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A NOTE OR STRIAM ORDEﬁING

AND CONTOUR MAPPING )
by William Warntz

This paper has been prepared in response to what
might be regarded; in other arenas of endeavor, as "“popular
-demand”. VWe shall also use it to make a plea for certain
changes in topographic mappings. In our first paper‘in

the Harvard Papcrs in Theorctical Geogranhy series, 16

A (¥

May 1967, vie qxamined surfaces in genecral terms but also
recognized certain points, lines, and areas on surfaces aé
singular in their characteristics aﬁd worthy of specific
delineation in that they represented that mianimal part ol
the spatial structuring that need be- known if the flows, 1if
any, on surfaces vere to bec understood. -A simple table was
in;luded that grouped the singular geometrical elements

by dimensions and by vergency. It is inéluded here sub-
sequently. A hypothetical.surface was presented to porteay
the ideas involved. Fellowing Cayley (1859) and Maxwell
(1870) we have discussed the itopology and geometry of any
surface and the relationship of the points, lines, and arcas
to Tlow phcnomena. Ve have found thpt flows of cneryy and
matter unite various parts of the surfacce into a system.
Fluvial systems, for instence, arce highly organized, and
show systematic repulerity as torton (1945) first demonsirated,

and-as Strahler (1965) and bis students have corroborated.
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While useful for general "movement theory" purposcs,
and having been developed with soclial and cconomic applications
in mind, our hypothetlical surface did not contain sufficient
"tree-Llike" or "bifurcation" pioporties to reveal, for
example, the typical, indced, the nocessafy, spatial
features and their dimensional representation present in even
moderately high.order river basins. This present paper; -
then, is an attempt to clarify these matters and to acq&@e
to wishes that we examine rivef basin geometry explicitiy.

‘None of the illustrations from the paper noted above
will be reproduced heré. The few following sucecinct
definitions will, it is hopcd;‘suffice. .

A contour line may be regarded as the intersection of
two sﬁrfaces, the conventional circumstance being that of
the intersection of the variablie surface under consideration
and some specified constant-valued "level surface. ‘Any
two intersecting surfaces do so along a line. This line
thus connects points of equal value on the variable surface.
Using conventional mathematicall noiions of surfaces, it is
to be scen that the "z" value is constant along a contour
line on a variable surface when "x" and "y" values are taken
as coordinates'on a referent level surface.

The summary of such values with relation to land forms

phenomena are conveniently and convincingly displayed by

[t

means of a map on which sclected contour lines are shown
representing the intersections of level surfaces with the
variable surface of the phenomenon and with each contour line

Aistinmuished by a numeral which shows the level surface to

et
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which it belongs.

Let us now relate the nature and significance of contour
lines to certain absolute extremum points (local maximum,
or minimwn) and mixed extrema points on a surface.

The contour "line" at a peak becomes a point. A pecak
is a local maximum of clevation. Everywhere in the imquiate
neighborhood on the surface elevation values arc lower. .

'Phe contour "line" at a pit becomes a point. A pit
is ‘a local minimum of elevation. Everywhere in the immediate
neighborhood on the surface elevation values are higher.

In general, of course, pcoks arc at higher elevations .
than pits. This is not dnevitably reqguired to be soffor
individual peaks or pits.‘ The ldcaI condition of the surface
determines which, if either, exists.

Peaks and Pits are to regarded as singular points

and constitute the category we shall call absolute extrcmum

points. —

The other kind of singular points, i.c. mixed extrema
points, are Passcs and Pales. A pass.or saddle point exists,
for example, at the selfl-crossing point of some contour linc
that forms two loops, one around cach of two adjacent peaks.
To find the pass or passes relating to a given peak requires
the establislment of the outeimost cleosed contour line.

A pale exists between adjacent pits. The self-crossing
centour line for adjacent pits may be cither of the inloop
or outleop type. ‘he inloop type also consints of wwo closed
curves, one of which, however, lices inside the other cxeoept
for their shared poinit. Inloop types occur linking pits

within g*»ecame and for lakes with ovlletln,
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Within any given lcop identified with a given singular
point, other singular points and their attendant loops may

be found. Through cvery point on the surface one may

consider that there is not only a contour line, but also

a slope line. Slope lines indicate the direction of steepest

gradient at a given point and, of necessity, thercfore,

intersect the contour lines at right angles. Ve therefore

have two families of orthogonal curves o.. the surface,

namely contour lines and slope lines. The property of

orthogonality is preserved -in a conformal projecticn to the
plane of these two systems.

In general, slope lines have peaks and pits as their

termini. In gencral any one slope line leads to some peak

S

in its "uphill" direction and to some pit in its "downhill®

direction.

As found

If, however, a particular siope line
to run from a pit to éither a pass or pale, then when continued
through that pass or pale, that line will, of necessity,

run only to another pit, {or in rarc cases, the same pit)
provided, of course, that the surface be .a continuous onc as

vie have stipulated.

Similarly any slope lipre found linking

r.m.......-_«wuw._'_»_-&-«.w P g [ aaet
1

y

b

i

1

i

§ -

]

a peak to a pass or pale, must
the pﬁss or nale continue only
cases, the same peak).

