
I
I A UNIFIED APPROACH TO THE DESIGN

AND USE OF RESTRUCTURABLE COMPUTER SYSTEMS:
THE META MACROMODULE MACHINE E

[
4.

iß

^ Technical Report No. 7

•rf June,1968

D
D
G
[
[
r

Computer Systems Laboratory

| Washington University

_ St. Louis, Mo.
I

I
Reproduced by the

I CLEARINGHOUSE
or federal Scirnfific & TechL

l^rmahonSpri-.f-idVa 2"l5l

- ^- "■ . riiiril1IHlillW1W'»lMin- inn ii innyi Mt liWliiWmiiiliiiiiiiMliiMi.ljjh I^JJ^JLJ^

BEST
AVAILABLE COPY

A UNIFIED APPROACH TO THE Df iGN

AND USE CF RESTRUCTURABLE COMPUTER SYSTEMS:

THE META MACROMODULE MACHINE

Robert A. Ellis

TECHNICAL REPORT NO. 7

june, 1968

Computer Systems Laboratory

Washington University

Si. Louis, Missouri

D D C
n\r?r7Dr?nn ,n~
% JUL 81968

JÜbiÜJLbliU Lb'
B

Thli «ark hot b»»n supported by «ho Advoncod Roooareh Prejoet« Agoncy of iho

Coportmon» o* Doionto undor contract SD-302 and by tho Dlviilon of Roioarch FaeiMfiti

and Rotourco« of tho hotlana! Inotituloi of Hoalth undar Grant FR4021i.

This documenl hes been approved
for public inlnaso. and sale; its
distribution in u-'inlted

a ... - : . ■"■■:■-,- -—t^r^rf-» w-.-.^fy ■;-.^«-.:-^ ^.--.^ ■-Ii|i.i-|.jg^y

t; ABSTRACT

A restruclurable computer system offers the user an
evolutionary approach to the design and use of computer systems.
To suppcut this, a unified approach is proposed in this report.
A meta machine and its environment are described which provide
the ability to treat a macromodular description of a system as
a program to be >.xecui<.d or as a set of specifications from
which the system may be directly implemented in macromodulcs.

, .

TABLE OF CONTENTS

No. Page

\. Introducti Iü I

2. The Problem and a Proposed Solution 2

2.1 Restructurable Computer Systems 2

2.2 Macromodular Systems , 2

2.3 An Operating Environment for Macromodular Systems 2

2A Problems Inuodaced by Macromodular Systems 2

2 5 A Unified App-oach 3

2.6 Aüvantages of the Unified Approach 5

2.7 Problems Associated with the Unified Approach 5

3. Dis' ' sion of the Meta Macromodule Machine 7

3.1 i.uroduction to the Discussion of the Meta Macromodule Machine 7

3.2 Organization of the Meta Macromodule Machine 7

3.3 Operations of the Meta Macromcdule Mach-ne , 7

3,3-1 Data Fetch from Ex'etnal Register 8

3.3.2 Data Store into External Register 8

3.3.3 Some Internal Control Operations 8

3.3.4 External Control Outyai 8

3.3.5 External Control P.etum 14

3.4 Implementation of the Meta Macromodule Machine 14

3.4.1 Macromodu'ar Meta Macromodule Machine 14

3.4.2 Fixed, Micro-Programmed Machine 16

3.4.3 Existing Machine 16

3.5 Conclusions , 17

4. Externally Implemented Macromodular Functions 18

4.1 Introduction 18

4.2 Register Group 18

4.3 Control Group 18

4.3.1 Control Output from the M4 18

4.3.2 Control Return to the M4 21

4.4 Implementation ConsiJerations 21

5. Conclusions 23

Appendix 6.1 A Uniform and Consistent Notation for Describing a Macromodular System 24

6.1.1 In iioduc tion 24

6.1.2 The Data i-iocessing Description 24

6.1.3 Control Description 24

6.1.4 Conclusion 27
Appendix 6.2 Calculation of the Ratio of Simulation Time Compared to Actual Operation Time . 28

6.2.1 Introduction 28
6.2.2 The Calculation 28

6.2.2.1 The Problem 28

6.2.2.2 The Simulation Machine 28

6.2.3 Conclusion 28

*

TABLE OF CONTENTS

continued

No. Page
Appendix 6 3 An Example 30

6.3,1 Introduction 30
6.3 2 Initial Form 30
6.3.3 Table Look-Up 30
6.3.4 Implement Table Look-b> Call Externally 30
6.3.5 Implement Parallelism with Most Calculations Internal 33
6.3.6 All Operations Implemented Externally witli Macromodules 33

