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I

INTRODUCTION

A new type of array consisting of elements arra-ged in a triangular

lattice is studied in this report. The array has radiation characteristics

similar to those of a tapered array but does not require tapered excitation.

A phased array of an arbitrary triangular lattice configuration is

formulated using the vector model. I is applied to a special case of an

isosceles triangular array.

The directivity of the array is derived and expressed in a compact

form, whereby its enumeration becomes a routine procedure for any total

number of elements. A general method of evaluating the mutual coupling

terms involving two inclined short dip-les is developed.

Numerical results are presented and discussed as regards the

radiation patterns and directivities of an isosceles triangular lattice

array with its varying parameters such as the spacings between the

adjacent elements and rows of elements, the phasings of the elements,

and the size of the array.
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IT

RADIATION INTENSITY OF A TRIANGULAR LATTI.CE
ARRAY OF DIPOLES

Let a planar triangular array of dipoles be situated in the x-y plane as

shown in Fig. 1. The elements are identified by the lattice points spanned by

the two base vectors, a1 and .2 . The (m,n)'th dipole is located in the lattice

by a vector r'n=ma1 -4na2 drawn from the origin, where m, n are integers not

exludtng zero. The base vectors 11 and a2 are not necessarily equal or or-

thogonal, and are not, in general, of unit magnitudes. Since a1 axis is

made to coincide with the x-axis, it can be shown that

aax (1)
,AA

a2=a 2coso y

where 0 is the angle that A2 makes with 1" : Hence, the lattice vector can

also be expressed as

r =(mal4na 2cos')• +na 1 (2)

The phase of the (m,n;'th element with respect to that of the elements

at the origin is 6
rn

6 =m6 +n6 (3)
mn 1 2

where 61 is the phase of any element relative to its immediate neighbor along

the axis defined by the base vector &1 and 62 is defined similarly with res-

pect to AT

The contribution of (m,n)tth dipole in the array to the far field is

2
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IJ

j6 Jf.Imnmnn e A
E =A e sin 0

Emn mn R mnmn (4)
mn

where A is the excitation amplitude of the element, Rmn is the distance
mn A

from the element to the point of observation, and sin0mn6 mn is the radiation

vector of the dipole with respect to its own dipole moment. In terms of the

spherical coordinates, the individual field can be expressed as

.6 Inmn e-jkR jkrmnCOS (0-Omn)Sin0 A

Emn rune R e i~um. (5)

The resultant field intensity is obtained by summing over the entire array

Sej N-1 -m-1mcOs( )5inR 7 meJm e mn cs•-'u)sn

m=o n=o A
sinOmnOlm, (6)

where N is the number of the elements along a or a2 . By prope ajust-

mert of amplitudes, spacing and phase in (6) a radiation pattern of almost

any desired form can be obtained.

We shall consider only the case where all current amplitudes are the

same and the base vectors au,2 define an isosceles triangular arrangement.

1' 2
Since al=a2 =•, it is found convement to rotate the x-y plane counterclockwise

about the z-axis through an angle a such that the new y' axis bisects the

angle o as shown in Fig. 2. In terms of the xt -y' plane,I0
SA A.

a =acosaX '+asinay (

a2=a cos (a + )X' +a sin(a+3 )0 , (

i
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a~nd
&A

rn=ma +ia =Ima cosa+na cos(a-P (8

Let the distance of separation between two adjacent elements in a row
be d, and the distance of separation between two adjacrut rows of elements

be h. It follows that

r =(m-n)( di)+(m+n) (h)y (9)

and1/andrmn [(m- )2 2+(re+n)2 (h)2]2(0

mn ( d-)2 (h (10)

In addition, if 61=612=6, then the phase of the (mn)'th element becomes

6 =(m+n)6 (11)

The fact that m+n is a constant for the elements in the same row makes the

array progressively phased between adjacent rows.