Slope lines linking peaks
desipgnated as

Ridge lines.

\
passes oy pales arc designated

Lines other than course lines and ridpge lines do notl

passes or pales as they are traced between peaks and

then, when extended through

to another peak (or in rare

via passes or pales are

Slope lines linking pits via
as Coursc lines. All slope
cncount.er
pits.

‘
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‘On continvous surfaces the poiﬁt of the pale and of
the pass have at ouce the attributes of both a local
maximum and a local minimum, each resulting in a sclf-
crossing contour. On a map showing the areal variation
of the surface for-any true ficld quantity, no flat areas
are to be found. There are, of coursec, singular points on

=

the surface where the instantaneous gradicent goes to Zero,

and dircction of slope bdecomes indeterminate when these
points are reparded in isolation. ‘Thesc points arc‘precisely
of the kinds mentioned above, peaks, pits, passes, and pales.
Peaks and pits thave beeﬁ defined as local maxima and local
minima respectively; simple closed contours therefore exist

within thelr immediate neighborhoods. At the point of a

pale or of a pa.s, gradient is zero, but no locally closed
contours occur in the immediate neighborhood; for the point
of the pale or of the pass has the attributes both of a local
ﬁaximum and of a local minimum, and a self-crossing of the
contour line results., Onc profile, prenerly taken, shows
the pass at fhe lowest value betuween two peaks; a proflle
through the same point taken at right angles to the first
shows the value at the mpass to be higher than any other
along that cross scetion. The pale occurs at the high point
between pits, but it is a low point dlonp the line at rirht
angles to the line joining the pits.

To make the above considerations clearer, lTet us cumvloy
the concept of the indicairiz, definced as the curve in which

a given surface is cut by o plare indefinitely neaor and
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parallel to the tangent plane at any point, so called

because it indicates the nature of the surface at that point.
In addition to contour lines, let lines of steepest slope also
be considered and hereafter referred to simply as slope lines.
Slope lines, of course, always cross contour lines at

right angles. (This property is preserved on these

conformal maps.) Through every point on the surface, there

~

is a slope line that, in general, begins at a certain péak
and cnds at a certain pit. Exéeptions are the lines connecting
peéfs and passcs and those connécting pales and pits.
Consider the mbsf distant closed contour line defining
a gliven sample peak or pit. THis exterior linc is inger~
sccted at cvery one of its points_by a slope line., All
of these slope lines must intersect all of the interior
closed contour lines as -well, uniting at an interior point --

the peak or the pit. In the general case, the indicdtrix

}

at the peak or pit will be ar ellivse, as will the immediate
: contour lines in the neighborhood, with the major and minor
;
i axes corresponding to the directions of least -and greatest

curvature respectively.
Letting a and b for the indicatrix be the semidiameters,
major and winor respectively, the cquation for the orthogonal

trajectory of the cllipse on a plane with x and y coordinates
+h2
¥

2 N4 i
= ¢x%° . 8o long an ¢ doca ot equal infinity, the

kis

is
curve this cquation defines touches the axis of x, the
dircction of lezst curvature, If € does cqual Infirity, x

! becomes zero and Lho curve touches the axis of the dircetion

of greatest curvaturc, i.c., y. In gencral, at the peak or

et 1 ot Wb b b 4 A b et T i ot




the pit all of the slope curves, save the one limiting
case, touch the line indicating the direction of least
curvature. The only exception occurs when the indicatrix

i

[47]

truly a circle and the slope lines pass in all dircctions
through the common point at the peak or pit.

At a pale or a pass the indicatrix is, in general, a
1

-~

hyperbola and the trajectory is C = xa2 ybg. then this goces

through the pass, C equals zero,-and then either x or y

equals zero. As a result, only two slope lines occur through
the pass, each bisccting the angles made by the branches of
the self-crossing contour line.. Thesc slopc lines thercfore
intersect at right angles. Let the slope line on which the

rass is a point of minimum elevation be ‘tevmed a ridge line

et

and the other, a course line.
In general, ridge lines pass from peak to peak and

course lines from pit to pit. Even with an arbitraiy

A e v e s e

boundary condition it is possible t'.at any one ridge or -
course line begins and ends on- a map at the same pcak or
pit, thus forming a closed curve, and, in exeeptional cases,

P any onc of these lines may be aitcrnately a ridge line or

Ty

a course linec, as is the cesc with winor -scaks on a major onc,
so that any particular scgment must be named with reference to
the pass or pale with which it is considercd. This consideration

noconncction with thoe scifl-crossing

'r.'-

must he remerded expecinlly

contour linc which is not of the usual fisure cipght or outloop

type but rather of the inlaop tyne.

To considey additionnl matlcres woe neced Lo eatablich

symbols. Iet:
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) S = number of peaks (summits),
I = number of pits (lmmits),
P = number of passcs,
B = nuaber of pales (bars),
C = number of course lines,
R = number of ridge lines.

