|

b e

T TR O Dol - sirmeey

AD 071 345

THE INFIL,UENCE OF DAMPING ON THE SNAPPING OF A
SHALLOW ARCH UNDER A STEP PRESSURE LOAD

G. A, Hegemier, et al

California University
San Diego, California

April 1968

N o6 et e AR T

et SRR hH i




. AFOSR Scientific Report
AFOSR 68-1085

Air Force Cffice of Scientific Research
Grant AF.AFOSR 1226.67

g

Technical Report No. 9 /

WEE VDT

AD671545

THE INFLUENCE OF DAMPING ON THE SNAPPING OF
A SHALLOW ARCH UNDER A STEP PRESSURE LOAD

G. A. Hegemier and F. Tzung '

G L T
B

F Department of the Aerospace and Mechanical Engineering Sciences
UNIVERSITY OF CALIFORNIA, SAN DIEGO
La Jolla, California

§ April 1968

Distribution of this document is ualimited.

Reptoduced by the
CllAllNGHOUSE
for ol Scienlific & Technical
information Springfield V. 22151

o i AR elhrop # 2 e

ey Falpa e AT e e s s : . — ]




P e

WS 510 I0N
auF ECTION (1
a

erarsesiaessatunio

giata b 1%/ ATMUBILITY CODES
B, | AVAIL oad/w fenit

Y

I

I LA {7E B Bt A

Qualified requestors may obtain additional copies from the Defense
Documentation Center.




THE INFLUENCE OF DAMPFING ON THE SNAPPING OF
A SHALLOW ARCH UNDER A STEP PRESSURE LOAD*

by

er® and F. Tzung®

Department of the Aerospacgf and Mechanical Engineering Sciences
University fof California, San Diego
La“sJolla, California

ABSTRACT

,
\The snapping of a simply-supported shallow sinusoidal arcﬁ
under a sinusoidally distributed step pressure load is considered.
In the presence of velocity-depend.nt damping of any nonzero magni-
tude, it is shown that there exists no difference between static and
dynamic snap loads for arch rises above a certain magnitude and for
sufficiently small external disturbances. Below the foregoing value
of arch rise snapping is governed entirely by symmetric snap-through.
The results ﬁbuined herein, when compared to an existing analysis on
the subject, imply that a jump in the critical snap-through load occurs
at the boundary between the damped and undamped systems. Similar

results concerning cylinders and rings are mentioned.

! Research sponsored by the Air Force Office of Scientific Research,
Office of Aerogspace Research, United States Air Force under
AFOSR Grant AF-AFOSR 1226-67.
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1. Introduction
In several recent theoretical investigations concerning the
dynamic stability of elastic shell-type structures subjected to trans-

ient loads, it has been found that stability boundaries corresponding

2 WL L T s Bl B T b

to undamped and slightly damped mathematical structural models
differ markedly. For example, Loc): [1], who considered the snap-
ping of a geometrically perfect sinusoidal arch under a time-step
pressure load, found a dramatic dynamic influence on snap-through

for the undamped arch and certain arch rises; on the other hand, his

sl

analysis of the same problem assuming a small amount of velocity-
dependent damping indicates little or no difference between static and
dynamic snap loads in some of the same arch-rise regions. Similar
Tesults were observed by Huang and Nachbar [2], who investigated
the geometrically imperfect sinusoidal arch with and without material

damping of the viscoelastic type. Further information is to be found
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in a paper by Bieniek, Fan, and Lackman [3], who considered the

dynamic stability of a geometrically perfect cylindrical shell under a
spatially uniform lateral pressure, applied as a step and ramp-step
in time. There it was found that an undamped analysis predicied a

significant dynamic effect; the authors' ''remark'', however, that a
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. small amount of material damping resulted in the same stability

boundary for both the dynamically and staticaily applied loads.

wmm—*-‘--m‘“‘ It e - i e L ]




The foregoing investigations indicate the importance of in-
cluding proper damping mechanisms in a stability analysis involving
transiently applied loads. Further, they raise some serious doubts
as to the validity (without proper interpretation) of a non-dissipative
analyris under such loading conditions. It appears, in fact, that for
a certain clags of stability problems a jump condition exists in the
stability boundary with respect to the damping coefficient, say ¥y, at
Yy = 0.

