1

EFFECT OF A HEATED PLATINUM WIRE ON A SEALED CO₂ LASER SYSTEM

F. M. TAYLOR A. LOMBARDO

Systems Research Laboratories, Inc.

and

W. C. EPPERS

Air Force Avionics Laboratory

TECHNICAL REPORT AFAL-TR-68-51

APRIL 1968

. ð

This document has been approved for public release and sale; its distribution is unlimited.

AIR FORCE AVIONICS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This document has been approved for public release and sale; its distribution is unlimited.

ACCESSIUN IST CFETI 200 U ASNO IS 2 !#\$, **;:j Di)T.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

200 - June 1963 - CO455 - 37-812

ş

EFFECT OF A HEATED PLATINUM WIRE ON A SEALED CO₂ LASER SYSTEM

F. M. TAYLOR A. LOMBARDO

Systems Research Laboratories, Inc.

and

W. C EPPERS

Air Force Acionics Laboratory

This document has been approved for public release and sale, its distribution is unlimited

FOREWORD

Thi: report was prepared by F. M. Taylor and A. Lombardo, Systems Research Laboratories, Inc., 500 Woods Drive, Dayton, Ohio, 45432, in conjunction with W. C. Eppers of the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, Ohio, under Project No. 5237, Task No. 5237-10. The Systems Research Laboratories effort was performed under Contract F33615-67-C-1138 for the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, under the technical cognizance of D. R. Nordstrom.

This report was submitted by the authors February 1968.

This technical report has been reviewed and is approved.

Aprodund

RAYMOND J. NORDLUND Chief Scientist Air Force Avionics Laboratory

The second s

ABSTRACT

A heated platinum wire was used in a sealed $CO_2 - N_2$ -He laser system, resulting in increases in output power that were dependent on the initial fill pressure of CO_2 . The system was also filled with a CO_2 -He mixture and made to lase. Heating of the platinum wire caused a decrease in output power. It was tentatively concluded that the platinum catalyzes the reaction $CO + O - CO_2$, permitting a higher concentration of CO_2 in a sealed system than is otherwise possible.

-2

TABLE OF CONTENTS

------•

SECTION		PAGE
I	INTRODUCTION	1
ÌI	EXPERIMENTAL, METHOD AND DATA	2
111	CONCLUSION	9
REFERENCES		10

-

• 5

v

のためというないないという

SECTION I

INTRODUCTION

There has recently been some speculation (References 2 and 3) concerning the effect of decomposition of CO_2 in the plasma discharge of a sealed CO_2 laser. Such decomposition may result in the generation of new species of gases existing in some dynamic equilibrium population balance. In particular, CO, O, or O_2 are likely to result. The final specie concentration obtained in a sealed system could be dependent on numerous factors which often are only of incidental or minor importance in a flowing CO_2 system. Aniong these may be: electrode material, the type and quantity of impurities present in the original gases; or impurities resident in the system due to either a partial, or perhaps a total, lack of vacuum clean-out. Such impurities, in addition to the electrode material, may participate in the various chemical reactions promoted by the plasma either directly or catalytically. For instance, the free oxygen (O or O_2) may be precipitated out of the gasecus mixture in solid oxides, thus preventing reoxidation of C and CO. In general, the chemical activity going on will result in a steady or quasi-steady state in which the CO_2 percentage is lower than that of the initial fill.

Both Howe and Harrigan (References 2 and 3) report that CO may function as an intermediate gas in populating the upper laser level of CO_2 . However, in spite of such possible benefit, it would appear that the most desirable population specie balance in a sealed system would be as close as possible to the optimal for a flowing system where such specie population balance may, to a higher degree, be arbitrarily determined by the experimenter.

SECTION II EXPERIMENTAL METHOD AND DATA

This report describes the beneficial effects of using a heated platinum wire in a sealed CO₂ system. Figure 1 shows the experimental setup. For all of the mixtures tried where N_2 was included as one of the fill gases, heating of the platinum wire resulted in a power increase. The loop structure shown was intended to provide a circulating convection flow of the 1 isma products over a beated Hopcalite catalyst (60% MaO_{2} and 40% CuO). This procedure failed to produce a change in output power. It is suspected that the catalyst was poisoned by water that may have been in the commercial grade N₂ used. The platinum was #30 gauge thermocouple wire and was electrically heated to an estimated 850°C. The mirrors were fully aluminized with a pinhole method used for coupling. The platinum, as may be seen from Figure 1, was located external to the plasma and was not used as part of the electrodes. This was done to isolate the action of the heated platinum, since even when using "cold" cathodes, the surface tomperature of the cathode may be elevated due to ion bombardment. W. J. Witteman (References 6, 7, and 8) has used platinum as electrodes to avoid reaction with the gas components and has achieved fairly high power output (20 watts) in a sealed $CO_2 - N_2 - H_2$ system.

