HIGH VOLTAGE BREAKDOWN STUDY

W. R. Bell

.

Ion Physics Corporation Burlington, Massachusetts

June 1968

TECHNICAL REPORT ECOM-00394-13

AD

HIGH VOLTAGE BREAKDOWN STUDY

THIRTEENTH QUARTERLY PROGRESS REPORT

16 November 1967 through 15 February 1968

Prepared by:

ION PHYSICS CORPORATION

BURLINGTON, MASSACHUSETTS

JUNE 1968

DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited

UNITED STATES ARMY ELECTRONICS COMMAND · FORT MONMOUTH, N.J. 07703

SPONSORED BY: Advanced Research Projects Agency, ARPA Order No. 517 CONTRACT DA-28-043-AMC-00394(E) ION PHYSICS CORPORATION Burlington, Massachusetts 01803

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department to the Army position, unless so designated by the authorized documents.

The citation of trade names and names of manufacturers in this report is not to construed as official Government indorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return to the originator.

Incertain.	
CFSTI	WHITE SECTION
000	ANEE SEATON
U A-KOUNOT	
JUS LOUGA THEM	
1	······································
•••••••••••••••••••	
5Y	
DISTR BUTTON	VAII AD II I III
B tom	ANTWRITIA BOUR
BIST. AVA	L. Ind. ir S
1	
1	
	1
	1. E

Technical Report ECOM-00394-13

AND IN COMPANY

OSD-1366 June 1968

HIGH VOLTAGE BREAKDOWN STUDY

Thirteenth Quarterly Progress Report 16 November 1367 through 15 February 1968

Report No. 13

Contract No. DA-28-043-AMC-00394(E) AMC Task No. 7910.21.243.40.01

Prepared for

U. S. ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY

Sponsored by

ADVANCED RESEARCH PROJECTS AGENCY ARPA Order No. 517

Prepared by

W. R. Bell, M. J. Mulcahy, F. Y. Tse and A. Watson

ION PHYSICS CORPORATION BURLINGTON, MASSACHUSETTS

DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

TABLE OF CONTENTS

Section		Page
	PURPOSE	1
	ABSTRACT	2
	LECTURES, CONFERENCES AND PUBLICATIONS	3
1	INTRODUCTION	5
2	300 KV TEST VEHICLE	7
	2.1 Vacuum Chamber and System	7
	2.3 High Voltage Power Supply	. 8
	2.4 Baking System	8
	2.5 Energy Storage System	. 8
	2.6 Electrodes and Their Preparation	. 8
	2.7 Dielectric Envelope	10
3	EXPERIMENTAL DESIGN	13
	3.1 General	13
	3.2 Electrode Shape and Variables to be	
	Investigated	16
	3.3 Electrode and System Preparation	16
	3.4 Test Procedure	17
4	RESULTS OF FIRST FOUR TREATMENTS	19
	4. 1 Introduction	19
	4.2 Results for Treatments abe, abde, abcde, e	. 19
	4.3 Theory of Vacuum Breakdown	19
5	FUTURE EFFORT	33
6	IDENTIF'CATION OF PERSONNEL	35

iii

LIST OF ILLUSTRATIONS

Figure		Page
1	Double Furnace Arrangement for Vacuum or Hydrogen Firing	9
2	Dielectric Envelope Assembly	11
3	Breakdown Voltage and Ultimate Prebreakdown Current versus Gap Separation	23
4	Breakdown Voltage versus Magnetic Field Strength	24
5	Breakdown Voltage and Ultimate Prebreakdown Current versus Gap Separation	25
6	Breakdown Voltage versus Magnetic Field Strength	26
7	Breakdown Voltage and Ultimate Prebreakdown Current versus Gap Separation	27
8	Breakdown Voltage versus Magnetic Field Strength	28
9	Breakdown Voltage and Ultimate Prebreakdown Current versus Gap Separation	29
10	Breakdown Voltage versus Magnetic Field Strength	30

v

LIST OF TABLES

Table		Page
1	Factors for Stacked Block Experiment	14
2	Arrangement of Treatments in Blocks for Stacked Experiments	15
3	Results for Day 1	20
4	Results for Day 2	21
5	Results for Day 3	22

PURPOSE

The factors influencing breakdown in high voltage vacuum devices will be studied. The information obtained will provide the basis for improvement in the design of microwave and modulator tubes that must operate at voltages greater than 100 kilovolts without breakdown.

