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A NOTE ON STRlEAM4 ORDER'ING

AND CONTOUR MAPPING

by William Warntz

This paper has been prepared in response to what

might be regarded, in other arenas of endeavor, as "popular

,demand". We shall also use it to make a plea for certain

changes in topographic mappings. In our first paper in

the Harvard Paprs in TheoreticalGeography series, 16

May 1967, we examined surfaces in general terms but also

recognized certain points, lines, and areas on surfaces as

singular in their characteristics and worthy of specific

delineation in that they represented that mi,:lma. part 6f

the spatial structuring that need be- known if the flows, if

any, on surfaces were to be understood. A simple table was

included that grouped the singular geometrical elements

by dimensions and by vergency. It is included here sub-

sequently, A hypothetical surface was presented tonport, 'ay

the ideas involved. Following Cayley (1859) and Maxwell

(1.870) we have diJseussed thc topology-and geometry f any

surface and the relationship of the points, lines, and areas

to Tlow phenomena. We have found th1V flows of energjy and

matter unite var'ious parts of the surface into a system.

]luvial systems, feUP inst;-nce, are highly orr anized, and

show systematic rcgular'ity as 11orton (]9i5) first dcmonzratod,

and-as Strabler (1964) and his students have corroboratcd.
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While useful for general "movement theory" purposes,

and having been developed with social and economic applications

in mind, our hypothetical surface did not contain sufficient

"tree-like" or "bifurcation" properties to reveal, for

example, the typical, indeed, the necessary, spatial

features and their dimensional representation present in even

moderately high .order river basins. This present paper,

then, is an attempt to clarify these matters and to accede

to wishes that we examine river basin geometry explicitly.

None of the illustrations from the paper noted above

will be reproduced here. The few following succinct

definitions will,, it is hopedi suffice.

A contour line may be rega&-'dcd as the intersection of

two surfaces, the conventional circumstance being that of

the intersection of the variable surface under consideration

and some specified constant-valued "level" surface. 'Any

two intersecting surfaces do so along a line. This line

thus connects points of equal Value on the variable surface.

Using conventional mathematical notions of surfaces, it is

to be seen that the "z" value :is constant along a contour

line on a variable surface when "x" and "y" values are taken

as coordinates on a referent level surface.

The summary of such values with relation to land forms

phenomena are conveni -ently and conv..nci.y displayed by

means of a map on which selected contour lines are shown

representirg the intersections of level. surfaces with the

var ,able surface of the phenomc'non and with each contour line

distinrruished by a numeral which shows the level surface to
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which it belog:.,

Let us now relate the nature and significance of contour

lines to certain absolute extremum po:lnts (local maximum,,

or iinimum) and mipxed extrema points on a surface.

The contour "line" at a peak becomes a point. A peak

is a local maximum of elevation. Everywhere in the immediate

neighborhood on the surface. elevation values are lower.

The contour "line" at a pit becomes a point. A pit

is 'a local minimum of elevation. Everywhere in the immediate

neighborhood on the surface elevation values are higher.

In general, of course, peaks are at higher elevations

than pits. This is not inevitiaby required to be so for

individual peaks -or pits. The loca.1 condition of the surface

determines which, if either, exists.,

Peaks and Pits are to regarded as singular points

and constitute the category -we shall call absolut'e extrcmum

points.

The other ki.'nd of singular points, i.e. mixed axtrema

points, are Passes and Pales. A pass or saddle point exists,

for example, at -the self-crossing po:int of some contour l:ine

that forms tw*o loops, one around each of tw:o adjacent peaks.

To find the pass or passes relating to a givon peak refaires

the esttblishment of' the outemost closed contour line.

A pale cx: ts bctwcen ,djacent l:i ts. The reIf-cross:ing

cc,ntour line for adjacent p:its may be either of the :1Inloop
or outL¢,op type. The, in]oop typc' al,-,o con .ists o1 ,wo cf'sed

curves- , one of vl:-ch, ho.e.vej, l ins ,id(, the c'tlmc'r cXc :Vu

for their shared point'. .I.nloop typos occur l:inJn pits

within E'-calws. ond for ., w, itl, o -,*,4.



Within any givon loop identified with a given singular

point, other singular points and their attendant loops may

be found. Through every point on thc surface one may

consider that there is not only a contour line, but also

a slope line. Slope lines indicate the direction of steepest

gradient at a given point and, of necessity, therefore,

intersect the contour lines at right angles. We theref6re

have two families of orthogonal curves o.. the surface,

namely contour lines and slope lines. The property of

orthogonality is preserved Tn a conformal projection to the

plane of these two systems.