Within any compicetely closced contour linc on a
continuous surface the number of peaks, 3, is always onc
more than the number of passes, P, so that § = P + 1.- The
same rglc applies to the number of pits, I, and the number
of pales, B, so that I = B + 1. |

If, in the singular cascs of passes and pales, we count
each of these as single, double, or n..ple. depending on
vhether two, three or nt+l areas of elevation or depression
mectlat.a pass or pale, re§pcctiyely, then the above counts
can be taken as before, giving each singlular point its proper
nuniber.

Let Pj be the number of singlce passces, P the number
of double passes, etc., and By, B2, etc., be the numbers
of single, double, ecte., pales. Then the number of peaks

will be S

1 & Pp.+ 2Py + ebe., and the number of pits

will be I

14 By + 2By 4+ ete.

Now, regard any one ridge line or éourse liﬁe as beginning
at a pass or a pale and ending at its respcetive peak or pit.
Then the number of ridge lines, R, will be R = 2(131 + Py)

+ 3(132 + P2) + cte., and the number of .covrse lines, C,
will'bc the same.

With reference to the arca encloscd by any one contour
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linc, #he following obtains: (S + I)‘-~ (P + B) = 1.

However, on a closed surfacc like\the spherical carth:
(S + I) - (P + B) = 2, FRor, on a spherc, a closed curve
bounds two arcas.

For & general topological consideration let Vbe the
number of all singular points en the closed surface (V =
S+ I+ P+ B); let E be the number of lines (I8 + R + C);
and let F be the number of separate faces or territories.
as we §hall call them. Then, I = E - V + 2.

That is to say the number of faces plus the number of

points minus the nuniber of lines equal 2. Again, within
any one closed contour line, F = E - V + 1.

This general topological relationship among points,
lines, énd areas was first established by Buler in network
analysis (the bridge problem) and was explained in terms of
any polyhedron vhere the number of faces plus the number

of vexrticeg minus the number of cdges cquals two.

.

Flurther consideration of the above shows that, for the
world's surface, if we put B' equal to the number of ridge
lines ohly, and V' cqual to the number of peaks, passes, and
pales, then ' is the number of districts of depressicn ((dales)
equal to the pumber of pits., I 1KY spécffics the nomber
of coursc Linces only and V" the number of panses, pales, and
pits, then P" is the nunber of distrdcus of clevation (hills)
equal to the number of peaks when the Luo types of districts
are pakon independently.  PDistricts whose lines of slowne run

to the same peaks oare the hills, and those whose linces of
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slope run to the same pits arce the dales. The whole closed
surfacce may be divided independently into hills and into
daley, ecach point belonging to a:certain hill and to a
certain dale. Of counrse, ridge lines arce the only slope
lines not rcaching pits, and coursc lines are the only
slope lines not ycaching peaks.

The table concerning flows referred to abowe is giveﬂ
below. We begin by assuming that "natural" movemcnts on .
surfaces tend to be along steepest slope lines or gradient

paths, i.c. at right angles to the contour lines, and from

higher values on the surface %oward lower values. These. paths

" are minimum :over-the=surface "distances" in cach casc.

This elementery assumption is in keeping with the analysis of

potentials znd forces in general ficld quantity theory.
Other assumptions about form and movement are possible
eenecially with regard to additional forces besides the
gradient force and also, long-run processes that change
surfaces. Here, however, we restrict ourselves to simple

gradient movements in the short-run. Our conclusions can

be presented in a simple table summarizing converging and

diverging {lows in terms of dimensions.
-l D

DIHMENSION NAME OF SURFACE FEATURE VERGENCY
Point Peak Diverpgence
Pit Convergence
Pass Mixed
Palc Fixed
Line Coursce Convergence
) Ridge Divergence
Araa, Hill Diverpence
Dale Converpence

Teryitory Mixed

. [ e e e e e e
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Let us now rclate thesce ideas specifically to fluvial
systems on land forms, particularly to river basing. TFigure 1
is an cenlarged portion of the Belmont, N.Y., U.S. Gzologic
Survey Topographic map (contours.only). The original lincar
scale was, of coursc, 1:62,500. 'The lineaxr scale of the map
showm here is about triplcd (i.c., 1:2¢850). On the map
in fipuxe 1, ocnc inch represents about one-third of a milo:

.on the earth's surface. The contour interval is twenty flect.

It is often noted when instruction is offered concerning
the making or interpreting of contour maps of physical land

forms thal coriours crossing streams (we would say, contours

crossing all course lines) are bent so that the “notches”
point up stream, i.c., in the direction of higher elevations.
We add that the contours crossing ridge lines are benit so that
their notches point out preciscly the down-hill direction.
Even map readers of limited experioncé should have no trouble
in picking out the mosi likely positions for strcams and their
ure 1,

accompanying basin divides on the above noted wap in fig

If we accept these patterns of comgour bending as

1 necessary -- and indeed they are necessary -- ue can then

follow through, to its final conclusion, the statemecnt aboutl

Caiatee

the neccssary clements and their dimensional relationships in

DAy IECanal | 2 s> oo

L riuvial systems.

