
20
00

rH

/

THE UNIVERSITY OF MICHIGAN

Technical R e p or t 7

CONCOMP
June 1968

THE SYNTACTIC STRUCTURE OF MAD/1

David L Milts

pqc

CLEARINGr JUSE

for fedt-rai iapn»c!,c S 'echmc-jl

^

I
I
I
I
I
1

THE UNIVERSITY OF MICHIGAN

Tcchr.cal Report 7

THE SYNTACTIC STRUCTURE OF MAD/I

David L. Mills

]
]

I 1
I

CONCOMP: Research in Conversational Use of Computers
F.H. Westervelt, Project Director

ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE

WASHINGTON, D.C.

CONTRACT NO. DA-49-G83 OSA-3050
ARPA ORDER NO. 716

I
I
I
I

administered through

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

.Tune 196 8

TABLE OF CONTENTS

Page

LIST OF FIGURES v

I. INTRODUCTION 1

l.l Evolution of MAD/I 1

II. FORMAL SYNTACTIC SPECIFICATION 6

2.1 Terminology 7
2.2 Production Systems 10
2.3 Operator Precedence Grammars 12
2.4 Contextual Features 18

III. TRANSFORMATIONS 26

3.1 Terminal Transformations 28
3.2 Precedence Transformations 38

IV. A KiRNEL GRAMMAR FOR MAD/I 45

4.1 An Operator Precedence Kernel Grammar. 46
4.2 Interpretation of the Kernel Giamzar.. 64

V. STRUCTURE OF THE COMPILER 74

5.1 The Symbol Table 78
5.2 Lexical Recognizer 82
5.3 Syntactic Recognizer 85
5.4 The Macro Interpreter 87

REFERENCES 91

iii

1

LIST OF FIGURES

Figure Page

1 Floyd's Simple Grammar 16

2 Terminal Matrix 20

3 Terminal Delimiter Tables 22

4 Terminal Contact Matrix 25

5 Example Grammar—Productions 31

6 Example Grammar—Terminal Context Matrix.... 33

7 Kernel Productions for MAD/1 47

8 Kernel Vocabulary 50

9 Descriptor Assignment 53

10 Left Terminal Derivatives 54

11 Right Terminal Derivatives 55

12 Precedence Equivalence Classes 56

13 Precedence Matrix 57

14 Terminal Pair Equivalence Classes 58

15 Terminal Pair Matrix 59

16 Terminal Context Equivalence Classes 60

17 Terminal Context Matrix 61

18 Left Terminal Delimiters 62

19 Right Terminal Delimiters 63

20 Organization of MAD/I Compiler 76

 Hw - mimia

BLANK PAGE
,mi-i

0
3
]
3
i
3
3
3
3

1
I
1
]
1
1

THE SYNTACTIC STRUCTURE OF MAD/I

I. INTRODUCTION

The various dialects of MAD developed at The Univer-

sity of Michigan and elsewhere can be described as ALGOL-like

languages with strong flavors of FORTRAN. The language has en-

joyed considerable popularity at the University in both teaching

and research during a developmental evolution which began in 1960

vith an IBM 704 version of the compiler and progressed to the

piesent IBM 7090 version. The MAD language itself is designed

to be readily taught to relatively unsophisticated students and

yet to provide the power of generality of expresssion necessary

in sophisticated research applications. In general, the compiler

implementations have been finely tuned for high-speed translation

and for production of reasonably good object code. The list of

references at the end of this report contains a compendium of

reference material covering the development of the compiler and

the structure of the language. In the subsequent discussion of

this report a working familiarity with the MAO language will be

assumed in programming examples, although this is not strictly

necessary for an understanding of the principles involved.

1.1 Evolution of MAD/I

In mid-1965 the University began a gradual systrms

change-over from the IBM 7090 to the System/360 Model 67, The

development of the System/360 system was predicated upon the

virtual-memory concept, which involves a hardware-assisted

-1-

-2-

dynamic address translation procedure in which each concurrent

system program is written as if it owned all the addressable

core storage of the machine. Successful operation of this pro-

cedure requires a high-speed backup storage, such as a drum, for

temporary storage of core memory overflows and furthermore a re-

liance upon a sharable system program structure. The implemen-

tation of the Michigan Timesharing System (MTS) is based on these

concepts and represents the environment in which both the new

MAD compiler and its compiled programs will operate.

At its inception the MAD project was faced with two

alternative developmental paths. On the one hand a MAD trans-

lator could be implemented for the Model 67 which would be a

virtual transliteration of the existing MAD/7090 translator and

with few additional features. On the other hand a new language

could be developed which contained all those useful features of

the existing MAD/7090 translator and in addition many new ones

required for such applications as the development of graphics

languages. The former effort would at least provide a contin-

uance of the MAD/7090 language itself, a factor thought vital

in the almost captive MAD-committed user population. The latter

effort would be expected to provide, in addition to the valuable

developmental experience itself, a sound theoretical franework

bolstering the specification of a new language called MAD/I and

the construction of its compiler. In addition, the framework

developed would include a systematic procedure for the specifi-

cation of new language families, based on MAD/I, within

I
I
I
!

I
I

■■-M--^^::.. ,v-:v-.--^ i-^ ; ..

I
I
I
I
1
1
1
I
I
I
]
1
1
I
I
1
I
I

-3-

which specialized languages suitable for the manipulation of

data structures could be developed.

Although, in the beginning, the developmental effort of

the MAD project was concentrated along the former or transliter-

ation path, a gradual shift in emphasis took place, to such an

extent that the dewiopmental effort at this time is aimost

solely concentrated in the specification of MAD/1 and the im-

plementation of its compiler. The new language is in many

respects very much like the old. For instance, the assignment,

transfer, conditional, iteration, and input/output statements

are incorporated into the MAD/I language in substantially the

same way as into MAD/7090. Variables, constants, functions,

arrays, and expressions have the same interpretation in both

languages. Several minor differences exist between the two languages,

however, in the iules for the naming of statements, the scope of

compound stat3ments, and the eleir?nts of input/output statements.

The major differences between the two 1 iguages oc-

cur in the inclusion of comprehensive definitional faci'ities

and the introduction of new data structural types. In the MAD/

7090 language a definitional facility was implemented which

provided for the introduction of new data types and for the

definition of a restricted class of operations upon them. In

the new new language this facility has been expanded so that,

not only a much richer class of data types can be defined, but

quite general operations can be performed upon them. In order

to implement this expanded definitional facility, a new

4-

roetalanguage has been developed in which the definitions are

expressed. In fact, all of the MAD/I statements announced in

the programming manuals nave been implemented in this new meta-

language .

The impact of the systematic introduction of new data

types is mosv. obvious in the syntactic specification of the MAD/

I declaration statements. Although the MAD/7090 concepts of

dimension, storage mapping, and mode have validity in MAO/I

programs, their interpretation is far more general. For instance

arrays may contain arrays as elements, and the storage assigned f

to them may vary dynamically during execution and be shared among

several functions. Linkages between functions are far more

flexible, and dynamic loading and overlay operations are possible.

In short, the declaration features of the language allow maximum

advantage to be taken of the virtual-memory concept and the time- ¥

sharing environment in which MAD/I programs are executed.

The broadening of scope and generality as compared

with MAD/7090 has not been achieved without a corresponding loss

of compatibility in respect to the older language. In fact, the

characteristics of the 7090 as compared to those of the Model 67

seem to prejudice a virtue of compatibiIxty in the first place.

As * result, many common gimmicks popular in MAD/7090 program-

ming simply have no counterpart in MAD/I programming. However,

the converse most certainly will be far more likely, in spite of

the fact that old programming habits die hard. The most common

incompatibilities are of course related to the character set

i

I
I

I
1

1
I
I
1
I
I
I

:■■■ ■.. -. l.^.....^:. - v.

and the byte addressing structure of the Model 67, and this

directly affects those operations of bitwise shifting and mask-

ing of data, and the resolution of storage addresses. A trans-

lator has been constructed to aid in the conversion of MAD/7090

programs to their MAD/I counterparts, and has proved useful in

the majority of cases. In some cases involving packing/unpacking

and character-sensitive operations, translation is not possible

unless a highly sophisticated processor is postulated. Unfor-

tunately, the MAD language has been particularly convenient in

the construction of symbol manipulation programs; and a large

body of extant and useful programs are unavoidably threatened

with obsolescence as a result of the eventual change-over to

MAD/I.

As a consequence of the power inherent in the defini-

tional facilities of the compiler, it is apparent that a des-

cription of the language in terms of its syntax would be mis-

leading at best. Obviously the structure of the translator pro-

vides the capabilities for the definition of a rather wide class

of languages, each one characterized by a consistent set of

statements of the definitional metalanguage. One of these sets

of definitional statements just happens to represent the lan-

guage called MAD/I in the programming manuals, but any other

consistent set of definitional statements might have been chosen

as well. The MAD/I set was chosen rather arbitrarily to re-

present that language thought most useful and economical for

the widest class of potential users, yet with a large capability

6-

for enrichment through the inclusion of special-purpose defi-

nitional packages.

The most useful description of the MAD/1 language

and its translator then demonstrably involves -he syntactic

specification of t^ se constructs which can be identified by

the various analysis algorithms embedded within the translator

and a description of the operations possible upon these con-

structs. These tasks will dominate the discussio'.i for the re-

mainder of this repurt. However, many examples drawn from the

MAD/1 language will be used fre ?, time to time to explicate

the discussion.

It should be noted that the procedures described

herein used to analyze 'he syntactic specification of MAD and

to construct its compiler are applicable to other than alge-

braic-type languages. In fact, the same analysis techniques

have been used in the construction of a machine-language as-

sembler end in the specification of a computer-to-computer

message transmission protocol.

II. FORMAL SYNTACTIC SPECIFICATION

The formal linguistic structure which describes the

MAC syntax can be described as a modified operator precedence

grammar. This structural description provides an exceptionally

sound framework which satisfies both the needs of syntactic

flexi.ility in ti.e definition of statement forms and of struc-

tural integrity in the control of error recovery. The approach

7-

taken in the formulatory steps of the formal syntactic specifi-

cation is first to construct a kernel language of the operator

precedence type and then to construct a set of context-dependent

transformations which operate upon sentences of the source lan-

guage to produce sentences of the kernel language. Since it is

known that the family of precedence languages are unambiguous

and have rather good error-recovery characteristics; then, if

the context-dependent transformations are carefully chosen, the

resultant language should be considerably richer than the

operator-precedence kernel language and yet retan many of its

desirable characteristics.

2.1 Terminology

A terminal vocabulary V_ is a set of symbols chosen

as the alphabet of the language. A language L is a collec-

tion of certain strings of all those strings formed by inde-

finite cencatentions of elements of V . Each of these strings

is a sentence S of L and is generated by applications of a

set of rules called a grammar G . In the grammars discussed

here each of these rules or productions take the form U-^x ,

where U is an element of * nonterminal vocabulary V and

x is a string over V» ♦ V^ , called simply the vocabulary.

Furthermore, every S in L is assigned a structural descrip-

tion by G which demonstrates how that string is decomposed

into its constituent structural units, each labeled by an

element of V.. .

-8-

The productions of G thus form an effective procedure

for deciding whether any string over the vocabulary is or is

nut a sentence of the language. Furthermore, since every mean-

ingful constituent substring or prime phrase of a sentence is

assigned a nonterminal symbol by a production of G , then the

identification of a prime phrase during the decision process can

be made synonymous with the production of some arb;trary inter-

pretation or translation of the elements of the prime phrase

itself.

If all productions of G take the form U-*x as

above, then L is described as context-free and the decomposi-

tion or parsing of a sentence into its constituent structural

units inwlves relatively simple techniques. On the other hand,

if some of the productions are of the form xUy+z , where x ,

y, and z are strings over V , then L is described as con-

text-dependent, and more complicated parsing techniques are

required. A production-oriented description of MAD/1 is ne-

cessarily context-dependent, although by far the majority of

productions are of the context-free type.

Any useful programming language like MAD/I should be

capable of being described by a particular grammar in such u

way that each sentence of the language is assigned exactly

one structural description, or, equivalently, that only one

parse exists. If such is the case, then the language is des-

cribed as unambiguous. Althoug!. it is not in general possible

I
I

to determine whether a particular phrase-structure grammar is

or is not unambiguous, certain fam: lies of phrase-structure

grammars can be shown to have this property. One of the most

useful of these families is that of the precedence grammars;

and, of these, the operator precedence grammars are particularly

suited to the description of MAD/I. Ii fact it is convenient

to describe the bulk of MAD's syntax in an operator-precedence

grammar and then to describe those few exceptions by means of

context-dependent transformaticis which are applied to the

source text prior to the operator-grammar parsing algorithm.

There is one significant problem connected with this

approach. The useful operator precedence grammar parsing tech-

niques operate upon the terminal symbols of a sentence producing

progressively larger prime phrases as intermediate parses and

finally terminating when the entire sentence has been scanned.

Such a process, commonly called a bottom-up parse, is highly

adaptable to the parsing of the Jower-level algebraic expres-

sion structures in the language. On the other hand, the pars-

ing of the higher-level statement structures is intuitively

a much more goal-oriented process, and a more general top-

down process is needed. In the syntactic specification of

MAD/I, the productions are carefully chosen so that contextual

features can provide clues for a macro-driven top-down state-

ment scan, yet retain the advantages of a bottom-up expres-

sion scan.

10-

2.2 Production Systems

The set of productions defining a grammar may be

represented in any of several common notationaJ schemes, the

most common of which may be the Backus Normal Form (BNF). The

particular notational scheme followed herein is an adaotation

of the 3NF and is defined as follows:

Each production P consists of a 1 ei"t part U ,

which is a particular symbol of V^ , and a ri ght part x ,

which is a string over V = VT * VN . In general there may be

more than one production with the same left part, each such

production corresponding to an instance of a component in a

BNF role. It will be assumed that no right part is the null

string, for it can be shown that a grammar containing a pro-

duction with a null right part can be naturally rewritten

without such a production and without materially affecting

the generative capacity of the grammar.

A grammar, each rule of which takes one of the

foliowinn forms:

U^a 1

VaU2 2

w 3

U^al^b, 4

where U- are elements of V' and a, b are strings over V_ ,
i N 1

is called a linear grammar. These grammars are characterized

by the fact that, in each pioduction, onJy a single noriLerminal

11

symbol on the right side is replaced or rewritten by the non-

terminal on the left; and, furthermore, each such rewrite

(except those corresponding to Rule 1) has fewer symbols than

the previous. If we add to these four forms the following

U1^U2 5.

U1-^U2aU3 6. ,

ana require a and b to be single elements of V_ , then an

appropriate paradigm for an algebraic language production sys-

tem is evident. Here the terminal symbol a in Rule 1 corre-

sponds to the notion of operand, and the terminal symbols in the

remaining rules correspond to the notion of operator. The non-

terminal symbols correspond to the notions of expression and

statement, depending upon the hierarchy of the production system,

Note that these six rules represent all of the produc-

tion forms of an operator grammar (see below) which have right

sides of lengths no greater than three and, furthermore, con-

tain no sequences of two or more contiguous terminal symbols.