In this paper we discuss the role of damping in stability problems
of the type {1 - 3]. The sinusoidal arch problem of [1] is employed as
the vehicle for discussion. . This, however, is a matter of convenience.
Similar analyses and conclusions, as will be made here, can be made
for other geometries and damping mechanisms (e.g., cylinders, spher-
ical caps; viscoelasticity, etc.). It was thought, however, that a
specific example would better serve the goal of this article than would
a gereral and perhaps undiscernible analysis. Tho extension of the
concepts put forth here to other systems is considered to be more or

less obvious.
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2. Formulation ¢

We consider a shallow, simply supported sinusoidal arch (Fig. 1), ]
which is governed by the following nonlinear differential equation of

motion:
a‘ 3w 3w
El 777 (w - w)-Pw-+ "at p.h-a?---p(x,t) (2.1)
where

='?'“I[ 'ax]d"'

Here wo(x) represents the initial unstressed position of the arch mid-

surface and w(x) is the displacement of said midsurface due to the
load p(x, t); both wo(x) and w(x) are measured from the line £ = 0
(Fig. 1). The quantities p'. h, E, I, A, L denote arch density, thick-
ness, Young's modulvrs, second moment of area of the arch cross

P section, cross-sectional area, and length respectively. The term

multiplying the constant $ is representative of velocity-dependent
damping. The coordinate x is illustrated in Fig. 1; t represeuts
time. The notation is that of [1].

In addition to (2. 1) we have, for the simply supported sinusoidal

arch, the following initial shape and boundary conditions, respectively:

w, = \_vo sin Ifx- (Wo = const. ) . (2.2)
a
w0, 0= £ 0,0 wLo=-3Fwey =0 . (2.3)
3
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In the sequel the load, p(x, t), is assumed to be of the form

plx, t) = p (sinl"f) H(t) (2. 4)

where H(t) denotes the Heaviside step function.
The following initial conditions are specified along with
equations (2.1) to (2.4):

w (3. to) = Gl(x) ’ g—:—’ (x, to) = G.(x) . (2.5)

Equations (2. 5) can be physically envisioned as the result of a dis-
turbance which terminates at th* time t = ¢t_. {
Consider now Figs. 2, 3,. In (1] Lock, utilizing the foregoing
equations of motion, boundary conditions, anﬁ loading function, and %
by virtue of a numezrical integration of the governing equations (follow- '
ing their reduction to two ordinary differential equations by an approx-
imate two-term modal analysis), found the locus of the encircled
points of Fig. 2 to be the snap-through boundary® with a small value
of the damping coefficient, ¥, and a emall disturbance (initial con-
ditions, (2.5)) of a certain type. (In Fig. 2, e d“enotu a nondimen-
sional arch rige; '?q'l is the nondimensional load amplitude at which !
smap-through occurs if P, is applied statically; q,l"l is the nondimen-l B

sional load amplitude leading to snap-through when P, is applied as

} The concept of dynamic snap-through is defined mathematically in §4.

»
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a step in time: thus ql*/zi1 is the ratio of dynamic to static snap
loads). in particuiar, note that lLittle or no ditterence between stat-
ically and dynamically applied loads is apparent for sufficiently large
arch rises.

In this paper we show that, subject to sufficiently small dis-
turbances of a reasonably general class, the snap-through boundary for
¥ > 0 is a curve in the ‘k*’a; va. e-plane (Fig. 2) which is defined
by symmetric snap-through up to the intersection with the line
Q*/q, = 1, and q "/ = | thereafter. This curve is illustrated in
Fig. 2 for ¥ = 0%, and also for ¥ corresponding to Lock's 1 percent
critical damping. Upon comparing the ¥ = 0* case withthe ¥ = 0
example of Lock (Fig. 3), one observes a juinp in the snap-through
boundary at ¥ = 0.