In general., slope linqs have peaks and pits as their

termini. In general any one slopq line leads to some peak

in its "uphill" direction and to, some pit in its "downhill"

direction. If, however, wparti6ular slope line is found

to run from a pit to 6ither a pass or paie, then when continued

t'hrough that pass or pale, that line .ill, of necessity,

run on-y to another pit, (or in rare- cases4, the same pi-t)

provided, of course,. that the surface be .a continuous one as

we have stipulated. Similarly any slope lirpe found linking

a peak to a pass or pale. must then, ,ihen extended through

the pass or pale continue only to another peak (or in rare

cases, the same peak).

Slope lines link:ing peaks via passes or pales are

dosignatcd as Ridge lines. Slope .lincs linking pits via

pases or pales arc dcsgnated as Course lines. All slope

lines othcr than cour;e lines Find ridge lines do not encounter

passes or pales as they are traced between peaks and pits.



On continuous surfaces the point of the pale and of

the pass have at once th'e attributes of both a local

maximum and a local min:imuin., each resulting in a self-

crossing contour. On a map showing the areal variation

of the surface for'any true field quantity, no flat areas

are to be found. There are, of course, singular points on

the surface where the instantaneous gradient goes to zero,

and direction of slope becoines indeterminate when these

points are regarded in :i.solation. These points are precise.y

of the kinds mentioned above, peaks, pits, passes., and pales.

Peaks and pits 'have beep defined as local maxima and local

min:ima respectively; simpie closed contov s therefore exist

within their immediate neighborhoods. At the point of a

pale or of a pa,.s, gradient is zero, but no loca ly closed

contours occur in the immediate neighborhood; for the point

of the pale or of the pa.s;s has the attributes both of a local

maximum and of a local. minimum, and a self-cros'sing of the

contour line results. oe profile,, properly taken, shows

the pass at the lowest value between t,o peaks; a proP].)e

through the same point takcn at right angles to the first

shows the value at the nass to be high er than any other

a]ong that cross section. The pale occurs at tho high po:int

betwoeen p:its, but it is a low point zii n the linme at; riiht

angl.es to the l1ine joining the pits.

To make the above cons i Ocrat-iorI c ]aQe , 1let us (-in1k)Ty

the concept of the :J ni C(l' ri 7x, de Pi n:d o tl, curvv J)-1 wh'c~h

a grIVen f ac( :1 cut b v p1 !)''( i. Ci ifl't;ly I)'P)' Miid
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parallel to the tangent plane at any point,, so called

because it indicates the nature of the surface at that point.

In addition to contour lines, let lines of steepest slope also

be considered and hereafter referred to simply as s.ope lines.

Slope lines, of course, always cross contour lines at

right angles. (This property is preserved on these

conformal maps.) Through every point on the turface, ther'e

is a slope line that, in general, begins at a certain pdak

and ends at a certain pit. Exceptions are the lines connecting

peaks and passes and those c(qnnecti.ng pales and pits.

Consider the most dist-ant closed contour line defining

a given sample peakc or pit. "TiSi exterior line is inter-

sected at every one of its points by a slope line. A11

of these slope lines must intersect a).l of the interior

closed contour lines as-well, uniting at an interior point --

the peak or the pit. In the general case, the indicdtrix

at the peak 'or, pit .will be ai, ellipse, as wi.l.l the fnmediute

contour lines in t 'he neighborhood, w:iith- the major and -minor

axes corresooridin to the directions cf least; and greatest

curvature respectively.

Lettinf, a and b for tl°e i.ndicatrix be the semidiameterF,

major and winor respectively, the equation for the orthogonal

trajectory of the ellp:se on a plane i,.ith x. and y coordinates

is -Y 2 = 1)a2  So long as C does not equal inf:Inity, thc

curve this equation dcefines touches the axis of x, the

(irection of least curvature. If' C does equal infir,-ty, x

becomes zero and the curve touche:; the axis of the di rection

of' greatest curvaturc, i..., y. In general, at the pealk or
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the pit all of the sl3oe curves, -.ave the one limiting

case, touch the line indicating the direction of least

curvature. The only exception occurs when the indicatrix

is truly a circle and the slope lines pass in all directions

through the common point at the peak or pit.

At a pale or a pass the indicatrix is, in general, a

hyperbola and the trajectory is C =a 2 = by. When th:is goes

through the pass, C equa.s zero, .and then either x or

equals zero. As a result, only two slope lines occur through

the pass, each bisecting the angles made by the branches of

the self-crossing ,contour line.. These slope lines therefore

intersect at right angles. Let the slope line on which the

p'ass is -a point of minimum elevation be 'tered a ridge line

and the other,, a course line.