Although sequences of this type can occur in an operator gram-

mar, nevertheless, each such sequence can be mapped into a

single element of a set of metaterminals for convenience, and

this practice will be followed henceforth.

Rule 1 establishes a duality between the notion of

operand and that of nonterminal symbol. In general, in an

algebraic language grammar there is a derivation or sequence

if applications of thj rules of the grammar starting with each

-12-

and every nonterminal symbol of the grammar and ending with an

operand. Using the notion of metaterminal mentioned above, it

is clear that only a single Rule 1 is necessarv in an algebraic

language grammar. Rules 2 and 3 represent the types of produc-

tions associated with the unary prefix and unary postfix oper-

ators in the language, and Rule 6 represents the typt of produc-

tion associated with the binary operators. Rale 4 represents

the type of production associated with parenthesized groupings,

and Rule 5 represents really only a notational convenience so

that the grammar can be expressed in a more compact form.

By convention, each pzoduction whose form coincides

with Rules 2, 3, and 6 above will be identified by its single

terminal symbol, which serves as a referent in the application

of the semantic interpretation rules or macro transformation

associated with the production. Thus, when a prime phrase is

identified by the bottom-up parsing algorithm, it is only

necessary to identify whether its form coincides with Rule 2,

3, or 6 and which operator is involved. The nonterminal symbols

of the prime phrase play no part in this determination.

2.3 Operator Precedence Grammars

A particular grammar can be found to belong to the

family of precedence grammars by application of a certain

technique whizh results in the assignment of one or more binary

relations between each pair of symbols of the vocabulary

V =• V + V . These relations can be symbolized as o (null)

13-

<• , ~ , and -> , and summarized in an n x n matrix, where n

is the number of symbols of V . If no more than one of these

four relations holds between any such pair in the language, then

the grammar belongs to the class of simple precedence grammars.

The precedence matrix so constructed can serve as the driving

table in a simple algorithm which decomposes a sentence of the

language into its prime phrases.

The sheer size of the precedence matrix for a language

of some complexity (146x146 for the MAD/I case) encourages

further restriction in the grammar to exclude those productions

which contain adjacent nonterminal symbols. Such grammars,

known as the operator precedence grammars, are characterized

by a m x m precedence matrix, where m is the number of

symbols of V . A good deal of violence is done to some natural

syntatic descriptions when this restriction is enforced, al-

though several techniques are available to enrich such a lan-

guage by the introduction of metaterminal symbols consisting

of certain strings over V.. ♦ V_ . A certain rationale is " NT

available, then, to restrict the kernel structural description

of MAD/I to an operator precedence grammar.

A verification procedure, due to Floyd (see Refer-

ences), is available with which it is possible to determine

whether or not a particular operator grammar is a member of

the precedence family or not. The procedure can be implemented

either recursively or iteratively as a computer program. Both

techniques have been implemented as MAD/7090 programs, with the

14-

latter technique enjoying a speed advantage of about ten-to-one

over the former. The latter technique can be illustrated by

the algorithms described below. In the following, U re-

piesents an element of Vj. and T an element of V . A

string over V » V + V is represented by a lower-case letter.

The process of constructing a precedence matrix for

an operator grammar consists of two steps: In the first step,

two tables are constructed showing for each nonterminal symbol

U e % those terminal symbols which can occur as the leftmost

and rightmost symbols respectively in a derivation of U . The

table of leftmost terminal derivatives (LTD) can be constructed

by the following process:

1. For each production U.-^T.x or U.-'-U-T.x , 1 1* 1 "2 1'

enter T. as an LTD of U, .

2. For each production U.-^U-x , enter every LTD of

U2 as an LTD of U .

3. Repeat step 2 until, in a finite number of steps,

the process converges.

The table of rightmost terminal derivatives (RTD) is constructed

in the analogous way.

The second step for constructing the precedence matrix

for an operator grammar involves the two LTD and RTD tables

just constructed, the algorithm below, and the precedence matrix

itself, an n x n square matrix where n is the number of

symbols of V- . The algorithm cited assigns four relations,

15-

one or more of which must hold between two terminal symbols

Tj and T2 :

1. T.^T. if there is a production U-.vT.T-y or

U-^cTjUjiy

2. T. •> T. if there is a production U-^xU.I'y and

T. is an RTD of lil

3. T. <• T- if there is a production U^xT.U.y anc

T2 is an LTD of U

4. T^ o T2 if none of the above holds

If no more than one of these relations holds between

any two terminal symbols T. and T_ , then the operator gram-

mar is in fact an operator precedence grammar. Note that if

T. and T- were not constrained to be elements of V™ , but

could in fact be elements of V.. + V_ , then the same process

would result in a precedence matrix for a simple precedence

grammar.

Figure 1 summarizes those steps in the construction

of the precedence matrix for a simple algebraic-1 ike language

taken from Floyd (see References). The equivalent steps for

the derivation of the precedence matrix for MAD/1 are summarized

in Section 4.1. In this and subsequent examples the metater-

minal symbols will be assigned in each instance as names pre-

fixed by percent signs (%) . In this figure the void ©

relation is assumed to hold in all those positions of the

matrix in which a blank is evident Blank positions in the

16-

Productions

S-A

A-»-A + B

A-B

B-*-B * C

B-»-C

C-(A)

Nonterminal Vocabulary

S A B C

Terminal Vocabulary

+ * () %I

Left Terminal Derivatives

NTC Terminal Characters

s + *
(%I

A + *
(%I

B *
(%I

C (%I

Right Terminal Derivatives

NTC Terminal Characters

s + *
) %I

A + *
) %I

B *
) II

C) %I

0

Precedence Matrix

+ •>«<?•><

*•>•><? •> <•

(<• <J <S i <

) •> •> •>

%I •> •> •>

Figure 1. Floyd's Simple Grammar.

r

:
4» <

j

•■■

■ _.. --._- -

I
I

17-

matrix correspond to those cases where a void precedence rela-

tion exists and provide either an opportunity for a context-

dependent transformation or an indication of an incorrect pro-

gram,that is, an occurrence of a sentence not in the language.

It is possible, reputably in all useful ca^es and

certainly here, to represent the nonvoid three precedence rela-

tions between any two terminal symbols in a conveniently compact

form which assigns two integers to every terminal symbol. These

integers might be called the left and right precedence functions

and represent the "order" precedence relation in the same

fashion as the matrix when the left function of the leftmost

symbol is compared to the right function of the rightmost symbol

in a true order relation. Both of these precedence iunctions

are shown for Floyd's simple grammar in Table 1. It is possible

Terminal Character Precedence functions

(

)

%I

F

3

5

1

5

5

G

2

4

6

1

6

Table 1.

in some cases to dispense with one of these functions and to

represent the precedence relations as a single integer assigned

to each terminal symbol, as is done in fact in 7090 MAD. The

-18-

generality of the new MAD/I does not evidei.tly permit this

simp1ification (see Section 4.1).

In practice it has not been necessary to represent

the entire precedence matrix for MAD/I within the jompiler,

but only a much smaller matrix which shows whether or net a

nonvoid precedence relation exists between any two terminal

symbols. The internal descriptor corresponding to each non-

terminal symbol in the language has coded within it an index

into this compact matrix as well as both the left and right

precedence frnctions. This compact matrix, called the terminal

context matrix, has importance in other uses and is discussed

further below.

2 . 4 Contextual Features

If the grammar for a practical algebraic language

could be made as simple as Pxoyd's example presented in the

previous section, then the parsing algorithm could be excep-

tionally simple; indeed, Floyd gives an example of such an

algorithm. In the more complex praede ' cases, a good deal

of contextual information must be available to provide handles

for such context-dependent transformations as those to resolve

the syntax of binary operators used in unary contexts and so

forth. The discussion in this section will be concerned with

the development of certain tables and matrices which are highly

useful in gaining insight into the contextual structure of the

language generated by a context-free grammar. As implied, the

development of these tables and matrices does not require that

the grammar be an operator or a precedence grammar.

19-

The allowable pairs of terminal symbols in the lan-

guage generated by a context-free grammar can be determined

with the following two-step procedure (due to Floyd). The

results are summarized in an m x m terminal matrix, where m

is the number of symbols of V_ . The procedure is similar in

nature to that outlined above for the construction of the pre-

cedence matrix. In the first step two tables are constructed,

each giving respectively the left most and rightmost symbols

of V = VN + V™ which may occur in a derivation for a non-

terminal symbol. The table of lertmost symbols (LS) is con-

structed by the following process:

1. For each X e V , enter X as an LS. of X .

2. For each production U -»■ Xy , enter each LS of

X as an LS of U .

3. Repeat step 2 until, in a finite number of steps,

the process converges.

The table of rightmost symbols (RS) is constructed by an analo-

gous process.

The second step in the construction of the terminal

matrix involves consideration of all pairs of adjacent symbols

XY which may occur in the right part of a production. If a

i? a terminal symbol ««uich is an RS of X , a.id b is a ter-

minal symbol which is an LS of Y , then ab is an allowable

terminal symbol pair in the language. The terminal matrix cor-

responding to Floyd's simpls grammar is shown in Figure 2.

20-

(

) T

%I T

T

T

(

T

T

T

T

T

%I

T

T

T

Figure Terminal Matrix,

21-

As before, blank positions in the matrix correspond to invalid

constructions and can be used in connection with context-de-

pendent transformations.

During the scan of certain statement types it becomes

convenient to invoke the statement-scanning algorithm from a

macro transformation (see Section 3.2) at a higher syntactic

level. The algorithm is expected to terminate in the identifi-

cation of one of the nonterminal symbols described in connection

with the production system. The contextual features necessary

to properly initiate and terminate such a procedure can be sum-

marized in a pair of tables, each giving respectively the left

and right terminal symbol delimiters which may bracket the non-

terminal symbol to be identified as the goal of the procedure.

The algorithm is given below.

The table of left terminal symbol delimiters (LSD)

can be constructed by the following process:

1. For every production IHxT.U.y enter T. as

an LSD of U. .

2. For every nroduction U-^U.x enter ev ry LSD of

Uj as a:: LSD of U .

3. Repeat Step 2 until in a finite numlar of steps

the process converges.

The table of right terminal symbol delimiters (RSD)

is constructed by an analogous process. Figure 3 shows these

two tables as derived from Floyd's simple grammar.

22-

Left Terminal Delimiters

NTC Te.-minal Characters

S

(

(

+ * (

Right Terminal Delimiters

NTC Terminal Characters

S

A +)

B + * 3
C + *

)

Figure 3. Terminal Delimiter Tabl es

I
I
I

23-

The most useful of all the various tables and matrices

discussed so far i? a three-iimensicnal array called the ter-

minal context matrix. This matrix, used in the application of

context-dependent transformations, indicates for every pair of

terminal symbols a and b whether:

1. the pair ab is allowable in the language,

2. a nonvoid precedence relation exists between a

and b .

The matrix can be considered as two layes of a p x p square

array, the ith column and ith row of which are identified by an

equivalence class. The equivalence classes are constructed

from the precedence and terminal matrices as follows:

1. Construct an p x m square matrix, the ith

column and ith row of which are identified by each of the m

symbols of V- . Each element of the matrix is identified by

its coordinates as the element of the a.th row and a.th
i J

column, where a. and a. are symbols of V^, . Each such
i j ' T

element is a coded number from which can be determined

a. whether the adjacent symbol pair a.a. is J J r 1 j

al lowab le,

b. whether a nonvoid precedence relation exists

between a. and a . .
i J

2. From this matrix a reduced matrix is constructed

by deleting equivalent rows and columns in the following way:

-24-

if £ and a. identify two rows and in addition the corre-

ame sponding two columns, then a. and a. belong to the s

equivalence class if the rows identified by a. and a. are 7 i j

identical and in addition the columns identified by a^ and

a. are identical. The resultant matrix will have p rows

and p columns.

3. The terminal context matrix is then constructed

i.Kjm the reduced matrix by associating with the first p x p

layer a set of integer-valued elements which, for the a.th

row and a.th column, take on the value one if a.a. Is an

allowable terminal pair and zero otherwise. The second p x p

layer is constructed in the same manner of the same elements,

which take on the value one if a noivoid precedence relation

exists between a. and a. and zero otherwise.

The equivalence classes and terminal contex*. matrix

derived from Floyd's simple grammar are shown in Figure 4, In

this figure the letter T stands for a one in the first layer

and the letter P for a one in the second layer. In the con-

struction of the terminal context matrix a partition of V'

has been achieved which assigns to each symbol of VT a

syntactic class number which is an index to a row or column

of the terminal context matrix. Each terminal and metaterminal

symbol of the MAP/I language is assigned such a syntactic class

number along with its left and right precedence functions as

part of the internal descriptor developed within the compiler.

25-

Equivalence Classes

CL Rep Members

01 + *

02 (

03)

04 %I

Matrix

+ () %I

+ P PT P PT 01

(P PT P PT 02

) PT PT 03

%I PT PT 04

01 02 03 04

Figure 4. Terminal Context Matrix

26-

The lotivation for constructing the terminal context

matrix in just this manner will become clearer subsequently

upon consideration of context-dependent transformations. It

may be pointed out here that the elements of each of the two

layers may take on values other than zero a.»d one in connection

with these transformations, and in a sense form the elements

of a kind of state transition table which drives the statement-

scanning algorithm.

III. TRANSFORMATIONS

It was pointed out in passing above that a strictly

limited operator-precedence grammar is simply not rich enough

to describe th^se syntactic structures required for MAD/I.

There are two immtt ~ate demonstrations of this fact, both in-

volving contextual information needed for the resolution of a

syntactic type. In the first, a single terminal symbol of V_

is used both to represent a unary operator and to represent

a binary operator. The unary plus and minus signs are the most

common examples of this, but others can be found in the MAD/I

syntax.

Apparently this common syntactical form cannot be

described in the obvious fashion in an operator precedence

grammar. However, if the two uses of the operator are assigned

different names, perhaps the minus sign for the binary case

and ♦"he %NEG symbol for the unary case, ..ien &a operator

precedence grammar description is readily apparent. Moreover,

27-

by inspection of the terminal context matrix (see Section 2.4)

a simple context-dependent transformation can be synthesized

which indicates exactly those contexts in which the minus sign

is to be replaced by the metaterminal %NEG. The generaliza-

tion of this procedure leads to the notion of terminal trans-

formation which will be discussed in detail in following

sections .

