USAAVLABS TECHNICAL REPORT 67-9D

AD

IN-FLIGHT MEASUREMENT OF ROTOR BLADE AIRLOADS, Bending moments, and motions, together with rotor Shaft loads and fuselage vibration, on a Tandem rotor helicopter

VOLUME IV

SUMMARY AND EVALUATION OF RESULTS

By

Richard R. Pruyn

November 1967

U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

CONTRACT DA 44-177-AMC-124(T) VERTOL DIVISION THE BOEING COMPANY MORTON, PENNSYLVANIA

This document has been approved for public release and sale; its distribution is unlimited.

¥ ø

CLARINGHOUSE CLARINGHOUSE Control Control A Control Internet Control A Control Internet Control A Control τ.

285

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in an, manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

DISPOSITION INSTRUCTIONS

.

Destroy this report when no longer needed. Do not return it to originator.

Ş., \$. .

and they •1

- in a min and t

١, 1 <u>ب</u> 4 'n Ś

,

, .

•

ŗ, ۰.

z, к М.

`` - '

やう

3

í,

ł

۲. ۲.

DEPARTMENT OF THE ARMY U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA 23604

This report has been reviewed by the U. S. Army Aviation Materiel Laboratories and is considered to be technically sound. The work was performed under Contract DA-44-177-AMC-124(T) for the purpose of measuring the dynamic air pressures on the blades of a tandem rotor helicopter and the resulting blade and shaft stresses and fuselage vibrations during flight. The report is published for the dissemination and application of information and the stimulation of ideas.

Task 1F125901A14604 Contract DA 44-177-AMC-124(T) USAAVLABS Technical Report 67-9D November 1967

IN-FLIGHT MEASUREMENT OF ROTOR BLADE AIRLOADS, BENDING MOMENTS, AND MOTIONS, TOGETHER WITH ROTOR SHAFT LOADS AND FUSELAGE VIBRATION, ON A TANDEM ROTOR HELICOPTER

VOLUME IV

SUMMARY AND EVALUATION OF RESULTS

D8-0382-4

by

Richard R. Pruyn

Prepared by

VERTOL DIVISION THE BOEING COMPANY Morton, Pennsylvania

for

U.S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

> This document has been approved for public release and sale; its distribution is unlimited.

SUMMARY

A program for the in-flight measurement of rotor blade airloads, blade bending, and the resulting control and rotor shaft loads and fuselage vibration response has been conducted on a CH-47A tandem rotor helicopter. The accomplishments of this project are documented in a multivolume report. A review and critique of the highlights of the flight test results, and a brief comparison of the results with theoretical predictions and with other rotor airloads data, are presented in this volume. Due to the large variety and great volume of data obtained, it is acknowledged that this effort has been of limited depth, and that considerably more value can be obtained from further analysis. However, some of each type of data are presented and illustrated, with the main objective of establishing a starting place for subsequent analysis.

The airload measurements obtained in this program are similar to the measurements obtained in other airloads programs. A significant exception is that single lifting-rotor helicopter data differ from the forward rotor data of a tandem. Apparently, the aft rotor produces an upwash which gives an increase in the airloads on the inboard region of the forward rotor. This effect results in an airload distribution that is similar to that which would be obtained with an increased blade twist of the forward rotor. For most longitudinal cyclic trim settings, the oscillations of the airloads of both tandem rotors tend to be similar to those of a single rotor, with intrarotor tip vortex intersections causing the predominant disturbances. Longitudinal cyclic trim settings can be obtained experimentally with the tandem helicopter which cause large airload pressure oscillations due to the intersection of forward rotor blade vortexes by the aft rotor blades. These pressure oscillations occur rapidly and do not appear to increase blade stresses, rotor shaft loads, or airframe vibration.

FOREWORD

This report consists of a review and evaluation of the data obtained in a program conducted under Contract DA 44-177-AMC-124(T) for the measurement of dynamic airloads on a tandem rotor helicopter. Discussion of data comparisons which show consistency and accuracy of the data and some theoretical comparisons are presented. It is noted that this effort considerably exceeds the general requirements of this contract, which are to:

"Instrument a government-furnished CH-47A helicopter to observe and record for two (2) basic flight conditions the following in-flight data:

- a. Rotor blade differential pressure
- b. Rotor blade strain and motion
- c. Control strain and motion
- d. Rotor hub and shaft loads
- e. Fuselage vibration response

Prepare and submit a draft final report in triplicate in accordance with USATRECOM regulation 715-10. Graphical presentation of the performance data, together with sections including structural and flight test data, shall be included."

These requirements have been exceeded in that additional data were acquired; these data have received preliminary analysis and evaluation, and are ready for subsequent detailed analysis.

In this volume, brief descriptions are given of instrumentation, data system, and flight testing aspects of this project with the supporting details reported in the other volumes of this report. These volumes are as follows:

.) .

Volume	ï,	Instrumentation and In-Flight Recording System
Volume	II,	Calibrations and Instrumented Component Testing
Volume	III,	Data Processing and Analysis System

The findings of this project are also discussed in references 17 and 19, and tabular data summaries, references 4 and 20, are

V

available. Flight testing dotails are reported in reference 25. An extension to this program to obtain data under extreme operating conditions produced additional tabular data which are included in reference 4, and a fifth volume of this report, as follows:

Vo.ume V, Investigation of Blade Stall Conditions

This project was conducted under the technical cognizance of William T. Alexander, Jr., of the Aeromechanics Division of USAAVLABS. The author of this report is Richard R. Pruyn, who also served as the Boeing-Vertol Project Engineer. Other Vertol Division personnel who contributed significantly to the success of this project are:

Pro	oject Group
w.	J. Grant
A.	Meyer
W.	Koroljow
Ε.	Haren
J.	Fries

J. W. Obbard G. Eliason

Data Systems

Flight Test

Instrumentation	<u>Operations</u>	Pilot
R. Golub W. McLachlan H. Fairchild	T. Danford R. Reber	E. Nelson

The consultation and assistance of F. D. Harris and J. Liiva of the Vertol Aerodynamics Staff are also gratefully acknowledged.

. ļ

CONTENTS

																		Page
SUMMARY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	iii
FOREWORD	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
LIST OF	ILLU	JSTR	lta	ON	5	•	•	•	•	•	•	•	•	•	•	•	•	ix
LIST OF	TABI	ES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	xx
LIST OF	SYME	BOLS	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xxiii
INTRODUC	TION	1	•	•	•	•	•	•	•	•	•	•	•	٩	٠	•	•	1
DESCRIPT	ION	OF	TES	ST :	ITE	м	٠	•	•	•	•	•	•	•	•	•	•	7
ROTO	R BI	ADE	s	•	•	•	•	•	•	J	•	٠	•	•	•	•	•	7
P.OTO	R SH	1AF I	'S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17
ROTO	RC	ONTR	OL	SY	STE	М	•	•	•	•	•	•	•	•	•	•	٠	17
AIRF	RAME	2	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	20
GENE	RAL	INS	STRU	IMEI	ATA'	TIO	N C	HAR	ACT	ERI	STI	cs	•	•	•	•	•	26
EXPERIME	NTAI	DR	OCE	DUH	RE	•	•	•	•	•	•	•	•	-	•	•	•	29
TEST	PRC	GRA	М	•	•	•	•	•	•	•	•	•	•	•	•	•	•	29
IN-F	LIGH	IT C	ALI	BRA	ATI (ons		•	٠	•	3	•	•	•	•	•	•	30
DATA	ACC	QUIS	ITI	ON		٠	•	•	٠	•	٠	•	•	•	•	•	•	38
DATA	PRC	OCES	SIN	IG	•	•	•	•	•	•	•	•	•	•	•	•	٠	41
EXPERIME	NTAI	RE	SUL	лs		•	•	•	•	•	•	•	•	•	•	٠	•	51
ROTO	r ai	RLO	ADS	5	•	•	•	•	•	•	•	•	•	•	•	٠	•	51
ROTO	R BI	ADE	BE	NDI	ING		•	•	•	•	•	•	•	•	•	•	•	108
CONT	ROL	SYS	TEM	L	DAD	s	•	•	•	•	•	•	٠	•	•	•	•	121

vii

e,

CONTENTS

																		Page
	ROTO	R SI	HAF!	r LC	AD	S	•	•	•	•	•	•	•	•	•	•	•	132
	AIRF	RAM	E V	IBRA	TI	ON	•	•	•	•	•	•	•	•	•	0	•	133
	PERF	ORM	ANCI	e an	ID '	TRI	м	•	•	•	•	•	•	•	•	•	•	140
	BLAD	EF	LAPI	PINC	5	•	•	•	•	•	•	٠	•	•	•	•	•	146
EVA	LUATI	ON .	AND	AN A	γLΧ	SIS	OF	RES	ULI	rs	•	•	•	•	٠	•	•	159
	THEO	RET	ICA	L CO	OMP	ARI	SONS	5	•	•	•	•	٠	•	•	•	•	159
	COMP	ARI	SON	WIJ	гн	DAT	A FI	ROM	OTH	IER	PRC	OGRA	AME	•	•	•	•	170
	EVAL	UAT	ION	OF	DA	TA Z	ACCI	URAC	CY	•	•	•	•	•	•	•	•	181
CON	CLUSI	ONS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	195
	AIRL	OAD	S D	ата	•	•	•	•	•	•	•	•	•	•	•	٠	•	195
	BLAD	E B	END	ING	MO	MEN	rs	•	•	•	•	•	•	•	•	•	•	198
	SHAF	T A	ND	CON	ľ RO	L L	OADS	5	•	•	•	•	•	•	•	•	•	198
	VIBF	ati	ON	•	•	•	•	•	•	•	•	•	•	•	•	•	•	199
	TRIM	I AN	D PI	ERFO	ORM	ANC	E	•	•	•	•	•	•	•	•	•	•	199
REC	OMMEN	IDAT	ION	s	•	•	•	•	•	•	•	•	•	•	•	•	•	200
BIB	LIOGF	RAPH	Y	¢	•	•	•	•	•	•	•	•	•	•	•	•	•	202
APP	ENDIX	ES																
	I.	Fli	ght	Te	st	Acc	omp	lisl	mei	nt s	Sum	nar	Y	•	•	٠	•	205
	II.	Ins	tru	men	tai		Di	scre	epar	ncie	es 1	Enco	oun	ter	ed	in		0.40
		Use	ful	Dat	ta	Fli	ght	S	•	•	•	•	•	•	•	•	•	242
DIS	TRIBI	JTIO	N	•	•	•	•	•		•		•		•		•	•	257

viii

Figure		Page
l	Relation of Program to Experience and Planned Future Efforts of Contractor	4
2	External Configuration of Test Aircraft	5
3	General Arrangement of CH-47A Helicopter as Tested	8
4	Schematic Diagram of Rotor Blade Geometry	10
5	Installation of Pressure Transducers on Rotor Blade Tip	11
6	Rotor Blade Instrumentation Locations	12
7	Comparison of Static Shake Test and Calculated Flapwise Rotor Blade Natural Frequencies	14
8	Comparison of Static Shake Test and Calculated Torsional Rotor Blale Natural Frequencies	15
9	Comparison of Static Shake Test and Calculated Chordwise Rotor Blade Natural Frequencies	10
10	Calculated Blade Mode Shapes and Nodal Points Obtained in Nonrotating Blade Response Tests	18
11	General Arrangement of Instrumented Rotor Shafts	19
12	Aerodynamic Characteristics of CH~47A Airframe at Zero Sideslip	23
13	Location and Orientation of Fuselage Response Accelerometers	25

¥

1

ix

<u>Fiqure</u>		Pac	<u>qe</u>
14	Schematic Diagram of Relationships Between the Various Measurements Obtained	•	27
15	Accuracy of Processed Data as Estimated from Calibrations and Recording/Reproducing System Data	•	28
16	Perspective Illustration of Primary Parameters of Test Conditions	s •	31
17	Retreating Blade Tip Operating Conditions Tested	•	32
18	In-Flight Calibration of Boom-Mounted Airspeed Sensor and Airspeed Data System .	•	34
19	Typical Variation of Airspeed Indications During a High-Speed Calibration Run	•	35
20	Comparison of Theoretical and Experimental Position Error Variation with Airspeed	•	36
21	In-Flight Calibration of Sideslip Vanes Against Driftmeter Reference	•	37
22	Comparison of Actual Test Conditions with Desired Nominal Test Conditions	•	39
23	Differences Between Nominal and Achieved Cyclic Trim Settings	٠	40
24	Average Translational Accelerations of Test Aircraft During Steady Test Point Data Acquisition		45
25	Average Rotational Acceletations of Test Aircraft During Steady Test Point Data	-	
	Acquisition	•	46
26	Comparison of the Two Sideslip Vane Readings Showing Statistical Confidence of Measure-		
	ments	•	47

ť

Figure		Page
27	Data Flow Schematic Diagram	48
28	Drift Corrections Achieved in Ground Functional Testing	49
29	Illustration of Fourier Series Terms and Definition of Alternating Value Used for Data Preparation	50
30	Variations in Harmonics of the Airload Pressures at 95-Percent Radius and 9-Percent Chord Due to Wind Direction While Hovering .	53
31	Alternating Local Blade Pressure Values at 85-Percent Radius and 4-Percent Chord for a Summary of Level Flight Conditions	54
32	Effect of Sideslip on Alternating Airloads in Transition and at 80 Knots	58
33	Variation of Typical Alternating Airloads with Cyclic Trim Setting	59
34	Measurements of Alternating Airload Pressures Obtained During Maneuvers at 80 Knots	60
35	Azimuthal Variation of Airload Pressures at 85+Percent Radius for Three Chordwise Locations for a "Spiking" Trim Condition	61
36	Azimuthal Variation of Airload Pressures at 98-Percent Radius and 9-Percent Chord	62
37	Effects of Longitudinal Cyclic Trim on Azimuthal Variation of Airload Pressure at 85-Percent Span, 9-Percent Chord	63
38	Azimuthal Variation of Airload Pressure at 85-Percent Span, 9-Percent Chord for a High-Gross-Weight, Low-Speed Flight	
	Condition	66

:

xi

Figure		Pay	<u>e</u>
39	Effects of Sideslip in Transition on Azimuthal Variation of Airload Pressure at 85-Percent Radius and 9-Percent Chord	, (67
40	Contour Plot of Airload Pressures at 9-Percent Chord of the Forward Rotor at 108 Knots	. (69
41	Contour Plot of Airload Pressures at 9-Percent Chord of the Aft Rotor at 108 Knots	•	70
42	Chordwise Pressure Distributions Measured on Advancing Side of Rotor Disk at 108 Knots Airspeed and 26,000 Pounds Gross Weight	•	73
43	Chordwise Pressure Distributions Measured on Retreating Side of Rotor Disk at 108 Knots Airspeed and 26,000 Pounds Gross Weight.	•	75
44	Typical Chordwise Pressure Distributions of Aft Rotor when in Proximity of Forward Rotor Tip Vortex	•	77
45	Chordwise Distribution of First Harmonic Airloads at 85 Percent of the Blade Radius for Three Tests	•	78
46	Chordwise Distribution of Second Harmonic Airloads at 85 Percent of the Blade Radius for Three Tests	•	79
47	Effect of Forward Speed on the Radial Distribution of the Azimuthal Average Lift per Unit Span	•	81
48	Azimuthal Average Lift per Unit Span in Hover at Three Gross Weights	•	82
49	Typical Azimuthal Variation of Lift per Unit Span for Three Outboard Stations of Forward Rotor Blade	_	86

;

2

Ŧ

<u>Fiqure</u>		Page
50	Typical Azimuthal Variation of Lift per Unit Span for Three Outboard Stations of Aft Rotor Blade	87
51	Contour Plot of Lift per Unit Span for Forward Rotor at 108 Knots	88
52	Contour Plot of Lift per Unit Span for Aft Rotor at 108 Knots	89
53	Effects of Sideslip in Transition on Third Harmonic Airloads	90
54	Effects of Cyclic Trim on Third Harmonic Airloads Measured at 100 Knots	91
55	Effects of Thrust Coefficient on Third Harmonic Airloads at an Advance Ratio Near 0.15	92
56	Effects of Advance Ratio on Third Harmonic Airloads of Forward Rotor ($C_{\rm TW}/\sigma$ = 0.070)	93
57	Effects of Advance Ratio on Third Harmonic Airloads of Aft Rotor ($C_{\rm TW}/\sigma$ = 0.070)	94
58	Effects of Advance Ratio on Sixth Harmonic Airloads	95
59	Typical First and Second Harmonic Airloads at an Advance Ratio of 0.25	97
60	Typical Third and Fourth Harmonic Airloads at an Advance Ratio of 0.25	98
61	Typical Fifth and Sixth Harmonic Airloads at an Advance Ratio of 0.25	99
62	Typical Seventh and Eighth Harmonic Airloads at an Advance Ratio of 0.25	100

xiii

<u>Fiqure</u>		P	age
63	Typical Ninth and Tenth Harmonic Airloads at an Advance Ratio of 0.25	•	101
64	Azimuthal Variation of Pitch Axis Pitching Moment per Unit Span for Three Outboard Stations of Rotor Blades	•	103
65	Effect of Gross Weight on Pitch Axis Pitching Moment per Unit Span of Forward Rotor Near 110 Knots Airspeed	•	105
66	Contour Plot of Oscillating Pitch Axis Pitching Moment per Unit Span for Forward Rotor at 108 Knots	•	106
67	Contour Plot of Oscillating Pitch Axis Fitching Moment per Unit Span for Aft Rotor at 108 Knots	•	107
68	Typical Variation with Radius of Alternating Flapwise Bending Data Obtained in Level Flight	•	111
69	Effect of Airspeed on Alternating Flapwise Bending of Forward Rotor Blades in Level Flight	•	112
70	Effect of Airpseed on Alternating Flapwise Bending of Aft Rotor Blades in Level Flight	•	113
71	Effect of Sideslip on Rotor Alternating Flapwise Bending at 25-Percent Radius in Transition and at 80-Knots	•	114
72	Azimuthal Variation of Blade Flap Bending Measured at 25-Percent Radius of the Forward Rotor	•	115
73	Azimuthal Variation of Blade Flap Bending Measured at 25-Percent Radius of the Aft Rotor		116

<u>Figure</u>		<u>Paqe</u>
74	Harmonic Content of Flapwise Bending Moments at 125 Knots Airspeed and 33,000 Pounds Gross Weight	. 117
75	Steady Flapwise Bending Moment Distribution i Hovering and at 60 Knots with a Gross Weight of 33,000 Pounds	.n . 118
76	Effect of Airspeed on Steady Flapwise Bending Moments at 55-Percent Radius	. 119
77	Comparison of Second Harmonic Amplitudes of Flapwise Bending and Lift per Unit Span as Measured Near Antinode of First Flapwise Bending Mode for Forward Rotor	. 122
78	Comparison of Second Harmonic Amplitudes of Flapwise Bending and Lift per Unit Span as Measured Near Antinode of First Flapwise Bending Mode for Aft Rotor	. 123
79	Comparison of Fifth Harmonic Resultants of Lift per Unit Span and Blade Bending Near the Antinode of Second Flap Bending Mode for Forward Rotor	. 124
80	Comparison of Fifth Harmonic Resultants of Lift per Unit Span and Blade Bending Near the Antinode of Second Flap Bending Mode for Aft Rotor	. 125
81	Azimuthal Variation of Chordwise Blade Bending Moments at 124 Knots	. 126
82	Harmonic Content of Chordwise Blade Bending Moment of 124 Knots	. 127
83	Harmonic Content of Torsional Moments at 124 Knots	. 128
84	Fifth Harmonic Torsional Moments at 13-Percer Radius as Measared in Level Flight	nt . 129

u,

<u>Fiqure</u>		Pa	ge
85	Alternating Control Loads Produced by Forward Instrumented Rotor Blade	•	130
86	Alternating Control Loads Produced by Aft Instrumerted Rotor Blade	•	131
87	Harmonic Content of Rotor Pitch Link Loads at Three Airspeeds	•	134
88	First Harmonic Shaft Shear Data Measured in Level Flight	•	135
89	Effect of Cyclic Trim on First Harmonic Longitudinal Shaft Shear	•	136
90	Harmonic Content of Typical Shaft Shear Data	•	137
91	Third Harmonic Cockpit Vibration of Test Aircraft in Level Flight	•	138
92	Effect of Sideslip on Cockpit Vibration .	•	139
93	Vertical Third Harmonic Vibration Amplitude Distribution in Test Aircraft	•	142
94	Nondimensional Rotor Performance of Test Aircraft	•	143
95	Effect of Sideslip on Performance in Transition and at 80 Knots	•	144
96	Effects of Longitudinal Cyclic Trim Setting on Trim and Performance at 100 Knots for a Gross Weight of 33,000 Pounds	•	145
97	Collective Pitch Settings Required in Level Flight at a Grcss Weight of 33,000 Pounds .	e	149
98	Variation of Normalized Blade Coning Angle		150

Figure		<u>Page</u>
99	Normalized First Harmonic Longitudinal Blade Flapping with Respect to the Control Axis for the Forward Rotor	. 151
100	Normalized First Harmonic Longitudinal Blade Flapping with Respect to the Control Axis for the Aft Rotor	. 152
101	Comparison of Blade Flap Motion to First Harmonic Flapping Moment Airloads Data	. 153
102	Comparison of Blade Flap Motion to Second Harmonic Flapping Moment Airloads Data	1.55
103	Comparison of Blade Flap Motion to Third Harmonic Flapping Moment Airloads Data	, 157
104	Comparison of Typical Azimuthal Averaged Airload Pressures with Theoretical Airfoil Pressure Distribution for Steady Motions	. 162
105	Effect of Advance Ratio on Typical Non- dimensional Airload Pressures at 85-Percent Radius of the Forward Blade	. 163
106	Initial Comparison of Lift-per-Unit-Span Data with Aeroelastic Nonuniform Downwash Rotor Analysis	. 164
107	Comparison of Theoretical and Measured Average Loading of Forward Rotor	. 165
108	Initial Comparison of Normal Force Coefficient Data to Theoretical Prediction of Rigid Blade Nonuniform Downwash Analysis	: . 166
109	Comparison of Theoretical and Measured Collective Pitch Values for Forward Rotor	. 167
110	Comparison of Theoretical and Measured Collective Pitch Values for Aft Rotor	. 168

xvii

....

riqure	<u>P</u>	<u>aqe</u>
111	Effect of Advance Ratio on Prediction of Rotor Shaft Torque by Uniform Downwash-Rigid Blade Analysis	169
112	First Quadrant Chordwise Airload Distributions as Measured Near 110 Knots in Four Similar Full-Scale Airloads Measurement Programs	171
113	Second Quadrant Chordwise Airload Distributions as Measured Near 110 Knots in Four Similar Full-Scale Airloads Measurement Programs	173
114	Third Quadrant Chordwise Airload Distributions as Measured Near 110 Knots in Four Similar Full-Scale Airloads Measurement Programs	175
115	Fourth Quadrant Chordwise Airload Distributions as Measured Near 110 Knots in Four Similar Full-Scale Airloads Measurement Programs	177
116	Comparison of Chordwise Distribution of Azimuthal Averaged Airload Pressure from Various Airloads Programs	182
117	Comparison of Chordwise Loading Harmonics of Other Airloads Programs with Forward Rotor Data	183
118	Comparison of Third Harmonic Airloads Flight Test Data to Airloads Measured on a Wind Tunnel Tandem Rotor Model	184
119	Comparison of Normal Force Coefficient Data as Measured at 85-Percent Radius on Single Rotor and on Forward Rotor of Tandem	185
120	Comparison of Forward Rotor Lift Measurements Obtained from the Azimuthal Averaged Airloads to Run Gross Weight	188

xviii

<u>Fiqure</u>		<u>Paqe</u>
121	Comparison of Aft Rotor Lift Measurements Obtained from the Azimuthal Averaged Airloads	
	to Run Gross Weight \ldots \ldots \ldots	189
122	Azimuthal Averaged Rotor Blade Aerodynamic Pitching Moment Data	190

xix

TABLES

<u>Table</u>		<u>Page</u>
I	Relationships Between Present Tests and Existing Rotor Airloads Data	3
II	Principal Dimensions and Physical Characteristics of Test Rotors	.7
III	Dimensions and General Data of Test Aircraft	20
IV	Dynamic Response Characteristics of CH-47A Airframe	24
v	Parameters of Airloads Tests Compared in Figures 112 through 115	179
VI	Estimated Data Accuracy Based on Comparison of Results	191
VII	Flight Test Data Point Requirements	206
VIII	Flight Test Points Obtained During Flight 384	211
IX	Flight Test Points Obtained During Flight 386	212
x	Flight Test Points Obtained During Flight 389	214
XI	Flight Test Points Obtained During Flight 390	216
XII	Flight Test Points Obtained During Flight 391	218
XIII	Flight Test Points Obtained During Flight 393	221
XIV	Flight Test Points Obtained During Flight 394	225

xx

TABLES

<u>Table</u>		<u>Paqe</u>
xv	Flight Test Points Obtained During Flight 395	228
XVI	Flight Test Points Obtained During Flight 397	231
XVII	Flight Test Points Obtained During Flight 398	214
XVIII	Flight Log of Test Points Accomplished	235
XIX	Test Pcints Accomplished at 26,000 Pounds Gross Weight	236
XX	Test Points Accomplished at 33,000 Pounds Gross Weight	238
XXI	Test Points Accomplished at 37,000 Pounds Gross Weight	240
XXII	Test Points Accomplished in Extended Program .	241
XXIII	General Instrumentation Discrepancies	242
XXIV	Specific Instrumentation Discrepancies - Flight 384	243
xxv	Specific Instrumentation Discrepancies - Flight 386	244
XXVI	Specific Instrumentation Discrepancies - Flight 389	246
XXVII	Specific Instrumentation Discrepancies - Flight 390	247
XXVIII	Specific Instrumentation Discrepancies - Flight 391	248
XXIX	Specific Instrumentation Discrepancies - Flight 393	249

ххi

TABLES

<u>Table</u>		<u>Page</u>
XXX	Specific Instrumentation Discrepancies - Flight 394	251
XXXI	Specific Instrumentation Discrepancies - Flight 395	252
XXXII	Specific Instrumentation Discrepancies - Flight 397	253
XXXIII	Specific Instrumentation Discrepancies - Flight 398	255

xxii

,

a	lag damper moment arm length, inches
A _K	Fourier coefficient of Kth harmonic cosine term in positive series of sine and cosine terms (see equation (2))
b	number of blades per rotor
в _К	Fourier coefficient of Kth harmonic sine term in positive series of sine and cosine terms (see equation (2))
с	rotor blade chord, inches
C	mean aerodynamic chord, equal to blade chord for rectangular planform rotor blades, inches or feet
cg	center of gravity
c _{do}	average rotor profile drag coefficient
°n	normal force coefficient obtained from two- dimensional airfoil data
<u>c</u> n	azimuthal average value of normal force coefficients obtained from two-dimensional airfoil data
C _{NP}	normal force coefficient calculated from pressure measurements using theoretical local resultant velocity
C _{NP}	azímuthal average of rormal force coefficients obtained from pressure measurements
cp	rotor power coefficient
CPP	rotor parasite power coefficient
C _{TW}	thrust coefficient based on run gross weight - for mid-cg, $C_{TW} = RGW/2\rho \pi R^2 (\Omega R)^2$

.

e _β	flapping hinge offset, inches
e _ζ	lag hinge offset, inches
£	rotor hub torque offset, inches (see Figure 4), or helicopter equivalent parasite drag area, square feet
a	the acceleration of gravity, 32.2 feet per second per second
IGE	in ground effect, defined for this project as an altitude with a wheel-to-ground clearance of approximately 10 feet
к	harmonic number based on rotor rotational frequency - K = 0 for azimuthal average terms
ĸi	induced power factor resulting from nonuniform downwash
к ₁ ,к ₂	constants of an exponential function used to smooth the values of $p(x)$ - values determined for given test point and radius by least-squares fit of $p(x)$ measurements
ℓ ^ℓ K	Kth harmonic airload ratio, Kth harmonic resultant of lift per unit span divided b_{y} the ratio of the run gross weight to the blade tip radius
LF	lift force produced by airloads on the fuselage, pounds
LS	lift per unit span, integration of chordwise pressure distribution at particular radius and azimuth position, pounds per inch
LS _K	Kth harmonic resultant of lift per unit span per
	inch

M(.85,270) Mach number at 85-percent radius of the retreating blade at 270 degrees azimuth

xxiv

M(1.0,90)	Mach number at the tip of the advancing rotor blade at 90 degrees azimuth
M(1.0,270)	Mach number at the tip of the retreating rotor blade at 270 degrees azimuth
^{MF} 325	pitching moment produced by airloads on the fuselage, aerodynamic center assumed to be at station 325, foot-pounds
n	upper limit value of K considered in Fourier analysis of data, commonly 12 for this project
OAT	outside air temperature, °C
OGE	out of ground effect, defined for this project as an altitude greater than 200 feet from the ground
p(x)	azimuthal average airload pressure at a given radius and at chordwise location x, pounds per square inch differential
P	blade pitch control arm length, inches
РМ	pitching moment per unit span determined by integrating airload moments about a particular chord reference position
đ	dynamic pressure, pounds per square foot
r	distance from the center of rotation to a particular blade station, inches
R	rotor blade tip radius, inches
RC	root cutout, radius to beginning of airfoil section of blade with blade at zero lag, inches
RGW	run gross weight, pounds
RHDL	region of high dynamic loads
RK	resultant amplitude of Kth harmonic in a positive series of sine terms (see equation (3))

S _{A1}	longitudinal first harmonic shaft shear to rotor lift ratio; for mid-cg as tested,rotor lift was assumed to be one-half of the run gross weight
t	time, seconds
TAS	true airspeed, knots
TOGW	takeoff gross weight of helicopter, pounds
TPN	test point number
U	resultant velocity in the plane of the chord at a particular blade station and azimuth divided by ΩR
v	resultant velocity, feet per second
x	distance measured parallel to centerline of air- frame or chordwise distance on blade from leading edge, inches
У	distance from centerline of airframe measured in plane of the waterlines, inches
Y	any arbitrary parameter used for illustrative purposes only
Z	distance measured in direction perpendicular to fuselage waterlines, inches
α	local angle of attack, degrees
αs	angle of inclination of rotor shaft (used for comparative wind tunnel data only), positive when inclined toward the drag vector, degrees
≃a(1.0,270)	approximate angle of attack of the retreating blade tip as calculated assuming uniform downwash and rigid blades
βAIC	longitudinal first harmonic blade flapping amplitude with respect to the control axis, degrees

xxvi

ΔP

differential pressure (lower surface upper surface) measured at a particular span, chordwise position, and azimuth angle (instantaneous), pounds per square inch differential

ΔPK

Kth harmonic resultant of local blade pressure at a given radius and chordwise location, pounds per square inch differential

ζ

θ_{Bl}

٥

σ

longitudinal cyclic blade pitch (longitudinal cyclic trim control on tandem helicopter), degrees

blade lag angle, degrees

μ' rotor advance ratio, calibrated true airspeed of helicopter divided by the rotational tip speed of the rotors

mass density of air, slugs per cubic foot

rotor solidity, $\sigma = b\bar{c}/\pi R$

v rotor azimuth angle, measured in direction of rotation from position over the centerline of the helicopter when blade tip is pointing aft

wnc natural frequency of lag motion of rotor blades, cycles per second

- Ω rotor rotational speed, radians per second

xxvii

Note: A consistent symbol definition has been used in this report to designate the flight which was the source of the data. The symbols used are as follows:

Symbol	Flight <u>Number</u>
0	384
Δ	386
Δ	389
\diamond	390
Δ	391
٥	393
Δ	394
♦	395
0	397
	398

xxviii

INTRODUCTION

The evolution of the helicopter has reached a point at which there will be greatly increased competition for the next generation models. This competition will be intensified by the fact that there do not appear to be any significant new increases available in speed or any other measure of the performance of the helicopter. Exploration of the maximum reasonable speed envelope of the helicopter by flight research vehicles has not uncovered any new findings which would indicate that the predicted performance limitations of the rotor can be efficiently broached. However, it seems likely that the helicopter, with its excellent hovering and low-speed maneuvering capability, will not be replaced but will only be supplemented by VTOL vehicles which are capable of greater speeds. Therefore, the competitive feature of the next generation of helicopter models will be that of extreme efficiency. Weight compromises presently made to achieve acceptable vibration levels are significant in present helicopters, and therefore efficiency can be improved by reducing vibratory loads. Structural efficiency achieved by proper tuning of the aerodynamic-dynamic system to reduce dynamic loads also appears to be relatively unexploited. While some attempts in these directions have been made, a much finer resolution of the aerodynamic excitations on the rotor is required. A key to this understanding has been made available by the measurement of rotor airloads.