In general, ridge lines pass from peak to peak and

course lines from pit to pit. Even with an arb.traj-y

boundary conditi.on it is possible tV at any one ridge or

course line begins and ends on. a map at the same peak or

pit, th;us forming a clo.sed curve, and,, in exreotional cases,

any one of these lines may he alternately a ridge line or

a course linc, as "is the cesc w:i th wiinor ,caks on a major one,

so that any particuar segment must be named with reference to

the pass or pale with which it is consi dred. Th:i:; consideration
Must be reo ..... p :,s y.,on c- ri wi th :c f-.'- J o. !',

contour line wh:i ci :Is not of the usu:,11 (1 rlurc (!,ht or out.]Oo p

type but rathor of the nl ,) tyJO

To consi dr'r additi onin] i~mai, t res v:e nced t~o ta l]b i sl.

sym)o] s. Let



-8-

S = number of peaks (summits),

K = number of pits (imm:i.ts'),

P= number of passes,

B number of pales (bars),

C = number of course lines,

R = number of ridge lines.

Within any completely closed contour line on a

continuous surface the numbcr of peaks, S, is a).ways one

more than the number of passes, P, so that S = P + l.- The

same rule applies to the number of pits, I, and the number

of pales, B, so that I = 1D + 1.

If, in the singular cases of passes 4nd pales, we' count

each of these as single, double, or n..ple. depending on

whether two, three or n+l areas of elevation or depression

meet at a pass or pale, respectively, then the above counts

can be ta-ken as before, giving each singlular point its proper

nuiber.

Let P! be the number of single passes, -P2 the number

of double passes, etc., and Bl, !_2, etc., be the numbers

of single, double, etc., pales. Then the number of peaks

will be S = 3. P1 -+ 2P2 + etc.., and the number of pits

will be I = I + B1 + 232 . etc.

Now, regard any one ridge line or qomrse line as beginning

at a pass or a pale and ending at its respective peak or pit.

Then the number of ridge lines, Li, will 'be R = 2(13 + PI)

+ 3 3 2 + P2 ) .I etc. , and the number of' .course lines, C,

will be the same.

With reference to the area enclosed by any one contour
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l:inc, 4.he folloving obt.ain. (S -I I) (P +' 13) 1.

However, on a Closcd surface like the spherical carth:

(S + I) - (P I- 13) = 2. ior,, on a spherc, a closed curve

bounds two areas.

For general topologlcal con,-derat'ion let V ,be the

number of' all singular points cn the closed surface (V

S + I + P + B); let E be the number of lines (E + R + C);

and let F be the number of separate faces or territories

as -we shall call.them. Then, F = E - V + 2.

That is to say the number of faces plus the number, of

points minus the nuiber of lines equal 2. Again, within

any 'one closed contour line, F = E - V + 1.

This general topological relationship among points,

lines, and areas was first established by 'Iuler in netork

aibalysijs (the br:idge pjobibo) and ivas explained in -terms of

,any polyhedron where the number of faces plus the number

of vcrticos minus the nub,, ,. of odges equals t,.o.

Further consideration of the above shows that, for A;he

world's surface, if v;,e put E' equal to the nu,?be-r of ridge

lines only, and V' equal to the number of peaks, passe,- , and

pales, then F' is the number of di-stricts of depression -(dales)

equal to the puimber of pxits. If E" spciif':es ihe , number

of co'irse lines only and V the numibcr of pctss( s, pa)es, and

pit;, thu-n P'" As the numb.1ep of d., sof' e vatIon ()3)

equal to the nume(,r of peaks vhcn the tio t.Vpoes of' d.!M~ri ct
are takei :iI~depc CJd 'fltiy. P -,; -Luict,'; who,.(, lir. o"' slove! run

to the same peaks are the hi: Is, and thoso wh.ose )i )ics of'



slope run to the same pits are the dales. The whole closed

surface may be divided independently into hills arid into

daleus, each point belonging to a certain hill and to a

certain dale. Of course, ridge lines .are the only slope

lines not reaching pits, and coursc lines are the only

slope lines not reaching peaks.

The table concerning flows referred to above is given

below. We begin by assuming that "natpra-." movements on

surfaces tend to be along steepest slope lines or gradient

paths, i.e. at, right angles to the contour lines, and from

higher values on the surface -toward lower values. These. paths

are minimum over-the'-surface "distances" in each case.

This elementiry assumption is in keeping with the analysis of

potentials and forces in general. fiei.d quantit-y theory.

