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r ABSTRACT

I A spherical explosive device that, by selective multipoint initiation,

concentrates its energy in a beam along any of several aiming axes is described.

The aiming is accomplished by electronically selecting the proper group of

detonators, thereby eliminating the necessity of physically aiming the charge

which it required in all other focused blast devices. Once fired, these

initiators cause a nearly cylindrical detonation wave, collapsing on the

focusing axis, which forces the explosion products out along this axis.

f Three small, 1/4 lb. C-4 spherical focused blast devices have been

built and fired. The explosion products' velocity, shock wave velocity and peak

pressure along the focusing axis were measured. These blast parameters were

compared gith similar ones measured for centrally initiated spheres, the purpose

being to achieve a quantitative measure of the degree of focusing. The com-

parisons revealed that considerable gains over isotropic blast result from

this focusing method. Furthermore, the focusing appears to be a far field effect

I. in that the values of peak pressure and the shock velocity are nearly equal to

those of the centrally initiated sphere in close but tend to fall off much less

I• rapidly with distance.

Another result of interest is that the data obtained from the small,

1/4 lb., 2-inch diameter, centrally initiated spheres are in very good agreement

with similar data scaled from much larger spheres.
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SI Introduction

Focused blast is the term applied to explosions that, by methodI of initiation, shape of explosive charge, or method of confinement, are

directed in a beam or are uniformly distributed in a plane. For practical

applications of focused blast, such as in missile ordnance, the explosive

charge should have a symmetry that would permit p-oducing the blast in

I any direction. This was recognized early at APL by W.H. Avery, who

suggested that experiments with spherical charges having various arrange-

] [ ments of initiators, be carried out at the New Mexico Institute of Mining

and Technology, Socorro, New Mexico, to determine the degree of focusing

that could be achieved. A patent application covering this device is on

file. Later modifications of these ideas led to initiator arrangements

which produced detonation waves that converged on the focusing axis and

' •forced the explosive products out along this axis. Falcon Research,

under subcontract to and in accordance with instructions from APL, measured

j the blast parameters around peripherally initiated charges of various

geometries and compared the results with centrally initiated spheres of

II the same explosive. It was found that devices producing focubed blast

along an axis were more effective than those producing axisymmetric focused

blast in a plane (Ref. 1). Both were more effective than centrally initiated

spheres.

The spherical focused blasr levice described he'e is conceptually

simple. Its focusing mechanism is Jentical to that of the flat, pvripherally

initiated disk which was the most effective device tested by Falcon Research

I (Ref. 1). In the periphirally initiated disk, the detonation waves

collapsing cylindrically toward the center cause a strongly focused beam

3 of explosion products along the axis perpendicular to the face of the disk.

By properly arranging a number of detonators on the surface of a sphere and

firing them at the correct time, a series of detonation waves collapsing

on a polar axis, and, therefore, focusing the products along the polar axis,

can be produced.

| | | I -



THE J0HNS OPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
SILVIS SPOIN.. MANRYANO

Consider a sphere of explosive having a radius, a, and twelve

(12) initiation points arranged as shown in Figure 1. The four lying in

the equatorial plane, i.e., the x-y plane, are to be initiated first,

at t = 0, and the eight points lying in the two parallel planes are to be

initiated later at t = td. The delay time, td, is the time required for

the detonation wLve from point A, initiated at t = 0, to reach the line B-B'.

Thus.

t = a (1 - sin ) (1)
D

where D is the detonation velocity of the explosive and Cp is the angle shown

in Figure 1. It is expected that the collapsing detonation waves, so produced,

will focus the explosion products along the z axis.

The device just described has only a single focusing axis. By

adding more initiation points, the beam can be aimed along any desired axis

,simply by firing the proper ccmb.nation of detonators. The method of

locating these initiation points is discussed in the appendix.

