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Quality Control Under Markovian Deterioration 

by 

Sheldon Ross 

1.  Introduction 

This paper considers the following model: A production process 

produces Items at the beginning of distinct time periods t - 0,1,2,... 

It is supposed that at any time t the production process may be in any 

one of a countable number of states 0,1,2,... and that the quality of 

the Item produced is a function of this underlying state.  It is also 

supposed that the state of the process of time t is not known and can 

only be determined by sampling the Item produced.  If the process is in 
■ 

state 1 then a cost I. is involved In sampling the item.  The purpose 

I of sampling Is not to replace poor items by good ones but rather to 

* check the manufacturing process. 

Thus at the beginning of a period one must decide whether to Inspect 

the item produced or not. Also one may decide to revise the process. 

This might be done, for instance, if an item had been sampled the 

previous period and had shown that the production process was in a poor 

state. The cost associated with revising a process in state 1 is R.. 

It is supposed that if the process is revised at the beginning of 

period t then it will be in state 0 at the end of period t.  Also it 

is assumed that no item is produced during that period.  If the process 

Is in state 1 at the beginning of period t and is not revised then it 
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will remain In state 1 during the remainder of  that period.    If a 

process Is In state 1 at the end of a period then with probability P. . 

It will be In state J  at the beginning of the next period. 

If the process In In state 1 and an Item Is produced without  Inspec- 

tion then there Is a cost C.    Incurred.     (The Inspection cost I.  may 

be thought of as already including a production cost).    However we 

suppose that this cost does not directly become known and thus 

cannot be used to indicate the state of the process.    It is assumed 

that all costs and transition probabilities are known, and that all 

costs are bounded. 

In this paper a framework is provided for handling problems of 

this nature.    In Section 2 a method of Indicating the (observed) 

"state" of the system at any time t is given and some theorems relating 

to the convexity of the optimal inspection and revision regions are 

proven.      In section 3 a two-state production process is considered 

and the structure of the optimal policy is determined.    An interesting 

sidelight of this is that the optimal policy doesn't necessarily have 

the simple form which Intuition might lead one to predict.    In 

section 4 we treat the case where one of the parameters of the model is 

not fully known. 

The general model considered here is similar to one considered In 

[2].    However, both the methods employed and the results obtained are 

different.    It should also be mentioned that the above model need not 

be interpreted solely in a quality control context but may also be 

Interpreted as a model for machine deterioration when inspection is 

costly. 



2.       General Model 

We shall say that the system is In state P - (PQ,?^...) If with 

probability P.  the underlying process Is In state 1,  1 - 0,1,...    We 

let S - {P ■(?«,?, ):Pj i 0,    I    P, ■ 1}    denote the state space 

of the system.    Thus we are allowing for the possibility that at time 

t ■ 0 we only know the underlying state of the production process up 

to some arbitrary probability distribution. 

Let X   denote the state of the system at the beginning of 

period t;    anJ let A    denote the action chosen at t- either produce 

without inspection (P), produce with inspection  (1),  or revise the 

process  (R). 

j Let I P^    if    Xt -  (P0 )  and At - P 

C(Xt,At) -        Z PiI1    if    Xt - (P0 )  and At - I 
] 

] 
100 

policy R and M0,1)  let ^(P,ß,R)  -      Z    ßtER[C(Xt,At)   |   XQ » P], and 

Z P^    if    Xt -  (P0 )  and At - R 

A policy is any  (measurable)  rule for choosing actions.    For any 

t-0 

let V0(P) - inf iKP,8,R) PeS. Thus V0(P) is the expected cost incurred 
6      R B 

when an optimal policy is employed given that the system starts in 

state P and future costs at0, discounted by a factor 6. 