ABSTRACT

The results of four treatments are reported from a 32-block, 5factor, full-factorial experiment now underway to investigate the main effects and interactions of the following factors: anode and cathode material (copper and aluminum), electrode treatment (hydrogen or vacuum fired), anode size and shape (Bruce or sphere). By a process of stacking, the effect of a transverse magnetic field, exposure and energy storage will also be investigated.

LECTURES, CONFERENCES AND PUBLICATIONS

Lectures and Conferences

22 January 1968

M.J. Mulcahy visited Fort Monmouth (M. Zinn G. Taylor, M. Chrepta, J. Weinstein) to discuss progress under the contract, the bakeable bushing and the energy storage system.

Publications

There were no publications during this period.

SECTION 1

INTRODUCTION

The work reported herein describes the thirteenth three months of a study of high voltage breakdown in vacuum with particular application to problems encountered in the development of high power vacuum tubes.

The objective of this period was to prepare for and commence tests of a 32-block experiment (5-fritor, full-factorial) involving aluminum and copper electrodes. By a technique of stacking, flexible factors (magnetic field, exposure and energy storage) are also investigated.

Failure of the new high voltage bushing to condition up to 300 kv was the main reason for the delay in starting the present series of tests. Four consecutive successful tests are reported here. There has been a departure from test procedures in earlier experiments in that the applied voltage is raised in 10 kv steps every minute instead of two minutes.

A theory of vacuum breakdown which explains most of the previous results is nearing completion.

SECTIC 2

300 KV TEST VEHICLE

2.1 Vacuum Chamber and System

Prior to the commencement of the experimental block, the chamber was baked several times at 375°C and once at 400°C. The inside of the chamber is still wiped with Methanol before baking. Genecolv-D was used on two occasions but appeared to produce discoloration. The ion pump has been baked once. After each bake, the chamber pressure is normally less than 10^{-8} torr; a satisfactory base pressure is arbitrarily taken as less than 3×10^{-8} torr.

2.2 Feedthrough Bushing

The new bushing, installed in October after electro-polishing the chamber, unexpectedly gave voltage hold-off problems. After several bakes and conditioning runs, improvement was shown in that, for example, 250 kv was reached after several hours of conditioning. Using closed circuit television, several segments were observed to glow with intermittent bright flashes. This was accompanied by a large increase in current and chamber pressure. Similar glowing of the alumina segments was observed for the original bushing (Quarterly Progress Report No. 5) with the main difference that for this case the glowing was conditioned out with less difficulty and bushing flashover apparently eliminated at the same time. General Electric confirmed that both bushings were identical in construction material and manufacture. The following approaches were then tried in an attempt to improve the performance:

- (1) improvement of contacts on the resistive grading,
- (2) baking with argon inside the bushing,
- (3) baking with nitrogen inside the bushing,
- (4) baking with vacuum inside the bushing.

Of these, the vacuum baking was the most successful in that after some bakeouts, it enabled 300 kv to be reached and maintained without flashover for 30 minutes after about 2 hours of conditioning. At this stage, the top of the bushing was observed to have deflected approximately 3/16 of an inch when it was removed from the chamber. This was restored to its normal position after pumping down the inside of the bushing on another vacuum system, but until the cause of this mechanical failure can be ascertained, it has been replaced with the original bushing.