Other assumptions about form and movement are possible

cEpecially with regard to additional forces besides the

gradient force and also, Jong-run processes that change

surfaces. Here, hovever, we restrict ourselves to simple

gradiefit movements in the short-run. Our conclusi.ons can

be presentect in a simple table summrizing converging and

diverging flow.- in terms of dimensions.

DILMENSION NAME O1 SURFACE, FEATURE VEIRGENCY

Point Ileak Divergence
Pi.t Convergence
Pa,- s ?Mi x e(I
Pale 1Mixecd

Line Course ConvergenceA),~ Divergence

Ar<-a ili ] I. Divergence

Da ,.e Coil ve r;e nce
'T'erritory Ilixed



Let us now relate these ideas specifically to fluvial

systems on land foj~isis, particularl.y to river basins. Figure I

Is an enlarged portion of the JBelimont, 11Y. , U.S. 0Geologic

Survey Topographic map (contours only). TPhe orilginal linear

scale w-.as,, of' courso, 1:62,500. The linear scale of the map

shown here is about triplcd (i. e. , 1:20850). On the map

in figuie 1., one inch represents about one-third of a mile.

,on the earth' s surface. The contour interval is twenty feet.

Tt is often noted when Instruction Is offered concerning

the making. or intcrproting of contour miaps of physical land

forms that co)-:.'Vdurs crossint; streams (we would say, contours

crossing all. course lines ) are bent so that the "notches"

point up stream, I.e. , in the direction of higher elevations.

We add that the contours crossi-ng ridge lines. are bent so that

the~ir notches point out precisely the down-hill direction.

Even map readers of l1imited experience should have no trouble

in picking out, the most, likely positions for streams and their

accollpany~.rig basin1 dividus onl thue abovQ noted Ciap in fi,uvC. 1.

If we accept these patterns of coin' our bending as

necessary -- and indeed they are necessary -- we can then

follow through, t~o its final conclusion, the statement about

the necessary elements and theix dimensi onal relationships I~n

f-I~utlal syzl dt;1

Onth ll~ rcrrent the-ur 2,'t a 1 f yirstI
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an actual stream and the dotted 1,Oi GJ.on indicatos the

position, of this line continued back to the pass whence it

issued.

The .fine thin lines are contour l:ines. Peaks, pits ,

passes and pales are abelled, as noted above, as S, I, P,

and B respectively.



'1'1] sirifLQanlt featuresj 0' the aontour s are the

outloops of thc figulre of' eIght type contou'r with each

loop enclos-ing a peak and with the se '-rsigof the contouir

line occuririg at the attendant; pass and thc inloop type

bounding" a p'it with the self-Crossincg at the requirod pale.

It i s well establiished that any contour is a closed

circuit on the earth (al though, oT course, not necessarily'

within the area portrayed on any given topographict map).

With respect to a first order drainage, basin the on.ly conltours

that; close within tGhe basi n are' those in the- :irmned~i ate

vicinity of' the one. pit. Viorcover, al of' thes(e. arc wilthin

the smaller loop of the inloop type of contour (sefigure 2,

fagain). The lax-ger loop lies enti-ely outi de of' the f'i rst

order basin in question and its path -my I ead &C3 oss many

basins before closing. Note , ho,;.,ovr, that any one, of the inter-

mediate contour lines sh)ow..n on NJI'.mr 2 may .1 tsolf, be a

segmeint of' the larger 3oop of some Jinloop type contour 1-11,,h

i ts smaller loop located entirely w.i thin somc di stant and

separate basin.. Ewen thc, "r contour lines that, close- ii the

i 11iiediate ne.-J ghborhoot! of the ec: in f j f;uwoc 2 11'iust I j

only pqrtly in the lMsinundcr coinf deiation and ofncesiy

partljy outSide it.

If other clooied contcA'- e: .( ";a a pound S0W;[eON 0' #1'

p1t)are Lou rd wi th ihii v-hpl 'rlf bcil pvcv !(w:!1y u'1to

be C a fir.-t order") bo:;il, t 10:-- 1.- c videlc- tl''t, it, i :, e'

s ome Iigd'or dcr h1"8in il~?d t)Idi .101"(e' (Ww~'l o'ri' 11-
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entirely within it. In fact on the earth's surface a

virtually infini tc rgess does exist,. .imi ted only by

particle size at which level the concept of surface is not

applicai)le. We shall speak of that d .iculty later in this

papero, For the present, we consider the presence of one

visually observable unirancIud stream 7- having no trihutaiics --

as evidence of a fist order strem (and its basin) and

carry the accuracy of contour positioning to the level

sufficient to delincate only it 'and not to include those

evidences of addi.tional course lines which, however, lack

stream channel flows.

Note that course lines or ridge lines connect our

designated points. Thus there are tSio ind:ividual and

distinct course lines (segments) present within the basin.

