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THE SYNTACTIC STRUCTURE OF MAD/I 

I. INTRODUCTION 

The various dialects of MAD developed at The Univer- 

sity of Michigan and elsewhere can be described as ALGOL-like 

languages with strong flavors of FORTRAN.  The language has en- 

joyed considerable popularity at the University in both teaching 

and research during a developmental evolution which began in 1960 

vith an IBM 704 version of the compiler and progressed to the 

piesent IBM 7090 version.  The MAD language itself is designed 

to be readily taught to relatively unsophisticated students and 

yet to provide the power of generality of expresssion necessary 

in sophisticated research applications.  In general, the compiler 

implementations have been finely tuned for high-speed translation 

and for production of reasonably good object code.  The list of 

references at the end of this report contains a compendium of 

reference material covering the development of the compiler and 

the structure of the language.  In the subsequent discussion of 

this report a working familiarity with the MAO language will be 

assumed in programming examples, although this is not strictly 

necessary for an understanding of the principles involved. 

1.1  Evolution of MAD/I 

In mid-1965 the University began a gradual systrms 

change-over from the IBM 7090 to the System/360 Model 67,  The 

development of the System/360 system was predicated upon the 

virtual-memory concept, which involves a hardware-assisted 
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dynamic address translation procedure in which each concurrent 

system program is written as if it owned all the addressable 

core storage of the machine.  Successful operation of this pro- 

cedure requires a high-speed backup storage, such as a drum, for 

temporary storage of core memory overflows and furthermore a re- 

liance upon a sharable system program structure.  The implemen- 

tation of the Michigan Timesharing System (MTS) is based on these 

concepts and represents the environment in which both the new 

MAD compiler and its compiled programs will operate. 

At its inception the MAD project was faced with two 

alternative developmental paths.  On the one hand a MAD trans- 

lator could be implemented for the Model 67 which would be a 

virtual transliteration of the existing MAD/7090 translator and 

with few additional features.  On the other hand a new language 

could be developed which contained all those useful features of 

the existing MAD/7090 translator and in addition many new ones 

required for such applications as the development of graphics 

languages.  The former effort would at least provide a contin- 

uance of the MAD/7090 language itself, a factor thought vital 

in the almost captive MAD-committed user population.  The latter 

effort would be expected to provide, in addition to the valuable 

developmental experience itself, a sound theoretical franework 

bolstering the specification of a new language called MAD/I and 

the construction of its compiler.  In addition, the framework 

developed would include a systematic procedure for the specifi- 

cation of new language families, based on MAD/I, within 
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which specialized languages suitable for the manipulation of 

data structures could be developed. 

Although, in the beginning, the developmental effort of 

the MAD project was concentrated along the former or transliter- 

ation path, a gradual shift in emphasis took place, to such an 

extent that the dewiopmental effort at this time is aimost 

solely concentrated in the specification of MAD/1   and the im- 

plementation of its compiler.  The new language is in many 

respects very much like the old.  For instance, the assignment, 

transfer, conditional, iteration, and input/output statements 

are incorporated into the MAD/I language in substantially the 

same way as into MAD/7090.  Variables, constants, functions, 

arrays, and expressions have the same interpretation in both 

languages. Several minor differences exist between the two languages, 

however, in the iules for the naming of statements, the scope of 

compound stat3ments, and the eleir?nts of input/output statements. 

The major differences between the two 1 iguages oc- 

cur in the inclusion of comprehensive definitional faci'ities 

and the introduction of new data structural types.  In the MAD/ 

7090 language a definitional facility was implemented which 

provided for the introduction of new data types and for the 

definition of a restricted class of operations upon them.  In 

the new new language this facility has been expanded so that, 

not only a much richer class of data types can be defined, but 

quite general operations can be performed upon them.  In order 

to implement this expanded definitional facility, a new 
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roetalanguage has been developed in which the definitions are 

expressed.  In fact, all of the MAD/I statements announced in 

the programming manuals nave been implemented in this new meta- 

language . 

The impact of the systematic introduction of new data 

types is mosv. obvious in the syntactic specification of the MAD/ 

I declaration statements.  Although the MAD/7090 concepts of 

dimension, storage mapping, and mode have validity in MAO/I 

programs, their interpretation is far more general.  For instance 

arrays may contain arrays as elements, and the storage assigned        f 

to them may vary dynamically during execution and be shared among 

several functions.  Linkages between functions are far more 

flexible, and dynamic loading and overlay operations are possible. 

In short, the declaration features of the language allow maximum 

advantage to be taken of the virtual-memory concept and the time-      ¥ 

sharing environment in which MAD/I programs are executed. 

The broadening of scope and generality as compared 

with MAD/7090 has not been achieved without a corresponding loss 

of compatibility in respect to the older language.  In fact, the 

characteristics of the 7090 as compared to those of the Model 67 

seem to prejudice a virtue of compatibiIxty in the first place. 

As * result, many common gimmicks popular in MAD/7090 program- 

ming simply have no counterpart in MAD/I programming.  However, 

the converse most certainly will be far more likely, in spite of 

the fact that old programming habits die hard.  The most common 

incompatibilities are of course related to the character set 
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and  the byte addressing structure of the Model 67, and this 

directly affects those operations of bitwise shifting and mask- 

ing of data, and the resolution of storage addresses.  A trans- 

lator has been constructed to aid in the conversion of MAD/7090 

programs to their MAD/I counterparts, and has proved useful in 

the majority of cases.  In some cases involving packing/unpacking 

and character-sensitive operations, translation is not possible 

unless a highly sophisticated processor is postulated.  Unfor- 

tunately, the MAD language has been particularly convenient in 

the construction of symbol manipulation programs; and a large 

body of extant and useful programs are unavoidably threatened 

with obsolescence as a result of the eventual change-over to 

MAD/I. 

As a consequence of the power inherent in the defini- 

tional facilities of the compiler, it is apparent that a des- 

cription of the language in terms of its syntax would be mis- 

leading at best.  Obviously the structure of the translator pro- 

vides the capabilities for the definition of a rather wide class 

of languages, each one characterized by a consistent set of 

statements of the definitional metalanguage.  One of these sets 

of definitional statements just happens to represent the lan- 

guage called MAD/I in the programming manuals, but any other 

consistent set of definitional statements might have been chosen 

as well.  The MAD/I set was chosen rather arbitrarily to re- 

present that language thought most useful and economical for 

the widest class of potential users, yet with a large capability 
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for enrichment through the inclusion of special-purpose defi- 

nitional packages. 

The most useful description of the MAD/1 language 

and its translator then demonstrably involves -he syntactic 

specification of t^ se constructs which can be identified by 

the various analysis algorithms embedded within the translator 

and a description of the operations possible upon these con- 

structs.  These tasks will dominate the discussio'.i for the re- 

mainder of this repurt.  However, many examples drawn from the 

MAD/1 language will be used fre ?, time to time to explicate 

the discussion. 

It should be noted that the procedures described 

herein used to analyze 'he syntactic specification of MAD and 

to construct its compiler are applicable to other than alge- 

braic-type languages. In fact, the same analysis techniques 

have been used in the construction of a machine-language as- 

sembler end in the specification of a computer-to-computer 

message transmission protocol. 

II. FORMAL SYNTACTIC SPECIFICATION 

The formal linguistic structure which describes the 

MAC syntax can be described as a modified operator precedence 

grammar.  This structural description provides an exceptionally 

sound framework which satisfies both the needs of syntactic 

flexi.ility in ti.e definition of statement forms and of struc- 

tural integrity in the control of error recovery.  The approach 
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taken in the formulatory steps of the formal syntactic specifi- 

cation is first to construct a kernel language of the operator 

precedence type and then to construct a set of context-dependent 

transformations which operate upon sentences of the source lan- 

guage to produce sentences of the kernel language.  Since it is 

known that the family of precedence languages are unambiguous 

and have rather good error-recovery characteristics; then, if 

the context-dependent transformations are carefully chosen, the 

resultant language should be considerably richer than the 

operator-precedence kernel language and yet retan many of its 

desirable characteristics. 

2.1  Terminology 

A terminal vocabulary  V_  is a set of symbols chosen 

as the alphabet of the language.  A language  L  is a collec- 

tion of certain strings of all those strings formed by inde- 

finite cencatentions of elements of  V  .  Each of these strings 

is a sentence  S  of  L  and is generated by applications of a 

set of rules called a grammar  G .  In the grammars discussed 

here each of these rules or productions take the form  U-^x , 

where  U  is an element of * nonterminal vocabulary  V   and 

x  is a string over  V» ♦ V^ , called simply the vocabulary. 

Furthermore, every  S  in  L  is assigned a structural descrip- 

tion by  G  which demonstrates how that string is decomposed 

into its constituent structural units, each labeled by an 

element of V.. . 
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The productions of  G  thus form an effective procedure 

for deciding whether any string over the vocabulary is or is 

nut a sentence of the language.  Furthermore, since every mean- 

ingful constituent substring or prime phrase of a sentence is 

assigned a nonterminal symbol by a production of  G , then the 

identification of a prime phrase during the decision process can 

be made synonymous with the production of some arb;trary inter- 

pretation or translation of the elements of the prime phrase 

itself. 

If all productions of  G  take the form  U-*x  as 

above, then  L  is described as context-free and the decomposi- 

tion or parsing of a sentence into its constituent structural 

units inwlves relatively simple techniques.  On the other hand, 

if some of the productions are of the form  xUy+z , where  x , 

y, and  z  are strings over  V , then  L  is described as con- 

text-dependent, and more complicated parsing techniques are 

required.  A production-oriented description of MAD/1 is ne- 

cessarily context-dependent, although by far the majority of 

productions are of the context-free type. 

Any useful programming language like MAD/I should be 

capable of being described by a particular grammar in such u 

way that each sentence of the language is assigned exactly 

one structural description, or, equivalently, that only one 

parse exists.  If such is the case, then the language is des- 

cribed as unambiguous.  Althoug!. it is not in general possible 

I 
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to determine whether a particular phrase-structure grammar is 

or is not unambiguous, certain fam: lies of phrase-structure 

grammars can be shown to have this property.  One of the most 

useful of these families is that of the precedence grammars; 

and, of these, the operator precedence grammars are particularly 

suited to the description of MAD/I.  Ii fact it is convenient 

to describe the bulk of MAD's syntax in an operator-precedence 

grammar and then to describe those few exceptions by means of 

context-dependent transformaticis which are applied to the 

source text prior to the operator-grammar parsing algorithm. 

There is one significant problem connected with this 

approach. The useful operator precedence grammar parsing tech- 

niques operate upon the terminal symbols of a sentence producing 

progressively larger prime phrases as intermediate parses and 

finally terminating when the entire sentence has been scanned. 

Such a process, commonly called a bottom-up parse, is highly 

adaptable to the parsing of the Jower-level algebraic expres- 

sion structures in the language.  On the other hand, the pars- 

ing of the higher-level statement structures is intuitively 

a much more goal-oriented process, and a more general top- 

down process is needed.  In the syntactic specification of 

MAD/I, the productions are carefully chosen so that contextual 

features can provide clues for a macro-driven top-down state- 

ment scan, yet retain the advantages of a bottom-up expres- 

sion scan. 
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2.2  Production Systems 

The set of productions defining a grammar may be 

represented in any of several common notationaJ schemes, the 

most common of which may be the Backus Normal Form (BNF).  The 

particular notational scheme followed herein is an adaotation 

of the 3NF and is defined as follows: 

Each production  P  consists of a 1 ei"t part  U , 

which is a particular symbol of  V^ , and a ri ght part  x , 

which is a string over  V = VT * VN .  In general there may be 

more than one production with the same left part, each such 

production corresponding to an instance of a component in a 

BNF role.  It will be assumed that no right part is the null 

string, for it can be shown that a grammar containing a pro- 

duction with a null right part can be naturally rewritten 

without such a production and without materially affecting 

the generative capacity of the grammar. 

A grammar, each rule of which takes one of the 

foliowinn forms: 

U^a 1 

VaU2 2 

w 3 

U^al^b, 4 

where  U-  are elements of  V'   and  a, b  are strings over  V_ , 
i N 1 

is called a linear grammar.  These grammars are characterized 

by the fact that, in each pioduction, onJy a single noriLerminal 
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symbol on the right side is replaced or rewritten by the non- 

terminal on the left; and, furthermore, each such rewrite 

(except those corresponding to Rule 1) has fewer symbols than 

the previous. If  we add to these four forms the following 

U1^U2 5. 

U1-^U2aU3        6. , 

ana require  a  and  b  to be single elements of V_ , then an 

appropriate paradigm for an algebraic language production sys- 

tem is evident.  Here the terminal symbol  a  in Rule 1 corre- 

sponds to the notion of operand, and the terminal symbols in the 

remaining rules correspond to the notion of operator.  The non- 

terminal symbols correspond to the notions of expression and 

statement, depending upon the hierarchy of the production system, 

Note that these six rules represent all of the produc- 

tion forms of an operator grammar (see below) which have right 

sides of lengths no greater than three and, furthermore, con- 

tain no sequences of two or more contiguous terminal symbols. 

Although sequences of this type can occur in an operator gram- 

mar, nevertheless, each such sequence can be mapped into a 

single element of a set of metaterminals for convenience, and 

this practice will be followed henceforth. 