In contrast to [1], the analysis of this paper does not rely upon
numerical methods, but upon a rigorous stability analysis incorporating
the full nonlinear equations of motion. In this respect the work contained

herein should complement [1].
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1. Mathematicral Praliminaries

In this section we collect a few elementary mathematical tools
which will be of use in the ensuing analysis.
Norms

Let the norm, “5“ , of an n-dimensional vector z be defined as

, n
izll = = |z] (3.1)
121

where &, denote the elements of t. Further, let the norm, iBll, of

any square (n X n) mitrlx E be defined as

(3.2)

-~

isll - T LA
=1

where b,, are the elements of B.

4
Local Stability
Let £ ® 0 be a solution of the following system of ordinary

differential equations:

dz

il L (3.3)

Here £ is an n-dimensional vector and 8 is an n-dimensional vector-
valued function. We shall say that z® 0 is (locally) asymptotically
stable (in the sense of Liapunov) if 1) for each ¢ > 0 there exists a

8, depending only on ¢ and a constant 7 _, such that sl < ¢ for

all 7 2 7 provided Nl(‘fo)“ <8, and 2) lls(m)ll~0 as 7w,
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Comparison Theorem

The following comparison theorem?® will aid our discussion:

Theorem: Let x = 0 be a solution of

.
]

L

= Az + B(r)z + f(z, 7) (3.4)

[- X
-2

where z is an n-dimensional vector, Q is a constant n X n matrix
whose elements depend continuously on 7, and f denotes a contin-
uous n-dimensional vector valued function of s and 7. (It will be
assumed that £ is a nonlinear function of %, any linear terms being
included in Q or E.) Now, if 1) the trivial solution of

d

:

= Az (3.5)

[« 3
<

is asymptotically stable, 2) B {r) is impulsively small, i.e.,

[ B mlier <m (3.6)
0

where M is a positive constant, and 3) the function £ (’5 » T) satisfies

the nonlinearity condition

um £z, Dl _

nzn_.o —“—n_,ﬁ = 0 3.7

uniformly for T 2 0, then the trivial solution of (3.4) is asymptot-

ically stable.

? Theorems of this type, of which there exist many, are frequently re-
ferred to as Poincaré-Liapunov stability theorems. The reader is
referred to Struble (4] and Bellman [5] for discussions.

7
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Proof. Any solution of (3.4) satisfies the following integral

equation
7
2 =Yg+ | Y- (B)z(e) + £igle), 9} ds  (3.8)
0
where }: () denotes the principal matrix solution of (3. 5) and < is
an initial vector. The hyputhesis 1) implies that
hxmll s ¢, e (3.9)
where < and & are positive constants. From (3.9) and (3. 8) we

obtain

el < ¢, ligle™®T + ¢, j: ™2 (B o)l Nl + g s o), oMl } an

or equivalently,

T .
el ¥ s ¢ lich + ¢ '[o [llE(-)\\ Nz ()l + £ (z(s), 0)||J e*® ds.
(3.10)
Now, the nonlinearity condition (3. 7) implies that there exists a

positive number 8 such that
£z, il s f:—i el

for ||zl <6 andforall v > 0. Suppose |icll < 8/c,. Then, in view
of the continuity of £, “5(!)“ < § for some interval 0 < 3 £ 7, and

from (3. 10) we find




T
ar < rlleil + p £ rnglg\HJ- g—--l “v.(g)ll ea'd_g .11
1 by Jo L~ ZC’.J "~ B ‘

lie ()]l &

on this interval. Application of Gronwall's lemma [4] to (3. 11) yields

) T
“’5(1‘) | 27 < c, |l£|| expL e, j. |\§ ()il + ';::— ] dr
0 1

Utilining hypothesis 2) and multiplying both sides by e”7 V¢ obtain

. M _
ls ()l = c llgie? o-@/2T (3.12)

) oM
Thus, if “2 | further satisfies ||£|| < O/cle ,» then the equality

(3.12) will hold for all 7 2 0 and the theorem is proved.

St e 0

Ll o hm gecenl)

ciaid

i

Coime il

i
2
E:
a4




4, Analysis

‘% - Basic Equations.