For any PeS, let TP - ((TP)0, (TP)1,...) where (TP)1 - E P.P^ 

1 
1 - 0,1,... and let e ■ (P10. PJT»"«) 1 " 0,1,... 
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Then P {Xt+1 - TP|X - P, At - P}  -  1 

P {Xt+1 - ei|Xt - P, At - I.}  - P1    i - 0,1,  

P {Xt+1 - e0|Xt - P, At - R} -  1 

It Is well known (see [1]) that V (P) Is the unique solution to 

(1)  Vß(P) - min (ZP^ + ßV6(TP); EP^ + ßEP^^e
1); 

EP^ + ßVß(e
0)} PeS 

and any rule R. which when In state P selects an action which minimizes 

the right side of (1) is ß-optimal - i.e.  iHP.ß.R.) - VQ(P) for all PeS 
p    p 

Definition: The ß-optimal produce region =    {P:VQ(P) - EP.C, + ßV0(TP)} 
P      lip 

The ß-optimal inspect region =   .{P:Vß(P) - EP1Ii + BE P^ (e1)} 

The ß-optimal rev: ae region = {P:V (P) - EP^ + ßVß(e
0)} 

Lemma 2.1; V (P) is a concave function of P - i.e. if P - XP1 + (l-A)P2 

Then Vß(P) ^^(P
1) + (l-X)Vß(P

2). 

Proof:  Let Vß(P) - min {EP^, EPiI1, EP^} 

V^(P) - min {EP^ + BVg^CTP); EP^ + ßEP1Vß"
1(ei); 

EP^ + ßVjp^e0)} 

Then Vß(P) being the minimum of three concave functions is concave. 

Assuming that V_  (P) is concave we get that V^P) is concave for the 
P ■ p 

i 2 • 2 
same reason since T(XP   + (l-X)P )  - XT(P ) + (1-X) T(P ).    Thus,  by 

induction,  Vg(P)   is concave for all n.     But Vg(P)  is just the minimal 

expected costs incurred over n stages and thus V (P) ■*■ VC(P). 
p P 

QED, 

I 



Theorem 2.2;  Both the ß-optlmal Inspect and revise regions are convex. 

Proof:   Suppose WQ(?1)  - l?]c.  + ßlpJv.Ce1) 
P       ii    i p 

and   Vß(P
2) - l?2

iCi +  ßZP^V^e1) 

and let     P - XP1 + (l-X)P2.   Then 

V
6(P) lvß(

pl) + (l-X)Vß(P
2) - 1?^+  SEP^Ce1) 

but by (1) we get the reverse Inequality. The same method 

works for the revise region. 

QED. 

Often one Is Interested In an optlmallty criterion which does not 

discount future costs. Such a criterion is the long-run expected average 

cost per unit time. So for any policy R define 
n n 

♦ (P,R) - 11m sup Z    ER[C(Xt,At)|X0 - P]/n. Fix some P eS and let 
n+oo   t"0 

fß(P) • Vß(P) - Vg(P ). The following theorem was proven by Ross In [1]. 

Theorem; If {fß(P); PcS,Be(0,l)} Is a uniformly bounded equicontinuous 

family of functions then 

(a) There exists a bounded function f(P) and a constant g such that 

(2) g + f(P) - min {l?iC± +  f(TP); l?ili + EP^Ce
1); EP^ + f(e0)} PeS 

(b) g ■ lim (l-ß)V0(P) for all PeS; and for some sequence ß -> 1 
ß-^1     ß r 

f(P) - 11m f (P) 
r-x»  r 

i (c) If R* is any rule which when in state P selects an action which 

minimizes the right side of (2) then 

I 
I 



g - (KP,R*) - min MP.R) for all PeS 
R 

From (b) of the above and Lemma 2.1 we thus have 

Lemma 2.1'; If {fg(P)} is uniformly bounded and equicontlnuous then 

f(P) is a concave function of P. 

Theorem 2.2*; If {f (P)) is uniformly bounded and equicontlnuous then 

both the average-cost optimal inspect and revise regions are convex. 

Proof;  Same as Proof of Theorem 2.2.  (The average-cost regions are 

defined by using equation (2) in the same manner as equation (1) was 

used in the S-discount case). 

3.  A Two-State Production Process 

In this section we shall suppose that there are two underlying 

states - 0 (the good state) and 1 (the bad state).  If the process is 

in the good state at time t and, if the process isn'*: revised, then with 

probability IT it will be in the bad state at time t+1 where it will 

remain until it is revised - i.e. P00 ■ 1 - TT, P.- ■ 1. 

The cost of producing without inspection will be taken to be zero 

for the good state (C0 ■ 0) and C for the bad state (C, - C). The 

inspect cost I and the revise cost R will be assumed not to depend on 

the underlying state - i.e. I0 - I, ■ I, RQ - R, - R.  It shall be 

assumed throughout that C < I < R (this conditions is natural since the 

inspect cost is supposed to include some cost due to production). 