While obvious to the rotor aeroelastician, it should be pointed out that rotor blade sections routinely experience larger variations in operating conditions with every revolution than the sections of most airplane wings ever experience. It would require a near-sonic acrobatic airplane which could fly backward to duplicate all the normal operating conditions of rotor blade sections. Of particular importance for the rotor is the large rate of change of conditions which occurs, since all these variations happen each revolution. The analogous situation in the airplane occurs in a rapid pullup. This maneuver has been known to produce considerably larger lift than would be expected from quasi-static airfoil data, due to the time-dependence of aerodynamics at high angles of attack. As shown in reference 5, the primary parameter of this phenomenon is $\left(\frac{\overline{C}}{V}\right)\frac{d\alpha}{dt}$, and time-dependence becomes significant when this parameter has a value in excess of 0.003. Rotor blade sections for typical levelflight cruising conditions (120 to 140 knots) routinely experience changes in angle of attack of 10 to 12 degrees, or considerably higher if disturbed by a tip vortex. If it is

conservatively assumed that this angle-of-attack variation is sinusoidal and that the advance ratio of the rotor is 0.3, the angle-of-attack rate parameter for the retreating tip of a blade wit aspect ratio of 15 is 0.02. This value is nearly one order of magnitude larger than the boundary value, so it should not be surprising to find that time-dependence is a very significant parameter in rotor aerodynamics, even for first harmonic loadings.

The rotor airloads measurement research efforts sponsored by USAAVLABS and others have included in-flight measurements on various contemporary helicopter configurations. This project is the most ambitious of these programs, with simultaneous measurements of airloads, blade dynamics, control loads, and airframe response being made on both rotors of a tandem configuration. This effort is related to the previous dynamic airloads tests as shown in Table I. These programs have stimulated rotor research and have contributed a fund of knowledge that is now being actively utilized to improve helicopter efficiency.

The related experience of the contractor in performing this type of research is illustrated in Figure 1. This program has drawn on two previous rotor airloads and rotor shaft loads pro-This experience significantly benefited this program, grams. particularly in the development of instrumentation, calibration, and data reduction techniques. These previous programs also showed the need for an automatic digital data system. The analysis of the results of this program under USAAVLABS contract is to be performed by Cornell Aeronautical Laboratories; however, Boeing-Vertol will also be performing various analyses. As shown in Figure 1, these efforts will include consideration of acoustics, vibration, loads and stress, rotor dynamics, and aerodynamics. These data will also be used for correlation with the oscillating airfoil test data which will be obtained under USAAVLABS Contract DA 44-177-AMC-438(T). This effort is expected to provide increased understanding of the time-dependent aspects of rotor aerodynamics, to show how well these effects can be measured in wind tunnel testing, and to indicate the types of airfoil sections which should be used to take maximum benefit from these effects.

The test helicopter used for this program was an experimental flight test version of the CH-47A. As illustrated in Figure 2, this vehicle was externally identical to a standard CH-47A, except for instrumentation; however, it should be noted that through years of flight testing, numerous detail changes had

TABLE I

2

-*

RELATIONSHIPS BETWEEN PRESENT TESTS AND EXISTING ROTOR AIRLOADS DATA

				ROTOR GEC	METRY	
		ONIS	ILE ROTOR		TANDEM RO	TOR
BLAD	DES PER ROTOR	7	ю	4	2	e
			(R.O	SMALL MC FOR DIAMETE	DELS 1R <8 FEET)	
פי ז	TEETERING	I	1	1	1	1
CONF.	FULLY ARTICULATED	Meyer and Falabella (16)	\$	1	I	1
			(ROJ	LARGE MO OR DIAMETH	DELS IR <u>></u> 8 FEET)	
.IG. B	TEETERING	Rabbott (21,24) Mayo(15)	1	-	Huston(14)	I
COME HI	FULLY ARTICULATED		Ham(10)	х	t	Ham (9)
			INIM)	FULL SC TUNNEL OF	ALE (FLIGHT TEST)	
•Đ	TEETERING	Burpo (2,3)	x	1	I	1
CONFI HUH	FULLY ARTICULATED	I	×	Scheiman (27) Rabbott (22)	1	Present Tests Gabel (8)

۰,

3

•

been incorporated. For example, the rotor control system was an experimental model of the control system used in the last production version of the CH-47A. An experimental version of the isolated cargo floor was also incorporated. The remainder of the aircraft was predominantly the initial production model CH-47A(YHC-1B). The differences are significant and should be considered before any conclusions are drawn from the data of this program and applied to the production CH-47A. However, these differences are not believed to reduce the value of these data, since this program was a research program aimed at analytical capability improvement, and any product improvement which is achieved should come from the analysis.

The approach followed in this report, whenever possible, was to present all available data to illustrate the accuracy and scatter. Subsequent data analyses should utilize the presentations of this report to select values which minimize experimental variations. It is believed that this approach tends to make the test data appear somewhat inconsistent; however, this result should put the analyst on his guard so that he is selective. Present methods are not adequate to insure that some spurious data are not included in the voluminous output of this program.
DESCRIPTION OF TEST ITEM

The general arrangement of the test helicopter is shown in Figure 3. This aircraft has tandem rotors which are mounted with a large overlap and a small vertical separation. The only modifications to the test aircraft for this program were to provide the required instrumentation. The rotor blades, rotor shafts, rotor controls, and the airframe were instrumented. These components are discussed in detail in the other volumes of this report, and this section of the report will therefore be limited to the aspects of those components which apparently have influenced the results.

ROTOR BLADES

This testing utilized modified CL 47A rotor blades with one blade of each rotor modified to provide the required instrumentation and with the two mating blades of each rotor modified to provide additional tip balance weights. The pertinent rotor blade geometry and physical characteristics are given in Table II.

TABLE II

PRINCIPAL DIMENSIONS AND PHYSICAL CHARACTERISTICS OF TEST ROTORS

Number of blades per rotor	3
Rotor blade radius, inches	354.62
Cutout radius, inches	68.5
Flap hinge offset, inches	8.0
Lag hinge offset, inches	29.5
Weight per blade (approximate), pounds	268.0
Construction - metal spar, fiber glass trailing edge fairings	
Twist, degrees	-9.0
Airfoil section Modified NAC	A 0012
Blade chord, inches (constant)	23.0
Rotor solidity, ¢	0.0622
Approximate roty, blade mass constant, Y	9.7
Normal rotor b! de tip speed, feet per second	712.0
Normal rotor a gular velocity, radians per second	24.2
Test disk loading, pounds per square foot	6.0
(based on swept area and 32,000-pound test weight)	
Swept disk area, square feet (both rotors)	5486.0

`.

TABLE II - Continued

Mass moment of inertia of blade about flap hinge,	
slug-feet ²	2327.9
Mass moment of inertia of blade about lag hinge,	
slug-feet ²	1903.4
Mass moment of inertia of blade about pitch axis	
at zero lag, slug-feet ²	1.91
Static moment of blade about flap hinge,	
inch-pounds	49,881.5
Static moment of blade about lag hinge,	
inch-pounds	42,089.2
Hub torque offset, inches	1.58
Lag damper arm, inches	6.9
Pitch arm, inches	10.25
Equivalent viscous lag damping, pound-seconds per	
inch at 1.5 degrees and $\omega n \zeta$	4522.0
Pitch with lag pin vertical, degrees at $r/R = 0.75$	10.53
Forward rotor shaft tilt, degrees	9.0
Aft rotor shaft tilt, degrees	4.0

These blades were mounted on CH-47A rotor hubs which have the blade pitch bearings located between the lag hinge and the flapping hinge, as illustrated in Figure 4. Detailed mass and stiffness properties of these blades are given in Volume II of this report.

The instrumented rotor blades were made for this program by utilizing selected materials in order to minimize the effects of the instrumentation. These blades contained and supported the instrumentation wiring internally and provided for the external mounting of the airload pressure transducers as shown in Figure 5. The rotor blade instrumentation consisted of pressure transducers and strain gages as illustrated in Figure 6.

Absolute- and differential-pressure transducers were used to measure the rotor airloads over a chordwise and spanwise array of blade locations. Electrically paired absolute transducers were installed on the tor and bottom of the spar section of the blade, while differential units were used on the blade trailing edge fairings. This arrangement was used so that it was not necessary to drill holes in the spars to provide differential-pressure ports. The transducers were attached to the blades by bonding the mounting tabs to the blade surface within recesses provided in external fairing sleeves. An elastic bonding agent was used to mount the transducers so that

,

Figure 5. Installation of Pressure Transducers on Rotor Blade Tip.

Figure 6. Rotor Blade Instrumentation Locations.

blade surface strain interactions were negligible. The general effect of the transducer installation was to have a series of flush diaphragms with little change in the airfoil dimensions.

It has been shown in other rotor airloads programs that oscillating blade airloads are significantly altered by blade bending. It was therefore important to determine and document the dynamic characteristics of the tested rotor blades. This result was accomplished in this program by means of a coupled flap-torsion bending analysis, an uncoupled chordwise bending analysis, and a static (nonrotating) dynamic response test program. The most significant results of this effort are shown in Figures 7, 8, and 9, which compare the calculated static natural frequencies to the static test data, and which also show the effects of rotation and the control system flexibility on the natural frequencies. It may be noted in Figure 7 that the second flapwise natural frequency was predicted very well but that the third and fourth flapwise frequencies were about 10 percent higher than predicted. This means that the flapwise stiffness of the outer portion of the blades is probably somewhat larger than the values shown in Volume II. The low prediction of the analysis should be considered when interpreting the calculated flapwise natural frequencies. At the normal rotating speed of 230 rpm, it would be expected that the flapwise response would be amplified at 2/rev., 3/rev., 5/rev., 8/rev., and 13/rev., due to the proximity of the flapwise modes to these frequencies.

The data obtained on the torsional response of the blade, shown in Figure 8, show that the primary torsional response should be 5/rev. Chordwise response of the blade should be predominantly 4/rev, as shown in Figure 9. It may be noted in each of these figures that the standard blades with the heavy tip balance weights tend to have a slightly higher natural frequency in all modes of response. This difference is believed to be insignificant for this test program, but it probably increased vibration of the test helicopter due to the lack of symmetry of the rotor hub loads.

As a check on the blade shake testing, the nodes of the flapwise modes of the dynamic response were determined. The nodes were measured with an accelerometer so that the measured locations of zero acceleration were offset from the dynamic response nodes by the rigid blade response. This effect could have been eliminated by more sophisticated instrumentation or by analysis; however, if this offset is

Ê

Figure 7. Comparison of Static Shake Test and Calculated Flapwise Rotor Blade Natural Frequencies.

Figure 9. Company on of Static Shake Test and Calculated Chordwise Rotor Blade Natural Frequencies.

considered, the correlation of the analytical and the measured nodes shown in Figure 10 is good. However, the outboard node of the second flapwise mode is probably offset too much, again showing that the stiffness of the outer blade area used in the calculations was too small. For the purposes of this report, the calculated blade response data are believed to be adequate; but for subsequent detailed analysis, a better resolution of the blade dynamics should be obtained.

ROTOR SHAFTS

Standard CH-47A rotor shafts were strain gage instrumented in the region shown in Figure 11 so that the steady and alternating rotor loads could be measured. Bending moment and shear gages were provided on the shaft in two orthogonal planes. Lift was measured with a gage which measured the entire load and with a gage which was only sensitive to alternating lift loads. A torque gage was also provided.

As a result of the low strain sensitivity of the rotor shafts to shear and lift, these gages have significant interactions which must be identified by calibration and which must be corrected in flight test data reduction. The procedures for these operations are presented in Volumes II and III of this report. In general, the calibration for the shafts results in a 6-by-6 matrix of coefficients. As shown in Volume II, the shaft calibration data were subjected to a detailed statistical correlation and evaluation which produced a well-substantiated calibration of good accuracy.

A significant part of the rotor shaft instrumentation is provided by three rotating accelerometers mounted on each rotor hub, and by an array of accelerometers on the rotor shaft supports. These accelerometers measure the motions of the hub and shaft so that the resultant inertia loads can be isolated. It has been found in previous testing (reference 8) that hub motions can cause significant contributions to third harmonic rotor shaft loads.

ROTOR CONTROL SYSTEM

The control system of the test aircraft was not a production unit but was an experimental unit used to develop an improved production system. This unit is known as the SK system and is geometrically similar to the production system used in aircraft which incorporate Engineering Change Proposal 140/190. An

Figure 10. Calculated Blade Mode Shapes and Nodal Points Obtained in Nonrotating Blade Response Tests.

ł

Figure 11. General Arrangement of Instrumented Rotor Shafts.

increase in strength and rigidity is provided by this modification.

Instrumentation for determining control system loads consisted of a strain-gaged pitch link in the rotating control system and three gaged loads which determine the nonrotating control system reactions. The two strain-gaged pitch links were used to control the two instrumented blades. Nonrotating control loads were measured by means of strain-gage bridges on the actuator mounting lugs of the nonrotating swashplate and a strain-gaged fixed link in the longitudinal cyclic trim system.

AIRFRAME

The airframe of the test helicopter caused significant contributions to the dynamics and aero ynamics of this testing, as well as provided its usual mechanical and structural functions. In particular, rotor orientation provided by the airframe has significant bearing on the aerodynamic-dynamic loads. This orientation is shown in Figure 3, and the numerical values of the pertinent geometry features are given in Table III. The CH-47A geometry is highly overlapped with a rotor-to-rotor distance of only 1.32 times the rotor radius. It is rather difficult to evaluate realistically the vertical offset of the rotors due to the inclination of the rotor shafts; however, if the average shaft inclination of 6.5 degrees is used as a basis, there is no vertical offset of the rotors.

TABLE III

DIMENSIONS AND GENERAL DATA OF TEST AIRCRAFT

Tandem Rotor Geometry	
Rotor center to rotor center distance, inches	s 466.7
Rotor center to rotor center distance/rotor	radius 1.32
Vertical offset of rotors (approximate, based	don
mean shaft tilt)	0
Rotor blade swept overlap/rotor radius	0.69
Rotor Drive System Details	
Transmission ratio (engine to rotor)	65.8 to 1.0
Power plant type	(2) T55-L-7
Engine shaft horsepower, each	2200
Power loading, pounds per horsepower (based	
on 33,000-pound weight and normal power)	7.5

TABLE III - Continued

tradiente and D		<u> </u>	<u></u>	
weight and B	alance Surmai	<u>ey</u>	_	
Structu	ral design g	coss weight, pou	inds	33,000
Maximum	takeoff gro	ss weight, appro	oved, pounds	33,000
Maximum	takeoff gros	ss weight, under	•	
devel	opment, pound	ls		36,000
Basic d	esian aross v	weight, pounds		28.300
Specifi	cation weigh:	t empty nounds		18 058
Weight	of instrumon	t ampty, pounds tod pirgraft ng	fuelor	10,030
helghu	of mounda	teu aircrait, nu	LUCI OL	10 000
Dalla	st, pounds			19,808
Test weights	of aircraft	, in pounds, wer	e as follows	5:
Flight	Crew Weight	Ballast	Fuel	TOGW
384	780	2320	4000	26,900
389	600	9295	4000	33,700
390	600	9295	4000	33,700
391	600	22.55	4000	26 700
303	600	11 165	2000	20,700
393	600	11,105	3200	37,273
394	600	9300	4000	33,700
395	600	1596	4000	26,000
397	600	0	3700	24,148
398	600	0	3000	23,448
Note: Balla 12 st 200 (Balla neces to ac	st consisted andard ballas 2), 250 (2) st weights sl sary hardward hieve the des	or lead pigs wh st boxes install 310 (2), 370 (2 nown above inclu e. Boxes were r sired test weigh	ed at static ed at static e), 420 (2), de boxes and emoved when at.	ntained in ons 160 (1), and 460 (1). and 160 (1). all necessary
			6	
Extreme	allowable Co	enter of gravity	, iorward	Station 296
Extreme	allowable co	enter of gravity	, art	Station 344
Test po follows	sitions of co :	enter of gravity	at takeoff	were as
Fli	ght	CG Station	CG Water	line
3	84	325	26	
2	89	326	 1	
2	90 90	326	15	
3	23 01	326		
3	03 27	320	20 1 1	
	9J 04	361	11 7 r	
	74 05	320	12	
3	25	331	27	
3	9/	333	31	
3	98	333	32	

4

ł

21

Aerodynamically, the airframe of the test helicopter had the capability of producing considerable lift and pitching moment and therefore had a significant influence on trim. The air-frame aerodynamic characteristics are shown by Figure 12 to vary almost linearly with fuselage angle of attack. This figure also illustrates the necessity for variation of the longitudinal cyclic trim to minimize the fuselage aerodynamic loads. For example, if the fuselage were allowed to reach -5 degrees (nose-down) angle of attack at the higher speeds tested (TAS = 140 knots), the fuselage lift would be approximately -1500 pounds and the fuselage moment would be about equal to a 6-inch forward shift in the center of gravity.

Structurally, the airframe of the CH-47A aircraft consists of a box-like semimonocoque structure of essentially square cross section. The cockpit enclosure provides a shear web at the forward end of the fuselage. The aft end of the fuselage has an opening for the rear loading ramp. Mountings and drive for the aft rotor are provided in a pylon on top of the aft end of the fuselage. Forward rotor mounting is much more rigid and consists mainly of a reinforcement to the primary airframe structure. To minimize vibratory coupling of the cargo with the airframe, an isolated cargo floor is provided. The mode shapes and natural frequencies of the dynamic response of this airframe are shown in Table IV. It may be noted that the fourth modal frequency listed in this table is very close to the third harmonic rotor frequency (230 rpm = 11.5 cps) and is therefore of importance, since this is a major forcing frequency. Also note that the forward pylon participates in a mode of higher frequency than the aft pylon as a result of its greater structural rigidity. The fuselage of the CH-47A has been analyzed and tested for dynamic response, and, as shown in Table IV, good correlation is obtained between test data and theory. Thus, a good mathematical model of the complex fuselage structure is available for the analysis of the airframe vibration flight test data.

Instrumentation of the airframe consisted of an attitude gyro and angle-of-attack and sideslip vanes to determine trim, and an array of accelerometers to measure airframe dynamic response. The fuselage accelerometers were arranged as shown in Figure 13 to best measure the modes of response shown in Table IV. Additional accelerometer measurements were also provided at the forward and aft rotor shafts by means of the accelerometers which are identified with the rotor shaft instrumentation.

.

ANGLE OF ATTACK - DEGREES Figure 12. Aerodynamic Characteristics of CH-47A Airframe at Zero Sideslip.

TABLE IV DYNAMIC RESPONSE CHARACTERISTICS OF CH-47A AIRFRAME

*

an enderstand and the statement

and a set of the set o

A	latural Frequency	X	Description of	Sketch of Mode
	cps		Mode Shape	N
Lumpec	l Unified			
Mass	Structural	Shake		×
Analysi	s Analysis 2	Test 3		
			Vertical longitudinal motion	0
י אר גר	7.68	7.9	of structure, forward and aft	T-AF
	•	•	pylons moving in opposite FOR	WARD AN
			directions (1st beamwise mode)	
			Vertical longitudinal motion	the second secon
1	L 1 7	r r	of structure, forward and aft	
TT.15	CC•TT	7•77	pylons moving in same direction	
			(2nd beamwise mode)	_/
			Predominant motion of forward	
15.53	15.6	13.6	pylon longitudinally	a a a a a a a a a a a a a a a a a a a
None	7.38	7.4	Predominant motion of aft pylon	
			Ταρετατηζ	
			Fuselage torsion, forward and aft	••*
None	10.62	10.8	pylons moving Laterally in oppo- site directions	
				<pre>x tho following</pre>
Note:	Above data are conditions:	rderteve	LE LTOM VALIOUS VELTOI UOCUMENTS LO	
	1. Analysis of	fildmis	fied CH-47A configuration at 28,700	-pound gross weight
	(Computer P	rogram D)-29); considered vertical-longitud	That motion only.
	2. CH-47A at 2	5,000-pc	bund gross weight.	
	3. ҮНС-ТВ/НС-Т	B nelico	oprer standard iuselage at 20,000-p	TUPLE Sector Dinc
	(no isolate	d floor)		

.

i,

:

GENERAL INSTRUMENTATION CHARACTERISTICS

The instrumentation of the test helicopter provided various measurements along the load path, and if the measurements are considered in a systematic manner, considerable redundancy is provided for data checking. This situation is illustrated in Figure 14, which shows the relationships between the various measurements obtained. As will be discussed, the airloads data obtained in this program have been checked against the blade motion and blade bending data to ensure consistency.

A detailed statistical analysis of the worst-case instrumentation error is presented in Volume I, and the results of this analysis are shown in the Figure 15 bar graph. In this analysis, it is assumed that a temperature change of -40°F occurs between the preflight calibration and data recording. The error coefficients were based on a 2° deviation and were added vectorially. This approach is believed to be quite conservative, so that a typical or average error in the data should be considerably less than the error values shown. An evaluation of this instrumentation based on the flight test results generally substantiates this analysis, as presented and discussed in a later section of this volume.

Figure 14. Schematic Diagram of Relationships Between the Various Measurements Obtained.

LEGEND

MAXIMUM LRROR IN MEASUREMENTS - PERCENT OF MEASURAND

Figure 15. Accuracy of Processed Data as Estimated from Calibrations and Recording/Reproducing System Data.

EXPERIMENTAL PROCEDURE

This testing was an extensive exploration of the experimental flight envelope of the CH-47A and included a thorough in-flight calibration of the airspeed system and sideslip vanes. The test program included gross weight, rpm, airspeed, and cyclic trim variations, as will be discussed. Data acquisition generally followed the test program with minor variations in airspeed and sideslip, but with rather significant variations in altitude and cyclic trim. Average accelerations measured during data acquisition show that steady test conditions were obtained.

TEST PROGRAM

The test program to measure dynamic airloads consisted of a matrix of rotor speeds, helicopter airspeeds, cyclic trim settings, gross weights, and altitudes to explore fully the available range of thrust coefficient, advance ratio, and advancing tip Mach number capability of the test helicopter. The test points defined in Appendix I were obtained using the test program outlined in Table VII. This testing may be summarized as follows:

- At ',000 pounds nominal test weight, 34 level flight records were obtained; 2 of these were taken in flight conditions which produce high dynamic loads.
- 2. Also at 26,000 pounds nominal test weight, 33 records were obtained in maneuvers and 2 records were obtained in transition and hover.
- 3. At 33,000 pounds nominal test weight, 43 records were obtained in level flight, including 23 which were obtained in high dynamic load conditions. One record was also obtained in hover.
- 4. At 37,000 pounds nominal test weight, 24 records were obtained; 2 of these were at a moderate level flight speed and 1 was in a high dynamic load condition. The remaining 21 records were obtained in hover and transition, including tests in and out of ground effect. The effects of sideslip on transition air-loads were also measured.

At the successful conclusion of this testing, it was decided to extend the testing to include higher speeds at lighter gross weights. This extended program, analyzed in Volume V of this report, included approximately 20 test records obtained at 21,000- to 23,000-pound test weights. Data points obtained included a maximum true airspeed of 158 knots.

The achieved test conditions of the level flight portion of the basic flight program are shown in nondimensional form in Figure 16. Accomplished test conditions have included advancing tip Mach numbers greater than 0.9 and advance ratios approaching 0.40. During all these tests, a thrust coefficientsolidity ratio, $C_{\rm TW}/\sigma$, greater than 0.06 was obtained. A maximum $C_{\rm TW}/\sigma$ of 0.11 was tested in transition at 33,000 pounds and 202 rpm rotor speed. Generally, the test conditions either followed the normal operating conditions of the CH-47A, or were selected to produce systematic variations in advance ratio, tip Mach number, or thrust coefficient. These variations can be noted in Figure 16.

The severity of the flight conditions tested is generally reflected by the operating environment of the retreating blade. Presently there is no well-defined criterion for this operating environment which will indicate the severity of the high dynamic loads which have in the past been called blade stall. Figure 17 was prepared to show the uniform downwash-rigid blade angle of attack and Mach number of the retreating blade tip for the conditions tested. These criteria are believed to be wrong and inadequate, but are presented to relate the conditions tested to prior rotor testing and analysis. It should be noted that approximate retreating blade tip angle-of-attack values of 10 degrees or less were tested at various tip Mach numbers.

Of the conditions tested, it is generally believed that the most important data were obtained in transition. Rotor airload effects are particularly severe in transition, especially with sideslip. For this reason, the following data presentations will emphasize these low-speed points. Secondary importance is given here to the high-speed, low-gross-weight data, since these conditions are emphasized in Volume V.

IN-FLIGHT CALIBRATIONS

An extensive airspeed and sideslip vane calibration program was conducted in flight to substantiate the proper operation

.

Figure 17. Retreating Blade Tip Operating Conditions Tested.

of the basic flight parameter measuring system. Prior calibrations of such equipment on tandem helicopters indicated that rotor downwash and/or fuselage interference could be significant. Airspeed calibration runs were flown at low altitude with a course marked by two parallel ground reference lines (roads). Sideslip vanes were calibrated using an optical driftme er installed in the cargo hatch of the helicopter. These ca 'brations are consistent and are in general agreement with theory.

The airspeed calibration data, presented in Figure 18, show a systematic reduction of the indicated airspeed due to rotor and airframe interference. This position error is apparently predominantly due to rotor and airframe drag, which tends to move the air along with the helicopter. The trend of the interference is to increase slightly with airspeed; this results in a linear calibration for airspeeds above 40 knots. Airspeed data wer, obtained from the cockpit instrument and from the airspeed data system (dynamic pressure, pressure altitude, and OAT transducers with magnetic tape recording), with essentially identical results. The use of the data system provided a check on the quality of the calibration by indicating the airspeed and sideslip through the calibration run. Typical airspeed data through a calibration run are shown in Figure 19. These data show that the pilot generally held the airspeed within 1 knot. The two apparently separate data measurements taken by the data system are due to in-flight calibration differences (+0.6 knot) produced by sequencing. (Airspeed was recorded on both of the two sequences, as explained in Volume I of this report.) These calibration data were averaged over a run and are believed to produce final data accurate within 1 knot for the true airspeed range of 40 to 160 knots.

The airspeed position error determined from the calibration is compared, in Figure 20, with the theoretical position error due to rotor interference. The theoretical curve follows a trend with airspeed that is quite similar to the measured curve. A constant increment of the airspeed ratio, which apparently was caused by the airframe parasite drag, occurs between the theoretical and measured curves.

The sideslip vane calibration data obtained at 80 knots, 26,000 pounds gross weight, and 2000 feet altitude are shown in Figure 21. Data are shown to have about ± 2 degrees of scatter, and the rotor-hub-mounted vane has a -2-degree zero offset. The boommounted sideslip vane data have almost no zero offset.

,

CALIBRATED TRUE AIRSPEED - KNOTS

Figure 20. Comparison of Theoretical and Experimental Position Error Variation with Airspeed.

36

- -

and and a standard of the standard of the standard standard and a standard and the standards of the standard of

يدا بر

ž

;

37

,

Theoretical rotor interference calculations which were made for this condition showed that the rotor should cause a +2-degree offset at the hub and a negligible interference at the boom. The positive sideslip due to the rotor, which is predicted by the theory, can be explained as being due to downwash rotation. The negative sideslip interference measured cannot be explained. All data presented in this report are based on the boom vane indications.

DATA ACQUISITION

The quality of the pilotage during data acquisition is shown by the data given in Figure 22. Generally, the airspeed measured was within 2 knots of the nominal test value, with the accuracy varying inversely with airspeed. Variations of helicopter data with altitude in the 3000- to 5000-foot range are generally very small, so a liberal tolerance was given to the nominal altitude of 5000 feet. This resulted in an average test density altitude of 3000 feet.

A very important parameter to tandem rotor helicopter operations is the sideslip angle. The pilot was provided with a meter which indicated the sideslip angle; but even with this indicator, his performance was rather poor. As shown in Figure 22, the sideslip angle obtained for nominally straight and level flight conditions was generally within <u>+</u>5 degrees, but some points were off as much as 10 degrees. Data analysts are cautioned to use the measured sideslip angle for selecting comparative flight conditions, since performance, vibrations, blade bending, and airloads all vary significantly with sideslip.

The longitudinal cyclic trim setting is another parameter which is extremely important but which was poorly acquired in flight testing. Unfortunately, the meters provided to the flight crew for measuring cyclic trim had inadequate resolution, and therefore the desired settings were not obtained. The cyclic trim was measured by the blade pitch transducers, with the first harmonic longitudinal component obtained from the harmonic analysis. A comparison of the measured and nominal cyclic trim settings is shown in Figure 23. The trim setting error was generally less than 1 degree, but many points were obtained with a setting error as large as 2 degrees. It should be noted that all settings were made manually, with the automatic airspeed-sensed trim system disconnected, so there was considerable opportunity for error.

.

Figure 22. Comparison of Actual Test Conditions with Desired Nominal Test Conditions.

Figure 23, Differences Between Nominal and Achieved Cyclic Trim Settings.

The airframe accelerometer data have been used to check for long-period variations in the trim of the test points. These data are shown in Figures 24 and 25 for the average translational and rotational accelerations measured during data acquisition. These data show that average accelerations over the 15-rotor-cycle (=4 seconds) data acquisition period were negligible.

It is of interest to note that the sideslip vane data acquired throughout the flight test program tend to substantiate the inflight sideslip vane calibration. The frequency of occurrence of various differences between the two vane readings is plotted in Figure 26. These data show an average skew or zero offset of about -2 degrees; that is, the average hub vane measurement is -2 degrees if the average boom vane measurement equals zero. This is the same zero offset shown in Figure 21.

The scatter of the vane angle difference data used for Figure 26 is considerably influenced by low-speed operation and by maneuvers. Hovering caused obvious large differences between the readings; these data were eliminated. However, all other data are included. The typical sideslip measurement error is believed to be about ± 2 degrees, as shown by the in-flight calibration, rather than the ± 4 degrees shown in Figure 26.