It will be convenient , as in [1], to nondimensionalize equations

(2. 1) to (2. 5) by introducing the new variables

£=-'-'-L§,‘r=wt

o
" Wo {4.1)
"k o Mtk
where },
- - " .E.I.‘.u' i
o -l:r P'.h :

and k is the cross-sectional radius of gyration. With use of 4.1),

equations (2.1) to (2. 5) reduce to

an
g 3 M=) - 21r agﬂj [ ae ('S';g)a]d‘”’%g‘“%:'}"q“"_"
(4.2)

where
NS i
W =g smEHM . 9 cER(F) '
(4.3)
y = —B—
p hw
[ ] (o]
In addition, we have
n, = esinf , e = -v-volk ’ (4. 4) )
a? ot
n¢o, 7) = 5-6-?<o.,ﬂ = nim, 1) = -a—é‘(m'r) =0 , (4.5
. an .
N, 0 = g6 . 30 = g (4.6) |
10
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where 8 = Gi/k’ i=1,2.

An exact solution of equation (4. 2), satisfying the boundary

conditions (4.5) termwise, is

N
N, 1) = esin§g + T a (7)sinnf 4.7
n=]
where the coefficients a_ () are solutions of the following system

of ordinary differential equations:

d"x 1 N 3.8
e AN A DL AR R
o (4. 8)
a da N
T E et (2w o et 0
n=1

m=2,3,...,N

To avoid the question of convergence, we shall agsume that

the number N in (4. 7) and (4. 8) is finite. This, of course, restricts
the class of disturbances that the arch may experience. In particular,
(4. 7) constitutes an exact solution only if g, and g, can be expressed
in the form

N da

N .
L) =T ar)emng . g ) - z o )einng. (4.9
= n=

The initial conditions to (4. 8) are the Fourier coefficients

dan (r ) Pﬂ'

ar = ;Jo "(ﬁ) sin n{d{. (4. 10)

N

2 o" '
a r) =3 Jo 8, (§) sinnfdf ,
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From a physical point of view, the above finite N restriction is not
considered to be overly important.

Symmetric Motion and Symmetric Snap-through.

Under the assumption that gi(;) 0, i=1, 2, the response of
the arch is purely symmetric, i.e., an 0, n=2,3,..., N and ‘:.

is governed by

a? a da, \
—— —_ 2 3 =
ars + ¥ 3r + a + 2 (2e0,1+ 8, )(al+ e) = -qu(r) ,
dal (0) (4.11)
‘1(0) = dT - 0 .
Now, let L denote the equilibrium position(s) the arch
assumes if q is applied statically. Then, a, satisfien
i 3 . =
ae+4(2eae+a1)(ae+e)4q‘-0 . (4. 12)

For q < (61).’ and for e > 2, there exist three real roots of the
cubic (4. 12) which, in turn, define three equilibrium positions cf the
arch. For q > (‘qL ).. there exists only one real root and hence only
one equilibrium position (the inside-out position of the arch). The
number (E‘ )’ is the classical static, symmetric, snap-through-load.
Let us assume that q < (EI )8. and let us introduce the trans-.

formation

Y ]
a (7) =a - a’(r) (4.13)
where :1 = max a_, i.e., the unsnapped, symmetric equilibrium

osition.
P 12
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3 A ' By virtue of (4. 11), al‘o) (1) satisfies i
d‘ul‘o) dax(o) (0) - ;
-t Y + 3(0,1 ;‘1) =0 , {4. 148)
0
(0)(0) =32 dal( ) -

a =a ar (0) = 0 (4. 14b)
f where ;
E © .1 (0 =3 2 () (0)® ]
| 3 = ‘x +Z{": [601‘14» 3;1 + ZeJ-nl L3(‘;‘1+e)_]+ '1 } §
; (4. 14¢) g
L
In terms of the new variable al(o), the equilibrium positions ae g

' are the critical points of (4.14), i.e., da %/ar = 0, &{¥- (%, ]

i=1, 2,3, where the (a;‘o))i are defined by 3 (al(o); 11) = 0 and

r ' (0) (0) (0) (0) 2

ordered such that (l.1 )x < (au1 )' < (a1 )a. The point (a )1 is :