Expe.imental Methods

A. The Initiation System:

Before the spherical focused blast device could be tested, it was

necessary to develop a suitable initiation system. The maximum explosive

weig;-t of 1/2 pcund allowed for testing here at APL placed severe constraints

cn the initiat:rs. A 1/2 pound sphere of C-4, the planned explosive, is only

about 2.5 inches in diameter; thus the initiators must be extremely small if

they are to approximate pcints, yet they must also be very powerful to initiate

tie explosive witr a small induction distance. Furthermore, for any reasonable

cFýice cf tne angle T (Eq. 1), the delay time is of the order of 1 4 s, so the

Lnitia-.rs must function with timing errors no greater than 0.10 4 s. Available

elvctrical detc:natcrs capable cf ri-is accuracy (the AEC SE-I for example) are too.

largi, ft V`te 2.5 inch sphere. Therefore, it was decided to devElop an

- 2.-
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initiating system consisting of twelve pieces of Detacord , initiated

simultaneously, with timing controlled by cord length.

Tests were necessary to determine if Detacord could reliably

initiate C-4 and if it had sufficient uniformity to reproduce initiation

ti:aes with the required accuracy. For initial testing, a simple method was

devised which required a minimum of preparation and no instrumentation.

Twenty grams of C-4 were held irn a small bakelite cylinder which was placed,

etid on, on a I" thick steel witness block (Figure 2). Two Detacord initiators

were placed on opposite sides of the cylinder and embedded one-cord diameter

in the C-4.

A detonation wave moving through the C-4 makes a deep dent in the

witness block, aud if two detonation waves meet they make a sharply defined

meeting line in the block. Such a meeting line from one of the tests is

illustrated in Figure 3. Since the detonation velocity of C-4 is known,

(8.04 mm±/sec) initiation delays caused by the two cords can be calculated

from the position of the meeting line.

These initial tests indicated that:

1. 0.190 inch diameter Detacord will reliably initiate Composition C-4.

2. Detacord has sufficient uniformity to produce the required initiation

accuracy.

3. Initiating several cords simultaneously is difficult.

4. Controlling the length of the cords to the required accuracy is a major

problem.

Originally it had been planned to use 0.110 inch diameter Detacord

because it would more closely approximate a point initiator; however, tests

showed that it would not initiate C-4. It was suggested that if the end

of the cord was hollowed out, the shaped charge effect might be sufficient to

initiate C-4. Subsequent experiments indicated considerable enhancement,

as evidenced by deep dents in steel witness blocks, but the 0.110 inch cord

still would not initiate C-4. Therefo're, it was necessary to use 0.190 inch

Dttacord.

Tradrd-name I.E. Dupont

-3-



yM9 J@NN "OEKINS UNIvgugI?

APPLIED PHYSICS LABORATORY
gN.Wm UPU M, MAWVLINO

The cords iust be cut very precircly; since the detonation velocity

in the cord is 7.00 mm/P s, an error of only 0.7 mm in length corresponds to a

timing error of 0.10 p s. This problem is compounded by the rubbery nature of

Detacord. Great care must be exercised in the cutting and subsequent handling

of the cords so that they are not stretched or otherwise deformed. A simple

jig, which rigidly supports the Detacord during cutting, was constructed from

two blocks of lucite machinedto the proper length. A groove is milled in one

of the blocks to accommodate the Detacord, the other block clamps the cord

firmly in position while it is cut at each end with a razor blade.

The problem of simultaneously initiating the twelve pieces of

Detaccrd was solved by placing them on the periphery of a 2-inch diameter disk

of Detasheet. The Detasheet disk was then initiated at its center by an

E-106 cap. A drawing of this system is shown in Figure 4. High speed

photographs (1.0 x 106 frames/sec) showed that all the cords were initiated

simultaneously within 1.0 p s (the interframe time).

The entire initiating system was assembled and tested. Photographs

indicated that the detonation waves arrived at the end of the cords simul-

taneously, within the measuring error of the experiment (0.10 P sec) which

depends entirely on how accurately the distance of the waves from the end

of the cord at a particular time could be measured on the film. This result

means that the initiation system employing pieces of Detacord was sufficiently

accurate to use for the preliminary sphere tests.