The second demonstration of the inadequacy of the

unenriched operator precedence grammar description for the

MAD/I syntax appears at the level of statement parsing. The

problem is that, while at the expression level the order of

the identification of the various prime phrases parallels the

order in which the object code produced will be executed, at

the statement level this is not necessarily the case. One

might in fact say that the match between the identified syn-

tactic construct and the applicable semantic rules seems to be

poor. Another way of saying the same thing is that the basic

operator precedence grammar expression scanner is a bottom-up

syntax analyzer and such an analyzer works well in a simple

algebraic expression environment. On the other hand, the

binding structure among the expressional components of a state-

ment can really best be parsed by a goal-oriented top-down

analyzer. Techniques :or turning the expression scanner inside-

out, so to speak, for this purpose will be discussed in follow-

ing sections. These techniques involve the notion of the

precedence transformation, really an extension of the familiar

-28-

technique which associates to each instance of an identified

prime phrase a macro definition in which the semantic interpre-

tation rules associated with that phrase are expressed.

All context-dependent transformations are identified

using the terminal context matrix describee" in Section 2.4.

Properly constructed, the terminal context matrix initiates

each type of transformation only under well-defined contextual

environments. The hat trick in this procedure, however, is to

insure that the excellent error-recovery characteristics in-

herent in the operator precedence grammar are not unreasonably

compromised and that no ambiguities are introduced into the

language by virtue of the new syntactic constructions so de-

fined. A specification of the necessary constraints upon the

applicable contexts in order that these requirements be satis-

fied appears elusive using the analysis techniques illustrated

herein. On the other hand, a specification of sufficient con-

straints can be given in certain cases.

*

I

3.1 Terminal Transformations

The introduction of context-dependent transformations

can be established at two levels: first, consider a sequence

of input symbols a a....a.a....(a e VT) which are input to

the compiler. These are extracted in turn from the actual in-

put character stream by the lexical analyzer, so that a. and

a. for example are identifiers which are represented by des-

criptors within the compiler. Now, consider the case where

the statement scanning algorithm, having just read symbol a. ,

I
I
I
I
I
I
I

-29-

is about to read symbol a. . At this point the terminal con-

text matrix is accessed and the integer found at the inter-

section of the row and column corresponding to a. and a. i; f a 1 j

extracted. The following cases are possible:

1. The integer has the value one, in which case the

pair a.a. is allowable and the statement scanning algorithm

proceeds

2. The integer has the value zero, in v-hich case

the pair a.a. represents an error, and a recovery procedure

is initiated.

3. The integer has a value other than one or zero

and is assumed to identify a built-in tiansformation which

is immediately executed. Such a transformation is called a

terminal transformation, and several such are described belcw.

A terminal transformation is designed to produce

a string of terminal symbols in the following manner:

ab ■*• axb ,

where both a and b are terminal symbols and x is an

arbitrary string of terminal symbols, (In the useful cases

described here x is a single terminal symbol).

In practice, a terminal transformation is constructed

by defining an operator precedence grammar with certain addi-

tional primitives which cannot by design in the language be

elements of an input string. Let the environment of such a

-30-

primitive a be represented by xay , where x represents

any member of the set of terminal symbols which may occur ad-

jacent to a on the left and y any member of the set which

may occur on the right. Now verify that the contexts formed

by juxtapositions of an element of x and an element of y are

all invalid; that is, these contexts do not occur in the ter-

minal context matrix. When jne of these "invalid" contexts

is found, then, the introduction of the primitive a in the

manner shown is guaranteed to be unambiguous,

In order to preserve the consistency of the language

it is necessary to apply the terminal transformation in ell

equivalent contexts; that i„, if both ab and cd are valid

terminal strings in the new grammar; then if the terminal trans-

formation is applied in the ab context, it must also be ap-

plied in the cc context.

As an example of a practical application of this

technique, consider the grammar whose productions are shown

in Figure 5. This grammar happens to be used to destrioe the

syntax of the operator and operand fields in an experimental

assembler for the PDP-8 and PDP-9 computers. The plus and

minus symbols are interpreted as two's complement binary

operators and the logical symbols as one's complement bit-

wise binary operators. The %M symbol stands tor the two's

complement unary negation operator and the ?6N symbol stands

for thj one's complement unary bitwise inversion operator.

The %I symbol stands for any operand, eithjr a variable or

31-

PRCP'jrTIONS

001 m s tl
00? Ul r Ul ?A
00^ v 3 111
00^ u? r SN U?
005 U4 = U?
OOf m = U^ £ 11?
00 7 U5 = U4
0C8 U5 = (J5 I U4
oo«; IJ5 ■= U5 -• U4
010 U6 ■z U5
on u-s = U7
on U7 = «N U7
013 1)7 = UM U'.
01'♦ U6 s U4 e u7
015 U6 = U5 1 U7
016 U6 a U5 - 117
on UB s U6
018 UP =: U" ♦ U6
019 UM = ug / U6
0?0 U9 = U8
021 U9 = U9 ♦ UR
02? IJ9 = UQ - U8
023 UP s U9
02A Ul = (UB)
02S UP =■ »' U^ %

NCN E?.MINAL VOrABULftRY

Ul U2 U't U* U*. U7 U8 U'^ UB UF

TFPMIMAL V0CAr1llLÄ»'Y

%l %A TN £ I fM * U %R

Figure 5. Example 'jrammar—Productions

-32-

a constant. The %L and %R symbols stand for left closure,

which marks the bottom of the stack, and right closure, which

represents the end-of-statement (card) delimiters respectively.

These two symbols are introduced for convenience in error re-

covery. Finally, the %A stands for an attribute operator

used to specify a property of an identifier.

It is the intent in the source language of this ex-

perimental assembler to represent both the two's complement

binary subtraction operation and the unary negation (%M)

operations by the minus sign (-) and both the one's comple-

ment bitwise binary subtraction (i.e., txclusive-OR) and

unary inversion (%N) operations by tne logical-not symbol

(-t) . Thus a terminal transformation is to be synthesized

which results in the replacement of the - symbol by the %M

symbol and the -n symbol by the %N symbol in the proper

contextual environments.

These environments are readily apparent from the

terminal context matrix for this grammar (Figure 6). In this

figure note that all the binary operators are in equivalence

Class 4 and all the unary operators in equivalence Class 3.

Then note that the terminal contexts x%N and x§ , where x

represents any terminal symbol, %N (a unary operator of Class

3) and 5 (a binary opeiator of Class 4) are mutually ex-

clusive. In particular, then, if an "invalid" context yfi

is found in the source text and furthermore the context y%N

is valid, then the terminal transform x§+x%N is indicated.

r
-33-

TERMINAL CONTEXT MATRIX

EQUlVALFNCB ClASSHS

CL REP KMBERS
01 %l
02 XA
01 %N «M
04 6 | -. ♦ /
05 (
06)
C7 tl
OH «R

ECUIVALENCE MATRIX

tl *A XN e () XL %K
«I PT PT PT PT 01
«A PT PT PT PT 0?
fN PT P PT P PT P P 03
£ PT P PT P PT P P 04
(PT ö PT P PT P 05
1 PT PT PT PT Cf
tL
XR

PT P PT r PT P 07
0«

01 0? 03 0^ 05 06 07 08

Figure 6. Example Grammar—Terminal Contexi Matrix

-34-

Terminal transformations are implemented within the

MAD/I compiler as a macro call, the operands of which include

1. the last terminal symbol scanned a. ,

2. the terminal symbol next to be read a

The macro may produce the following results;

] return immediately to the statement-scanning

algorithm (a no-operation),

2. replace a^ with a new symbol a, ,
J *

3. delete a. , and
J

4. insert a single symbol x such that x will

be the symbol next to be read and a. the next symbol follow-

ing x .

The following six terminal transformations are presently im-

plemented within the compiler:

Terminal Error.

The pair a a. is not allowable in the language,

nor does it represent a context of any terminal transformation

The macro definition associated with this transformation by

convention prints a diagnostic ..lessage.

Unary Operation.

The tair a.a. represents a context in which a.

would normally be expected to be a unary operator. In this

case, however, a. belongs to the class of binary operators

-35-

The macro definition associated with this transformation by con-

vent ion:

1. if a. is the symbol "+" then a. is deleted,

2. if a. is the symbol "-" then a is replaced

by the symbol %NEG representing the unary negation operation.

In other than these two cases a diagnostic message is generated.

Empty Argument.

The pair a.a. represents a context in which a
i J J

would normally be expected to be an operand, and furthermore,

if x represents such an operand, then the context a x a r r . j j

is valid in the language. This transformation is involved in

several contexts corresponding to missing arguments in function

calls and subscription operations The macro definition as-

sociated with this transformation by convention inserts a dum-

my operand between a. anc a. and this is not considered

an error.

Empty Statement.

The pair a.a. represents a context in which a
i] J

is normally expected to be a statement, and furthermore, if

x represents such a statement, then the context a x a is

valid in the language. The macro definition associated with

this transformalion by convention inserts a dummy operand

between a and a. and this is not considered an error
i J

36

Empty Declarative List Element.

The pair a.a. represents a context in which a

is normally expected to be a declarative list element (sec

Section 4.2), and furthermore, if x represents such an

element, then the context a. x a. is valid in the language.

This transformation is used during the scan of those declara-

tions which apply default attributes to the program. The macro

definition associated with this transformation by convention

inserts the %DEFAULT operand between a. and a. and, if
i j '

a. is the symbol ";" , this is not considered an error.

Empty Executable List Element.

The pair a.a. represents a context in which a. is

normally expected to be an executable list element (see Section

4,2), and furthermore, if x represents such an element, then

the context a. x a. is valid in the language. The macro

definition associated with this transformation by convention

inserts a dummy operand between a. and a. and this is
i j

not considered an error.

The %TAG Transformation.

Although classed as a terminal transformation, the

%TAG transformation exhibits a special behavior. The pair

a.a. represents one of the contexts ")(" or "%ID(". The
i j r

%TAG transformation causes a metaterminal symbol x to be

inserted between a. and a. such that the context a. x a.
1 J i J

is valid in the kernel grammar. There are two interpretations

-37-

of this transformation depending upon its occurrence in a

declarative list element or an executable list element. If

the %TAG transformation occurs in a declarative list element,

tien an implicit attribute assignment is indicated which

interprets the list elements witinn the parentheses on the

right as an attribute structure to be attached to the operand

(possibly a list enclosed in parentheses) on the left The

nature of this interpretation can depend both on the name of

the declaration statement in which this occurrence is embedded

and on the name of the macro definition invoked by the trans-

formation. In this case, the name is given as an argument to

the statement-scanning algorithm.

If the %TAG transformation occurs in an executable

list element, then an implicit subscription operation is in-

dicated which interprets the list elements within the paren-

theses on the right as an argument to a component selection

function which identifies a particular component of an array

during execution. In this case also, tne macro name invoked

by the transformation is given as an argument to the state-

ment-scanning algorithm.

The above transformations provide some enrichment

of the kernel grammar without materially affecting its gener-

ative power. Note that although the contextual environments

which cause these transformations to be invoked are noi

normally definable during compilation, the macro definitions

associated with the names mentioned are of course definable

Thus the behavior effected in the individual cases may be

altered by definitional procedures

38-

3.2 Precedence Transformations

Although the terminal transformations described in

the preceding section provide some additional power to the

basic expression-scanning algorithm, the power is principally

concentrated in reducing the nuisance value of the language

by allowing some syntactic "cheating" in the specification of

the language On the other hand, the basic analytical problem

inherent in a bottom-up parsing algorithm remains: it is

exceedingly difficult to specify the syntax of a complicated

statement involving several constituent expressions without

doing much violence to its semantic interpretation rules.

The approach taken in the design of the MAD/1 com-

piler has been to represent certain syntactic forms which

have been parsed by the expression-scanning algorithm as an

instance of a metaterminal symbol which is an element of the

kernel grammar. This technique involves the identification

by means of a terminal transformation of the initial character

or prefix of that ctructure which, when parsed, will become

the metaterminal symbol. Once such a context nas been identi-

fied, the basic scanning process vw'urses in such a way as to

exhibit a top-down behavior. In other words, the identifica-

tion of the metaterminal becomes a process directed by com-

mands embedded within a macro definition, and this process can

be obviously context-dependent. Some of the macro commands

can cause the basic scanning process to resume its precedence-

directed scan at this lower level, but with the additional

I
7

I
I

59-

requirement that a goal-directed behavior be realized. When

the syntactic structure representing the metaterminal symbol

is completely parsed, perhaps requiring several goal-directed

scanner calls, a nonterminal symbol representing the meta-

terminal symbol is generated and the scanner pops up to the

original statement scan level

The manner in which the goal-directed syntactic

scan is realized using a precedence-directed scanning algorithm

is obviously the key to the success of this technique. This is

done candidly, by a seat-of-the-pants combination of rule-

bending and judicious use of what are called here precedence

transformations

The explanation of how this is done requires some

superficial explanation of the manner in which the statement-

scanning algorithm operates. The algorithm, patterned after

those suggested by Bauer and Samelson, Arden and Galler,

Floyd, and several others, makes use of a compile-time stack

in which symbols are stored during the parsing process This

stack at each instance during the scan contains a sequence of

symbols, each symbol representing either an operator or a non-

terminal symbol. At the top of the stack is a nonterminal

symbol X (possibly null), and immediately below this is at

least one terminal symbol a, not of the operand class Let

this terminal symbol be identified by a. Then consider

the sequence of symbols a a o 1 a which are input to

the translator. Now, having just read a , the statement-

-40-

scanning algorithm establishes a precedence relation between

a, on one hand and a. on the other. Note that the symbols

betwtjn a. and a. already have been read and the terminal k j

pairs established as allowable. Thus all terminal transforma-

tions have been completed at this point. Now, when a, and

a. are compared in the precedence relation, the second layer

of the terminal context matrix is accessed and the integer found

at the intersection of the row and column corresponding to a

and a. is extracted. The following cases are possible:

1. The integer has the value one, in which case the

pair a\c
ai is contained in a nonvoid precedence relation and

the statement scanning algorithm proceeds.

2 The integer has the value zero, in which case

the pair ai.a- represents an error and a recovery procedure

is initiated.

3 The integer has a value other than one or zero

and is assumed to identify a macro transformation which is

immediately executed Such a transformation is called a pre-

cedence transform, and several such are described below,

A precedence transformation is implemented within

the MAD/I compiler by a macro definition in the following

manner: Let a, and a. represent the terminal symbols
k j r '

compared in the precedence relation in the manner described

above. Let the precedence context a,a. be selected as an
k j

environment for a precedence transformation, and furthermore

I
I
I
I
I
I
I

41-

require that a, <■ a. . Then the precedenc; transformation

associate.! with the name a. will:
i

1. stack the representative of the equivalence

class containing a (or a representative of another equiv-
j

alent class which obeys the same precedence and terminal rela-

tions in the "left context" of a):
J

2. initiate the statement-scanning algorithm at

the next lower level to scan the arguments of the statement

identified by a ; and, finally,

3. replace X and a on the stack with a non-
J

terminal symbol which represents the result of the transforma-

tion.