This bushing is now being used and can be conditioned to 300 kv in less than 1 hour. It is intended to bake and condition the new bushing during April 1968, after sand blasting the alumina. If it still proves to be unacceptable another bushing will be purchased for standby.

2.3 High Voltage Power Supply

Resistors have been replaced in the output and voltage monitoring resistance chains. The relatively short lives of these resistors is believed due to the high voltage surge at each gap breakdow. The same reason is suggested for the cable and bushing punctures which occurred on the connection between the Universal Voltronic 300 kv power supply and the T-piece.

2.4 Baking System

The heating mantle for the chamber is operating successfully. Special heaters for the electrodes have been made which should be more reliable from the vacuum point of view. Thick walled stainless steel cans were made by IPC and elements fitted by Hottwatt Ltd. These are the same size as the originals and the mounting is as shown in Figure 3 of Quarterly Progress Report No. 12. A close tolerance (0.002 inch) is maintained between the heater sides and the electrodes giving better heat transfer.

2.5 Energy Storage System

Measurements on the vacuum crowbar switch indicated a delay time of approximately 2 μ sec. The delay in the trigger circuit is about 0.25 μ sec, that is, a total delay time of 2.25 μ sec. Analysis of the gap testing circuit shows that the fraction of capacitor energy diverted from the gap is approximately:

$$1 - \frac{2 \times \text{Total Delay}}{\text{RC}}$$

For the present system, this is 67%, leaving 33% of the energy stored to the dissipated in the gap and its series resistor. It is believed that the 33% can be substantially reduced by substituting a high pressure single stage trigatron for the triggered vacuum gap. Preliminary design and costing of the trigatron and modifications of the trigger circuit are underway.

The energy storage system and crowbar will be commissioned by substituting a high pressure gap for the vacuum test gap. In this way, the effectiveness and reliability of the crowbar can be determined without contaminating the main vacuum chamber.

2.6 Electrodes and Their Preparation

The desirability of simultaneously firing aluminum and copper meant the purchase and construction of another firing system (see Figure 1). Four retorts are used; two for copper hydrogen or vacuum firing and similarly two for aluminum. A full description of the system was given in Quarterly No. 12.

2-804

Two pieces of aluminum alloy 1100 were fired in hydrogen for 6 hours at 600°C in the normal manner. One piece was then baked for 8 hours at 400°C in vacuum to simulate the electrode bake in the chamber. Hydrogen analysis revealed the following information:

- hydrogen content after firing in hydrogen: 0.20 parts per million,
- (2) hydrogen content after further baking in vacuum: 0.08 parts per million.

Similar analysis of copper in June 1967 (except that hydrogen firing took place at 900°C) gave:

- (1) hydrogen content after firing in hydrogen: 0.35 parts per million,
- (2) hydrogen content after further baking in vacuum: 0.14 parts per million.

Hydrogen fired aluminum electrodes are milky in appearance while vacuum fired electrodes are quite bright. The reason for this has not yet been determined.

It is planned to obtain electric field plots on a digital computer for the electrode geometries used. This will give the macroscopic field at the electrode surface.

2.7 Dielectric Envelope

The design for the dielectric envelope has been completed. The envelope support structure is shown in Figure 2. It will be possible to monitor the current flowing in the envelope since it is insulated from the cathode but is connected to ground potential by a current monitoring circuit (pico-ammeter). The envelope will need to be loaded from the top of the chamber.

at the second second second

Figure 2. Dielectric Envelope Assembly

1-2545

41.5

SECTION 3

EXPERIMENTAL DESIGN

3,1 General

The factors selected for the next experiment are given in Table 1 and are seen to consist of five inflexible factors and four flexible factors. They are as follows:

- (1) <u>Inflexible</u>: anode material, cathode material, electrode treatment, anode size and anode shape. These are all constructional and cannot be varied without opening up the vacuum test chamber.
- (2) <u>Flexible</u>: magnetic field, gas exposure and energy storage. Electrode spacing may also be considered a flexible factor. These can be varied continuously without disturbing the test setup.