Jn this report we consider only the case where the dipole moments are

parallel to the x'-axis. The resultant field in (6) then becomes

E=A eN-1 N-m-IE =A eL--kR sinePe^ 7 7 ej (m+n) 6

-fR e P
m=o n=o

eJkrmn cos(O-m)sin0 e(12)

where 0 is the angle between p and R.
p

In each of the complex phase factors, we note that

r cos(O- r)=rncosomcoS+r sin• sino

and from (9) and (10),

r cosO =(i-n d r sinomn=jm+n)h.
nnn In

6
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Hence,

j(m+n) 6 e
e e

d
=e)(M+D) tkhsin~sinO+61 j(rn-n)k 2 cososine (13)

In order to steer the main beam to any particular direction, say (00, %o).

we can set
9 • 6= -kh sinfosineo

and (12) can be rewritten as

jeR N-1 N-m-i j(m+n)khjsinjsinO-sin~osinOo
E=A- :A TsinO 0 V, e

M=o n=o

(rn-n)j 2 kd costsinO
A' e (14)

The radiation intensity or the power per unit solid angle is obtained as

follows: 2 2 N-1 N-m-i N-1 N-m-i

2% 2% pX2
n rm=o n=o m'=o n'=o

• e-J Im-mT)qn-nt)] 6 kermn ss(O-mn)-rmn'cos(O-Omln inO.

(15)

the asterisk denotes the complex conju-gate of the quantity.

It is noted that the factor involving the multiple summations is propor-

tionaL to the radiation intensity of the isotropic sources of the like configura-

I tions.

rIot P

1,

__
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THE MAXIMUM NOMINAL DIRECTIVITY

In terms of the radiation intensity fun-ction, U(O, •) the directivity

function can be deinfed by the relation

o, 0)= O (16)
Uav

where

a =470 U(O, O)sinledd (17)Uav- ý • f

When the elements are uniformly excited and progressively phased, we shall

speak of the directivity of such an array as the nominal directivity. In the

sequel, we shall discuss only the maximum directivity, or

U
Dmax( ma(18)

av

Henceforth, we shall call this quantity the msximum nominal directivity or

simply the directivity.

From Eq. (15)

SN -m-I N-1 N-m'-l

U(O, psin20 m- e 6(m-m')+(n-n')1

m=o n=o m'=o n'::o
jk[•macos(O-Omn)-rm~fncos(O-0m,d If sino

e

i =qn2•• • • • eJIm--m')+(n-n')l 6I

sino} sin& . (19)

8
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It is readily seen that

(ro~~rncoBsnm, )coso+(r sinimn-rsn sn

- j(r-n) -(rn'-n) -d]coso-i [rn+n~h-(rn'-in'~h] sino

-r trn)-(n-nl) ý coso+ [(rn-m')4(n-n')] h sino

Put

rn-rn =p, n-n' q, (20)

then

r rncos(OOmn)-rm Inrcs(d n) " d cos~p-ilq)h sino

=Dcs(- (21)

where

2n D=[- )2 +()+q)2 h ]2  (22)

k- 9 1 )(d/2) (23)
cspq DpqV Hece (p4fqj6 jkD cos9(0-Op)sine

u(9, )A-sin pX ~B qe e (4

p q

and

1~~ (0Bpq 1 ej(Iý6
U ^0- aI q 4 7

2 kD cos(o- )smeO
KsIn 20e p q dfR (25)

9
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where p, q run through all the meaningful combinations of m-rn', and n-n'

respectively. Bpq is a constant depending on m., m,' n, and n' that result in

the same p and q. The detailed discussion of B will be taken up in a later

section.

Let us use the following notation,

1 f jk pqeoS(0-0psisinen2Opa(8
P (D) = !-F eN 4: Sin 0 d 0 (26)

This is an integral which involves a pair of dipoles.

Before we evaluate this integral, let us consider firnt the following pro-

cedure.II
THE INTEGRAL INVOLVING TWO INCLINED DIPOLESI

Let L be a unit vector along the array axis of a pair of dipoles, and P

indicates the orientation of each dipole. Now let us construct Lx P axis which
A A

is, of course, perpendicular to both P and L. Let us further construct

such that
A A A A A A A A AA A A
x = (Lx P)xL = P(L L)-L(P. L)=P-Lcos-y

j Thus x, L x P, L form a set of orthornormal base vectors (see Fig. 3).
AA A A

SFrom Fig. 3, ý* R = cosOp. Since P is in the x and L plane, thus it
I p

can be expressed as

I A A
P & in Tx+ cos 7L,

II
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and

4 A A Aý
R=sinecos• x +sinXsin (L x P)+cos6L

_R=sin-7sinOcosOic+05cos0.