The integrity of the kernel language is not compro-

mised if at least the following conditions are satisfied:

Let T be a metaterminal symbol such that

1. in all allowable contexts T U.T , the pair

^T is selected as an environment for the same transforma-

tion and, in all of these contexts, T <• T ;

2. in all allowable contexts TU-.f, , T •- T.

Thus the macro associated with the transformation bears the

responsibility of "positioning" the input text pointer

properly before .urrenderng to the higher statement scanning

level at which it was invoked Convenient rules fur ac-

complishing this involve the tables of left and right terminal

delimiters developed in Section 2 4

Four precedenco transformations arc recognized with-

in tue compiler. Three out of these four are essentially

fi:;cd v. ithin LIIC compiler and arc not subject to redefinition.

The fourth 's implemented as a macro call and is a good

exrmple of the statement definition capability of the compiler.

All of these wl) be discussed briefly below.

Parenthesized List Element

Note the productions containing the parenthesized

list element (PLS) in Figure 7, Section 4 1, as a left part.

All of ti^esc productions take the form (X) where X is a

nonterminal symbol. Furthermore, the only occurrence of

parentheses are in these productions. The parenthesized list

element transformation in fact performs the operatic (X)->-PLS .

This transformation could have been performed as a macro opera-

tion and is performed as a compiler operation only for the

sake of convenience.

List Element.

All argument lists in function calls and subscription

operations are presumed to be linear; that is, no tree-like

structures are allowed, The commas which separate the list

items are then superfluous. The list transformation performs

the operation

' X , - X (

where X is a nonterminal symbol. Bot' the parenthesized

43-

list transformation ani' the! list transformation are expected

to evolve F.S richer structures are incorporated into the com-

piler.

Statement Keyword.

Sever 1 terminal symbol syntactic classes are desig-

nated as statement keyword classes. Among these are the

symbols of the %SIMP, %COMP, "sDECl, UTST, %ATRB, @ and:

classes (see Figure 7, Section 4.1) The first four of these

represent symbols most likex/ to designate an identifying key-

word of a statement. Inspection of the precedence matrix for

the kernel grammar (Figure 13, Section 41) reveals that for

every symbol a which can occur in a precedence relation on

the left along with a statement keyword b on the right,

that

a <• b .

Each instance of this type is chosen as an instance of a

keyword transformation, which causes a macro definition to be

invoked, the name of which is the keyword itself. The macro

definition generates connectives as required and calls upon

the statement-scanning algorithm at a lower level to scan tue

arguments of the prefix and scope Each time the statement-

scanning algorithm is called, an element of one of the state-

ment keyword classes is stacked, depending upon the nonter-

minal symbol expected as the argument, and according to the

-4 4-

following table, which is a subset of the terminal delimiter

tables (see Figures 13 and 19, Section 4.1)

Keyword Class Nonterminal List Separator Statement Separator

"äSIMP STV none) ; "»END 0<,RC

"oCOMP STM ; "oHND

"„LIST LST ,) ; UND %RC

"oDECL LSÜ ,) ; 0&END ".RC

The statement-scanning algorithm parses the succeeding text

until an ending condition is recognized.

End.

This transformation complements the above keyword

transformation by providing a mechanism for returning the

statement - scanni ng algorithm to the macro whi.'h initiated it.

Ti.e ending condition is recognized when a precedence com-

parison is made between the keyword stacked upjn initiation

of the scan (see above) and one of the symbols in either

the list separator or statement separator columns of the above

table. The elements in the list separator and statement

separator columns of this table are determined as follows:

if a is a keyword, and b is a right terminal delimiter uf

U in a production

Uj - aUb ,

then b is a list separator if a <» b , and b is a state-

ment separator if b *> a . The s t at ement - scann i ng algorithm

n
i
i
i
i

I!
11

I
I
I
I
I
I
I

-45-

will then return control to the macro ;hich initiated its

operation. The macro now has the option of continuing the

scan by again calling the statement-scanning algorithm or

returning to the statement-scanning algorithm at the next

higher level, appending upon whether the terminating symbol

belongs to the list separator or statement separator classes

IV. A KERNEL GRAMMAR FOR MAD/I

In establishing a production system for MAD/I,

several considerations are apparent. First, of courre, the

language generated must be unambiguous. Second, the produc-

tions must provide some "handles" so that context-dependent

transformations can be strategically applied Finally, the

productions must bear a relationshx to those program con-

structions most familiar in MAD, that is the expression, the

statement, and the program.

The first requirement is satisfied by insisting that

the kernel production system represent an operator precede..ce

grammar. Certain context-dependent transformations can be

applied to the source language to preserve the integrity of

the language in each exceptional instance Some of these

transformations generate metaterminal symbols which by design

cannot occur in the input text. These provide the "handles"

satisfying the second condition The third condition is

satisfied rather naturally by requiring that the productions

take on the forms of Rules 1-6 (see Section 2 2).

40-

4.1 An Operator Precedence Kernel Grammar

Figure 7 shows a table of productions which con-

stitute an operator precedence kernel grammar of MAD/I. These

productions arc divided roughly into five groups:

1 the program primitives,

2. the assignment statement,

3. the li^t statement,

1 the declaration statement, and

5 the program structure

The collection of all those symbols on the left of the equal

sign = , which corresponds to the more familiar right arrow

■* , corresponds to the nonterminal vocabulary Vv, The

complement of V relative to all the symbols occurring

either on the left or the right of the equal sign is the

terminal vocabulary V These two sets are enumerated in

Figure 8. Note that in these and other tables of this

Section only the first three characters of each symbol are

shown.

Only those nonterminal symbols which do not begin

with an X are significant in the discussion; these are

interpreted roughly as follows (see also Section 4.2):

IDR - Stands for either an identifier extracted by

the lexical scan or a parenthesized list.

47-

PRODUCT ION«.

PROGRAM PRIMITIVES

OH XL = *IDN
O")?. XL = «LP PLS
0^3 IDR = XL
0'>'t IDR = I OR 9 XL
£75 XM = FDR
^16 \M = XM XTAR IHR
^■y-f XM = XM »KFY
T^fl DES = XM
009 OFS = DES XM

ASSIGNMENT STATEMENT

on XI = DES
'in XI = .A^S. XI
-i? X? = XI
A13 X2 = X? .LS. XI
014 X2 = X2 .PS. XI
-ns X3 = X?
?16 X3 = X3U
"IT X3U = • .ARS. X3II
•>!« X3 = X7 .LS. X3U
M9 X3 = X2 .RS. X3U
n?-) X3U = ' .N. X^
^?1 X4 = X3
r>?? X4 = X4 .A. X3
-73 X5 - X4
0?4 X5 = •■' .V. X4
'»75 X5 = X5 .EV. X4
n?6 X6 = X5
0?7 X6 * Xf ** X5
n?8 X7 = X6
^?9 X7 = X7U
o30 X7U -. : .ABS. X7U
031 X7 = X? .LS. X7U
^3? X7 = X2 .RS. X7U
f>33 X7U = s .N. X71J
0 34 X7 = X4 .A. X7U
035 X7 = X5 .V. X7U
0 3*. X7 = X5 .EV. X7ll
037 X7 = X6 ♦* X7U
03ft X7U ' = tNEG X7
039 X8 = X7
040 X8 = Xfl * X7
041 X8 = X« / X7
n%?. XQ = X8
^43 X«? = X9 ♦ XP
044 X9 = X9 - XP
04 S XA = xq
04A XA = XA = Xo

Figure 7. Kernel Productions for MAD/I

[Page i of 3]

48-

^47 XÄ = XA -1= X9
o^fl XA = XA > X9
n'*9 XA = XA >= X9
T5D XA = XA < X9
O'U XA = XA <= X9
0 52 KB s Xt
053 XI = XBU
OSA XBU ' ■ .ABS. XBU
■''55 XB = X2 .LS. XBU
^6 XB * X2 .RS. XBU
"57 XBU -■ •■ .N. XBU
••,)5^ XB = X4 .A. XBU
'>59 XB = X5 .V. XBU
n^-. XP = X5 .FV. XRU
^51 XB = X6 ♦ ♦ XBU
^fZ XBU = : »NFC, Xou
?')3 XB = X8 ♦ XRU
054 X«^ - XB / XPU
"65 XB = X9 + XBU
06-S XB -- X9 - XBU
0^.7 XB = XA = XBU
C^B XB = XA ■»= XRU
^59 XB = XA > XBU
'.70 XB = XA >= XBU
"71 XB = XA < XBU
3 73 XB = XA <= XBU
?73 XBU = ^ XB
074 Xf. = XB
075 XC = XC t XB
076 XO = xr.
-»77 XO = XO I XC
?7B xn * xn .FXOR. xr
')79 XE = XO
:8o XE = XE .THEN. XO
081 XF = xc
0fi2 XF = XF .FQV. XE
033 ASM = • XF
^84 ASM ' = DES " ASN
'185 STM = ■- ASN

LIST STATEMENT

186 XH « OES
?87 XH - XH ... OES
0 88 XJ = XH
C89 XJ - ASN
"90 LST = XJ
091 LST = LST , XJ
"9? STM = »LIST LST

I
I
I

l
.i

Figure 7. Kernel Productions for MAD/I

[Page 2 of 3]

49-

OECLARATION STATEMENT

093 XK * IOR
094 XK » XK XATRB IOR
09«» tsn = XK
096 ISO
097 STM

= LSD , XK
= «DECL LSD

PROGRAM STRUCTURE

098 PLS = < LSO J
099 PLS = (LST)
IOC PLS = (STM »
101 STM = DES : STM
102 5TM = «SIMP STM
1*3 STL ' STM
104 STL = STL ; STM
105 STM = »rOMP STL tENO
106 PGM ' «LC STL JRC

Figure 7. Kernel Productions for MAD/I

[Page 3 of 3]

-50-

NONTERMINAL VOCABUIARY

XL IDR XM DES XI X2 X3 X3U "4 X5 X6 X7 X7U X8 X9 XA XB
XBU XC XO XE XF ASN STM XH XJ LST XK LSO PLS STL PGM

TERMINAL VOCARULARY

XID XLP i «TA XKF . .AB .LS .RS .N. .A. .V. .EV ** XNE ♦ /
♦ -«-.= >>»<<=-. K | .EX .TH .FO == ... ,
tLi SAT «OF () '. xst ; ten «^N «LC tnc

Figure 8. Kernel Vocabulary.

-51

DES - Stands for a designator, that is an identifier,

with or without attribute notation, possibly

subscripted, or the insult of a function eval-

uation .

ASN - Stands for in assignment, that is an expres-

sion containing the usual arithmetic and logi-

cal operators and in addition the substitution

operator == .

LST - Stands for a list e lament, that is a list of

elements each of which is either an assignment

or an instance of block notation.

LSD - Stands for a declarative list element, that is

a list of elements each of which is either an

identifier or a special notation used in the

declaration statements.

PLS - Stands for a parenthesi zed list, that is a list

of list elements, declarative list elements,

or statements.

STM - Stands for a statement, that is either an as-

signment or a list preceded by a keyword.

STL - Stands for a statement list, that is a list

of statements separated by a semicolon ; .

PGM - Stands for a program, that is a statement list

delimited by the metaterminal symbols for left

and right closure.

K
52-

The various terminal symbols are interpreted as in

Figure 9. Note that all those symbols preceded by the per-

cent sign "o are identified as metaterminal symbols within

the compiler and are created as the result of context-de-

pendent transformations. Note further that some communications

equipment cannot produce or recognize some of the special

characters used here In Hiese cases, synonyms constructed

of names surrounded by periods are provided

The remaining figures in this section correspond to

those tables and matrices developed for Floyd's simple gram-

mar in Sections 2.3 and 2.4 Figures 10 and 11 show respec-

tively the table of left and right tc-minal derivatives, and

Figure 12 shows the equivalence classes assigned to the pre-

cedence matrix and the members of each class Figure 13 shows

the precedence matrix itself Note that only the first two

characters of the symbol representing each class are shown

Fi£ure 14 shows the equivalence classes assigned

to the terminal matrix, and Figure 15 shows the terminal

matrix itself. Figure 16 shows the equivalence classes as-

signed the terminal context matrix, and Figure I7 shows the

terminal context matrix itself. Figures 18 and 19 show the

table of left and right terminal delimiters respectively.

Finally, Figure 9 summarizes the equivalence class assign-

ments for all of the matrices and in addition shows the left

and right precedence functions assigned to each terminal

symbol

I

-53-

DESCRIPTOR ASSIGNMENTS

TRM RULE PSC TRM CTX REL
SYM FORM WTRX MTRX MTRX F C

%1D I 1 33 34
%LP I 2 33 34
(? 6 3 33 32
XTAG 6 4 31 30
, 6 t 29 28
«KEY 3 5 31 30
.ABS. 2 7 27 28
.N. 2 9 25 28
«NEC 2 13 19 28
-> 2 17 13 28
• LS. fi 8 27 26
.RS. 6 8 27 26
.A. 6 10 25 24
.V. 6 .1 23 22
.EV. 6 11 23 22

** 6 12 21 20
• 6 14 19 18
/ 6 14 19 18
+ 6 15 17 16
. 6 i; 17 16
. 6 16 15 14

-^- 6 16 15 14

> 6 16 15 14

>" 6 16 ■ 5 14

< 6 16 15 14
<- 6 16 15 14

& 6 18 13 12
1 6 19 11 10
.EXOR. 6 19 11 10
.THEN. 6 20 9 8
.EQV. 6 21 7 6
• • 6 22 5 6
» • 0 6 23 7 6
$ 6 24 10 5 4
%UST ? 25 11 3 4
%ATRB 6 26 12 7 6
7.DECL 2 ?7 13 3 4
(t, 28 10 14 1 34
) 4 29 11 15 33 1
s 6 30 12 16 3 4
ZSIMP 2 31 13 i ? 3 4
! 0 32 14 18 3 2
7.COMF U 33 13 19 1 4
7.END 4 34 15 20 3 1
7.I.C 4 35 16 21 1 1
7.RC 4 36 i 7 22 1 1

opcmnci
liter«! nrciix operator
attribute notation operator
tag operator
function operator
component «election operator
absolute valcc operator
bitwise logical NOT operator
negation operator
logical NOT operator
bitwise left shift operator
bitwise right shift operator
bitwise logical AND operator
bitwise logical OR operator
bitwise logical EXCLUSIVE
OR operator
exponentiation operator
■ultlpllcation operator
division operator
addition
subtraction
EQUAL relational operator
INGQUAL relational operator
GREATER THAN relational operator
GREATER THAN OR EQUAL relational
operator
LESS THAN relational operator
LESS THAN OR EQUAL relational operator
logical AND operator
logical OR operator
logical EXCLUSIVE OR operator
logical IMPLICATION operator
logical EQUIVALENCE operator
substitution operator
block notation operator
list delimiter
list statement
attribute expression
declaration statement
left paren
right paren
label delimiter
staple statement
statement delimiter
compound statement
END delimiter
left closure
right closure

Figure 9. Descriptor Assignment.

f
J

54-

LEFT TERMIMÄL OFRIVATIVES

WTC TERMINAL CHARACTERS
XL «ID «LP
I DR «ID «LP 9
XM «ID «LP a «TA «KE
DEI «ID «LP a «FA «KE •
XI «ID «LP a «TA «KF • .AR
X2 «ID «LP a «TA «KF « .AB .LS .RS
X3 «ID CLP a «TA «KE • .AB .LS .RS .N.
A3U .AB .N.
X4 «ID «LP a «TA «KF • .AB \LS .RS . U . A,
X5 «ID «LP a «TA «KE

«TA «KE'
•
•

.AB

.AB
.LS
.LS

.RS

.RS
.N.
.N.