On the following illustration, Firure 2, a simple first
order stream (d.c. a stream hoving no (ribuvtary) and jts basin
arca bounded by ridrme lincs are shoun. The heaviest lines oo
ridge lines. The lines of intermedindc width renresent couvvie

lines.,  The solid port of it represents the portion lying in
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Figure 2.

First Ordey Basin
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an actual stream and the dotted porlion indicates the
position of this line continuved back to the pass whence it
issued.

The fine thin lines are contour lines. Peaks, pits,
passes and pales are labelled, as noted above, as S, I, D,

and B respectively.
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The significant featurces of the conlours are the
ovtloops of the figurce of clight type contour with cach
loop enclosing a peak and with the self-c¢rossing of the contour
line occuring at the attendant poss and the inloop type
bounding a pit with the self-crossing at {he required pale.
(Fipgurc 3) '

It is well estoblished that any contour is a closed i
circuit on the earth (although, of course, not necessarily
withiﬁ the area portrayed on any given topographic map).

With respeet to a first order drainage basin the only coqtours
that close wibthin the basin are those in the immcediate

.
vicinity of the one pit. Morcover, all of these arc within
the smaller loop of the inloop type of ceontour (sce figure 2,

)

again). The larger loop lies entiiely outside of the first

order hasin in gquestien and its path wmay lead across many

basins before closing. Note, however, that any onc.of the inter-
mediate contour lincs shouwn on figure 2 may itsclf be a
segment of the larger loop of some in]oqp tyne contour wituh
its smaller loop localed centirely within somc distant and
separate basin. FEven thoee contour lines that close in the

jmmediate neighborhood of the peaks in figure 2 must lie

only partly in the basin under consideration and of necessity

partly outside Iit.
T£ other elosed contoves (say around sow: peok or some
pit) are found within wvhel hs bheon previovoly aosoovued Lo

be a firvael order bhaosin, thio io evidence {hat 946 4 yoeolly
> N

some higher order bosin end that o ldouver order onn licn
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entirely within it. 1In facl on the earth's surface a
virtually infinitc repgress-*does exist,. limited only by
particle size at which level the conccﬁt of surface is not
applicable, Ve shall specak of that 4% “.iculty later in this
paper:. For the present, we consider the prescence of onc
visually obscrvable unbranched strcam -~ having no tributarics --
as evidence of a fifst order strewm (and its basin) and
carry the accuracy of contour positioning to the level
sufficiont to delincate only it and not to include those
evidences of additional course lines which, however, lack
stream channecl (lous.

Note thut éourso lines or ridge lines conncct ovyr
designated points. Thus there are two individual and
distinect course lines (segments) present within the basin.
One runs downhill from the pass to the pit. 'The other
continues‘from this pit uphill Lo the pule. For the stiream
to have a continuous flow there must be sufficicnt water
in its chanmnel to permit it a high cnough level Lo cross the
pale. Hence some water must{ {low uphill for all or any of
it to move "dovnstream"™. Any strewm flouving through
several basins has a serics of compected pitas cach with a
"downstircum" side but actually Jocully uphill psle.  When
streans dry up they do not do so in shult«]jku ffachion,
Rather, they reduce to nothing throupgh a serics of dinconnmcelion:
of pits with resvliing icoletced pools of woter, A discomr-ationy
occur.s where and when ther - i not cofficispl vefer Tov the
flow Lo crons 80w pole.

Ridge lines olso run belucen siyy wler pointn, oo oo

e -
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example from a peak to a pass. Another ridge line then
goes on to another poak. Also, ridge lines go from pcaks
to pales.

Ridge lines do not go to p#ts nor do course lines go
to peaks. Both however do go to passes and to pales. If
ve consider pecaks and pits as absolutce cxiremum points
and passcs and pales as mixed cxtrema points, then any comﬂination
of course lines and/or ridge lines producing a coﬁnected
continuous path through however many basins desired and of
vhatever order, do and must exhibit an alternation of
absolute extremuw and mixed extrema points. (This condition
assumes additional importance wﬁon we cxamine below the
infinite regress referred to previously.)

Vhen two first order strcams meet, 2 sccond order
stream Is formed. In figure -4, a typical example of the
essential spatial structure attending the paired first
order basins and the resulting sccond order strecam is given.

Again we sce that the outloop figure of eight type
contovr linc is present, but this time there are two of
thein, one of them with both of its loops containced wholly
within onc¢ of the loops of the other. The situation given
in figure 5 below is, of course, possible, but not likely,
the situation portrayed in figuvre ! beinpg the more general
casc. Figvre G-I shows a section of the inloop tvype of
contour Jine woe considered w''th the single first order
bosin, Rigvre 6-11 shous us thet a "rabbit-cars" or

"butter{ly" double swmaller inloop type cccurs with the jdncidence

(s sonpn
f
I
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Figure 5,
Possible but Not Typical Arvangement

of Peaks and Passes

Figure 6.
Inloop Contours for Simple Mirst
Order Strceom Y1) andg

Paired RPirst Order Sireams (I1)
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of' a sccond order strecam.

