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A SHALLOW ARCH UNDER A STEP PRESSURE LOAD'
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ABSTRACT

The snapping of a simply-supported shallow sinusoidal arch

under a sinusoldally distributed step pressure load is considered.

In the presence of velocity-depend.nt damping of any nonsero magni-"

tude, it is shown that there exists no difference between static and

dynamic snap loads for arch rises above a certain magnitude and for

sufficiently small external disturbances. Below the foregoing value

of arch rise snapping is governed entirely by symmetric snap-through.

The results obtained herein, when compared to an existing analysis on

the subject, imply that a jump in the critical snap-through load occurs

at the boundary between the damped and undamped systems. Similar :

results concerning cylinders and rings are mentioned.
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I. Introduction

In several recent theoretical investigations concerning the

dynamic stability of elastic shell-type structures subjected to trans-

tent loads, it has been found that stability boundaries corresponding 3

to undamped %nd slightly damped mathematical structural models

differ markedly. For example, Loci: C I], who considered the snap-

ping of a geometrically perfect sinusoidal arch under a time-step

pressure load, found a dramatic dynamic influence on snap-through

for the undamped arch and certain arch rises; on the other hand, his

analysis of the same problem assuming a small amount of velocity-

dependent damping indicates little or no difference between static and

dynamic snap loads in some of the same arch-rise regions. Similar

results were observed by Huang and Nachbar [2], who investigated

the geometrically imperfect sinusoidal arch with and without material

damping of the viscoelastic type. Further information is to be found

in a paper by Bieniek, Fan, and Lackman [3], who considered the

dynamic stability of a geometrically perfect cylindrical shell under a

spatially uniform lateral pressure, applied as a step and ramp-step

in time. There it was found that an undamped analysis predicted a

significant dynamic effect; the authors, "remark", however, that a

small amount of material damping resulted in the same stability

boundary for both the dynamically and statically applied loads.

1t
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II

The foregoing investigations indicate the importance of in-

cluding proper damping mechanisms in a stability analysis involving

transiently applied loads. Further, they raise some serious doubts

as to the validity (without proper interpretation) of a non-dissipative

ann!yri- under such loading ronnditions. It appears, in fact, that for

a certain class of stability problems a jump condition exists in the

stability boundary with respect to the damping coefficient, say y, at

v=O.

In this paper we discuss the role of damping in stability problems

of the type [1 - 3). The sinusoidal arch problem of (1) is employed as

the vehicle for discussion. This, however, is a matter of convenience.

Similar analyses and conclusions, as will be made here, can be made

for other geometries and damping mechanisms (e. g., cylinders, spher-

ical caps; viscoelasticity, etc. ). It was thought, however, that a

specific example would better serve the goal of this article than would

a gemral and perhaps undiscernible analysis. Tho extension of the

concepts put forth here to other systems is considered to be more or

less obvious.
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2. Formulation

We consider a shallow, simply supported sinusoidal arch (Fig. 1),

which is governed by the following nonlinear differential equation of

motion:

a4 a8w Lw waX'&-z (W-Wo)- - - p(x, tp (2.1)

where

L a ~~aw
P L 0 ax ~ a- d

Here w (x) represents the initial unstressed position of the arch mid-
0

surface and w(x) is the displacement of said midsurface due to the

load p(z, t); both wo(x) and w(x) are measured from the line u 0

(Fig. 1). The quantities P , h, E, I, A, L denote arch density, thick-

ness, Yo•u•'s moduh s, second moment of area of the arch cross

section, cross-sectional area, and length respectively. The term

multiplying the constant p is representative of velocity-dependent

damping. The coordinate z is illustrated in Fig. 1; t represents

time. The notation is that of C I .

In addition to (2. 1) we have, for the simply supported sinusoidal

arch, the following initial shape and boundary conditions, respectively:

w = sin - (w = const. ) , (2.2)
0 L o

w (0, t) (0, t) w(L, t) = " (L, t) 0 • (2.3)

3



In the sequel the load. P(x, t). is assumed to be of the form

p(x. t) p- mslnE) H(t) (2.4)

where H (t) denotes the Heavilside step function.