A small, powerful electrical detonator was required to initiate the

centrally initiated spheres used for the control experiments. Timing was no

problem in these experiments. The EX-7 miniature detonator (manufactured by

the Hercules Powder Company, Port Ewen, New York) meets these requirements.

These are sufficiently powerful and quite small (0.410" x 0.188" diameter

at the firing end).

B. Construction of the Spheres:

Two-inch diameter C-4 spheres, weighing approximately 1/4 pound,

were used for the experiments. Table I shows the actual explosive weights,

including t,:e Detaccrd initiating system, for each test. The spheres were

made by hand packing explosive into 2.0 inches I.D. cast epoxy shells having

.20 inch walls. These shells serve both as spherical molds and as collars for J

-4
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accurately locating and holding the initiating cords in position. Figure 5

ti ad photograph of one of the epoxy shells with holes drilled to accommodate

the initiators. rhe angle C (Eq. 1) was chosen as 430 9' to make the delay

exactly 1.0 IA a. The epoxy shell, filled with explosive, was suspended in a

framework of 1/16 inch lucite sheets which supported the pieces of Detacord

in the initiating system. A spherical focused blast device, ready for testing,

in shown in Figure 6.

The centrally initiated spheres for the control experiments were

Ui made in halves, each half being made by molding C-4 in one of the cast epoxy

shells which had been lined with nylon net to facilitate removal of the charge.

The EX-7 detonator was inserted by making a suitable dent in each hemisphere.

Aesembly was completed by tightly taping the sections together. During the

test the sphere was suspended in a small nylon net or cloth bag.

Instrumentation

High-speed photographs of the expanding explosion products'

cloud were taken with a 16 mm Fastax camera. The speed of the camera was

determined accurately from timing light marks on the edge of the film. The

timing light was driven by an audio oscillator whose frequency was continuously

monitored with an electronic counter. By including an appropriate grid in the

photographs, the explosion products' position could be determined as a function

of time and their velocity could be obtained by graphically differentiating

these data.

Attempts were made to measure the pressure, with piezoelectric

transducers, at a number of positions along the focusing axis. Each transducer

was connected to a Tektronix 565 oscilloscope through Kistler 566 charge

amplifiers. Borrowing a technique from aerodynamics, the gauges were mounted

in a flat steel plate, 2' x 4' x 1/2", which had a 20 wedge mounted on the front.

The plate was held vertically and aligned along the focusing axis of the sphere.

The pressure measured in this manner is the static pressure.

Time of arrival data for the shock wave at six distances were also

obtained,using piezoelectric transducers, for most of the tests. (The six

gauges include the two transducers mounted in the steel plate). For the

1 -5-
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centrally initiated sphere tests, the gauges were distriluted around the sphere

while they were placed essentially along the focusing axis for the focused I
sphere test. Because of thc small scale of the test, they could not be placed

directly on the axis one after another inasmuch as the flow is disturbed

behind the gauge. £herefore, care was taken to position each gauge so that

it would not interfere with others behind it. Figure 7 shows a schematic

of the gauge positions. The shock velocity can be deduced from these data

and the pressure distribution calculated from the measured shock velocity I
using the normal shock relation for a perfect gas.

P 1+ y (M2  1) (2) 1
P y+l

where P = absolute pressure

P 0 ambient pressure

M = shock Mach number = v/c

S= 1.4 for air

c = local sound velocity J
The ideal gas assumption is certainly justified; because, for the low Mach

numbers encountered, the real gas correction is negligible (Ref. 2). 1
Experimental Results

A. Centrally lnitiated Spheres:

Two 2.0 inches in diameter, centrally initiated, C-4 spheres were f
fired to serve as a control for the focused blast experiments. Gas cloud

shape and velocity and shock velocity were measured and attempts were made to

measure the pressure at two distances from the spheres. Table II shows the

locations of the six transducers. Gauges P4 and P5 were mounted in the steel

plate to measure static pressure. Gauges P1 and P4 were interchanged for the

second firing because the sensitivity of the Kistler 605B was found to be too

low to measure the pressure at the P4 location.