One runs downhill from the pass to the pit. The. othcr

continues from this pit uphill to the pale. For the stream

to have a continuous flow there must be suff'icient water

in its channel to permit it a high enough love) to cro:;s ,.*-

pale. Hence some water mut flow uphill for a1) or any of

it to move "downstream". Any strewnii flo\::1ng. throu,(;-)

several bas:i ls has a series of cona-*ctc'd pits each with a

"donstrcam" side but actua)y NocalJy uphM ple. Wh!n

streams dry up they do not do so :i n short-) 1k,: I'a:,l3 01.

] (taiCr, they rc'ducc to no,}inj" t ighj'gh 4 a cr1j( -- or dI:. c tO i

of p:i : I ; .i"h rp: lt:'- . , j '') ,ted p)( l,]; or w . A (1 .,e. iJ, .. .

Occur.; ;hee 'nn w l('1 ,' i,- iot roi'flcl 'l -1t v.' ,,' f'ol I

flou to Clio5; ; 1 )

Ij (I J ' ilts ':O1 1, i l wti ) o ,, r 8; 1, *) I , . ])oil , i ,:a Co'o



example from a peak to a pass. Another ridge line theIn

goes on to another pck. Also, ridge iies go from peaks:

to pales.

Ridge lines do not go to p-Pts nor do cour.e J.ine. go

to peaks. Both however do go to passes and to palc . If

we consider peaks and pits as absolute cxtromum points

and passcs and pales as. mixed extrema points, then any combinat:ion

of course lines and/or r~idge lines producing a connected

continuous path throug4h however many basins desired and of

whatever order, do and must exhibit an alternation of

absolute extremum and mixed extrema points. (This condition

assumes additional importance when we examine bel)ow the

infinite regress referred to previously.)

When two first order streams meet, a second order

stream is formed. In figure -1, a typical example of the

essential spatial structure attending the paired first

order basins and the resulting second order stream is given.

Again we see that the outloop figure of eight type

contour line, is present, but this time there are two of

them, one of them with both of its loops contained wholly

within one of the loops of the other. The situation given

in figure 5 below is, of course, possible, but not likely,

the situation portrayed in figure. 4 being the more general

case. Fig-ure 6--I show.s a sect~ion of the inloop type of

contou)' 11 ne w( cons i d-red w 'th the sing]c Pfir:st ordor

b[35I I. F,.io. 0-Ij sho t.s u:; th :1, a "rbbit-er " or

"buttH'rf) y" doub)t . l-,J])r in.:oop type oncurs with the oi doel;

1 4



-.15 a-

'I ""-

, i, 

ci) " '

\ i. ' - "kk~k \_--)
H' • i'



........... .....

Figure 5.

Possible but; Not Typical Ari'anlement

of Peaks and Pas.cs

0 .:c)

]I iIrf 6

F"igure6

In)oop, Contours for Sinple First

Ovder 'Il) and

Pai r:,d Vrt Ordtr Strea;:s (-1"])



-].6-

of a second order s-tre cam.

Note on figure I1 that; o1e r dge lIne (the "central"

one), is shared as a common divide for the t.o first ordc.r

basins.

Figure 7 reveals additional features concerning second

order basins. This illustration is adaptud froi one by

Strahler, op. cit., p. 376. He shows a)l '.streams within

and the outer ridge lire boundary of a fouith order basi..

We have added p ausih.le intci.or ridge lines and have

marked singular pol nx.. Again, the heavy lines are ridge

lines and the lighter on.es are course lines. The second

order stream is shown, as the lk.gond i.ndicatos, by a 'dashed

line. This i]..usbrati.on sho:s that the second order basin

contains at, least two first order basins whose exterior

ridge lines it shares and additional area and ridge lines as

well. Here the additional area is served by one additional

first order basin and stream floi.wing into it, but not "thereby

promoting it to a higher order and by an area of' direct

drainage through no Intcrmed:iating str:am. Such an area of

direct drainage (overland flow) into any stream of higIher or2±vr

than first i' rc ga'vded as c j iLnterba .;in arca. Wc see then that

two fi.rs t order basins are a nrcc.s.,ary but not sufficj(,1"1

condition foy. a second order b, s) i. At lca,t interbno;'., , ara

must also exi st. Of coi',;": a,1,31:ionDI fPivot orpd r ;t'aeo,'; ont

p)rOmOtin th" : |, a ' (Vr:)o , 'i tin .idt, ad :ili',"- J ht ,,0 ? I
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A. ways, however, some interbasin area must exist within

every basin of order higher'than one anil very likely,

based on observation, additional non-p.romoting lower order

streams.