I 



We will only consider the discounted-cost case and will be 

concerned with determining the structure of the optimal policy rather 

m than with computational algorithms. 

Since there are only two states we may let  S - {P:Pe[0,l]};  and 

we say that X    - P If P Is the probability that at the beginning of 

period t the underlying process Is In the bad state.    Also In this 

specialization of our general model we have that    TP » P + TT - irp 

and 

(3)        Vg(P)  - min   (CP + ßVß(TP;{  I +  ßPVß(l) +  ß(l-P)Vß(TT);  R +  eVß(7T)} 

Pe[0,l]. 

Lemma 3.1; Vg(P) Is monotone non-decreasing In P. 

Proof;    Let 

Vß(P) - min {CP,I,R}     and recursively 

(A) 

Vß(P) - min {CP+ßVg'^TP); I + SPVg'^l) + ß(l-P)Vß"
1(Tr); R + ev""1(7r)} 

Then It Is easily seen by Induction that V^P) is monotone for all n and 
p 

thus that V.(P) is monotone. 

QED. 

Lemma 3.2;  Every ß-optimal policy produces at all P such that 0 ^ P ^ TT. 

Proof;     Suppose some optimal policy Inspects at PC[0,TT]. Then 

Vß(P) - I + ßPVß(l) + (l-P)V(ir) 2 I + ßVß(TT) > I + evß(p) 

by monotonlclty. Thus V0(P) > I/1-ß. 
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i However by (3) Vß() ^ C + BV$(1) and thus C/l-8 ^ V^d) > Vß(P) >_ I/1-ß 

which is a contradiction. A similar kind of contradiction is arrived at 

if an optimal policy revises at Pe[0,TT]. 

QED. 

Theorem 3.3;    An optimal policy Rß may be determined by three numbers 

P1,P2,P2      ^ 1 pi _ p2 - P3 - ^^ 8uch that R6 Produce8 for 0 <. P < Pj^, 

inspects for P1 1 P < P,» produces for P, .1 P < Po and revises for P >. P3' 

Proof; By Lemma 3.1 and (3) it follows that the ß-optimal revise 

region may be taken to be a right-hand interval.    The result then follows 

from Lemma 3.2 and Theorem 2.2. 

QED. 

Thus the ß-optimal policy may be described graphically as follows: 

Produce Produce 
without without 

inspection     Inspect    inspection    Rtvise 

I 
I 
I 

-i 

Pl P2 P3 1 

It is however somewhat counter-intuitive to have two disjoint produce 

regions.      Intuitively it would seem likely that the second produce 

region could always be taken to be vacuous.    That this is not so, and 

thus that sometimes four distinct regions are necessary to characterize 

the fj-optimal policy,  is shown by the following example. 
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Example; C - 4,  * - .1, R - 10, I - 6. 

Then by letting 6-1 and using (4) we can show that 

V;(P) - * 

20.87 P +    7.13    P  < .471 

8.13 P + 13.13     .471 < P   < .493 

17.13 P  > .493 

and thus 

vJ(P) 

thus 

VJ(P) - 

min (22.78 P + 9.22; 7.91 P + 15.22; 19.22} for P < .412 

min (11.31 P + 13.94; 7.91 P + 15.22; 19.22} for .412 <_ P < .437 

min (4 P + 17.13; 7.91 P + 15.22; 19.22}    for P >_  .437 

22.78 P + 9.22 P < .404        (P) 

7.91 P + 15.22 .404 < P < .489  (I) 

4P + 17.13 .489 <. P < .521  (P) 

19.22 P > .521        (R) 

Thus for ß near 1 the ß-optimal eight-stage policy starts off by producing 

for Pe[0,.404), inspecting for Pe[.404 .489), producing again for Pe[.489, .521), 

and revising for P >_ .521.  Thus we see that four distinct action regions 

mlf t be necessary. The next theorems give sufficient conditions for the 

optimal policy to have a simpler form than the general one givey by Theorem 3.3. 

For n >. 1 let T1^ - T(T  P) where T0P E ?, then 

T^ - ir + (1-TI)P 

T2P - IT + (I-TT)TT + (1-TT)
2
P 

TnP -  7T + (l-7r)ir + ... + (I-K)11
'
1
^ + (l-u)11? 