Therefore

s.n2 6)=i^(o. +1 sin2Ilsin2-ycosO

+s1n2./sin20 cos2€]

Itcanbe readily shown that the exponent in (26) is transformed to kD cos9 in

the new system of coordinates.

Thus 1 2 jkD coc.dd

pq 4ir fo p

iI"0 f[ 22 1 221 jkD cosO
= 1-cos -ycos20- sin ysin O-e sinOdO

0

jkD x
= sin2-y)(lx2)Je I d

•_x2

-:; ior
Pr (D)=2 { cos 2 -y)+ ( --Y (kDpci)

cos(kD
-(1-3cos2- j - pq)

(kpq)2
The following is a list of some special cases, where x = kD.

1. For parallel dipoles, y = 4/2, we have

1 sinx cosx

-X X

S2. For two colinear dipoles, -. =0,

P~x)=2

12
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3. -y•30"

irX 1 5 slnx cosx:

4•. y 600

1t i
kVC) 2 3 )mx 7 1c5X

5. 0 450
(x)1 (1+ sinx cosx

2 X2 x

6. For x = 0
2P(O)= , independent of ,.

It is of interest to note that for a pair of isotropic point sources P is simply

sinx/x. The method used here in evaluating P bypasses the necessity of

integrating Eq. (26) using spherical Bessel functions (Papas, 1965).

V

EVALUATION OF THE DIRECTIVITY

From Eq. (24) it is seen that
Umx -N(N+I)1

Thus the directivity of the triangular array can be written as

D= [~N(N+1~f
X Bpej ~~P (D)a qpq

p q

In order to evaluate the double sum in the expression of the directivity of

the array, we find it convenient to construct the following matrices.

* 13
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1. From eq. (20), we see that p, q vary firom-(N- 1) to (N-i1). However,J

not all the combinations of p and q are present because of the triangular arrangement.

For those combinations that are present, there are often more than one term with

the like (p, q) pair. The following is the (p, q) matrix of 10 elements with N = 4 which

is the number of elements along a, or a2 axis. The entries in the matrix represent

the total number of the pairs of elements with the same p, q indices. They are

determined by the following formula,
BBp = 1 (N - JE) (N - JJ+I1),

pq 2

where I E is determined as follows:

a. If p, q are of like sign, then setjIE = \p+q\

0 is considered either positive or negative.
b. If p, q are of unlike sign, set I E equal to the larger of the two magnitudes.

c. If B is non positive, then set it to zero.

pq

-3 -2 -1 0 1 2 3

-3 1 1 1 1

-2 1 3 3 3 1

-1 1 3 6 6 3 1

0 1 3 6 10 6 3 1

1 1 3 6 6 3 1
2 1 3 3 3 1

141

- | 14
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2. Equally of importance in Lhe directivity Cateulion i the deierininiiati

of the distances between pairs of dipoles. Again use is made of the (p, q) matrix.

Superimposed on the matrix we construct two axes using the two diagonals of the

matrix. The principle diagonal is labelled as h-axis representing the distance of

separation between rows of dipole elements, and the other as d/2 - axis, half the

distance between adjacent dipole elements. They are scaled as shown in the matrix.

The entries in this matrix represent the multiples of h and d/2 that are needed to

compute D Is (eq. (22) ). For clarity we omit from it the (0, 0) element and a few
pq

others along the diagonals.

q

p -2 -1 0 1 2 14 d/2

-3 s - (3,3) (2,h) (5)

-2... (3,1) (2,2) (1,3) (1,5)
.3-

-i(3,1) (210)-. (II) .2," (1-3) (2,A)

0 (3,3) (2,2) . 0 1 (4,1) (2,2) (3,3)o (214 2,) (iOi 2

(1,5) (o-04) (1,3) (2,2) (3,)

3 (0,6) (1,5) (2,4) (3,3) "...
h

In the expression for P (D), the term cos 2 -y can be shown to dependpq

on the distances of separations of a pair of dipole elements. In fact, the folbwing

relation holds,

d _ 2
(b- 2  (ah)

cos 2-y 2
O 22

(bM2) + (ah)

F

15

am 5.. A
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where (a, b) is the ordered pair in the entry in the above matrix.