Note on figurc 4 that one r4dgé Line (Lhe "central
onc) 1is shared as 5 common divide for the two first order
basins,

Figure 7 reveals additional featurces concerning sccond
order basins., This illustiration is adapted froni one by
Strahler, op. cit., p. 376. llo shows all 'strcams within
and the outer ridge line boundary of a fourth order basin.

We have added plausible interiocr ridge lines and have

markod singnlar poirtz., Agein, the heavy lines are ridge

lines and the lighter ores are course Jlines. The second

order stream is shown, as the ngend indicates, by a dasheod
line. ‘''his illustration cshous that the second orde) basin
contains al least two first order basins whose exterior

ridge lines it shares and additionzl) area and ridge lines as
well., lere the additional arca is served by one additional
first order basin and stiream flowing into it, but not Thereby
promoting it to a higher order and by an arca of direct
drainepe through no intcermediating strcawm. Such an arca of
direcct drainage (overland flow) into any strcam of hicher orler
than first is regarded as on interbzsin arca. Ve sce then that
two first order basins are a ncccessary but not sufficicnt
condition for & sccond order bosjn. AL deast interboas' . arca
must also exint. 0Of cowrse additionsl fivst ordir abreorns net

promoting the bosin roy dovelop within it, and indecd hicher

orders Lhet do prounte the bosin mry soLive comr into exictoneo,
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Always, however, some interbasin area mg§£ exist within
every basin of order higher'than onc and very likely,
based on obscrvation, additional non;pnomoting lower order
streams.

Now the other cxtremely important feature of figure 7
is that which shows that for basin ordens higher than one
additional course lines other than those for the first order
streams must cxist, albeit without channel flow. The x's
located on ridpe line segments indicate {hat additional
heretofore unrcgarded passes (P) must exist on these segments.
The preciée locations of thé x's must not be regurded as an
attempt specifir~lly to localize thes~ passes but rather to
indicate that somewhcre on a ridpgue liﬂc segment between any two
indicated peaks, S, and/or newly reccognized peaks, (S), a pass
must occur. (Recall the rule stated earlier concerning alternating
absolutc extremum and mixed extrema points along any connected
path:) Now if these passes exist (and they must, as well as
virtually innumberable others) so, too do their course lines,
the resulting pits, and pales, and also the ridge lines that
pales occasionalons; with their additional peaks. These new
peaks require additional passcs, and so on in new and continually
regenerating cycles to the level of scparated particles at which
level the concept of surface, itself, is'no longer applicable.
Obviously, the details of the entire structure of any set of
nested "basins" (incluading those without éhannel flow) cannot
be learnced so that some threshold must be recognized and defined.
It is .apparent that all so-called recognizablce first order

streams do not contain preciscly the same order course lincs.
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Actual rock type, climate, slope, etc., do determine the
length of overland flow preceding channel flow. Morcover,
"lower" orders do exist. However there is a demonstratved
success that systematic relations among the observed empirical
regularities in nested river basins can be understood by
regarding as of first order the streams that have no visibly
channeled flow tributaries. Despite variation in the actuai
course line order on a surface of so-called first order streams, the
neccssipy"to recognize’a threshold exisis and the regarding of
all unbranched streams as of the same order, namely what has
come to be called the first, has proved 'remarkably convenicnt
and instructive operationally. fhe slightly different real
order that each of the course lines of the so-called first
order streams occupies in the hierarchy of course lines has
not served to hide the nature of the system. Rather, the
bold operational definition and ordering introduced from
cmpirical observation has helped clarify the relationship
in the system. We must remember however that our threshold
thﬁs defiﬁéd has not so much a physical as a statistical
meaning.

Figure 7 represents a plausible picture of a second
order baéin and indicates a likely basin arrangement based
on flow efficiencies. It is, admittedly, possible to construct
an entire hypothetical system for a high order basin in which
a bifurcation ratio of two applies throughout and in which
peaks are conserved. Thus, the regenerating cycle is avoided.

However, cither interbasin areas arc too large and have
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inefficient shapes or successively higher order stream scgments

th2n arc shorter than preceding onecs. TFor example, we can

T

imagine a third order basin having only two second order sireams
and four first order strecams. If peaks are to be conserved, then
only five neecd exist, 2ll on the exterior set of ridge line segments.
Such a portrayal reqyires, contrary to 5bservcd regularities
and “"least-work" ecfficiency explanations of them, the inconsistencies
noted above. IEven a cursory glance at topographic survey maps
confirms the notion of effliciency of size and shape of reievant
areas and support§ the necessity for and the existence of the
virtually infirite regress among singular points, lines, and areas.
Figure T, then, presents a "reasonable" set of relations in that
they arc defensible by theory. Although virtually an infinite , .
number of ridge lines exist, a tendency toward conservation of
total ridge line length consistent with a given order of nested
basins and work minimization prinelples seems to be the rule.
That is to say, wofk minimization results in tendencics toward
short ridge lines and compact basins. But ncete also sets of
circular basins cannot exhaust an area.

Here then arc the geometrical elements, according to
their dimensions, present within or on the boundary of a first
order basin, and the number of times ecach does and must occur.