All factors will be investigated at two levels which are designated high and low, and are represented by the lower case letter and numeral one, respectively.

It has been decided to perform a complete 2⁵ factorial experiment for the inflexible factors, since third order interactions may have possible significance, and it was therefore judged imprudent at this stage in the program to neglect them by confounding with main factors in a partial factorial experiment. Once the magnitude and significance of such interactions is evaluated, they can be confounded with confidence in any future experiments introducing further factors.

The full experiment will consist of 32 individual experiments or treatments. These will be divided into two blocks typically as shown in Table 2. The selection of the treatments will be made as follows. Each block will consist of a full factorial for factors A, B, C, and D, with factor E held constant at the low level for the first block and at the high level for the second. The order of each block will be randomized. As a result of this "blocking" a statistical analysis at the half way stage will yield both main effects and higher order interactions for the 4 factors varied, with factor E at high level. Upon completion of the 32 treatments, the experiment will then be equivalent to a full factorial 2^5 block, if there is no history effect, and will be analyzed accordingly.

To incorporate the flexible factors, the technique of stacking will be employed. This has been used for the previous 2³ block experiment and is described in the Eleventh Quarterly Progress Report. However, since additional factors are presently involved and since this marks the beginning of a major

	Inflexible	+	•		Flexible
A	Anode Material	Cu	A1 ·		
в	Cathode Material	Cu	A 1	F	Magnetic Field
С	Electrode Treatment (Firing)	Vac	Hyd	G	Gas Exposure
D	Anode Size (Diam- eter)	4 inches	1.28 inches	н	Energy Storage
E	Anode Shape	Bruce	Sphere	I	Gap

Table 1. Factors for Stacked Block Experiment (2⁵ Treatments)

.

Table2. Arrangement of Treatements in Blocks for
Stacked Experiments

First 16 Treatments (Bruce Anodes)

> Day 1

	lbods
	pcqt
	acdf
	cdf
	lbds
	Ìbd
	Jþe
[3]	Jb
	i bcf
	Ìod
	act 🛛
	to
	łds
	Jd
	ls
	J

orage
ergy St
Бn

	abcdf	8
	bcdf	8
	lbos	8
	tbo	8
	Ibda	8
	JPq	8
	lbs	8
<u> </u>	JÞ	8
[5	3 pcf	8
	locf	8
	act	8
	ło	8
	3 pi	8
	ΡĮ	8
	Ìs	8
	Ţ	8

Second 16 Treatments (Sphere Anodes)

	abcde	
	pcqe	
	acde	
	e de	
	abda	
	pqe	
	ade 🗌	
	ąе	
[2	abce	
	pce	
	926	
	90	
	abe	
	þe	
	36	
	ə	

	laboda
	lsbod
	lsboa
	tedef
	lebda
	bdef
	laba
	ləb
4_1	i bcef
	bcef
	lecef
	Ìso
	leda
	Ìsd
	ləs
	ÌÐ

[6]

Exposure

lebcdef	<u> </u> ч
lebod	ч
29b25	प
tebo	प
lebds	प
labd	प
lebs	ч
ləb	Ч
1 92d£	ч
Jeod	ч
i scef	ч
Ì90	ч
lede	ч
Ìэd	Ч
195	Ч
Ìэ	ų

Day 2

Day 3

.

15

experiment, the parameters to be used in the analyses, the factor levels, and the complete procedures for both main and stacked experiments are now presented.