Now the other extremely important feature of figure 7

is that which shows that for basin orders higher than one

additional course lines other than those for the first order

streams must exist, albeit without channel flow. The xIs

located on ridge line segments indicate 'hat additional

heretofore unregarded passes (P) must exist on these segments.

The precise locations of the x's must not be regarded as an

attempt specifi,--lly to localize thes' passes but rather to

indicte that somei.:,jere on a ridg, line segment between any two

indicated, peaks, S, and/or newly recognized peaks, (S), a pass

must occur. (Recall the rule stated earlier concerning alternating

absol.ute extremum and mixed extrema points along any connected

path.) Now if these passes exist (and they mus,t, as well as

virtually innumberable others) so, too do their course lines,

the resulting pits, and pales, and also the ridge lines that

pales occasionaloni; with their additional peaks. These new

peaks require additional passes, and so on in new and continually

regenerating cycles to the level of separated partic].es at which

level the concept of surface, itself, is"no longer applicable.

Obviously, the details of the entire structure of any set of

nested "basins" (including those without channel flow) cannot

be ].earned so that some threshold must be recogni .cd and defined.

It is .apparent that all so-called recognizable first order

streams do not contain preci sely the same order course lincs.
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Actual rock type, climate, slope, etc., do determine the

length of overland flow preceding channel flow. Moreover,

"lower" orders do exist. However there is a demonstrated

success that systematic relations among the observed empirical

regularities in nested river basins can be understood by

regarding as of first order the streams that have no visibly

channeled flow tributaries. Despite variation in the actual

course line order on a surface of so-called first order streams, the

necessity to recognize'a threshold exists and the regarding of

all unbranched streams as of the same order, namely what has

come to be called the first, has proved'remarkably convenient

and instructive operationally. The slightly different real

order that each of the course lines of the so-called first

order streams occupies'in the hierarchy of course lines has

not served to hide the na:ture of the system. Rather, the

bold operational definition and ordering introduced from

empirical observation has helped clarify the relationship

in the system. We must remember however that our threshold

thus defin6d has not so much a physical as a statistical

meaning.

Figure 7 represents a plausible picture of a second

order basin and indicates a likely basin ar'rangement ba.sed

on flow efficiencies. It is, admi.ttedly, possible to construct

an entire hypothetical system for a high order basin in which

a bifurcation ratio of two applies throughout and in which

peaks are conserved. Thus, the regenerating cycle is avoided.

However, either interbasin areas are too large and have
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inefficient shapes or successively higher order stream segments

then are shorter than preceding ones. For example, we can

imagine a third order basin having only two second order streams

and four first order streams. If peaks are to be conserved, then

only five need exist, all on the exterior set of ridge line segments.

Such a portrayal requires, contrary to observed regularities

and ':least-.iork " efficiency explanations of them, the inconsistencies

noted above. Even a cursory glance at topographic survey maps

confirms the notion of efficiency of size and shape of relevant

areas and supports the necessity for and the existence of the

virtually infini.te regress among singular points, lines, and areas.

Figure 7, then, presents a "reasonable" set of relations in that

they are defensible by theory. Although virtua.ly an infinite

number of ridge lines exist, a tendency toward conservation of

total ridge line length consistent, with a given order of nested

basins and work minimization prJnc, pi,es seems to be the rule.

That is to say, work minimization results in tendencies toward

short ridge lines and compact basins. 'But note also sets of

circular basins cannot exhaust an area.

Here then are the geometrical elements, according to

their dimensions, present within or on the boundary of a first

order basin, and the imnber of times each does and must occur.
I.

This is the geometry that is necessary and sufficient to a first

order basin.
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GEOMETRY OF FIRST ORI)ER BASIN

Element and Name and Number of occurrences

Designation DesignatJion (necessary and sufficient)

Point (V) Peak (S) 2

Pit (I) 1

Pass (P) 1

Pale (B) 1

Line (K) Course (C) 2

Ridge (R) 4

Area (F) Dale 1

H ill 0 (only parts of
2 separate hil.ls
are present)

Terri'bor_ 2

The geometrical elements represented in two first order

basins paired to produce a second order stream (but not

including the additional features of the second order basin)

are given below.
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GEOMETRY OF PAIRED FIRST ORDER BASINS

Element and Name and Number of occurren.ces
Designation Designation (necessary and sufficient)
I.