DATA PROCESSING

The data system, described in detail in Volume III of this report, utilized the equipment and provided the functions noted in Figure 27. The software of the system consisted of data calibration programs and analysis programs. The data calibration programs prepared corrected, calibrated, and checked test data in harmonic coefficient form for further analysis. The analysis programs were utilized to provide manipulations of the test data, as well as comparisons with theory. A typical example of an analysis program is the Airloads Program which was used to integrate the airload pressures.

Functional testing of the instrumented helicopter showed that signal drifts produced by the instrumentation were corrected by the data system. During flight testing, in-flight calibrations were taken following every in-flight recording to correct for drifts in baseline (zero reference) and sensitivity. Sensitivity changes were usually small, but baseline variations were significant. Functional testing of this data system showed that corrections to the baseline were made with acceptable

accuracy even with large drift. Figure 28 shows typical results from a long-term drift test of the system using the fully instrumented helicopter. The covers of the hub-mounted signalconditioner packages were alternately installed and removed systematically over a 10-hour period to cause sizable changes in the temperature of the signal conditioners (including the amplifiers). These temperature changes caused large drift in some of the signals, as illustrated by data code 4279 in Figure However, the data system was updated (in-flight calibration 28. procedure) after 3 hours, which corrected the drift except for a -0.6 percent of band edge error. The majority of the signals had considerably less drift than data code 4279 and more closely resembled the signals shown as average drift or low drift. As noted in Volume III of this report, following updating, the mean drift was 0.55 percent with a 2 distribution of 1.16 percent. While this drift correction is very good, it also establishes the minimum resolution of the data system as 1.16 percent of band edge or 20 counts. This means that signals with a sensitivity calibration which was small as compared to 20 counts were subject to excessive drift and had to be deleted. A list of data deleted for this reason is included in Appendix II of this volume.

It should be noted that the data presented in this report were not processed completely, as described in Volume III. These data have not been corrected for blade bending interactions, and the steady airload pressures were integrated using a forced-fit routine. The blade bending moment interactions correction procedure was not adequately developed at the time of this writing. The blade pressure integration procedure change was made to minimize instrumentation drift further, as will be described later.

The work described in Volume II showed that blade bending interactions were significant, but these effects are not accounted for in the data presented in this volume. The development of the extrapolation procedures described in Volume III, which are required to estimate the interaction loads, was not completed in time for utilization. Rather than present data which were uncertain, it was decided to postpone the completion of this development and present all blade bending data uncorrected but checked against experience with similar instrumentation installations on the CH-47A. It is therefore suggested that apparent blade flapwise-to-chordwise bending coupling be attributed to uncorrected gage interactions. This recommendation should be tempered by consideration of the proximity of the natural
frequencies of the first chordwise bending mode and the second flapwise bending mode, which would cause these modes to be highly coupled for 5/rev. cillations. The magnitude of the interaction of chordwise bending on flapwise bending was about 0.15 ± 0.05 inch-pound of flapwise bending per inch-pound cf chordwise bending, with the variation in interaction depending on the blade station considered. Flapwise bending had a considerably larger interaction with chordwise bending.

The modified steady airloads integration procedure was found to be necessary when the data were evaluated, as will be described later in this volume. The procedure utilized was to force the chordwise distributions of the azimuthal average (steady) airload pressures to be similar to a two-dimensional airfoil. The theoretical pressure distribution of a 0012 airfoil was obtained from reference 1. It was found that this pressure distribution could be represented with engineering accuracy by the relation

$$p(x) = K_1 (x^{-0.215}) + K_2 .$$
 (1)

The modified integration procedure utilized the 5, 7, or 11 steady pressure values, p(x), available at each blade radial station. A least-squares fit was made to solve for the constants K_1 and K_2 . Equation (1) was then integrated analytically to determine the lift per unit span and the pitching moment per unit span for the steady terms. Linear integrations were used for the harmonics.

The form of the output of this program has led to some confusion, but this situation can be avoided by noting two definitions. These definitions are illustrated in Figure 29, and involve the Fourier coefficients used for the harmonic analysis and the definition of the alternating value used in preliminary data sorting. The alternating value is commonly used in evaluating stress data and is defined as one-half the excursion of the value from the highest peak to the lowest peak encountered within any one rotor cycle. In this program, five rotor cycles were evaluated. The Fourier coefficient definitions utilized are defined by the following equations for any arbitrary parameter, Y:

$$Y = \text{Steady} (Y) + \sum_{K=1}^{n} (B_K \sin K\psi + A_K \cos K\psi)$$
(2)

$$Y = \text{Steady}(Y) + \sum_{K=1}^{n} R_K \sin(K\psi + \phi_K). \quad (3)$$

These definitions are straightforward and have general acceptance, but the coefficients can produce rather startling results if the definitions are confused.

or

ć

;

ļ

ł

3

ł

.

i

3

¥

3

Figure 26. Comparison of the Two Sideslip Vane Readings Showing Statistical Confidence of Measurements.

47

.

Figure 27. Data Flow Schematic Diagram.

ï

ŕ

3

ç

49

7

,

EXPERIMENTAL RESULTS

An attempt has been made in this presentation of results to illustrate some of each type of data obtained. It is hoped that this display provides some visibility as to what is available and helps to provoke future utilization of the data. The general approach differs, depending on the type of data presented, as follows:

- Rotor airloads These data presentations have received emphasis, with the data being given in many different forms.
- 2. Rotor blade bending The data illustrate the variation with flight conditions; emphasis is placed on the bending which influences the airloads.
- 3. Control system loads The presentation is brief but important, since the flight envelope of the test helicopter tends to be limited by control loads.
- 4. Rotor shaft loads The data which illustrate trim are emphasized; vibratory data are also presented.
- 5. Airframe vibration A large volume of data is available, but the presentation is brief.
- 6. Trim and performance Emphasis is placed on the data which show the consistency and the quality of the data acquisition.

These presentations were initiated with the purpose of being illustrative and brief; however, it is believed that even with this approach, considerable new fundamental knowledge of tandem rotor aerodynamics and dynamics was uncovered. The need for further analysis is obvious. One example of the beginning of additional analysis is the investigation of blade stall aerodynamics described in Volume V of this report. Similar efforts are necessary to obtain the latent value from the other dynamic data obtained in this program.

ROTOR AIRLOADS

ł

Airloads data are informative when considered in at least four forms. Details of the local flow are indicated by local blade differential pressures measured near the leading edge. The similarity of blade section performance to a two-dimensional

airfoil is indicated by the chordwise distribution of airload pressures. For indicating overall performance and the vibration excitation of the rotor, the airload pressures should be considered after chordwise integration and harmonic analysis. Finally, the chordwise integrated airloads - that is, the lift per unit span - can be reduced to coefficient form for comparison with other airloads data and with theory.

Airload Pressure Data

Local airload pressure data are available as pressure ordinates that are a function of azimuth, as steady and alternating values, and as harmonic coefficients. The pressure data, which are a function of azimuth, are relatively difficult to handle, since they are least compact, but they show rotor flow variations with clarity. These data illustrate the effects of trim and sideslip, and are also used later to show chordwise distributions. The alternating pressure values give a quick overall look at the data, and have been used for showing the effects of airspeed, gross weight, sideslip, trim setting, and maneuvers. Harmonically analyzed pressure data are of value to determine whether a parameter can affect the blade or airframe dynamics.

The effect of wind direction on airload pressure harmonics when hovering (stationary with respect to the ground) is shown in Figure 30. These bar graphs show that there are variations in airload pressures in hover which are independent of the wind and are apparently due to rotor-rotor interference. These variations are approximately 0.2 psid, which is about 5 percent of the steady airload at the blade location considered. The data show that the wind has a significant effect on the airload presure harmonics, particularly at the lower harmonics which have a strong influence on vibration. Wind from the left causes the largest first and second harmonics on the aft rotor and the largest first harmonic on the forward rotor. This tendency cannot be explained at present; however, as the nonrigid wakenonuniform downwash theory is developed, this type of data should be of increasing value.

A summary of data on the alternating airload pressure, measured at the 85-percent radius and the 4-percent chord in steady level flight, is shown in Figure 31. These data usually are of smallest magnitude at 80 knots, and increase with either increased or decreased airspeed. Alternating airloads pressures tend to be about 30 percent (1 psid) larger on the aft rotor than on the forward rctor. The effect of run gross weight is

٢

¥

1111

:

.

Figure 31. Alternating Local Blade Pressure Values at 85-Percent Radius and 4-Percent Chord for a Summary of Level Flight: Conditions.

shown to be significant at lower speed; but at 120 knots, essentially the same alternating pressure values were obtained at 26,000 pounds and at 33,000 pounds. It should be noted that the data shown in Figure 31 were obtained with various rpm values and trim settings, which probably accounts for the scatter shown.

As will be shown later, the tandem rotor helicopter experiences severe aft rotor loads during sideslip in transition (30 knots). These loads tend to be slightly more severe when the helicopter is flying in ground effect (10-foot wheel height). Airloads data were obtained for these conditions, and typical data are shown in alternating pressure form in Figure 32. These data show how the alternating values can be misleading, with essentially no significant variations apparent between the forward or aft rotor data in or out of ground effect. The pattern with sideslip is shown to be uncertain and ill-defined. As will be shown, these data are consistent and illustrate a definite pattern when considered as a function of azimuth or as azimuthal harmonics.

The effect of sideslip at 80 knots on alternating airload pressures is also shown in Figure 32. The aft rotor data vary significantly, with almost no change shown in the forward rotor data. These 80-knot data were obtained at 26,000 pounds gross weight, and therefore the alternating pressure values shown are smaller than the transition sideslip data, due to the effects of both increased speed and reduced weight.

A systematic variation of longitudinal cyclic trim setting was tested at 100 knots and 33,000 pounds. Again, the 85-percent radius, 4-percent chord pressure value was taken as typical, and the alternating values are shown in Figure 33 as functions of forward rotor cyclic trim. It can be noted that 2 degrees of forward cyclic trim has no significant effect on the airloads, but that an increase in trim to the -3/-5-degree (forward/aft rotors) setting causes a noticeable decrease in forward rotor alternating pressures and a comparable increase on the aft rotor. As will be noted later, the effects of cyclic trim in causing changes to the fuselage attitude are nonlinear, and this effect is reflected in the alternating airload pressures.

The effect of maneuvering at 80 knots on the alternating airload pressure is shown in Figure 34. It is interesting that the largest alternating airloads were caused by rolling the helicopter. The roll to the right, which was at 13.4 degrees per second (as shown in reference 25), caused an alternating pressure of about 4.5 psid, which is about the same alternating pressure measured at 135 knots. The symmetrical pullup (1.5 g) or the steady 30-degree banked turns were expected to cause the largest alternating pressures.

This presentation on alternating airload pressures shows a general overall review of typical data, but gives no information as to possible effects of the alternating data. As noted, significant parameters can be overlooked if too much importance is given to the alternating values. Waveforms of the data to be presented next are of considerably more value, but are hard to evaluate and summarize. The use of harmonics, to be presented later, is perhaps the best compromise, but harmonics can also be misleading due to the impulsive nature of rotor airloads.

Typical azimuthal variations in local airload pressures are shown in Figure 35 for arbitrary selected locations along the chord of the blade at the 85-percent radius. Generally, the forward rotor data are similar to single rotor measuroments, but have dditional abrupt changes due to interference with the aft rotor. By comparison, the aft rotor data generally contain fewer higher harmonic oscillations than the forward rotor, but are characterized by a large impulsive vortex interference spike. For this particular test condition, this spike occurs at the 120-degree azimuth, as expected from the rigid wake tip vortex pattern. As an illustration of the consistency of these data, Figure 35 contains all the data measured during five separate rotor cycles. The envelopes of data are about +5 percent of the mean for any azimuth, which is believed to be excellent repeatability considering the variations in flight path and helicopter motions which are possible. The data of Figure 35 also show that the largest variations in pressure due to vortex interference occur at 13 percent of the chord rather than at the leading edge. This is not in accord with expectations based on static two-dimensional airfoil data. The expected responses of the 9-percent and 37-percent chords are 1.3 and 0.5 of the 13-percent-chord response; however, the airload pressures measured at 85-percent radius indicate that these response ratios are about 0.9 and 0.2. Aft of the 37-percent chord, there is essentially no change in pressure due to vortex interference.

Data from the same flight and run as Figure 35, but for the 98-percent radius, are shown in Figure 36. It is rather surprising that the tip vortex interference spike and the higher harmonic pressure variations are smaller at this radius. The

general trend of these data is similar, with a decreasing pressure in the first 90 to 120 degrees and then an increasing trend to reach the maximum pressure at 360 degrees. A small vortex interference bump is present at 40 degrees and at 300 degrees on the forward rotor at the 98-percent radius (Figure 36), with similar but considerably larger bumps occurring at the 85percent radius. The aft rotor data have a similar bump at about 300 degrees azimuth at both radii; but do not have the bump at 40 degrees azimuth apparently due to forward rotor downwash interference. The rather large vortex interference spike that is shown in the aft rotor data of about 120 degrees azimuth in Figures 35 and 36 is due to the vortex trailed by the blade tip of the forward rotor blade. This spike is smaller at the 98-percent radius than at the 85-percent radius, apparently due to the influence of the blade on the vortex, or to the increased angularity of the blade-vortex intersection at the 98-percent radius. From the rigid wake geometry, the vortex would first collide with the blade at about the 70-percent radius, and therefore this blade station should have the largest vortex spikes. It is believed that further review and detailed analysis of these data would shed light on the problem of rotor noise generation due to vortex intersection; however, this study is beyond the scope of the present effort.

The reduction in the higher harmonic pressure variations with increased radius from the 85- to 98-percent radius is apparently due to the increased elastic response of the blade tip. As will be shown later, most of the higher harmonic excitation is applied over the outer region of the blade; however, as shown in Figure 10, the 85- and 98-percent radii are on opposite sides of the outer nodes of the higher harmonic blade bending modes. It appears from a comparison of Figures 35 and 36 that the blade bending velocity is in phase with the airloads at 90percent radius, so that the higher harmonic loading is small. Obviously, then, the 85-percent radius station would have a bending velocity which is out of phase with the applied airloads, so that blade bending increases the higher harmonic pressure variations. This situation could not be xpected to apply always, since it depends on the phasing between two rather loosely coupled phenomena: the rotor wake geometry and the blade bending response.

Longitudinal cyclic trim is shown in Figure 37 to have a pronounced effect on rotor-rotor interference. The aft rotor interference spike is shown to be significantly reduced when the cyclic trim is zero. With zero cyclic trim, there is the largest spacing between the rotors, and this spacing apparently allows the vortexes to pass the aft rotor without causing

Figure 32. Effect of Sideslip on Alternating Airloads in Transition and at 80 Knots.

\$

1

Variation of Typical Alternating Airloads with Cyclic Trim Setting. Figure 33.

.

; .

ł

:

i

Obtained During Maneuvers at 80 Knots.

TRUE AIRSPEED = 108 KNOTS GROSS WEIGHT = 26,000 POUNDS

ROTOR RPM = 220 LONGITUDINAL CYCLIC TRIM = -3.3° FWD, -5.5° AFT ALTITUDE = 2950 FEET

٢

ł

Figure 36. Azimuthal Variation of Airload Pressures at 98-Percent Radius and 9-Percent Chord.

9-Percent Chord.

,

ŗ

significant disturbance. For reasons of performance, rotor shaft stresses, and other variables, it is desirable to fly with extended trim; however, as shown in Figure 37, increases in cyclic trim cause a continual increase in rotor-rotor interference on the aft rotor for this condition of airspeed and gross weight. It is significant to note, however, that while the spiking at 120 degrees is increased, the peak-to-peak airload pressures remain essentially unchanged. This is due in part to a reduction in the negative pressure peak at the 300degree azimuth by the extension of the trim. The forward rotor data are shown to be essentially unchanged due to cyclic trim; however, an increase in the pressure bump in the overlap region, 40 degrees azimuth, can be observed as the trim is extended. Α comparison of the data of Figure 37 to the data given previously in Figure 35 shows that a similar level of spiking occurred with the lower gross weight, slightly higher airspeed, and slightly further extended trim. The effects of cyclic trim must obviously vary with the flight conditions; however, the data generated apparently can be used to devise a cyclic trim schedule that will minimize vortex interference spiking. This schedule would not necessarily be optimum, since the blade generally does not respond to the spiking loads; there are also other considerations. Noise and local blade stresses would probably be diminished by this minimum interference trim schedule.

It is noteworthy that, as the gross weight is increased and the speed is decreased, the airload pressure variations increase significantly. Airload pressure data obtained at a run gross weight of 35,973 pounds and at 60 knots illustrate this trend (see Figure 38). The forward rotor data show surprisingly little variation in pressure due to aft rotor interference over the 300- to 60-degree azimuth angle region of the rotor overlap. Large pressure bumps are shown at 130 and 260 degrees, apparently because of interference with the vortex from the preceding blade of the same rotor. The aft rotor pressure bumps are much harder to interpret, but again appear to be due mostly to intrarotor effects. The large pressure bump at 270 degrees is most likely caused by the preceding blade of the aft rotor. Similar bumps are shown at 40 and 190 degrees, which cannot presently be explained. Obviously, wake distortion is more significant with reduced airspeed and with the more intense vortexes caused by increased weight. The development of a wake distortion-nonuniform downwash analysis should benefit considerably from these data.

When the airspeed considered is about 30 knots, the flight condition is known as transition. An extensive test program was conducted in transition, since this condition causes the most severe blade bending loads. The azimuthal variations in local airload pressure, measured at selected sideslip angles during the in-ground-effect testing, are shown in Figure 39. These data illustrate the large airload pressure variations caused by transition and the sizable effect of sideslip on the aft rotor pressures. Forward rotor data show a pressure peak at 110 degrees azimuth, apparently due to interference with the vortex from the preceding blade, and are almost unchanged due to sideslip. The aft rotor data are similar to the forward rotor data at zero sideslip, with intrarotor interferences most prominent as evidenced by peaks at 20, 90, and 160 degrees, with a minimum at 60 degrees. A positive sideslip (nose-left) of 17.3 degrees causes an extremely large pressure peak at 170 degrees azimuth; a negative sideslip of 13.8 degrees causes an extremely large pressure peak at 30 degrees azimuth. These very large peaks certainly would be expected to produce the large increases in blade bending which are caused by sideslip. No effort has yet been made to explain the source of these pressure peaks or to isolate these effects. It is expected that these pressure peaks are due to local angle-of attack conditions which would be indicative of blade stall. Blade torsion loads and pitch link loads are also very high in sideslip conditions, giving further indication that stall is occurring. Since it is not practical to build a helicopter that cannot fly through transition, and since it is difficult to fly a tandem helicopter through transition at zero sideslip, these data should receive considerable further analysis. This problem should be resolved before future tandem helicopter configurations are defined, since it is not obvious why zero sideslip does not cause large pressure variations.

The previously given azimuthal variations in airload pressures are highly responsive to all the variations in the local operating conditions; however, most of these variations are local and the blade responds only to much smoother effects. Automatic contour plots tend to be somewhat smoothed due to the analysis required for a two-dimensional fit of the data, and therefore show the more important aspects of the pressure variations. This tendency can be noted by comparing Figures 40 and 41, which show the 9-percent-chord pressure data for the forward and aft rotors for the same test point as shown in Figures 35 and 36. These data show significant differences when the local pressures are plotted against azimuth; however, the two concour

FORWARD ROTOR

NOTES: 1. ALL DATA FROM FLIGHT NUMBER 393, RUNS 1, 3, AND 5, TEST POINT NUMBERS 6, 7, AND 9, WITH AIRSPEED NEAR 30 KNOTS AND RGW APPROXIMATELY 37,000 POUNDS.

1

Ĥ

2. DATA FOR AFT ROTOR AT A SIDESLIP ANGLE OF 17.3 DEGREES WERE SHIFTED 4 PSID TO CORRECT FOR A BAD IN-FLIGHT RECALCULATION. THESE DATA HAVE BEEN DELETED FROM THE FINAL DATA REPORT.

AFT ROTOR

Figure 39. Effects of Sideslip in Transition on Azimuthal Variation of Air and 9-Percent Chord.

----. . b

and the second strategic the second state of the second state of the second strategic strategic second states

1

Figure 40. Contour Plot of Airload Pressures at 9-Percent Chord of the Forward Rotor at 108 Knots.

Figure 41. Contour Plot of Airload Pressures at 9-Percent Chord of the Aft Rotor at 108 Knots.

plots of the same data show only small differences. Outer blade pressures are shown to be fairly constant on the advancing side of the disk, with three regions of higher pressure (about a 6/rev. variation) on the retreating side. The overall pressure distributions differ in that the forward rotor has larger pressures inboard than the aft rotor. In addition, the forward rotor has lower pressures in the overlap region ($\psi \approx 0^{\circ}$), while the aft rotor has higher pressures in the overlap region ($\psi \approx 180^{\circ}$). These differences in local pressures are believed to be reflections of the average rotor-rotor interference which will be discussed in conjunction with the integrated airloads data.

Chordwise Pressure Distributions

The presentation of airload pressure measurements as chordwise pressure distributions shows the regions in which the blade sections do not act as two-dimensional airfoils. Typical data are shown in this manner in Figures 42 and 43 for the advancing and retreating sides of the rotor disk. After the azimuth angle increases to about 30 degrees, the chordwise pressure distributions on both rotors are irregular on the advancing side, as shown in Figure 42. This effect is believed to be due to the combined effects of compressibility and the interference of the tip vortex from the preceding blade. The azimuthal area over which the airfoil pressures are disturbed by these effects is considerably larger than expected. From theoretical inviscidincompressible considerations, the airfoil pressure distribution is expected to be stable and highly damped. These data show that the pressure distribution recovers slowly from a disturbance.

There are two especially interesting features of the data of Figure 42. First, it appears that the influence of the vortex pressure field on the blade airload pressures near the trailing edge has been measured. Note that at an azimuth angle of 120 degrees, the aft rotor data show a pressure bump at 89-percent chord. This pressure bump is apparently due to the tip vortex from the preceding blade of the forward rotor, which causes considerable disturbance to the aft rotor blade at this azimuth. It appears that this bump is the remnant of the pressure spike which moves off the blade quite rapidly. These data are expanded in Figure 44 to show the persisting effects of previous disturbances at 113 degrees azimuth and the increased distrubance at the leading edge of the blade at 124 degrees after the vortex pressure bump (shown at $\psi = 120^\circ$) has disappeared. The irregularities of the pressure distribution after the spike loads are past are shown to be significant and persistent.

The second particularly interesting detail of Figure 42 is the clear evidence of the effects of blade section sweep (radial flow) in the data taken at 180 degrees azimuth on the forward rotor. The chordwise pressure distribution shows much higher pressures aft of the midchord than expected. This distribution is quite simil'r to that measured on yawed wings at high angles of attack. The significance of this phenomenon in reducing blade stall is discussed in reference 11 and in Volume V.

For typical flight conditions, the pressure distributions on the retreating portion of the rotor disk are not significantly different from those of a two-dimensional airfoil. This general conclusion is supported by the data shown in Figure 43; however, it is suspected that this general conclusion does not apply for blade section radii which experience reversed flow $(r/R \le \mu')$, or when stall occurs. The effects of stall are presented in Volume V and are not generally considered in this volume. It is recommended that reversed flow effects also be investigated separately.

The significant implications of the relative smoothness of the retreating blade airloads are either that tip vortex proximity does not occur, or that when tip vortexes are nearby, the local Mach number is sufficiently low that the pressure distribution is not disturbed. Wake distortion would have to be significant to prevent tip vortex proximity on the retreating blade. If wake distortion is the mechanism which prevents retreating blade vortex proximity, it is expected that there would be flight conditions or rotor trim settings for which the distortion was not enough to prevent the tip vortexes from coming near the following blades. Except for transition, this situation has not been found to occur, so tip vortex proximity effects apparently are a compressibility coupled phenomenon. The extensive analysis of this phenomenon is also recommended. Rotor performance and control loads will undoubtedly be improved when the performance of the airfoil sections is more thoroughly understood.

The irregularities in the chordwise pressure distributions apparently are not of a harmonic nature but are impulsive. Therefore, the rotor blade section environment is reflected in non-airfoil-like pressure distributions if the airload pressures are considered as harmonics. Figures 45 and 46 show typical results of first and second harmonic airloads data when prepared as nondimensional airload pressure distributions. A hyperbolic variation of pressure with chord typical of

CHORDWISE LOCATION FROM LEADING

Figure 42.

Chordwise Pressure Distributions Measured on Advancing Side of Rotor Disk at 108 Knots Airspeed and 26,000 Pounds Gross Weight.

 γ

Figure 43. Chordwise Pressure Distributions Measured on Retreating Side of Rotor Disk at 108 Knots Airspeed and 26,000 Pounds Gross Weight.

SE LOCATION FROM LEADING EDGE - PERCENT CHORD

ومعلقتهم ومذمر ومقسين فكلير تحمير والانتساقة

ŧ

Figure 44. Typ: al Chordwise Pressure Distributions of Aft Rot:r When in Proximity of Forward Rotor Tip Vortex.

ŧ

Figure 45. Chordwise Distribution of First Harmonic Airloads at 85 Percent of the Blade Radius for Three Tests.

CHORDWISE LOCATION - PERCENT CHORD

Ĵ

•

Figure 46. Chordwise Distribution of Second Harmonic Airloads at 85 Percent of the Blade Radius for Three Tests.

two-dimensional airfoils would be expected of airloads data prepared in this manner; however, these figures show significant irregularities. The data shown were obtained at a moderate speed well above transition but well below the region of high dynamic loads (stall), so these effects probably do not contribute to the irregularities. Later in this volume, these data are compared with other rotor airloads data obtained at lower advancing blade Mach number but at similar thrust coefficients and advance ratios which show almost no irregularities in the harmonic blade section loading. Thus, the effects of sweep, reversed flow, and first-order time-dependence (potential flow damping effects) are apparently harmonic in nature or are relatively small. Also, the effect of tandem rotor interference apparently is not significant, since Figures 45 and 46 show similar harmonic loadings for both rotors with only slightly larger irregularities in the aft rotor data. The significant parameter of this non-airfoil-like performance is apparently the advancing blade Mach number.

Lift per Unit Span

The airload pressure measurements have been integrated over the chord to determine the local lift per unit span at the various blade stations. Obviously, this value is of considerably more interest than the individual local pressures, since the contributions of the various blade sections to lift, propulsion, and blade bending excitation are indicated. These data have been prepared as azimuthally averaged values, plots showing the azimuthal variations, contour plots, and illustrations of various harmonics of airloads.

Typical azimuthal averaged lift-per-unit-span data are shown in Figures 47 and 48. Forward flight is shown to produce a considerably different radial distribution of average airloading on the forward and aft rotors. The forward rotor apparently operates in an upwash region caused by the aft rotor. This upwash increases the average loading on the inboard area of the forward rotor. The aft rotor has an average airload distribution which is typical of an isolated rotor, except for a rather large tip loss. Figure 48 includes three typical hovering test points (of the eight hovering test points obtained) and shows the significant effect of relatively small wind velocities. It should be noted that at a run gross weight of 35,123 pounds and with the wind (9 knots) from the left side, the average loading on the two rotors is almost identical and is like an isolated rotor. At lighter gross weights and with the wind

÷

Figure 47. Effect of Forward Speed on the Radial Distribution of the Azimuthal Average Lift per Unit Span.

Figure 48. Azimuthal Average Lift per Unit Span in Hover at Three Gross Weights.

on the nose, the effects of rotor-rotor interference are evident.

Azimuthal variations of lift per unit span for the three most outboard blade stations measured are shown in Figures 49 and 50. These data are for a test weight of 33,300 pounds and include four airspeeds. The lower airspeed data show an interesting lift spike at the 60- to 90-degree azimuth on both rotors. This spike is the predominant feature of the azimuthal variations at low speeds, especially at the more outboard blade stations. It is believed that this spike is due to intrarotor interference with the vortex from the preceding blade tip. Wake distortion is apparently more significant at low speed and keeps this vortex near the rotor on the advancing side.

At 110 and 124 knots airspeed, the forward rotor airloads variations are predominantly 1/rev. with a small 12/rev. ripple. It is interesting to note that at 124 knots the aft rotor has a significant region of negative lift on the advancing blade tip and a large 6/rev. oscillation. This oscillation in the airloads may be due to the blade torsional (twisting) motions at its first mode natural frequency, since the amplitude of the oscillation increases with radius. These data indicate that a nonlinear blade twist should be considered for the aft rotor to avoid the negative lift region on the advancing blade tip.

Lift-per-unit-span data obtained at 26,000 pounds gross weight and 108 knots are shown as contour plots in Figures 51 and 52. These data differ significantly from the 33,300-pound data in that the forward rotor has the larger variations in loading. Forward rotor blade twist appears to be too large for this condition, with several negative lift regions shown, particularly on the advancing side. Aft rotor blade twist appears to be too small for this condition, with a rather large blade tip loading occurring at 90 degrees azimuth. This apparent sensitivity of the optimum twist to the gross weight was unexpected and should be thoroughly evaluated. The data presented in this report are believed to be typical, but an extensive study of these data for twist optimization should be conducted.

There appears to be a connection between the extensive 6/rev. on the aft rotor at 33,300 pounds and 124 knots and the forward rotor lift variations shown in Figure 51 for 26,000 pounds and 108 knots which also are about 6/rev. These lift oscillations appear to be related by the negative lift region on the advancing blade, which apparently excites the blade torsional (twisting) motions. This response produces control load variations and helicopter vibrations which, of course, should be avoided. Blade design improvement and cyclic trim schedule optimization can apparently reduce this response.

The contour plots (Figures 51 and 52) also show the regions of the rotor disk which contribute the differences in the average loading on the rotors shown in Figure 47. Figure 52 shows that, for the aft rotor, the area inboard of the 60-percent radius produces lift-per-unit-span values which are always less than 20 pounds per inch, and a rather sizable region of negative lift is shown. The forward rotor data in Figure 51 show 5 regions of 20 pounds per inch inboard of the 60-percent radius, and only a few small regions of download. This pattern of loading generally substantiates the average loading data given in Figure 47.

The lift-per-unit-span data are also of considerable interest when prepared as harmonic amplitudes. Since blade bending response amplifies those airload harmonics which are near a bending natural frequency and the rotor hub only allows passage of blade integer harmonics of vertical loads (if the blades are identical), the third harmonic loading is of primary significance in producing vibration of the test helicopter. Blade beading is produced by all harmonics of the airloads but, of course, the effect is amplified or attenuated depending on the frequency and phase relationships. The radial distribution of the airloading is also important in that a distribution which has the same shape as the modal response will produce a larger bending with the same airloading amplitudes. Since rotor blades are generally pin-free beams, the blade tip is an antinode for all modes of response; therefore, the loading at the blade outboard end tends to have a large influence on blade bending. As will be shown in the following series of illustrations, the harmonic airloads also tend to be concentrated outboard on the Thus, improved blade tip design, such as a sharp planblade. form taper near the tip, should be expected to reduce blade bending loads and vibration significantly.