The following initial conditions are specified along with

equations (2. 1) to (2.4) :

w X. t)- G W A "(x, t) - Gs(x) . (2.5)

Equations (2. 5) can be physically envisioned as the result of a dim-

turbance which terminates at th# time t = to.

Consider now Figs. 2, 3. In [I] Lock, utilising the foregoing

equations of motion, boundary conditions, and loading function, and

by virtue of a numerical integration of the governing equations (follow-

ing their reduction to two ordinary differential equations by an approx-

imate two-term modal analysis), found the locus of the encircled

points of Fig. 2 to be the snap-through boundary1 with a small value

of the damping coefficient, y, and a small disturbance (initial con-

ditions, (2.5)) of a certain type. (In Fig. 2, e denotes a nondimen-

sional arch rise; is the nondimensional load amplitude at which

snap-through occurs if p2 is applied statically; q* is the nondimen-

sional load amplitude leading to snap-through when p1 is applied as

SThe concept of dynamic snap-through is defined mathematically in §4.
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a step in time: thus is the ratio of dynamiL to static snap

ioads). in particular, note that little or no dtiterence between stat-

ically and dynamically applied loads is apparent for sufficiently large E

arch rises.

In this paper we show that, subject to sufficiently small die-

turbances of a reasonably general class, the snap-through boundary for

> 0 is a curve in the q%*/I vs. e-plane (Fig. 2) which is defined

by symmetric snap-through up to the intersection with the line

q•*/ % = 1, and ql*/T a1 thereafter. This curve is illustrated in
Fig. 2 for y -, 0+. and also for y corresponding to Lock Is I percent

critical damping. ' Upon comparing the y = 0+ case with the V - 0

example of Lock (Fig. 3), one observes a jump in the snap-through

boundary at y = 0.

In contract to [13, the analysis of this paper does not rely upon

numerical method@, but upon a rigorous stability analysis incorporating

the full nonlinear equations of motion. In this respect the work contained

heroin should complement [I].

I
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In this section we collect a few elementary mathematical tools

which will be of use in the ensuing analysis.

Norms

Let the norm, Ilz 1, of an n-dimensional vector z be defined as
n

zIi Iz il (3.1)
1= 1

where z denote the elements of z. Further, let the norm, JIBI, of

any square (n x n) matrix B be defined as

1=1J lb 1I (3.3Z)

j~l

where b are the-elements of B.
ii

Local Stability

Let z 4 0 be a solution of the following system of ordinary

differential equations:

de
Q1 (£ .. (3.3)

Here a is an n-dimensional vector and g is an n-dimensional vector-

valued function. We shall say that z a 0 is (locally) asymptotically

stable (in the sense of Liapunov) if 1) for each t > 0 there exists a

8, depending only on ( and a constant r, such that lla(vr)ll < c for

all r a rprovided Ila (r )JI < 8, and 2) Ila (1.)lI 0 as r
0l 0 ow

-• -.... --- ,.. . ..



Comparison Theorem

The following comparison theorems will aid our discussion:

Theorem: Let z m 0 bv a solution of

d(

where z is an n-dimensional vector, A is a constant n X n matrix

whose elements depend continuously on r, and f denotes a contin-

tuous n-dimensional vector valued function of s and r. (It will be

assumed that f is a nonlinear function of x, any linear terms being

included in A or B.) Now, if 1) the trivial solution of

A (3.5)
dr =

is asymptotically stable, 2) B (r) is impulsively small, i. e.,

JIlB (r)II dr < M (3.6)

where M is a positive constant, and 3) the function f(z,?) satisfies

the nonlinearity condition 4

L= 
(3.7)

uniformly for r" k 0, then the trivial solution of (3.4) is asymptot-

ically stable.