.A.

.A.
.V.
.V.

.EV

.FV X6 «ID tLP a
X7 «ID «LP a «TA «KE • .AB .LS .RS .N. .A. .V. .FV SNE
X7U .AB .N. «NE
X8 «ID «LP a

/
«ID «LP a
7 ♦ -
no «LP a

«TA «KE • .AB .LS .RS .N. • A. .V. .EV «NE

X9 «TA «KE

«TA «KE

•

•

.AB

.AR

.LS

.LS

.RS

.RS • N.

.A. -?¥•_ .FV SNE

XA .A. .V. .EV «NE
/ ♦ - X -t* > >= < <-

XP SID «LP a «TA «KF • .AB .LS .RS .N. .A. .V. .EV «NE
/ ♦ - « -•« > >= < <» •^

KBU .AB .N. «NE -«
• . *B .LS TRS 7HV .A. .V. TEV *V~ SNE~ XC «ID «LP a «TA «KE

/ ♦ - « ^« > >* < <* -» L
XO «ID «LP a «TA «KE • .AB .IS .RS .N. • A. .V. .FV 7NE

/ ♦ - = -• = > >* < <= -» e 1 .EX
XE «ID «LP a «TA «KE • .AB .LS .RS .N. .A. .V. .EV SNE

/ ♦ -
«TA «KE

> >*
.AB

<
.LS

<*
.RS .N. .A.

1
.V.

.EX

.FV
•JH.

«NE XF" «ID «LP a
/ «• - = -.s > >x < <» •^ e 1 .EX .TH .EO

ASN «ID «LP a «TA «KE • .AB .LS .RS .N. .A. .V. .EV SNE
/ * - s -»= > >» < <= 1 6 1 .FX .TH .EO SS

SIM «ID «LP a «TA «KE • .AB .LS .PS .N. .A. .V. .EV SNE
/ ♦ - = -»a > _>» . <_. <" ^ E 1 •EX •TH • EP SS

«LI «DE : «SI «CO
XH «ID «LP a «TA «KE • ...
XJ «ID «LP a «TA «KE • .AB .LS .RS .N. .A. .V. .EV SNE

/ ♦ - = -i= > >» < <= •^ £ 1 .EX .TH .FQ S3

LSI «ID «LP a «TA «KE •
>

.AB
>-

.LS
<

.RS •N. • A.
6

.V.
1

.EV

.FX .TH
SNE
.EQ / * - SS

XK
... t
«ID «LP a «AT

LSD «ID «LP a , «AT
PLS (

_ STL «ID «LP a
/ ♦ -
«LI «OF :

«TA «KF_

«si ;

•
>
«CO

•AB .LS
<

.RS •N.
-»

.A.
e

.V.
1

.EV

.EX .TH
«NF
.EQ "

oGM «LC

I
I
I
I
I
I
I

I
I
I

I
I

Figure 10. Left Terminal Derivatives

I
I
I

-55-

1 RiRHT TERMINAL DERIVATIVES -

1 NTC TERHINAl . CHARACTERS
XL SID SLP)
FOR »10 SLP a »
XM ?I0 ;LP a STA SKE)

I DES
XI

SID
SID

SLP
SLP a

3JTA SM • »
) STA SKE • ".AB

X2 SID SLP a STA SKE • .AB .LS .RS)

I
X^ SID SLP a STA SKE • .AB .LS .RS .N.)
X3U SID SLP a STA SKE • .AB .LS .RS .N.)
X4 SID SLP a STA SKE • .AB .LS .RS .N. .A.)
Xf SID UP a STA SKE •

•
.AB

' .AB
.LS .RS
.LS .RS

.N.

.N.
.A.
.A.

.v. .EV)

m

X'6 »ID SLP a ST.". SKE .v. .EV I
X7 SID SLP a STA SKE • .AB .LS .RS .N. .A. .V. .EV SNE »

• i
X7Ü SID SLP a STA SKE • .AB .LS ,RS .N. .A4 .V. .EV SNE »

X9

SID
/
SID

SLP
»
SLP

a

a

STA SKE

STA SKF

•

•

.AB

.AB

«A S . R S

•LS .RS

?1'_ .A. ^y^ .EV SNE

I .N. .A. .V. .EV SNE
/ ♦ -)

XA SID SLP a STÄ SKE • .AB .LS .RS .N. .A. • v. .EV SNE
/ ♦ - = ^x > >= < <«)

_

XB SIO SLP a STA SkE • .AB .LS .RS .N. .A.
1

.V. _iiy. .«.*!.
/ ♦ - = ■ = > >» < <»

X8U SID SLP a STA SKE • .AB .LS .RS .N. .A. .V. .EV SNE
/ ♦ - = -•= > >= < <» -«)

* xc SIO SLP a STA SKE • .AB .LS .RS .N. .A. .V. .FV SNE
/ ♦ - * -»« > >* < <= ■n e

xo SIO SLP a STA SKE •
>

.AB .LS ,RS
< <*

• A. • v? .FV
.EX

„?NE

1
/ f - s -•»

XE SID SLP a STA SKE « .AB ,LS .RS • N. A. .V. .EV SNE
J / ♦ - a -^s > >- < <* -» S .EX .TH)

XF SID SLP a STA SKE • .AB .LS .RS .N. .A. .V. .EV SNE

i / ♦ - s -«» > >* < <* -» E .EX • TH .EO
ASN SIO SLP a STA SKE • .AB .LS .RS '**•

■^

.A.
C

•y. .EV
.EX .TH

SNF
.EO /

}

SIO

«■ - -' IS > >s < <= ma

j STM SLP a STA SKE • .AB .LS .RS .N. .A. .V. .EV SNE i • /
• • • t SLI

St -^ss

SAT SOE
>
» • •

< <«
SSI SEN

•^ C .EX .TH .EO «=»

M XH
XJ

SID
SIO

SLP
SLP

a
a

TTA SKE • • • • I
VN. .A;- .V. .EV

SNE M STA SKE • .AB .LS .RS ■ / - = -»a > >' < <= ^ & .FX .TH .EO •«

■ LST
- • •
SIO SLP a STA SKE • .AB .LS .RS .N. .A. .V. .FV SNE 1 / ♦ - = -» = > >» < <» -• £ .EX .TH .EQ sa

« • • _» I — - - -- • — - —
XK SIO SLP a SAT)

l LSD SIO SLP a , SAT »
PLS 1
STL SIO SLP a STA TKE • .AB .LS .RS .N. .A. .V. .EV • ♦ SNE *

■ / ♦ - = •» = > > = < <» 1 e 1 .EX .TH .EO mm I • • • » _«U SAT SOE J • • SSI ; SEN ■ ~PGM SRC

Figure 11. Right T^TBI^I Derivatives

-56-

PRECEDENCE MATRIX

EQUIVALENCE CLASSES

CL REP MEMBERS
01 «ID
02 XLP
03 a
04 fTA
0 5 tKE
06 .
07 .AB-
OS <.LS .RS
09 .N.
10 .A.
11 .V. .EV
12 ♦*
13 «NE
14 ♦ /
l»» 4 -
16 « -,« > >= < <=
17 -.
is e
19 | .EX
20 .TH
21 .EQ
22 ««
23 ...
24 ,
25 SLI
26 «AT
27 »DE
28 (
29 1
30 :
31 «SI
32 ;
33 «CO
34 «EN
35 «LC
36 «RC

Figure 12. Precedence Equivalence Classes

1^
I
i

I

I

f I

I

I
I
I
I
1

•- r« fi »f ir >c
c t r c c c

f- cc o>
<- c c

c t-i cv. c -a if

-57-

•c K eo o< C — «M m -t
rs: <Ni <M «v po

IK
KAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A It

1

]
I
I
I
I

KAAAAAAAAAA/-, AAAAA/1 AAAAAAA

o

• •AAAAAAAAAAAAAAAAAAAAAAAA

■• A A A A A A

— A N A A A A AAAAAAAAAAAAAAAAAA

C

M A A A

_l »•

»A A A A A A

• A A A A A A

II
H A A A A A A

AAAAAAAAAAAAA

Ol
• A A, A A A A

K
• A A A A A A

— A A A A A A

W A AA A A A

r

II A A A A A A

♦ A A: A A A A

« A A A A A A

J • A A;A A A A

AAAA

AAAA

>
• A A

• A A

2

• A A

A A A

A A A

A A A

A A A

V V V

A A A

A A A

A A A

V V V

A AiA

A AIA

A AA

V V V

AAAA A A

V V

X
tat

u
u.
<
>

u —
a O

!
• A AIA A A A

A A A V

A A A V

A V V

V V V

IV V '
— -J: »-si

V V V

K A A

H A A

« A A

V V

V V

V V

V V V

« - r

A A A

»\ A A

A A A

A A A

V V V

A A A

A A A

A A A

V V V

A A A

AAV

A V V

V V V

V V V

V V V

V V V

V V V

V V V

VV V

V V V

V V V

«t > •
• • ♦

A A A

A A A

A A A

A A A

V V V

A A A

A A A

AAV

V V V

V V V

V V V

V V V

V V •

V V V

V V V

v v!v

V VjV

v vjv

v v;v

v vjv

v v v

AAAA

A A A A

A A A A

A A A V

V V V V

A V V V

V V V V

V V V V

V V V V

v v v v

V V V V

V V V V

V V V V

v v v v

v v v v

v v v v

v v v v

V V V V

V V V V

v v v v

V V V v

n r w —

A A A A A

A V

V V

AAV

A V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

V V V

v v v

V V V

V V V

v v v v v

V V V V V

vv v v v

V V V V V

v v v v v

AAA AAAAHA

V V V V V V

AAA AAAAVAV

V V V V V V

V A V V V V V

AAAMAAA A

V V V V V

A V V A

V V V V V

V A V V A

V V A

V V A V V V V

V V A V V V V

V V A V V V V

V V A V V V V

V V A V V V V

V V V V V V

V V A V V V V

V V A V V V V

V V A V V V V

V V V V V V

V V A V V V V

V V A V V V V

V V A V V V V

v v v v v v

V V A V V V V

V V V V V V

V V A V V V V

V V A V V V V

V V A V V V V

V V V V A V V V V

vvvv vvvv

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

•c

IT
p-

f<-l

p.
m

<M

m

c
m

K
«M

^)
IM

IT

(*>
M

c
fM

er

ec

«r

»M

c

IT
L.

^■

C

r

c

VVVVVVVVV VVVV

X
•H

A

O
c
v

•o
v
o «

M
3
OS

k. UJ II •
• • II • ♦

_i <: O i/i o UJ _) w

58-

TERMINAL PAIR MATRIX

EQUIVALENCE CLASSES

CL REP MEMBERS
01 SID
02 tLP
03 a SAT
04 XTA • • • •
05 IKE
06 .AB • N. SNE -.
07 • LS .RS •A. .V. .EV ♦♦ ♦

£ 1 .EX .TH • tQ « t
08 XL I
09 tOE
10 f
11 I
12 •

13 SSI sen
14 •

t

15 SEN
16 SLC
17 SRC

>'

Figure 14. Terminal Pair Equivalence Classes

I1

n
n
4 I

n

11

u i
i

11!

11

1
I
I
I

I
I
I
I
I
I
3

Y

]
]
]
1
1
I
I

-59-

TERMINAL PAIR MATRIX

EQUIVALENCE MATRIX

tl SL a IT XK .A .L XL XO () : XS •
f XE XL XR

SI T T T T T T T T T m
tl ... _ T ----- - . _ 02
a T T 03
tT T T 04
%K T T T T T T T T 05
.ATT T 06
.L T T T 07
tL T T
«OTT

 T - - - ■ —

08
09

(T T T T T T 10
» T T T T T T T T T 11
: T T T T T T 12
«S T T T T T T 13
; T T T T J

T
T

f
u

%E T T 15
«L T T T T T T 16
%R 17

01 02 03 04 C5 06 07 08 09 ir 11 12 13 14 15 16 17

Figure 15. Terminal Pair Matrix

60-
1

! II
V

II
A

II
r

in
u
in
M
«s

«
o
c
a»

>
•H
3
o*

cu

w

o
u
1-4

I
I
I
I
I
I
I

x
UJ

c
o

UJ

Wl

If
IS,

u
tu
u

>

I«
a
UJ
as
r

Q. c a
Ui >- »J
or HM

j »- rsi
o o o

«

UJ UJ

* *

>»-
r • •

UJ • x
Z < >U
•♦ • •

•«/)
Zoe

• • • «■•

< UJ CO to
t- Jt < J

»« 4- ir * r^
c o o c o

f5

4>
H

«
N
3
00

• •- K UJ

oo a o ^ «M «n

bO U

^ IT <£ r» oc 0>

zuu
uj -j oe

C »■« <M
rvj <NJ rsj

I

I
I
I
I

i
61-

c c c c c c c r; r .-
t-i (VJ

1
I
J

I
1
I
I
I

»*o.o.ü.aacaa a. a.