E the origin l’.‘o) % 0 and corresponds to the unsnapped configuration ;
; of the arch; the point (.1(0))3 is the inverted arch position. j
' By
"
! Consider next the phase plane: dl(o)/d‘r vs. al(o). In the 3
i‘ (0) 3

is

(0)
1

phase plane it can be shown that (al is a center point, (l1

)8
8 saddle point, and (az.w)),i' another center point. If q_‘. (i. e., the initial

data (4.14b)) is such that the trajectories in the phase planc encompass

(0)

the saddle point (a.1 )a' we shall say (see [8]) that dyraniic, sym-

metric, snap-through has occurred. On the other hand, if all

13
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the saddle point, we shall say that dynamic, symmetric, snap-through
a3 not occurred. The value of q leading to a trajectory which inter-
secis the saddle point represents the transition between snapped and
unsnapped av-hes; we shall denote this value as (qi*)' .

In addition to the agssumption that q1 < (ql)', let us assume q‘
is less than that required to cause dynamic, symmetric, snap-through,i.e.,
q,< (q*).. Then, for ¥> 0, the trajectories inthe phase plane spiraltoward the
origin. Thus, for a given q, and ¥, and for any ¢ > 0, there exists a num-
ber T (€:q ) such that la %% )| + | da97ar(T )< ¢ foran
T2 To. Further, since the nonlinear portion, nJ, of the function &

satisfies the nonlinearity condition

lim In3l _
0 = »
12/ %=0 12

a well-known comparison theorem [4] indicates that

12/%n)] < 8 DT | p-const. (4.15)
for sufficiently small ¢, or for sufficiently large To' From (4.15),
(0)

we therefore conclude that a (r) is impulsively smallas T = =,

[- -]

0
Io l‘:.( )(‘r)l dr < M = const. (4.16)
We shall make use of this fact later.

14
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Definition of Dynamic Snap-through

The concept of dynamic snap-through has been mentioned in

i connection with the purely symmetric motion. In order to avoid a L,
E vague discussion, we must attempt to pin down this illusive butterfly '{
g for asymmetric as well as symmetric motions. The following defini- :
|
: tion will suffice for purposes of the present analysis:
Definition.? Let us perturb the symmetric motion acc ording to i
- 3
s =5 - a0+ arin 3
, (4.17) 1
| 2 (r) = a *(1) m=23,..., N ]
m m ’ ’ 3 ’ 3
3.

Next, let us assume that q, is given. We shall say that snap-through,

under load q. has not occurred if there exists a 8 > 0 such that :

g

) {la o)l + laa*/drir )|} < 8 implies max [5, -2 (r]< (a(°))
n=1 0<r<en a

for any constant 'ro (recall that (a:.(o,)a is the inside-out equilibrium

position). Conversely, we shall say that snap-through has occurred if i

there exists at least one set of initial data such that ‘ '
(0) 1

max [a - a (r)] = (a ) for arbitrary small 8.

0<r<e

ST T R R ST T T TR I L ey e

Local Stability of Symmetric Motion.

-

Let us now investigate the local stability of the symmetric motion

. 3 This definition is compatible with the snap-through concepts employed
in both [1] and [2].

TR RN NS YT L o

15

3 - oA R — s - e g4 s e TR . - CEEEW e arm s e e




——

(0)
a (T) with respect to all possible symmetric and asymmetric motions

resulting from the disturbance (4.10). To accomplish this we perturb

1‘ Y(*) according to (4.17). Upon substitution of (4. 17) into (4. B) one

finds that the perturbations arr;“ satiafy the following system of

equations:
d*a* da
1 1

ars T Y ar

* 17, = -3 3\"
[1+4\6ea1+ 3..1 + 2e )J

3a*a(0)(r) . 3a%? 3 %
+ —= ['1(0)(" -2 + e)J + @, + (0)(1-)
a*® (E +e) N ‘°’(r) (4. 18a)
+: + "4 I nfa ¥ o T pia
n=2 n=2 n
"x* N
tT T ﬂ'nn"‘3 =0 ,
n-2
d*a * da am? (0)(1-)m
e O L war ey M= Wil Y
- 2(';1+ e)]
3 _ 2 2 (4.18b)
+ "ZL nn_’:al*(al+ e) - mT"r:‘x(O)(ﬂ + B-;—‘an;"a.:
-] N [
41“;-an;‘z n® n;"a-o , m=2,...,N
n=2