6I
~II
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Traces frcm successive frames of the Fastax films of each test

are shown in Figure 8. The explosions of both spheres are uniform except

for minor localized disturbances on the expanding fronts.

Time-of-arrival data for both spheres are plotted in Figure 9;

also shown, are the positions of the explosion products determined from

the photographs. It was necessary to shift these points by a constant time

to make them have the same zero as the time-of-arrival data because the actual

zero time of the event occurred between frames of the film. The data from both

spheres are in close agreement; so single curves are fitted through the points.

The shock wave and explosion products' velocities were determined

from the distance-time curves and are shown in Figure 10.

Table III shows the peak pressures measured at locations P and P
4 5'

Pressure-time histories were not obtained because of severe gauge ringing and

apparent thermal effects, evidenced by the drift of the scope trace from its
zero level. As mentioned previously, no pressure was measured at the P4

location for the first test because the gauge was too insensitive.

The pressure distribution was calculated from the shock velocity

using Equation 2 with P 14.7 psi and c - 1100 ft/sec. These pressures are

plotted in Figure 11 along with the measured pressures from Table III. The

calculated and measured pressures are not in good agreement. In fact, the

measured pressures are each almost exactly half the corresponding calculated

ones. It is felt that this relationship is fortuitous, and that the disagreement

is an indication of damped gauge response caused by the protective coating

of silicone grease placed on the transducer face; especially since the cal-

culated pressures are in good agreement with scaled data from larger charges

(See Discussion).

B. Focused Blast Results:

Three spherical focused blast devices were built and fired. No

data, except photographs, were qbtainid from the first firing; however, these

looked promising enough to cohtinue this program.

7.-
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Figure 12 shcws traces from the photographs of both the second

and the third tests. A considerable degree of gas cloud focusing is evident j
in both of these tests; however, the focused beam is directed upward, 120

in the second test and 13.50 in the third, from the planned axis. Presently,
I

it is felt that the large amount of additional explosive in the initiation

system causes this deflecLion.

In the second test, three pressure transducers were mounted in the I
steel plate in an attempt to make pressure measurements on the focusing axis.

Table IV shows the location and types of these gauges. Time-of-arrival data I
were taken only for the third test and the instrumentation was identical to

that used for the second zentrally initiated sphere rest (See Table II). j
The positions of the explosion products, for thesecond test, as

functions of time are plotted in Figure 13. I
Th3 shock wave time-of-arrival data and the position of the explosion

products of the third test are shown in Figure 14. The time-of-arrival data

have been corrected to compensate for the delay in the initiating system.

This was necessary because the scope recording the data is triggered at the

same time as the E106 cap receives its firing pulse, while the actual zero 3
time of the event is when the sphere is initiated, the E106 cap has a typical

delay of 30 p s and the delay in the Detasheet disk and 12.0 inch lengths

of Detacord are computed from their respective detonation velocities to be

I47.1 ki s, making the total correction 77.1 p s (.077 ms). The explosion

products' position curve was shifted, exactly as in the centrally initiated

sphere tests, to make it have the same time zero as tne time-of-arrival data. I
The time-of-arrival data obtained are coincident with the gas cloud points,

indicating that the shock wave had not yet separated from the rapidly moving

explcsion products' front. Two of the gauges, P and P6. failed to operate;

so the shock wave separation was not observed. Close examination of the films

Indicated that neither gauge was struck by the direct wave because of its •

upward direction.

The distance-time curves for each test were graphically differentiated

8-
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to determine the shock wave and explosion products' velocities, which are

plotted as a function of distance from the center cf the sphere in Figure 15.

The gas cloud velocities measured for the two spheres are slightly different,

with the third sphere's products' front having a higher velocity than that

of the second. These measurements are consistent with the appearance of the

two blasts in that the beam of the third device appears narrower than that

of the second. The general shape, however, of the velocity curves is nearly

identical, indicating that the functional dependence of velocity on distance

is the same in both tests. Both curves have two inflection points; the
2 2second derivacive, d v /dr , shifting from positive to negative and backP

to positive again. In the third test, the shock wave and exploslon products'

velocities are equal up to the first inflection point. It is postulated

here, with,"t proof, that the first inflection point is associated with the

separation of the shock wave from the products' front.