The effect of sideslip in transition on third harmonic airloads is shown in Figure 53. As noted previously, there is essentially no effect of sideslip on the forward rotor airloads, but the aft rotor loads vary markedly. The largest aft rotor third harmonic airloads were measured at -19.0 degrees sideslip, with large amplitudes measured both inboard and at the tip. Since blade bending is the predominant problem caused by transition sideslip - not vibration - the other harmonics of the airloading should also be studied.

and the second second

The effects of cyclic trim on third harmonic airloads measured at 100 knots and 33,000 pounds test weight are shown in Figure 54. The variations with trim are shown to be small except at the tip of the aft blade. When the trim was fully retracted (0/0), very large third harmonic airloads were measured on the aft tip. This large change is believed to be due to a tip vortex intersection. Plots such as those shown in Figure 42 should be made for the pressure measurements at 98-percent radius to determine if a vortex spike does occur for this condition. This investigation was considered beyond the scope of the present report.

The effect of a change in thrust coefficient on the rotor airloads at a moderate advance ratio of about 0.15 is shown in Figure 55. This advance ratio is equivalent to about twice that of transition and one-half of the advance ratio for highspeed conditions, so that rotor-rotor interference effects would be expected to be moderate. These data indicate that the forward rotor harmonic loading is systematically reduced with increased thrust coefficient. Aft rotor harmonic loading is shown to decrease significantly when the thrust coefficient was increased from a C_{TW}/σ of 0.070 to 0.078, but no further decrease was produced when the thrust coefficient was increased further. This effect is believed to be due to the closer position of the forward rotor wake to the aft rotor when the thrust coefficient is 0.70. When the thrust coefficient is increased, "he forward rotor wake interference is reduced, but other disturbances limit the reduction in third harmonic loading.

The effects of advance ratio on third harmonic airloads at a $C_{\rm TW}/\sigma$ of about 0.070 are shown in Figures 56 and 57. Generally, for the inboard stations, third harmonic airloads are shown to decrease with advance ratio, turning up somewhat as the highest speeds are reached. Airloads at outboard stations of the forward rotor vary significantly with advance ratio, generally turning up sharply above an advance ratio of 0.27. The aft rotor data in Figure 57 show similar trends but are larger to start with a low μ ' for the outboard stations, so that the increase at high μ ' is relatively small.

The effect of advance ratio on the sixth harmonic airloads at $C_{\rm TW}/\sigma$ near 0.070 is shown in Figure 58. The sixth harmonic is also passed by the rotor hub as a vertical vibratory force and

Figure 49. Typical Azimuthal Variation of Lift per Unit Span for Three Outboard Stations of Forward Rotor Blade.

Figure 50. Typical Azimuthal Variation of Lift per Unit Span for Three Outboard Stations of Aft Rotor Blade.

ş

Figure 51. Contour Plot of Lift per Unit Span for Forward Rotor at 108 Knots.

.

100

Figure 52. Contour Plot cf Lift per Unit Span for Aft Rotor at 108 Knots.

.

Effects of Sideslip in Transition on Third Harmonic Airloads.

ŧ

ŧ

;

>

ş

•

2

٦

Longer Verb

the second second

\$

ſ

is amplified by the second mode flap bending response of the blade; therefore, it is also significant in producing helicopter vibration. The data of Figure 58 show that, at low advance ratio (μ ' = 0.14), surprisingly large sixth harmonic loadings occur. At the tip of the aft rotor, the sixth harmonic loading is as large as the previously given third harmonic loadings. Forward rotor sixth harmonic loading is shown to be small, first decreasing and then increasing with increases in advance ratio. Aft rotor data values decrease significantly as the advance ratio increases.

To offset the tendency to overemphasize the blade integer harmonics, an example of the first ten harmonics of airloads is shown in Figures 59 through 63. This particular example is for a $C_{\pi W}/\sigma$ of 0.085, μ' of 0.25, and trim settings which cause vortex interference at the tips of the blades of both rotors. Interference is apparently intrarotor, since it occurs on both rotors in a similar manner. Note that data for the 5 separate rotor cycles measured are presented in these figures rather than the 5-cycle averages given previously; however, there is essentially no variation between cycles, except at the blade tips which experience very large loadings at all harmonics. This situation is apparently due to the impulsive-type loading from tip vortex interference which is not well represented by harmonics. Also, the tip vortex pattern is not stable and therefore does not influence each rotor cycle in the same manner. While the cycle averaged data given previously for the third and sixth harmonics are believed to be representative, this example of the separate cycles of all harmonics is presented to caution the users of these data in the variations which should be expected.

Pitching Moment per Unit Span

The rotor airload pressure measurements probably have the largest potential value when used to determine the aerodynamic pitching moment imposed on the blades. This moment can cause prohibitive control loads, apparently due to the reduced (or negative) pitch damping which occurs at stall. There also tends to be an aerodynamic moment spike on the advancing side of the disk due to compressibility effects. These data are reviewed in some detail in Volume V of this report, and therefore the presentation in this section is of an introductory nature. For this report, all aerodynamic moment data are referred to the blade pitch axis (19.5-percent chord), since this is the axis about which the control load is reacted. The Volume V

۰.

• -

Figure 62. Typical Seventh and Eighth Harmonic Airloads at an Advance Ratio of 0.25.

معالا مدعب فأشغد فحجا والأساف بشرب

presentations show the relation of data prepared using this moment reference to the more common quarter-chord reference.

Typical pitching moment data for the three most outboard stations of both rotors are shown in Figure 64. Data are shown for a test weight of 33,000 pounds at four typical airspeeds. Forward rotor data are shown to contain significantly less higher harmonic excitation than the aft rotor data. Except for 98-percent radius, these data all show a nose-up spike on the advancing blade to some degree. This was expected, since the advancing tip Mach number reached 0.91 at 124 knots with the 243 rpm tested. The large 12/rev. oscillation in the aft blade moment data may be due to blade twisting in the second torsional mode. Oscillations at 6/rev. which dominate the aft rotor data and which are significant in the forward rotor data are believed to be due to blade twisting in the first torsional mode. first harmonic variation which dominates the forward rotor moment data is probably due to the first harmonic variation of the rotor blade lift which is acting at the quarter chord of the blade. Obviously these data should be the subject of considerable review and analysis.

The significant effect of test weight on the forward rotor blade tip loading, which was mentioned previously in regard to lift per unit span, is most obvious in the pitching moment data, as shown in Figure 65. At the lighter gross weight, the blade tip produces negative lift on the advancing side so that compressibility causes a nose-down moment. This effect causes considerable blade twisting and is reflected in a rather large first and sixth harmonic oscillation. At a test weight of 32,650 pounds, the blade lift at the advancing tip is positive and the compressibility spike makes it more positive. This effect causes large 6/rev. and 12/rev. oscillations. The first harmonic oscillation for the higher test weight is of reversed sign due to the change in the first harmonic lift oscillation. These data indicate that forward rotor blade design optimization needs careful consideration, since the normal flying weight variations of the test helicopter cause significantly different operating conditions at the forward blade tips. This conclusion also applies to the aft rotor for significantally different gross weights and flight conditions.

The distribution of the oscillating pitching moment (steady moment suppressed) over the two rotor disks for the 26,000-pound-grossweight test data is shown in the contour plots of Figures 66 and 67. These plots substantiate the previous data with the first

FORWARD ROTOR

Figure 64. Azimuthal Variation of Pitch Axis Pitching Momento of Rotor Blades.

103

ß

AFT ROTOR

ch Axis Pitching Moment per Unit Span for Three Outboard Stations

Figure 65. Effect of Gross Weight on Pitch Axis Pitching Moment per Unit Span of Forward Rotor Near 110 Knots Airspeed.

Į

.

Figure 67. Contour Plot of Oscillating Pitch Axis Pitching Moment per Unit Span for Aft Rotor at 108 Knots.

n

quadrant blade tip loadings shown to be a significant nosedown moment on the forward rotor and a nose-up moment on the aft rotor. The aft rotor data show a rather sudden moment reduction at 110 to 120 degrees azimuth, apparently due to interference with the tip vortex from the forward rotor. After this disturbance, the oscillating moment at the tip does not become positive again until the third quadrant. It should be noted that this negative oscillating moment at the blade tip does not indicate that the total pitching moment is nose down, since the steady load at the tip is probably about 20 inchpounds per inch.

It is hoped that this introduction to these pitching moment data helps to stimulate further analysis of these data. All the rotor airloads data available from this and other programs should be used to calculate pitching moment, and these data should be reduced to moment coefficient form. Analysis of these moment coefficients will probably show the source of the high dynamic loads which presently limit helicopter operations.

ROTOR BLADE BENDING

The rotor blades of the test helicopter experienced flapwise bending and torsional deflections which significantly influenced the airloads data. The blades also deflected in the chordwise direction to a lesser extent. Blade bending and twisting moment data obtained from the strain gage instrumentation are illustrated in this section to indicate the magnitude of these deflections. It is again noted that the blade bending moment data presented have not been corrected for load inter-The effect of flap bending interactions on the chordactions. wise bending data is believed to be significant. Other interactions are 15 percent, or less, of the actual moment. Blade bending gage interaction details are discussed in Volume II of this report. These interactions are linear and predictable and should be accounted for in the data before detail correlation with theoretical predictions is attempted. These corrections are generally small enough to be neglected for first-order considerations such as those made in this report.

Blade bending data are usually considered as stress problems so these data were first analyzed to determine the alternating values of the bending moments. The data obtained in straight level flight are shown in Figure 68 as boundary curves of the

data for all flight conditions tested (about 100 test points); data points are shown for a typical test point at 32,600 pounds gross weight and 124 knots airspeed. It is emphasized that these data are for straight level flight, since, as will be shown, sideslip causes a significant increase in aft rotor blade bending. Blade stall at high speed also tends to slightly increase outboard blade bending, and these data are included in Figure 68. The coincidence of the typical aft rotor data, which probably include the effect of some aft rotor stalling, with the upper boundary of the data envelope at the 90-percent radius illustrates the effect of stall. A theoretical prediction of the alternating blade bending moment distribution is also shown for the aft rotor. This aeroelastic rotor analysis, the Leone-Myklestad method, is generally used for blade design at the Vertol Division but is shown to be quite conservative. Due to the very high bending which occurs in sideslip transition and which cannot be predicted, this conservatism is warranted.

The effect of airspeed on the straight level flight data is shown in Figures 69 and 70 for two stations on the forward and aft rotor blades. The forward rotor data (Figure 69) show that blade alternating bending is high in hovering due to wind and overlap effects. These data show that transition causes increased bending at 25-percent radius, except when in ground effect, even with no sideslip. At 100 knots airspeed, about 20 test points were obtained at various trim settings, rotor speeds, and gross weights; these three variables are shown to have caused a significant variation in forward rotor inboard bending. It is believed that the longitudinal cyclic trim setting and run gross weight are the predominant parameters which cause this variation.

The dominant effect of sideslip on aft rotor bending moments is shown in Figure 71. Aft rotor alternating flapwise bending at 25-percent radius is shown to double in transition if the sideslip is about 20 degrees. The data obtained at 33,000 pounds gross weight and a very low rotor speed of 202 rpm show higher flap bending than the data for 37,000 pounds, and also show a greater sensitivity to sideslip. These test data had the largest thrust coefficients tested, which apparently caused large bending amplitudes. Ground effect is shown to cause a small decrease in flap bending at small sideslip angles. These alternating flap bending data obtained in sideslip transition are the largest flap bending data obtained in any steady flight condition. With the possible exception of high-speed or

镬

maneuver-induced stall conditions, it appears that these loads are the most severe that tandem rotor helicopter blades can experience. These data should be analyzed to determine :he source of the increased loads, and blade design compromises to minimize these loads should be seriously considered. Negative (nose-right) sideslip gives improved low-speed performance which is particularly important in one-engine-out operation, so flight in sideslip transition is performed routinely.

The azimuthal variation of flapwise blade bending is typical or the data shown in Figures 72 and 73. These data were obtained at 33,000 pounds gross weight at 60 and 124 knots. A large 5/rev. oscillation is shown in the 60-knot data for both rotors and also in the 124-knot data for the aft rotor. The forward rotor data for 124 knots show a predominant 1/rev. oscillation and an 8/rev. oscillation. The 5/rev. oscillation indicates that the blades are bending predominantly in their second flapwise bending mode. The significant 8/rev. oscillation is due to excitation of the blades in the third flapwise bending mode.

The actual harmonic content of these flapwise bending data for 124 knots and 33,000 pounds is illustrated in Figure 74. The predominance of 2, 4, and 8/rev. oscillations due to the first three bending modes is evident, especially at the 25-percent radius. Since the more outboard stations are near the nodes of the higher mode bending, the flap bending data measured at these stations contain various amounts of these higher harmonics.

The steady flapwise bending data are particularly interesting since they substantiate the steady blade loading airloads data. Figure 75 shows the radial distribution of steady flap bending at 60 knots and in hover with a gross weight near 33,000 pounds. In hovering, the blades of both rotors are shown to have similar bending moment distribution. When the airspeed is 60 knots, the bending of the inboard region of the forward blade has become more negative (concave downward) and the aft blade has become less negative. This indicates that the lift shifts inboard on the forward blade as the airspeed is increased. The steady flap bending data at the 55-percent radius give a good indication of this effect, and therefore these data are plotted in Figure 76 as a function of airspeed. Forward rotor bending is shown to drop sharply between 30 and 55 knots, indicating that the lift has shifted inward. An outward shifting tendency is also shown starting at about 80 knots; however,

Typical Variation with Radius of Alternating Figure 68. Flapwise Bending Data Obtained in Level Flight.

ŧ,

\$

111

.

Figure 69. Effect of Airspeed on Alternating Flapwise Bending of Forward Rotor Blades in Level Flight.

.

Figure 71. Effect of Sideslip on Rotor Alternating Flapwise Bending at 25-Percent Radius in Transition and at 80 Knots.

ł

ŧ

3

Figure 72. Azimuthal Variation of Blade Flap Bending Measured at 25-Percent Radius of the Forward Rotor.

Figure 73. Azimuthal Variation of Blade Flap Bending Measured at 25-Percent Radius of the Aft Rotor.

Figure 75. Steady Flapwise Bending Moment Distribution in Hovering and at 60 Knots with a Gross Weight of 33,000 Pounds.

ž

**

.

even with an airspeed of 158 knots, the bending moment is not as large as it is in hovering. The aft rotor data shown in Figure 76 show a sharp increase in bending in transition and then drop back to about the same level as in hovering when the airspeed is above transition.

A first-order comparison of the oscillating blade bending and the oscillating airloads can be made by comparing these measurements at an antinode of the blade bending. This comparison is obviously first order, since the bending is caused by the distributed airload; however, the comparison indicates that the data are consistent, and some insight into the airload-bending relation is shown. Figures 77 and 78 show the ratio of the second harmonic airloads and bending at the 40- and 45-percent radii respectively. This region of the blade is near an antinode of the first mode blade bending which has a natural frequency ratio of about 2.5/rev. In spite of the relatively crude nature of this comparison, the data are surprisingly consistent except for the forward rotor at about 60 knots. The general consistency is apparently due to a direct relationship between the second harmonic airloads at 40-percent radius to the airloads on the remainder of the blade. This relationship apparently does not hold near 60 knots for the forward rotor. The phase relationship between this single station airload measurement and the blade bending response is also surprisingly consistent. Forward rotor data again show the largest variations, which occur at 100 knots.

Similar data for the fifth harmonic load-response ratio at the 75-percent radius are shown in Figures 79 and 80. The 75percent radius is near an antinode of the second bending mode which has a natural frequency ratio of about 4.5/rev. These data are much more consistent, with a systematic trend of the loading ratio with airspeed shown for both rotors. Another indication of consistency is that the phase angle ratio is very near unity for almost all airspeeds.

The azimuthal variation of the blade chordwise bending moments measured at the 45-percent radius with a gross weight near 33,000 pounds is shown in Figure 81. These data show the predominance of 1/rev. and 4/rev. response, which is expected since the chordwise blade loading is mostly 1/rev.; but, as shown in Figure 9, the natural frequency of chordwise bending is about 4/rev. The actual harmonic content of these data is shown in Figure 82 to consist of fairly large 3, 4, 5, and 6/rev. as well as the large 1/rev. The fourth and fifth harmonics are largest, since the natural frequency is somewhat larger than 4/rev.

Blade torsion moment data are particularly important, since blade twisting causes an otherwise unmeasured control input to the rotor. The harmonic content of the blade torsion data obtained at 33,000 pounds gross weight and 124 knots is typical and is shown in Figure 83. Torsion loads are shown to be predominantly 1, 2; and 3/rev., with a resonant amplification of the 5 and 6/rev. due to the first torsion mode. The magnitude of the twisting of the blades can be estimated by assuming that the moments at the 40-percent and the 13-percent radii are in phase, and that the change in moment per unit length between these radii is constant. The blade torsional stiffness data required for this estimate are presented in Volume II of this report. With these data and assumptions, the total blade twist is calculated to be about 0.6 degree.

The excitation of the blade twisting in its first mode due to blade stall (resulting in so-called stall flutter) is of considerable interest. A first look at the possible existence of this phenomenon has been made with the plotting of the fifth harmonic blade torsion moment against airspeed for a large number of the test points obtained in level flight. These plots are presented in Figure 84 and show no sign of a divergence of any kind. The forward rotor data increase slightly with speed above 120 knots; but the aft rotor, which is expected to stall first, experienced a decrease in fifth harmonic torsion in this range. These data are further explored in Volume V to isolate the effects of stall.

CONTROL SYSTEM LOADS

۴.

The serious effects of blade torsion loads are generally manifested in requirements for a heavy rotor control system. Blade loads themselves are generally acceptable due to the blade strength required to withstand centrifugal force loads. Thus, the alternating pitch link load data of Figures 85 and 86 are of considerable interest. The data are shown to increase with the square of the airspeed as expected, with some variations due to maneuvers, changes in gross weight, and altitude. The aft rotor data also show a sizable increase in control load due to sideslip in transition, and the high-speed, light-gross-weight test data show the effects of blade stall as discussed in Volume V.

of First Flapwise Bending Mode for Forward Rotor.

Antinode of First Flapwise Bending Mode for Aft Rotor. Bending and Lift Per Unit Span as Measured Near

Mode for Forward Rotor.

ŧ,

3

**

5 · · ·

i

Figure 81. Azimuthal Variation of Chordwise Blade Bending Moments at 124 Knots.

ŧ

Figure 82. Harmonic Content of Chordwise Blade Bending Moments at 124 Knots.

.....

ł

ŝ 1 ₹

-5

Figure 85. Alternating Control Loads Produced by Forward Instrumented Rotor Blade.

¢.

131

.

The harmonic content of typical pitch link load data at three airspeeds is shown in Figure 87. Large increases in the first and second harmonic loads with increased airspeed are shown. However, the fifth harmonic loads on the aft rotor decrease with airspeed in agreement with the blade torsion data of Figure 84. This may indicate that there was no stall for these test data, which were obtained at a gross weight of 26,000 pounds.

ROTOR SHAFT LOADS

The rotor shaft loads which were measured included shear and moment in two planes, rotor thrust, and torque. Shaft bending moment data are rather routine, so none of these data were prepared for this report. These moment data are of excellent quality and are available in the reference 4 data report. Rotor torque is considered as a performance parameter and is discussed later. The rotor shaft shear data obtained are unique to this program and are of good quality, as will be illustrated. Rotor thrust measurements had inadequate resolution of the steady values which were deleted.

From performance and trim considerations, the most important shaft shear data are the first harmonic longitudinal shear These data are shown in Figure 88 for various components. longitudinal cyclic trim settings. While there is some scatter in the data, fairly consistent, nearly linear variations of the longitudinal shear with advance ratio are shown. In hovering and at low advance ratio with 0.5-degree trim, the forward shaft shear is negative; that is, it is directed forward. As the speed is increased, the rotor and hub drag increases and causes the shaft shear to be directed aft. Extension of the cyclic trim reduces the shaft shear, since the rotor thrust is directed forward; however, at advance ratios larger than 0.1, the shaft shear is always positive. As shown in Figure 89, the variation of shear with trim is linear at a given advance ratio. The slope of the shear-trim variation is also shown to be greater at a lower advance ratio. These data should be reviewed in detail to aid in the understanding of tandem rotor It is unfortunate that adequate fuselage attitude performance. data were not obtained, since these data could be converted to the rotor lift-drag ratio if the shaft inclination were known.

Rotor shaft shear data are also of value in understanding fuselage vibration. The harmonic content of some typical test data is shown in Figure 90 for three airspeeds. As expected, the first harmonic shear caused by rotor drag is the largest harmonic component. The large 4 and 2/rev. shears of the forward rotor shown in these data combine to produce a fixedorientation 3/rev. in the nonrotating system. The relatively large 5/rev. in the aft shaft data cannot presently be explained. Since these rotor shaft shear data are consistent and are of good quality, they should be analyzed in detail.

AIRFRAME VIBRATION

A large volume of airframe vibration data was generated by this program which should be of special value to the CH-47A project due to the unusual conditions which were flown and due to the simultaneous measurements of blade loads, shaft loads, and vibration. There are large variations in these data due to the large range of rpm, trim settings, and gross weights which was tested. Typical test data for this test program are shown in Figure 91, which illustrates this large variation in the data. The general trend shown, with small vibration in hover, sharply increasing vibration in transition, and then decreasing until speeds above 120 knots are reached, is fairly typical of the tandem helicopter.

As would be expected from the rotor loads data given previously, fuselage vibration varies significantly with sideslip. This effect starts in hover with the data showing significantly increased vibration due to wind from the left side (equivalent to negative sideslip). Figure 92 shows the effect of sideslip on 3/rev. cockpit vibration at three airspeed ranges. A fairly systematic reduction with sideslip is shown at each speed, with about 0.05 g reduction in vibration caused by a 10-degree sideslip (nose-right). This variation of vibration with sideslip is more pronounced toward the aft end of the helicopter, since sideslip affects aft rotor loads, not forward rotor loads.

Figure 92 also shows some data obtained at reduced rotor rpm. Apparently due to the proximity of the second beamwise fuselage natural frequency (11.2 cps, Table IV) to 3/rev. excitations at normal rotor rpm, there is a pronounced reduction of vibration when the rotor rpm is reduced. A reduction of vibration by reducing rpm would be practical for low-speed operation, but would lower the limits on the high-speed operation of the helicopter. Fuselage stiffening to increase the fuselage natural frequencies has been considered.

Figure 87. Harmonic Content of Rotor Pitch Link Loads at Three Airspeeds.

Figure 88. First Harmonic Shaft Shear Data Measured in Level Flight.

		NOTE :	ALL DAT. NUMBER	A FROM FL: 390	IGHT			1	2 4	1	LO1 L24	
SULTANT SHAFT SHEAR (0-180) RUN GROSS WEIGHT	0.15			FORWARD R	OTOR							
	0.10											
	0.05								!			
RE	0 I) 1	2 3	4	5 6 HARM	7 ONIC	۲ NUMBI	3 9 2R	1	.0 1	.1 1	.2
RESULTANT SHAFT SHEAR (0-180) RUN GROSS WEIGHT	0.15			AFT ROTO	<u>R</u>		 		<u></u> ,			
	0.10											
	0.05											
	0) 1	2 3	4	56	<u> </u>	7 8	3 9) 1	0 1	1 1	.2
					HARM	WNIC	NUMB	ER				

33

1

- -----

كمحتجب حط الالعا يعطي كالعدة

and the second different of the second s

LEGEND

RUN NUMBER

11

LINE TYPE TRUE AIRSPEED (KNOTS)

53

- - ---

.

Figure 91. Third Harmonic Cockpit Vibration of Test Aircraft in Level Flight.

Figure 92. Effect of Sideslip on Cockpit Vibration.

ø

139

.

The distribution of third harmonic vertical vibratory bending of the airframe is shown in Figure 93 for one test point. The first and second beamwise bending modes, the forward pylon longitudinal (bending) mode, and a lateral fuel tank-fuselagefuel tank (mammary) mode are evident. No calculations are available on the lateral modes of the CH-47A, but there are shake test data which show that this mode varies significantly with the fuel level. This parameter further complicates the analysis of these fuselage vibration data. The longitudinal modes are essentially as described in Table IV and are predictable by analysis.

PERFORMANCE AND TRIM

The rotor torque measurements obtained in this program have been prepared as a nondimensional power coefficient-thrust coefficient ratio following the data presentation of the tandem rotor model test of reference 14. These data are shown in Figure 94, and indicate that the tandem helicopter has considerably better performance than the referred data indicate. It can be shown that this coefficient ratio is made up of the following terms:

$$C_{\rm p}/C_{\rm mw} = K_{\rm i} (C_{\rm mw}/2\mu') + C_{\rm do}^{\sigma}/8C_{\rm m} + C_{\rm pp}/C_{\rm mw} , \qquad (4)$$

where

K_i is an induced power factor resulting from nonuniform downwash and

 c_{do} is an average rotor profile drag coefficient.

The referred wind tunnel test data were prepared with no propulsive force, so that the parasite power coefficient ratio, C_{PP}/C_{TW} , was zero. To provide equivalent data, the parasite power which would be required if each of the rotors produced one-half of the required propulsion (f = 21 ft²) was subtracted from the faired curve of the test data. A test weight of 33,000 pounds was conservatively assumed for this calculation, even though most of the high-speed test data shown were obtained at about 26,000 pounds. The resulting corrected power coefficient ratio data are shown to substantiate the reference data for the forward rotor for advance ratios of 0.12 to the highest advance ratio tested in reference 14, 0.28. Below an advance ratio of 0.12, the forward rotor requires considerably less power than this reference indicates, except in hovering, where the results again are identical. For the aft rotor, the power required is considerably less than reference data indicate at all advance ratios tested, except for three points obtained at 37,000 pounds test weight. It is believed that this difference in performance between the two-blade testering rotors of the model and the flight test data may be due to the induced power advantages of more blades. Reduced sensitivity of the full-scale rotor blades to the disturbances of the tandem rotor downwash may also reduce c_{do} for the full-scale test data.

The effects of sideslip on performance are shown in Figure 95. Minimum aft rotor torque is shown to exist at about -5 degrees (nose-right) sideslip. This appears to be due either to an induced power advantage or to reduced rotor profile power resulting from having the advancing blades operating in less disturbed air. At 80 knots, there is also a small performance advantage to flying with nose-right sideslip.

The effect of variations in longitudinal cyclic trim setting on required rotor power is shown in Figure 96. With small extensions of the cyclic trim, the forward rotor power increases, indicating that more propulsive force is being provided by the forward rotor. Extension of the trim to about 2 degrees forward and aft causes essentially no change in fuselage attitude. Larger extensions of trim cause significant changes in attitude which shift the propulsive force requirement onto the aft rotor. This is shown by an increase in the aft rotor torque and a decrease in the forward rotor torque. The effect of increased cyclic trim in causing a shift of the propulsive force to the aft rotor is somewhat substantiated by the rotor thrust measurements obtained by integrating the steady airload pressures. The following data from flight 390 show that the forward rotor thrust remains constant with trim and the aft rotor thrust varies as follows:

<u>Trim Set</u>	ting	Aft Rotor 7	Thrust j	per	Blade		
Forward	orward Aft (Pounds)						
3°	-5°	5	5720				
-2°	-2°	5	5520				
-1 °	-10	5	5210				

The instrumentation provided to indicate the steady trim of the aircraft was either unreliable at best or completely inadequate. Figure 96 shows the effect of longitudinal cyclic trim setting on trim and illustrates the scatter in the data. Surprisingly, the fuselage angle-of-attack vane, which was expected to give

Figure 94. Nondimensional Rotor Performance of Test Aircraft.

Figure 95. Effect of Sideslip on Performance in Transition and at 80 Knots.

ł

ţ

relatively poor results due to nose boom bending, gave constent and repeatable results. Figure 96 shows about a 1.7degree change in attitude (nose-up) resulting from an average change in cyclic trim of 4 degrees. It should be noted that the nonlinear effect of cyclic trim on fuselage attitude results from the geometry of the tandem rotor helicopter.

The fuselage attitude data shown in Figure 96 were prepared as the changes in attitude from zero trim settings. This should have eliminated preflight calibration errors and most of the drift; however, as shown in the figure, the data contain scatter of about ± 2 degrees and are almost worthless. It is suggested that these data be used only for review of the maneuver data, since the scatter is about 50 percent of the usually expected 4-degree variations of fuselage attitude in level flight.

Similar poor results are also shown by the rotor collective (steady) pitch measurement. Typical data for level flight at 33,000 pounds gross weight are shown in Figure 97. Variations between flights of 1 to 1-1/2 degrees are shown. Within a given flight, the data are fairly consistent, with a similar spread shown between test points. For instance, note that for the aft rotor, test points 53 and 54 give essentially identical results for each flight. These data are believed to indicate a trend and could be of value on a statistical basis; however, use of these data for single-point analytical trim comparisons would be difficult and of questionable value.

BLADE FLAPPING

Blade lag and flap hinge angles were measured, and good quality data were obtained. Lag motions of the blades are generally of secondary interest, and therefore no lag motion data were prepared for this report. These data are, of course, available in the data report. Blade flap angle data are illustrated and are compared to the flap hinge airload moment data.

The rotor blade coning angle measurements, indicated by the azimuthal average (steady) flap angle, were normalized to 250 rpm and were divided by the run gross weight per rotor. As shown in Figure 98, these data are unusually consistent. There are some local variations in the data due to trim setting, and there is a rather gentle decrease with airspeed from zero to 80 knots followed by a gentle increase with airspeed above 80 knots. This trend is more pronounced for the forward rotor, which may be due to the previously mentioned inward shift of the forward rotor lift when the airspeed is increased from hover. It appears that there are about 0.5 $\times 10^{-5}$ degrees per pound of scatter in this normalized coning data; this scatter is equivalent to about 0.2 degree at 33,000 pounds.

The first harmonic longitudinal blade flapping is generally of predominant interest, since this angle defines the rotor tip path plane inclination. These data were corrected for cyclic trim and normalized by the thrust coefficient-solidity ratio. It is expected from uniform downwash-linear aerodynamic rotor theory that the resulting normalized control axis flapping will vary linearly with advance ratio. As shown in Figures 99 and 100, these data show a linear variation with a slope, $\partial \beta_{ALC}/\partial \mu'$, of 260 C_{mW}/σ on the forward rotor and 290 C_{mW}/σ on the aft The theoretical variation with uniform downwash rigid rotor. blades but with nonlinear aerodynamics is shown to have a smaller initial slope than the test data; however, at higher advance ratios, this theory shows a nonlinear variation and gives a prediction almost identical to the test data. These data also show variations due to trim setting, etc., and may have about 1 degree of scatter.

It is interesting to compare the blade flap hinge angle measurements to the moment about the flap hinge calculated from an integration of the airload pressures. This data comparison for the first harmonic resultants is shown in Figure 101. The ratio of the phase angles of the moment and the response is shown to be nearly unity (one). This was unexpected, since a 90-degree phase shift was expected. It is believed that the lack of a phase shift is due to the inclusion of the flap damping as well as the flap excitation in the airload measurements. The increase in the phase angle ratio with airspeed may be indicative of the decrease in flap damping due to advance ratio effects. These data also contain blade bending effects which may be significant.