This is the geometry that 1is necessary and sufficient to a first

order basin.
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GEOMETRY OF FIRST ORDER BASIN

Element and - Name and Number of occurrences
Desipnation __ Designation (necessary and sufficient)
Point (V) | Peak (S) 2
Pit (I) 1
Pass (P)' 1
. L _Pale (B) 1
Linc (1) Course (C) 2
Ridge (R) . 4
Area (F) . Dale 1
Hill (gninggzzz ﬁglls
are prasent)
2

Territory

The geometrical elements represented in two first order
basins paired to produce a second order stream (but not

including the additional features of the second order basin)

are given below.
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GEOMETRY OF PAIRED FIRST ORDER BASINS

Element and Name and Number of occurrcnces
Desighation Designation {necessary and sufficicnt)
;oint (v) ‘ Peak (S) 3
Pit (I) 2
| Pass (P) o 2
- Pale (B) B . 1
Lire (B) . _ Course (C) Y
Ridge (R) 7
Area (F) . Dale ' 2
Hill 0 (only parts of

3 separate hill
are present)
Territory l

It is obvious that basin and dale arec synonomous. The
general principle that ¥ + V-E = 1 and its variations

including F' and ™" as explained earlier not only holds

within any one closcd contour line, as it may or may not
traverse several basins, but also within any onc basin or
paired basins. It is also equally obvious that onc hill
cannot be contained within a first order basin although

single first order basins contain parts of two hills. It
requires parts of four firsce or higher order basins or
interbasin arcas to comprise onc hill. For cxample, in figure
} the area within the course lines constitutes part of a hill,

the other part lies on the other side of the external connccted




ridge line segments between the two passes, which

segments, in terms of topology, scrve

for
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connected

as an axis of symmetry.

The following reclationships (see again Figure 2) hold

the single first order basin:

F+V-E
2456

nn
-

F'4V'-E' = 1

1+h-l =1

F""‘V" _Ell = l
C-+3 -2 = 1

1

i

Dales
i N
0 (parts;of 2
separate hills)

Hills

Territorics = 2 °

The above conditions are those and only those which

describe the geometry and topology of the single first obrder

basin,

They are at once necessary and sufficient and cannot

et wmr

be exceeded nor necd they be in terms of efficiency.

For the paired first oru.r basins (see Figure U), we

again find necessary and sufficient geometrical-topologica.

conditions that obtain and that cannot nor need be exceeded for

maximum efficiency:

I

P =
B

3 R =1
2 C =1
2

Dales 2

Hills

0 (parts of 3
separate hills)

Territorics = I
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MV-E = ]
h+8-11= 1
PHAVI-E! = ]
2 +6 -7 =1
Fﬂ‘_;‘vll__Ell = 1
0+5 -4 =1

Now, it is important to notice that the paired first

order basins have an entity that permit them to be regardcd

as a unit. Their shared internal ridge line is an axis of

symmetfy. Woldenberg (1968) has demonstrated that mixed

spatial hicrarchies based on nested hexagons explain observed
phenomeﬁa with great precision. It is therefore instructive

to attempt to identify the basic hexagon in terms of our
geometrical elements. What, for example, constitutes the one
face ¢f the modular hexagon? Vhat are its vertices? --its edges?

Figure 8 is offered here as one possible identification.

It does not, however, agree with the other details of Woldenberg's
discovery and formulation. It is, therefore, only to be regarded

as suggestive. In fact, nesting scems difficult. Other
identifications are possible and, iq fact, the recognition of course
lines as cdges seems to offer better possibilities in accounting
for nestings.

Let us now depart {rom consideration of the identification
of the hexaponal structure, if indeed, that identification is
possible or, for that matter, desiycablc. Tet us examine both
the minimum sccond order basin and the tynical second order
basin. If is nccessary to make this distinction for the minimum

order geometrically cannot freely exist in face of work minimization

and spatial cfficiency. That is to say, a bifurcation ratio of two is

not cxpericnced in nature as the peneral casc.
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Figure 9 shows the minimum second order basin. 'This

condition is necessary, but not sufficient. For it,

however,
S =3 - R=29 Dales = 3
I =3 cC =6 : Hills = 0 (parts of 3
separate hills)
P =2 Territories = 6
B =2
MV-E = 1
6+10-15 = 1
FI+VIE! = 1
347 -9 =1
FU4VM-EY = 1
0 +7 -6 =1

The §tructurc in figure 9 conserves peaks, but is not
efficient. A more reasonable onc is that shown as noted, in
figure 7. ,As noted earlier, the additional peaks require
additional passcs, -and hence course lines, ridge lines, and
thus pales and pits; and so on in regenerating cycles. It is
important to note that the matching of the Euler theorem serves
to identify various stages that ca&rbe regardcd as consistent
levels of generalization. The particular level to be shown is,
of course, that one essential to the proplem at hand.

These are important mattcérs conceptially, in-terms of the
analysis of surfacc systems generally, and river basin systems
in particular. They are also important cartographically.
Cartographers ihrough the apes have avoided showing tLhe single-
valued sclf-crossing contour lines. These are essential.

Surveys should cspecially determine their precice location:s
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Figure 9.