Theorems of this type, of which there exist many, are frequently re-
ferred to an Poincarg-Liapunov stability theorems. The reader is
referred to $truble [4) and Bellman (5J for discussions.
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Proof. Any solution of (3.4) satisfies the following integral

equation

z(T) ; Y(t)c + Y (r - s) (B(s) z(s) + jim(s). s) ) do (3.8)

where Y (,r) denotes the principal matrix solution of (3. 5) and c is

an initial vector. The hyp.,chesis 1) implies that

Ily vorlt % cl ea• (3.9)

where c and a are positive constants. From (3. 9) and (3. 8) we1

obtain

) cl -olrle7 + cS I j( e (s)s) + 1t IlL (a), .)11 do

or equivalently,

elr e. C 11+Cýi. + [C .,11 Ba.) ,,(s) + If ,! (a), sl) J a do .

(3. 10)

Now, the nonlinearity condition (3. 7) implies that there exists a

positive number 6 such that

2.I

for Jjall < 8 and for all T t 0. Suppose 11,ell < 8/c,. Then, in view

of the continuity of f, jlz(s)jj < 6 for some interval 0 1 o T r. and

from (3. 10) we find

8



.. . .L "..- - 2c I-

on this interval. Application of Gronwall's lemma [4) to (3. 11) yields

s .) ,r C C 1, I ce Ix [S, IJB (a 1 + ~I d r

Utilining hypothesis 2) and multiplying both sides by eCi" we obtain

I1 -~ ( v) I • c1  I cli o •CM e (a / z )r (3 . 1 2)

CII.h e iM Ihe th (qualit
Thus, if , ll further 'satisfies II.il < 6/c c, thenthe equality

1.1(3. 12) will hold for all r 0 and the theorem is proved.

9.i
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4. Analysis

Basic Eguations.

It will be convenient, am in L1), to nondimensionalize equations

(2. 1) to (2. 5) by introducing the new variables

0w (4.1l)

k ok

whe re

vsi El 4"~L /a
O T- 7h/

and k it the crose-eectional radius of gyration. With use of (4. 1).

equations (2. 1) to (2. S) reduce to

M 7 11[.~l ("'O)"]dt+Yinf +
(4.2)

whe re

P1

(4.3)

In addition, we have

7o0 eeini , ea 0 /k (4.4)

1(0, r) Or-(or) ip(w,rJ = ,(I,) = 0 , (4.5)

1)(C, 0) = ((C) , - 0) g I (4) , (4.6)

10
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where gi = G./k, i = 1,2.

I. An exact solution of equation (4. 2), satisfying the boundary

conditions (4.5) termwise, is

N
(a r = •sin• + E a% (T) sinn4 (4.7)

n= 1

where the coefficients an (,r) are solutions of the following system

of ordinary differential equations:

-drr r.~1 (el + N (a 4) q (r
n= 1

(4.8)
d'e da N=2 + n a r (e •n+) Ze'al +

n=i

M = 2p 3,...N i
To avoid the question of convergence, we shall assume that

the number N in (4. 7) and (4. 8) i finite. This, of course, restricts

the class of disturbances that the arch may experience. In particular, 4

(4. 7) constitutes an exact solution only if and g can be expressed
a

in the form

N N da
E (•) = a a. (r) sin n g g,(4) = s r"o"4. (.9)

n=: In 1 di"

SThe initial conditions to (4. 8) are the Fourier coefficients

2 da 0) Vý(T go :• (4) ain nt dt 1. _
a ( d-" - so 0 (1sin nt d. (4. 10)

0 0



I
From a physical point of view, the above finite N restriction is not

considered to be overly important.

Symmetric Motion and Symmetric Snap-through.

Under the assumption that g.(•) = 0, i = 1, 2, the response of

the arch is purely symmetric, i.e., a n O, n = 2, 3, ... , N and an I

is governed by

do a d a Id1 + - + a + (Zea + a )(a = -qeH(")

da 1(0) (4. 11)

Now, let a denote the equilibrium posltion(s) the arch

assumes if q, is applied statically. Then, a satisfiese

a + (Zea + a )(a + e) +4 o = 0 (4.12)

For a, < (",) *' and for a > 2, there exist three real roots of the

cubic (4. 12) which, in turn, define three equilibrium positions of the

arch. For q, > (O)k there exists only one real root and hence only

one equilibrium position (the inside-out position of the arch). The

number (i )s is the classical static, symmetric, snap-through-load.