Point (V) Peak (-S) 3

Pit (I) 2

Pass (P) 2

Pale (B) 1

L~ine (13) Course (C) 11

Ridge (R) 7

Area (F) Dale 2

Hill 0 (only parts of
3 separate hil.l

Territory 
1are present)

It is obvious that basin and dale are synonomous. The

general principle that F + V-E 1 and its variations

including F' and F" as explained earlier not only holds

within alny one closed contour line, as it may or may not

traverse several basins, but also within any one basin or

paired basins. It is also equa.ly obvious that one hill

cannot be contained within a first order basin although

single first order basins contain pa-rts of t.o hill-s. It

requires parts of four firso or higher order basins or

interbas:in areas to comprisc onc hill- For example, in figure

4 the area within the course lines constitutes part of' a hill,

the other part lies on the other side of the external connected
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ridge line segments between the two passes, which connected

segments, in terms of topology, serve as an axis of symmetry.

The following relationships (see again Figure 2) hold

for the single first order basin:

S = 2 R = 1  Dales = 1

I = 1 C = 2 Hills = 0 (parts-of 2
separe te hills)

P = Territories = 2

F+V-E = 1
2+5L6 = 1

F+V'-E' =.I
i+4-4 =1

F"I+V1-E"= 1
0 +3 -2 1

The above conditions are those and onily those which

describe the geometry and topology of the single first oder

basin. They are at once necessary and sufficient and cannot

be exceeded nor need they be in terms of efficiency.

For the paired first or,.r basins (see Figure 11), we

again find necessary and sufficient geometrical-topological

conditions that obtain and that cannot nor need be exceeded for

maximum efficiency:

S = 3 1 = 7 Dales = 2

I = 2 C = 4 Iills = 0 (parts of 3
separate hills')

P = 2 Territories = 1i

13 = 1
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F+V-E = .
1+8-11= 1

F'+V'-E' = 1
.2 +6 -7 = 1
F"1+V"1-E"= 1

o +5- = 1

Now, it is. important to notice that the paired first

ord'er basins have an entity that permit them to be regarded

as a unit. Their shared internal ridge line is an axis of

symmetry. Woldenberg (1968) has demonstrated that mixed

spatial hi'erarchies based on nested hexagons explain observed

phenomena with great precision. It is therefore instructive

to attemot to identify the basic hexagon in terms of our

geometrical elements. What, for example, constitutes the one

face cf the modular hexagon? What are its vertices? -- its edges?

Figure 8 is offered here as one possible identification.

It does not, however, agree wi-th the other details of Woldenberg's

discovery and formulation. It is, therefore, only to be regarded

as suggestive. In fact, nesting seems difficult. Other

identifications are possible and, in fact, the recognition of' course

lines as edges seems to offer better possibilities in accounting

for nestings.

Let us now depart from consideration of the identification

of the hexagonal structure, if indeed, that identification is

possible or, for that matter, desireable. Let us examine both

the minimum second order basin and the tyrical second order

basin. It is necessary to make this distinction for the minimum

order geometrically cannot; freely exist in face of' work rninimi'/ation

and spatial efficiency. That Is to say, a bifurcation ratio of two is

not experienced in nature as the general case.
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Figure 9 shows the minimum second order basin. This

condition is necessary, )ut not sufficient. For it,

however,

S =3 R =9 Dales = 3

1= 3 C 6 ;Hills = 0 (parts of 3
separate hills)

P 2 Territories 6

B= 2

F+V-E = 1
6+].0-15 = 1

F'+V' iiE 1
3 +7 -9 =1

F"1+V"-E"11 = 1

0 +7 -6 = 1

The structure in figure 9 conserves peaks, but is not

efficient. A more reasonable onc is that sfhown as noted, in

figure 7. As noted earlier, the additional peaks require

additional passes, .and hence course lines, ridge lines, and

thus pales and pitsj and so on in regenerating cydles. It is

important to note that the matching of the E'uler theorem serves

to identify variou. stages that can be, regarded as consistent

levels of generalization. The particular level to be shown is,

of course, that one essential to the problem at hand..

These are important mattdrs conceptdally, in'.terms of the

analysis of surface system's generally, and river basin systems

in particular. They are also important cartogr'aphjcally.

Cartographers through the ages have avoid'ed showing the sing) e.-

valued selC-crosing contour iince;. These are e's.-ential.

Surveys should especial J y detel'line their preci::e location:-
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and mapping should, above all else, indicate them, guided

by the level of generalization needed.

Conventiqnal topographic mapping practice has not

reflected the developments in the understandings of the

topology and geometry of surfaces and the study of flows

on these surfaces. There is a need now for a new kind of

topographic map which will be keyed to more recent knowledge

in these fields.

The following paragraphs serve not only to recapitulate

the fo2egoing arguments, but. also to recommend new departures

in topographic mappings. My colleague, Michael Woldenberg,

has assisted in the preparation of these statements.