Absoiute Minimum Second

Order Basin
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and mapping should, above all else, indicate them, guided
by the level of genéralization needed.

Conventional topographic mapping practice has not
reflected the developments in the understandings of the
topology and geometry of surfaces and the study of flows
on these surfaces. There is a need now fof a new kind of
topogréphic map which will be keyed to more recent knowlcdgg
in these fields.

Thé follovwing paragraphs serve not only to recapitulate
the foregoing argumepts, but. also to recommend new departures
in topographic mappings. My colleague, Michael Woldenberg,
has assisted in the preparation of these statements.

Speciflcally, current topographic maps gencrally use a
constant contour .nterval to indicate gradients on surfaces.

This practice is sufficient to describe fiows on surfaces

R in general, if flow were simply overland flow, but of course

l this is only part of the story. Flews concentrate in channels
£o gain economies of scale, and hence the end points of course
lines, along whose length channel flow begins and ends, must

be clecarly delincated. Thus a pass is a point and must be
defined where some given contour line crosses itself. "T'ae pass

3 Is also locabted abt the intersection of a course Yine and ridge

line. As the ridge line 1s followed toward a conflucnce, it is
found Lo recross the course line at its lower end, and a new point
is located, the pale, which again may alternatively be described
as the interscction point of a self-crossing contour line.

Thus a whole sct of contours 1is called for, which will
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serve to delingatc these critical passes and palces.
‘Between these contours normal interpolations may be used
if desired.

The Qrdeq reflected in Horton's laws may be reflected
in the contour intervals. Suppose that in a river system in
a region of youth, developed on a homogeneous surface,
detritus is supplied so quickly that materials in the
riyerbbd are not appreciably decrcased in size with distance
travelled downstream. Then Hack (1957) and Broscoe (1959)
suggest the profile of the stream will be logarithmic, and
hence the contour interval may well show arithmetic increase,
where cach contour iﬁterval reflécts a new stream order.

Suppose the mgterials in the river bed decline
exponentially with distance travelXed downstream. Then the
profile will be a power function, and the appropriate contour
interval will be logarithmic, where each contour interval
will correspond to the drop a stream makes for each order
basin.

In a word we propose to perform research in developing
ncw topographic maps reflecting the current understanding

L spatial order on the earth's surface.

In addifion, we oropose a msmall change in the stream
ordering system cuvrrently employed. In the preceding scctions
the convenient and operationally significant system employed
by Horton as modified by Strahler was used. Basically, wve
suggest mercly that .hat are now rcga;ded as first order
streams and basins he considered as of %ero order and that

present sccond order be called first and so on, The justificatlon
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for and the convenience attending such a change are
described below.

Horton (1945) suggested several laws of fluvial
morpnology. Thesc may be classified in two ways, direct
geometric series, and inverse geometric series. Examples
of these follow. .

Direct geometric series:

In the law of stream lengths, Horton (1945, p. 291)
stated vhat, "The average lengths of stream of each of the
diffofent orders in a drainage baslin tend closecly to approx-
imate a direct geometric series in which the first term is
the average length of streams of the first order."

The mathematically eguivalent statement is:

Tu - Ethu"l where Ly, is the average length
of the stream of order u.
Ly is the average length of the
stream of order 1.

L

Ry, is the length ratio of “u+tl.

L

u
Schumm (1956, p. 606), following the suggestion of Horton
(1945, p. 294), created an analogous law for stream basin
areas:

- = u-1 ‘ ’
R, = TRy ‘

vhere Kh is the mean arca of basins of order u, Wl is the
mean arcea of the first order basins, and Ra is an arca

ratio analogous to the lenpth of ratic Ry

Inverse geonmectric series:
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Horton's law of stream numbers is as follows
(Horton, 1945, p. 291):
"The numbers of strecams of different
orders in a given drainage basin tend
closely to approximate an inversc geo-
metric series in which the first term
is unity and the ratio is the bifurcation
' ratio."
in the symbols
_ k-u
Ny, = Rp
vhere N, is the number of streams of order u, Ry is the
bifurcation ratio Nu/Nu+1 and k is the order of the trunk
3
stream.

As Woldenuverg (1966, p. U433) has shown, strecam order
is a logarithm. Logarithms are by definition exponents to
some base. Ten is commonly used, and an increase in order
of magnitude is equal to 10%+1 (where x is any number).

Thus stream order is really stream order o: magnitude,

to the base of some ratioc which may well dilfer from the

commonly used 10. For direct geometric series, the variable

y which is the function of stream ord-r may be generalized
as:

Yy = vy (ROUT |
where all terms are analogous to those previously
identified.

If the threshold stream were actually of order 0

rather than order l, this statement could be rewritten as:

Yu = vo(Ry)"
Similarly inverse geometric series would be written as

follows:
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_ k-u
y "Rb

and would be unchanged by the change in the order for
threshold streams. B

% Hence identifying the threshold stream as order 0O
simplifies direct geometric series, and has no effect on
inverse geometric'scries. There is another justification
as well.