The pressure measurements were not entirely successful for either

the second cr the third test. In the second test, gauges P2 and P located

3.5 and 5.0 feet from the center of the sphere, failed to operate and the

trace of gauge PI was almost entirely obscured by ringing; bct, an approximate

peak overpressure of 90 psi was measured. In test three, gauges P 5 and P6

didn't function but gauge P4 had the best, i.e., least noisy, trace recorded

during the entire test series; a peak cverpressure of 120 psi was measured.

Again, the pressure was calculated from the measured shock velocity of test

three using Eq. 2 with P 0 14.7 psi and c - 1100 ft/sec. These pressures and0

the mpasured pressure at 2.5 feet are plotted in Figure 16. The measured

pressure is only one-third of the calculated pressure at the same distance

(120 psi vs 360 psi), which is worse agreement than was obtained for the

centrally initiated sphere tests where the measured pressure was half the

calculated pressure. Part cf this discrepancy can again be attributed to

damped gauge response, but some of the deviation may have been caused by the

fact that the gauge was cff the direct focusing axis because of the beam's

upward motion. If true, this would explain why the difference be.tween

measured and calculated pressurps is greater in tne focused than in th•

isotropic sphere tests.

"-9-
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Discussion
Figure 12, showing the shape of the explcsion products' cloud

as it expands from the spherical focused blast device, clearly snows that a

high degree of focusing was achieved with the propcsed mult).pcint initiating

system. The shape of the gas cloud, hcwever, is only a qualitative

indication of focusing. A quantitative measure is needed. The isctropic

blast from a centrally initiated sphere cf the same weight and material

provides an ideal lower limit of nc focusing for direct comparisons. Such

comparisons are made in Figures 17 and 18, where the shock wave and expl3sion

products' velocities and the peak overpressure obtained from t'e centrally

initiated sphere and focused blast tests are shown together. The gains I
achieved by focusing are considerable. For example.

I.. The gas cloud velocity has fallen to 1500 ft/sec at o•nly 1.95 feet from J
the isotropic sphere. This same velocity occurs at 4.0 ft from the

focused sphere. j
2. At 2.5 ft the shock velocity is 2400 ft/sec for the center initiated

sphere and 5200 ft/sec for the focused device and the pressure of the

focused sphere is more than five times greater (360 psig vs. 65 psig).
Even more interesting is that the focusing effect increases witO distance

from the blast center. This Is illustrated in Figure 19, where tve rat.o J
of the absolute pressure obtained from the focused sphere t. that from the

isotropic sphere is plotted as a functicn of distance. This curve will have

a maximum when the wave from the centrally initiated sphere drops to sonic

velccity and then the ratio will decrease to unity. This result is surprising,

because intuitively cne might have expected the pressure ratic to be a

monotonically decreasing function of distance.

It is of considerable interest to know how the spherical focused

blast device compares to other types of fccused charges. Falc:n Research

and Development Corp., under subcontract to APL, fired charges cf several 3
types to investigate their fccusing characteristics (Ref. 1). included among

these were: 5

I
10 I
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1. Three types of peripherally initiated disks (all Comp. B, weighing 20 lbs.),

a flat one, a convex-concave one, and a double convex disk.

2. Confined and unconfined, 60 lbs. simultaneous end initiated cylinders -

also Comp. B.

3. Multipoint, side initiated and centrally initiated, 20 lbs. Comp. B spheres.

F.K. Hill, APL, has plotted the peak excess pressure obtained from each of

these charges as a function of the scaled distance Z - (R/W/) P
0

i.e., the pressures have been referenced to 1 lb. charges fired at sea level.

His plOt is shown in Figure 20, where the results of the spherical focused

blast tests have been added for comparison. This was done in full recognition

of the fact that Sachs' cube-root scaling law applies only to isotropic blasts

such as from centrally initiated spheres and its use here is probably invalid.

Having obtained what appear to be good data for small centrally

initiated spheres, it is of considerable interest to examine the validity of

scaling similar data, obtained for much larger spheres, down to this size.