3.2 Electrode Shape and Variables to be Investigated

In addition to the breakdown voltage, V_B , the following variables will also be used in the analysis:

- $V_{\Delta P}$ the threshold voltage for the appearance of pressure surges
- I_{PB} the logarithm of the ultimate prebreakdown current
- T the formative time lag for the collapse of voltage across the gap

 V_B and I_{PB} will be measured for all treatments and $V_{\Delta P}$ is expected to be measurable in most. The formative time lag, T, should be measured as widely as possible over the parameters already shown to affect it, namely gap seraration and magnetic field strength, as well as with the other parameters. It should be measured at two widely different gaps (e.g., 1.0 and 4.0 cm, and at 0 and 400 gauss), since these values will be used in all the treatments involving magnetic field.

The following sizes and geometries were chosen for the electrodes:

- (1) <u>Anode</u>: 1.28 inch and 4 inch diameter spherical and Bruce profile electrodes,
- (2) Cathode: 2 inch diameter spherical electrodes.

Aluminum was chosen as one of the electrode materials because of its wide differences in physical properties from copper (see Section 5.3, Quarterly Report No. 12).

3.3 Electrode and System Preparation

(i) Vacuum or hydrogen firing of electrodes for 6 hours at 900°C for copper and 600°C for aluminum, because of the lower melting point of the latter. Due to the very different sorption properties of Cu and Al to H₂, it is expected that a strong interaction of anode material with treatment should show up in the results.

- (2) When cooled to ambient temperature, electrode transfer in a dry nitrogen atmosphere to the test chamber.
- (3) Overnight pumping to less than 10-7 torr.
- (4) Chamber bake at 375°C for 6 hours with concurrent electrode bake at 400°C for 8 hours.
- (5) Chamber and electrodes are allowed to cool to ambient temperature.

3.4 <u>Test Procedure</u>

The main experiment will cover blocks $\begin{bmatrix} 1 \end{bmatrix}$ and $\begin{bmatrix} 2 \end{bmatrix}$ of Table 2, viz the full factorial of the five inflexible factors. It will be split as indicated in Section 3.1 into two separate four factor full factorial experiments thus permitting separate analyses after 16 treatments and upon completion of all 32 treatments. At the latter stage, the fifth factor, anode shape, will also be incorporated for analysis on the basis of a full factorial 2⁵ experiment. This may necessitate making allowance for an experimental history effect if one is present.

At the beginning of each day of test, the bushing is conditioned up to 300 kv (and held there for 20 minutes) with the electrode gap opened up to maximum (approximately 4.5 cm). Mass spectrometer scans are taken during this period so that comparison can be made from test to test.

The breakdown voltage at each gap is determined by raising the applied voltage in steps of 10 kv every <u>minute</u>. The 1.0 cm gap is still considered the prime gap. Waveforms showing gap voltage collapse are taken as frequently as possible.

Day l

Three breakdowns at 1.0 cm gap followed by single breakdowns at:

1. 5, 2. 0, 3. 0, 0. 25. 0. 5, 0. 75, 1. 0, 1. 5, 2. 0, 3. 0, 0. 25, 0. 5, 0. 75, 1. 0 cm.

Day 2

Two breakdowns at 1.0 cm gap with zero magnetic field. The effect of magnetic field strength on the breakdown voltage is then determined at each of the following gaps:

1.0, 2.0, 0.25, 0.5, 1.0 cm.

The levels of magnetic field (crossed with respect to the gap electric field) are:

0, 100, 200, 300, 400, 0 gauss.

Day 3

Two breakdowns at 1.0 cm gap with zero magnetic field. The effect of exposure is determined during these tests. This applies to the first 16 treatments. (For the second 16 treatments the effect of energy storage will be determined.)

The breakdown voltage is determined for the following test conditions before and after exposure for 1 minute to an 80/20 nitrogen/oxygen mixture at 10^{-5} torr. The chamber is then allowed to pump down for approximately 1 hour to restore base pressure.

Gar: 1.0, 1.5, 2.0, 0.25, 0.5 cm Field: 0, 200, 400, 0 gauss

The field is varied at each gap in the order indicated. Finally, one breakdown at 1.0 cm gap at zero magnetic field is obtained.