Vie have pointed out above, the existence of the
virtually infinite regress of peaks, pits, passes, pales,
course lines, and ridge lines, basins, and hills in
regenerating cycles which are implied, but not perceived
\ on a topographic surface. Such course lines do not for;
channels, and such basins Qrc thus-not of threshold size.
Therefore, when considering these basins, negative orders
may well be used. It is possible to. think of order equal
to -5 or -19, etc., which signify basins at very small orders

of magnitude.




v

e L

AL

PRy 4 o

S W3

-30-

BIBLIOGRAPHY

Broscoe, Andy, 1959, Quantitative analysis of longitudinal
stream profiles of small watersheds: Office of Naval
Research Tech. Report N. 18, Proj. 389-042, Dept. of
Geology, Columbia University.

Cayley, Arthur, 1859, On contour and slope lines: The Lond.,

Edin., and Dub. Phil lag. and Jour. of Sei., v. 18, pp. 26U4-268.

Hack, J.T., 1957, Studies of longitudinal stfeam profiles in,
Virginia and Maryland: U.S. Geol. Survey Prof. Paper 294-B,
p. 1-97. .

Horton,'R.E., 1945, Erosional development of strcams and their
drainage basins: hydrophysical approach to quantitative
morphology: Geol. Soc. America Bull., v. 56, p. 275-370.

Maxwell, J. Clerk, 1870, On hills and dales: The Lond., Edin.,
and Dub. Phil. Mag. and Jour. of Sci., v. 40 (lith ser.),
pp. 421-127. . '

Schumm, Stanley, 1956, Evolution of drainage systems and slopcs
in badlands at Perth Amboy, New Jersey: Geol. Soc. America
Bull., v. 67, p. 597-6U6.

Strahler, A.N., 1964, Quantitative geomorphology of drainage
basins and channel networks in Chow, Ven Te, ed., Handbook

of applied hydrology: compendium of water resources technology:

New York, McGraw-Hill Book Co., p. 29-76.

Warntz, VWilliam, and Woldenberg, Michael, 1967, Concepts and
Applications--Spatial Order: Harvard Papers in Theo»retical
Geography No. 1, Office of Naval Research Tech. Report, Proj.
NR 389-147, Harvard University.

Woldenberg, Michael, 1966, Horton's laws justified in terms of
allometric growth and steady state in open systems: Geol.
Soc. America Bull., v. 77, p. 431-434,

Woldenberg, Michael, 1968, Energy flow and spatial order, with

special reference to mixed hexagonal central place hierarchies:
Harvard Papers in Theoretical Geography No. 8, Office of Naval

Research Tech. Report, Proj. NR 389-147, Harvard University.




AT

- e mims -

Secatnnty Clas Gfye atinp

o sav e "
DOCUMENT COMTROL DATA-R&D ]
rSee oty chansificwtion of el bods o abe et an D anedosnne s bty o nu 2 he entored when the overall o pott - oela ~ilicd)
T ORLNATING ACTIVIT Y (Corpotate authaor) it U FORT SLCURITY CLALSIFICATION
President and Fellows of Harvard College . [ SiGor
Y RLEOLY T11LE - N . _

A NOTE ON STREAM ORDERING AND CONTOUR MAPPING

S DESCHIBTIVE HOTE » (Type ol topott and,incly pve datos)

wterim _Report |

——— e PN S AL 4

VIO (First nate, muddle mitial, last neane)

-
>

William Warntz

% RLPORY GATC . 74, TOTAL NO. OF PAGLS 75, NO. OF REFS

1 July 1968 30 10

e, CORTRACT O GHANT ND. 94, ORIGINATOR S KLIORT NUMEL RIS)

ONR 00014-67A-0298-0004

b. PROJELC T NO ONR Technical Report #18

RR 389-1h7

c. ) 494, a;;u&;:or'z‘ghovn NOLS) (Any other numbers that may e assigned
Harwvard Theoretical

d. . . Geography Paper #18

10, DISTRIBUVIION STATEMEN]

Distribution of this document is unlimited.

1 SUPPLLMORTARY NOTES 17. SPONSOKING MILITARY ACTIVITY

Office of Haval Research,
Geography Branch

L2 APLTHALT

This paper describes the necessary, sufficient, possible, and
Likely geometrical and topological characleristics of stream drainage
basins of various orders. A suvggestion is made for experimental
topoegraphic mapping to bring it closer to the current theory of
spatial hierarchical systems. Stream ordering is examined and a
recommendation is offered that strcams now considered as of first
order be regarded as of zero order. This simplifies mathematical
notation for the Horton-Strahler-Woldenberg type of analysis in
quantitative geomorphology and nas added intellectual interest by
facilivating the undecrstanding of the virtually infinite cyclical
regress in the palterns ol surface feavures down to individual
particle size.

P —

H ¥ kL o NG PP APMAY VALY NS WM AR T WS P e R WL T A TOM P, AWRERWS WO . o aw & g - . -
My b0y FORK T ey PAGL )
L) L; 1ROV e 1 4‘ / < ( ’
S/ 0101 ~£07-6811 TTRecunty Clao afteatyon T

v dlqoa