HO-aaaaaaaQ-a

o

o. a. G a a a a a a

a a a a a a a a a

a a a a. a a

e.aaeaaa.a.aaaa

M

a a. a. a. a. a. a. a.
f H K K ^ ^-
a a a a. a a

o

ec

»- K »- >c •
X .. a a a a a a a a a a a a ■-I

i- ^■ K- \~ ir M

td m. a aaa&&a.o.aaao a a a e G a ^J

h- •t S
«# Q. m*

4-»

D »- ►- t- K K i- tr\ X

K a a G a a a ~J

< t- K f\J C
o
u >* a a a e. a c. a a ■"'

-J t— »- t- ►- i- K ■^

id »* a a a a a a 1-1

K t- »- f
c

e • a e.aaaaaaaa.aa a a a ^

• t- ►- ►- o> u
o

« 0. a a a c a a a a a r
II K ►- *- oc
» a a c Q o. a a a a a c a a a G i- ,

>* _i *~ K t- i^
i-H

N- • a a a a. a a a a aa a a a a a a a c

< >->-*- ►» K t- b- t- t- ►» K «c 0)
K
3

•H

< • a a. a. a a o. a. a a a a t 1
*■ K

* >- ►- I— IT
H- Of w &. a a a a a a a a a a a a a a a a a C
V K
IX.. < K ►- K t- Nt
»-: r wa aaaa.a.aaa a a a a a a a a a c
Zi ■

cl UJ ^- ►- (^1
u (» e. a a a a a a a a a a a a a e a a a a <:
_l a1

-i Kh- K K ►- K •- *- »- »- t- »- ►- ►- K K f\j

«X ^ M a a. a a a a a a a a a a a a a a e
z <
^« > IM K-^- Kt-KK^»-^ K »- »- K *- >- ^- r-"
z. M w a a a a a a. a a a a a a a a a a c
oc D
w O •M« _j ^^<_(ll • j<C <*• O UJ _i oc
K •JJ t< tt n H * , .n * -»<>»* »c kv «»> •• X .. »* v »* »*

RIGHT TERMINAL DELIMITERS

-62-
I

NTC TERMINAL CHARACTERS
XL 9 tTA «KE . .LS .RS

> >= < <= C |
SEN tRC

I OR »_ tTA «KE ._ .LS .»,S
> >= < <= £ |
«EN SRC

XM STA SKE , .L3 .RS .A.
>« < <= G I .EX

DES . ,LS .RS .A. .V. .EV
<^ fi |_ ^EX .TH .EO

XI .IS .RS .A. .V. .FV **
£ I .FX .TH .EQ ,

X2 .LS .RS .A. .V. .EV **
£ i .EX .TH .EO «

X3 .A. .V. .EV *♦ ♦ /
.EX .TH .EQ f_

X3Ü .A. .V. .EV *♦
•EX .TH .EQ »

X* .A. .V. .EV ♦*
.EX .TH .Ft .

X5 .V. .EV *♦ *
^TH .EQ v I ;

Xt' ♦* ♦ / ♦ -
, I ; SEN SRC

X7 * / ♦ -

I
*'
)
*
)
/ •f

SEN

)
X7U ♦
 I _
XB *

)
X9 ♦

SEN SRC
XA » -•= >

SEN SRf

.«I?1.?RC.
+
SEN XRC

>

<

>-

XR £
XAU £
XC e
XO |
XE .TH
XI-- .EO
ASN ,
STM »
XH • • •
XJ .
LST ,
XK *
LSD ,
PLS a

>
SEN

STL J
PRM

I
I
I
.EX
.EQ
jr

»

)
)
SAT
I
STA
>a
SRC
SEN

.EX .TH

.EX .TH
,EX .TH
.TH .EO
t)

J ;
; SEN
SEN SRC
) :
; TEN
; SEN
♦ _J
; SEN
SKE .
< <«

SRC

.A

.EX

.A.

.F<

.V.

.TH
♦ ♦

*
)
*
)
♦
SEN
♦
SEN

XEN

SRC

>

>

>

<

.FO *

.EQ ,)

.EO , J
t) ;
; SEN »HC
«EN *RC
SRC

SEN SRC
«PC
SRC
SEN SRC
SRC
• LS .RS .A.
£ | .FX

.V.

.TH

.V.

.TH

.EV

.EO
*
...
/
t

/

«RC

«RC

«RC

>

>=

>=

<=

I

SEN

.EV

.EO

.EV

.EO

**

**

**

♦
SEN
♦
SEN

...

)

SKC

SRC

/
f

/
»

+
I

<

<

<

£

.EX

«FN
«FN
«EN
«RC

>

<

< =

< =

< =

I

.TH

«RC
SRC
SRC

>

>

>

>=

<=

£

£

.EX

.EO

♦ -«-,=
SAT » : ;

♦ - a -i»
«AT) : ;

- s -.s >

: ; SEN SR
-= > >« <
SEN SRC
> >= <

> =

<

£

I

I

I

.TH

>

<

<

<

> =

< =

<

£

E

£

I

<«

I

I

I

.EX

.EX .TH .EO

.EX .TH .EQ t

.EX .TH .EO ,

.EX .TH .EO »

.FO t I ;

J ; SEN SRC

.V. .EV *♦

.TH .EO "
+
SAT I

7 i
A u

I

Figure 18. Left Terminal Delimiters

I
I
I
I

, .-.;-.

-63-

LFFT TERHINAL DELIMITERS

NTC TERMINAL CHARACTERS
XL 3 fTA . .AB .LS .RS .N. .A, .V. .EV ** »NE * / ♦

* ^a >>«<<« n £ | .FX .TH .EO «■ ... t «LI
«AT XOE (: SSI ; «CO '«LC

IDR «TA . .AB .LS jRS .N._.A,_.V. , EV ♦* _«NE_ ♦ _/__♦_ r _ ? f
,. > >.<<*■, i | .EX .TH .FO »■ "... , «LI «ÄT
«DE (: «SI ; «CO «LC

XM . .AB .LS .RS .N. .A. .V. .EV ** «NE * / < - » -.«
> >= < <= - £ | .EX .TH .EO " ... , «Ll (: i
«SI t «CO «LC

DES .AB .LS .RS .N. .A. .V. .FV ** *NE * / ♦- »_-•«__>
">. < " <« - E | .EX .TH ;EQ " ... , «iTT : «SI
; «CO «LC

XI .AB .LS .RS .N. .A. .V. .FV *♦ «NF ♦/♦-«-.« > ;
>« < <= - £ I .EX .TH .EO " t «II f : «S! ;
«CO «LC j

X2 .N. .ft. .V. .EV **„ «NE * / ♦ - * "•">_>■< _^*_
£ I ' .EX .TH .EQ « , «LI (: «SI ;«CO «LC

X3 .N. .A. .V. .EV *♦ T^E ♦/♦-«-.«>>«<<»
- E I .EX .TH .EO « . «LI (! «SI ; «CO «LC

X3U .AB .LS .RS .N. .A. .V. . EV ♦♦ «NE ♦/♦- = -,«>
>. < <= -. E | ,EX .TH .EQ »» , «LI (: «SI ;
«CO «LC

X4 .V. .FV *♦ «NE ♦ / ♦ '- = -.= > >= < <i -. £
I .EX .TH .EO « t »LI (: «SI ; «CO «LC

X5 ♦♦ «Nb */♦-«-,= >>=<<«-.£ | .EX
.TH .EO »= , «LI (: «SI ; «CO «LC

X5 «NE ♦ / ♦ - = -.= > >» < <- -. £ I .EX .TH
.EQ -» « «Lj J _ : «SI ? «CO «LC

X7 «NE * / ♦ ""- = -» > >I. < <= -. £ f .EX .TH
.EQ == , «LI (: «SI r «CO «LC

X7U .AB .LS .RS .N. .A. .V. .EV ** «NE • / ♦ - = -« >
>« < <= -. £ | .EX .TH .EO '- t «LI f : «SI ;
«CO «LC

_X8 »-»-.= > >» < <« ^ £ | ,EX .TH .EO == t
«LI (: «SlT «CO «LC

X9 = -.= > >= < <= - £ | .FX .TH .EO " , «LI (
«SI ; «CO «LC

XA - £ | .EX .TH .FO " . «LI (: «SI ; «CO »LC
XB -. £ | .EX .TH .FQ == , «LI I : «S» ; «CO «LC
XBU .AB .LS .PS .N. .A. VV. . EV *♦ «NE ♦/♦-»-.«>

>» < <= -. £ I .EX .TH .EQ == t «LI I : »SI ;
«CO «LC

XC | .EX .TH .60 " » «LI (: «SI ; «CC «LC
XD .TH .FO « , «LI (: «SI ; «CO «LC
XE ,E0 =«= t «LI (: «SI ; «CO «LC
XF «» , «LI (: «_SI ; «CO «LC
ASN *» , «LI (: «SI ; «CO «LC
STN (: «SI ; «CO «LC
XH , «LI (
XJ , «LI (
LST «Ll (
XK _j «OE_I_
ISO «DE (
PLS «LP
STL «CO «LC
PGM

.cigure 19. Right Terminal DeliD.iters.

•64-

1
II

4.2 Interpretation of the Kernel Grammar

The MAD/I language can be described on several

levels, each corresponding to a set of definitional rules,

many of which can b« changed during the course of compila-

tion. At the bottom level a set of lexicographic rule.'

establishes the form of the various identifiers recognized

by the compiler. Thsse rules are effective during both the

definition and compilation phases of operation, but are modi-

fiable in either case by means of special statements direct '

to the lexicographic recognizer. Each uniquely named identi-

fier is stored as a separate entry in the symbol table; and,

in some cases, identifierb of the same name may be stored

separately in a pushdown fashion.

Each symbol tabl3 entry corresponding to an identi-

fier is g .en a set. of attributes which establish, among other

things, the syntactic class of the entry. The syntactic class

of each entry is established either explicitl/ during the

definitional phase or implicitly by default during the com-

pilation phase.. The values assigned each class are chosen

according to the interpretation desired, using Figure 9 of

Section 4.1 as a guide. By convention, certain types of

identifie-s are assigned only in certain classes. For instan-e,

identifiers consisting of strings enclosed in primes are

usually assigned in the %SIMP, %DECL, %LIST, %COMP, and

%END classes (see Figure 9), since these correspond most

closely with the notion of statement keyword rame. Further-

1

.i

r

I

M i

I
I
I
I
I

I
I
I
I
I
I
I
I

■65-

more, identifiers consisting of strings enclosed in periods

are usually assigned in either the unary or binary operator

classes, since those correspond most closely with the notion

of operator name as popularized in MAD/7090.

A symbol table entry in the translator is created

for each new identifier found during the scan of an input

program. By default, such an entry is assigned the syntactic

class corresponding to operand (%ID) . The following 'exical

structures are identified:

1. Certain characters such as "+" , "-" , and

so forth.

2. Certain two-character sequences (digrams)

:;i ch as "«a" , "< = ") and so forth.

3. Names constructed like MAD/7090 variable names,

that is strings of letters and numbers, beginning with a

letter.

4. Names constructed as in (3) but enclosed in

primes.

5. Names cor ■ ucted as in (3) but enclosed in

periods.

6. Constants of various types.

Identifiers of Types 1 and 2 above are usually in-

terpreted as operators and grouping marks. Identifiers of

Type 3 above are usually interpreted as variable names which

are assigned modes and other attributes in the usual fashion.

66-

Identifiers of Type 4 are usually interpreted as the names

of statements and certain constants such as 'TRUE' and

'FALSE.' Finally, identifiers of Type 5 are usually inter-

preted as names of operators at the expression level.

An operand, either a variable or a constant, is

assigned the syntactic class designated by MO in Figure 9.

In general, a parenthesized list may be substituted for an

occurrence of an operand anywhere in the language. Since the

parsing algorithm used in the compiler does not make use of

a table or productions, it is not, in general, possible to

restrict the identification of an operand to exclude, say,

a parenthesized list or an invalid mode combination where

its use would traditionally be ruled invalid. Such distinc-

tions can be made only by the transformation machinery. With-

in the compile r, an operand is assumed to be represented by

a pointer, either actual, as in the case of a register con-

tents, or virtual, as in the case of an intermediary result

curing expression evaluation.

At any occurrence of an operand in an input program,

the operand may be followed by the at sign "@" and a

parenthesized list of attribute assignments,which consist of de-

claration statements. Such a structure is called the at-

tribute notation and may be used in lieu of explicit declara-

tions. Any attribute assigned by the attribute notation is

assumed global in scope and no machine computation is

generated by its use.

1
I
I
I
I

t

I
I
I
I
I
I
i
I
I
I
I
7
i.

I
I
I
I
I
1
«I

]
3
I
I
]
3
3
3
I
I
I

-67-

The operations of subscription and of function eval-

uation are presumed to produce a pointer as a result. The

function operation maps an operand on the left and a value

on the right into an operand as the result. The value on the

right is assumed to be represented as a parenthesized list,

perhaps including a sequence of values obtained as the results

of a sequence of expressions. For purposes of consistency, the

result of a function evaluation is considered an operand, and

the code produced by the compiler might well expect a called

function to return a pointer to a value rather 'ban the value

itself. The subscription operation is considc_d a special

case of the function operation. The «ubscrijtion operator

%TAr is generated as the result of a terminal transformation

(see Section 3.1). The component selection operator %KEY

is used in much the same sense. Note that the parameter list

setup procedure prior to a nested function call is minimized

by expecting the function to return a pointer to its result.

Furwhermore, note that the subscription operation permits

the use of indexed machine instructions when singly dimensioned

vectors are involved. In the case of multiply dimensioned

arrays, a storage mapping function is presumed to map the

set of multiple subscripts into a single subscript.

The result of any operation which is assigned a

pointer is formally a nonterminal symbol of the kernel gram-

mar and is called a designator (DESj in the productions of

Figure 7, Section 4.1. On the other hand, the result of

1

-68-
1

any expression containing a unary or binary operator or rela-

tion is assumed to be a value. A value is distinguished

from a designator by the fact tha an operation other than

address computation is involved and that an intermediate re-

sult may be obtained which then must be stored in a temporary

location. It is this distinction that rules such expressions

as A(B).(C) va.Ud, but (A+B) . (C) invalid. The notion cf

value includes that of operand and may be applied to statements

as well as expressions.

The unary and binary operators involved in a partic-

ular expression are ranked according to the traditional rules

of precedence in the same manner as that popular in 7090 MAD,

with an important exception: where in 7090 MAD only one in-

teger is assigned each operator in the ranking, in MAD/I two

integers are assigned each operator (see previous section).

One reason for this apparent complication is that some oper-

ators naturally associate from right to left (e.g., substitu-

tion and exponentiation), while other operators naturally

associate from left to right (e.g., addition). Thus the defini-

tion of new operators within the present hierarchy involves

the specification of two precedence "functions" or, alter-

natively, the specification of one function and a statement

as to whether the operator associates i.rom left-to-right or

from right-to-left.

n

ii

n u

n

0

d

Ii

69

Figure 9, Section 4.2, shows all predefined operators

in the kernel language and the precedence/cla.'js assignments

for each. All of those operators in terminal context classes

6 through 8, except the substitution operator, map a value on

the left and a value on the right into a value as the result.

The substitution operator maps an operand on the left and a

value on the right into an operand as the result. With that

interpretation, an embedded substitution statement can be

used anywhere that an operand is expected, and can lead to

some interesting and perhaps useful constructions The result

of any expression which is assigned a value is formally a

nonterminal symbol of the kernel grammar and is called an

assignment (ASN) in the productions of Figure 7. An assign-

ment is also a statement and may be used anywhere that a

statement is valid.

The various statements in the language may be

organized into several categories on the basis of syntactic

type. All of these statements, with a single exception, can

be identified by a keyword which is assumed to occur initial-

ly. The single exception is the assignment statement and its

degeneracies discussed immediately above Each identifying

keyword is assumed a member of an equivalence class identi-

fied by one of the metaterminal symbols %SIMP, %COMP, %LIST,

%D£CL, and %COMP as appearing throughout the succeeding dis-

cussions .