Let us assume that q, < (3).# and let us introduce the trans-

formation

a (I) = - a 0 () (4.13)

whe re i I max a , i.e., the unsnapped, symmetric equilibrium

"1position.2



By virtue of (4. 11), a(0) (r) satisfies

(()1e ( v0)+~( dO~
+ 1 (a(0 1 (4. 14a)

a (O(o0) =d ' (0) (0) 0 (4. 14b)

where

a+ 0 6 + 3'a+ 2e2 O) Ma a ao

(4. 140)

In terms of the new variable a, the equilibrium positions a

are the critical points of (4.14), L e., dz/ d" = O, a jO) 0))i,

i 1, 2, 3, where the (a (0) are defined by 3(a (); :)= 0 and

ordered such that (a~~ ((0)a( 0 The point (& (),i

the origin a (0) a 0 and corresponds to the unsnapped configuration

of the arch; the point (a2 (0) is the inverted arch position.()(0). A7th

Consider next the phase plane: da(O)/dr vs. a In the

(0)()
phase plane it can be shown that (a)- is a center point, (a ) is

a saddle point, and (a(0)) is another center point. If q, (i. e., the initial

data (4. 14b)) is such that the trajectories in the phase plane encompass

the saddle point (a we shall say (see £83) that dynanaic, sym- 2
a4

metric, snap-through has occurred. On the other hand, if all

13



I
the saddle point, wve shall say that dynamic, symmetric, snap-through

i:.,3 not occurred. The value of qJ leading to a trajectory which inter-

sects the saddle point represents the transition between snapped and

unsnapped ar,-hes; we shall denote this value as (q*)

In addition to the assumption that % < (Qe let us assume q'

is less than that required to cause dynamic, symmetric, snap-through, i. e.,

S< (q*),. Then, for y> 0, the trajectories in the phase plane spiral toward the5

origin. Thus, for a given q, and y, and for any ( > 0, there exists a nurr-

ber To(c;q1 ) suchthat Ia( 0I(T 0 )1 + t da(O)/dr (T) 0 c for all

r 2 T . Further, since the nonlinear portion, n3, of the function 3
0

satisfies the nonlinearity condition

llm r 3

Ia° 0)1-'o la1O)I ()

a well-known comparison theorem £4] indicates that

I a((0)(r) I e (y/2)r , : const. (4.15)

for sufficiently small e, or for sufficiently large T . From (4. 15),

we therefore conclude that a 1(0) (r") is impulsively small as r" - ,

i. e. ,

a 1(°) (r)1 I = one.t. (4.16
"0

We shall e ake use of this fact later.

14o 1
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Definition of Dynamic Snap-through

The concept of dynamic snap-through has been mentioned in

connection with the purely symmetric motion. In order to avoid a

vague discussion, we must attempt to pin down this illusive butterfly

for asymmetric as well as symmetric motions. The following defini-

tion will suffice for purposes of the present analysis:

Definition . 3  Let us perturb the symmetric motion according to

a(7) = - L( 0 ) ~+a r
(4.17)

a (r) = a ) m=2, 3b .,N.M M.

Next, let us assume that % is given. We shall say that snap-through,

under load %], has not occurred if there exists a 6 > 0 such that

F N
n=, ([an(5"°)I + Ida*/d(r°)l} < 8 implies max [K -a (r)J < (a(0))

for any constant r"0 (recall that (a (0))a is the inside-out equilibrium

position). Conversely, we shall say that snap-through has occurred if

there exists at least one set of initial data such that

max -a())k (a )for arbitrary small 8.
0<rm

Local Stability of Symmetric Motion.

Let us now investigate the local stability of the symmetric motion

s This definition is compatible with the snap-through concepts employed
in both 1i] and £2].