SECTION 4

RESULTS OF FIRST FOUR TREATMENTS

4.1 Introduction

After several false starts at getting the experiment underway, the first successful test of treatment abe was commenced in January 1968. Previous attempts had been aborted due to one or more of the following reasons: bushing glow, heater failure, heater leak and chamber leak. The electrode preparation and test schedule is arranged so that one treatment is completed each week. This permits easy reproducibility of preparation and test conditions. Any appreciable departure from a normal schedule (time, temperature or vacuum) results in an abort of that treatment. Where appropriate the run will be used for side experiments.

The following parameters are recorded for each test: time, pressure, hydrogen partial pressure, gap current, voltage, charging current, gap spacing, magnetic field. Voltage collapse waveforms are recorded from a Tektronix 519 oscilloscope whenever possible.

4.2 Results for Treatments abe, abde, abcde, e

These are tabulated in Tables 3, 4 and 5 and plotted on Figures 3 through 10. Two inherent apparatus limitations restrict the range of test results; these are 300 kv and 2.0 ma, the maximum output of the Universal Voltronics power supply. Gap breakdown was observed visually during these tests.

4.3 Theory of Vacuum Breakdown

Theoretical analysis has been going on now for some time into a model of the breakdown process. Although not yet complete, the theory has successfully accounted for the following phenomena:

- At large gap separations (approximately 5 to 10 mm depending on electrode geometry and material), the breakdown voltage, V_B, is approximately proportional to the square root of gap separation, d.
- (2) Below a certain gap separation, $V_3 \propto d_s$
- (3) Curvature of the electrodes will increase the oreakdown voltage in the large gap regime but will lower it in the small gap regime.

		Gap (cm)							
Treatment	1.0	1.0	1.0	1.5	2.0	3.0	0. 25	0.50	0.75
abe	120	220	220	282	No BD*	No BE*	52	128	190
abde	127	180	170	210	290	No BD	99	156	190
abcde	174	174	170	210	238	296	44	100	147
e	180	190	209	250	286	No BD	50	120	189

Table	3.	Results	for	Day	1

				Gap (cm)			
Treatment	1.0	1.5	2.0	3.0	0.25	0, 5	0.75	1.0
abe	200	280	290	No BD*	40	114	180	250
abde	209	230	280	No BD	125	160	200	220
abcde	160	200	250	2 95	50	97	159	210
e	209	230	290	No BD	53	119	150	210

* Greater than 300 kv breakdown voltage.

:

•

,

,

. .

Table 4. Results for Day 2

,

									U	ap (c	(m									
			1.0					2.0					0.25					0.5		
									Fie	eld G	auss									
Treatment	0	100	200	300	400	0	100	200	300	400	0	1 00	200	300	400	0	100	200	300	400
abe	230	220	210	210	210	287	220	230	270	238	55	57	57	20	17	200	210	200	190	200
- 	230					2 90					70					228				
abde	2 00	230	220	230	230	280	225	284	286	287	125	128	12.9	133	145	180	194	190	196	2 00
	222					296					145					210				
aliede	180	210	199	2 00	180	270	245	210	220	210	59	69	67	70	75	129	150	153	150	160
) ; ;	199					200					75					160				
a)	250	200	190	210	200	294	251	270	260	260	NB*	NB	NB	33	NB			*		
•	220			 		26 c					NB					i				
	:	-																		

* Current limited.

· . .

** No 0.5 cm gi used in this test.

21

.

•

Table 5. Results or Day 3

							Ü	ap (cm	(
1		1.0			1.5			2.0			0.25			0. 5	
1							Fie	ld Gau	8 S						
Treatment	0	2 00	400	0	200	400	0	200	400	0	200	400	0	200	400
a e c	236	200	210				255	228	236		4		160	159	150
1 D S	232				¥		270				+		176		
	268	274	2 63	277	277	291	NB	290	290	80	84	96	193	200	200
	258			2.80			NB			104			180		
	250	230	220		1		NB	290	290	93	98	100	200	200	196
	250				*		NB			100			200		
a	200	190	190	280	260	220	297	290	260	48	49	52.	125	. 10	107
)	210			280			297			NB			121		

* No 1.5 or 0.25 cm gap in this test.