Rule 1 establishes a duality between the notion of 

operand and that of nonterminal symbol.  In general, in an 

algebraic language grammar there is a derivation or sequence 

if applications of thj rules of the grammar starting with each 
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and every nonterminal symbol of the grammar and ending with an 

operand.  Using the notion of  metaterminal mentioned above, it 

is clear that only a single Rule 1 is necessarv in an algebraic 

language grammar.  Rules 2 and 3 represent the types of produc- 

tions associated with the unary prefix and unary postfix oper- 

ators in the language, and Rule 6 represents the typt of produc- 

tion associated with the binary operators.  Rale 4 represents 

the type of production associated with parenthesized groupings, 

and Rule 5 represents really only a notational convenience so 

that the grammar can be expressed in a more compact form. 

By convention, each pzoduction whose form coincides 

with Rules 2, 3, and 6 above will be identified by its single 

terminal symbol, which serves as a referent in the application 

of the semantic interpretation rules or macro transformation 

associated with the production.  Thus, when a prime phrase is 

identified by the bottom-up parsing algorithm, it is only 

necessary to identify whether its form coincides with Rule 2, 

3, or 6 and which operator is involved.  The nonterminal symbols 

of the prime phrase play no part in this determination. 

2.3  Operator Precedence Grammars 

A particular grammar can be found to belong to the 

family of precedence grammars by application of a certain 

technique whizh results in the assignment of one or more binary 

relations between each pair of symbols of the vocabulary 

V =• V  + V  .  These relations can be symbolized as o   (null) 
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<•  ,   ~   ,   and -> , and summarized in an n x n matrix, where  n 

is the number of symbols of V .  If no more than one of these 

four relations holds between any such pair in the language, then 

the grammar belongs to the class of simple precedence grammars. 

The precedence matrix so constructed can serve as the driving 

table in a simple algorithm which decomposes a sentence of the 

language into its prime phrases. 

The sheer size of the precedence matrix for a language 

of some complexity (146x146 for the MAD/I case) encourages 

further restriction in the grammar to exclude those productions 

which contain adjacent nonterminal symbols.  Such grammars, 

known as the operator precedence grammars, are characterized 

by a m x m  precedence matrix, where  m  is the number of 

symbols of V  .  A good deal of violence is done to some natural 

syntatic descriptions when this restriction is enforced, al- 

though several techniques are available to enrich such a lan- 

guage by the introduction of metaterminal symbols consisting 

of certain strings over  V.. ♦ V_ .  A certain rationale is " NT 

available, then, to restrict the kernel structural description 

of MAD/I to an operator precedence grammar. 

A verification procedure, due to Floyd (see Refer- 

ences), is available with which it is possible to determine 

whether or not a particular operator grammar is a member of 

the precedence family or not.  The procedure can be implemented 

either recursively or iteratively as a computer program.  Both 

techniques have been implemented as MAD/7090 programs, with the 
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latter technique enjoying a speed advantage of about ten-to-one 

over the former.  The latter technique can be illustrated by 

the algorithms described below.  In the following,  U  re- 

piesents an element of  Vj.  and  T  an element of  V  .  A 

string over  V » V  + V   is represented by a lower-case letter. 

The process of constructing a precedence matrix for 

an operator grammar consists of two steps:  In the first step, 

two tables are constructed showing for each nonterminal symbol 

U  e %  those terminal symbols which can occur as the leftmost 

and rightmost symbols respectively in a derivation of  U .  The 

table of leftmost terminal derivatives (LTD) can be constructed 

by the following process: 

1.  For each production  U.-^T.x  or  U.-'-U-T.x , 1  1* 1 "2 1' 

enter  T.  as an LTD of  U, . 

2. For each production  U.-^U-x , enter every LTD of 

U2  as an LTD of  U  . 

3. Repeat step 2 until, in a finite number of steps, 

the process converges. 

The table of rightmost terminal derivatives (RTD) is constructed 

in the analogous way. 

The second step for constructing the precedence matrix 

for an operator grammar involves the two LTD and RTD tables 

just constructed, the algorithm below, and the precedence matrix 

itself, an   n x n  square matrix where  n  is the number of 

symbols of  V- .  The algorithm cited assigns four relations, 
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one or more of which must hold between two terminal symbols 

Tj  and  T2 : 

1.  T.^T.  if there is a production  U-.vT.T-y  or 

U-^cTjUjiy 

2.  T. •> T.  if there is a production  U-^xU.I'y  and 

T.  is an RTD of lil 

3.     T.   <• T-     if  there   is   a  production     U^xT.U.y     anc 

T2     is   an   LTD  of     U 

4.  T^ o T2  if none of the above holds 

If no more than one of these relations holds between 

any two terminal symbols  T.  and  T_ , then the operator gram- 

mar is in fact an operator precedence grammar.  Note that  if 

T.  and  T-  were not constrained to be elements of  V™ , but 

could in fact be elements of V.. + V_ , then the same process 

would result in a precedence matrix for a simple precedence 

grammar. 

Figure 1 summarizes those steps in the construction 

of the precedence matrix for a simple algebraic-1 ike language 

taken from Floyd (see References).  The equivalent steps for 

the derivation of the precedence matrix for MAD/1 are summarized 

in Section 4.1.  In this and subsequent examples the metater- 

minal symbols will be assigned in each instance as names pre- 

fixed by percent signs  (%) .  In this figure the void  © 

relation is assumed to hold in all those positions of the 

matrix in which a blank is evident   Blank positions in the 
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Productions 

S-A 

A-»-A + B 

A-B 

B-*-B * C 

B-»-C 

C-( A ) 

Nonterminal Vocabulary 

S  A   B   C 

Terminal Vocabulary 

+  * (   )   %I 

Left Terminal Derivatives 

NTC Terminal Characters 

s + * 
( %I 

A + * 
( %I 

B * 
( %I 

C ( %I 

Right Terminal Derivatives 

NTC Terminal Characters 

s + * 
) %I 

A + * 
) %I 

B * 
) II 

C ) %I 

0 

Precedence Matrix 

+    •>«<?•>< 

*•>•><?    •>     <• 

(        <•       <J       <S        i        < 

)       •>      •> •> 

%I   •>      •> •> 

Figure 1.  Floyd's Simple Grammar. 
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matrix correspond to those cases where a void precedence rela- 

tion exists and provide either an opportunity for a context- 

dependent transformation or an indication of an incorrect pro- 

gram,that is, an occurrence of a sentence not in the language. 

It is possible, reputably in all useful ca^es and 

certainly here, to represent the nonvoid three precedence rela- 

tions between any two terminal symbols in a conveniently compact 

form which assigns two integers to every terminal symbol.  These 

integers might be called the left and right precedence functions 

and represent  the "order" precedence relation in the same 

fashion as the matrix when the left function of the leftmost 

symbol is compared to the right function of the rightmost symbol 

in a true order relation.  Both of these precedence iunctions 

are shown for Floyd's simple grammar in Table 1.  It is possible 

Terminal Character   Precedence functions 

( 

) 

%I 

F 

3 

5 

1 

5 

5 

G 

2 

4 

6 

1 

6 

Table 1. 

in some cases to dispense with one of these functions and to 

represent the precedence relations as a single integer assigned 

to each terminal symbol, as is done in fact in 7090 MAD.  The 
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generality of the new MAD/I does not evidei.tly permit this 

simp1ification (see Section 4.1). 

In practice it has not been necessary to represent 

the entire precedence matrix for MAD/I within the jompiler, 

but only a much smaller matrix which shows whether or net a 

nonvoid precedence relation exists between any two terminal 

symbols.  The internal descriptor corresponding to each non- 

terminal symbol in the language has coded within it an index 

into this compact matrix as well as both the left and right 

precedence frnctions.  This compact matrix, called the terminal 

context matrix, has importance in other uses and is discussed 

further below. 

2 . 4  Contextual Features 

If the grammar for a practical algebraic language 

could be made as simple as Pxoyd's example presented in the 

previous section, then the parsing algorithm could be excep- 

tionally simple; indeed, Floyd gives an example of such an 

algorithm.  In the more complex praede ' cases, a good deal 

of contextual information must be available to provide handles 

for such context-dependent transformations as those to resolve 

the syntax of binary operators used in unary contexts and so 

forth.  The discussion in this section will be concerned with 

the development of certain tables and matrices which are highly 

useful in gaining insight into the contextual structure of the 

language generated by a context-free grammar.  As implied, the 

development of these tables and matrices does   not require that 

the grammar be an operator or a precedence grammar. 
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The allowable pairs of terminal symbols in the lan- 

guage generated by a context-free grammar can be determined 

with the following two-step procedure (due to Floyd).  The 

results are summarized in an  m x m  terminal matrix, where  m 

is the number of symbols of  V_ .  The procedure is similar in 

nature to that outlined above for the construction of the pre- 

cedence matrix.  In the first step two tables are constructed, 

each giving respectively the left most and rightmost symbols 

of V = VN + V™ which may occur in a derivation for a non- 

terminal symbol.  The table of lertmost symbols (LS) is con- 

structed by the following process: 

1. For each  X e V , enter  X  as an LS. of  X . 

2. For each production  U -»■ Xy , enter each LS of 

X  as an LS of U . 

3. Repeat step 2 until, in a finite number of steps, 

the process converges. 

The table of rightmost symbols (RS) is constructed by an analo- 

gous process. 

The second step in the construction of the terminal 

matrix involves consideration of all pairs of adjacent symbols 

XY which may occur in the right part of a production. If a 

i? a terminal symbol ««uich is an RS of X , a.id b is a ter- 

minal symbol which is an LS of Y , then ab is an allowable 

terminal symbol pair in the language. The terminal matrix cor- 

responding to Floyd's simpls grammar is shown in Figure 2. 
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)   T 

%I  T 

T 

T 

( 

T 

T 

T 

T 

T 

%I 

T 

T 

T 

Figure Terminal Matrix, 
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As before, blank positions in the matrix correspond to invalid 

constructions and can be used in connection with context-de- 

pendent transformations. 

During the scan of certain statement types it becomes 

convenient to invoke the statement-scanning algorithm from a 

macro transformation (see Section 3.2) at a higher syntactic 

level.  The algorithm is expected to terminate in the identifi- 

cation of one of the nonterminal symbols described in connection 

with the production system.  The contextual features necessary 

to properly initiate and terminate such a procedure can be sum- 

marized in a pair of tables, each giving respectively the left 

and right terminal symbol delimiters which may bracket the non- 

terminal symbol to be identified as the goal of the procedure. 

The algorithm is given below. 

The table of left terminal symbol delimiters (LSD) 

can be constructed by the following process: 

1. For every production  IHxT.U.y  enter  T.  as 

an LSD of  U. . 

2. For every nroduction  U-^U.x  enter ev ry LSD of 

Uj  as a:: LSD of  U . 

3. Repeat Step 2 until in a finite numlar of steps 

the process converges. 

The table of right terminal symbol delimiters (RSD) 

is constructed by an analogous process. Figure 3 shows these 

two tables as derived from Floyd's simple grammar. 
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Left Terminal Delimiters 

NTC    Te.-minal Characters 

S 

( 

( 

+   *   ( 

Right Terminal Delimiters 

NTC    Terminal Characters 

S 

A + ) 

B + * 3 
C + * 

) 

Figure 3.  Terminal Delimiter Tabl es 

I 
I 
I 
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The most useful of all the various tables and matrices 

discussed so far i? a three-iimensicnal array called the ter- 

minal context matrix.  This matrix, used in the application of 

context-dependent transformations, indicates for every pair of 

terminal symbols  a  and  b  whether: 

1. the pair  ab  is allowable in the language, 

2. a nonvoid precedence relation exists between  a 

and  b . 

The matrix can be considered as two layes of a  p x p  square 

array, the ith column and ith row of which are identified by an 

equivalence class.  The equivalence classes are constructed 

from the precedence and terminal matrices as follows: 

1.  Construct an  p x m  square matrix, the ith 

column and ith row of which are identified by each of the  m 

symbols of  V- .  Each element of the matrix is identified by 

its coordinates as the element of the  a.th  row and  a.th 
i J 

column, where a.  and a.  are symbols of V^, .  Each such 
i       j      ' T 

element is a coded number from which can be determined 

a. whether the adjacent symbol pair  a.a. is J J r 1 j 

al lowab le, 

b. whether a nonvoid precedence relation exists 

between  a.  and  a . . 
i       J 

2.  From this matrix a reduced matrix is constructed 

by deleting equivalent rows and columns in the following way: 
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if  £   and  a.  identify two rows and in addition the corre- 

ame sponding two columns, then  a.  and  a.  belong to the s 

equivalence class if the rows identified by  a.  and  a.  are 7   i       j 

identical and in addition the columns identified by  a^  and 

a.  are identical.  The resultant matrix will have  p  rows 

and  p  columns. 

3.  The terminal context matrix is then constructed 

i.Kjm  the reduced matrix by associating with the first  p x p 

layer  a set of integer-valued elements which, for the  a.th 

row and  a.th column, take on the value one if  a.a.  Is an 

allowable terminal pair and zero otherwise.  The second  p x p 

layer is constructed in the same manner of the same elements, 

which take on the value one if a noivoid precedence relation 

exists between  a.  and  a.  and zero otherwise. 