- 1 - (l-P)(l-n)n 

9 
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Let R be the policy that always produces without Inspection (always 

takes action ?). 
00 oo 

Then iHß.P.R0) -  E ßnCTnP - C E  ßn (1 - (l-P)(l-TT)n) 
n-0 n-0 

C        C(l-P) 
(5) 

1 - ß 1 - ß(l-TT) 

0 c 
Theorem 3.A;  (a) R is ß-optimal if and only if R >^ iZeTTZT) 

r 
(b)    If R <  . ■Q/.T—r    then every ß-optlmal policy revises 

X~p\i.—'n ) 

for P near 1. 

Q 
Proof;  1/ R > . -y-—r then it can be checked by direct substitution 
  - l-ß(l-TT) J 

I that ^(P.ß.R ) satisfies (3) and thus R is optimal.  If R is optimal 

then by (3) we have that 

(Kl.ß.R0) 1 R + ßiKir.ß.R0) which implies by (5) that 

1-ß  - K  (l-ß)(l-ß(l-7r)) 

or       R   > 
- l-ß(l-TT) 

To prove (b) we note by (3) that if an optimal policy doesn't revise 

for P - 1, then Vß(l) - ^Tg 1 R + ßVß(Ti) <. R + BIJ-(TT,B,R0) - R + d-g) (^(I-TT)) 

Q 
which implies that R _> - „s^    ■■ .  The result follows for all P near 1 by the 

continuity of V0(P).  (The continuity of VQ(P) is proven in the next Lemma). 
P p     * 

QED. 

10 



The following Lemma will be needed In the sequel. 

Lemma 3.5;   |Vg(P1) - vJJ(P2)| 1 c|P1 - P2| 
1 - (Bd-Tr))1 

1 - S(l-Tr) 

all Pj.Po» a11 n' 

Proof!   The proof is by induction; the result is trivial for n - 1. 

So assume it for n - 1. There are now three cases: 

(i)  VJj^) - CP1 + 8VJ"
1(TP1) which implies by (3) that 

,n. VJ(P2)  - V4
B

,(P1)   <. C|P2 - PJ+ ßtvj'1^)  - V^1(TP1)] 

< c|p, - P.I+ ecd-Tr)!?. -PJ 
1 - U&m 

■ C|P2-PJ L^imz^U" 
1   -    ß(l-7T) 

n-1 

(li)    VJ(P1) 

vj(p2) 

I + SPj^ Vg^d) + 8(1^) V^CTT) which implies by  (3)  that 

.n-1. " VgCP^  < 6|P1 - P2I     [^(l) - vpoo] 

^elp.-pj   cd-.) 1 - ^^ 
1 -  ßd-rr) 

n-1 

<C|P1 - PJ   
1 - ^k^l 

1   -    ßd-TT) 

n 

(iii) vJCPj^) - R + ßVg"1(7r) which implies that 

VJ(P2) - V^P^ < 0. 

The result then follows by interchanging P, and ?„. 

QED 

11 
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The following corollary is immediate 

C|P -P |      C|P-P | 
Corollary 3.6;   IVV " W ' ^"^ <   

1 - ß(l-TT) TT 

Theorem 3.7  (Sufficient Conditions); 

(l-ß)(R+eV (IT)) R - I 
(a) '        <_     is a sufficient condition 

C ß(Vß(l) - Vg(TT)) 

for the existence of a ß-optimal policy which produces for P < P., 

inspects for Pi i. P < Po and revises for P 2. P2 for 80me ^ 1 pi i. P2 — ^, 

C R — I        R 
(b) I + ß(V (1) - V (TT)) >.   or   <.- (1-3(1-7T)) 

13    " 1 - ß(l-TT)    ß(Vß(l) - VgOr))  C 

I 

I 

I 

is a sufficient condition for the existence of a ß-optimal policy which 

I produces for P < P^^ and revises for P ^ Pi for some P, 2. n  - i.e. no 

inspection region. 

Proof; (a) Let P1 and P2 be such that CP1 + ßV (TP^ - R + ßV (TT) and 

I + ßP2V (1) + ß(l-P2) V (TT) - R + ßV (TT).  If such a Pj^ doesn't exist 

then let it be infinite, i - 1,2. Then using the fact that CP + ßV0(TP) 
p 

is monotone and concave it follows that a necessary condition for every 

ß-optimal policy to have four distinct action intervals is for P, > P«. 

