) - VB(n))
C 1 < 1. Thus 1f either of the above

TR ~ B - YD)

inequality doesn't hold then there exists a B-optimal policy which never
inspects. It is easy to see that it can be taken to have the desired

form.

QED

The conditions given in Theorem 3.7 unfortunately depend on VB(l)

and Ve(n). However, we can prove the following:

Corollary 3.8: If R < SRSl Lo then either
1-g(1-m)
I+ (RC) > —2— o 2=l R (1 50-m)
1-8(1-m) B (R-C) (¢

is a sufficient condition for a B-optimal policy which produces for

P <Py and revises for P > P,.

14




Proof: R < Sm = implies by Theorem 3.4 that VB(l) = R + VB(n).

1-8(1=-m)
Thus VB(l) - Ve(n) = R + (B-1) VB(") > R - C. The result foliows from

Theorem 3.7.

QED
Note that 1if R > —L_ then Ro, the policy which always produces
1-8(1-m)

(without inspection) is optimal.

4.  Unknown

We have assumed up to this point that all the parameters of the model -
C,I,R and n- are known. However, while the cost parameters would probably
be knovn it is quite likely that = will not be known with certainty. We
shall now give a method for estimating n from past records of the process;

we also show what to do 1f an apriori distribution for m is known.

Estimation of 7

We shall suppose that the past records for the process yield the
following sort of data: (nl,Zl),...(nr,Zr) where n, denotes the number of
periods succeeding the time at which the process was known to be in the
good state (either by a revision or by an inspection showing it to be good)
until it was next inspected, and Zi is 1(0) if the inspection showed the
process to be good (bad).

Then P{Zi =1} =1 - P{Zi = 0} = (1-m)™, and so the probability
density of Z, is given by P,(Z,) = (l—n)nizi (1—(1-n)ni)1-zi z, = 0,1

and the joint likelihood of all the Zi's is given by

15
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| z niz r -
L(Z,...2) = =01 0 (1--n"hHiTA
r
i=1
r r n
i log L(Z,,...2.) = In,Z, log (1~7) + I (1-2,) log (1-(1-m) 1)
1 r i1 i
1 1=1
‘ r 032 r i -1
2 log L(Z ,...,2) = - L2 + & (1-2) n,1-0)™  [1-(1-m)™]
o r 1
1 1-n 1=1

and so the maximum likelihood 7 is given by

¢
185 if Zi =0 for all 1
= o, if Zi =1 for all i
T =
r r
~ - ~ -1
W the solution to L tn,Z, = I (1-Z,)n (l-n)ni 1[l-(l-n)ni] .
- 11 ST |
1-n 1 i=]1
L otherwise

Special Case: 1if ng=n for all i = 1,...,r then

mn o= 1 - T Zi/r
1

(b) Prior Distribution for 7

We suppose that we have an apriori density g -~ i.e.

x
P{n < x} =/ gy(y)dy 0< x< 1 - and that we are interested in minimizing
0

the expected f-discounted costs,

We shall say that the system is in state (P(n),g) at time t - i.e.
X, = (P(n),g) - 1f P(n) denotes the probability (possibly as a function of
the unknown n) that the process is in the bad state at time t, and 1if g is

the posterior (given everything that has happened up to time t) density of n.
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For t =0,1,... let Xt - (Pt(n),gt). We shall assume that Po(n)
is either of the form Po(ﬂ) = P or Po(n) = (1-7n)P + n where P is some
number in [0,1). Thus Po(n) is monotone non-decreasing in 7 and from
this it follows that Pt(n) will be monotone non-decreasing in w. This
is 8o because Pt+1(n) is either mor 1, or (l—n)Pc(n) + m. We can thus

(P(m),g):g 1s a probability density on [0,1],
let the state space S ={ 0 < P(r) <1 for all me¢(0,1], P(n) is monotone
non-decreasing in 7.

Letting VB(P (m),g) denote the expected B-discounted cost incurred

nver an infinite time span given that the process starts in state

(P(n),g) and an optimal policy 1is employed, we have that
CEgP(ﬂ) + BVB(TP(ﬂ).S)
1 2
(8) Vg(P(m),g) = min { T+ BEP(MVg(l,gp.y) + BL-EP(M)Vy(mgp )
R + BVB(n,g)

where TP(m)

(1-7) P(n) + n
1

E P(r) = [ P(m) g(w) dn
g 0
1 P(x) g(x) P(x) g(x)
Bm® " T = ———
J P(x)g(x)dx E P(m)
0 B
2 (1-P(x))g(x) (1-P(x)) g(x)
Bp(m ™) = - '

/ (1-P(x))g(x)dx 1 - E P(n)
0 8

where by P(x) we mean P(n) evaluated at 7 = x,

17




As before we may also define

V;(P(ﬂ),g) = min (CEP(); I, R} = CEP(r)

(9) Vg+l(P(:),g) = min CEgP(n) + BVE(TP(n),g)
n 1 n 2
I + BEgP(m) Vg(l,gp(,y) + B(I-EP(M)Vo(m,gp )

R + BV (7,g)
Thus the finite stage problem may be solved recursively; and

Ve(R(n),g) > Vg(R(n),g) asn >«

In this paper we have only considered the case that the true state
of the production process is observable upon inspection of the item
produced. However often one would not learn the true state upon
inspection but would rather get some additional (not necessarily
exhaustive) information about the true state. The first paper dealing
with this latter model was that of Girshick and Rubin [3]. They however
incorrectly stated that the average cost optimal policy may be character-

B I R
ized by three action regions ) ) 1 The first counter-

example showing the Girshick-Rubin solution to be in error was given by
Taylor [6]. Tafeen [5] has recently treated a similar model and has
ghown that under some restrictions on the information pattern and state
space the optimal policy may be characterized by three regions. However
his result doesn't hold if the state space is allowed to be the whole
interval (0,1]. Future research on the general Girshick-Rubin model
(under both an average and discounted cost criterion) is thus needed.

It would for example be interesting to know if the optimal policy may

be characterized by four regions as in the present paper.

18
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