The equivalence classes and terminal contex*. matrix 

derived from Floyd's simple grammar are shown in Figure 4,  In 

this figure the letter  T  stands for a one in the first layer 

and the letter  P  for a one in the second layer.  In the con- 

struction of the terminal context matrix a partition of  V' 

has been achieved which assigns to each symbol of  VT  a 

syntactic class number which is an index to a row or column 

of the terminal context matrix.  Each terminal and metaterminal 

symbol of the MAP/I language is assigned such a syntactic class 

number along with its left and right precedence functions as 

part of the internal descriptor developed within the compiler. 
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Equivalence Classes 

CL    Rep Members 

01 +   * 

02 ( 

03 ) 

04 %I 

Matrix 

+ ( ) %I 

+   P PT P PT 01 

(    P PT P PT 02 

)    PT PT 03 

%I   PT PT 04 

01 02 03 04 

Figure 4.  Terminal Context Matrix 
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The lotivation for constructing the terminal context 

matrix in just this manner will become clearer subsequently 

upon consideration of context-dependent transformations. It 

may be pointed out here that the elements of each of the two 

layers may take on values other than zero a.»d one in connection 

with these transformations, and in a sense form the elements 

of a kind of state transition table which drives the statement- 

scanning algorithm. 

III.  TRANSFORMATIONS 

It was pointed out in passing above that a strictly 

limited operator-precedence grammar is simply not rich enough 

to describe th^se syntactic structures required for MAD/I. 

There are two immtt ~ate demonstrations of this fact, both in- 

volving contextual information needed for the resolution of a 

syntactic type.  In the first, a single terminal symbol of  V_ 

is used both to represent a  unary operator and to represent 

a binary operator.  The unary plus and minus signs are the most 

common examples of this, but others can be found in the MAD/I 

syntax. 

Apparently this common syntactical form cannot be 

described in the obvious fashion in an operator precedence 

grammar.  However, if the two uses of the operator are assigned 

different names, perhaps the minus sign for the binary case 

and ♦"he  %NEG  symbol for the unary case, ..ien &a operator 

precedence grammar description is readily apparent.  Moreover, 
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by inspection of the terminal context matrix (see Section 2.4) 

a simple context-dependent transformation can be synthesized 

which indicates exactly those contexts in which the minus sign 

is to be replaced by the metaterminal  %NEG.  The generaliza- 

tion of this procedure leads to the notion of terminal trans- 

formation which will be discussed in detail in following 

sections . 

The second demonstration of the inadequacy of the 

unenriched operator precedence grammar description for the 

MAD/I syntax appears at the level of statement parsing.  The 

problem is that, while at the expression level the order of 

the identification of the various prime phrases parallels the 

order in which the object code produced will be executed, at 

the statement level this is not necessarily the case.  One 

might in fact say that the match between the identified syn- 

tactic construct and the applicable semantic rules seems to be 

poor.  Another way of saying the same thing is that the basic 

operator precedence grammar expression scanner is a bottom-up 

syntax analyzer and such an analyzer works well in a simple 

algebraic expression environment.  On the other hand, the 

binding structure among the expressional components of a state- 

ment can really best be parsed by a goal-oriented top-down 

analyzer.  Techniques :or turning the expression scanner inside- 

out, so to speak, for this purpose will be discussed in follow- 

ing sections.  These techniques involve the notion of the 

precedence transformation, really an extension of the familiar 
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technique which associates to each instance of an identified 

prime phrase a macro definition in which the semantic interpre- 

tation rules associated with that phrase are expressed. 

All context-dependent transformations are identified 

using the terminal context matrix describee" in Section 2.4. 

Properly constructed, the terminal context matrix initiates 

each type of transformation only under well-defined contextual 

environments.  The hat trick in this procedure, however, is to 

insure that the excellent error-recovery characteristics in- 

herent in the operator precedence grammar are not unreasonably 

compromised and that no ambiguities are introduced into the 

language by virtue of the new syntactic constructions so de- 

fined.  A specification of the necessary constraints upon the 

applicable contexts in order that these requirements be satis- 

fied appears elusive using the analysis techniques illustrated 

herein.  On the other hand, a specification of sufficient con- 

straints can be given in certain cases. 

* 

I 

3.1  Terminal Transformations 

The introduction of context-dependent transformations 

can be established at two levels:  first, consider a sequence 

of input symbols  a a....a.a....(a e VT)  which are input to 

the compiler.  These are extracted in turn from the actual in- 

put character stream by the lexical analyzer, so that  a.  and 

a.  for example are identifiers which are represented by des- 

criptors within the compiler.  Now, consider the case where 

the statement scanning algorithm, having just read symbol  a. , 

I 
I 
I 
I 
I 
I 
I 
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is about to read symbol  a. .  At this point the terminal con- 

text matrix is accessed and the integer found at the inter- 

section of the row and column corresponding to  a.  and  a.  i; f a 1 j 

extracted.  The following cases are possible: 

1. The integer has the value one, in which case the 

pair  a.a.  is allowable and the statement scanning algorithm 

proceeds 

2. The integer has the value zero, in v-hich case 

the pair  a.a.  represents an error, and a recovery procedure 

is initiated. 

3. The integer has a value other than one or zero 

and is assumed to identify a built-in tiansformation which 

is immediately executed.  Such a transformation is called a 

terminal transformation, and several such are described belcw. 

A terminal transformation is designed to produce 

a string of terminal symbols in the following manner: 

ab ■*• axb , 

where both  a  and  b  are terminal symbols and  x  is an 

arbitrary string of terminal symbols, (In the useful cases 

described here  x  is a single terminal symbol). 

In practice, a terminal transformation is constructed 

by defining an operator precedence grammar with certain addi- 

tional primitives which cannot by design in the language be 

elements of an input string.  Let the environment of such a 
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primitive  a  be represented by  xay , where  x  represents 

any member of the set of terminal symbols which may occur ad- 

jacent to  a  on the left and  y  any member of the set which 

may occur on the right.  Now verify that the contexts formed 

by juxtapositions of an element of  x  and an element of  y  are 

all invalid; that is, these contexts do not occur in the ter- 

minal context matrix.  When jne of these "invalid"  contexts 

is found, then, the introduction of the primitive  a  in the 

manner shown is guaranteed to be unambiguous, 

In order to preserve the consistency of the language 

it is necessary to apply the terminal transformation in ell 

equivalent contexts; that i„, if both  ab   and  cd   are valid 

terminal strings in the new grammar; then if the terminal trans- 

formation is applied in the  ab  context, it must also be ap- 

plied in the  cc  context. 

As an example of a practical application of this 

technique, consider the grammar whose productions are shown 

in Figure 5.  This grammar happens to be used to destrioe the 

syntax of the operator and operand fields in an experimental 

assembler for the PDP-8 and PDP-9 computers.  The plus and 

minus symbols are interpreted as two's complement binary 

operators and the logical symbols as one's complement bit- 

wise binary operators.  The  %M  symbol stands tor the two's 

complement unary negation operator and the  ?6N  symbol stands 

for thj one's complement unary bitwise inversion operator. 

The  %I symbol stands for any operand, eithjr a variable or 
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PRCP'jrTIONS 

001 m s tl 
00? Ul r Ul ?A 
00^ v 3 111 
00^ u? r SN U? 
005 U4 = U? 
OOf m = U^ £  11? 
00 7 U5 = U4 
0C8 U5 = (J5 I   U4 
oo«; IJ5 ■= U5 -•  U4 
010 U6 ■z U5 
on u-s = U7 
on U7 = «N U7 
013 1)7 = UM U'. 
01'♦ U6 s U4 e u7 
015 U6 = U5 1   U7 
016 U6 a U5 -  117 
on UB s U6 
018 UP =: U" ♦   U6 
019 UM = ug /   U6 
0?0 U9 = U8 
021 U9 = U9 ♦   UR 
02? IJ9 = UQ -   U8 
023 UP s U9 
02A Ul = (   UB   ) 
02S UP =■ »' U^   % 

NCN  E?.MINAL   VOrABULftRY 

Ul      U2      U't     U*      U*.      U7      U8     U'^     UB     UF 

TFPMIMAL   V0CAr1llLÄ»'Y 

%l      %A     TN     £        I fM  * U  %R 

Figure 5.  Example 'jrammar—Productions 
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a constant.  The %L     and  %R  symbols stand for left closure, 

which marks the bottom of the stack, and right closure, which 

represents the end-of-statement (card) delimiters respectively. 

These two symbols are introduced for convenience in error re- 

covery.  Finally, the  %A  stands for an attribute operator 

used to specify a property of an identifier. 

It is the intent in the source language of this ex- 

perimental assembler to represent both the two's complement 

binary subtraction operation and the unary negation  (%M) 

operations by the minus sign  (-)  and both the one's comple- 

ment bitwise binary subtraction (i.e., txclusive-OR) and 

unary inversion  (%N)  operations by tne logical-not symbol 

(-t) .  Thus a terminal transformation is to be synthesized 

which results in the replacement of the  -  symbol by the  %M 

symbol and the  -n symbol by the  %N  symbol in the proper 

contextual environments. 

These environments are readily apparent from the 

terminal context matrix for this grammar (Figure 6).  In this 

figure note that all the binary operators are in equivalence 

Class 4 and all the unary operators in equivalence Class 3. 

Then note that the terminal contexts  x%N  and  x§ , where  x 

represents any terminal symbol,  %N  (a unary operator of Class 

3) and  5  (a binary opeiator of Class 4) are mutually ex- 

clusive.  In particular, then, if an "invalid" context  yfi 

is found in the source text and furthermore the context  y%N 

is valid, then the terminal transform  x§+x%N  is indicated. 
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TERMINAL   CONTEXT   MATRIX 

EQUlVALFNCB  ClASSHS 

CL  REP KMBERS 
01 %l 
02 XA 
01 %N  «M 
04 6   |   -.   ♦   / 
05 ( 
06 ) 
C7 tl 
OH «R 

ECUIVALENCE MATRIX 

tl *A XN e ( ) XL %K 
«I PT PT PT PT 01 
«A PT PT PT PT 0? 
fN PT P PT P PT P P 03 
£ PT P PT P PT P P 04 
( PT ö PT P PT P 05 
1 PT PT PT PT Cf 
tL 
XR 

PT P PT r PT P 07 
0« 

01 0? 03 0^ 05 06 07 08 

Figure 6.  Example Grammar—Terminal Contexi Matrix 
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Terminal transformations are implemented within the 

MAD/I compiler as a macro call, the operands of which include 

1. the last terminal symbol scanned  a. , 

2. the terminal symbol next to be read  a 

The macro may produce the following results; 

]   return immediately to the statement-scanning 

algorithm (a no-operation), 

2. replace  a^  with a new symbol  a, , 
J * 

3. delete  a. , and 
J 

4. insert a single symbol  x  such that  x  will 

be the symbol next to be read and  a.  the next symbol follow- 

ing  x . 

The following six terminal transformations are presently im- 

plemented within the compiler: 

Terminal Error. 

The pair  a a.  is not allowable in the language, 

nor does it represent a context of any terminal transformation 

The macro definition associated with this transformation by 

convention prints  a diagnostic ..lessage. 

Unary Operation. 

The tair a.a. represents a context in which a. 

would normally be expected to be a unary operator. In this 

case, however,  a.  belongs to the class of binary operators 
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The macro definition associated with this transformation by con- 

vent ion: 

1. if  a.  is the symbol  "+"  then  a.  is deleted, 

2. if  a.  is the symbol  "-"  then  a   is replaced 

by the symbol  %NEG  representing the unary negation operation. 

In other than these two cases a diagnostic message is generated. 

Empty Argument. 

The pair  a.a.  represents a context in which  a 
i J J 

would normally be expected to be an operand, and furthermore, 

if  x  represents such an operand, then the context  a  x a r r      . j     j 

is valid in the language.  This transformation is involved in 

several contexts corresponding to missing arguments in function 

calls and subscription operations   The macro definition as- 

sociated with this transformation by convention inserts a dum- 

my operand between  a.  anc  a.  and this is not considered 

an error. 

Empty Statement. 

The pair  a.a.  represents a context in which  a 
i ] J 

is normally expected to be a statement, and furthermore, if 

x  represents such a statement, then the context  a  x a   is 

valid in the language.  The macro definition associated with 

this transformalion by convention inserts a dummy operand 

between  a   and  a.  and this is not considered an error 
i        J 
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Empty Declarative List Element. 

The pair  a.a.  represents a context in which  a 

is normally expected to be a declarative list element (sec 

Section 4.2), and furthermore, if  x  represents such an 

element, then the context  a. x a.  is valid in the language. 

This transformation is used during the scan of those declara- 

tions which apply default attributes to the program.  The macro 

definition associated with this transformation by convention 

inserts the  %DEFAULT  operand between  a.  and  a.  and, if 
i       j     ' 

a.  is the symbol  ";" , this is not considered an error. 

Empty Executable List Element. 

The pair  a.a.  represents a context in which  a.  is 

normally expected to be an executable list element (see Section 

4,2), and furthermore, if  x  represents such an element, then 

the context  a. x a.  is valid in the language.  The macro 

definition associated  with this transformation by convention 

inserts a dummy operand between  a.  and  a.  and this is 
i        j 

not considered an error. 

The  %TAG  Transformation. 

Although classed as a terminal transformation, the 

%TAG  transformation exhibits a special behavior.  The pair 

a.a.  represents one of the contexts  ")("  or  "%ID(".  The 
i j    r 

%TAG  transformation causes a metaterminal symbol  x  to be 

inserted between  a.  and  a.  such that the context  a. x a. 
1       J i    J 

is valid in the kernel grammar.  There are two interpretations 
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of this transformation depending upon its occurrence in a 

declarative list element or an executable list element.  If 

the  %TAG  transformation occurs in a declarative list element, 

tien an implicit attribute assignment is indicated which 

interprets the list elements witinn the parentheses on the 

right as an attribute structure to be attached to the operand 

(possibly a list enclosed in parentheses) on the left   The 

nature of this interpretation can depend both on the name of 

the declaration statement in which this occurrence is embedded 

and on the name of the macro definition invoked by the trans- 

formation.  In this case, the name is given as an argument to 

the statement-scanning algorithm. 