(See figure 1). 

12 



I + ßPVgd) + 0(l-P)Vß(^) 

GP + (JV6(TP) 

R + ßV0(it) 

Figure 1 

But If P, > ?2  then Vß^Pi^ " R + ßVßCTt) and thus by monotonlcity 

VgdPj^) - R + ßVß(TT). Thus CPj^ + ßCR+ßVgdr)) - R + ßVgCir) or 

Pl- 
(l-g)(R+ßVB(Tt)) 

(R+ßVß(ir)) 
(1-ß)     '       > 

Thus ?i > Vj implies that 

R - I 

ß(V0(l)  - Vg(Tr)) 
and thus  (a)  is proven. 

(b)    in order for every ß-optimal policy to inspect at P we must have 

(6) I + ßPVß(l) + ß(l-P)Vß(TT)  < R + BV0(TT)      and 

(7) I + ßPVß(l) + ß(l-P)Ve(*)  < CP + ßVe(TP). 

i 
I 13 
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R - I 
Now (6) Implies that P <      .      From (7)  and 

6(V6(1) - VgOr)) 

Corollary 3.6 we get 

I + BPVn(l)  + ß(l-P)VQ(Tr)  <  CP + 6[V0(TT)  +   (1-TT)P) 
3 ß ß l-ß(l-TT) 

which implies that 

I 
P > •   'u   ' .  Thus we would need both that 

R - I I  , - ■■  - - ,.. — .     — ancJ 

0(vß(1) -ve(Tf)) i^(fcT-ß(vß(1) -vß(lT)) 

C - ß(V0(l)   - V0(TT)) 
<    1.      Thus if either of the above 

l-ß(l-n)      ^gv-/       -g- 

inequality doesn't hold then there exists a ß-optimal policy which never 

inspects.  It is easy to see that it can be taken to have the desired 

form. 

QED 

The conditions given in Theorem 3.7 unfortunately depend on V (1) 

and V (IT). However, we can prove the following: 
p 

r 
Corollary 3.8;   If R <    then either 

l-ßd-TT) 

1+ (R-C) >.        or R " I  <- (l-ß(l-7T)) 
l-ß(l-TT) ß(R-C)    C 

is a sufficient condition for a    ß-optimal policy which produces for 

P < P, and revises for P ^. P,. 

14 
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Proof:  R <    implies by Theorem 3.4 that V0(l) - R + VQ(TT). 

1-6(1-*) ß        ß 

Thus Vü(l) - VO(T0 - R + (ß-1) VD(Tr) > R - C. The result follows from 

Theorem 3.7. 

QED 

C 0 
Note that if R >    then R , the policy which always produces 

l-ß(l-TT) 

(without inspection) is optimal. 

4.  Unknown it 

We have assumed up to this point that all the parameters of the model - 

C,I(R and ir- are known. However, while the cost parameters would probably 

be knovn it is quite likely that TT will not be known with certainty. We 

shall now give a method for estimating TT from past records of the process; 

we also show what to do if an apriori distribution for ■n  Is known. 

Estimation of IT 

We shall suppose that the past records for the process yield the 

following sort of data:  (n, ,Z,),...(n ,Z ) where n. denotes the number of 

periods succeeding the time at which the process was known to be in the 

good state (either by a revision or by an inspection showing it to be good) 

until It was next inspected, and Z.  is 1(0) if the inspection showed the 

process to be good (bad). 

Then ?{Zi - 1} - 1 - ?{Zi - 0} - (I-TT)
11
!, and so the probability 

density of Z1 is given by Pi(Z1) - (l-TT)niZi (l-d-ir)^)1"2!- Z1 - 0,1 

and the Joint likelihood of all the Z.'s is given by 

15 



HZ. i i • t b   / a -.)iniZl 'n d-Ci-.)»!)1-2* 
i-1 

log L{Z.t...Z  ) - En.Z log (l-n) + E (1-Z ) log (l-d-Tr)"1) 
J-    r   1 i i 1-1   ^^ 

n 7       T* 

~ log L(Z ,....Z ) - - E-i-i- + I  (1-Z.) n.(l-1T)
ni"1ll-(l-TT)nir1 

3lT       1     r     ll-it    1-1    i  i 

and so the maximum likelihood n is given by 

1,  if Z. - 0 for all i 

0,  if Z1 - 1 for all i 

.   r      r . , 
the solution to — In.Z.  - I  (l-Z.)n. (l^)ni"1[l-(l-u)ni]", 

l-TT   1 i-1 

otherwise 

Special Case; if n. - n for all i ■ l,...,r then 

n - 1 "Vi Vr 

(b) Prior Distribution for ; 