S~15



a1 (T.) with respect to all possible symmetric and asymmetric motions

resulting from the disturbance (4. 10). To accomplish this we perturb

a (0) (,r) according to (4. 17). Upon substitution of (4.17) into (4.8) one1

finds that the perturbations a * satisfy the following system of

equations:

dea* da *

* +[I + +L ' + 3V1  + 2.a

3 a *a (0)(r") 3a* 3a*
+ (0)3(,,.,[.) 2 -(,+ e)j + C +(0)("

+ 1 (U' + e) N a (o)(•.) N (4.18a)

+..L. + . E naa * 8 -2 L E no a44n 4 n~a

n=2 n=2

a* N
4n=2 n

d~a* da* M2am (0)md=M --d + a [rn'+ ML ++ + I4)(0)

+ 1fa*a +a) a*a (0) M( + 2_AL *86, (4. 18b)+ -a"a"(a+ e).-a 1 (y)+-a a
4m4 m n2

"4 -" N n a 0 , m: 2,...,.

16
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With the substitutions

dalýi+l)/2_
(IiI=,d 2 i = 1, 3, 5 ... , ZN-I

(4. 19)

z. a , i = 2, 4, 6.... 2N

equations (4. 18) can be reduced to the following 2N system of first

order nonlinear differential equations:

da = Ax + B('r) f (z, r) . (4.20)
dr

Here x denotes a ZN-dimensional vector whose element@, s1, are

defined by (4.19); A is ZN X 2N constant matrix, the form ofa

which is not pertinent to our discussion; B ('r) is a 2N X 2N matrix

having the form

B(• 2 1111 a o1•) ( - C (4.21I)

where C ts a 2N x 2N constant matrix. The 2N-dimensional

vector f in (4. 20) consists of autonomous (say f(1)) and nonauton-

omous (say ( ) parts. Writing f = f + f we have:

17



3z za + 1 + e +z) N
f() + e) + - + nz
1 4 n=2

f 0, i =2, 4, 6, ... , ZN (4.22a)
i

(1) ma a ma + m N a
01) z z (5? + e) + - :n M 1 M 7 2 = M

if 1 a 4z a am 4 amea

n=2

i =3,5,7,..... N-l; m = (i+ 1)/Z

(0))

11 ('°a) (3 ) 1 N

f(a) : 0 , i : even (4. 22b)

m * a(0) (i) i I: 3,5.,7,...,2N-l

2 amna I
m (i+1)/2

Let us now assume that < (q), ql < (c.x*)' Then, by

virtue of (4. 16), we conclude that

Jr 1BrII) 1 dr < M, cone t. (4. 23)
0

Further, noting that a (0)(1) is a bounded function of r', and (from2.

(4. 22)) that the elements of f are polynomials in a with no linear

terms, it is evident that

li, IlL il / 1Is;)I = 0 (4. 24)

Applying now the comparison theorem of Section 3, we conclude that

18



z 0 (the symmetric motion) is asymptotically stable provided the

origin of

dz

- Ayz (4. 25a)

it asymptotically stable.

In terms of the original system of N second-order equations,

(4. 25a) can be written

d2a* dal*

da+ + (6!a* + 3.V + 2 )] (

+ -Y Mm + m + ma * ~ 0
77- Vdr

m= 2, 3,... N.

One recognizes (4. 25b) as the classical perturbation equations for the

statically loaded arch [1, 6, 7). Traditionally, the critical static snap-

through load, i, is based on such equations. In particular, if y ' 0,

q, corresponds to the transition between bounded and unbounded

solutions of (4. 25). If y > 0, and q < all solutions of (4. 25)

decay exponentially to zero. Thus, by definition of , if q .

and y > 0, the origin of (4. 25) is asymptotically stable. We thus

conclude that the origin of (4. 20) is also asymptotically stable if

< 'q < (q)s' q, < (q" 19

19



Local Stability and Snap-through.

Consider now the foreRoing result in terms of snap-throuah.