70-

A statement of any syntactic type is assumed to be

constructed of two units: the prefix, consisting of the identi-

fying keyword followed by a known number of arguments of a known

syntactic type, and the scope, consisting of an indefinite number

of arguments, all of the same known syntactic type. As used

here, the term argument is applied to the nonterminal symbols

for designator and assignment and, in addition, others which will

be introduced from time to time. Each argument, both in the

prefix and in the scope, is separated by such symbols as comma

and semicolon, and these features are used in conjunction wich

context-dependent transformations in the generation of connec-

tives and binding linkages among the arguments.

A macro definition is associated with each statement-

identifying keyword in the language. Explicit calls upon the

statement-scanning algorithm emitted from such a macro cause

the arguments of the prefix to be scanned, and explicit connec-

tives are generated wherever necessary to bind these arguments

together and with the scope. No attempt is made during this

prefix scan to preserve the natural embedding structure of the

kernel language; thus, some rather messy syntactic structures

can be defined with a minimum of tricky grammatical specifica-

tion. It should be emphasized, however, that the entire

prefix is interpreted in the kernel grammar as an instance of

a met^terminal symbol which is a member of the same equivalence

class of which the identifying keyword is a member.

I
I
I
1

I
I

I
n u

I
n
II
Lj

n
u

mm

I
II

I
I
!

... _-, > ■■

-71-

The scope of a statement is a list of arguments sepa-

rated by commas and semicolons. This list is terminated by

either a list separator or statement separator as established

by special transformations unique to each statement type. An

argument may be one of the following nonterminal symbols, again

depending upon statement type:

1 Executable list element (LST) - either an assign-

ment or an instance of the block notation (The block notation,

interpreted to represent a range of elements of a vector or

array, is indicated by the " " operator in the same manner

as MAD/ 7090.)

2 Declarative list element (LSD) - either a desig-

nator or a special notation developed from the subscript nota-

tion and used in connexion with certain transformations.

3 Statement (STM) - any of the statements described

below and in addition the assignment (ASN).

Using the notions developed here, each of the several

statement types can be described in terms of the type of its

prefix and the type of list element in its scope

An assignment statement consists of precisely the

assignment itself, which may occur alone as a statement In the

typical case this statement will include the substitution

operator "==" and will resu't in the assignment of a value

to a variable In fact, however, any expression, designator,

or even a single identifier can stand alone as a statement In

72-

the most advanced case of degeneracy the statement is null and

no operation is implied except perhaps the assignmer : of an

entry point or statement label (viz., the old CONTINUE state-

ment of MAD/7090). A special transformation is available to

detect thir. condition.

A simple statement consists of a prefix of the %SIMP

class and a single STM argument in its scope, A common degener-

acy of the simple statement is a statement type consisting only

of a prefix In this case, the scope is null and a special

transformation is available to establish the fact.

A compound statement consists of a prefix of the

%COMP class followed by a scope of STM arguments separated by

semicolons ";" , and terminated by a keyword belonging to the

%ENb equivalence rlass. A particularly useful convention has

been adopted in the MAD/I syntax which provides for two forms

of the "compound" statement. But here the term "compound"

refers to traditional MAD/7090 usage, and not to the more formal

nomenclature used here Of the two "compound" forms, the former,

called the compound form of the "compound" statement, consists

of a prefix terminated by a semicolon and followed by a scope

as described ibove The latter, called the simple form of the

"compound" statement, consists of a prefix terminated by a com-

ma and followed by a single STM argument. In point of fact, the

former is formally a compound statement identified by a keyword

of the %COMP class, while the latter is formally a simple

statement identified by a keyword of the %SIMP class. Never-

I
1
I
I

73-

theless, it is possible to make contextual distinctions depending

upon the nature of th^ arguments within the prefix and to reas-

sign the mrtaterminal symbol class of the statement prefix during

the prefix sc.:n, so that one macro definition serves "compound"

statements of both forms.

A list statement consists of a prefix of the "^LIST

class followed by a scope of LST arguments separated by commas.

Such statements most often are models of input/output statements

in the language For the purpose of scanning a statement pre-

fix of any class, it is convenient to assign the metaterirmal

symbol class of the prefix to the %LIST class; and, when the

prefix scan is terminated, to reassign the prefix to that class

appropriate for the scope scan.

A declarative statement consists of a prefix of the

%DECL c^ass followed by a scope of LSD arguments Such state-

ments are most often models of the common declarations in the

language The arguments of the scope are constrained to exclude

most arithmetic and logical operators; but, in particular, are

permitted to contain those operations implied by subscription.

Since the subscription operator f%TAG) can occur also in an

executable list element, the macro transformation associated

with its name must be replaced during the scan of a declarative

list element The mechanism for implementing this involves

use of a pushdown stack which saves and restores these defini-

tions as necessary.

74-

A program consists of a prefix o. the %LC class fol-

lowed by a scope of STM arguments separated by semicolons ";"

and terminated by a keyword of the %RC class. The program

represents, of course, the sargest structure identified during

the compilation process and corresponds to a sentence in the

kernel language According to the usual interpretation, only

one statement will occur in the scope, that is, the outermost

function definition of the source program Any additional state-

ments in the scope represent an error condition. Note that the

metaterminal symbol %RC can be created explicitly as th« re-

sult of a transformation or implicitly as the result of an end-

of-file condition representing the end of the input text.

V. STRUCTURE OF THE COMPILER

The basic element in any MAD source prograiü is the

identifier, used to stand for a program variable, constant, key-

word, operator, or punctuation mark An identifier is extracted

from the input text using a set of lexicographic rules which

are independent of its membership in these syntactic categories.

Using these identifiers as atomic elements, strings representing

expressions and statements can be constructed using the set of

syntactic rules described in previous sections. Each of these

expressions and statements, and ultimately the program itself,

has a semantic interpretation rule which assigns to each identi-

fied syntactic construct a sequence of machine instructions and

-75-

procedure calls. In this connection it is proper to say that

the lexicographic recognition rules, the syntactic combinatorial

rules, and the semantic interjretation rules are each indepen-

dent of the others.

The function of the major structural components of the

MAD/I compiler parallel this 1 ex i ca 1-syntactic-semantic hier-

archy. Corresponding to the lexical recognition rules is a

processor called ICODE which assembles sequences of input char-

acters into identifiers Corresponding to the syntactic recogni-

tion rules is a processor called JSCAN which assembles each

sequence of identifiers into a substitution instance of one of the

rules of the kernel grammar Associated with each rule of this

grammar is a hierarchy of macro definitions which represents the

semantic interpretation of the rule A processor called INTERP

interprets these macros and generates calls upon other dependent

processors as well Each nacro is written as a sequence of

statements of a definitional metalanguage The collection of

all those macro definitions which define MAD/I becomes m fact

a specification of a dialect of the language; and in this sense,

each different collection of macro definitions represents a

different dialect of MAD/I

The principal components of the MAD compiler inter-

connect as shown in Figure 20. All of these components share

a common data structure, or symbol table, into which the rource

program symbols are coded along with macro definitions, trans-

lator variables, and certain intermediate parses Each

-76-

H
x
UÜ

t-

H
3
D.
2

2

^

U

//'
/

/ 1 «-i '

1 O
♦-H

1 H
<

w cc
J a
j HH

< s
u

a
UJ o
oi H
ra a.
Q »—i

tu a:
u u
o tn
a tu

\

i ;

£
o
u

a
<
s:

o
c
o

N
•H
c
ÖC

O

o

3
00

•rt
U.

1
I
1
I

I
I

1 »

-77-

component of the translator and, in principle, a significant

fraction of the rather large symbol table can be shared among

several concurrent jobs in the timeshared system.

Compilation of a source program requires two passes.

In the first pass, each identifier is extracted in turn from

the source text, inserted in the symbol table along with default

attributes, and assembled by INTERP either into statements of

the definitional metalanguage or by JSCAN into sequences of macro

calls. During the first pass, attributes are collected and as-

signed o the various identifiers, and storage allocation in-

formation is collected.

During the interlude between the first and second pas-

ses, the storage allocation information is processed and the

object program storage requirements calculated. conversion of

constants from the external to the internal form is also per-

formed at this time. Finally, the default attributes are assigned

all variables and constants which have not been specifically

excepted by declaration statements during the first pas~.

In the second pass, the macro calls generated during

the f^rst pass are expanded and the corresponding object code is

generated. Much of the strategy used in the production of the

object code from a macro call is established by the macro defi-

nition itself, although certain often-used functions srch as

mode conversion.«- and working register assignments are provided

in assembly code rather than in interpreted macro code

78-

5. 1 The Symbol Table

The symbol table is the binding structure through

which all the translator components exchange information.

Every symbolic variable name expre« ed in the source program is

represented in this table along with the symbolic representation

of «source program constants. In addition, all those internal

symbols used in the various macro definitions are also represented

in the symbol table In particular, certain pre-constructed tables

and macro definitions are assumed to be resident in he symbol

table before a source program translation can begin. These tables

and definitions are created during the definitional phase of

transla or preparation, and in fact establish the MAD/I language

structure.

The symbol table consists of a large binary tree struc-

ture, each node of which is represented by a unique symbolic

na.7ie in some cases a node may not be in fact named, so in

these cases the node is identified by its ordinal position re-

lative to another node. A symbolic representation of nodal

position in this tree has been established by ad-hoc convention

in the following way; A path from a particular node to its left

son is called its link (LNK) while the path to its right son is

called its extended attribute pointer (XAP), A path between a

node and any of its descendants can be established as th2 tra-

verse of these links and extended attribute pointers indicated

by successive applications of the two operators © (link left)

and ® (link right) expressed in postfix form. For example.

Ü

Tf

I
I
I

-79-

*®©©©©
represents the path from the node named A to the node

named B in the tree:

This simple notion can be expressed in a pseudo-algebraic man-

ner in the following way: For each (jT) to the right of an

expression such as 1, write a set of matching parens in their

place. Count the number of QL) terms between an (R) on the

left and the next (R) on the right and place this number within

the parens represen.ing the (R) on the left. Thus, the expres-

sion A(2)(l) stands for the Expression 1. Alternatively, in-

stead of ordinal numeral identification, a node can be identified

by name relative tu another node. Thus, if C is the name of

a node as shown, then the notation A(C)(B) would designate the

same node as 1. This pseudo-a'.gebraic notation, called in the

■80-

sequel simply the att ribute notation, will be used henceforth.

This notation is rather more compact than the previous for the

kind of structures used here and is considerably easier to

parse in definitions.

Each node in the tree-structured symbol table is

represented by a block of information including

a the link pointer,

b. the extended attribute pointer,

c a four-entry class-code field (discussed presently),

d. 'x field containing an interpreted value assigned

the nodo, and

e. the name of the node (possibly null).

The descriptor assigned each such node is the address of its

link pointer, so that each link pointer on the left-son chain is

in fact a descriptor to the next element on that chain, and

each extended attribute pointer on the right-son chain is in fact

a descriptor to the next element on that chain.

The class code establishes whether the entry belongs

to the class of variables or constants, macro names, or trans-

lator variables, and so forth The values assigned some of these

codes are conditioned by the syntactic class to which the symbol

belongs (as described previously in Section 2.3); the values of

the remaining are chosen arbitrarily. In particular, it is pos-

sible to differentiate that symbol table entry which contains a

name as a value from hat entry which contains a self-defining
I

I

81

(.numerical) constant, so that the uses of the remaining fields

in connection with the attribute notation do not conflict.

The entries in the class code field are interpreted

as a function of the class code value. If the class code de-

signates an operand (eg , variable name) in the source program,

then these entries are interpreted as local attributes; that

is, as one-byte attributes which themselves have no dependent

attribute structure These are referenced in the attribute

notation as if they were standard symbol table entries with the

"value" assigned such entries interpreted as the value of the

entry itself If the clas" code designates an operator (e.g.,

a keyword, operator, punctuation or grouping mark) in the source

program, then these entries are interpreted as the syntactic

type and left- and right-precedence functions respectively.

The value field ;s designed to,among other things,

contain a descriptor A useful ad-hoc notation designating this

value as opposed to the node itself takes the form uf subscript

notation: VAL(A(2)(1)) identifies that descriptor which is

resident in the value field of the node identified by A(2)(l).

However, a value field can contain either a name or an ordinal

number, and these can be used in attribute notation expressions

as well. Thus, A (VA1, (B (1))) designates that node found by

considering the contents of the value field of B{1) as either

the name or the ordinal number of a node on the extended at-

tribute chain of A , depending upon the class code assigned to

3(1) ■ Similar notations can be developed for the other local

attributes of the entry.

82-

5.2 Lexical Recognizer

Ali symbolic input to the translator is processed by

ICODE, which assembles characters into symbolic names and con-

stant reprei.ent at ions . As part of this process, each unique

symbol is assigned space in the symbol table along with default

attribute assignments Associated with each such symbol is its

descriptor, which is used as its referent in all internal opera-

tions. For thrse purposes, not only the usual variables and con-

stants are considered as symbol table entries, but grouping

marks, keywords, and punctuation marks as well. The principal

function of ICODE then is to identify each occurrence of a

symbol in the input stream and to replace this symbol by its

descriptor for use in subsequent operations. The recognition

rules used by ICODE in these functions are mostly embedded with-

in the processor itself, although some of these are table-driven

and can be set at translation time.

Each identifier used in a source program must be used

in only one function Therefore, obviously, the names assigned

to elements in the classes of variables, constants, keywords,

operators, and punctuation marks must not overlap. In addition,

the names of source program identifiers cannot overlap those

used in statement definitions, including those used to define

the source language itself. To avoid the naturally occurring

conflicts, certain naming conventions have been established

which represent sufficient conditions for uniqueness. Thus,

variables by convention start with a letter, constants with a

_ - SSE -

83-

digit, keywords with a prime, and so forth. These conventions

are not necessary conditions however, and it is readily possible

to assign any identifier to any syntactic class as long as

uniqueness criteria are observed.