The first harmonic response-moment ratio data of Figure 101 show considerable differences between the two rotors. Aft rotor data show a large increase in the response-moment ratio as the airspeed is increased from zero to 60 knots, followed by an equally size decrease at higher airspeeds. Since the blade first har onic flapping is not unusually high in this speed range, a shown in Figure 100, these data indicate that the first harmonic flapping moment decreases. This effect may be indicative of an increased significance of the higher harmonics and may help to explain the high vibration of the tandem rotor helicopter in this speed range. The forward rotor response-moment data are shown to be consistent and to systematically decrease with airspeed.

Similar second harmonic flap response-flap moment data are shown in Figure 102 to be considerably different from the first harmonic data. The response-moment ratio is shown to increase with airspeed to 60 knots and then decrease for both rotors, but with a larger increase on the forward rotor. The phase angle ratio is shown to vary significantly with airspeed for both rotors with a value of about 0.25 at low speed, shifting between 60 and 100 knots to a value of about 2.5 at higher speeds.

The third harmonic flap response-flap moment data are shown in Figure 103. Due to the proximity of the third harmonic to the first mode bending natural frequency, these data were expected to be quite irregular. However, the aft rotor data are unexpectedly consistent and vary systematically with airspeed. The forward rotor data show a very large response-moment ratio in transition and at high speed. The phase angle ratio is more irregular for the aft rotor data.

The preceding rather limited data presentations are considered to be for-instance plots of typical data. It is believed that these data support the conclusions presented and provide a starting point for further analysis. It has been shown that most of the data have the repeatability and consistency expected and that other data have excessive scatter. Further evaluations of the data will be made in the next section of this report, which also contains a summary critique of the measurements.

Figure 97. Collective Pitch Settings Required in Level Flight at a Gross Weight of 33,000 Pounds.

Figure 98. Variation of Normalized Blade Coning Angle with Airspeed.

Figure 99. Normalized First Harmonic Longitudinal Blade Flapping with Respect to the Control Axis for the Forward Rotor.

í

Figure 100. Normalized First Harmonic Longitudinal Blade Flapping with Respect to the Control Axis for the Aft Rotor.

Figure 101. Comparison of Blade Flap Motion to First Harmonic Flapping Moment Airloads Data.

A

Harmonic

and the forest of the fail of the forest of

the second second second

and the states of

D

Figure 102. Comparison of Blade Flap Motion to Second Harmonic Flapping Moment Airloads Data.

A

.

.

•

Second Harmonic

,

r

Figure 103. Comparison of Blade Flap Motion to Third Harmonic Flapping Moment Airloads Data.

f

n to Third Harmonic

at out of the second

(r

EVALUATION AND ANALYSIS OF RESULTS

The preceding data presentations gave some indication of the quality of the data, and further evaluations of the data are made in this section. Theoretical comparisons and comparisons with the experimental results from other programs are presented. A tabular summary of this data critique is presented, giving a quantitative evaluation whenever possible, and at least giving a subjective judgment of the quality of the results.

THEORETICAL COMPARISONS

In this section, comparisons with theoretical predictions are made with the blade airloads, collective pitch, and rotor torque data. Of these data, the airloads are considered to be most important and thus are emphasized.

A sampling of the azimuthal average airload pressures at the 85-percent radius is compared to the theoretical chordwise pressure distribution in Figure 104. The test data shown were selected for having been obtained within 10 knots of 70 knots and within 0.5 degree of 5 degrees Centigrade outside air The theoretical pressure distribution shown was temperature. obtained from reference 1 and is known to compare well with airfoil wind tunnel test data at small angles of attack, low Mach number, and full-scale Reynolds numbers. The azimuthal averaged rotor data generally meet these criteria except that the average Mach number (≈ 0.5 at r/R = 0.85) is rather high. However, the comparison shown in the figure is poor, with leading edge pressures higher than predicted and balanced by low pressures on the trailing 70 percent of the chord. It should be noted that, with this form of presentation, the low pressures at 37-, 65-, and 80-percent chord tend to make the other pressures appear too high. The data shown were integrated using straight lines (triangles and trapezoids) so that the low pressures made the lift per unit span (LS-L) low. Since even the low pressures were fairly repeatable between flights, it was decided to use the forced-fit integration method described previously to integrate the steady airloads pressure data. With this method, the low average pressures do not greatly affect the average lift or pitching moment data, and the signals contribute normally to the oscillating loads. These low average pressures could have resulted from the transducer mounting procedure which produced irregularities in the airfoil shape. The transducer mounting recesses could have caused systematic local low pressure regions. Another possible reason for the low value of the trailing edge pressures is the very low

electrical output of these transducers. Consistent measurement of the output that these transducers produced at an average pressure of 0.5 psid is unlikely. For these reasons, the forced-fit integration method was adopted, and it is believed that this method eliminated the effects of these average pressure errors from the airload data. In the general evaluation of the data, however, the pressure measurements are shown in Figure 104 to have about 0.5 psid error in the uncorrected azimuthal average value.

A comparison of the variations of two local-pressure-to-locallift ratios with the advancing blade tip Mach number is shown in Figure 105. These data show consistent systematic data for many flights, with the pressure ratio increasing with advance ratio at the 2-percent chord and decreasing with advance ratio at the 37-percent chord. This variation is apparently a compressibility effect and is as predicted by the von Karman-Tsien transonic airfoil theory. This theory indicates that, prior to the formation of a shock, the larger differentialpressure values will get relatively larger with increased Mach number. These pressure ratios compare favorably with the incompressible theoretical pressure distribution values of reference 1 at the low Mach numbers associated with low advance ratios, This comparison is believed to indicate that the airload pressure data are consistent and believable.

The credibility of the airloads data is further supported by comparison with the predicted airloads from an aeroelastic nonuniform downwash rotor analysis, reference 12. Figure 106 shows a comparison of two blade stations for one test condition. The waveform of the airloads is shown to be predicted with reasonable accuracy; however, the predicted airloads tend to have greater irregularities than the test data for the aft rotor. Due to the limitations of the theory for predicting rotcr-rotor interference, the average loadings at the blade stations are not predicted except at 85-percent radius of the aft rotor. This comparison is believed to indicate that the integrated airload pressures produce lift-per-unit-span data with adequate response and believable waveforms. The lack of comparison with the azimuthal average lift is due to failings of the theory and not the data.

A comparison of the azimuthally averaged airload lift measurements and a second rotor analysis is shown in Figure 107. This second theory, reference 6, has a more rigorous nonuniform downwash analysis but assumes rigid blades. As shown, the azimuthal average airload of the forward rotor is not predicted by the theory. The loading over the inboard region is shown to be higher than predicted and is balanced by lower loading outboard on the blade. It is believed that this average rotor loading distribution is due to the upwash at the forward rotor caused by the aft rotor, which is neglected by the theory. Reference 13 shows that there is an upwash caused by a rotor which could be of sufficient magnitude to cause this effect.

The local velocity predictions of the reference 6 theory have been used to calculate normal force coefficients from the airload measurements. Figure 108 shows these airload coefficients plotted against the theoretical angle of attack. The azimuthal average coefficient is not predicted by the theory and has been suppressed. The resulting comparison is shown to be reasonably good. As compared to the essentially linear variation of the theoretical coefficients, the test data are shown to be concave upward and have significant bumps near 90 and 220 degrees azi-The concave upward shape is believed to be due to the muth. rigid blade assumption of the theory. The bumps are believed due to tip vortex proximity effects which are more pronounced than predicted. Again, these differences are as expected and tend to support the measurements.

Comparison of the collective pitch data to the predictions of the uniform downwash-rigid blade theory confirms the conclusion reached previously that these data show excessive scatter. This comparison is shown in Figures 109 and 110 for the forward and aft rotors. Statistically, the theory appears to underestimate the collective pitch required by about 1 degree; however, the ± 1 degree of scatter shown does not give confidence in the data. These data should not be used for further analyses.

The rotor performance as indicated by the rotor torque measurements has been compared to a uniform downwash-rigid blade rotor analysis (reference 7), and the results are shown in Figure 111. This figure shows that the scatter in the data is about ± 8 percent for the forward rotor and ± 14 percent for the aft rotor. It should be noted that this comparison is based on calculations for the nominal test conditions and not the actual test conditions. Since the test points were generally within 2 knots of the requirement, and since the altitude was generally low but within 2000 feet of the requirement, this comparison is believed to be valid. However, some of the scatter shown is probably due to these differences. This comparison is believed to substantiate the measured torque values, which are probably nearly within the ± 3 percent estimated from the instrumentation

•

Figure 104. Comparison of Typical Azimuthal Averaged Airload Pressures with Theoretical Airfoil Pressure Distribution for Steady Motions.

!

and the second provide and the state of the second state of the second state of the second state of the second

Figure 105. Effect of Advance Ratic on Typical Nondimensional Airload Pressures at 85-Percent Radius of the Forward Rotor.

ł,

į

1

and the second second state and the second second

Figure 107. Comparison of Theoretical and Measured Average Loading of Forward Rotor.

Figure 108. Initial Comparison of Normal Force Coefficient Data to Theoretical Prediction of Rigid Blade Nonuniform Downwash Analysis.

Figure 109. Comparison of Theoretical and Measured Collective Pitch Values for Forward Rotor.

ALC: NO. OF

States, and

4

•

Figure 111. Effect of Advance Ratio on Prediction of Rotor Shaft Torque by Uniform Downwash-Rigid Blade Analysis.

design. It appears, however, that the theory predicts too large a torque for the forward rotor at high gross weight (37,000 pounds) and predicts too small a torque for the aft rotor throughout the speed range.

The theoretical comparisons made in this section are believed to be typical of what can be expected from the data of this program. It is believed that it is necessary to make a rather large sampling of any of these data to determine typical values before any detailed comparisons are performed. It is believed that the present data validation effort has eliminated the spurious readings due to instrumentation malfunctions; however, it is possible that some of the test points obtained are not consistent due to transient accelerations or nonlevel flight during data acquisition. Therefore, single test point comparisons should be avoided.

COMPARISON WITH DATA FROM OTHER PROGRAMS

There is now a considerable body of rotor airloads data acquired in flight and in wind tunnel tests, and many comparisons of these data are possible. Comparative tests at an airspeed of about 110 knots are available from the two-bladed single rotor flight test data of references 2 and 3, from the four-bladed single rotor flight test data of reference 27, and from wind tunnel data of reference 23, as well as from the presently reported tanded rotor airloads data. The parameters of the test conditions compared are given in Table V. The chordwise pressure distributions at about the 85-percent radius are shown for various azimuth angles in each of the four quadrants of the rotor disk in Figures 112 through 115. As expected, the two-bladed rotor has the largest chordwise pressure irregularities on the This rotor had a large lift per foot of blade, advancing blade, which is a reasonable measure of tip vortex strength, and also had the largest advancing blade tip Mach number. Further, the data shown were obtained at near 90-percent radius for the twobladed rotor, and the blades of this rotor were of 15-percent thickness rather than the 11- to 12-percent thickness of the other rotors. Since the blades move into the proximity of the vortex trailed from the preceding blade on the advancing side of the disk, rather large angle-of-attack variations are imposed which, due to the relativel; high Mach number, result in a significant disturbance of the chordwise pressure distribution. The two-bladed rotor data show definite signs of a compressibility shock at about 25 percent of the chord for azimuth positions of 60 to 120 degrees. The four-bladed rotor wind tunnel test

A

.

istributions as Measured Near 110 Knots in Four Similar Full-Scale

P

.

.

Figure 113. Second Quadrant Chordwise Airload Distributions as Measured Near 110 K Airloads Measurement Programs.

A

istributions as Measured Near 110 Knots in Four Similar Full-Scale

.

كالمدوكات تنج مرمية تربيك فاللطن

ſ

A

stributions as Measured Near 110 Knots in Four Similar Full-Scale

,

Figure 115. Fourth Quadrant Chordwise Airload Distributions as Measured Near 110 Airloads Measurement Programs.

(b)

data have the lowest lift per length of blade as well as the lowest advancing tip Mach number, and therefore show almost no disturbance on the advancing blade. The tandem rotor data fall between these two tests and show some disturbance, particularly on the aft rotor. The tandem rotor data shown are for a lift loading and Mach number similar to the two-bladed rotor, but the tandem rotor blades have thinner (ll-percent thickness) sections and are therefore less sensitive to compressibility effects.

	Rotor Configuration			
Parameter	Two-Bladed Teetering	Four-Bladed (Flight Data)	Four-Bladed (Wind Tunnel Data)	Tandem
μ:	0.25	0.29	0.29 *	0.27
C_T/σ (or C_{TW}/σ)	0.093	0.090	0.058 *	0.076
M(1.0,90)	0.81	0.73	0.73	0.81
$Ω_R$, fps	724	626	650	683
V, knots	105	108	110	108
Density Altitude, f	t 1500	3700	2100	2950
θ ₀ Fwd (or SLR)	Unknown	15.0	12.6	16.8
θ ₀ Aft	NA	NA	NA	16.5
θ _{Al} Fwd (or SLR)	Unknown	3.3	6.0	3.4
θ _{Al} Aft	NA	NA	NA	5 .3
${}^{\beta}_{Als}$ Fwd (or SLR)	Unknown	-0.1	-0.7	-2.1
${}^{\beta}_{Als}$ Aft	NA	NA	NA	0.2
Lift per rotor, lb Lift per foot of	6120	11,500	8252 *	12,950
blade, lb/ft	139	103	74 *	146
Reference	3	27	23	NA
Flight	NA	14	NA	384
Run	NA	NA	Table 8	4
	* Average value for two tandem rotors.			

TABLE V PARAMETERS OF AIRLOADS TESTS COMPARED IN FIGURES 112 THROUGH 115

The persistence of the advancing blade disturbance shown in Figures 112 and 113 is surprising. While it appears that this disturbance is triggered by the tip vortex proximity, the chordwise pressure distribution does not recover to the expected airfoil distribution until 150 to 180 degrees azimuth is reached. This initial disturbance is so great that the additional disturbance which the aft rotor of the tandem experiences at 120 degrees azimuth is hardly noticeable. Also significant is the fact that each of the rotors would be expected to have an additional vortex proximity disturbance at about 300 degrees azimuth. There is no evidence of any significant disturbance, which indicates either that local Mach numbers greater than about 0.6 are required for this disturbance to take place, or that rotor wake distortion is such that the vortex is moved away from the blade. It seems that compressibility effects are the most likely reason for this disturbance.

The typically airfoil-like pressure distributions shown on the retreating side of the rotor disk for the four rotor airloads tests in Figures 114 and 115 are believed to indicate that rotor airfoil sections normally perform as two-dimensional sections. On an azimuthal average basis, this two-dimensional characteristic is believed to occur even with large pressure irregularities on the advancing blade. The data used for Figure 112 were azimuthally averaged and are shown in Figure 116 to illustrate this tendency. Unfortunately, the uncorrected tandem rotor data show considerable variations in average chordwise pressure distribution. These variations were corrected to match the forced-fit pressure integration curve, equation (1), prior to the preparation of Figures 112 through 115. The comparison shown is believed to substantiate the need for this correction. It should be noted that in the reference 4 data report, the pressure data are presented without any corrections, but the integrated airloads data presented were prepared with the correction for these average pressure variations.

The relatively smooth airfoil-like performance of rotors on an azimuthally averaged basis does not apply to the harmonics of the azimuthal variations. Figure 117 shows the first three harmonic pressure amplitudes as a function of chordwise location for three test conditions of the H-34 rotor and one test point of the tandem data. It is shown that, even for the very smooth flight 14 data from reference 27, the harmonic loading distribution is somewhat irregular. The first harmonic loading was more irregular in descent in a flight condition described as rough. Of the single rotor data, the wind tunnel test results

are the most irregular, possibly due to the larger local Mach number of this test. Of all the data shown, the forward rotor of the tandem experienced the largest irregularities, again probably due to the significantly larger local Mach number. It is significant that the higher pressures which occur on the first 40 percent of the chord have increased variations with increased frequency, while the pressures on the remaining 60 percent of the chord decrease. This tendency is believed to be due to the impulsive nature of the pressure disturbance on the advancing blade, which disturbs all harmonics. Comparable harmonic rotor airloads data are available for the aft rotor of a tandem in reference 9. The comparison of some typical third harmonic flight data with these model data is made in Figure 118, and considerable differences on the outermost 20 percent of the blade are evident. This lack of correlation is probably due to the larger-than-scale stiffness of the model blades used for the tandem rotor model test. Other reference 9 tests on single lifting rotor models with blades of various stiffnesses showed this kind of change in blade loading with blade stiffness. The high inboard airload at 40-percent radius on the model at an advance ratio of 0.1 is not like the flight test data shown. This unexpected inboard loading may be due to transition which, as shown in Figure 57, tends to increase the inboard third harmonic loading. The flight data are at a somewhat higher advance ratio and are clear of transition effects.

Considerably more sophisticated comparisons of the various rotor airloads data available can and should be made. For example, Figure 119 shows a two-case comparison of normal force coefficients prepared from the chordwise integrated airloads The single lifting rotor coefficients are from reference data. 26 and are based on the airloads data of reference 27. Forward rotor data from this program for these two rather typical flight test points show good comparison of the azimuthal waveform. Since the tandem rotor data were obtained at a thrust coefficient and propulsive force similar to those of the single rotor data, the lower values of normal force coefficients shown for the tandem data are attributed to rotor-rotor interference. This kind of airload coefficient data preparation and comparison should be greatly expanded with the ultimate objective of preparing the airloads data as synthesized rotor airfoil coefficients.

EVALUATION OF DATA ACCURACY

It is believed that the most important task of this report is to evaluate the quality of the data obtained so that subsequent

Figure 116. Comparison of Chordwise Distribution of Azimuthal Averaged Airload Pressure from Various Airloads Programs.

Figure 117. Comparison of Chordwise Loading Harmonics of Other Airloads Programs with Forward Rotor Data.

Ŧ

ş

Figure 119. Comparison of Normal Force Coefficient Data as Measured at 85-Percent Radius on Single Rotor and on Forward Rotor of Tandem.

analysts can use these data with confidence. The use of these data is believed to be more important than the possible loss of image resulting from the exposure of the relatively few bad measurements; therefore, this evaluation will be candid. Generally, the data are believed to be of very good quality; however, even before this report was written, some attempts to use these data were almost abandoned due to the use of the inadequate fuselage attitude data of this program in an analysis. It must be acknowledged that some of the measurements are poor, and most of these have been deleted; however, due to extenuating circumstances or error, some inadequate measurements may remain.

The data unique to this program, the tandem rotor airloads data, have been emphasized in this evaluation. These data initially had excessive scatter in the steady measurements which resulted in low values of integrated lift per blade as shown in Figures 120 and 121. After detailed final editing, which uncovered about six additional bad transducer signals per flight, and the use of forced-fit integration, these data are shown to have about 10-percent scatter. Some of the scatter shown in Figures 120 and 121 is due to variations in trim setting which vary the fuselage download and the propulsive force distribution between the rotors. The trend of increasing lift with airspeed, which is especially noticeable on the forward rotor, is believed to be due to the fuselage download. The forward rotor lift data are also shown to be somewhat lower than expected except for hovering, even after final editing and forced-fit integration. This is believed to be due to the more uniform loading of the forward rotor which results from aft rotor interference. The more uniform loading causes onehalf of the blade lift to be imposed on the inboard area of the blade, where it is measured by only one-third of the pressure transducers. This apparently results in a low measurement of blade lift, since the extrapolations required with the sparse array are more significant. Generally, these data are believed to be of very good quality and are much better than expected. Contractually, the program was required to provide only alternating airloads data, which are considerably easier to obtain. The acquisition of these good steady data has greatly increased the confidence in the alternating values as well as given significant information on the average rotor loading.

It is expected that the detailed analysis of rotor airloads data will principally involve the aerodynamic pitching moment data, since most contemporary rotor blade problems are due to torsional loadings. Blade stall and compressibility effects
are of this nature and are problems which require considerable further analysis. Figure 122 was prepared to indicate the consistency of the airloads data in oredicting pitching moments. It is shown that the radially averaged aerodynamic center of the blade is measured repeatedly within 2 percent of the chord. A trend of slightly increasing pitching moment with airspeed is shown in these data. This trend is probably due to reversed flow and compressibility effects, both of which tend to cause a nose-up moment on the blade. These data are generally believed to be consistent and repeatable and are worthy of considerable analysis.

A summary of the evaluation of the data obtained as discussed in this and previous sections of this report is presented in Table VI. Where possible, quantitative data evaluations are presented which are generally obtained from repeated flights of the same data point. Test points 46 and 50, for instance, were repeated in two flights; test point 25 was repeated in flights 386, 391, and 395. These points were the predominant source of the scatter evaluation. The mean accuracy of the data was more a subjective evaluation, but an attempt was also made to put a quantitative measure on their accuracy. These data generally substantiated the pretest instrumentation system analysis, except for those signals which were poor. For example, the rotor shaft alternating lift instrumentation in-flight calibration system did not work, so these data were deleted. The steady rotor shaft lift data were of poor accuracy due to low sensitivity but were not deleted so that the shaft interaction matrix would be complete. However, the steady value of the steady lift data was set equal to me-half of the run gross weight. The fuselage attitude data were inadequate and were deleted; but as shown in the table, the accuracy was within the pretest specifications. This was due to an inadequate definition of the program requirements. The rotor blade collective pitch measurements are also poor due to excessive scatter; but they were not deleted, since the data are believed to be of value if considered statistically. All other data are believed to be of the expected accuracy. The rotor shaft shear data obtained are believed to be worthy of mention as being unique to this program and of excellent quality.

Figure 120. Comparison of Forward Rotor Lift Measurements Obtained from the Azimuthal Averaged Airloads to Run Gross Weight.

ŵ

-

f

10.00

Figure 121. Comparison of Aft Rotor Lift Measurements Obtained from the Azimuthal Averaged Airloads to Run Gross Weight.

Figure 122. Azimuthal Averaged Rotor Blade Aerodynamic Pitching Moment Data.

190

G

. ئ

TABLE VI

ESTIMATED DATA ACCURACY BASED ON COMPARISON

	Pretest		
	Estimated Accuracy	Steady Va	lues
Parameter	***	Scatter	Accuracy Mean
Airloads Data			<u> </u>
Pressures Section lifts Section moments Blade lifts Blade moments	0.4 psid DNE DNE DNE DNE DNE	0.5 psid 2 lb/in. 4 inlb/in. 0.05 RGW 0.0005 RGW x c	0.5 psiā 1 1b/in. 2 in1b/ *Low ≃ 150 DCR
<u>Blade Loads</u>			
Flap bending Chord bending Torsion Tension	1000 in1b 1000 in1b 1000 in1b 2800 1b	400 inlb DNE DNE 1000 lb	200 in1 DNE DNE 500 lb
Shaft Loads			
Lift - steady Lift - alternating Shear Bending Torque	750 lb 345 lb 135 lb 1260 inlb 3100 inlb	**0.2 RGW	**0.2 RGW
Control Loads			
Pitch links	240 lb	DNE	DCR
Accelerometers			
Hub motion Fuselage vibration	0.03 g at 3n 0.03 g at 3n	0.03 g	0.03 g

٩

ţ

TABLE VI

.

CCURACY BASED ON COMPARISON OF RESULTS

	Test	Results	· · · · · · · · · · · · · · · · · · ·
Steady Va	lues	Oscillatin	g Values
atter	Accuracy of Mean	Scatter	Accuracy of Mean
psid b/in. n15/in. 5 RGW 005 RGW x c	0.5 psid 1 1b/in. 2 in1b/in. *Low ≈ 150 1b DCR	0.1 psid 0.5 lb/in. 1 inlb/in. DNE DNE	NEP 0.3 lb/in. 0.5 inlb/in. DNE DNE
in1b 0 1b	200 inlb DNE DNE 500 lb	200 inlb 500 inlb 500 inlb DNE	NEP NEP NEP DNE
RGW 000 in1b	**0.2 RGW 10,000 inlb	DNE DD 0.05 RGW DCR DNE	DNE DD 0.02 RGW DCR DNE
	DCR	50 lb	20 lb
3 g	0.03 g	DNE 0.01 g	DNE 0.01 g

~

-

TABLE VI - CONTINU

		Pretest		
		Estimated Accuracy	Steady Valu	les
Deveneter		***	Cashhan	Acc
Parameter			Scatter	
<u>Trim</u>				
Airspeed		3 knots	2 knots	lk
Density alti	tude	200 feet	200 feet	50
Fuselage att	itude	2 degrees	2 degrees	1 d
Angle vanes		1 degree	1 degree	Τα
Blade pitch		0.25 degree	1 degree	0.5
<u>Blade Hinge An</u>	gles			
Flap		0.25 degree	0.1 degree	0.0
Lag		0.25 degree	DNE	DNE
Notes: 1. A D D D N 2. S i	bbrevi CR Da DD Da DNE Da IEP No Va Stated	ations ta consistent and repeatable ta deleted (no value) ta not evaluated evaluation possible lue not significant accuracy for airloads data is ba tion method.	ased on forced-fit	
*3. F 1	Forward Lift di	rotor lift data are low due to stribution.	the unexpected	
**4. s t	Steady to 0.5	rotor shaft lift data were delet RGW due to the noted poor accura	ted and set equal acy.	
***5. R s	Refer t see Vol	o Figure 15 of this report and : ume I.	for further explanation	n

A

TABLE VI - CONTINUED

¢	Test	Results	
Steady	Values	Oscillatin	g Values
Scatter	Accuracy of Mean	Scatter	Accuracy of Mean
knots 00 feet degrees degree degree	l knot 50 feet 1 degree 1 degree 0.5 degree	0.1 degree	0.1 degree
.l degree NE	0.05 degree DNE	0.5 degree DNE	0.2 degree DNE
on forced-fit			
unexpected			
nd set equal			
urther explana	ation		
		B	

CONCLUSIONS

AIRLOADS DATA

- The radial distribution of the azimuthally averaged loadings on the forward and aft rotors of a tandem helicopter tends to be significantly different. The forward rotor has a more uniform loading distribution than an equivalent isolated rotor or the aft rotor. This effect is apparently due to the upwash caused by the aft rotor, which increases the inboard loading on the forward rotor.
- Chordwise airload pressure distributions obtained in this program are similar to prior dynamic airloads measurements. These data simulate two-dimensional airfoil airloads, on an azimuthal average basis and locally, when significantly far from blade tip vortex interference effects.
- 3. Adversely trimmed flight configurations can cause blade tip vortex interference on the aft rotor of a tandem helicopter in the form of large, suddenly applied changes in the local blade airload pressures. At 85-percent radius, these pressure spikes are of the greatest magnitude near 13-percent chord. Chordwise airload pressure distributions during tip vortex interference have a characteristic sawtoothed shape. Tip vortex interference spiking is more pronounced at 85-percent radius than at 98-percent radius for the forward and aft rotors.
- 4. Sideslip causes significant changes in the aft rotor airloads. In transition, the changes in airload waveform with sideslip are reflected in sharply increased flapwise blade bending.
- 5. Harmonic content of rotor blade airloads tends to include significant amounts of all harmonics up to the eighth. First harmonic airloading has an amplitude of about onethird of the average lift per unit span of the blades. Second harmonics tend to be somewhat smaller than the first harmonic. Third to eighth harmonic amplitudes tend to average about one-tenth of the average lift per unit span. Ninth and tenth harmonics are significantly smaller than the lower harmonics. All harmonics are characterized by a higher loading near the blade tip.

This effect is probably due to the impulsive nature of tip vortex interference.

- 6. Third harmonic airloads tend to decrease with increased thrust coefficient and decrease with advance ratio until advance ratios greater than 0.27 are reached. Cyclic trim does not change the third harmonic airloads significantly, even for conditions for which spiking is known to be varied. Sideslip causes large changes in the third harmonic airloads for the aft rotor.
- 7. The occurrence of rotor-rotor interference pressure spiking on the aft rotor apparently occurs so rapidly that the lift-per-unit-span loadings are not affected.
- 8. Airload pitch axis-pitching moment per unit span of the forward rotor is characterized by a once-per-revolution oscillation with some eighth harmonic excitation. For the data shown, there is no evidence of any coupling with the 5/rev. first mode torsional deflection of the blade; however, the 12/rev. second torsional mode is in evidence. Aft rotor pitching moment is characteristically a 6/rev. oscillation, particularly for outboard blade stations. Pronounced nose-down pitching moments can occur on the advancing side of the rotor disk for conditions whick produce negative lift in this region.
- 9. First, second, and third harmonic airloads data are substantiated by comparison of the harmonics of the flapping motion to the harmonics of the airload moment about the flapping hinge. This ratio of flapping response to flapping excitation varies with airspeed within a reasonable scatter band for both rotors and for all three harmonics.
- 10. Due to the azimuthal nonlinearity of the airload pressure data, the consideration of these data as harmonics gives peculiar results. For example, chordwise distributions of the harmonics of airload pressures indicate that even the first harmonic airloads do not produce airfoil-like pressure distributions. Aft of the quarter chord, the first harmonic pressure distribution is usually airfoillike; but the first quarter of the airfoil, which is most sensitive to compressibility and vortex interference spikes, displays a rather unusual pressure distribution.
- 11. An azimuth-by-azimuth comparison of one test condition of the available full-scale rotor airloads data from this

program and three reference programs shows considerable similarity between these four sets of data. All data show intrarotor interference effects at 30 to 150 degrees, as evidenced by a disturbance in the chordwise pressure distribution. Most of these data also show a trace of a disturbance at 270 to 300 degrees. The aft rotor of the tandem shows about the same chordwise disturbances as the forward rotor.

- 12. Airload pressures, when converted to normal force coefficient form, show good agreement between tandem forward rotor and single rotor data. At 85-percent radius, the maximum normal force coefficient occurs at 250 degrees azimuth, and a rapid decrease in this coefficient occurs immediately following the peak.
- 13. Comparison of the tandem rotor airloads measured in flight to tandem rotor model data shows general similarity, but with detail variations which may be caused by difference in blade bending.
- 14. The waveform of some of the lift-per-unit-span data has been compared with theory. Agreement between the waveform predicted by an aeroelastic analysis and an arbitrarily selected single test case (84 knots, 33,000 pounds) is good for the forward rotor at the 85- and 95-percent radii. Waveform prediction is not as good for the aft rotor. This agreement in the prediction of the airload waveform of the forward rotor does not imply that the azimuth average airload values are predicted by theory. As noted previously, the azimuthal average airloads on the aft rotor are as predicted by theory, but the radial distribution of the azimuthal average airloading on the forward rotor is considerably different.
- 15. An initial attempt at reducing the recorded rotor airloads data to synthesized airfoil data has been made using a rigid blade-nonuniform downwash analysis. Significant variations between the theoretical and measured normal force coefficients were found. Some of these variations may be due to the lack of blade bending effect in the theory; however, sizable variations attributable to wake effects are shown. It should be noted that rather small variations tend to be amplified by the normal-force-coefficient theoretical-angle-of-attack plot, making the agreement with theory appear worse than it would appear if the same data were compared as lift per unit span against azimuth.