If the  %TAG  transformation occurs in an executable 

list element, then an implicit subscription operation is in- 

dicated which interprets the list elements within the paren- 

theses on the right as an argument to a component selection 

function which identifies a particular component of an array 

during execution.  In this case also, tne macro name invoked 

by the transformation is given as an argument to the state- 

ment-scanning algorithm. 

The above transformations provide some enrichment 

of the kernel grammar without materially affecting its gener- 

ative power.  Note that although the contextual environments 

which cause these transformations to be invoked are noi 

normally definable during compilation, the macro definitions 

associated with the names mentioned are of course definable 

Thus the behavior effected in the individual cases may be 

altered by definitional procedures 
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3.2  Precedence Transformations 

Although the terminal transformations described in 

the preceding section provide some additional power to the 

basic expression-scanning algorithm, the power is principally 

concentrated in reducing the nuisance value of the language 

by allowing some syntactic "cheating" in the specification of 

the language   On the other hand, the basic analytical problem 

inherent in a bottom-up parsing algorithm remains:  it is 

exceedingly difficult to specify the syntax of a complicated 

statement involving several constituent expressions without 

doing much violence to its semantic interpretation rules. 

The approach taken in the design of the MAD/1 com- 

piler has been to represent certain syntactic forms which 

have been parsed by the expression-scanning algorithm as an 

instance of a metaterminal symbol which is an element of the 

kernel grammar.  This technique involves the identification 

by means of a terminal transformation of the initial character 

or prefix of that ctructure which, when parsed, will become 

the metaterminal symbol.  Once such a context nas been identi- 

fied, the basic scanning process vw'urses in such a way as to 

exhibit a top-down behavior.  In other words, the identifica- 

tion of the metaterminal becomes a process directed by com- 

mands embedded within a macro definition, and this process can 

be obviously context-dependent.  Some of the macro commands 

can cause the basic scanning process to resume its precedence- 

directed scan at this lower level, but with the additional 

I 
7 

I 
I 
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requirement that a goal-directed behavior be realized.  When 

the syntactic structure representing the metaterminal symbol 

is completely parsed, perhaps requiring several goal-directed 

scanner calls, a nonterminal symbol representing the meta- 

terminal symbol is generated and the scanner pops up to the 

original statement scan level 

The manner in which the goal-directed syntactic 

scan is realized using a precedence-directed scanning algorithm 

is obviously the key to the success of this technique.  This is 

done candidly, by a seat-of-the-pants combination of rule- 

bending and judicious use of what are called here precedence 

transformations 

The explanation of how this is done requires some 

superficial explanation of the manner in which the statement- 

scanning algorithm operates.  The algorithm, patterned after 

those suggested by Bauer and Samelson, Arden and Galler, 

Floyd, and several others, makes use of a compile-time stack 

in which symbols are stored during the parsing process   This 

stack at each instance during the scan contains a sequence of 

symbols, each symbol representing either an operator or a non- 

terminal symbol.  At the top of the stack is a nonterminal 

symbol  X  (possibly null), and immediately below this is at 

least one terminal symbol  a,  not of the operand class   Let 

this terminal symbol be identified by  a.    Then consider 

the sequence of symbols  a a o 1 a   which are input to 

the translator.  Now, having just read  a  , the statement- 
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scanning algorithm establishes a precedence relation between 

a, on  one hand and  a.  on the other.  Note that the symbols 

betwtjn  a.  and  a.  already have been read and the terminal k        j 

pairs established as allowable.  Thus all terminal transforma- 

tions have been completed at this point.  Now, when  a,  and 

a.  are compared in the precedence relation, the second layer 

of the terminal context matrix is accessed and the integer found 

at the intersection of the row and column corresponding to  a 

and  a.  is extracted.  The following cases are possible: 

1.  The integer has the value one, in which case the 

pair a\c
ai       is contained in a nonvoid precedence relation and 

the statement scanning algorithm proceeds. 

2 The integer has the value zero, in which case 

the pair  ai.a-  represents an error and a recovery procedure 

is initiated. 

3 The integer has a value other than one or zero 

and is assumed to identify a macro transformation which is 

immediately executed   Such a transformation is called a pre- 

cedence transform, and several such are described below, 

A precedence transformation is implemented within 

the MAD/I compiler by a macro definition in the following 

manner:  Let  a,  and  a.  represent the terminal symbols 
k       j    r ' 

compared in the precedence relation in the manner described 

above.  Let the precedence context  a,a.  be selected as an 
k j 

environment for a precedence transformation, and furthermore 

I 
I 
I 
I 
I 
I 
I 
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require that  a, <■ a. .  Then the precedenc; transformation 

associate.! with the name  a.  will: 
i 

1. stack the representative of the equivalence 

class containing  a  (or a representative of another equiv- 
j 

alent class which obeys the same precedence and terminal rela- 

tions in the "left context" of  a): 
J 

2. initiate the statement-scanning algorithm at 

the next lower level to scan the arguments of the statement 

identified by  a  ; and, finally, 

3. replace  X  and  a   on the stack with a non- 
J 

terminal symbol which represents the result of the transforma- 

tion. 

The integrity of the kernel language is not compro- 

mised if at least the following conditions are satisfied: 

Let  T  be a metaterminal symbol such that 

1. in all allowable contexts  T U.T , the pair 

^T  is selected as an environment for the same transforma- 

tion and, in all of these contexts,  T  <• T ; 

2. in all allowable contexts  TU-.f, , T •- T. 

Thus the macro associated with the transformation bears the 

responsibility of  "positioning" the input text pointer 

properly before .urrenderng to the higher statement scanning 

level at which it was invoked   Convenient rules fur ac- 

complishing this involve the tables of left and right terminal 

delimiters developed in Section 2 4 



Four precedenco transformations arc recognized with- 

in tue compiler.  Three out of these four are essentially 

fi:;cd v. ithin LIIC compiler and arc not subject to redefinition. 

The fourth 's implemented as a macro call and is a good 

exrmple of the statement definition capability of the compiler. 

All of these wl) be discussed briefly below. 

Parenthesized List Element 

Note the productions containing the parenthesized 

list element (PLS) in Figure 7, Section 4 1, as a left part. 

All of ti^esc productions take the form  (X)  where  X is a 

nonterminal symbol.  Furthermore, the only occurrence of 

parentheses are in these productions.  The parenthesized list 

element transformation in fact performs the operatic   (X)->-PLS . 

This transformation could have been performed as a macro opera- 

tion and is performed as a compiler operation only for the 

sake of convenience. 

List Element. 

All argument lists in function calls and subscription 

operations are presumed to be linear; that is, no tree-like 

structures are allowed, The commas which separate the list 

items are then superfluous.  The list transformation performs 

the operation 

' X , - X ( 

where  X  is a nonterminal symbol.  Bot' the parenthesized 
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list transformation ani' the! list transformation are expected 

to evolve F.S richer structures are incorporated into the com- 

piler. 

Statement Keyword. 

Sever 1 terminal symbol syntactic classes are desig- 

nated as statement keyword classes.  Among these are the 

symbols of the  %SIMP, %COMP, "sDECl, UTST, %ATRB, @  and: 

classes (see Figure 7, Section 4.1)   The first four of these 

represent symbols most likex/ to designate an identifying key- 

word of a statement.  Inspection of the precedence matrix for 

the kernel grammar (Figure 13, Section 41) reveals that for 

every symbol  a  which can occur in a precedence relation on 

the left along with a statement keyword  b  on the right, 

that 

a <• b . 

Each instance of this type is chosen as an instance of a 

keyword transformation, which causes a macro definition to be 

invoked, the name of which is the keyword itself.  The macro 

definition generates connectives as required and calls upon 

the statement-scanning algorithm at a lower level to scan tue 

arguments of the prefix and scope   Each time the statement- 

scanning algorithm is called, an element of one of the state- 

ment keyword classes is stacked, depending upon the nonter- 

minal symbol expected as the argument, and according to the 
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following table, which is a subset of the terminal delimiter 

tables (see Figures 13 and 19,   Section 4.1) 

Keyword Class Nonterminal List Separator Statement Separator 

"äSIMP           STV          none ) ; "»END 0<,RC 

"oCOMP STM ; "oHND 

"„LIST LST , ) ; UND %RC 

"oDECL LSÜ , ) ; 0&END ".RC 

The statement-scanning algorithm parses the succeeding text 

until an ending condition is recognized. 

End. 

This transformation complements the above keyword 

transformation by providing a mechanism for returning the 

statement - scanni ng algorithm to the macro whi.'h initiated it. 

Ti.e ending condition is recognized when a precedence com- 

parison is made between the keyword stacked upjn initiation 

of the scan (see above) and one of the symbols in either 

the list separator or statement separator columns of the above 

table.  The elements in the list separator and statement 

separator columns of this table are determined as follows: 

if  a  is a keyword, and  b  is a right terminal delimiter uf 

U  in  a  production 

Uj - aUb , 

then  b  is a list separator if  a <» b , and  b  is a state- 

ment separator if  b *> a .  The s t at ement - scann i ng algorithm 

n 
i 
i 
i 
i 

I! 
11 
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will then return control to the macro ;hich initiated its 

operation.  The macro now has the option of continuing the 

scan by again calling the statement-scanning algorithm or 

returning to the statement-scanning algorithm at the next 

higher level, appending upon whether the terminating symbol 

belongs to the list separator or statement separator classes 

IV. A KERNEL GRAMMAR FOR MAD/I 

In establishing a production system for MAD/I, 

several considerations are apparent.  First, of courre, the 

language generated must be unambiguous.  Second, the produc- 

tions must provide some "handles" so that context-dependent 

transformations can be strategically applied   Finally, the 

productions must bear a relationshx  to those program con- 

structions most familiar in MAD, that is the expression, the 

statement, and the program. 

The first requirement is satisfied by insisting that 

the kernel production system represent an operator precede..ce 

grammar.  Certain context-dependent transformations can be 

applied to the source language to preserve the integrity of 

the language in each exceptional instance   Some of these 

transformations generate metaterminal symbols which by design 

cannot occur in the input text.  These provide  the "handles" 

satisfying the second condition  The third condition is 

satisfied rather naturally by requiring that the productions 

take on the forms of Rules 1-6 (see Section 2 2). 
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4.1  An Operator Precedence Kernel Grammar 

Figure 7 shows a table of productions which con- 

stitute an operator precedence kernel grammar of MAD/I. These 

productions arc divided roughly  into five groups: 

1   the program primitives, 

2. the assignment statement, 

3. the li^t statement, 

1   the declaration statement, and 

5   the program structure 

The collection of all those symbols on the left of the equal 

sign  = , which corresponds to the more familiar right arrow 

■* , corresponds to the nonterminal vocabulary  Vv,    The 

complement of  V   relative to all the symbols occurring 

either on the left or the right of the equal sign is the 

terminal vocabulary  V     These two sets are enumerated in 

Figure  8.  Note that in these and other tables of this 

Section only the first three characters of each symbol are 

shown. 

Only those nonterminal symbols which do not begin 

with an  X  are significant in the discussion; these are 

interpreted roughly  as follows (see also Section 4.2): 

IDR - Stands for either an identifier extracted by 

the lexical scan or a parenthesized list. 



47- 

PRODUCT ION«. 

PROGRAM PRIMITIVES 

OH XL = *IDN 
O")?. XL = «LP PLS 
0^3 IDR = XL 
0'>'t IDR = I OR 9 XL 
£75 XM = FDR 
^16 \M = XM XTAR IHR 
^■y-f XM = XM »KFY 
T^fl DES = XM 
009 OFS = DES XM 

ASSIGNMENT STATEMENT 

on XI   = DES 
'in XI   = .A^S.   XI 
-i? X?   = XI 
A13 X2   = X?   .LS.   XI 
014 X2   = X2   .PS.   XI 
-ns X3   = X? 
?16 X3   = X3U 
"IT X3U  = •    .ARS.   X3II 
•>!« X3   = X7   .LS.    X3U 
M9 X3   = X2   .RS.   X3U 
n?-) X3U  = '    .N.   X^ 
^?1 X4   = X3 
r>?? X4   = X4   .A.   X3 
-73 X5  - X4 
0?4 X5   = •■'    .V.   X4 
'»75 X5   = X5    .EV.    X4 
n?6 X6  = X5 
0?7 X6   * Xf   **   X5 
n?8 X7  = X6 
^?9 X7   = X7U 
o30 X7U  -. :   .ABS.    X7U 
031 X7   = X?   .LS.   X7U 
^3? X7   = X2   .RS.   X7U 
f>33 X7U  = s    .N.   X71J 
0 34 X7  = X4   .A.   X7U 
035 X7  = X5   .V.   X7U 
0 3*. X7  = X5   .EV.    X7ll 
037 X7   = X6   ♦*   X7U 
03ft X7U  ' =   tNEG   X7 
039 X8  = X7 
040 X8   = Xfl   *   X7 
041 X8  = X«   /   X7 
n%?. XQ   = X8 
^43 X«?   = X9   ♦   XP 
044 X9   = X9   -   XP 
04 S XA   = xq 
04A XA   = XA   =   Xo 