The type of scaling of interest is that used in the previous paragraph, namely,

if a sphere of weight W1 causes a pressure P at a distance RI, then another

sphere, having weight W2 , will produce the same pressure at another distance R2P

given by

R2 R (3)
2 1

if the ambient pressure is the same for both tests. No data from large C-4

spheres could be found for comparison with the 1/4 lb. C-4 sphere data;

however, data from 20 lbs. 50/50 Pentolite and Comp. B spheres were available

(Refs. I and 3). If two explosives have equal values of their energy of

detonation and adiabatic exponent, they produce identical effects. Detonation

vctocity is an equally valid comparison parameter since the three quantities are

related by

D2 (4)
2(y - 1)

- 11
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where E, D and y are tre energy of detonation, detonation velocity and

adiabatic exponent respectively. The values of these parameters for 50/50 I
Pentolite, Comp. B, RDX and C-4 are tabulated in Table V. RDX is included

because of incomplete C-4 data. C-4, which is a mixture of 91% RDX and 9% 3
solvent-plasticizer, should act very much like pure RDX. The fact chat

Pentolite and Comp. B have lower energies of detonation and detonation

velocities than RDX (or C-4) indicates that they should produce slightlyI

lower shock velccities and pressures. The scaled data are included in Figures

10 and 11 and are seen to be in good agreemen: with the 1/4 lb, C-4 data, 3
but, as expected, slightly lower. The average deviation between scaled and

measured pressure is only about 10%, thus, when the differences in explosives 3
are considered, it appears that blast pressures from centrally initiated

spheres can be scaled to very small charges witi little error.
The work described here is of a preliminary nature. A spherical

focused blast device, employing selective multipoint initiation, capable

of firing in any chosen direction by electronically choosing the proper

group of initiators, has been tested in small scale experiments and appears

to be highly effective. More complete data are required to accurately assess 5
its effectiveness with respect to other types of focused blast. More complete

pressure data, including pressure-time histcries both on and off axis are

needed. The pressure-time history is required to calculate the impulse,

which is one of the main parameters used fcr predicting the damage potential

against various targets. The off axis pressure is needed to determine the

focused beam width which is necessary for deciding on the number of focusing

axes required to provide the greatest effectiveness. At the present time,

however, comparisons of pressure and impulse between different types of

focused blast charges can only be made for charges having the same weight and m
fired under the same ambient conditions. It is even impossible to predict

the behavior of two charges having tdenical gecmetries but having different 3
weights and possibly fired under different ambient conditions. This is one of

the worst deficiencies of focused blast technclcgy; it is not yet well enough 3
understood, nor has enough informaticn been collected, to develop simple methods

ot predicting blast effects such as the scaling laws that apply to isotropic

blasts.

-12
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I

Initiation System for Multi-directional Spherical Focused Blast Device

A practical spherical focused blast warhead must be capable of

firing along any of several possible axes. The proper firing axis would be

determined by the relative attitude between the missile and target at

intercept and the appropriate group of detonators triggered electronically.

The entire system, being electronically controlled and fired, would have a

nearly instantaneous response.

In the following, a systematic method of locating the initiation

3 points will be developed. It will be shown that the points occur in pairs

which are reflections of each other through the center of the sphere. These

paired points are always fired simultaneously and certain of them are always

delayed, which simplifies the switching network required to choose them.

Consider a sphere of radius a, having nine firing axes, i.e.,

axes (i - 9), arranged as in Figure 21. The numbers 10 - 13 are for later

reference. Let the center of this sphere be at the origin of the xyz coordinate

system and let the z axis coincide with the missile axis. If the z axis

were the firing axis, the twelve initiation points would be located at

(referring to Figs. 1 & 21)

0 0 2 1 ,(A-1)0 0i
0 &L ± and&YI

where column matrix notation is used for the coordinates. Now let z' in

the x'y'z' system be any other firing axis. The initiation points for this

axis will have the same coordinates in the x'y 'z' system as the initiation

points for the z axis in the xyz system. It is desired, then, to find the

coordinates of these points in the xyz system. Now the x'y'z' axis can be

formed by rotating the xyz axis and the most systematic method of performing

this rotation is the method of Euler angles (Ref. 6). In this approach,

13
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t hv rot at ten Is decompcosed in! trct, asep rat o'nea Am In F • •' "' v

1.. Tht xyL system ts rotated c .untert tockwise about t h1 z axis through

an angle T, result itg in e Intermediate ýy,, n ,vtm.