We suppose that we have an apriori density gQ - i.e. 
x 

P{TI <_ x} - / gn(y)dy 0 <_ x < 1 - and that we are interested in minimizing 
0  U 

the expected g-discounted costs. 

We shall say that the system is in state (PCiO.g) at time t - i.e. 

Xt ■ (POO.g) - if P(it) denotes the probability (possibly as a function of 

the unknown TT) that the process is in the bad state at time t, and if g is 

the posterior (given everything that has happened up to time t) density of n. 

16 
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] 

I 

For t - 0,1,... let Xt - (Pt(Ti),gt). We shall assume that P (*) 

ia either of the form P (TT) ■ P or P (TT) - (1-TT)P + TT where P is some 

number in [0,1]. Thus P (TT) is monotone non-decreasing In TT and from 

this It follows that P (TT) will be monotone non-decreasing In TT. This 

Is SO because P  (TT) is either TT or 1, or (1-TT)P (TT) + TT. We can thus 

a probability density on [0,1], 

let the state space S - ^ 0 <_ P(TT) <_ 1 for all iretO,!], P(IT) is monotone 

non-decreasing in TT. 

Letting Vß(P (TT),g) denote the expected ß-discounted cost incurred 

over an infinite time span given that the process starts in state 

(P(TT),g) and an optimal policy is employed, we have that 

|(P(Tr),g):g is 

(O <_ P(TT) <. 1 f( 

fCE  P(TT) + ßVfl(TP(TT),g) 
g       ß 

(8)   Ve(P(TT),g) 

where TP(Tr) 

min I + SEgPOr)VB(l.gJ(it)) + S(l-EgP(TT))V6(TT,g2(^)) 

R + ßVß(TT,g) 

EgP(TT) 

8P(TT)(X) " 

5P(TT) 
(x) 

(l-Tt) P(TT) + TT 
1 

/ P(TT) g(TT) dTT 
0 

P(x) g(x) 

/ P(x)g(x)dx 
0 

(1-P(x))g(x) 

P(x) g(x) 

E P(TT) 

(1-P(x))g(x) 

; (1-P(x))g(x)dx    1 - E P(TT) 
0 8 

where by P(x) we mean P(TT) evaluated at TT - x. 

17 
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As before we may also define 

vJ(P(Tr),g) -    mln    {CE P(TI);     I,  R}    - CE P(TT) 
o g g 

(9)      V^PU^g)    -    mln   f CEgP(TT) + ßV^(TP(n),g) 

I + 6EgP(1T)  V^(l,gJ(n)) + ß(l-EgP(1T))V^(..g2(iT)) 

R + 6Vg(Tr,g) 

Thus the finite stage problem may be solved recursively;  and 

VgCPdO.g) +  Vß(P(TT),g)  as n -> «. 

In this paper we have only considered the case that the true state 

of the production process Is observable upon Inspection of the item 

produced.  However often one would not learn the true state upon 

Inspection but would rather get some additional (not necessarily 

exhaustive) information about the true state. The first paper dealing 

with this latter model was that of Girshlck and Rubin [3].  They however 

Incorrectly stated that the average coet optimal policy may be character- 

P    IS 
ized by three action regions -r  —  '     ..  The first counter- 

example showing the Girshick-Rubin solution to be In error was given by 

Taylor [6]. Tafeen [5] has recently treated a similar model and has 

shown that under some restrictions on the information pattern and state 

space the optimal policy may be characterized by three regions. However 

his result doesn't hold If the state space is allowed to be the whole 

interval 10,1]. Future research on the general Girshick-Rubin model 

(under both an average and discounted cost criterion) is thus needed. 

It would for example be Interesting to know If the optimal policy may 

be characterized by four regions as in the present paper. 
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