Figure 7.  Kernel Productions for MAD/I 

[Page i of 3] 
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^47 XÄ   = XA -1=   X9 
o^fl XA   = XA >    X9 
n'*9 XA   = XA >=   X9 
T5D XA   = XA <   X9 
O'U XA   = XA <=   X9 
0 52 KB   s Xt 
053 XI   = XBU 
OSA XBU  ' ■    .ABS.    XBU 
■''55 XB   = X2 .LS.   XBU 
^6 XB  * X2 .RS.   XBU 
"57 XBU   -■ •■    .N.    XBU 
••,)5^ XB   = X4 .A.   XBU 
'>59 XB   = X5 .V.    XBU 
n^-. XP   = X5 .FV.    XRU 
^51 XB   = X6 ♦ ♦   XBU 
^fZ XBU     = :   »NFC,   Xou 
?')3 XB   = X8 ♦   XRU 
054 X«^   - XB /   XPU 
"65 XB   = X9 +    XBU 
06-S XB   -- X9 -   XBU 
0^.7 XB   = XA =   XBU 
C^B XB   = XA ■»=   XRU 
^59 XB   = XA >   XBU 
'.70 XB   = XA >=   XBU 
"71 XB   = XA <   XBU 
3 73 XB   = XA <=   XBU 
?73 XBU   = ^ XB 
074 Xf.   = XB 
075 XC   = XC t   XB 
076 XO   = xr. 
-»77 XO   = XO I    XC 
?7B xn * xn .FXOR.   xr 
')79 XE   = XO 
:8o XE   = XE .THEN.   XO 
081 XF   = xc 
0fi2 XF   = XF .FQV.   XE 
033 ASM   = •    XF 
^84 ASM   ' =   DES   "   ASN 
'185 STM   = ■-    ASN 

LIST STATEMENT 

186   XH  «   OES 
?87   XH   -   XH   ...   OES 
0 88   XJ   =   XH 
C89   XJ   -   ASN 
"90   LST   =   XJ 
091   LST   =   LST   ,   XJ 
"9?   STM   =   »LIST   LST 

I 
I 
I 

l 
.i 

Figure 7.  Kernel Productions for MAD/I 

[Page 2 of 3] 
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OECLARATION STATEMENT 

093 XK * IOR 
094 XK » XK XATRB IOR 
09«» tsn = XK 
096 ISO 
097 STM 

= LSD , XK 
= «DECL LSD 

PROGRAM STRUCTURE 

098 PLS = < LSO J 
099 PLS = ( LST ) 
IOC PLS = ( STM » 
101 STM = DES : STM 
102 5TM = «SIMP STM 
1*3   STL '   STM 
104 STL = STL ; STM 
105 STM = »rOMP STL tENO 
106 PGM ' «LC STL JRC 

Figure 7.  Kernel Productions for MAD/I 

[Page 3 of 3] 
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NONTERMINAL VOCABUIARY 

XL  IDR XM  DES XI  X2  X3  X3U "4  X5  X6  X7  X7U X8  X9  XA  XB 
XBU XC  XO  XE  XF  ASN STM XH  XJ  LST XK  LSO PLS STL PGM 

TERMINAL VOCARULARY 

XID XLP   i   «TA XKF .   .AB .LS .RS .N. .A. .V. .EV **  XNE ♦   / 
♦   -«-.=  >>»<<=-.   K | .EX .TH .FO ==  ... , 
tLi SAT «OF (      )      '.      xst  ;      ten «^N «LC tnc 

Figure 8.  Kernel Vocabulary. 
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DES - Stands for a designator, that is an identifier, 

with or without attribute notation, possibly 

subscripted, or the insult of a function eval- 

uation . 

ASN - Stands for in assignment, that is an expres- 

sion containing the usual arithmetic and logi- 

cal operators and in addition the substitution 

operator  == . 

LST - Stands for a list e lament, that is a list of 

elements each of which is either an assignment 

or an instance of block notation. 

LSD - Stands for a declarative list element, that is 

a list of elements each of which is either an 

identifier or a special notation used in the 

declaration statements. 

PLS - Stands for a parenthesi zed list, that is a list 

of list elements, declarative list elements, 

or statements. 

STM - Stands for a statement, that is either an as- 

signment or a list preceded by a keyword. 

STL - Stands for a statement list, that is a list 

of statements separated by a semicolon  ; . 

PGM - Stands for a program, that is a statement list 

delimited by the metaterminal symbols for left 

and right closure. 
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The various terminal symbols are interpreted as in 

Figure 9.  Note that all those symbols preceded by the per- 

cent sign "o     are identified as metaterminal symbols within 

the compiler and are created as the result of context-de- 

pendent transformations.  Note further that some communications 

equipment cannot produce or recognize some of the special 

characters used here   In Hiese cases, synonyms constructed 

of names surrounded by periods are provided 

The remaining figures in this section correspond to 

those tables and matrices developed for Floyd's simple gram- 

mar in Sections 2.3  and 2.4   Figures 10 and 11 show  respec- 

tively the table of left and right tc-minal derivatives, and 

Figure 12 shows the equivalence classes assigned to the pre- 

cedence matrix and the members of each class   Figure 13 shows 

the precedence matrix itself  Note that only the first two 

characters of the symbol representing each class are shown 

Fi£ure 14 shows the equivalence classes assigned 

to the terminal matrix, and Figure 15 shows the terminal 

matrix itself.  Figure 16 shows the equivalence classes as- 

signed the terminal context matrix, and Figure I7 shows the 

terminal context matrix itself.  Figures 18 and 19 show the 

table of left and right terminal delimiters respectively. 

Finally, Figure 9 summarizes the equivalence class assign- 

ments for all of the matrices and in addition shows the left 

and right precedence functions assigned to each terminal 

symbol 

I 
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DESCRIPTOR ASSIGNMENTS 

TRM RULE PSC TRM CTX REL 
SYM FORM WTRX MTRX MTRX F      C 

%1D I 1 33    34 
%LP I 2 33    34 
(? 6 3 33    32 
XTAG 6 4 31     30 
, 6 t 29    28 
«KEY 3 5 31     30 
.ABS. 2 7 27    28 
.N. 2 9 25    28 
«NEC 2 13 19    28 
-> 2 17 13    28 
• LS. fi 8 27    26 
.RS. 6 8 27    26 
.A. 6 10 25    24 
.V. 6 .1 23    22 
.EV. 6 11 23    22 

** 6 12 21     20 
• 6 14 19    18 
/ 6 14 19     18 
+ 6 15 17    16 
. 6 i; 17     16 
. 6 16 15     14 

-^- 6 16 15     14 

> 6 16 15     14 

>" 6 16 ■ 5     14 

< 6 16 15    14 
<- 6 16 15     14 

& 6 18 13    12 
1 6 19 11     10 
.EXOR. 6 19 11     10 
.THEN. 6 20 9      8 
.EQV. 6 21 7       6 
•     • 6 22 5      6 
»    •      0 6 23 7       6 
$ 6 24 10 5       4 
%UST ? 25 11 3      4 
%ATRB 6 26 12 7      6 
7.DECL 2 ?7 13 3      4 
( t, 28 10 14 1       34 
) 4 29 11 15 33    1 
s 6 30 12 16 3      4 
ZSIMP 2 31 13 i ? 3      4 
! 0 32 14 18 3       2 
7.COMF U 33 13 19 1       4 
7.END 4 34 15 20 3       1 
7.I.C 4 35 16 21 1       1 
7.RC 4 36 i 7 22 1       1 

opcmnci 
liter«!   nrciix operator 
attribute notation operator 
tag operator 
function operator 
component  «election operator 
absolute valcc operator 
bitwise  logical  NOT operator 
negation operator 
logical NOT operator 
bitwise  left  shift operator 
bitwise right  shift  operator 
bitwise logical AND operator 
bitwise logical OR operator 
bitwise  logical   EXCLUSIVE 
OR operator 
exponentiation operator 
■ultlpllcation operator 
division operator 
addition 
subtraction 
EQUAL relational operator 
INGQUAL relational operator 
GREATER THAN relational operator 
GREATER THAN OR EQUAL relational 
operator 
LESS THAN relational operator 
LESS THAN OR EQUAL relational operator 
logical AND operator 
logical OR operator 
logical EXCLUSIVE OR operator 
logical IMPLICATION operator 
logical EQUIVALENCE operator 
substitution operator 
block notation operator 
list delimiter 
list statement 
attribute expression 
declaration statement 
left paren 
right paren 
label delimiter 
staple statement 
statement delimiter 
compound statement 
END delimiter 
left closure 
right closure 

Figure 9.  Descriptor Assignment. 
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LEFT   TERMIMÄL   OFRIVATIVES 

WTC TERMINAL   CHARACTERS 
XL «ID  «LP 
I DR «ID  «LP  9 
XM «ID «LP   a «TA   «KE 
DEI «ID «LP a «FA   «KE • 
XI «ID  «LP   a «TA   «KF • .AR 
X2 «ID «LP  a «TA   «KF « .AB .LS .RS 
X3 «ID   CLP a «TA   «KE • .AB .LS .RS .N. 
A3U .AB   .N. 
X4 «ID «LP   a «TA   «KF • .AB \LS .RS . U . A, 
X5 «ID «LP a «TA   «KE 

«TA   «KE' 
• 
• 

.AB 

.AB 
.LS 
.LS 

.RS 

.RS 
.N. 
.N. 

.A. 

.A. 
.V. 
.V. 

.EV 

.FV X6 «ID tLP a 
X7 «ID «LP a «TA   «KE • .AB .LS .RS .N. .A. .V. .FV SNE 
X7U .AB   .N.   «NE 
X8 «ID «LP a 

/ 
«ID «LP a 
7     ♦     - 
no «LP a 

«TA  «KE • .AB .LS .RS .N. • A. .V. .EV «NE 

X9 «TA   «KE 

«TA   «KE 

• 

• 

.AB 

.AR 

.LS 

.LS 

.RS 

.RS • N. 

.A. -?¥•_ .FV SNE 

XA .A. .V. .EV «NE 
/     ♦     - X                -t* > >= < <- 

XP SID «LP a «TA   «KF • .AB .LS .RS .N. .A. .V. .EV «NE 
/     ♦     - «        -•« > >= < <» •^ 

KBU .AB   .N.   «NE -« 
• . *B .LS TRS 7HV .A. .V. TEV *V~ SNE~ XC «ID «LP a «TA   «KE 

/     ♦     - «        ^« > >* < <* -» L 
XO «ID «LP a «TA   «KE • .AB .IS .RS .N. • A. .V. .FV 7NE 

/     ♦     - =        -• = > >* < <= -» e 1 .EX 
XE «ID «LP a «TA   «KE • .AB .LS .RS .N. .A. .V. .EV SNE 

/     ♦     - 
«TA   «KE 

> >* 
.AB 

< 
.LS 

<* 
.RS .N. .A. 

1 
.V. 

.EX 

.FV 
•JH. 

«NE XF" «ID «LP a 
/     «•     - =          -.s > >x < <» •^ e 1 .EX .TH .EO 

ASN «ID «LP a «TA   «KE • .AB .LS .RS .N. .A. .V. .EV SNE 
/     *     - s               -»= > >» < <= 1 6 1 .FX .TH .EO SS 

SIM «ID «LP a «TA   «KE • .AB .LS .PS .N. .A. .V. .EV SNE 
/     ♦     - =         -»a > _>»   . <_. <" ^ E 1 •EX •TH • EP SS 

«LI  «DE   : «SI   «CO 
XH «ID «LP  a «TA   «KE • ... 
XJ «ID «LP a «TA   «KE • .AB .LS .RS .N. .A. .V. .EV SNE 

/     ♦     - =        -i= > >» < <= •^ £ 1 .EX .TH .FQ S3 

LSI «ID «LP a «TA   «KE • 
> 

.AB 
>- 

.LS 
< 

.RS •N. • A. 
6 

.V. 
1 

.EV 

.FX .TH 
SNE 
.EQ /     *     - SS 

XK 
...    t 
«ID «LP a «AT 

LSD «ID «LP a ,        «AT 
PLS ( 

_    STL «ID «LP a 
/     ♦     - 
«LI   «OF   : 

«TA   «KF_ 

«si  ; 

• 
> 
«CO 

•AB .LS 
< 

.RS •N. 
-» 

.A. 
e 

.V. 
1 

.EV 

.EX .TH 
«NF 
.EQ " 

oGM «LC 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

I 
I 

Figure 10.  Left Terminal Derivatives 
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1 RiRHT  TERMINAL DERIVATIVES - 

1 NTC TERHINAl .   CHARACTERS 
XL SID SLP ) 
FOR »10 SLP a » 
XM ?I0 ;LP a STA   SKE ) 

I DES 
XI 

SID 
SID 

SLP 
SLP a 

3JTA   SM • » 
) STA   SKE • ".AB 

X2 SID SLP a STA   SKE • .AB .LS  .RS ) 

I 
X^ SID SLP a STA  SKE • .AB .LS   .RS .N. ) 
X3U SID SLP a STA   SKE • .AB .LS   .RS .N. ) 
X4 SID SLP a STA  SKE • .AB .LS   .RS .N. .A. ) 
Xf SID UP a STA   SKE • 

• 
.AB 

' .AB 
.LS  .RS 
.LS   .RS 

.N. 

.N. 
.A. 
.A. 