Specifically, current topographic maps generally use a

constant contour .Lnterval to indicate gradients on surfaces.

This practice is sufficient to describe f'iows on surfaces

in general, if' flow were simply overland flow, but of course

this is only part of the story. Flows concentrate in channels

to gain economies of scale, and hence the end points of course

lines, along whose length channel flow begins and ends, must

be clearly delineated. Thus a pass is a point and must be

defined where some given contour line crosses itself. "'The pass
ksaso l e ate intersection of a course line and -ridge

line. As the ridge line is followed toward a confluence, it is

found to recross the course line at its lower end, and a new point

is located, the pale, which again may alter.witivoly be described

as the intersection point of a self-croosing contour line.

Thus a whole set of contours is called for, which will
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serve to delineate these critical passes and pales.

Between these contours normal interpolations may be used

if desired.

The order reflected in Horton's laws may be reflected

in the contour intervals. Suppose that i'n a river system in

a region of youth, developed on a homogeneous ,urface,

detritus is supplied so quickly that materials in the

riverbed are not appreciably decreased in size with distance

travelld downstream. Then Hack (1957) and Broscoe (1959)

suggest the profile of ,the stream will be logarithmic, and

hence the contour interval may well show arithmetic increase,

where each contour interval ref].hcts a new stream order.

Suppose the materials in the river bed decline

exponentially with distance travelled downstream. Then the

profile will be a power function, and the appropriate contour

interval will'be logarithmic, where each contour interval

wil): correspond to the drop a stream makes for each order

basin.

In a word we propose to perform research in developing

now topographic maps reflecting the current understanding

of spatial order on the earth's surface.

In addition, we propose a small change in the stream

ordering system currently employed. In the preceding sections

the convenient and operationally significant system employed

by Horton as mod"fied by Strahler was used. Basically, we

suggest merely that . 'at are now regarded as first order

Streams and basins be considered as of zero order and that

pre:;ent second order be called first and so on, The justification
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for and the convenience attending such a change are

described below.

Horton (19115) suggested several laws of fluvial

morphology. These may be classified in two ways, direct

geomutric series, and inverse geometric series. Examples

of these follow.

Direct geometric series:

In the law of stream lengths, Horton (1945, p. 291)

stated hat, "The average lengths of stream of each of the

different orders in a drainage basin tend closely to approx-

imate a direct geometric series in which the first term is

the average length of streams of the first order."

The mathematically equivalent statement is:

Lu - .l, where Lu is the average length

of the stream of order u.

L1 is the average length of the

stream of order 1.

RL is the length ratio of u+l.

Schumm (!956, p. 606), foilowing the suggestion of Horton

(19115, p. 2911), created an analogous law for stream basin

areas:

u= AiHau ' -l

where Tu is the mean area of basins of order u, Ai is the

mean area of the first order bacsins, and R a is an area

ratio analogous to the length of ratj6 RL.

Inverse geometric series:
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Horton's law of stream numbers is as follows

(Horton, 19115, p. 291):

"The numbers of streams of different
orders in a given drainage basin tend
closely to approximate an inverse geo-
metric series in which the first term
is unity and the ratio is the bifurcation
ratio."

In the symbols

Nu = 13b k - u

wher.e Nu is the number of streams of order u, 11b is the

bifurcation ratio Nulqu+l, and k is the order of the trunk

stream.

As Woldenuerg (1966, p. 1133) has shown, stream order

is a logarithm. Logarithms are by definition exponents to

some base. Ten is commonly used, and an increase in order

of magnitude is equal to 10x+l (where x is any number).

Thus btream order is really stream order of magnitude,

to the base of some ratio which may well differ from the

-commonly used 10. For direct geometric series, the variable

y which is the function of stream ord'r may be generalized

as:

= y (R y)u-l

where all terms are analogous to those previously

identified.

If the threshold stream were actually of order 0

rather than order 1, this statement could be rewritten as:

YU = YOM y )u

Similarly inverse geometric series would be written as

follows:
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Yu Rb

and would be unchanged by the change in the order for

threshold streams.

Hence identifying the threshold stream as order 0

simplifies direct geometric series, and has no effect on

inverse geometric series. There is another justification,

as well.

Vie have pointed out above, the existence of the

virtually infinite regress of peaks, pits, passes, pales,

course lines, and ridge'lines, basins, and hills in

regenerating cycles which are implied, but not perceived

on, a topographic surface. Such course lines do not form

channels, and such basins are thus not of threshold size.

Therefore, when considering these basins, negative orders

may well be used. it is possible to. think of order equal

to -5 or -19, etc. , which signify basins at very small orders

of magnitude.
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