Figure 2 illustrates the effect of the heated platinum on initial peak power values versus the initial percentage of CO_2 by pressure in the tube. Not shown in either Figure 2 or Figure 3 is a short-term (2 to 3 seconds) variation in the output power of about 10 to 15%. By monitoring the various lines that were lasing with a Perkin-Elmer infrared monochromator, it was determined that

AND THE REAL PROPERTY IN THE PARTY OF THE PA

sources and the sources of the sourc

a spenned by the other a manifest of a state

ないこれなどのなりたかいたから

and a strate water and a set of the same of the

ţ

こうちょう ちょうちょうちょうちょうちょう しょうしょう

AFAL-TR-68-51

ļ.

..

this variation coincided with the appearance and disappearance of various Pbranch transitions around P(20). Such line drift has been attributed by Rigden and Moeller (Reference 5) to variations in cavity length. This effect appeared independent of whether the platinum wire was heated or not. The specific lines lasing were P(18), P(20), P(22), and P(24). There was no discernible temperature change (<1°C) of the gases when the platinum was heated. The largest power increase obtained was at 15% CO_2 (1.05 torr CO_2 , 1.0 torr N_2 , 5.0 torr He). It had previously been determined that the optimal partial pressures for the same system under flowing conditions were approximately 1.0 torr CO_2 , 1.0 torr N_2 , 5.0 torr He (these pressures were uncorrected for flow error).

A mixture of He and CO_2 was admitted to the tube and made to lase. The results are shown in Figure 3. As may be seen from the curve, heating of the platinum in this case extinguished laser action. The two cases may be explained if the heated platinum is cat $\frac{1}{2}$ right reaction $CO + O \rightarrow CO_2$. In the first case, with the N₂ present and performing the intermediate pump gas function of populating the upper laser level of CO_2 , a power increase is obtained as the detrimental effects of the free oxygen (Reference 4) are reduced and the CO_2 percentage is brought nearer the optimal. In the second case, the CO generated by the discharge is apparently functioning as the pump gas. Note in Figure 3 that the output of the laser was zere upon initial turn-on, and remained so until sufficient CO had been generated to create a population inversion in the CO_2 . Thus, activating the catalyst in this system caused a parently scheme was reduced.

To further verify this hypothesis, the visible Angstrom bands of CO at 484 m μ (0-1) and at 520 m μ (0-2) (Reference 3) were monitored with a monochromator, photomultiplier, and phase-lock amplifier combination. The results in Figure 4 show an evident decrease in intensity of the CO lines each time the platinum wire was heated, indicating a decrease in the CO concentration in agreement with the above hypothesis. The power supply used was unregulated and there was a slight increase in current through the tube when the platinum was heated. In Figure 4d, however, the current was manually held constant. An additional check was made by filling the system with pure CO₂ and then with pure N₂. For a CO₂ fill having the same partial pressure as for the mixed fill, monitoring of the above CO Anystrom bands showed similar intensity decreases when the platinum was heated. For the pure fill of N₂, monitoring of the visible lines of N₂ showed no change upon heating the platinum.

ner produktion og skinderer som et skilder prokker store i V- og store og store og skretestje store og store og

8

SECTION III CONCLUSION

It thus appears that the gas compositions of sealed gas lasers with chemically active constituents may be substantially modified by the inclusion in the tube of catalysts. The catalyst and the reaction promoted may be chosen to bring the specie population balance nearer the optimal for the particular laser than might otherwise be possible in a sealed system. Such catalytic action of incidental or deliberate ingredients, such as nickel and H_2O (Reference 1) of CO_2 lasers may partially explain some of the often conflicting claims as to optimal gas percentages, flow rates, etc., that have characterized much of the CO_2 work reported in the literature.