.v. .EV ) 

m 

X'6 »ID SLP a ST.".   SKE .v. .EV I 
X7 SID SLP a STA   SKE • .AB .LS   .RS .N. .A. .V. .EV SNE » 

• i 
X7Ü SID SLP a STA  SKE • .AB .LS   ,RS .N. .A4 .V. .EV SNE » 

X9 

SID 
/ 
SID 

SLP 
» 
SLP 

a 

a 

STA   SKE 

STA  SKF 

• 

• 

.AB 

.AB 

_«A S_ . R S 

•LS   .RS 

?1'_ .A. ^y^ .EV SNE 

I .N. .A. .V. .EV SNE 
/ ♦ - ) 

XA SID SLP a STÄ   SKE • .AB .LS  .RS .N. .A. • v. .EV SNE 
/ ♦ - =          ^x > >= <       <« ) 

_ 

XB SIO SLP a STA SkE • .AB .LS  .RS .N. .A. 
1 

.V. _iiy. .«.*!. 
/ ♦ - =       ■ = > >» <       <» 

X8U SID SLP a STA  SKE • .AB .LS   .RS .N. .A. .V. .EV SNE 
/ ♦ - =        -•= > >= <       <» -« ) 

* xc SIO SLP a STA  SKE • .AB .LS   .RS .N. .A. .V. .FV SNE 
/ ♦ - *       -»« > >* <       <= ■n e 

xo SIO SLP a STA  SKE • 
> 

.AB .LS   ,RS 
<       <* 

• A. • v? .FV 
.EX 

„?NE 

1 
/ f - s          -•» 

XE SID SLP a STA   SKE « .AB ,LS  .RS • N. A. .V. .EV SNE 
J / ♦ - a         -^s > >- <       <* -» S .EX .TH ) 

XF SID SLP a STA   SKE • .AB .LS  .RS .N. .A. .V. .EV SNE 

i / ♦ - s              -«» > >* <       <* -» E .EX • TH .EO 
ASN SIO SLP a STA  SKE • .AB .LS  .RS '**• 

■^ 

.A. 
C 

•y. .EV 
.EX .TH 

SNF 
.EO / 

} 

SIO 

«■ - -'                IS > >s <       <= ma 

j STM SLP a STA   SKE • .AB .LS  .RS .N. .A. .V. .EV SNE i • / 
• • • t SLI 

St            -^ss 

SAT   SOE 
> 
» • • 

<       <« 
SSI   SEN 

•^ C .EX .TH .EO «=» 

M XH 
XJ 

SID 
SIO 

SLP 
SLP 

a 
a 

TTA   SKE • • • • I 
VN. .A;- .V. .EV 

--- 
SNE M STA   SKE • .AB .LS  .RS ■ / - =          -»a > >' <       <= ^ & .FX .TH .EO •« 

■ LST 
-    • • 
SIO SLP a STA   SKE • .AB .LS  .RS .N. .A. .V. .FV SNE 1 / ♦ - =        -» = > >» <       <» -• £ .EX .TH .EQ sa 

« • • _» I     — - -   -- • — -   — 
XK SIO SLP a SAT   ) 

l LSD SIO SLP a ,        SAT » 
PLS 1 
STL SIO SLP a STA  TKE • .AB .LS  .RS .N. .A. .V. .EV • ♦ SNE * 

■ / ♦ - =        •» = > > = <       <» 1 e 1 .EX .TH .EO mm I • • • » _«U SAT  SOE J • • SSI  ; SEN ■ ~PGM SRC 

Figure  11.     Right  T^TBI^I  Derivatives 



-56- 

PRECEDENCE MATRIX 

EQUIVALENCE CLASSES 

CL  REP MEMBERS 
01  «ID 
02  XLP 
03 a 
04  fTA 
0 5  tKE 
06  . 
07  .AB- 
OS  <.LS .RS 
09  .N. 
10  .A. 
11  .V. .EV 
12  ♦* 
13  «NE 
14  ♦   / 
l»» 4  - 
16  «   -,«  >   >=  < <= 
17 -. 
is e 
19  |   .EX 
20  .TH 
21  .EQ 
22 «« 
23  ... 
24  , 
25 SLI 
26  «AT 
27  »DE 
28  ( 
29  1 
30  : 
31  «SI 
32 ; 
33 «CO 
34  «EN 
35  «LC 
36  «RC 

Figure 12.  Precedence Equivalence Classes 
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•c K eo o< C — «M m -t 
rs: <Ni <M «v po 

IK 
KAAAAAAAAAAAAAAAAAAAAAAAAAAA  AAAA  A It 

1 

] 
I 
I 
I 
I 

KAAAAAAAAAA/-, AAAAA/1 AAAAAAA 

o 

• •AAAAAAAAAAAAAAAAAAAAAAAA 

■• A A A A A A 

— A  N A A A A AAAAAAAAAAAAAAAAAA 

C 

M A A A 

_l »• 

»A A A A A A 

• A A A A A A 

II 
H A A A A A A 

AAAAAAAAAAAAA 

Ol 
• A A, A A A A 

K 
• A A A A A A 

— A A A A A A 

W A AA A A A 

r 

II A A A A A A 

♦ A A: A A A A 

« A A A A A A 

J • A A;A A A A 

AAAA 

AAAA 

> 
• A A 

• A A 

2 

• A A 

A A A 

A A A 

A A A 

A A A 

V V V 

A A A 

A A A 

A A A 

V V V 

A AiA 

A AIA 

A AA 

V V V 

AAAA A A 

V V 

X 
tat 

u 
u. 
< 
> 

u      — 
a      O 

! 
• A AIA A A A 

A A A V 

A A A V 

A V V 

V V V 

IV V      ' 
— -J:    »-si 

V V V 

K A A 

H A A 

« A A 

V V 

V V 

V V 

V V V 

« - r 

A A A 

»\ A A 

A A A 

A A A 

V V V 

A A A 

A A A 

A A A 

V V V 

A A A 

AAV 

A V V 

V V V 

V V V 

V V V 

V V V 

V V V 

V V V 

VV V 

V V V 

V V V 

«t > • 
•  • ♦ 

A A A 

A A A 

A A A 

A A A 

V V V 

A A A 
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TERMINAL   PAIR   MATRIX 

EQUIVALENCE CLASSES 

CL REP MEMBERS 
01 SID 
02 tLP 
03 a SAT 
04 XTA • • • • 
05 IKE 
06 .AB • N. SNE -. 
07 • LS .RS •A. .V. .EV ♦♦  ♦ 

£ 1 .EX .TH • tQ «  t 
08 XL I 
09 tOE 
10 f 
11 I 
12 • 

13 SSI sen 
14 • 

t 

15 SEN 
16 SLC 
17 SRC 

>' 

Figure 14.  Terminal Pair Equivalence Classes 
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TERMINAL PAIR MATRIX 

EQUIVALENCE MATRIX 

tl SL a IT XK .A .L XL XO ( )  : XS • 
f XE XL XR 

SI T T T     T T  T T T T m 
tl   ... _ T ----- - . _   02 
a T T 03 
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Figure 15.  Terminal Pair Matrix 
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NTC  TERMINAL   CHARACTERS 
XL     9        tTA   «KE . .LS .RS 

> >=     < <= C | 
SEN  tRC 

I OR   »_ tTA   «KE ._ .LS .»,S 
> >=     < <= £ | 
«EN  SRC 
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LFFT TERHINAL DELIMITERS 

NTC TERMINAL CHARACTERS 
XL  3   fTA .   .AB .LS .RS .N. .A, .V. .EV **  »NE *   /   ♦ 

*   ^a >>«<<«  n   £   |   .FX .TH .EO «■  ... t   «LI 
«AT XOE (   : SSI ;   «CO '«LC 

IDR «TA . .AB .LS jRS .N._.A,_.V. , EV ♦* _«NE_ ♦ _/__♦_ r _ ?  f 
,.  > >.<<*■,   i        |   .EX .TH .FO »■ "... ,   «LI «ÄT 
«DE ( :   «SI ;   «CO «LC 

XM  .   .AB .LS .RS .N. .A. .V. .EV **  «NE *   /   <   -   »   -.« 
>   >= <   <= -   £   |   .EX .TH .EO "  ... ,   «Ll (   : i 
«SI t «CO «LC 
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">.  < " <«  - E   |   .EX .TH ;EQ "  ... ,   «iTT   :   «SI 
;   «CO «LC 

XI  .AB .LS .RS .N. .A. .V. .FV *♦  «NF ♦/♦-«-.«  > ; 
>«  < <= - £   I   .EX .TH .EO "  t   «II f   :   «S! ; 
«CO «LC j 

X2  .N. .ft. .V. .EV **„ «NE *   /   ♦   -   *   "•">_>■< _^*_ 
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>.  < <=  -. E   |   ,EX .TH .EQ »»  ,   «LI (   :   «SI ; 
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X7  «NE * /   ♦ ""-   =   -»  >   >I.  <   <=  -.   £   f   .EX .TH 
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X7U .AB .LS .RS .N. .A. .V. .EV **  «NE •   /   ♦   -   =   -«  > 
>« < <= -. £   |   .EX .TH .EO '-     t   «LI f   :   «SI ; 
«CO «LC 

_X8 »-»-.= >   >»  <   <«  ^   £   |   ,EX .TH .EO ==  t 
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XBU .AB .LS .PS .N. .A. VV. . EV *♦  «NE ♦/♦-»-.«> 
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.cigure 19.  Right Terminal DeliD.iters. 
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4.2  Interpretation of the Kernel Grammar 

The MAD/I language can be described on several 

levels, each corresponding to a set of definitional rules, 

many of which can b« changed during the course of compila- 

tion.  At the bottom level  a set of lexicographic rule.' 

establishes the form of the various identifiers recognized 

by the compiler.  Thsse rules are effective during both the 

definition and compilation phases of operation, but are modi- 

fiable in either case by means of special statements direct ' 

to the lexicographic recognizer.  Each uniquely named identi- 

fier is stored as a separate entry in the symbol table; and, 

in some cases, identifierb of the same name may be stored 

separately in a pushdown fashion. 

Each symbol tabl3 entry corresponding to an identi- 

fier is g .en a set. of attributes which establish, among other 

things, the syntactic class of the entry.  The syntactic class 

of each entry is established either explicitl/ during the 

definitional phase or implicitly by default during the com- 

pilation phase.. The values assigned each class are chosen 

according to the interpretation desired, using Figure 9 of 

Section 4.1 as a guide.  By convention, certain types of 

identifie-s are assigned only in certain classes.  For instan-e, 

identifiers consisting of strings enclosed in primes are 

usually assigned in the  %SIMP, %DECL, %LIST, %COMP, and 

%END  classes (see Figure 9), since these correspond most 

closely with the notion of statement keyword rame.  Further- 
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more, identifiers consisting of strings enclosed in periods 

are usually assigned in either the unary or binary operator 

classes, since those correspond most closely with the notion 

of operator name as popularized in MAD/7090. 

A symbol table entry in the translator is created 

for each new identifier found during the scan of an input 

program.  By default, such an entry is assigned the syntactic 

class corresponding to operand  (%ID) .  The following 'exical 

structures are identified: 

1. Certain characters such as  "+" , "-" , and 

so forth. 

2. Certain two-character sequences (digrams) 

:;i ch as  "«a" , "< = " ) and so forth. 

3. Names constructed like MAD/7090 variable names, 

that is strings of letters and numbers, beginning with a 

letter. 

4. Names constructed as in (3) but enclosed in 

primes. 

5. Names cor ■ ucted as in (3) but enclosed in 

periods. 

6. Constants of various types. 

Identifiers of Types 1 and 2 above are usually in- 

terpreted as operators and grouping marks.  Identifiers of 

Type 3 above are usually interpreted as variable names which 

are assigned modes and other attributes in the usual fashion. 
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Identifiers of Type 4 are usually interpreted as the names 

of statements and certain constants such as  'TRUE'  and 

'FALSE.'  Finally, identifiers of Type 5 are usually inter- 

preted as names of operators at the expression level. 

An operand, either a variable or a constant, is 

assigned the syntactic class designated by MO     in Figure 9. 

In general, a parenthesized list may be substituted for an 

occurrence of an operand anywhere in the language.  Since the 

parsing algorithm used in the compiler does not make use of 

a table or productions, it is not, in general, possible to 

restrict the identification of an operand to exclude, say, 

a parenthesized list or an invalid mode combination where 

its use would traditionally be ruled invalid.  Such distinc- 

tions can be made only by the transformation machinery.  With- 

in the compile r, an operand is assumed to be represented by 

a pointer, either actual, as in the case of a register con- 

tents, or virtual, as in the case of an intermediary result 

curing expression evaluation. 

At any occurrence of an operand in an input program, 

the operand may be followed by the  at  sign  "@"  and a 

parenthesized list of attribute assignments,which consist of de- 

claration statements.  Such a structure is called the at- 

tribute notation and may be used in lieu of explicit declara- 

tions.  Any attribute assigned by the attribute notation is 

assumed global in scope and no machine computation is 

generated by its use. 
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The operations of subscription and of function eval- 

uation are presumed to produce a pointer as a result.  The 

function operation maps an operand on the left and a value 

on the right into an operand as the result.  The value on the 

right is assumed to be represented as a parenthesized list, 

perhaps including a sequence of values obtained as the results 

of a sequence of expressions.  For purposes of consistency, the 

result of a function evaluation is considered an operand, and 

the code produced by the compiler might well expect a called 

function to return a pointer to a value rather 'ban the value 

itself.  The subscription operation is considc_d a special 

case of the function operation.  The «ubscrijtion operator 

%TAr  is generated as the result of a terminal transformation 

(see Section 3.1).  The component selection operator  %KEY 

is used in much the same sense.  Note that the parameter list 

setup procedure prior to a nested function call is minimized 

by expecting the function to return a pointer to its result. 