The lexicographic identification rules used by ICODE

can be summarized as follows: The set of available characters

is partitioned into subsets of alphabetic, numeric, and special

characters Certain special characters stand alone as identi-

fiers, including those normally used as arithmetic operators

and punctuation marks Certain other two-character sequences

(digrams), including some of the relational operators such

as >=, <= and the substitution operator -- , stand only in

juxtaposition as identifiers A name consisting of a string

of alphabetic and numeric characters, the first of which is an

alphabetic character, stands as an identifier and is normally

interpreted as a variable name. A name consisting of a string

of alphabetic and numeric characters enclosed in either periods

"." or primes '"" stands for an identifier. In the former

case, such an identifier normally stands for a special operator

such as .ABS. , tho absolute-value operator; and in the latter

case, such an identifier normally stands for a keyword such as

'GO TO' , the name of the MAD/1 branch statement

A constant is identified as a string of alphabetic

and numeric characters, the first of which is a numeric char-

acter. The alphabetic characters in such an identifier are

interpreted in such functions as scale factor and radix conversions

-84-

Character constants, that is, those constants that stand for

themse1ves,are delimited by quotation marks """ , between which

the quotation mark is identified by two Juxtaposed quotation

marks in the conventional fashion. Although some default con-

version attributes of constants are apparent in their explicit

form, no attempt is made in the present MAD/I compiler to con-

vert constants from the external form to the internal represen-

tation until the entire source program has been scanned and all

global declarations have been collected

By convention, all symbols used in the definitional

process are prefixed with percent signs "%" and all source

program symbols are constrained so that the percent sign may

not occur first Normally, the translator can be described as

being either in the definitional or translational state: in the

former, operator and statement macros are defined, and in the

latter the source program is translated. A switch is set in

ICODE m the definitional state so that

a all constants are assumed to be of self-defined

type, and

b. all symbols beginning with an alphabetic char-

acter are prefixed by a percent sign.

Nevertheless, if a constant is prefixed with a special keyword,

then it is assumed to be a source program literal; and, if a

variable name is prefixed with a percent sign, then the normal-

ly occurring percent sign prefixing process is disabled for that

symbol

a
n
if 11

-85-

5.3 Syntactic Recognizer

The syntactic recognition algorithm (JSCAN) reads des-

criptors from an input stream via IC'JDE and call« upon the macro

interpreter (INTERP) with substitution instances of productions

as arguments. Some of these productions represent calls on

macros which in turn generate connectives—floating addresses and

local branches—and may call recursively on JSCAN. Other produc-

tions represent calls on macros which have as their primary ob-

jective the production of machine code. The first kind of produc-

tions may loosely be described as statement macro calls and the

second kind as operator macro calls, although the same INTERP

machinery is used in both cases.

The term prefiple is used as a generalization of MAD/

7090 triple. A prefiplc is composed of an operator followed by

a list of its operands The operand list may be of indefinite

length, as in the case of the function and subscription oper-

ator macro calls, and the operator will be one of those sum-

marized in Figure 9, Section 4.1, Some of the punctuation

marks in the source program language are given the class of

macro name for the purpose of JSCAN's operations. Two of these

currently treated in this manner are the colon and semicolon.

In addition, certain operators are invented by terminal trans-

formations detected by JSCAN Two of these are %NEG and

%TAG, neither of which can occur in a source program.

JSCAN is built around an operator-precedence syntax

analyzer to which is added a considerable number of contextual

transformations. These transformations (see Sections 3.1 and

86-

3,2) are of two classes; one involving an input stream context

of two adjacent descriptors, the other involving a context of

the two descriptors compared in the precedence relation. Some

transformations of each of these two classes are coded in the

JSCAN algorithm itself; others are coded as macro definitions.

The classical algorithm (cf. Floyd) which decomposes a

stream of text into instances of productions uses a push-down

stack in which both terminal and nonterminal characters are

temporarily stored. During the analysis, segmsnts of this stack

are identified as a production, processed, and deleted by some

sort of transformational machinery. In the JSCAN case, each

instance of a production is a prcfiple and is processed by INTERP.

The processing involves the replacement of the production by a

nonterminal character which occurs on the left of the equal signs

in the table of productions (Figure 7, Section 4.1)

In the particular algorithm used in JSCAN, the nonter-

minal used to replace a production on the stack is always of

operand class, so that, in general, no error checking is possible

to differentiate among different productions which involve the

same operators However, if different nonterminals are associated

with different mode classes, then the normal mode-context machin-

ery will filter out syntax errors of this type. Note that no-

where in JSCAN itself does the mode of an operand play any part.

The state of JSCAN at any time during compilation of a

source program is determined by three descriptions: NXTDSX,

LSTÜSX, and STKDSX, The first of these, NXTDSX, is the current

I

1
U

n

i

h
I
I
I
1
I
]
I
2

-*

I
I
I
I
I
I

87-

descriptor under scan, presumably supplied by ICODE. The

second, LSTDSX, is the descriptor read immediately prior to

NXTDSX. The third, STKDSX, is the first terminal descriptor

found in the stack on a last-in to first-in search.

The pair NXTDSX-LSTDSX represents a context which

controls the terminal transformations. Both NXTDSX and LSTDSX

are members of equivalence classes of descriptors classified

as described in Section 4.2. The class numbers assigned to

NXTDSX and LSTDSX are used as coordinates in the terminal con-

text matrix; and the intersection of these coordinates gives

access to an integer which is an index in a dspatch table which

in turn leads to segments of machine code.

The pair NXTDSX-STKDSX represents the context which

drives the precedence algorithm, which is the nucleus of JSCAN.

As in the previous case, the class codes of NXTDSX and STKDSX

are used PS coordinates in the terninal context matrix which gives

access to an integer which is an index into a dispatch table.

The precedence relations themselves are established by two

local attributes of NXTDSX and STKDSX. The terminal context

table in this case serves as a convenient handle to invoke

precedence transformations.

5 . 4 The Macro Interpreter

The operation of all the translator processors re-

volves about INTERP, the internal macro interpreter. This

processor interprets commands of a highly stylized definitional

metalanguage used to control the decomposition of each source

-88

statement in the program Some of the commands of this meta-

language are used to manipulate symbol table entries, create

attribute structures, and assign values o^ each attribute.

Others are used to invoke the other processors of the trans-

lator, in particular ICODE and JSCAN. Still others are used

within INTERP itself fox the control of macro interpetatxon flow

and the defnition of new macros.

The principal definitional structure processed by INTERP

is the macro, consisting of from two to half-a-hundred command

lines Each macro is named and may contain instances of para-

metric substitutions A macro is invoked when a command of that

name is interpreted, and in such a case the parametric substitu-

tions implied are executed INTERP is so designed that a call

can be made by another processor for the purpose of interpreting

a single rommand line passed as an argument INTERP will inter-

pret this line and then return immediÄely to the calling proces-

sor If the command involved h^pens to be a macro name, then

that macro is interpreted; and, if the ma .o contains a call on

the calling processor itself, then the whole interpretation

process recur ses

A single macro definition is isiociated with each

operator which may occur in a compiler source input expression;

and, in addition, other macro transformations may be recursively

dependent upon sv 'h operator macro definitions. The set of

transformations so defined are equivalent in scope to the de-

finition facility built into MAD/70?0. Each set of macro

.»

T

I

89-

I
T

«■a
if

«0

!
Xl

definitions deiiving from an expressional operator name cor-

responds to a define sequence of MAD/7090 deriving from the

sair. ' operator name. Machinery for the specification of oper-

ator precedence and mode context is provided.

Tn addition to the class of operator macro trans-

formations, a class of keyword macro transformations is included

in the resident MAD/1 compiler These macro definitions may

call upon the same machinery and pseudo-operrtion pool as do

the operator macro definitions, but, in addition, may call on

those pseudo commands which control the operator-precedence

grammar-parsing algorithm. A single keyword macro definition

is associated with each statement keyword available in the

language. The invocation of a keyword macro is in general con-

text dependent, however, and is designed for convenience in

the production of connectives, which consist of floating-address

assignments and branches.

A command line consists of a macro operator followed

by a list of macru operands. Both the operator and each of its

operands are represented by descriptor expresssions, consisting

of algebraic-like structures in which the various operators

are interpreted as operations upon symbol table entries. The

result of the interpretation of either an operator or operand

is a descriptor, which in turn points to a symbol table entry.

If an operator designates a macro name, tne:i the symbol table

entry represents a type of line directory which indexes each

command line in the macro definition. If the operator

90-

I
I

I
I
I

designates a machine instruction name, then the symbol table

entry represents an intricately codeH driving table for OCODE,

a depenaent processor which emits the object program byte by

byte Finally, if the operator designates a pseudo-command name

recognized by INTERP, then the symbol table entry represents a

pointer to the processor entry in INTERP itself.

The class of pi>cudj commands processed by INTERP in-

cludes those which create elements of the attribute structure

assigned to each symbol •ab1,.* entry and define the value as-

signed to each of the components of this structure, those which

invoke the other translator processors, such as JSCAN and ICODE,
ft

those which provide for the definition of new macros, and final- ^

ly, those which provide a conditional interpretation capability.

Each descriptor of each operand points to a symbol

table entry. The symbol table entries may be of any class, and

some are allocated and deallocated dynamically by INTERP. Each

operand is represented by an expression structured in much the

same way as a source program expression, although the operators

and punctuation marks have different interpretations. In par-

ticular, the attribute notation (see Section 5.1) is subsumcö

bodily, and the various arithmetic and logical operators are

presumed to operate upon the descriptors themselves. Certain

special-purpose functions are defined to streamline some of

the common operations

f

T

T I

I

i

I
I
m REFERDNCES

The M\D Manuax, Computing Center, The University of Michigan,
T Ann Arbor, 1967, 130 pp.

Floyd, R.W., "Syntactic Analysis and Operator Precedence,"
1 i- ^£M' Vo1- 10' No- 3' 1963, pp. 316-333.
J

I
Floyd, R.W., "Bounded Context Syntactic Analysis," Comm. ACM,
Vol. 7, No. 2, 1964, pp. 62-65.

Arden, B.W., and Graham, R.M., "On GAT and the Construction
of Translators," Comm. ACM, Vol. 2, No. 7, 1959, pp. 24-26;

"I correction, ibid. , No. 11, 1959, pp. 10-11,
«I

Ardm B.W., Galler, B.A., and Graham, R.M., "The Internal
Tf Organization of the MAD Translator," Comm. ACM, Vol. 4, No. 1,

1961, pp. 28-31.

Graham, R.M., "Translator Construction," Notes of the Summer
Conference on Automatic Programming, Engineering Summer Con-

M ferences. The University of Michigan, Ann Arbor, June 1963.

Arden, B.W., Galler, B.A., and Graham, R.M., "An Algorithm
j,! for Translating Boolean Expressions," J. ACM, Vol. 9, No. 2,

1962, pp. 222-239.
rt

Bauer, F.L., and Samelson, K., "Sequential Formula Transla-
"* tion," Comm. ACM, Vol. 3, No. 2, 1960, ip. 76-83.

' Floyd, R.W., "A Descriptive Language for Symbol Manipulation,"
4 J. ACM, Vol. 8, No. 4, 1961, pp. 579-584.

Organick, E.I., A Computer Primer for the MAD Language,
Computing Center, Th^ University of Michigan, Ann Arbor,
1961, 183 pp.

Graham, R.M., "Bounded Context Translation," roceedings of
the 1964 Spring Joint Computer Conference, pp. 17-29.

-91

•

BLANK PAGE

i nAAimmm _ ,fin_ g m ^"^^mmmmmmmmm

1 Unclassified
Security Clasaification

DOCUMENT CONTROL DATA • R&D
(Steurlly elat»ltlcmtlon ol ml», body ol abtlnct mnd Indrnxlnf mtnoU 'on fflu«(bm tilmnd IWI«P tfi« ovmnll tmpott i» tl*»»lllm4i

\. OftlOINATINC ACTIVITY (Corponf mulhor)

THE UNIVERSITY OF MICHIGAN
CONCOMi PROJECT

I« •CPORT SKfUPlTV C U»»tlFICATION
Unclassified

2 6 anouP

1 «tPORT TITLE

THE SYNTACTIC STRUCTURE OF MAD/1

4 ORSCRIPTIVC NOTES (Typ* ol «pert and Inclutln d»f»)
Technical Report

S AUTHOmS) (Lm»l nrnn». lint nmm: Initial)

David L. Mills

«. REPORT DATE
June 1968

• a. CONTRACT OR GRANT NO.

DA-49-083 OSA-3050
6. PROJtCT NO.

7# TOTAL o. or PAOCS
91

7». NO. OP RKPI

• a ORIOINATOR't ..^PORT NUMSCRtt)

Technical Report 7
16 OTHKR RIPORT NOft; (A ny olhtt numbart mat may ba aaal*iad

mla tapoit)

10. AVAILABILITY/LIMITATION NOTICI£S

Qualified requesters may obtain copies of this report from DDC.

II. (URRLCMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

13 ABSTRACT

This rep
an ALGOL
Terminal
general
plicatio
through
report,
ment of
language
which dr
In parti
which pr
definiti
given.

ort describes the formal linguistic structure of MAD/I,
-like language proposed for residence in the Michigan
System (MTS). The MAD/I language is designed for

use for all algebraic and many symbol manipulation ap-
ns and in particular is designed for extensibility
the definition of new statement structures. This
presented in a tutorial format, outlines the develop-
a set of productions which describe the syntax of this
and the derivation of a set of matrices and tables

ive the syntax analysis procedures of the compiler,
cular, a set of syntax transformations is presented
ovide a simple but effective means for statement
on. A brief description of the compiler is also

DD /Ä 1473 Unclasgjfied
Security Classification

I.nc] ass i f ied
Security Classification

i«
KEY WORDS

LINK A LINK LtrIK C

Syntactic Description

Production System

Precedence Language

Context-Free Grammar

Compiler

Translator

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name and addres«
of the contractor, subcontractor, grantee. Department of De-
fense activity or other organization (corporate author) issuing,
the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.

26. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show thst optional
markings have been used for Group 3 and Group 4 as author-
ized.
3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclasiified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in ail capitals in parenthesis
immediately following the title.
4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.
5. AUTHOR(S): Enter the name<s) of authoK») as shown on
or in the report. Entei last name, first name, middle initial.
If xilitary, show rank »ni branch of service. The name of
the principal «Uhor is an absolute minimum requirement.
6. REPORT DATD Enter the date of the report as day,
month, year; or month, year. If more than one date appears
en the report, use date of publication.
7 s. TOTAL NUMBER OF PAGES: The tota' page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUIOiER OF REFERENCES Enter the total number of
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.
86, 8c, b id. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc
9a. ORIGINATOR'S REPORT NUMBER(S). Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number muat
be unique to this report.
96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor,), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security ctsssification, using standard statements
such at:

(1) "Qualified requesters may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. :ni!jtary agencies may obtain copies of this
report directly from DDC Other qualified users
shall luest through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished tc the Office of Technical
Service», Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if knowa
IL SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) t he research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual
summary uf the document indicative of the report, even though
it may also appear elsewhere in the body of the i^.hnical re-
port. If additional space is required, a continuation sheet shall'
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military »ecurit- classificstion of the in-
formation in the paragraph, represented as (TS>. (S), (C>, or (V)

There is no limitation en the length of the abstract. How-
ever, the suggested length is from ISO to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrsses that characterize a report and may be used ss
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such ss equipment model designation, trade name, mihtary
project code name, geographic locstion, may be used as key
words but will be fo'lowed by sn indication if technical con-
text. The assign...<nt of links, rules, and weights is optional

arc M6-5St Unclassi fied

Security Classification