BLADE BENDING MOMENTS

- Alternating flapwise blade bending data obtained in level flight are consistent and are less than predicted by theory. Above 60 knots, the effects of increased airspeed on alternating flapwise bending are shown to be small.
- 2. The harmonic content of blade flapwise bending is predominantly first, second, and eighth harmonic. The relatively low response of third harmonic bending was unexpected, due to the proximity of the first flapwise bending natural frequency of about 2.5/rev. The eighth harmonic response is due to the third flapwise bending mode. The second flapwise bending mode, which has a natural frequency of about 5/rev., apparently does not receive much excitation.
- 3. Chordwise blade bending is predominantly 4/rev. on the forward rotor and 5/rev. on the aft rotor. The first mode chordwise natural frequency is about 4.3/rev. and is nearly identical for both rotors. The differences in the bending response between the two rotors must be due to differences in the aerodynamic excitation.
- 4. Blade torsional moments are due principally to 1/rev. airloads excitation. Excitation of the first torsional mode (5/rev.) is generally negligible.

SHAFT AND CONTROL LOADS

- 1. First harmonic longitudinal shaft shear varies systematically with run gross weight, rotor advance ratio, and longitudinal cyclic trim setting. Rotor shaft shear is predominantly first harmonic (due to rotor propulsion or drag), but for the forward rotor, significant in-plane vibratory forces of the second and fourth harmonics are also present. First harmonic longitudinal shear varies linearly with cyclic trim.
- 2. Rotor blade control loads tend to increase with the square of velocity as expected, due predominantly to first and second harmonic loads. Control loads are shown to be high for the aft rotor in transition.

VIBRATION

- Cockpit vibration of the test aircraft, which is predominantly 3/rev. vertical, reaches a maximum at 60 knots and then decreases with airspeed. At 130 knots, vibration is nearly as low as it is in hover. While in hover, wind from the left increases cockpit vibration by a factor of three.
- 2. Sideslip is shown to cause a significant change in vertical third harmonic cockpit vibration in transition and at speeds of 80 and 100 knots. Minimum vibration occurs at positive (nose-left) sideslip angles. Sideslip produces changes in the pattern of the rotor-rotor interference, which apparently causes this change in vibration.
- 3. Vertical vibration of the airframe at 3/rev. is shown to be in phase and distributed, as would be expected for a predominantly second mode beamwise bending; that is, both pylons move in the same direction. Vertical acceleration data also show a fuel tank-fuselage structure mode.

TRIM AND PERFORMANCE

¢

Aircraft trim and performance data show the overall effects of airspeed and trim setting and reflect the consistency of the data acquisition. Coning of the rotors when normalized for run gross weight and rotor speed squared varies systematically with airspeed within a reasonably small scatter band. Longitudinal blade flapping data are systematic and vary linearly with rotor advance ratio when measured with respect to the control axis and when normalized by the rotor thrust coefficient. Performance data are generally consistent with previous measurements. Tandem rotor interference factors obtained from reference 14 NASA model tests do not appear to be applicable to the CH-47A configuration.

RECOMMENDATIONS

- Rotor blade design for tandem helicopters should be reviewed. Reduced twist on the forward rotor and increased twist on the aft rotor should be considered; planform taper appears beneficial. Blade twist requirements to have zero load on the advancing blade tip should be evaluated for various gross weights and flight conditions. This design review should be guided by use of the measured airloads, since the available rotor theories are inadequate.
- 2. Future tandem helicopter configuration studies should evaluate the benefits in reduced blade loads which can result with less overlap and greater vertical rotor spacing than the CH-47A. Canted fuselage-rotor orientations should be considered to improve performance and reduce vibration. Efforts to reduce aft rotor loads in transition should strongly influence the design. The effect of vertical spacing and overlap on sideslip transition airloads should be established to ensure that future tandem helicopter designs do not have high loads at critical sideslip angles.
- 3. A method of predicting tandem rotor loadings in transition with sideslip should be developed using the airloads measurements from this program. Due to the analytical complication of this problem, an empirical approach is recommended.
- 4. Rotor blade airfoil section lift and moment performance in a rapidly changing angle-of-attack environment at high subsonic Mach numbers should be determined and compared to the available advancing blade airloads, measurements. These data should be related to determine the rotor performance degradation and control loads due to advancing blade section loading irregularities. Limitations on advancing blade tip Mach number should be established.
- 5. Airloads measurements obtained in this program should be used to develop methods for predicting the onset and significance of blade stall. This development should be approached both from the aerodynamic and the dynamic loads viewpoints.

- 6. Reversed flow effects on rotor blade performance should be isolated. A large number of test points were obtained at advance ratios larger than 0.25 with pressure measurements obtained at 25-percent radius. These data should be analyzed to show reversed flow effects. While these data are directly applicable only to tandem rotors due to flow field effects, it is believed that analysis of these data can also be of value to help explain the performance of rotor blades in the reversed flow region of single rotors.
- 7. A systematic approach to the development of airfoil sections with beneficial time-dependent characteristics should be initiated. A detailed analysis of the existing rotor airloads data should provide guidance to this development. Wind-tunnel test programs, such as the program being performed under Contract DA 44-177-AMC-438(T), should be expanded. Airfoils which have reduced sensitivity to suddenly applied loads, as evidenced by a more stable center of pressure, are desired.
- Rotor blade bending and airloads measurement should be compared to determine the structural damping of the blades.
- 9. Methods to predict rotor-rotor interference, trim, and blade motions need improvement; elastic blade effects should be included in such a study.
- 10. Considerably more effort should be expended to analyze the results of this program. Rotor shaft loads and airframe vibration data are shown to be especially worthy of such effort.

BIBLIOGRAPHY

- Abbott, I.H., and Von Doenhoff, A.E., <u>Theory of Wing</u> <u>Sections</u>, Dover Publications, Incorporated, New York, New York, 1959.
- Burpo, F.B., <u>Measurement of Dynamic Airloads on a Full-Scale Semirigid Rotor</u>, TRECOM Report 62-42, U.S. Army Aviation Material Laboratories, Fort Eustis, Virginia, December 1962.
- 3. Burpo, F.B., <u>Summary Report Development of a Subminiature</u> <u>Surface Mounted Pressure Transducer</u>, Bell Helicopter Company Report 299-099-200 (Contract NOnr 2877(00)), January 1963.
- Childs, R.C., and Grant, W.J., <u>Tabular Test Data Summary</u> of Measurements of Dynamic Airloads on a CH-47A Tandem <u>Rotor Helicopter</u>, Boeing Document D8-0387, to be issued.
- 5. Conner, Willey, and Twomey, <u>A Flight and Wind Tunnel</u> <u>Investigation of the Effect of Angle-of-Lttack Rate on</u> <u>Maximum Lift Coefficient</u>, NASA CR-321, October 1965.
- Davenport, F.J., "A Method for Computation of the Induced Velocity Field of a Rotor in Forward Flight, Suitable for Application to Tandem Rotor Configurations," <u>Journal of</u> <u>the American Helicopter Society</u>, Volume 9, Number 3, July 1964.
- Davis, J.M., <u>Tandem Helicopter Trim and Stability Analysis</u>, <u>IBM Program A-81</u>, Boeing-Vertol Report A.I. III-264, March 1965.
- Gabel, R., et al., <u>AVID Program, Advanced Vibration</u> <u>Development</u>, Boeing-Vertol Report 107M-D-09 (Contract NOw-62-0177f), April 1965.
- 9. Ham, N.D., and Madden, P.A., <u>An Experimental Investigation</u> of Rotor Harmonic Airloads Including the Effects of Rotor-Rotor Interference and Blade Flexibility, USAAML Technical Report 65-13, U.S. Army Aviation Material Laboratories, Fort Eustis, Virginia, May 1965.
- 10. Ham, N.D., An Experimental Investigation of the Effect of a Nonrigid Wake on Rotor Blade Airloads in Transition Flight, Cornell Aeronautical Laboratory/TRECOM Symposium on Dynamic Load Problems Associated with Helicopters and

V/STOL Aircraft, Proceedings, Vol. I, June 1963.

- 11. Harris, Franklin D., <u>Spanwise Flow Effects on Rotor</u> <u>Performance</u>, presented at the USAAVLABS-CAL Symposium on the Aerodynamic Problems Associated with V/STOL Aircraft, June 1966.
- 12. Henderson, B.O., et al., <u>Rotor Load Correlation Report</u>, Boeing-Vertol Report DYMR-9, December 1965.
- Heyson, Harry H., and Katzoff, S., <u>Induced Velocities Near</u> <u>a Lifting Rotor With Nonuniform Disk Loading</u>, NACA Report 1319, 1957.
- 14. Huston, R.J., <u>Wind Tunnel Measurements of Performance</u>, <u>Blade Motions</u>, and <u>Blade Airloads for Tandem Rotor Con-</u> <u>figuration with and without Overlap</u>, NASA TN D-1971, October 1963.
- 15. Mayo, A.P., <u>Comparison of Measured Flapwise Structural</u> <u>Bending Moments on a Teetering Rotor Blade with Results</u> <u>Calculated from the Measured Pressure Distribution</u>, NASA Memo 2-28-59L, March 1959.
- 16. Meyer, J.R., and Falabella, G., <u>An Investigation of the Experimental Aerodynamic Loading on a Model Helicopter</u> <u>Rotor Blade</u>, NACA TN2953.
- 17. Pruyn, R., and Alexander, W.T., Jr., <u>The USAAVLABS Tandem</u> <u>Rotor Airloads Measurement Program</u>, paper presented at the Aerodynamic Testing Conference of the American Institute of Aeronautics and Astronautics, Boeing Document D8-0381, September 1966.
- Pruyn, R.R., Lamb, H., and Grant, W.J., <u>Results of Whirl</u> <u>Testing of Partially Instrumented Forward Rotor Blade</u>, Boeing Document R-433, 20 May 1965.

- 19. Pruyn, R.R., Obbard, J., and Shakespeare, C., <u>The Measure-</u> <u>ment and Analysis of Rotor Blade Airloads and the Resulting</u> <u>Dynamic Response of a Large Tandem Rotor Helicopter</u>, paper presented at the Fourth International Aerospace Instrumentation Symposium, Boeing Document D8-0296, March 1966.
- 20. Pruyn, R.R., <u>Preliminary Data Report of Dynamic Airloads</u> Flight Test Results as Prepared for Cornell Aeronautical

Laboratories Correlation Studies, Boeing Document D8-0408, June 1966.

- 21. Rabbott, J.P., and Churchill, G.B., <u>Experimental Investiga-</u> <u>tion of the Aerodynamic Loading on a Helicopter Blade in</u> <u>Forward Flight</u>, NACA RM L56107, October 1956.
- 22. Rabbott, J.P., Lizak, A.A., and Paglino, V.M., <u>A Presenta-tion of Measured and Calculated Full Scale Rotor Blade</u> <u>Aerodynamic and Structural Loads</u>, USAAVLABS Technical Report 66-31, U.S. Army Aviation Material Laboratories, Fort Eustis, Virginia, July 1966.
- 23. Rabbott, J.P., Lizak, A.A., and Paglino, V.M., <u>Tabulated</u> <u>Sikorsky CH-34 Blade Surface Pressures Measured at the</u> <u>MASA/Ames Full-Scale Wind Tunnel</u>, Sikorsky Aircraft Division Report SER-58399 (Contract DA 44-177-AMC-53(T)), January 1966.
- Rabbott, J.P., <u>Static-Thrust Measurements of the Aerodynam-ic Loading on a Helicopter Rotor Blade</u>, NACA TN3688, July 1956.
- Reber, R.M., <u>Flight Test Report Dynamic Airloads Program</u>, Boeing Document D8-0402, 27 May 1966.
- Scheiman, J., and Ludi, L.H., <u>Effect of Helicopter Rotor</u> <u>Blade Tip Vortex on Blade Airloads</u>, NASA TN D-1637, May 1963.
- Scheiman, J., <u>A Tabulation of Helicopter Rotor Blade Dif</u> <u>ferential Pressures</u>, <u>Stresses</u>, <u>and Motions as Measured in</u> <u>Flight</u>, NASA TM X952, March 1964.

APPENDIX I

FLIGHT TEST ACCOMPLISHMENT SUMMARY

This appendix summarizes the appropriate data from the flight test report (reference 25) and from the data summary (reference 4) and provides a readily accessible index to the flight test data obtained in this program. Each useful data flight is represented by a table of the parameters of the test conditions as measured in flight. These tables include the measured aircraft attitude, the total rotor power coefficient, and a test point number (TPN) which is used to relate the test point to the test program requirements. The flight test requirements are presented in Table VII. Tables VIII through XVII summarize the test point accomplishments by flight. A summary of testing accomplished for the various nominal test weights is presented in Tables XVIII through XXII. The test point number was used to denote a test condition as defined in the Flight Test Point Requirements, Table VII. These test points were obtained in one or more of the various flights. The run numbers denote the flight test data recordings which were made on each flight and are numbered consecutively in the sequence in which they were obtained. The flights were also numbered consecutively. The flight and run numbers which are missing from the sequence denote nonproductive attempts to obtain data.

TABLE VII FLIGHT TEST DATA POINT REQUIREMENTS

Test Point Number (TPN)	Condition	Trim Fwd/Aft (deq)	Gross Weight (pounds)	Airspeed True/Ind (knots)	Altitude (feet)	Rotor RPM	Side- slip (deq)
	Hower wind from left	0.5/0	38,500	0	10, IGE	230	0
10	Hover, wind from left	0.5/0	38,500	0	10, IGE	230	0
	forward quarter						
m	Hover, wind from nose	0.5/0	38,500	0	10, IGE	230	0
4	Hover, wind from right	t 0.5/0	38,500	0	10, IGE	230	0
	forward quarter						
Ś	Hover, wind from right	t 0.5/0	38,500	0	IO, IGE	230	0
9	Level flight	0.5/0	38,500	30/25	10, IGE	230	0
7	Nose-left sideslip	0.5/0	38,500	30/25	IO, IGE	230	+15
ß	Nose-left sideslip	0.5/0	38,500	30/25	IO, IGE	230	+7.5
თ	Nose-right sideslip	0.5/0	38,500	30/25	10, IGE	230	-15
TO	Nose-right sideslip	0.5/0	38,500	30/25	10, IGE	230	-7.5
	·						
11	Level flight	0.5/0	38,500	30/25	500	230	0
12	Level flight	0.5/0	38,500	30/25	500	230	+15
13	Level flight	0.5/0	38,500	30/25	500	230	+30
14	Level flight	0.5/0	38,500	30/25	500	230	- 15
15	Level flight	0.5/0	38,500	30/25	500	230	-30
1 6	Deleted	I	ı	1	1	I	1
17	Level flight	2.23/3.47	26,000	94/92	5000	215	0
18	Level flight	2.86/4.73	26,000	99,/87	5000	230	0
19	Level flight	3.0/5.0	26,000	106/94	5000	243	0
20	Level flight	2.86/4.73	33,000	78/66	5000	230	0
10	î.evel fliaht	3.0/5.0	33,000	106/94	5000	243	0
22	Left turn. 30° bank	0.5/0	26,000	80/69	5000	230	1

Test							•
Point		Trim	Gross	Airspeed			Side-
Number		Fwd/Aft	Weight	True/Ind	Altitude	Rotor	slip
(TPN)	Condition	(deg)	(pounds)	(knots)	(feet)	RPM	(deg)
23	Right turn, 30° bank	0.5/0	26,000	80/69	5000	230	I
24	Nose-right sideslip	0.5/0	26,000	80/69	5000	230	-10
25	Nose-left sideslip	0.5/0	26,000	80/69	5000	230	JO
26	Descent, 1000 fpm	0.5/0	26,000	80/69	5000	230	0
27	Autorotation	0.5/0	26,000	80/69	5000	230	0
28	Abrupt roll, right	0.5/0	26,000	80/69	5000	230	0
29	Abrupt roll, left	0.5/0	26,000	80/69	5000	230	0
30	Symmetrical pullup	0.5/0	26,000	80/69	5000	230	0
31	Approach and flare	0.5/0	26,000	60/55	300	230	0
32	Level flight	0.5/0	33,000	30/23	5000	204	0
33	Deleted	i	I	1	1	1	I
34	Level flight	3.0/5.0	33,000	125/111	5000	243	0
35	Level flight	3.0/5.0	26,000	110/97	5000	215	0
36	Level flight	3.0/5.0	26,000	137/123	5000	230	0
37	Level flight	3.0/5.0	26,000	145/130	5000	243	0
38	Level flight	0.5/0	38,500	60/56	4000	230	0
39	Level flight	0.5/0	38,500	70/61	4000	243	0
40	Level flight	2/2	33,000	30/23	5000	204	0
41	Level flight	2/2	33,000	60/51	5000	215	0
42	Level flight	2/2	33,000	100/88	5000	230	0
43	Level flight	2/2	33,000	120/107	5000	243	0
44	Level flight	0/0	33,000	30/23	5000	204	0
45	Level flight	0/0	33,000	60/51	5000	215	0
46	Level flight	0/0	33,000	100/88	5000	230	0
47	Level flight	0/0	33,000	10/97	5000	243	0
48	Level filight, rough air	0.5/0	33,000	30/23	2000	204	0
49	Level flight, rough air	0.5/0	33,000	60/51	5000	215	00
20	Level flight, rough air	3.0/5.0	33,000	100/88	2000	230	Э

TABLE VII - CONTINUED

¢

-	CONTINUED
	ł
	ΙΙΛ
	TABLE

.

Side-	(Jer)	16271	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+15	+30	-15	-15	-30	+10	-10	0	+10	-10
	Rotor	RPM	243	222	230	238	243	230	243	243	204	215	23C	243	230	230	230	230	230	230	230	230	230	230	230	230	230	230
	Altitude	(feet)	5000	5000	5000	5000	5000	5000	5000	4000	5000	5000	5000	5000	200-400	200-400	200-400	200-400	200-400	200-400	200-400	200-400	200-400	200-400	200-400	2000	2000	2000
Airspeed	True/Ind	(knots)	125/111	77/66	80/69	83/72	84/73	60/51	60/51	60/52	60/51	60/51	60/51	60/51	40	40	80	120	40	40	40	40	40	80	80	80	80	80
Gross	Weight	(pounds)	33,000	33,000	33,000	33,000	33,000	33,000	33,000	38,500	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000	26,000
Trim	Fwd/Aft	(deg)	3.0/5.0	0.5/0	0.5/0	0.5/0	0.5/0	0.5/0	0.5/0	0.5/0	0.5/0	0.5/0	0.5/0	0.5/0	' I	ł	t	ı	I	I	I	I	1	ı	I	1	ł	I
		Condition	flight, rough air	flight, rough air	flight, rough air	flight, rough air	flight	flight	flight	flight	flicht	flight	flight	flight	flt. airspeed calib.	flt. airspeed calib.	flt airspeed calib.	flt airspeed calib.	flt. airspeed calib.	flt. airspeed calib.	flt. airspeed calib.	flt airspeed calib.	flt airspeed calib.	flt_airspeed calib.	flt airspeed calib.	flt vaw calib.	flt vaw calib.	flt. yaw calib.
			Level	Level	Level	Level	T,evel	Tevel	T.evel	Tevel	T-vor	Level	Level	Tevel	Level	Tevel	l ava 1	Towoll	Tevre T	Level	Level	T AVA.T	Tevel	Tevel	Tevel	Tevel	Level	Level
Test	Number	(NAL)	51	52	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 Y	י גר ה גר	- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50	a b b b b b b b b b b b b b b b b b b b	ס ס רי ר	60	61	62	20	7.7	72 73	74 75	76 77	78 79	80	2	87 83	84 85	B6 87	88,00	0 00	06

		-														_												_	
	Side- slip	(deg)	0	+15	+30	-15	0 M 1 M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С			0	
	Rotor	RPM	230	230	230	230	230	215	230	230	230	230	230	230	238	238	238	238	230	230	230	230	230	238	238	238	238	230	230
	Altitude	(feet)	2000	2000	2000	2000	2000	5000	1000	10, IGE	300	10, IGE	300	200-400	2000	2000	2000	2000	2000	2000	2000	2000	2000	7500	7500	7500	7500	5000	5000
D	Airspeed True/Ind	(knots)	40	40	40	40	40	75/65	100/93	0	60/55	0	60/55	140	131/119	141/128	152/138	163/148	126/115	136/124	146/133	156/142	165/150	131/110	141/118	152/128	163/137	126/110	136/119
CONTINUE	Gross Weight	(pounds)	26,000	26,000	26,000	26,000	26,000	26,000	33,000	33,000	33,000	26,000	38,500	21,000	21,000	21,000	21,000	21,000	21,000	21,000	21,000	21,000	21,000	23,000	23,000	23,000	23,000	23,000	23,000
TABLE VII -	Trim Fwd/Aft	(deg)	J	I	1	1	I	0.5/0	2.9/4.7	0.5/0	0.5/0	0.5/0	0.5/0	0.5/0	3/5	3/5	3/5	3/5	3/5	3/5	3/5	3/5	3/5	3/5	3/5	3/5	3/5	3/5	3/5
		Condition	Level flt. yaw calib.	Level flight	Level flight	Hover, into wind	Approach and flare	Hover, into wind	Approach and flare	Level flt. airspeed calib.	Level flight																		
	Test Point Number	(TPN)	16	92	93	94	95	96	97	98	0 0	100	101	102	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215

209

\$

CONTINUED
1
IIV
TABLE

Test Point Number (TPN)	Cont i nued	Trim Fwd/Aft (deg)	Gross Weight (pounds)	Airspeed True/Ind (knots)	Altitude (feet)	Rotor RPM	Side- slip (deg)
216	Level flight	3/5	23,000	146/127	5000	230	0
217	Level flight	3/5	23,000	156/136	5000	230	0
218	Level flight	3/5	23,000	165/144	5000	230	0
219	Level flight	3/5	23,000	124/110	3500	225	0
220	Level flight	3/5	23,000	134/119	3500	225	0
221	Level flight	3/5	23,000	144/128	3500	225	0
222	Level flight	3/5	23,000	154/137	3500	225	0
223	Level flight	3/5	23,000	165/147	3500	225	0
224	Level flight	3/5	23,000	124/98	11,000	225	0
225	Level flight	3/5	23,000	134/106	11,000	225	0
226	Level filight	3/5	23,000	144/1.4	11,000	225	0
227	Level flight	3/5	23,000	154/122	11,000	225	0
228	Level flight	3/5	23,000	165/131	11,000	225	0
							T
				-			
NOTE:	All altitude values	shown are dens itudes (10 fee	ity altitu + rcs) a	ide except	as ato		
	Mored. 147014410 440	Luudes Liv Lee	ים וחסיו טו	אדיריזלא בי			
		• nmn r					

	Run Numbe	
Flight Parameter	3	4
Run gross weight (pounds)	26,100	25,900
Run CG (inches forward of midpoint between	6.5	6.4
calibrated true	56	108
Density altitude	2900	2950
(reet) Pressure altitude (feet)	5050	5050
Outside air temp. (°C) Rotor rpm	-12.9 221	-12.4 221
Longltuainai cyclic trim (deg fwd/aft)	-0-6 0	<u>-3.4</u> -5.3
Fuselage attitude (deg) - Pitch - Roll	3.6 1.4	1.9 1.8
- Sideslip moot soist sumbor	3.8 60	3.2 Зб
CTW/0	0.08	0.08
$c_{p} \times 10^{4}$	2.4	2.7
p ⁽ slugs/ _{ft} 3)x10 ³ Maneuver	2.18 level flight	2.18 level flight

TABLE VIII FLIGHT TEST POINTS OBTAINED DURING FLIGHT 384

j

TABLE IX FLIGHT TEST POINTS OBTAINED DURING FLIGHT 386

			Run Number		
Flight Parameter	2	3	4	5	9
Run gross weight	25,900	25,800	25,700	25,500	25,450
(pounds)					
Run CG (inches forward	1	•	((
of midpoint between	5.0	5.0	4.9	4.8	4 . 8
rotors)		•			
Calibrated true	71	74	74	74	77
airspeed (knots)					
Density altitude	4950	5100	5050	46 0 0	4750
(feet)					
Pressure altitude	6000	6050	5950	5800	5750
(feet)					
Outside air temp. (°C)	-5.2	-4.8	-4.1	-4.7	-4.4
Rotor rpm	230	230	230	230	230
Longitudinal					
cyclic trim	-0-5	-0.5	-0.5	-0-5	-0.5
(deg fwd/aft)	0	0	0	0	0
Fuselage attitude					
(deg) - Pitch	1.3	0.4	0.1	0.7	1 . 9
- Roll	-1.3	-3.1	2.1	26.4	-20.3
- Sideslip	0.6	-8.3	13.2	6 °6	-10.4
Test point number	88	24	25	23	22
CTW/ a	0.07	0.07	0.07	0.07	0.07
[n]	0.17	0.18	0.18	0.17	0.18
c, x 10 ⁴	2.3	2.1	2.3	2.0	.1.9
pKslugs/ft3)x1.0 ³	2.06	2.05	2.05	2.07	2.07
Maneuver	level	side-	side-	right	left
	flight	slip	slip	turn	turn
				30°	30°
	-			bank	bank

		HEONETN		
		Run Num	oer	
Flight Parameter	7	8	6	11
Run gross weight (pounds)	25,400	25,350	25,300	25,200
Run CG (inches forward				
of midpoint between	4.8	4.8	4.7	4.7
rotors)	1	1		
calibrated true airspeed (knots)	11	77	40	74
Density altitude	3700	2800	2100	4300
Treation altitude				
(feet)	00A 7	4200	00/5	0050
Outside air temp. (°C)	-5.2	-4.9	ភ្. ភូ. ភូ.	-3.9
Rotor rpm	230	230	230	230
Longitudinal				
cyclic trim	-0.5	-0.5	-0-5	-0-5
(deg fwd/aft)	0	0	0	0
Fuselage attitude				
(deg) - Pitch	1.2	1.6	4.4	4.1
- Roll	-1.9	-1.7	-1.5	0.5
- Sideslip	-2.3	-4.1	3.8	-0.7
Test point number	26	27	16	27
CTFW/0	0.07	0.07	0.07	0.07
- 7	0.17	0.18	0.10	0.17
C _n x 10 ⁴	1.2	0.3	2.3	0
příslugs/ _{ft} 3)x10 ³	2.13	2.19	2.24	2.09
Maneuver	1000 fpm	auto-	level	auto-
	descent	rotation	flight	rotation

TABLE IX - CONTINUED

• •

TABLE X FLIGHT TEST POINTS OBTAINED DURING FLIGHT 389

1

ł

			and	Mumber		
Flight Parameter	1	5	9	7	6	10
Run gross weight	33,300	32,500	32,100	32,074	32,050	32,000
Run CG (inches forward	5.3	5.1	5.0	5.0	5.0	5.0
of midpcint between rotors)						
Calibrated true	0	0	56	79	103	TOT
airspeed (knots)						
Density altitude (feet)	-950	-1000	3800	3400	3400	3450
Pressure altitude	200	100	6050	5950	5850	5850
Outside air temp. (°C)	5.1	5.4	-15.3	-17.2	-16.6	-16.1
Rotor rpm	229	229	233	231	232	229
Longitudinal						
cyclic trim	-0.7	-0.7	-0 [*] 8	-0.9	-2.2	-2.6
(deg fwd/aft)	-7.7	-0-3	-0.4	-0-6	-1.6	-2.9
Fuselage attitude						
(deg) - Pitch	5.1	1	1 . 3	-2.7	-4.0	-2.0
- Roll	30.9	I	1.9	-1.0	0.7	0.8
- Sideslip	-41.0	1	6.6	0.5	2.6	4.0
Test point number	98	98	56	53	42	20
Crruz/1	0.08	0.09	0.09	0.09	0.09	0.09
	0	0	0.14	0.19	0.24	0.24
c _b x 10 ⁴	3.3	3.2	2.8	2 . 8	3.0	3.2
p (slugs/f+3) x10 ³	2.44	2.44	2.13	2.14	2.15	2.16
Maneuver	hover	hover	level	level	level	level
			flight	flight rough air	flight	flight

CONTINUEL
-
×
TABLE

\$

			24	un Number		
Flight Parameter	11	12	13	14	16	18
Run gross weight	32,000	31,900	31,850	31,800	31,750	31,750
(pounds) Bun CG (inches forward)			-			
of midpoint between	4 . 9	4.9	4.9	4.9	4.9	4.9
rotors)						
Calibrated true	103	79	55	76	108	127
airspeed (knots)						
Density altitude (feet)	3350	3600	3550	3750	3900	3650
Pressure altitude	5850	6050	6200	6250	6250	0019
(feet)						
Outside air temp. (°C)	-16.6	-17.1	-18.4	-17.6	-16.2	-16.8
Rotor rpm	230	237	241	244	244	244
Longitudinal						
cyclic trim	-3.2	0.1-0	-0-9	-1.0	-3.3	-3.5
(deg fwd/aft)	-3.3	-0-6	-0.6	-0.7	-3.7	-3.8
Fuselage attitude						
(deg) - Pitch	-3.8	-2.9	-0.2	-2.3	-1.2	-1.1
- Roll	-0.2	-0.6	0.5	0.7	6.0	-0.6
- Sideslip	0.6	-1.7	1.6	3.1	0.7	-0.9
Test point number	50	54	57	55	21	43
Crw/o	0.09	0.08	0.08	0.08	0.08	0.08
- 7	0.24	0.18	0.14	0.18	0.24	0.27
$c_{p} \times 10^{4}$	3.2	2.9	2.7	I	ī	1
p[slugs/f+3)x10 ³	2.16	2.14	2.14	2.14	2.12	2.14
Maneuver	level	level	level	level	level	level
	flight	flight	£light	flight	flight	flight
	rough	rough				
	air	air				

	õ n
	FLIGHT
	DURING
ABLE XI	OBTAINED
H	POINTS
	TEST
	FLIGHT

			<u>1</u> .14	tun Number			
Flight Parameter	2	3	4	5	9	7	8
Run gross weight /nounde)	33,100	33,050	33,050	33,025	33,000	32,950	32,950
Run CG (inches forward	r L	۳ ل	ר נ	۳ ل	- ۲	- ت	r u
or mlupoint between rotors)	Ч,С	1. 0			T•C		
Calibrated true	52	95	94	95	100	77	78
airspeed (knots)							
Density altitude	2800	2900	3150	3150	3100	3100	3100
(feet)							
Pressure altitude	4300	4300	4550	4500	450	4450	4450
(feet)							
Outside air temp. (°C)	-6.1	-5.3	-5.4	-5.4	-5.1	-5.5	-5.4
Rotor rpm	229	233	229	232	230	229	233
Longitudinal							
cyclic trim	6 . 0-	-3.0	-2.3	-1.2	-3.4	-1.0	-1.1
(deg fwd/aft)	-0.7	-4.3	-2.4	-0-8	-4.8	-0-8	-0.7
Fuselage attitude	_						
(deg) - Pitch	2.8	2.2	0.8	-0.8	3.0	1.9	1.1
- Roll	5.2	1.0	0.2	1.2	0.5	0.2	0.1
- Sideslip	0.9	4.7	1.8	2.0	-0,1	0.1	2.0
Test point number	56	20	42	46	50	53	53
Cmm/a	0.09	0.09	0.09	0.09	0.09	0.09	0.09
- n	0.12	0.22	0.22	0.22	0.24	0.18	0.18
Cn x 10 ⁴	2.9	3.1	3.0	2.9	3.0	3,0	ı
pf(slugs/ _{f+} 3)x10 ³	2.19	2.19	2.18	2.18	2.18	2.18	2.18
Maneuver	level	level	level	level	level.	level.	level
	flight	flight	flight	flight	flight	flight	flight
					rough	rough	
					air	air	-

Run Number	10 11 12 13 14	350 32,750 32,700 32,700 32,650 32,600	5.0 5.0 5.0 5.0	75 53 101 104 124	0 3000 2950 3200 3300 3150	0 4400 4400 4550 4650 4550	∂5.2 -5.7 -5.2 -5.4 -5.4	244 244 244 242 243		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.9 2.7 3.1 -0.6 1.3	1.0 -0.6 1.2 0.7 -0.3	1.6 1.5 1.3 1.7 1.1	55 57 21 47 34	3 0.03 0.08 0.08 0.08 0.08	7 0.17 0.12 0.23 0.23 0.28	2.4 2.6 2.6 2.7 3.4	3 2.18 2.18 2.17 2.16 2.17	erel level level level level level	jht flight flight flight flight flight	jh
umber	12	32,700	5.0	TOT	3200	4550	-5.2	244	ů r	-5.3		3.1	1.2	1.3	21	0,08	0.23	2.6	2.17	level	flight	
Run N	11	32,700	5.0	53	2950	4400	-5.7	244	c	-0.7		2,7	-0-6	1.5	57	0.08	0.12	2.6	2.18	level	flight	
	10	32,750	5.0	75	3000	4400	-5.2	244	-	-0.8 -0.8		1.9	1.0	1.6	55	0.03	0.17	2.4	2.18	level	flight	
	6	32,850	5.1	76	3000	4350	-4.9	238	с г	0-1-		1.1	0.6	1.3	54	C.08	0.17	2.5	2.18	level	flight	rough
	Flight Parameter	Run gross weight (pounds) Run CG (inches forward	of midpoint between rotors)	Calibrated true	Densi (ltitude (feet)	Pressure altitude (feet)	Outside air temp. (°C)	Rotor rpm	Iongitudinal	сусліс trim (deq fwd/aft)	Fuselage attitude	(deg) - Pitch	- Roll	- Sideslip	Test point number	c/.		c_ x 10 ⁴	$\left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \times 10^{3}$	Maneuver		

TABLE XI - CONTINUED

}

ł

,

FLIG	HT TEST POINT	LE OBTAINED	DURING FLIGH	r 391	
			Run Number		
Flight Parameter	r-1	2	9	7	11
Run gross weight	26,300	26,100	26,050	25,900	25,700
(pounds)					
Run CG (inches forward	!	•	1	(1	c 1
of midpoint between	5.2	5.1	5.1	5.0	0.0
rotors)					
Calibrated true	0	55	77	77	75
airspeed (knots)					
Density altitude	400	3700	4300	3900	4250
(feet)					
Pressure altitude	240	4800	5150	5100	5300
(feet)					
Outside air temp. (°C)	17.2	-3.8	-4.8	-5.2	-4.3
Rotor rpm	233	229	230	229	230
Longitudinal					
cyclic trim	-0-5	-1.2	-1.5	-1-1	-]. • •
(deg fwd/aft)	-0.6	-0.6	-0.6	6°0-	-0.8
Fuselage attitude					
(deg) - Pitch	6.9	2.5	1.2	1.4	1.9
- Roll	1 . 2	-1.2	2.6	-3.9	26.6
- Siđeslip	40.5	3.6	12.3	-9.8	6.1
Test point number	100	61	25	24	23
C/g	0.06	0.07	0.07	0.07	0.07
n T	0	0.13	0.18	0.18	0.18
c x 10 ⁴	2.6	2.3	2.1	2.0	2.1
p ^r (slugs/f+3)xl0 ³	2.36	2.13	2.12	2.14	2.10
Maneuver	hover	level	side-	side-	right
		flight	slip	slip	turn
					30°
					bank

TABLE XII

TABLE XII - CONTINUED

J.