2 rheo ' system is then r,.tated kunterclockwise. through ant fi'8, nI

abLut the ! axis to produce the sylttil.

3. Finally, the t,'r C' system is rotaed tounterclckwise about the C axis I
throtgh angle 0, resulting In t"v xKv'z' system.

Thus in mat r Lx not at ion 3
x -A x (A2) 3

where x'- y and X. y

and the matrix A is the prcdu(t of the three separate rttat ion matrices

B, C and D where,

co s4tsn 4; 0)

sin cos 0 (A3)
0 0 1

1 o 0) ( 1SC W 0 Cos Osin (A4)
(0 sin 0 czs

and D = -sn CP cos Cp 0 (Ab)

lable Vlshows the Euler angles Cp, e and Q fcr the fLring axes

indicated in Figure 21, i is zer. for all cf Oest, sc B reduces to the m

I
tdenttry matrix. Thus A =CD or

A : sin (p ccs Cos ýo Cos 0sin 6(A6)
,sin CP sin 0 ~ l cp s 3sin 0• Cos

14i
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I Now rc.al I that ;' to knowin and ; t.o oujh, her. thoxe,

S-A I (A7)

)%%it A IS an1 orthagonal matrix, no. Its inverso in oqual to its transpose; i.e.,

Thoroi'orr.

! x- Ax (AS)
whtre

f cu l itn 4ý cotn o in V sill 0

I Ar " sin 4 cos V cos -Ccos V a (A9
t\ o in 0 con U /

The value of A for each firing axis is found by substituting it the values

of 4' and e that appear in TableVI. The resulting transformation matrices

for ,ach of the ninu firing axes are tabulated in TableVl1. By us-ng theme

matrices and the coordinates of the firing points In the primed system

given in Eq.(Al), the positions of the initiation points in the xym system can
he found from Eq. (A8). These are collected in TableVlll. Table IX gives

the initiation points and their firing order for each firing axis.

By careful examination of the initiation points in Table VIII, it is

seen that they are comprised of twenty-one pairs of points, and that the

pairs are reflections of each other through the origin. Furthermore, Tabl IX

shows that the pairs are always fired simultaneously; the ones on the firing

Saxes; i.e., those numbered 1 through 9, being fired either with or without delay

and the others; viz., the ones numbered 10 through 13 and the lettered ones,

always being delayed.

A practical device would consist of twenty-one high voltage pulat

circuits, each connected to two exploding bridgewire detonators. These pulsers

would be tied to the missile fuze by a switching network of diodes that would,

upon receiving the proper signal, select and trigger the proper group of

umodules to direct the olast at the target.

L!
- 15 -
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Fig. 1 LOCATION OF INITIATION POINTS FOR SPHERICAL FOCUSED BLAST DEVICE
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Fig. 4 DETAILS OF INITIATION SYSTEM
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NOTE: THE LENGTHS OF DETACORD ARE SIMULATED BY PLASTIC SPAGHETTI TUBING

.1.
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Fig. 8 EXPLOSIO#4 PRODUCTS' ENVELOPES FROM CENTRALLY INITIATED SPHERES
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Fig. 9 DISTANCE VERSUS TINE FOR EXPLOSION PRODUCTS AND SHOCKWAYE3
FROM CENTRALLY INITIATED SPHERES
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Fig, 15 SHOCKWAVE AND EXPLOSION PRODUCTS' VELOCITIE: AS FUNCTIONS OF

DISTANCE FOR THE SECOND AND THIRD SHERICAL FOCUSED BLAST
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Fig. 18 COMPARISON OF PEAK OVERPRESSURES FROM THE SPHERICAL FOCUSED