16
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With the substitutions

0
da
(4.19)
zi=a’(°'i/z) , iz 2, 4,6, , 2N

equations (4.18) can be reduced to the following 2N system of first

order nonlinear differential equations:

d

= Az + B(r)z + f(z. T) . (4. 20)

l

[= 3

T

Here x denotes & 2N-dimensional vector whose elements, e, are
defined by (4.19); A isa 2N x 2N constant matrix, the form of

which is not pertinent to our discussion; B(?) isa 2N x 2N matrix

having the form
Bn = o Pm[am .2 - 0]c (4.21)

where C is a 2N x 2N constant matrix. The 2N-dimensional
vector f in (4.20) consists of autonomous (say _5(1)) and nonauton-

(a)) parts. Writing f = fm + f‘a) we have:

At L

omous (say £
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zaa z: (a + etz ) N -
-fx(l) = (a8 + e) + T + I L n Z 0
n=2
..fi(l) =0, i=2, 4, 6, , 2N, (4. 22a)
3 F @ N
m - m 2 m_ a 2
-fi(1)=-é—zsz=m(a1+e)+—4—- azam+ y zamnz_:zn Ly
i=3,5, , 2N- (i+1)/2
(T) N
3 3, 3
fx() = [3z - ? n 'an]
fi(‘) =0 , i=even (4. 22b)
3
(9 = g pa 1(0)(1') . 1=3,57...,2N-1 ;

= (1+1)/2

Let us now assume that q, < (:;;)., qz < (q_**).. Then, by

virtue of (4. 16), we conclude that

Flsmiar <M = const. (4. 23)
0

Further, noting that ul(o)('r) is a bounded function of 7, and (from
(4. 22)) that the elements of { are polynomials in L with no linear
terms, it is evident that

um g/ el =0 . (4. 24)

ligll=0

Applying now the comparison theorem of Section 3, we conclude that

18
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z =0 {the symmetric motion) is asymptotically stable provided the

origin of

|on
li
>

N

(4. 25a)

a
-3

is asymptotically stable.
In terms of the original system of N second-order equations,

(4. 25a) can be written

daal* dal* . ) . .
?;5—+y ar +a1 [1+:{(6ea1+3&1 + 2¢ )]=0 ,

(4. 25b)

One recognizes (4. 25b) as the classical perturbation equations for the
statically loaded arch [1, 6, 7]. Traditionally, the critical static snap-
through load, '61 , is based on such equations. In particular, if ¥y = 0,
'q'1 corresponds to the transition between bounded and unbounded
solutions of (4.25). If ¥ > 0, and q < 'il, all solutions of (4.25)
decay exponentially to zero. Thus, by definition of H‘ y if q < 31

and .7 > 0, the origin of (4. 25) is asymptotically stable. We thus

conclude that the origin of (4.20) is also asymptotically stable if

% < q.q<(q).qc<Ig?).

19
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Local Stability and Snap-through.