ţ

0.9 18 0.07 0.24 2.2 2.11 1evel flight 25,500 -1.2 6 T -2.7 233 4100 5050 4.9 103 3.7 metrical 25,700 pullup 0.8 16 -5.8 232 sym-5150 6150 0.07 0.20 1.7 2.05 4.0 0.3 0.1 5.0 30 84 Run Number 25,700 1.2 -15.1 2.3 2.9 0.07 0.18 2.3 2.05 2.05 -0.8 13 5050 6050 -5.3 229 roll left 5.0 78 25,700 1.8 10.9 -1.5 28 0.07 0.18 0.18 2.2 2.06 abrupt roli roli right 1.2 -0.2 5900 -5.2 231 4900 5.0 77 (pounds) Run CG (inches forward of midpoint between Outside air temp. (°C) - Sideslip Test point number Flight Parameter airspeed (knots) C_D x 10⁴ p(slugs/_{ft}3)x10³ Maneuver Pressure altitude Fuselage attitude (deg) - Pitch Density altitude Run gross weight Calibrated true cyclic trim (deg fwd/aft) - Roll Rotor rpm Longitudinal rotors) (feet) (feet) μw/ α

TABLE XII - CONTINUED

Flight Parameter 22 23 24 25 Run gross weight (pounds) Run GG (inches forward (pounds) 25,400 25,300 25,200 2 Run GG (inches forward (pounds) 25,400 25,300 25,300 25,200 2 Run GG (inches forward of midpoint between 4.9 4.8 4.8 4.8 4 Run GG (inches forward of midpoint between 103 56 75 80 5 Calibrated true 103 56 75 80 5 Density altitude 3750 3950 3050 3150 0 Pressure altitude 4700 5100 4200 4150 5 Rutor thm 242 242 229 230 230 230 Rutor thm -0.5 -0.7 -0.9 -0.9 -0.9 -0.9 -0.9 Rutor thm -8.011 -9.2 242 229 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 </th <th></th> <th></th> <th></th> <th>Run Number</th> <th></th> <th></th>				Run Number		
Run gross weight (pounds) 25,400 25,300 25,300 25,200 2 Run CG (inches forward of midpoint between rotors) 4.9 4.8 4.8 4.8 4.8 4 rotors) calibrated true 103 56 75 80 5 rotors) calibrated true 103 56 75 80 5 Density altitude (feet) 3750 3950 3050 3150 0 0 Dressure altitude (feet) 4700 5100 420 4150 5 2 2 Durside air temp. (°C) 242 242 242 2	Flight Parameter	22	23	24	25	26
Run CG (inches forward of midpoint between calibrated true 4.9 4.8 4.1 5.0 5.0	Run gross weight (pounds)	25,400	25,300	25,300	25,200	25,200
rotoxres)1035675805Calibrated true 3750 3950 3950 3050 3150 0 Density altitude $(feet)$ 3750 3950 3050 3150 0 $(feet)$ $(feet)$ 4700 5100 4200 4150 5 $(feet)$ 22.0 -4.1 -2.9 -1.5 9 $(feet)$ -2.0 -4.1 -2.9 -1.5 9 $(feet)$ -2.0 -4.1 -2.9 -1.5 9 $(feet)$ -2.0 -4.1 -2.9 210 210 $(feet)$ -2.0 -4.1 -2.9 210 210 $(feet)$ -2.0 -4.1 -2.9 210 210 $(feet)$ -7.2 242 242 229 230 230 $(feet)$ -7.2 -4.1 -2.9 210 0.0 $(feet)$ -7.2 -0.1 -0.3 210 0.0 $(feet)$ -7.2 -1.2 229 230 223 $(feet)$ -7.2 -0.1 -0.3 -1.2 210 $(feet)$ -7.2 -0.1 -0.3 2.3 2.3 $(feet)$ -8011 -9.3 0.06 0.07 0.7 $(feet)$ -8011 -9.3 0.16 0.7 1.2 $(feet)$ -8011 -9.3 0.16 0.7 0.7 $(feet)$ -8011 -9.3 0.16 0.7 0.7 <td>Run CG (inches forward of midpoint between</td> <td>4.9</td> <td>4.8</td> <td>4.8</td> <td>4.8</td> <td>4.8</td>	Run CG (inches forward of midpoint between	4.9	4 .8	4.8	4.8	4.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	rotors) Calibrated true	103	56	75	80	59
(reet)(reet)470051004200415050ffeet)(feet)-2.0-4.1-2.9-1.59Outside air temp. (°C)-2.0-4.1-2.9-1.59Notor rpm.0024224222923023Iongitudinal.0.5.0.7.0.8.0.9.0.9reselage attitude3.74.13.52.310Guig) - Pitch.0.6.0.1.0.3.1.2.1.2- Roll0.10.0.62.33.1Test point number1.00.62.32.33.1CrmVa0.060.0130.180.190.0700 $C_{TW}a$ 0.130.130.180.190.130.190 $C_{TW}a$ 2.01.90.130.180.190.1301.3 $C_{TW}a$ 0.130.130.130.190.130.190.1301.3 $C_{TW}a$ 0.132.122.122.172.172.172.172.17 P_{1} Prover1.90.130.190.190.190.190.190.19 P_{1} Prover1.90.130.120.190.190.190.190.19 P_{1} Prove1.90.130.130.190.190.190.190.19 P_{1} Prove1.90.130.130.190.19 <t< td=""><td>Density altitude</td><td>3750</td><td>3950</td><td>3050</td><td>3150</td><td>0</td></t<>	Density altitude	3750	3950	3050	3150	0
(reet) outside air temp. (°C) -2.0 -4.1 -4.1 -2.9 -2.9 -1.5 -1.5 -3.0 Notor rpm romgitudinal cyclic trim (deg fwd/aft) -2.0 -5.2 -4.1 -0.7 -2.9 -0.9 -1.5 -0.9 230 -0.9 233 -0.9 210 -0.9 210 	(reer) Pressure altitude	4700	2100	4200	4150	500
Longituationcyclic trim -5.2 -0.5 $-$	(reet) Outside air temp. (°C) Rotor rpm	-2.0 242	-4.l 242	-2.9 229	-1.5 230	9.9 226
Fuserage attracted ($\dot{a}(ig) - Pitch$ 3.7 4.1 3.5 2.3 10 - Roll -0.6 -0.1 -0.3 -1.2 -1.2 -1.2 - Sideslip -3.0 1.0 0.6 2.3 33 Test point number 19 62 27 2.6 33 C_TW/a 0.06 0.06 0.07 0.07 0.07 0.19 0.18 $C_D \times 10^4$ 0.13 0.18 0.19 0.19 0.7 1.3 1.3 2.03 1.9 0.7 1.3 1.3 2.12 2.18 2.17 2.18 2.17 2.18 2.17 2.18 2.17 400 and four anto- descent apple flight rotation 1000 and four	Longituainai cyclic trim (åeg fwd/aft)	-0.5 -5.2	0-0-7	0.8	0.0-	-0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fuseiage attitude (dig) - Pitch - Roll	3.7 -0.6	4.1 -0-1	3•5 -0.3	2.3 -1.2	10,7 -2,9
Test point number 19 62 27 26 3. C_{TW}/σ 0.07 0.07 0.07 0.07 0.0 c_{TW}/σ 0.18 0.19 0.19 0.1 $c_{p} \times 10^{4}$ 0.23 0.13 0.18 0.19 0.7 1.3 1. $c_{p} \times 10^{4}$ 2.0 1.9 0.7 1.3 1.3 1. $\rho (slugs/_{fL}3) \times 10^{3}$ 2.13 2.12 2.18 2.17 2.1 Maneuver flight flight rotation 1000 and fom	- Sideslip	0.61	1.0	0.6	2.3	3.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Test point number C _{mul} a	19 0.06	62 0.06	27 0.07	26 0.07	31 0.06
$\sum_{p} x = 10^{-10} x = 10^{-1$		0.23	0.13	0.18	0.19 1 3	0.14
Maneuver descent apl flight flight rotation 1000 and fom	p(slugs/f+3)x:10 ³	2.13	2.12	2.18	2.17	 2.38
	Maneuver	level flight	level fligît	auto- rotation	descent 1000 fpm	approach and flare

FLIGH	T TEST POINTS	OBTAINED DU	RING FLIGHT	393	
		R	un Number		
Flight Parameter	I	2	З	4	ß
Run gross weight	36,873	36,823	36,823	36,773	36,773
(pounds) Bun CG (inches forward					
of midpoint between	3.6	3.6	3.6	3.6	3.6
rotors)					
Calibrated true	27	27	27	27	27
airspeed (knots)					
Density altitude	-1600	-1750	-1700	-1750	-1700
(feet)					
Pressure altitude	200	150	150	150	150
(feet)					
Outside air temp. (°C)	-0.4	-0-3	-0.3	-0-5	ю • 0-
Rotor rpm	230	231	229	231	231
Longitudinal					
cyclic trim	-0.5	-0-5	-0.5	-0.5	-0.5
(deg fwd/aft)	0	0	0	0	0
Fuselage attitude					
(deg) - Pitch	l	1	ł	I	I
- Roll	3.7	0.5	-1.1	0.3	0,8
- Sideslip	л•1	-11.8	-13.8	8 . 6	+17.3
Test point number	9	8	7	10	б
CTW/0	0.09	0.09	0.09	0.09	0.09
- 1	0.06	0.06	0.06	0.06	0.06
$c_{\rm b} \times 10^4$	3.2	3 . 1	з • З	Э • З	1•3
p [*] (slugs/ft ³)x10 ³	2.49	2.50	2.50	2.50	2.50
Maneuver	level	side-	side-	side-	side-
	flight	slip	slip	slip	siip

TABLE XIII HT TEST POINTS OBTAINED DURING FLIGHT 3

		~	un Number		
Flight Parameter	6	7	8	6	10
Run gross weight (pounds)	36,573	36,473	36,423	36,373	36,323
Run CG (inches forward of midpoint between	3°2	3 ° 2	3.4	3.4	3.4
rotors) Calibrated true	28	28	28	28	28
arrspeed (Alous) Density altitude	-550	-150	350	50	250
(rect) Pressure altitude (foot)	1350	1650	2150	2000	2150
(lect) Outside air temp. (°C) Rotor rpm Toncitudinal	-2.7 231	-3.0 229	-3.8 231	-4.8 229	-4.9 229
cyclic trim (deg fwd/aft) Fuselage attitude	-0-5 0	-0-5	-0•5 0	-0-5 0	<u>-0.5</u> 0
(deg) - Pitch - Roll	-0.8 0.8	-0.2 6 0	- 0.4	- 1.7 30 6	1 • 6
- Sidesip Test point number C _{mu} /c	2.0 11 C.09	0.09 0.09	12. 12 0.09		-12.1 14 0.09
utu C _D x 10 ⁴ p[slugs/ft3)x10 ³ Maneuver	0.07 3.6 2.42 level flight	0.07 3.9 2.39 side- slip	0.07 3.8 2.36 side- slip	0.07 3.7 2.38 side- slip	0.07 3.9 2.36 side- slip

TABLE XIII - CONTINUED

222

W

€.

¢

ł
		AT THOO - TTTO	120		
		æ	un Number		
Flight Parameter	11	12	13	14	15
Run gross weight (pounds)	36,273	35,973	35,923	35,873	35,273
Run CG (inches forward of midpoint between	3.4	с• С	ຕ ູ ເ	3 . 3	3 . 1
rotors] Calibrated true	25	63	69	с Г	57
airspeed (knots)		9	1))	
Density_altitude (feet)	350	3050	3300	3450	-1700
Pressure altitude (feet)	2250	5200	5500	5750	150
Outside air temp. (°C)	-5.1	-12.7	-13.8	-14.9	-0.5
Rotor rpm	231	231	241	240	231
Longitudinal					
cyclic trim	-0-5	-0-5	-0-5	-0.5	-0.5
(deg fwd/aft)	0	0	0	0	0
Fuselage attitude					
(deg) - Pitch	1	1	I	I	I
- Roll	-2.4	-0.7	6°0-	0.3	0.2
- Sideslip	-19.0	5.7	-1.5	8.4	I
Test point number	15	38	39	58	TOT
Crtw/o	0.09	0.10	G.09	0.09	0.08
- 1	0.06	0.15	0.16	0.13	0.14
c _b x 10 ⁴	3 . 8	3.8	3 . 9	3 . 9	1.9
p ^f (slugs/ _{ft} 3)xl0 ³	2.36	2.18	2.16	2.14	2.51
Maneuver	side-	level	level	level	approach
	slip	flight	flight	flight	and
					flare

2.2.3

	TABLE XI	LI - CONTINUE	SD		
		I	Run Number		
Flight Parameter	17	18	19	20	21
Run gross weight	35,123	35,073	35,023	34,998	34,973
(pounds) Run CG (inches forward					
of midpoint between	3.0	3.0	3.0	3.0	3•0
rotors)					
Calibrated true	0	0	0	0	0
airspeed (knots)					
Density altitude	-1550	-1500	-1500	-1500	-1500
(feet)					
Pressure altitude	150	150	100	100	150
(feet)					
Outside air temp. (°C)	0.9	1.5 1	1.7	1.5	1.6
Rotor rpm	229	230	230	229	231
Longitudinal					
cyclic trim	-0 -1	-0-5	-0 -0	-0.5	-0.5
(deg fwd/aft)	0	0	0	0	0
Fuselage attitude					
(deg) - Pitch	1	I	I	ł	ł
- Roll	-2.8	-1.5	-0.2	0.1	0.6
- Sideslip	-26.0	11.5	t	I	I
Test point number	н	7	ო	4	ى د
	0.08	0.08	0.08	0.08	0.08
	0	0	0	0	0
c _n x 10 ⁴	4.1	3.7	3.7	3.8	3 ° 8
p ⁷ (slugs/ _{ft} 3)xl0 ³	2.48	2.48	2.48	2.48	2.48
Maneuver	hover	hover	hover	hover	hover

224

ţ

TABLE XIV IGHT TEST POINTS OBTAINED DURING FLIGHT 39

E	Run N 1 2 1 2 300 33,200 6 5.3 101 2 0 4720 101 101 101 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 2 0.3 2 0.3 2 0.3 2 0.2 2 0.24 2 2.19 2 1.evel	Run Number Run Number 1 2 3 2 3 200 33,200 300 33,200 33,200 33,200 300 33,200 33,200 33,200 0 4720 4670 101 85 -9.7 101 85 -9.7 231 231 231 231 231 231 8 -1.0 -1.0 -1.0 -1.0 -1.0 8 -1.0 -1.0 9 0.2 0.3 9 0.2 -2.3 2 0.3 0.3 2 0.3 0.3 2 0.3 0.3 9 0.2 0.0 2 0.2 -2.3 3 0.24 0.20 4 0.24 0.20 2 2.19 2.20 2 2.19 2.20	TO SUNTOA TEAT THEIL TO	Flight Parameter 0	Run gross weight 33,300 33, (pounds)	Run CG (inches forward of midpoint between 5.3 5.3	rotors) Calibrated true 0 58	airspeed (Knots) -1100 240 Density altitude -1100 240	Pressure altitude -250 415	(reet) Outside air temp. (°C) 8.8 -7. Rotor rpm 231 231	Longitudinal cyclic trim (deg fwd/aft) -0.8 -0.	Fuselage attitude 6.5 2.8 (deg) - Pitch 6.5 2.8	- Roll -1.3 -1.	Test point number 98 56	CTW/0 0.08 0.0		p (slugs/ft3)x10 ³ 2.46 2.2	Maneuver hover lev
	D DUKING F Run N 33,200 33,200 5.3 4720 4720 2920 2920 2920 2920 2920 201 201 201 2019 0.24 0.24 0.24 0.24 1evel	DURLING FLIGHT 394 Run Number 3 2 3 2 3 2 3 33,200 33,200 33,200 33,200 33,200 33,200 5.3 5.3 5.3 101 85 10 4720 4670 2800 2920 2800 2800 27 231 231 231 231 231 -1.0 1.0 1.3 -1.0 -1.0 1.3 0.3 0.3 0.3 0.3 0.3 231 231 231 231 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.3 0.3 0.3 0.3 0.3 0.03 0.24 0.20 -2.3 0.24 0.20 -2.20 1evel 1evel 1evel	DBTAINE	Т	33,300	5.3	58	2400	4150	-7.4 231	-0.8 -0.8	2.8	-1.2 -2.4	56	0°09	1 C	2.22 2.22	level
LIGHT 394umber 3 4 33,20033,1505.35.35.35.35.35.38599859928002750280027502800275028002750280027502800275028002750280027502800275028002750291230202-9.72312302312302312302312302312302312302312302312302312302312302312302312302312302312302322202.202.201evel1evel	4 33,150 5.3 99 4680 4680 4680 2750 2750 2750 230 230 230 230 230 230 230 230 230 23			2	33,100	2 • 3	100	2500	4340	-8.2 229	-3.0	ຕ ໍ ຕ	ר ו שייט ני ני	20	0.09	fr V V D I	2.21	level

			Run Number		
Flight Parameter	9	7	8	6	11
Run gross weight (pounds)	33,050	33,000	32,950	32,850	32,700
Run CG (inches forward of midpoint between	5.2	5.2	5.2	5.2	5 • 1
rotors) Calibrated true	TOT	76	59	59	28
arrspeed (knots) Density altitude	2500	2585	2350	2525	2400
(reet) Pressure altitude	4420	4500	4490	4370	4310
(reet) Outside air temp. (°C) Rotor rpm	-9.0 229	-9.5 222	-9.9 214	-9.4 213	-8.8 202
Longicuanna. cyclic trim (deg fwd/aft)	- 3 • 5 - 5 • 8	-1.2 -1.0	-1.1 -0.9	-1.2 -0.9	-0-9 -0-8
Fuselage attitude (deg) - Pitch - Roll	3.4 -1.7	1.2 -1.7	2.0 -0.1	4.2 -0.8	4.4 -1.7
- Sideslip Test point number	-4.0 50	-9,0 52	-5°2 45	-6.2 41	-8.9 32
Crtw/o	0.09	0,09 0,19	0.10 0.15	0.10 0.15	0.11 0.07
lcn x 10 ⁴	1	I	1	I	1
p ^f (slugs/ft ³)xl0 ³	2, 21	2.20	2.21	2.21	2.22
Maneuver	level flight	level flight	level flight	Level flight	levei flight
	rough air	rough air			

TABLE XIV - CONTINUED

226

ł

	TABLE	XIV - CONTIN	UED		
			Run Number		
Flight Parameter	12	13	14	15	16
Run gross weight	32,550	32,550	32,450	32,300	32,150
(pounds) Run CG (inches forward					
of midpoint between	5.1	5.1	5.1	5.0	5.0
rotors) Calibrated true	28	28	82	66	59
airspeed (knots)					
Density altitude	0787	2062	3025	90	
(reet)	1730	4510	4930	1150	-300
rressure artruuc (faet)))	
Outside air temp. (°C)	-10.0	-10.0	-10.4	-5.0	8.6
Rotor rpm	202	202	235	231	231
Longitudinal					
cyclic trim	-0-5	-2.0	-1.0	-1.1	-2.6
(deg fwd/aft)	-0.8	-2.3	-1.1	-1.8	-4.7
Fuselage attitude					
(deg) - Pitch	4.1	6.3	1.4	3°3	1
- Roll	-2.1	-2.1	-0.2	ı	-1.0
- Sideslip	-4.8	-13.0	-3.9	4 .8	-15.2
Test point number	44	40	54	97	66
c/o	0.11	11.0	0.08	0.08	0.08
- n	0.07	0.08	0.19	0.23	0.14
c. x 104	I	1	;	1	1
p ^r (slugs/f+3) x10 ³	2.20	2.21	2.18	2.46	2.46
Maneuver	level	level	level	level	approach
	flight	flight	flight	flight	and flare

)

72.7773						
			Run Num	ber		
Fiight Parameter	2	Э	4	5	و	۲
Run gross weight (pounds)	25,600	25,500	25,450	25,450	25,400	25,200
Run CG (inches forward of midpoint between	-0.2	-0.3	-0-3	-0-3	-0-3	-0.5
rotors) Calibrated true	0	54	98	138	ប្រ ប	53
airspeed (knots) Density altitude	-600	2650	2650	2700	2300	2300
(reet) Pressure altitude	-240	4000	3950	3950	3750	3800
(reet) Outside air temp. (°C) Rotor rpm	12.6 230	-4.0 229	-3.7 229	-2.8 229	-4.3 204	-4.5 216
Longituairai cyclic trim (deg fwd/art)	-0.7	-1.1 -0.9	-3.3 -5.2	-3.9 -5.4	-1.3 -0.8	-1.2
Fuselage attitude (deg) - Pitch - Roll	7.1 0	ۍ کې د	4.1 0.7	-0.8 -1.1	3.2 -0.8	2.6 0.5
- Sideslip	39.4	-3.9	-0.7	-2,4	-4.0	-0.1
Test point number Cryw/a 	0°00	61 0.07 0.13	18 0.07 0.23	36 0.07 0.33	0.09 0.15 0.15	0.08 0.13
Cp x 10 ⁴ ofslugs/3)x10 ³	- 2,42	2.21	- 2.21	2.20	- 2.22	2.22
Mareuver	hover	level flight	level. flight	level flight	level flight	level flight

ì

٢

TABLE XV FLIGMT TEST POINTS OBTAINED DURING FLIGHT 395

	STRAT.	NNT.TNOD - AX	ED		
			Run Number		
Fl.ight Parameter	6	10	11	12	13
Run gross weight	25,200	25,200	25,150	25,150	25,150
(pounds) Run CG (inches forward	-0.5	-0.5	-0.5	-0-5	-0.5
of midpoint between					
rotors)	(, t	Ţ	C
Calibrated true	96	102	76	74	67
airspeed (knots)					
Density altitude (feet)	0062	2550	2650	0097	0692
Prossure altitude	3900	3950	4200	4000	4100
(feet)					
Cutside air temp. (°C)	-4.2	-4.6	-5.5	-5.2	-4.9
Rutor rpm	215	216	229	229	229
Iongitudinal					
cyclic trim	-3.0	-3.7	- 0 . 8	-1.0	-1.2
(deg fwd/aft)	-3.7	-5.6	-1.1	-1.0	-0.8
Fuselage attitude					
(deg) - Pitch	2.2	2.1	1. 4	-1.2	2.9
- Roll	-3.0	-0.6	-26.4	27.2	3.4
- Sideslip	-1.6	-2.6	1	-5.2	10.9
Test point number	17	35	22	23	25
CTTW/ 0	0.08	0.08	0.07	0.07	0.07
- 1	0.24	0.26	0.16	0.18	0.19
c _n x 10 ⁴	1	ſ	I	ĩ	ı
p[slugs/f+3)xl0 ³	2.21	2.21	2.20	2.21	2.20
Maneuver	level	level	left	right	side-
	flight	flight	turn	turn	slip
			30°	30°	
			bank	bank	

Þ

)

ļ

	TABL	E XV - CON	TINUED			
			Run Num	ber		
Flight Parameter	14	15	16	17	18	19
Run gross weight	25,100	24,950	24,950	24,950	24,900	24,900
(pounds)	u c	v c	9 0	9 0	y C	ب د 1
Run CG (inches forward	c•0-					
or miapoint between rotors)						
Calibrated true	72	77	78	76	72	73
airspeed (knots)						
Density altitude	2650	2750	2600	2300	2350	1600
(feet)						
Pressure altitude	4150	4050	4100	3850	3850	3100
(feet)						
Outside air temp. (°C)	-5.5	-5.0	-5.2	с I		۳ . ۳
Rotor rpm	229	229	229	229	229	1
Longitudinal						
cyclic trim	10.9		5 0	8.0-	0.1-	-1.1
(deg fwd/aft)	-1 • 1-	-1.0	-1.0	-0-8	-1.1	6.0-
Fuselage attitude						
(deg) - Pitch	1.3	-1.1	0.8	-18.3	3 ° 0	8°.
- Roll	-2.5	22.8	3 . 9	-13.2	0.2	-0.4
- Sideslip	- 9.8 - 8	-9.4	-7.4	ł	-2.4	-5.4
Test point number	24	28	29	30	26	27
Critera / 0	0.07	0.07	0.07	0.07	0.07	1
	0.17	0.18	0.19	0.18	0.17	I
Č x 10 ⁴	1	I	1	t	I	1
P ^R slugs/f+3)x10 ³	2.20	2.19	2.21	2.22	2.22	2.26
Maneuver	side-	abrupt	abrupt	-mys	descent	auto-
	gils	roll	roll	metrical	1000 fpm	rotation
		right	left	dullup		

230

ŧ

FLIGHT	TABLE XV TEST POINTS OBTAINED	DURING FLIGHT	397	
		Run Number		
Flight Parameter	Г	2	e	4
Run gross weight	23,600	23,550	23,500	23, 200
(pounds) Run CG (inches forward of midpoint between	ۍ ۳	3°2	3.4	с• с
rotors) Calibrated true	133	143	155	127
airspeed (knots) Density altitude	750~	7450	7500	8100
(feet) Pressure altitude	6750	6550	6600	8000
(feet) Outside air temp. (°C) Rotor rpm	8.4 235	9.6 235	10.0 235	-0.3 225
Longitudinal cyclic trim (deg fwd/aft)	-3.6	-3.7	- 3, 9 - 5, 5	-5.1
Fuselage attitude (deg) - Pitch - Roll - Sideslip	-1.3 1.4 3.8	-3.5 0.3 2.7	-5.4 -1.4 0.4	1 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2
Test point number CTW/a ",	210 0.07 0.31	211 0.07 0.33	212 0.07 0.36	225 0.08 0.31
C _P x 10 ⁴ p(slugs/ _{ft} 3)x10 ³ Maneuver	4.8 1.90 level flight	4.7 1.90 level flight	5.2 1.90 level flight	6.0 1.86 level flight

231

"

P

۱

}

t

		Run Nur	nber	
Flight Parameter	5	9	7	ω
Run gross weight (pounds)	23,100	23,100	22,900	22,850
Run CG (ınches rorward of midpoint between	3°3	3 • 3	3.2	3.2
rotors) Calibrated true	117	134	129	137
airspeed (knots) Density altitude	8150	8200	5250	4950
(reet) Pressure altitude	8050	8050	4650	4450
(reet) Outside air temp. (°C) Rotor rpm	0 225	0.5 225	10.8 230	10.1 230
Longituainai cyclic trim (deg fwd/aft)	-3 <u>.5</u> -5.2	- 3 . 8 - 4 . 9	-3.5 -5.4	-3.6 -5.3
Fuselage attitude (deg) - Pitch - Roll	-0.6	-1.9 -1.9	- 1 • 5 - 1 • 5	-7.4 -0.1
- Sideslip mort noint number	1.7 224	2.4 226	-0.4 214	0.5 215
ICTW/6	0.08	0.08	0.07	0.07
C _D x 10 ⁴ p (slugs/ft3)x10 ³	5.5 1.86	6.1 1.86	5.2 2.04	5.2 2.05
Maneuver	level flight	leve] £light	level flight	level flight

TABLE XVI - CONTINUED

1

232

t

(

	TABLE	XVI - CONTIN	UED		
			Run Number		
Flight Parameter	თ	10	11	12	13
Run gross weight	22,850	22,800	22,700	22,600	22,600
(pounds)					
kun cg (incres forward of midpoint between	3.2	3.1	3.1	3 •0	3.0
rotors]					
Calibrated time	147	158	122	<u>1</u> 32	137
airspeed (knots)					
Density altitude	5050	5150	3450	3450	3600
(feet)					
Pressure altitude	4500	4450	2800	2700	2800
(feet)					
Outside air temp. (°C)	10.7	12.0	15.4	16.5	16.2
Rotor rpm	230	230	225	225	225
Longitudinal					
cyclic trim	-3.9	-3.8	-3.4	-3.5	т М Г
(deg twd/aft)	-5.4	-5.5	-5.3	۳. ۳	-2°3
Fuselage attitude					
(deg) - Pitch	0.5	-2.4	-2.7	-3.8	-6.1
- Roll	0.3	-1.2	-1.1	0.2	
- Sideslip	2°9	0.5	-2.0	1.2	0.3
Test point number	216	217	219	220	221
	0.07	0.07	0.06	0.06	0.06
	0.35	0.37	0.30	0.32	0.33
c. x 10 ⁴	5.5	6.0	4.8	5.0	4.6
p ^r (sluqs/f+3)xl0 ³	2.04	2.04	2.14	2.14	2.14
Maneuver	level	level	level	level	level
	flight	flight	flight	flight	flight

F

١

)

10 A 10

TABLE XVII FLIGHT TEST POINTS OBTAINED DURING FLIGHT 398

			Rı	in Number			
Flight Parameter	1	2	4	5	9	7	6
Run gross weight (pounds)	23,900	23,850	23,700	23,650	23,600	23,550	23,400
Run CG (inches forward of midpoint between	3.2	3.2	3.1	3.1	3.0	3.0	2.9
rotors) Calibrated true	129	138	126	133	147	122	148
arrspeed (knots) Density altitude	3650	3600	1950	1950	2000	1850	1950
(teet) Pressure altitude	3700	3600	006T	1850	1950	1900	1950
(reec) Outside air temp.(°C) Rotcr rpm	7.4 225	7.8 225	11.7 235	12.1 235	11.9 235	11.0 230	11.2 230
Longitudinal cyclic trim (deg fwd/aft)	-3.3	-3.3 -5.2	-3.1	1 5 3 3	-3.4 -5.3	-3.1 -5.1	-3.4 -5.4
Fuselage attitude (dec) - Pitch	-2,8	-6.1	-1.4	-3,8	- 5 - 6	-1.8	-5.7
- Roll	3.5	1.0	-0-4 -	0.6	1•0	1.0	0.3
- Sideslip	4.0	2.4	Ч. 1.9	I.3	3.9	1.7	2.5
Test point number	220	22I 0 07	201 0 06	202 0 06	203 0 06	202 0 06	20/ 0_06
	0.31	0.34	0.29	0.31	0.34	0.29	0.33
co x 10 ⁴	3.6	4.0	2.9	3 ° 2	4.2	2.8	4.0
p ⁷ (slugs/ _{ft} 3)x10 ³	2.14	2.14	2.24	2.24	2.24	2.25	2.24
Maneuver	level flight	level fliaht	level flight	level flight	Level flight	Level flight	Level fliaht
NOTE: Runs 11 to 13 We	re airspe	sed callb	rations.				