BLAST DEVICE AND CENTRALLY INITIATED SPHERES
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A 20 LB DISC, PERIPHERALLY INITIATED
0 20 LB CONVEX-CONCA'I DISC, PERIPHERALLY INIT.
* 20 LB DOUBLE CONVEX 1'SC, PERIPHERALLY INIT.
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TABLE I

Explosive Weights (grams)

TEST C-4 SPHERE DETACORD DETASHEET DISK

1 113.6 88.2 7.0

2 116.0 87.2 7.2

3 115.5 87.5 7.0

Centrally Initiated Spheres

1 115.8 -

2 115.8

DETACORD LENGTHS:

Long 304.8 mm.

Short 297.8 mm.
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TABLE II

Transducer Locations for Centrally Initiated Sphere
Tests and the Third Spherical Focused Blast Test.

Number P P P P P P
1_- -__ 2 t 345 6

Distance from 18" 22' 26" 30" 42" 46"
Center of Sphere

Type V(l) Atlantic Res. LC-70 LC-70 (1) 605B Kistler LC-70
LC-70 (2) LC-70 601 L

V(2) Kistler

605B

These transducers are mounted in the steel plate.

V.Transducers at locations P1 and P4 were interchanged between che first and
second centrally initiated sphere firing. The second arrangement was also

used for the third test of the spherical focused blast device.

TABLE III

Measured Pressures for Centrally Initiated Sphere Tests

TEST LOCATION OVERPRESSURE (psi)

1 P4 (2.5')

P 5  (3.5') 14.2

2 P4  (2.5') 32.2

2 P (3.5') 12.9
5
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TABLE IV

Transducer Locations for Second Spherical Focused Blast Test

Number P I 2 P 3

Distance from 30" 42" 60"
Center of Sphere

Type Kistler Kistler Atlantic Research
605B 601L LC-70

TABLE V

Explosive Parameters
(Refs. 3 and 4)

EXPLOSIVE ADIABATIC EXPONENT ENERGY OF DETONATION

Y DETONATION VELOCITY

E [cali D [ ps
Lg-n't

C-4 - - 8.04

RDX 2.736 1228 8.184

50/50 PENTOLITE 2.682 1104 7.465

COMP-B 2.742 1120 7.814
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Locatton of thr Iniltiation Points * V

11o INTS coM.DINATES PO N I Ni_ COORDIs

I t 10 It - &j2 (,2

a -0':i 11 E2 110

I 1+ V2o
1 + V2

1 1 12 12' E 10 +~07

4 4' 13 13c' -1+V1

2 ( V

"i-VT-
8 - 8 ±:T d- d' + V

S1 & 2 tC 1+2

2 . 4

6 -9 "6' bl 1 .e••1 ,/2

2 43

•Numbers refer to points marked in Figure 23.

V Primes are associated with the minus (-) sign.
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TABLE V I I I (Co(t ' d)

PO NTS COORDINATES

h .h' •1 - .11-

,/f2"
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TABLE IX

Firing Order of Initiation Points

Firing Axis Initiation Time

t 0 t t delay

I - 1 2 - 2' & 3 - 3' 10 10', 11 - 11', 12 - 12' & 13 - 13'

2 2' 1 - 1' & 3 - 3' 4 4', 5 - 5', 10 - 10' & 11 - 11'

3 3' 1 - ' & 2 - 2' 4 4', 5 - 5', 12 - 12' & 13 - 13'

4-4' 1 -1 '&5- 5' 2 2, 3- 3', 6-6 &9 -9'

5"5' 1-1 &4-4' 2 2, 3-3',7-7' &8-8'

"6-6' 5-5' &9- 9' a- a', b-b, 1- 1' &4-4'

7- 7' 4- 4' & 8 -8' c- C', d- d', 1- 1 & 5 -5'

8 -8' 4- 4' & 7 7' e e', f- f, 1- 1' & 5 5'

9 9' 5 5' & 6 6' g - g', h - h', 1 V 1 & 4 - 4'
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