dra Lizens

mart and and a states where

A March

REFERENCES

- 1. S. Beckman, J. Morrel, G. Egloff, 1946. Catalysis, Reinhold Publishing Co.
- 2. F. Harrigan, 1966, Raytheon Final Technical Report, Waltham, Mass., AD 637-023.
- 3. G. Herzberg, 1966. Molecular Spectra and Molecular Structure I, 2nd Ed., p. 35.
- 4. J. A. Howe, 1965. Appl. Phys. Letters 7, 12.
- 5. J. D. Rigden, G. Moeller, 1966. <u>IEEE Journal of Quantum Electronics</u>, Vol. QE-2, No. 9, 365.
- 6. W. J. Witteman, 1965. Phys. Letters 18, 125 127.
- 7. W. J. Witteman, 1966. Philips Research Repts., 21, 73 84.
- 8. W. J. Witteman, 1966. IEEE Journal of Quantum Electronics, Vol. QE-2, No. 9, 375.

UNCLASSIFIED					
Security Classification					
DOCUMENT CO	NTROL DATA - RE	LD			
(Security classification of tille, body of abetract and index 1. ORIGINATING ACTIVITY (Corporate author)	ting annotation must be o	24. REFO	THE OVERALL REPORT IS CAREALLING)		
Systems Research Laboratories, Inc. Dayton, Ohio and			Unclassified		
Air Force Avionics Laboratory, Wright-Patterson Air			26. GROUP		
Force Base, Onio					
EFFECT OF A HEATED PLA LASER SYSTEM	TINUM WIRE C	on a se	ALED CO2		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Special Technical Report					
5. AUTHOR(3) (Last name, that name, taided) Taylor, F. M., and Lombardo, A., System Eppers, W. C., Air Force Avionics Labor	ns Research Lat ratory, Wright-1	oratorie Pattersoi	es, Inc. n Air Force Basse, Chio		
6. REPORT DATE April 1968	74. TOTAL NO. OF	73. NO. OF REFS			
Se. CONTRACT OR GRANT NO. F33615-67-C-1138	Sa. ORIGINATOR'S P	EPORT NU	MBER(S)		
6. PROJECT NO. 5237	SRL 11605 AFAL-TR-68-51				
c. Task No. 5237-10	95. OTHER REPORT NO(3) (Any other numbers that may be assigne this report)				
d.	<u> </u>				
This document has been approved for publ 11. SUPPL EMENTARY NOTES	12. SPONSORING MIL	ale; its	distribution is unlimited.		
	Air Force Avionics Laboratory Wright-Patterson Air Force Base, Ohio				
13. ABSTRACT					
A heated platinum wire was us resulting in increases in output po pressure of CO_2 . The system was all to lase. Heating of the platinum wire tentatively concluded that the platinu permitting a higher concentration of possible.	sed in a sealed wer that were o lso filled with a caused a decrea m catalyzes the CO ₂ in a sealed	CO ₂ -N ₂ dependen CO ₂ -He ase in ou e reaction d system	-He laser system, it on the initial fill mixture and made utput power. It was on $CO + O - CO_2$, in than is otherwise		

DD , FORM. 1473

States and

UNCLASSIFIED Security Classification

.

UNCLASSIFIED

SCHOOLS

and state on the bar of the set

A STATE OF A STATE OF

Security Classification				والتركر ومسترعد	والمعدي متعدا		
14. KEV WORDS		LINK A		LINK B		LINKC	
		ROLE	WT	ROLE	WT	ROLE	WT
CO ₂ Laser Sealed CO ₂ Laser Catalytic Recombination of CO ₂ Platinum Catalyzed Laser							
TANGKI			<u> </u>	L	,		
 INSTRU. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De- fense activity or other organization (corporate author) issuing the report. REPORT SECURITY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accord- ance with appropriate security regulations. GRCUP: Automatic downgrading is specified in DoD Di- rective 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author- ized. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classifica- tion, show title classification in all capitals in parenthesis immediately following the title. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. NUMBER OF REFERENCES: Enter the total number of references cited in the report. 	JCTIONS imposed by security classification, using standard statements such as: (1) "Qualified requesters may obtain copies of this report from DDC." (2) "Foreign announcement and dissemination of this report by DDC is not authorized." (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through						ments his of DDC
 8a. CONTRACTOR (RANT NOMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task numter, etc. 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator exclusion of the number). 	 an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 159 to 225 words. 14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional. 						

UNCLASSIFIED

Security Classification

AFLC-WPAFB-OCT 66 6M

ì

...

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those