Furwhermore, note that the subscription operation permits 

the use of indexed machine instructions when singly dimensioned 

vectors are involved.  In the case of multiply dimensioned 

arrays, a storage mapping function is presumed to map the 

set of multiple subscripts into a single subscript. 

The result of any operation which is assigned a 

pointer is formally a nonterminal symbol of the kernel gram- 

mar and is called a designator (DESj in the productions of 

Figure 7, Section 4.1.  On the other hand, the result of 

1 
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1 

any expression containing a unary or binary operator or rela- 

tion is assumed to be a value.  A value is distinguished 

from a designator by the fact tha  an operation other than 

address computation is involved and that an intermediate re- 

sult may be obtained which then must be stored in a temporary 

location.  It is this distinction that rules such expressions 

as  A(B).(C) va.Ud, but  (A+B) . (C)  invalid.  The notion cf 

value includes that of operand and may be applied to statements 

as well as expressions. 

The unary and binary operators involved in a partic- 

ular expression are ranked according to the traditional rules 

of precedence in the same manner as that popular in 7090 MAD, 

with an important exception:  where in 7090 MAD only one in- 

teger is assigned each operator in the ranking, in MAD/I two 

integers are assigned each operator (see previous section). 

One reason for this apparent complication is that some oper- 

ators naturally associate from right to left (e.g., substitu- 

tion and exponentiation), while other operators naturally 

associate from left to right (e.g., addition).  Thus the defini- 

tion of new operators within the present hierarchy involves 

the specification of two precedence "functions" or, alter- 

natively, the specification of one function and a statement 

as to whether the operator associates i.rom left-to-right or 

from right-to-left. 
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Figure 9, Section 4.2, shows all predefined operators 

in the kernel language and the precedence/cla.'js assignments 

for each.  All of those operators in terminal context classes 

6 through 8, except the substitution operator, map a value on 

the left and a value on the right into a value as the result. 

The substitution operator maps an operand on the left and a 

value on the right into an operand as the result.  With that 

interpretation, an embedded substitution statement can be 

used anywhere that an operand is expected, and can lead to 

some interesting and perhaps useful constructions   The result 

of any expression which is assigned a value is formally a 

nonterminal symbol of the kernel grammar and is called an 

assignment (ASN) in the productions of Figure 7.  An assign- 

ment is also a statement and may be used anywhere that a 

statement is valid. 

The various statements in the language may be 

organized into several categories on the basis of syntactic 

type.  All of these statements, with a single exception, can 

be identified by a keyword which is assumed to occur initial- 

ly.  The single exception is the assignment statement and its 

degeneracies discussed immediately above   Each identifying 

keyword is assumed a member of an equivalence class identi- 

fied by one of the metaterminal symbols  %SIMP, %COMP, %LIST, 

%D£CL, and %COMP  as appearing throughout the succeeding dis- 

cussions . 
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A statement of any syntactic type is assumed to be 

constructed of two units: the prefix, consisting of the identi- 

fying keyword followed by a known number of arguments of a known 

syntactic type, and the scope, consisting of an indefinite number 

of arguments, all of the same known syntactic type.  As used 

here, the term argument is applied to the nonterminal symbols 

for designator and assignment and, in addition, others which will 

be introduced from time to time.  Each argument, both in the 

prefix and in the scope, is separated by such symbols as comma 

and semicolon, and these features are used in conjunction wich 

context-dependent transformations in the generation of connec- 

tives and binding linkages among the arguments. 

A macro definition is associated with each statement- 

identifying keyword in the language.  Explicit calls upon the 

statement-scanning algorithm emitted from such a macro cause 

the arguments of the prefix to be scanned, and explicit connec- 

tives are generated wherever necessary to bind these arguments 

together and with the scope.  No attempt is made during this 

prefix scan to preserve the natural embedding structure of the 

kernel language; thus, some rather messy syntactic structures 

can be defined with a minimum of tricky grammatical specifica- 

tion.  It should be emphasized, however, that the entire 

prefix is interpreted in the kernel grammar as an instance of 

a met^terminal symbol which is a member of the same equivalence 

class of which the identifying keyword is a member. 
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The scope of a statement is a list of arguments sepa- 

rated by commas and semicolons.  This list is terminated by 

either a list separator or statement separator as established 

by special transformations unique to each statement type.  An 

argument may be one of the following nonterminal symbols, again 

depending upon statement type: 

1 Executable list element (LST) - either an assign- 

ment or an instance of the block notation   (The block notation, 

interpreted to represent a range of elements of a vector or 

array, is indicated by the  "   "  operator in the same manner 

as MAD/ 7090. ) 

2 Declarative list element (LSD) - either a desig- 

nator or a special notation developed from the subscript nota- 

tion and used in connexion with certain transformations. 

3 Statement (STM) - any of the statements described 

below and in addition the assignment  (ASN). 

Using the notions developed here, each of the several 

statement types can be described in terms of the type of its 

prefix and the type of list element in its scope 

An assignment statement consists of precisely the 

assignment itself, which may occur alone as a statement   In the 

typical case this statement will include the substitution 

operator  "=="  and will resu't in the assignment of a value 

to a variable   In fact, however, any expression, designator, 

or even a single identifier can stand alone as a statement   In 
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the most advanced case of degeneracy the statement is null and 

no operation is implied except perhaps the assignmer : of an 

entry point or statement label (viz., the old CONTINUE state- 

ment of MAD/7090).  A special transformation is available to 

detect thir. condition. 

A simple statement consists of a prefix of the  %SIMP 

class and a single STM argument in its scope,  A common degener- 

acy of the simple statement is a statement type consisting only 

of a prefix   In this case, the scope is null and a special 

transformation is available to establish the fact. 

A compound statement consists of a prefix of the 

%COMP  class followed by a scope of STM arguments separated by 

semicolons  ";" , and terminated by a keyword belonging to the 

%ENb  equivalence rlass.  A particularly useful convention has 

been adopted in the MAD/I syntax which provides for two forms 

of the "compound" statement.  But here the term "compound" 

refers to traditional MAD/7090 usage, and not to the more formal 

nomenclature used here   Of the two "compound" forms, the former, 

called the compound form of the "compound" statement, consists 

of a prefix terminated by a semicolon and followed by a scope 

as described ibove   The latter, called the simple form of the 

"compound" statement, consists of a prefix terminated by a com- 

ma and followed by a single STM argument.  In point of fact, the 

former is formally a compound statement  identified by a keyword 

of the  %COMP  class, while the latter is formally a simple 

statement identified by a keyword of the  %SIMP class.  Never- 
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theless, it is possible to make contextual distinctions depending 

upon the nature of th^ arguments within the prefix and to reas- 

sign the mrtaterminal symbol class of the statement prefix during 

the prefix sc.:n, so that one macro definition serves "compound" 

statements of both forms. 

A list statement consists of a prefix of the  "^LIST 

class followed by a scope of LST arguments separated by commas. 

Such statements most often are models of input/output statements 

in the language   For the purpose of scanning a statement pre- 

fix of any class, it is convenient to assign the metaterirmal 

symbol class of the prefix to the  %LIST  class; and, when the 

prefix scan is terminated, to reassign the prefix to that class 

appropriate for the scope scan. 

A declarative statement consists of a prefix of the 

%DECL  c^ass followed by a scope of LSD arguments   Such state- 

ments are most often models of the common declarations in the 

language   The arguments of the scope are constrained to exclude 

most arithmetic and logical operators; but, in particular, are 

permitted to contain those operations implied by subscription. 

Since the subscription operator  f%TAG)  can occur also in an 

executable list element, the macro transformation associated 

with its name must be replaced during the scan of a declarative 

list element   The mechanism for implementing this involves 

use of a pushdown stack which saves and restores these defini- 

tions as necessary. 
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A program consists of a prefix o. the  %LC  class fol- 

lowed by a scope of STM arguments separated by semicolons  ";" 

and terminated by a keyword of the  %RC  class.  The program 

represents, of course, the sargest structure identified during 

the compilation process and corresponds to a sentence in the 

kernel language   According to the usual interpretation, only 

one statement will occur in the scope, that is, the outermost 

function definition of the source program  Any additional state- 

ments in the scope represent an error condition.  Note that the 

metaterminal symbol  %RC  can be created explicitly as th« re- 

sult of a transformation or implicitly as the result of an end- 

of-file condition representing the end of the input text. 

V. STRUCTURE OF THE COMPILER 

The basic element in any MAD source prograiü is the 

identifier, used to stand for a program variable, constant, key- 

word, operator, or punctuation mark   An identifier is extracted 

from the input text using a set of lexicographic rules which 

are independent of its membership in these syntactic categories. 

Using these identifiers as atomic elements, strings representing 

expressions and statements can be constructed using the set of 

syntactic rules described in previous sections.  Each of these 

expressions and statements, and ultimately the program itself, 

has a semantic interpretation rule which assigns to each identi- 

fied syntactic construct a sequence of machine instructions and 
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procedure calls.  In this connection it is proper to say that 

the lexicographic recognition rules, the syntactic combinatorial 

rules, and the semantic interjretation rules are each indepen- 

dent of the others. 

The function of the major structural components of the 

MAD/I compiler parallel this 1 ex i ca 1-syntactic-semantic hier- 

archy.  Corresponding to the lexical recognition rules is a 

processor called ICODE which assembles sequences of input char- 

acters into identifiers   Corresponding to the syntactic recogni- 

tion rules is a processor called JSCAN which assembles each 

sequence of identifiers into a substitution instance of one of the 

rules of the kernel grammar   Associated with each rule of this 

grammar is a hierarchy of macro definitions which represents the 

semantic interpretation of the rule   A processor called INTERP 

interprets these macros and generates calls upon other dependent 

processors as well   Each nacro is written as a sequence of 

statements of a definitional metalanguage   The collection of 

all those macro definitions which define  MAD/I becomes m fact 

a specification of a dialect of the language; and in this sense, 

each different collection of macro definitions represents a 

different dialect of MAD/I 

The principal components of the MAD compiler inter- 

connect as shown in Figure 20.  All of these components share 

a common data structure, or symbol table, into which the rource 

program symbols are coded along with macro definitions, trans- 

lator variables, and certain intermediate parses   Each 
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component of the translator and, in principle, a significant 

fraction of the rather large symbol table can be shared among 

several concurrent jobs in the timeshared system. 

Compilation of a source program requires two passes. 

In the first pass, each identifier is extracted in turn from 

the source text, inserted in the symbol table along with default 

attributes, and assembled by INTERP either into statements of 

the definitional metalanguage or by JSCAN into sequences of macro 

calls.   During the first pass, attributes are collected and as- 

signed  o the various identifiers, and storage allocation in- 

formation is collected. 

During the interlude between the first and second pas- 

ses, the storage allocation information is processed and the 

object program storage requirements calculated.  conversion of 

constants from the external to the internal form is also per- 

formed at this time.  Finally, the default attributes are assigned 

all variables and constants which have not been specifically 

excepted by declaration statements during the first pas~. 

In the second pass, the macro calls generated during 

the f^rst pass are expanded and the corresponding object code is 

generated.  Much of the strategy used in the production of the 

object code from a macro call is established by the macro defi- 

nition itself, although certain often-used functions srch as 

mode conversion.«- and working register assignments are provided 

in assembly code rather than in interpreted macro code 
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5. 1  The Symbol Table 

The symbol table is the binding structure through 

which all the translator components exchange information. 

Every symbolic variable name expre« ed in the source program is 

represented in this table along with the symbolic representation 

of «source program constants.  In addition, all those internal 

symbols used in the various macro definitions are also represented 

in the symbol table   In particular, certain pre-constructed tables 

and macro definitions are assumed to be resident in  he symbol 

table before a source program translation can begin.  These tables 

and definitions are created during the definitional phase of 

transla or preparation, and in fact establish the MAD/I language 

structure. 

The symbol table consists of a large binary tree struc- 

ture, each node of which is represented by a unique symbolic 

na.7ie   in some cases a node may not be in fact named, so in 

these cases the node is identified by its ordinal position re- 

lative to another node.  A symbolic representation of nodal 

position in this tree has been established by ad-hoc convention 

in the following way;  A path from a particular node to its left 

son is called its link (LNK) while the path to its right son is 

called its extended attribute pointer (XAP),  A path between a 

node and any of its descendants can be established as th2 tra- 

verse of these links and extended attribute pointers indicated 

by successive applications of the two operators  ©  (link left) 

and  ®  (link right) expressed in postfix form.  For example. 
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*®©©©© 
represents the path from the node named  A  to the node 

named  B  in the tree: 

This simple notion can be expressed in a pseudo-algebraic man- 

ner in the following way:  For each  (jT) to the right of an 

expression such as 1, write a set of matching parens in their 

place.  Count the number of QL)  terms between an  (R)  on the 

left and the next  (R)  on the right and place this number within 

the parens represen.ing the  (R) on the left.  Thus, the expres- 

sion  A(2)(l) stands for the Expression 1.  Alternatively, in- 

stead of ordinal numeral identification, a node can be identified 

by name relative  tu another node.  Thus, if  C  is the name of 

a node as shown, then the notation  A(C)(B)  would designate the 

same node as 1.  This pseudo-a'.gebraic notation, called in the 
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sequel simply the att ribute notation, will be used henceforth. 

This notation is rather more compact than the previous for the 

kind of structures used here and is considerably easier to 

parse in definitions. 

Each node in the tree-structured symbol table is 

represented by a block of information including 

a the link pointer, 

b. the extended attribute pointer, 

c a four-entry class-code field (discussed presently), 

d. 'x  field containing an interpreted value assigned 

the nodo, and 

e. the name of the node (possibly null). 