234

í

¢

r

TABLE XVIII

FLIGHT LOG OF TEST POINTS ACCOMPLISHED

Basic Program	Nominal	Test Gross (Pounds)	Weight
Summary of Records Obtained	26,000	33,000	37,000
Total in Level Flight (Level Flight Near Region of	34	41	3
High Dynamic Loads (RHDL))	(2)	(23)	(1)
Maneuvers	33	0	0
Hovering and Transition	2	1	21
Total at Test Weight	69*	42	24
Total for Basic Program	135 Rec	cords	
<u>Extended Program</u> Summary of Records Obtained	Minimun Weight	n Test Flyi ≈ 24,000 P	ng ounds
Total in High-Speed Level Flight for Extended Program	20 Reco	ords	
*32 of these records were not other failures.	digitized	l due to no	ise or

The contract requirement for the basic program was 62 records. The following tables show the points obtained and the repeated conditions by test point number (TPN) from Plan of Flight Test 5-26. One test point number (48) of the basic program was inadvertently missed, but was not considered of sufficient value to warrant a repeat of the flight. Several test point numbers of the extended program could not be obtained due to excessive vibration at high speed.

P

ð,

}

and the second second

TABLE XIX TEST POINTS ACCOMPLISHED AT 26,000 POUNDS GROSS WEIGHT

ţ

1

1

and the state of the

Normality of Lange and Annual Social Social States and the second second second second second second second se

			Flight Num	ıber				
TPN	TAS	RRPM	379 380 381 382 383 384 385	386 38	37 3	91	395	Flight Condition
17	54	215	x				×	Level flight
18	66 6	230	×			×	×	Level flight
19	106	243				×		Level flight
22	80	230		×	¥	×	×	30° bank turn - left
23	80	230		×	¥	×	×	30° bank turn - right
24	80	230		n	¥	×	×	Yaw - 10° left
25	80	230		n	×	×	×	Yaw - 10° right
2C	80	230		×	¥	×	×	PPD
27	80	230		×	¥	×	×	Auto
26	80	230		'n	v	×	×	Abrupt roll - right
29	80	230		n	¥	×	×	Abrupt roll - left
30	80	230		n	¥	×	×	Symmetrical pullup
31	60	230		n	~	×		Approach and flare
35	OTT	215	××				×	Level flight (near rhdl)
36	137	230		~	¥	×	×	Level flight (near rhdl
37	145	243				×		Level flight
59	60	204					×	Level flight
60	60	215	××	n	Ŷ		×	Level flight
61	60	230	×	Ŷ	¥	×	×	Level flight
62	60	243				×		Level flight
170	40	230	×					Airspeed calibration
71	40	230	×					Airspeed calibration
72	80	230	×					Airspeed calibration
73	80	230	×					Airspeed calibration
74	120	230	×					Airspeed calibration
75	120	230	×					Airspeed calibration

236

{

ŕ

(

т.Р

TABLE XIX - CONTINUED

							F1	ight 1	Number				
TPN TAS	RRPM	379	380	381	382	383	384	385	386	387	391 3	:95	Flight Condition
888880 89980 9140 9675 0000	230 230 230 230 230 230 215 215					i			* * * *		×	× ×	Yaw calibration 0 Yaw calibration +10 Yaw calibration -10 Yaw calibration 0 Level flight Hover (wind-nose)
light To	tals	*	*	*	*	*	5	11**	**8	13***	17	18	
					ПС Ве)tal Icoró	Reco: Is Ne	rds a† ar RHI	t Test)L	Weight	11 11	69 2	
*Instru **Noise. ***No str	menta ain g	tion age ć	chec lata	ik f] from	Light 1 rot	ts at tors	: 26, due	000 p ⁽ to a ;	ounds; strain	no vali gage mo	id tes odule	it di fai	ata obtained. lure.

P

¥

)

75

•...

TABLE XX TEST POINTS ACCOMPLISHED AT 33,000 POUNDS GROSS WEIGHT

	RHDL	Near	I	Near	ı	Near	Near	Near	Near	I	i	1	ſ	ł									
	Flight Condition	' vel flight	Level flight	Rough air	Level flight	Level flight	Level flight	Level flight															
	394	×		×		×	×	×		×	×	×		×	×		×	×	×		×		
lumber	390	×	×		×			×				×	×		×	×		×	×	×	×	×	
light N	389	×	×					×	×						×			×	×	×	×	×	
fμ	388																						
	K PM	230	243	204	243	204	215	230	243	204	215	230	243	215	230	243	222	230	238	243	230	243	
	TAS R	66	106	30	125	30	60	100	120	30	60	100	110	60	100	125	77	80	83	84	60	60	
	ЧТ	20	21	32	34	40	41	42	43	44	45	46	47	49	50	51	52	53	54	55	56	57	

?"

l

.

INUED		4 Flight Condition RHDL	Level flight -	Level flight -	Approach and flare -	2	1 3	
CONTL		394	×	×	×	17	= 4] = 23	
- XX I	t Number	390				13	Weight	
TABI	Flight	389		×		11	t Test L	
		388				*0	ecords a Near RA	veather.
		S RRPM) 230	0 230	0 230	otals	Total R ⁽ Records	le to bad v
		TAS	100	0	9(rht Tc		ta du
		TPN	97	98	66	Flig		*No da

\$

Þ

١

)

р	TABLE XXI	OINTS ACCOMPLISHED AT 37,000 POUNDS GROSS WEIGHT
		POINTS

			ե1։ տի+ 1	ທາຫັນອະ	
NdL	TAS	RRPM	392	393	Flight Condition
	0	230	×	×	Wind from left
 7	0	230	×	×	Wind from left fwd 1/4
 ŝ	0	230	×	×	Wind from nose
 ヤ	د	230	×	×	Wind from right fwd 1/4
 ŝ	Э	230	×	×	Wind from right
 9	30	230		×	Zero sideslip
 2	30	230		×	+15° sideslip
ω	30	230		×	+7.5° sideslip
ი	30	230		×	-15° sideslip
 IO	30	230		×	-7.5° sideslip
11	30	230		×	Zero sideslip
 12	30	230		×	+15° sideslip
 13	30	230		>:	+30° sideslip
 14	00	230		×	-15° sideslip
 15	30	230		×	-30° sideslip
 38	60	230		×	Level flight (near rhdl)
 ο C	70	243		×	Level flight (near rhdl)
 58	60	243		×	Level flight (near rhdl)
 TOT	60	230		×	Approach and flare
Fligh	t Tota	1s	ъ	19	
	E		E He Here		(1000 North North PHDI)
	TOL	al keco	rds at Te	est weignt	= 24 (One Record Near איוטע)

11

L

(

TABLE XXII

(III)	ma c	אחתת	Flight	Number	Density Altitude
TPN			397	398	(Ieet)
201	131	238		x	2000
202	141	238		x	2000
203	152	238		x	2000
205	126	230		x	2000
207	146	230		x	2000
210	131	238	x		7500
211	141	238	x		7500
212	152	238	x		7500
214	126	230	x		5000
215	136	230	x		5000
216	146	230	x		5000
217	156	230	x		5000
219	124	2.25	x		3500
220	134	225	x	x	3500
221	144	225	x	x	3500
224	124	225	x		11,000
225	134	225	x		11,000
226	144	225	x		11,000
Fligh	t Totals		13	7	
Total	Records	at Test Wei	ght = 20		
NOTE:	All dat	a obtained	in straig	ht level f	light.

TEST POINTS ACCOMPLISHED IN EXTENDED PROGRAM

ъ

1

'›

)

241

,

APPENDIX II

INSTRUMENTATION DISCREPANCIES ENCOUNTERED IN USEFUL DATA FLIGHTS

GENERAL

The corrective actions shown in Table XXIII were required to obviate the errors or omissions which were encountered in all data flights. 5

Ĺ

TABLE XXIII

GENERAL INSTRUMENTATION DISCREPANCIES

Item	Data Codes Affecte	d Action
Forward rotor shaft strain gages - phase error	5247,5248,5249, 5250,5251,5252, 5453	Rerun with cor- rect phase angle (293 degrees)
Forward rotor shaft shear gages - equivalent load error	5247 (0°-180°) 5248 (90°-270°)	Rerun with cor- rect equivalent load values 0°-180°=8368 lb 90°-270°=9400 lb
Rotating accelerometers - useless steady terms	s 1044,1045,1046, 1047,1048,1049	Deleted steady terms
Aft blade torsion, station 89 - sign error	5279	-

SPECIFIC

Due to malfunctions, there were also instrumentation discrepancies which pertuined only to specific flights. The corrective actions that were required are itemized in the following tables.

Flight 384

7

1

\$

)

This flight had invalid data on run 0 and only forward rotor data on run 5; these runs were deleted.

TABLE XXIV

SPECIFIC INSTRUMENTATION DISCREPANCIES - FLIGHT 384

Data Code	Discrepancy	Action
1020	No Rcal	Delete entirely
1021	No Rcal	Delete entirely
1022	No Rcal	Delete entirely
4198	Harmonic values zero	Delete entirely
4200	VCO on band edge	Delete entirely
4218	Rcal on band edge	Delete entirely
4230	No Rcal	Delete entirely
4241	Rcal on band edge	Delete entirely
4254	VCO on band edge	Delete entirely
5153	No Rcal	Delete entirely
5253	Small Rcal	Delete entirely
5259	Small Rcal	Delete entirely
5267	Sign error (noted in steady term)	Reverse sign
5272	Sign error (noted in steady term)	Reverse sign
5273	Sign error (noted in steady term)	Reverse sign
5288	Sign error (noted in steady term)	Reverse sign

These discrepancies were in addition to the following data codes which were deleted in digitizing:

2001	2016	3005	4181	4207	4247	5247	7115	7198
2002	2017	3012	4198	4212	4271	5252	7134	7213
2003	3003	3013	4199	4228	4282	5254	7163	7214
2004	3004	3052	4203	4229	4284	5260	7167	

This flight had no bad runs.

TABLE XXV

5

Ļ

. .

SPECIFIC INSTRUMENTATION DISCREPANCIES - FLIGHT 386

Data Code	Discrepancy	Action
1020	No Rcal	Delete entirely
1021 '	No Rcal	Delete entirely
1022	No Rcal	Delete entirely
4189	Rcal on band edge	Delete entirely
4198	Zero harmonic values	Delete entirely
4202	No Rcal	Delete entirely
4207	Rcal on band edge	Delete entirely
4212	Rcal on band edge	Delete entirely
4226	Rcal on band edge	Delete entirely
4229	Rcal on band edge	Delete entirely
4230	No Kcal	Delete entirely
4263	Rcal on band edge	Delete entirely
4266	inconsistent steady and harmonic values	Delete entirely
4271	Rcal on band edge	Delete entirely
4284	Inconsistent steady and harmonic	Delete entirely
	values	
5252	Small Rcal	Delete entirely
5253	Small Rcal	Delete entirely
5259	Sign error of steady term	Reverse sign
5260	Inconsistent steady and harmonic values and small Rcal	Delete entirely
5265	X _o error	Correct X _o and
	-	reprocess
5269	X _o e.ror	Correct X_{O} and
		reprocess
5270	X ₀ error	Correct X_O and
		reprocess
5272	Sign error in steady term and	Reverse sign and
Į	X _o error	correct X _o
5273	Sign error in steady term	Reverse sign

	TABLE XXV - CONTINUED	
Data Code	Discrepancy	Action
5275	Sign error in steady term and X _o error	Reverse sign and correct X _o
5280 5284 5285 5287 5288 5290	X_0 error X_0 error X_0 error X_0 error Sign error in steady term Sign error in steady term and X_0 error	Correct X _O Correct X _O Correct X _O Correct X _O Reverse sign Reverse sign and correct X _O
5295 5296	No X _o No X _o	Input X _O Input X _O

TABLE XXV - CONTINUED

These discrepancies were in addition to the following data codes which were deleted in digitizing:

2001	2016	3005
2002	2017	3012
2003	3003	3013
2004	3004	

)

Ì

)

t

For this flight, run 8 contained invalid data and was deleted.

TABLE XXVI

7

Ł

ť

SPECIFIC INSTRUMENTATION DISCREPANCIES - FLIGHT 389.

Data Code	Discrepancy	Action
1020	Small Rcal	Delete entirely
1021	Small Rcal	Delete entirely
1022	Small Rcal	Delete entirely
2016	Small Rcal	Delete entirely
4198	Bias on band edge	Delete entirely
5265	X _o error	Correct X _o and
		reprocess
5269	X _o error	Correct X _o and
	5	reprocess
5270	X ₂ error	Correct X, and
	8	reprocess
5272	Sign error in steady term and	Reverse sign and
5272	X_ error	correct X
5075	Cian annan in star la tam and	Devenee aign and
5275	Sign error in steady term and	Reverse sign and
	x ₀ error	COTTecc No
5280	Sign error in steady term	Reverse sign
5284	Sign error in steady term	Reverse sign
5285	No X _o	Input X _O
5287	X _o error	Correct X _o
5290	Sign error in steady term and	Reverse sign and
	X ₂ error	correct X
1	U	v

These discrepancies were in addition to the following data codes which were deleted in digitizing:

2001	2017	3012
2002	3003	3013
2003	3004	4230
2004	3005	

3

ł.

)

All runs were valid.

TABLE XXVII

SPECIFIC INSTRUMENTATION DISCREPANCIES - FLIGHT 390

Data Code	Discrepancy	Action
1020	No Rcal	Delete entirely
1021	No Rcal	Delete entirely
1022	No Rcal	Delete entirely
4212	Harmonic values zero	Delete entirely
4214	Incorrect baseline values for in-flight calibration	Delete entirely
5247	Equivalent load wrong	Correct equiva- lent load
5248	Equivalent load wrong	Correct equiva- lent load
5253	Small Rcal	Delete entirely
5272	Sign error in steady term and X _O error	Reverse sign and correct X _Q
5275	Sign error in steady term and X _O error	Reverse sign and correct X _o
5285	Bias on band edge	Delete entirely
5287	X _o error	Correct Xo
5288	Sign error in steady term	Reverse sign

These discrepancies were in addition to the following data codes which were deleted in digitizing:

2001	2016	3004	4179	4253	5252	5276	7167
2002	2017	3005	4185	4263	5260	5290	7213
2003	2027	3012	4199	4278	5267	5296	
2004	3003	3013	4230	4284	5273	7134	

Runs 8, 20, and 21 were invalid and were deleted.

TABLE XXVIII

€

2

l

SPECIFIC INSTRUMENTATION DISCREPANCIES - FLIGHT 391

<u>Discrepancy</u>	Action
Small Rcal	Delete entirely
Small Rcal	Delete entirely
Small Rcal	Delete entirely
In-flight calibration	Delete entirely
Inconsistent steady values	Delete steady
	value
Rcal on band edge	Delete entirely
Equivalent load wrong	Correct equiva-
	lent load
Equivalent load wrong	Correct equiva-
	lent load
Small Rcal	Delete entirely
Bias on band edge	Delete entirely
X _o error	Correct X _o
Sign error in steady term	Reverse sign
Sign error in steady term	Reverse sign
Bias too close to band edge	Delete steady
2	term
	Small Rcal Small Rcal Small Rcal In-flight calibration Inconsistent steady values Rcal on band edge Equivalent load wrong Equivalent load wrong Small Rcal Bias on band edge X ₀ error Sign error in steady term Sign error in steady term Bias too close to band edge

These discrepancies were in addition to the following data codes which were deleted in digitizing:

2001	2017	3005	4185	4230	4263	5260	5283
2002	2027	3012	4199	4252	4284	5263	5296
2003	2029	3013	4204	4253	5250	5267	7134
2004	3003	4179	4212	4254	5252	5273	7176
2016	3004	4184	4214	4258	5257	5275	7213

7

}

Ì

}

Runs 5, 101, and 201 were either invalid flight data or ground runs and were deleted.

TABLE XXIX

SPECIFIC INSTRUMENTATION DISCREPANCIES - FLIGHT 393

Data Code	Discrepancy	Action
1020	Small Rcal	Delete entirely
1021	Small Rcal	Delete entirely
1022	Small Rcal	Delete entirely
4177	No Rcal	Delete entirely
4178	Rcal on band edge	Delete entirely
4231	No Rcal	Delete entirely
4233	VCO and Rcal on band edge	Delete entirely
4234	No Rcal	Delete entirely
4235	Small Rcal	Delete entirely
4245	Small Rcal	Delete entirely
2024	Small Rcal	Delete entirely
2028	Small Rcal	Delete entirely
8207	Small Rcal	Delete entirely
5208	Small Rcal	Delete entirely
5253	Small Rcal	Delete entirely
5261	Small Rcal	Delete entirely
5269	Sign error in steady term	Reverse sign
5270	Sign error in steady term	Reverse sign
5271	No Rcal	Delete entirely
5272	Sign error in steady term and	Reverse sign and
	X _o error	correct X _o
5287	No X _o	Input correct X _o
5288	Sign error in steady term	Reverse sign
5290	Sign error in steady term	Reverse sign
i		

These discrepancies were in addition to the following data codes which were deleted in digitizing:

1044	1047	2002	2016	2025	2029	3003
1045	1048	2003	2017	2026	2034	3004
1046	2001	2004	2018	2027	2035	3005

1101	4212	1226	1203	5263	5275	7134
4104	** ~ T ~	4220	4202	5205	J&1J	71.54
4189	4213	4229	4284	5264	5276	7167
4191	4214	4230	5153	5266	5278	7198
4192	4217	4237	5207	5267	5279	
4194	4219	4239	8208	5268	5283	
4198	4220	4253	5252	5273	5286	
4199	4225	4267	5260	5274	5295	
	4184 4189 4191 4192 4194 4198 4199	41844212418942134191421441924217419442194198422041994225	418442124226418942134229419142144230419242174237419442194239419842204253419942254267	4184421242264282418942134229428441914214423051534192421742375207419442194239820841984220425352524199422542675260	41844212422642825263418942134229428452644191421442305153526641924217423752075267419442194239820852684198422042535252527341994225426752605274	418442124226428252635275418942134229428452645276419142144230515352665278419242174237520752675279419442194239820852685283419842204253525252735286419942254267526052745295

7

€

ł

l

in the second

7

]

1

\$

Run 5 was an invalid flight record and runs 0, 101, and 102 were ground runs; these runs were deleted.

TABLE XXX

SPECIFIC INSTRUMENTATION DISCREPANCIES - FLIGHT 394

Data Code	Discrepancy	Action
4178	VCO on band edge	Delete entirely
4206	VCO on band edge	Delete entirely
4212	Values inconsistent by comparison	Delete entirely
4232	VCO on band edge	Delete entirely
4260	VCu on band edge	Delete entirely
4263	VCO on band edge	Delete entirely
5272	Sign error in steady term and	Reverse sign and
	X _o error	correct X _O
5273	Sign error in steady term	Reverse sign
5275	Sign error in steady term and	Reverse sign and
	X _o error	correct X _O
5281	Steady value inconsistent when	Delete steady
	compared to other test data	term
5287	X_ error	Correct X
5288	Sign error in steady term	Reverse sign
5200	Sign error in steady term and	Reverse sign and
5290	Y error	correct X.
Į	VO EITOT	0011000 10
These disc	repancies were in addition to the f	ollowing data
1.000 0100		

codes which were deleted in digitizing:

1020	2017	4200	5266	7167
1021	3003	4213	5279	7213
1022	3004	4214	5285	
2001	3005	4230	7107	
2002	3012	4233	7134	
2003	3013	4284	7163	
2004	4198	5252	7164	
2016	4199	5260	7165	

Run 17 was edited incorrectly and runs 22 and 23 had malfunctions; these runs were deleted.

TABLE XXXI

SPECIFIC INSTRUMENTATION DISCREPANCIES - FLIGHT 395

{

Data Code	Discrepancy	Action
4178	VCO on band edge	Delete entirely
4206	VCO on band edge	Delete entirely
4209	VCO on band edge	Delete entirely
4212	Values inconsistent by comparison	Delete entirely
1030	V(1) on hand edge	Delete entirely
4252	VCO on hand edge	Delete entirely
4200	VCO on band edge	Delete entirely
4203	VCU on band edge	belete entirely
2028	NO RCal	Delete entirely
2029	No Rcal	Delete entirely
5272	Sign error in steady term and X _o error	Reverse sign and correct X _O
5273	Sign error in steady term	Reverse sign
5275	Sign error in steady term and	Reverse sign and
	X _o error	correct X _o
5281	Small Rcal	Delete steady term
5287	X _o error	Correct Xo
5288	Sign error in steady term	Reverse sign
5290	Sign error in steady term and	Reverse sign and
	X _o error	correct X
	5	U

These discrepancies were in addition to the following data codes which were deleted in digitizing:

1020	2016	4198	4284 5252	7134
1022	3003	4200	5260	7164
200 <u>1</u>	3004	4213	5266	7165
2002	3005	4214	5279	7157
2003	3012	4230	5285	7213
2004	3013	4233	7107	

<u>Flight 397</u>

¥

}

Run 15 was invalid and was d leted.

TABLE XXXII

SPECIFIC INSTRUMENTATION DISCREPANCIES - FLIGHT 397

1	Data Code	Discrepancy	Action
	4212	Values inconsistent by comparison	Delete entirely
	4214	Rcal on band edge	Delete entirely
į	4229	Rcal on band edge	Delete entirely
	4230	No Rcal	Delete entirely
	4263	Rcal on band edge	Dalete entirely
	4284	Low Rcal	Delete entirely
	5252	Data not consistent when compared to other test data	Delete entirely
	5253	Steady nct consistent when compared to other test data	Delete entirely
	5260	Data not consistent when compared to other test data	Delete entirely
	5266	Data not consistent when compared	Delete entirely
	5272	Sign error in steady term and X_0 error	Reverse sign and correct X _C
	5273	Sign error in steady term	Reverse sign
	5275	Sign error in steady term and X _o error	Reverse sign and correct X _O
	5287	X _o error	Correct X _O
	5288	Sign error in steady term	Reverse sign
	5290	Sign error in steady term and X _O error	Reverse sign and correct X _O
	7134	No Rcal	Delete entirely
	7135	No Rcal	Delete entirely
	7141	No Rcal	Delete entirely
	7167	No Rcal	Delete entirely
	7199	No Rcal	Delete entirely
	7213	No Rcal	Delete entirely
	1		

These discrepancies were in addition to the following data codes which were deleted in digitizing:

1020	2002	2017	3012
1021	2003	3003	3013
1022	2004	3004	
2001	2016	3005	

ù

Ľ

)

Runs 3, 8, and 10 had bad in-flight calibration and were deleted.

TABLE XXXIII

SPECIFIC INSTRUMENTATION DISCREPANCIES - FLIGHT 398

Data Code	Discrepancy	Action
4207	Low Rcal	Delete entirely
4214	Rcal on band edge	Delete entiraly
4229	Rcal on band edge	Delete entirely
4230	No Rcal	Delete entirely
4263	Rcal on band edge	Delete entirely
4284	No Rcal	Delete entirely
5252	Small Rcal	Delete entirely
5253	Small Rcal	Delete entirely
5260	No Rcal	Delete entirely
52 6 6	No Rcal	Delete entirely
5272	Sign error in steady term and X _O error	Reverse sign and correct X _o
5273	Sign error in steady term	Reverse sign
5275	Sign error in steady term and X _o error	Reverse sign and correct X _o
5287	X _o error	Correct X _o
5288	Sign error in steady term	Reverse sign
5290	Sign error in steady term and X _o error	Reverse sign and correct X _O

These discrepancies were in addition to the following data codes which were deleted in digitizing:

1020	2002	2017	3012
1021	2003	3003	3013
1022	2004	3004	
2001	2016	3005	

UNCLASSIFIED Security Classification			
DOCUMENT COL	NTROL DATA - RE	D	
(Security classification of title, body of abstract and indexi	ng annotation must be an	itered when t	he overall report is classified)
1 ORIGINATING ACTIVITY (Corporate author) Vertol Division		ZA. REPOR	T SECURITY CLASSIFICATION
The Boeing Company		Uncla	ssified
Morton, Pennsylvania		NA	
Moments, and Motions, Together wi Vibration, on a Tandem Botor Heli Evaluation of Results	f Rotor Blad th Rotor Sha copter Volum	le Airl ft Loa ne IV S	oads, Bending ds and Fuselage ummary and
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Final Technical Report	<u> </u>		
Pruyn, Richard R.			
6. REPORT DATE	74. TOTAL NO. OF P	AGES	75. NO. OF REFS
November 1967	285		27
SA. CONTRACT OR GRANT NO.	94. ORIGINATOR'S R	EPORT NUM	ser(S)
DA 44-1//-APC-124(1) & Project no.	USAAVLABS Technical Report 67-9D		
• Task 1F125901A14604	S. OTHER REPORT	NO(S) (Any	other numbers that may be assigned
	Booing Door	ment D8 0202 4	
<i>d.</i>	Boeing Doct		
This document has been approved for p its distribution is unlimited.	public release	and sal	e;
Volume IV of a 5-volume report	U.S. Army A Laboratorie	viatio s, For	n Materiel t Eustis. Virginia
13. ABSTRACT			
This report describes and evaluation gram to measure the dynamic effect helicopter. The flight test rest with theoretical predictions and airloads measurements from this other flight test programs, with rotor helicopter data differ from The aft rotor apparently produced in the airloads on the inboard of effect results in an airload dist which would be obtained with an rotor. For most longitudinal cy of the airloads of both tandem of a single rotor, with intrarotor predominant disturbances. Longit obtained experimentally with the airload pressure oscillations du rotor blade vortexes by the aft lations occur rapidly and do no	the the rest acts of fligh sults are rev with other program are on the forwar as an upwash cegion of the stribution the inc: eased bi yclic trim se totors tend to tip vortex itudinal cyclic tandem hells to the int rotor blades	to be s intersect intersect intersect intersect intersect intersect intersect intersect	an extensive pro- tandem rotor and then compared test data. The r to those of or ata of a tandem. gives an increase and rotor. This similar to that vist of the forward s, the oscillations similar to those of ections causing the testings can be which cause large ion of forward ese pressure oscil- se blade stresses,
DD . FORM. 1473			AVIT A COURTER
	_	0	MCTHO2TLITED

Ł

1

Security Classification

UNCLASSIFIED

Security lassification LINK A LINK B LINK C KEY WORDS ROLE wт ROLE WT ROLE wΫ In-Flight Measurement of Airloads Tundem Rotor Helicopter Instrumentation Test Program In-Flight Calibration Data Acquisition Data Processing Experimental Results Evaluation and Analysis of Results Conclusions Recommendations INSTRUCTIONS 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De-fense activity or other organization (corporate author) issuing 10. AVAILABILITY/LIMITATION NOTICLS: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements the report. 2a. REPORT SECURITY CLASSIFICATION: Enter the over- "Qualified requesters may obtain copies of this report from DDC." all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accord-"Foreign announcement and dissemination of this report by DDC is not authorized." ance with appropriate security regulations. (2) 2.5. CROUP: Automatic downgrading is specified in DoD Di-rective 5200.10 and Armed Forces Ldustrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author-ized. "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through (3) 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classifica-tion, show title classification in all capitals in parenthesis immediately following the title. "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall recuest through (4) 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or 'nal. Give the inclusive dates when a specific reporting p_riod is "All distribution of this report is controlled. Qual-(5) ified DDC upers shall request through covered. If the report has been furnished to the Office of Technical 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. Services, Department of Commerce, for sale to the public, indi-cate this fact and enter the price, if known-11. SUPPLEMENTARY NOTES: Use for additional explanatory notes. 6. REPO.T DATE: Enter the date of the report as day, month, year, or month, year. If more th on the report, use date of publication. 12. SPONSORING MILITARY ACTIVITY: Enter the name of If more than one date appears the departments' project office or laboratory sponsoring (pay-ing for) the research and development. Include address. TOTAL NUMBER OF PAGES: The total page count 13. ABSTRACT: Enter in abstract giving a brief and factual summary of the documer: indicative of the report, even though it may also appear elsewi.ere in the body of the technical re-port. If additional space is required, a continuation sheet whell be strached should follow normal pagination procedures, i.e., enter the number of pages containing information. 7b. NUMBER OF REFERENCES Enter the total number of references cited in the report. shall be attached. 8s. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. It is highly desirable that the abstract of classified re-ports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (G), or (U). 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc. There is no limitation on the length of the abstract. How-ever, the suggested length is from 150 to 225 words. 9s. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-cial report number by which the document will be identified and controlled by the originating activity. This number must 14. KEY WORDS. Key words are technically meaningful terms 14. KEY WORDS. Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no vecurity classification is required. Iden-fiers, such as equipment model designation, trade name, mill-tary project code nume, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional. be unique to this report. 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s). UNCLASSIFIED

Security Classification