** No 1.5 cm gap in this tett.

22

Figure 3. Breakdown Voltage and Ultimate Prebreakdown Current versus Gap Separation

•

23

.

.

÷

.

25

•

:

•

1-2781

•

.

;

Figure 9. Breakdown Voltage and Ultimate Prebreakdown Current versus Gap Separation

.

251 - 1:1

•

•

·

•

- (4) The influence of a transverse magnetic field is similarly differentiated in the two regimes, lowering V_B for large gaps and raising it for small gaps.
- (5) Sorption of gas into the anode will raise V_B for large gap separations and lower it for small.

The theory thus accounts for the effects of the following factors:

- anode material physical parameters,
- cathode material physical parameters,
- anode gas content,
- ambient gas pressure,
- electrode curvature,
- transverse magnetic fields,
- gap separation.

The results of the first four treatments recorded in this report appear to be following the same pattern. Details of the above theory will be reported in a later report.

SECTION 5

FUTURE EFFORT

During the next quarter, the following will be pursued:

- Continue with 32 treatments.
- Fabricate and try dielectric envelope at the end of one or two treatments.
- Investigate crowbar efficiency.
- Check out new bushing at the end of eight treatments.
- Regular maintenance of main chamber, pumps, electrode firing system, instrumentation, high voltage power supply, magnets and their supplies.
- Continue analysis of model of breakdown process.

SECTION 6

IDENTIFICATION OF PERSONNEL

The following personnel were active in the program during the period under review:

Dr. S. V. Nablo	- Vice President Director, Particle Physics Division
Dr. M.J. Mulcahy	- Project Manager
A. C. Stewart	- Engineering Manager
W.R. Bell	- Senior Electrical Engineer
M. M. Thayer	- Senior Metallurgist
A. Watson	- Senior Scientist
F.Y. Tse	- Electrical Engineer
R. M. Parsons	- Engineering Aide
D. Bryant	- Technician
R. Benoit	- Design Engineer
C. Boudreau	- Engineering Aide
L. Indingaro	- Metallurgical Technician
D.J. Maynard	- Senior Mechanical Engineer
S.K. Wiley	- Group Leader/Mechanical Engineering
Prof. H. Freeman	- Consultant Massachusetts Institute of Technology Department of Economics and Social Science
Prof. A. Argon	- Consultant Massachusetts Institute of Technology Department of Mechanical Engineering
Dr. N. E. Woldman	- Consultant Metallurgy

35

Security Classification							
DOCIMENT CONT							
Security classification of title body of abstract and indexing a	rnotation must be entered when	the overall report is classified)					
1. ORIGINATING ACTIVITY (Compare author)	20. RE	PORT SECURITY CLASSIFICATION					
Ion Physics Corporation	Uncl	assified					
South Bedford Street	20. GR	OUP					
Burlington, Massachusetts	N/A						
3. REPORT TITLE							
HIGH VOLTAGE BREAKDOWN STUDY							
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)							
Thirteenth Quarterly Progress Report (161	November 1967-15 Fe	ebruary 1968)					
S. AUTHOR(S) (Last name, first name, initial)							
Bell, W. R.; Mulcah;, M. J.; Tse, F. Y.; W	'atson, A.						
Tune 1968	AA	C NO. OF REFS					
BG CONTRACT OR GRANT NO.	9 ORIGINATOR'S REPORT NUMBER(S)						
$DA_{2}8_{0}43_{1}AMC_{0}0394(F)$							
b. PROJECT NO.							
7910. 21. 243. 40. 01							
C. TASK	sb. OTHER REPORT HO(S) (Any other numbers that may be						
	ass gred this report)						
d.	ECOM-00394-13						
10. AVAILABILITY'LIMITATION NOTICES							
This document has been approved for public	release and sale; it	s distribution is					
unlimited.							
11. SUPPLEMENTARY NOTES	12 SPONSORING MILITARY AC	TIVITY					
N/A	U.S. Army Electron	nics Command					
	Fort Monmouth, Ne	w Jersey 07703					
	Attn: AMSEL-KL-TS						
13. AOSTRACT							
The results of four treatments are reported	l from a 32-block, 5-	factor, full-factorial					
experiment now underway to investigate the	main effects and inte	eractions of the fol-					
lowing factors: anode and cathode material	(copper and aluminu	n), electrode treat-					
ment (hydrogen or vacuum fired), anode siz	e and shape (Bruce o	r sphere). By a pro-					
cess of stacking, the effect of a transverse	ma netic field, expo	sure and energy stor-					
age will also be investigated.							
6							