3. To complete the picture, the (p, q) matrix us used again to indicate

the phase relations, which are simply the algebraic sum of p and q times 6. I
The double sum becomes I

3 3

e ~(N- le )(N- fel' 1) PI I pI
p=- 3  q=-3

N(N+I)Pq0 + eJ@I4q)6 1-1, +1)P

2 qq

NN+)2 + e )-(N- ld )(N- [e i + l)P
2 O2 pql

p q

VI

NUMERICAL RESULTS

SNumerical results of the radiation patterns and directivities of the tri-

S~angular lattice array are presented here for both the isotropic and the short

S~dipole cases. They are done for the case where the main beam is directed at

z 0=900 and 0=900.

1 16
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It is seen from Table 1 for the isotropic case that the beam angle decreases

as the spacing between elements increases. At d=0. 2X, the beam angle decreases

significantly as the spacing between rows of elements increases. Nevertheless, no

discernible changes are observed as h changes at other d's. As compared with

the isotropic case, little difference is noticed in the beam angles in the dipole

case (Table 2). We are thus led to believe this is purely a characteristic of the

triangular lattice arrangement. It is also observed as expected that the beam

angle becomes smaller as the number of elements ncreases.

The radiation patterns for both the isotropic and the dipole cases are sym-

metric with respec•. to the x-axis at h = 0 and 0. 5X. This is so because of the

progressive phasing selected for the successive rows of elements. For the

row spacing between 0 and 0. 5X, the patterns are more directed toward one

side. The back lobe levels, which are relative the mcst prominent among the

minor lobes, are identical for both cases considered (Table 3). It also shows

that they are smaller at h = 0.2 and 0. 3X at all element spacings.

The side lobes in the isotropic case begin to emerge at 0=00 at smaller

row spacings when the element spacings a:-e small, and at relatively larger

row spacing when the element spacings are large. However, the use of dipoles

as a radiation source completely eliminates this undesirable effect, and also

puts a severe limit on the other side lobes as to render them almost negligible.

Also shown in the tables are the effects of the increasing sizes on the

beam angles and the back lobe levels. The larger the size of the array, the

smaller the beam anglo and the back lobe levels.

The directivity for both the isotropic and the dipole cases is improved as

the row spacing increases up to a certain point, then it is tapered off for further

increase in the row spacings (Figs. lOa-10d). It reaches a maximum in the

neighborhood ci --. 4X for d's between 0.2 and 0.6X. Further increase in the

element spacing shifts the maximum in the decreasing h direction; for instance,

it is at about h=O. 35X for d=O. 8X and at h=O. 2X for d-1.OX in the isotropic case.

17
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TABLE 1: BEAM ANGLES FOR THE ISOTROPIC CASE OF TEN
ELEMENTS.

I d/X
(Degrees)

h/X .2 .4 .6 .8 1.0

0 94 44 29 22 17
1. 92 44 28 22 17

.2 86 44 28 22 17

.3 78 44 28 22 17

.4 74 43 28 22 17

.5 68 42 28 22 17

TABLE 2: BEAM ANGLES OF DIPOLE CASE OF 10, 15,21 ELEMENTS
AT h/X= 0.2, 0.3, 0.4.

N
"(Degrees)

d/X 10 15 21

0.4 40 32 27
0.6 28 22 19
0.8 20 17 15

TABLE 3: BACK LOBE LEVELS OF BOTH THE ISOTROPIC AND THE
DIPOLE CASES AT d/X = 0.4, 0.6, 0.3.

h/X 10 15

0.2 .069098 .030710 .029274
0.3 .069098 .030710 .029274
0.4 .180902 .080401 .054625

1

I , I
18°
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FIG. 4a: The radiation patterns of the triangular lattice arrays with d/X =0.4,

ýh/X =0. 3, E-plane pattern of a lO-ele- ent isotropic array.
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FIG. 4c: The Radiation Pattern of the Triangua Lattice Arrays with
d/XL=0. 4, h/X=O. 3, E-plane (inside curve) and H-plane (outside
curve) Patterns of a 10-element Short Dipole Array.
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FIG. 4d: The radiation patterns of the triangular lattice arrays with
d/2 = 0.4, h/X =0.3, E- and H-pl2ne patterns of a 21-element