Local asymptotic stability implies that, under sufficiently small distur-

bances, all motions of the arch can be maintained within an arbitrarily

small neighborhood of the symmetric motion. To be more precise, we

have the following: if Y > 0 and q, satisfies i) % < (s)s' ii)

< (ql)s' iii) % < q 1 , then for any ( > 0, there exists a 6 > 0

(depending in gereral on ro 0 , and the arch geometry) such that

aM1(t)1l < ( for all r" 1 r provided ICz(r )II < 6. Thus, under such

conditions asymmetric snap-through, as defined previously, is not

possible. One therefore concludes that, if y > 0 and % lies in the

region defined by i), ii), iii) above, then for sufficiently small distur-

bances snap-through will not occur. On the other hand, if > (q, *)

it is evident that symmetric snap-through will take place. Further, the

analysis of Huang and Nachbar [2) implies there exists a set of initial

;onditions (resulting in an excitation of only two modes, i. e., for 'r = O,

a 0 da (0)/ d = 0 for m > 2) such that snap-through takes placem m

for an arbitrarily small initial disturbance if q,> and y > 0.

Therefore the stability boundary for infinitesimal disturbances must be

a curve consisting of dynamic, symmetric snap-through up to its inter-

section with q*/q = 1.0 and = 1.0 beyond. Finally, it is evident

thtt this curve also constitutes an upper bound on stability for distur-

bances of finite amplitude.

20



The foregoing curve is illustrated in Fig. 2 as y - 0+, and for

(Lock's case). The slight disagreement with Lock's numerical results is

attributed to the size of the initial conditions employed in that analysis,

i.. e., presumably the smaller the initial data, the better the agreement

would be. The symmetric snap-through portion of the curves exhibited

in Fig. 2 was obtained from data supplied by Lock for y ý 0 (numerical

integration of the differential equation (4. 11) is necessary if Y 0 0.)

An exact relation for (q"' vs. e can be obtained for y = 0+, e. g.

from [2]. In the latter case a combination of Eqs. (32), (35) and (48)

of [2] yield the following relations for the snap-through boundary

(dotted lines of Fig. 2) when y =0+:

(i) S /M : = 4.68:

05* (1/27) [e(9 + T ) + ( 3) (ea - 6)ý1/a
""+ + , (4. 26a)

(it) 4.68 ' e S 6.38:

q%* (1/27) [e(9+ !-) + -3) (ea - 6)1/2]

) (4.26b)I•" •e + 3( - 4)/

2 4

(iii) e a 6.38:

ql*/q . (4. 26c)

ILI 1



5. Concluding Remarks

As an example ui a sLructLure ext1IULCL11 a P4LA1L;UI4- buCtki.LViLy

to damping, the snapping of a simply-,uppnrted, geometrically perfect

sinusoidal arch, subjected to a sinusoidal spatial pressure distribution

applied as a step in time, was considered. It was found that, in the

presence of velocity-dependent damping of any magnitude (> 0), and under

sufficiently small disturbances (taking the form of initial arch displace-

ments and velocities), there exists no difference between dynamic and

static snap-through pressures for sufficiently large arch rises. For in-

finitesirnal disturbances the snap-through boundary is a curve in a load

vs. arch rise plane defined by symmetric snap up to its intersection with

the static snap-load, and the static value thereafter. For finite distur-

bances this represents an upper bound on this load. Said curve is illus-

trated in Fig. 2 for vanishingly small damping. Upon comparison with

the purely elastic case of Lock [l), (Fig. 3), one observes a jump in the

snap-boundary with respect to damping.

A similar analysis as has been conducted here can be applied to

other structures. In particular, an analysis of geometrically perfect

rings and cylinders under spatially uniform loading applied as a step in

time will yield the result that, under sufficiently small disturbances,

there exists no difference between statically and dynamically applied

buckling loads if damping is present.

Finally, we close on an interesting note. Suppose the foregoing

22



load were applied as an impulse rather than a step; then " U 0. In1

this came (4. 20) is asymptotically stable for all q%. Therefore, one

c,,icludes that, in the presence of damping, and under sufficiently small

disturbances, only symmetric snapping is possible. In the case of the

ring and cylinder mentioned previously, no dynamic buckling whatsoever

would result. The physical explanation of this is as follows: in the

presence of damping a sufficiently small disturbance is damped out

before it can initiate a "mode conversion" (by virtue of parametric

resonance) which results in a buckling phenomena. The foregoing

examples indicate that the magnitude of both disturbances and damping

are important for near perfect structures under certain transient loadings.
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