Security Classification									
14.		LIN	K A	LIN	КВ	Lin	IK C		
KEY WORDS		ROLE	WT	ROLE	WT	ROLE	WT		
Electrical Breakdown in Vacuum Conditioning Procedures Optical and X-Radiation Partial Pressure and Gap Curren. Etching									
INSTR	UCTIONS						<u> </u>		
 ORIGINATING ACTIVITY: Enter the name and addreas of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) iasuing the report. REPORT SECURITY CLASSIFICATION: Enter the over- all accurity classification of the report. Indicate whether "Reatricted Data" is included. Marking is to be in accord- ance with appropriate security regulations. GROUP: Automatic downgrading is specified in DoD Directive 5200, 10 and Armed Forcea Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized. REPORT TITLE: Enter the complete report title in all capital lettera. Titles in all cases should be unclassified. If a meaningful title cannot be aelected without classified. If a meaningful title cannot be aelected without classified. DESCRIPTIVE NOTES: If appropriate, enter the .ype of report, e.g., interim, progress, summary, annual, or final. 	10. AVAII tations on imposed by such as: (1) ''C rej (2) ''F rej (3) ''L thi ua (4) ''L rej ah (5) ''/	LABILIT further d y security Qualified port trom Foreign s port by D J. S. Gov is report is report is report atl reque	Y/LIMIT issemina classif requeste DDC." nnouncer DC is no ernment directly request tary aget tly from at throug bution of sers sha	ATION NG ition of the ication, us ins may ob- ment and do t suthoriz sgencies r from DDC through ncies may DDC. Oth this repor Il request	OTICES: report, ing atar iain copi iasemine ed." nay obta Other of obtain c ier quali t is conit through	Enter an other than dard state iea of this stion of th in copies qualified i opies of t fied users	ny limi- n those ementa nis of DDC his 		
 5. AUTHOR(S): Enter the name(a) of author(a) as ahown on or in the report. Enter last name, firat name, middle initial. If military, ahow rank and branch of aervice. The name of the principal author is an abaolute minimum requirement. 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. 7. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedurea, i.e., enter the number of pagea containing information. 7b. NUMBER OF REFERENCES: Enter the total number of 	If the report has been furnia: d to the Office of Technical Services, Department of Commerce, for sale to the public, indi- cate this fact and enter the price, if known. '1. SUPPLEMENTARY NOTES: Use for additional explana- tory notes. 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or isborstory aponsoring (pay- ing for) the research and development. Include addreas. 13. ABSTRACT: Enter an sbatract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the tech- nical report. If additional apace is required, a continuation								

8a. CONTRACT OR GRANT NUMBER: If appropriate. enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUN'BER: Enter the appropriate military department identification, such as project number, subproject number, system numbera, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been anaigned any other report numbers (either by the originator or by the sponsor), also enter this number(s). It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the sbstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitstion on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phraaes that characterize a report and may be used as index entrics for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.