The descriptor assigned each such node is the address of its 

link pointer, so that each link pointer on the left-son chain is 

in fact a descriptor to the next element on that chain, and 

each extended attribute pointer on the right-son chain is in fact 

a descriptor to the next element on that chain. 

The class code establishes whether the entry belongs 

to the class of variables or constants, macro names, or trans- 

lator variables, and so forth   The values assigned some of these 

codes are conditioned by the syntactic class to which the symbol 

belongs (as described previously in Section 2.3); the values of 

the remaining are chosen arbitrarily.  In particular, it is pos- 

sible to differentiate that symbol table entry which contains a 

name as a value from  hat entry which contains a self-defining 
I 

I 
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(.numerical) constant, so that the uses of the remaining fields 

in connection with the attribute notation do not conflict. 

The entries in the class code field are interpreted 

as a function of the class code value.  If the class code de- 

signates an operand (eg , variable name) in the source program, 

then these entries are interpreted as local attributes; that 

is, as one-byte attributes which themselves have no dependent 

attribute structure   These are referenced in the attribute 

notation as if they were standard symbol table entries with the 

"value" assigned such entries interpreted as the value of the 

entry itself   If the clas" code designates an operator (e.g., 

a keyword, operator, punctuation or grouping mark) in the source 

program, then these entries are interpreted as the syntactic 

type and left- and right-precedence functions respectively. 

The value field ;s designed to,among other things, 

contain a descriptor   A useful ad-hoc notation designating this 

value as opposed to the node itself takes the form uf subscript 

notation:  VAL(A(2)(1))  identifies that descriptor which is 

resident in the value field of the node identified by A(2)(l). 

However, a value field can contain either a name or an ordinal 

number, and these can be used in attribute notation expressions 

as well.  Thus,  A (VA1, (B (1) ) )  designates that node found by 

considering the contents of the value field of  B{1)  as either 

the name or the ordinal number of a node on the extended at- 

tribute chain of A , depending upon the class code assigned to 

3(1) ■  Similar notations can be developed for the other local 

attributes of the entry. 
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5.2  Lexical Recognizer 

Ali symbolic input to the translator is processed by 

ICODE, which assembles characters into symbolic names and con- 

stant reprei.ent at ions .  As part of this process, each unique 

symbol is assigned space in the symbol table along with default 

attribute assignments   Associated with each such symbol is its 

descriptor, which is used as its referent in all internal opera- 

tions.  For thrse purposes, not only the usual variables and con- 

stants are considered as symbol table entries, but grouping 

marks, keywords, and punctuation marks as well.  The principal 

function of ICODE then is to identify each occurrence of a 

symbol in the input stream and to replace this symbol by its 

descriptor for use in subsequent operations.  The recognition 

rules used by ICODE in these functions are mostly embedded with- 

in the processor itself, although some of these are table-driven 

and can be set at translation time. 

Each identifier used in a source program must be used 

in only one function   Therefore, obviously, the names assigned 

to elements in the classes of variables, constants, keywords, 

operators, and punctuation marks must not overlap.  In addition, 

the names of source program identifiers cannot overlap those 

used in statement definitions, including those used to define 

the source language itself.  To avoid the naturally occurring 

conflicts,  certain naming conventions have been established 

which represent sufficient conditions for uniqueness.   Thus, 

variables by convention start with a letter, constants with a 

_ - SSE   - 
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digit, keywords with a prime, and so forth.  These conventions 

are not necessary conditions however, and it is readily possible 

to assign any identifier to any syntactic class as long as 

uniqueness  criteria are observed. 

The lexicographic identification rules used by ICODE 

can be summarized as follows:  The set of available characters 

is partitioned into subsets of alphabetic, numeric, and special 

characters   Certain special characters stand alone as identi- 

fiers, including those normally used as arithmetic operators 

and punctuation marks   Certain other two-character sequences 

(digrams),  including some of the relational operators such 

as  >=,  <=  and the substitution operator  -- , stand only in 

juxtaposition as identifiers   A name consisting of a string 

of alphabetic and numeric characters, the first of which is an 

alphabetic character, stands as an identifier and is normally 

interpreted as a variable name.  A name consisting of a string 

of alphabetic and numeric characters enclosed in either periods 

"."  or primes  '""  stands for an identifier.  In the former 

case, such an identifier normally stands for a special operator 

such as  .ABS. , tho absolute-value operator; and in the latter 

case, such an identifier normally stands for a keyword such as 

'GO TO' , the name of the MAD/1 branch statement 

A constant is identified as a string of alphabetic 

and numeric characters, the first of which is a numeric char- 

acter.  The alphabetic characters in such an identifier are 

interpreted in such functions as scale factor and radix conversions 
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Character constants, that is, those constants that stand for 

themse1ves,are delimited by quotation marks  """ , between which 

the quotation mark is identified by two Juxtaposed quotation 

marks in the conventional fashion.  Although some default con- 

version attributes of constants are apparent in their explicit 

form, no attempt is made in the present MAD/I compiler to con- 

vert constants from the external form to the internal represen- 

tation until the entire source program has been scanned and all 

global declarations have been collected 

By convention, all symbols used in the definitional 

process are prefixed with percent signs  "%"  and all source 

program symbols are constrained so that the percent sign may 

not occur first   Normally, the translator can be described as 

being either in the definitional or translational state:  in the 

former, operator and statement macros are defined, and in the 

latter the source program is translated.  A switch is set in 

ICODE m the definitional state so that 

a   all constants are assumed to be of self-defined 

type, and 

b.  all symbols beginning with an alphabetic char- 

acter are prefixed by a percent sign. 

Nevertheless, if a constant is prefixed with a special keyword, 

then it is assumed to be a source program literal; and, if a 

variable name is prefixed with a percent sign, then the normal- 

ly occurring percent sign prefixing process is disabled for that 

symbol 
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5.3 Syntactic Recognizer 

The syntactic recognition algorithm (JSCAN) reads des- 

criptors from an input stream via IC'JDE and call« upon the macro 

interpreter (INTERP) with substitution instances of productions 

as arguments.  Some of these productions represent calls on 

macros which in turn generate connectives—floating addresses and 

local branches—and may call recursively on JSCAN.  Other produc- 

tions represent calls on macros which have as their primary ob- 

jective the production of machine code.  The first kind of produc- 

tions may loosely be described as statement macro calls and the 

second kind as operator macro calls, although the same INTERP 

machinery is used in both cases. 

The term prefiple is used as a generalization of MAD/ 

7090 triple. A prefiplc is composed of an operator followed by 

a list of its operands   The operand list may be of indefinite 

length, as in the case of the function and subscription oper- 

ator macro calls, and the operator will be one of those sum- 

marized in Figure 9, Section 4.1,  Some of the punctuation 

marks in the source program language are given the class of 

macro name for the purpose of JSCAN's operations.  Two of these 

currently treated in this manner are the colon and semicolon. 

In addition, certain operators are invented by terminal trans- 

formations detected by JSCAN   Two of these are  %NEG  and 

%TAG, neither of which can occur in a source program. 

JSCAN is built around an operator-precedence syntax 

analyzer to which is added a considerable number of contextual 

transformations.  These transformations (see Sections 3.1 and 
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3,2) are of two classes;  one involving an input stream context 

of two adjacent descriptors, the other involving a context of 

the two descriptors compared in the precedence relation.  Some 

transformations of each of these two classes are coded in the 

JSCAN algorithm itself; others are coded as macro definitions. 

The classical algorithm (cf. Floyd) which decomposes a 

stream of text into instances of productions uses a push-down 

stack in which both terminal and nonterminal characters are 

temporarily stored.  During the analysis, segmsnts of this stack 

are identified as a production, processed, and deleted by some 

sort of transformational machinery.  In the JSCAN case, each 

instance of a production is a prcfiple and is processed by INTERP. 

The processing involves the replacement of the production by a 

nonterminal character which occurs on the left of the equal signs 

in the table of productions (Figure 7, Section 4.1) 

In the particular algorithm used in JSCAN, the nonter- 

minal used to replace a production on the stack is always of 

operand class, so that, in general, no error checking is possible 

to differentiate among different productions which involve the 

same operators   However, if different nonterminals are associated 

with different mode classes, then the normal mode-context machin- 

ery will filter out syntax errors of this type.  Note that no- 

where in JSCAN itself does the mode of an operand play any part. 

The state of JSCAN at any time during compilation of a 

source program is determined by three descriptions:  NXTDSX, 

LSTÜSX, and STKDSX,  The first of these, NXTDSX, is the current 
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descriptor under scan, presumably supplied by ICODE.  The 

second, LSTDSX, is the descriptor read immediately prior to 

NXTDSX.  The third, STKDSX, is the first terminal descriptor 

found in the stack on a last-in to first-in search. 

The pair NXTDSX-LSTDSX represents a context which 

controls the terminal transformations.  Both NXTDSX and LSTDSX 

are members of equivalence classes of descriptors classified 

as described in Section 4.2.  The class numbers assigned to 

NXTDSX and LSTDSX are used as coordinates in the terminal con- 

text matrix; and the intersection of these coordinates gives 

access to an integer which is an index in a dspatch table which 

in turn leads to segments of machine code. 

The pair NXTDSX-STKDSX represents the context which 

drives the precedence algorithm, which is the nucleus of JSCAN. 

As in the previous case, the class codes of NXTDSX and STKDSX 

are used PS coordinates in the terninal context matrix which gives 

access to an integer which is an index into a dispatch table. 

The precedence relations themselves are established by two 

local attributes of NXTDSX and STKDSX.  The terminal context 

table in this case serves as a convenient handle to invoke 

precedence transformations. 

5 . 4  The Macro Interpreter 

The operation of all the translator processors re- 

volves about INTERP, the internal macro interpreter.  This 

processor interprets commands of a highly stylized definitional 

metalanguage used to control the decomposition of each source 
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statement in the program   Some of the commands of this meta- 

language are used to manipulate symbol table entries, create 

attribute structures, and assign values o^ each attribute. 

Others are used to invoke the other processors of the trans- 

lator, in particular ICODE and JSCAN.  Still others are used 

within INTERP  itself fox   the control of macro interpetatxon flow 

and the defnition of new macros. 

The principal definitional structure processed by INTERP 

is the macro, consisting of from two to half-a-hundred command 

lines   Each macro is named and may contain instances of para- 

metric substitutions   A macro is invoked when a command of that 

name is interpreted, and in such a case the parametric substitu- 

tions implied are executed   INTERP is so designed that a call 

can be made by another processor for the purpose of interpreting 

a single rommand line passed as an argument   INTERP will inter- 

pret this line and then return immediÄely to the calling proces- 

sor   If the command involved h^pens to be a macro name, then 

that macro is interpreted; and, if the ma .o contains a call on 

the calling processor itself, then the whole interpretation 

process recur ses 

A single macro definition is isiociated with each 

operator which may occur in a compiler source input expression; 

and, in addition, other macro transformations may be recursively 

dependent upon sv 'h operator macro definitions.  The set of 

transformations so defined are equivalent in scope to the de- 

finition facility built into MAD/70?0.  Each set of macro 
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definitions deiiving from an expressional operator name cor- 

responds to a define  sequence of MAD/7090 deriving from the 

sair. ' operator name.  Machinery for the specification of oper- 

ator precedence and mode context is provided. 

Tn addition to the class of operator macro trans- 

formations, a class of keyword macro transformations is included 

in the resident MAD/1 compiler   These macro definitions may 

call upon the same machinery and pseudo-operrtion pool as do 

the operator macro definitions, but, in addition, may call on 

those pseudo commands which control the operator-precedence 

grammar-parsing algorithm.  A single keyword macro definition 

is associated with each statement keyword available in the 

language.  The invocation of a keyword macro is in general con- 

text dependent, however, and is designed for convenience in 

the production of connectives, which consist of floating-address 

assignments and branches. 

A command line consists of a macro operator followed 

by a list of macru operands.  Both the operator and each of its 

operands are represented by descriptor expresssions, consisting 

of algebraic-like structures in which the various operators 

are interpreted as operations upon symbol table entries.  The 

result of the interpretation of either an operator or operand 

is a descriptor, which in turn points to a symbol table entry. 

If an operator designates a macro name, tne:i the symbol table 

entry represents a type of line directory which indexes each 

command line in the macro definition.  If the operator 
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designates a machine instruction name, then the symbol table 

entry represents an intricately codeH driving table for OCODE, 

a depenaent processor which emits the object program byte by 

byte   Finally, if the operator designates a pseudo-command name 

recognized by INTERP, then the symbol table entry represents a 

pointer to the processor entry in INTERP itself. 

The class of pi>cudj commands processed by INTERP in- 

cludes those which create elements of the attribute structure 

assigned to each symbol •ab1,.* entry and define the value as- 

signed to each of the components of this structure, those which 

invoke the other translator processors, such as JSCAN and ICODE, 
ft 

those which provide for the definition of new macros, and final-        ^ 

ly, those which provide a conditional interpretation capability. 

Each descriptor of each operand points to a symbol 

table entry.  The symbol table entries may be of any class, and 

some are allocated and deallocated dynamically by INTERP.  Each 

operand is represented by an expression structured in much the 

same way as a source program expression, although the operators 

and punctuation marks have different interpretations.  In par- 

ticular, the attribute notation (see Section 5.1) is subsumcö 

bodily, and the various arithmetic and logical operators are 

presumed to operate upon the descriptors themselves.  Certain 

special-purpose functions are defined to streamline some of 

the common operations 
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