: short dipole array.
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FIG. 5a: The rad~iation patterns of the triangular lattice array with d/?L 0. 4,
h/t 0. 4, E-plane pattern of a 10-element isotropic array.
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FIG. 6a: The radiation patterns of the triangular lattice arrays with d/) = 0. 6,
h/) - 0. 3, E-pliane pattern of a 10-element isotropic. array.
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! riG. 6b: rhe radiation patterns of the triangular lattice arrays with d/X = 0.6.
[! h/X =0.3, E-plane pattern of a 10-element short dipole aarray.
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FIG. 6c: The radiation patterns of the triangular lattice arrays with d/X = 0. 6,
h =) 0. 3, E-plane pattern of a 15-element short dipole array.
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FIG. 6d: The radiat;*on patterns of the ti iangular lattice arrays with d/X =0. 6,
h/X =0. 3. E-plane pattern of a 21-element short dipole array.
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FIG. 7a: The radiation patterns of the triangular lattice arrays with diX = 0. 6,
h/X = 0.4, E-plane pattern of a 10-element isotropic array.
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FIG. 7b: The radiation patterns of the triangular lattice arrays with d/X = 0.6,
h/X 0.4, E-plane pattern of a 10-element short dipole array.

32



FIG. 7c: The radiation patterns of the triangular 1actice arrays with d/X =0. 6,
h/X = 0. 4, E-plane pattern of a 15-element short dipole array.
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FIG. 7d: The radiation patterns of the triangular lattice arrays with d/X = 0.6,
h/X = 0.4, E-plane pattern of a 21-element short dipole array.
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FIG. 8a: The radiation patterns of the triangular lattice arrays with d/X 0.8,

h/k 0.3, E-plane pattern of a 10-element isotropic array.
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S~FIG. 8b: The radiation patterns of the t•iangular lattice arrays with d/Xk 0. 8,
; ~h/X -- 0.3, E-plane pattern of a 10-element short dipole array
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FIG. 8c: The radiation patterns of the triangular lattice arrays with d/X = 0.8,
h/X = 0.3, E-plane pattern of a 15-element short dipole array.
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FIG. 9a: The radiation patterns of the triangular lattice arrays with d/X = 0. 8,

h/. 0.4, E-plane pattern of a 10-element isotropic array.
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FIG. 9b: The radiation patterns of the triangular lattice arrays with d/X =0. 8,
h/X =0.4, E-plane pattern of a 10-~aennent short dipoie array.
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FIG. 9c: The radiation patterns of the triangular lattice arrays with d/X 0. 8,
h/X =0. 4, E-plane pattern of a 15-element short dipole array.
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As a function of d the directivity seems to reach a maximum in the

neighborhood of d=O. 9X. This is also observed in the linear arrays (Tai,1964).

The directivity of the dipole case is in general higher than that of the isotropic

case. In either case, they are numerically greater than the number of elements

in the array.

VII

CONCLUSION

Because of the symmetry involved in the structure of the array, the H-

plane pattern is found to depend only on the row spacing. It is much broader

than the E-plane pattern. The E-plane patterns indicate that the main beam

becomes sharper at the expenses of the emerging side lobes and back lobes as

the element spacing becomes larger. The tapering eft ct which is inherent in

the triangular lattice configuration is rather evident.

The maximum nominal directivity seems to occur at the row spacing

about 0. 35X and the element spacing about 0. 9X. This latter criterion (d=0. 9X)

is also observed in the linear arrays.

In this report the numerical examples are presem, - only for the case where

6 =-kh, or the main beam is directed at 00=900 and 0o=900. Under this case,

the back lobe levels of the dipole case are the same as in the isotropic case.

As a sequel of this study, it would be interesting to extend the presant

work to the following:

1) The beam steering properties of the triangular lattice arrays.

2) The cize of the back lobe as a function of the steering angle.

3) The rhombic array which is simply a juxtaposition of two triangular
lattice structures.

4) The lattice structures on curved surfaces, such as on a section of a
cone, or a section of a sphere.

5) Three-dimensional triangular array, such as pyramids or tetrahedra.
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