Consider now the foregoing result in terms of snap-through.
Local asymptotic stability implies that, under sufficiently small distur-
bances, all motions of the arch can be maintained within an arbitrarily
small neighvorhood of the symmetric motion. To be more precise, we
have the following: if ¥ > 0 and q, satisfies i) q < (Ex)s’ ii)
q < (q1*)s’ iii) q < El, then for any € > 0, there exists a § > 0
(depending in gereral on T Y q:l and the arch geometry) such that
Hz(t)l < ¢ forall 7 > T provided “z('ro)H < §. Thus, under such
conditions asymmetric snap-through, as defined previously, is not
possible. One therefore concludes that, if ¥ > 0 and q lies in the
region defined by i), ii), iii) above, then for sufficiently small distur-
bances snap-through will not occur. On the other hand, if q > (qx*).'
it is evident that symmetric snap-through will take place. Further, the
analysis of Huang and Nachbar [2] implies there exists a set of initial
sonditions (resulting in an excitation of only two modes, i.e., for ¢ = 0,
"ri(xO) = dam(o)/dr = 0 for m > 2) such that snap-through takes place
for an arbitrarily small initial disturbance if q > ?I; and ¥ > 0.
Therefore the stabdbility boundary for infinitesimal disturbances must be
a curve consisting of dynamic, symmetric snap-through up to its inter-
section with ql"‘/q1 = 1.0 and q = 1.0 beyond. Finally, it is evident
that this curve alsc constitutes an upper bound on stability for distur-

bances of finite amplitude.
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The foregoing curve is illustrated in Fig. 2 as ¥y - 0%, and for

1 damping in h

(Lock's case). The slight disagreement with Lock's numerical results is
attributed to the size of the initial conditions employed in that analysis,
i.e., presumably the simaller the initial data, the better the agreement
would be. The symmetric snap-through portion of the curves exhibited
in Fig. 2 was obtained from data supplied by Lock for ¥ # 0 (numerical
integration of the differential equation (4. 11) is necessary in y #0.)

An exact relation for (q:‘)‘ vs. e canbe obtained for ¥ = 0%, e.g.,
from (2]. In the latter case a combination of Eqs. (32), (35) and (48)

of (2] yield the following relations for the snap-through boundary

(dotted lines of Fig. 2) when y = 0*:

(i) es /22 = 4.68:

ot (/2D L9+ %)+ (- 3) (6 - 677 ]
- 2 . (4. 26a)

e, 2 & /s
3t /3T - 1)

1

(ii) 4.68 s e < 6.38:

2 2
a* (/2N [e(9+5) + (5-3) (e - 6)/°]
2. 2 z (4. 26b)
g L4 3(E . g/ o
2 4
(iii) e 2 6.38;
ql*/q‘ =1 . (4. 26¢)




5. Concluding Remarks

As an exampie of a siruciure exhibiiing a pasiicular scusiiiviiy
to damping, the snapping of a simply -supparted, geometrically perfect
sinusoidal arch, subjected to a sinusoidal spatial pressure distribution
applied as a step in time, was considered. It was found that, in the
presence of velocity-dependent damping of any magnitude (> 0), and under
sufficiently small disturbances (taking the form of initial arch displace-
ments and velocities), there exists no difference between dynamic and
static snap-through pressures for sufficiently large arch rises. For in-
finitesimal di-turbancel- the snap-through boundary is a curve in a load
va. arch rise plane defined by symmetric snap up to its intersection with
the static snap-load, and the static value thereafter. For finite distur-
bances this represents an upper bound on this load. Said curve is illus-
trated in Fig. 2 for vanishingly small damping. Upon comparison with
the purely elastic case of Lock [1], (Fig. 3), one observes a jump in the
snap-boundary with respect to damping.

A similar analysis as has been conducted here can be applied to
other structures. In particular, an analysis of geometrically perfect
rings and cylinders under spatially uniform loading applied as a step in
time will yield the result that, under sufficiently small disturbances,
there exists no difference between statically and dynamically applied
buckling loads if damping is present.

Finally, we close on an interesting note. Suppose the foregoing

22




load were applied as an impulse rather than a step; then 5,'1 = 0. In
this case (4. 20) is asymptotically stabie for all q - Therefore, one
cwicludes that, in the presence of damping, and under sufficiently small ]
disturbances, only symmetric snapping is possible. In the case of the

ring and cylinder mentioned previously, no dynamic buckling whatscever

would regult. The physical explanation of this is as follows: in the Y
presence of damping a sufficiently small disturbance is damped out
before it can initiate a ''mode conversion" (by virtue of parametric 5
resonance) which results in a buckling phenomena. The foregoing |
examples indicate that the magnitude of both disturbances and damping * _

¢« are important for near perfect structures under certain transient loadings.
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