Appendix 6.4 A Macromodular Meta Macromodule Machine (M6) 39
6.4.1 Introduction 39
6.4.2 Program and Instruction Format , J9

6.4.3 Daia Operations , 40
6.4.4 Control Operations 42
6.4.5 Examples of the M6 Design , 43

6.4.5.1 Data Fetch 44
6.4.5.2 AND Operation , 44
6.4.5.3 ADD Operation 44
6.4.5.4 COMPARE Operation , 44

7. References 49

LIST OF FIGURES

No. Page
1 The Components ol the Unified Approach 4
2 Data Fetch From External Register 9
3 Store Data into External Register 10
4 Sequential Internal Con'fnl 11
5 Concurrent Internal Control 12
6 External Control Output 13
7 External Control Return 15
8 External Register Group 19
9 External Control Output From M4 20

10 External Control Return to M4 22
6.1.1 Data Processing Description 25
6.1.2 Control Description 26
6.3.1 Table Look-Up - Data Processing Modules 31
6.".2 Table Look-Up - Control 32
6.3.3 Table Look-Up - External Call-Control 34
6.3.4 Implement Parallelism Most Calculations Internal Data Processing Modules 35
6.3.5 Implement Parallelism Most Calculations Internal-Control 36
6.3.6 Complete External Implementation — Data Processing Modules 37
6.3.7 Complete External Implementation — Co; -ol 38
64.1 Data Fetch for Simulated Operation 45
6.4.2 The AND Operation 46
6.4.3 The ADD Operation 47
6.4.4 The COMPARE Operation 48

^^MB^ii^i-^iii^^-;---1 -,--- ^^-^SÄt-.^ES'-^il^s----^^---^-1--^ - --. -■ ...

BLANK PAGE

m—mmmm iwiiiiiiiiniii^.»-..'.-'^^.- :V.iw i ■■ ',. ' »y^M^^ii—

A UNIFIED APPROACH TO THE DESIGN

AND USE OF RESTRUCTURABLE COMPUTER SYSTEMS:

THE ^iETA MACROMODULE MACHINE

1. INTRODUCTION

The macromodular project at Washington University is i particular implementation of a class of
computer systems which are restructurable.1'2 A reslnictut.xble computer system is capable of a
flexibility in hardware that has long been possible only by programming. In addition, the macromodula:
concept proposes to make this testructurability available to the user without "quiring him to be concerned
with logically irrelevant engineering details. The user will have functional units of the nature of
registers, adders, subtracters, etc.,whose electrical and timing details have been solved for him by the
designers of the macromodules.

Although several computer and systems designs have been investigated in the course of the
of the research, no one has attempted to investigate in general the operating environment of a macro-
modular system. In particular, the support necessary to achieve the smooth, evolutionary approach to
computer design that macromodules promise has not yet been investigated. This report identifies the
problems associated with this evolutionary approach and proposes specific measures to support it.
The unified approach of the title te»ers to the ability to treat a macromodular description of a system as
a piogram to be executed or as a set of specifications which will allow the user to directly implement
the system in macromodules. Central to the approach is the concept that the user-designer may choose
to implement whatever sections of the design he wishes and leave the rest to be run as a program.
The paper includes an investigatior, in detail, of that which is necessary to implement the unified
approach.

■t r ■Tmiiniiiiiiii—MT «itftniiiiiniiiwTWmiiHiiHMW

2. THÜ PROBLEM AND A PROPOSED SOLUTION

2.1 RESTRUCTURABLE COMPUTER SYSTEMS

The advantages of restnn turable computet systems have been well documented in the literature.1'2

The ability to easily construct special and genera! purpose cennuters whose design is tailored to a
single class of problems is a most desirable goal. Indeed tf.e ecoumy of specialization3 may far outweigh
the economy o/ scale which has been so completely taken as an absolute truth in the computer field.

2.2 MACROMODULAR SYSTEMS

The macromodular project at Washington University is an investigation of a concept of restructurable
computer systems.2 For the present, macromodules consist of a set of relatively simple, easily inter-
connected modules from wh.ch working systems can be easily assembled. The modules are functionally
large enough to reduce logical detail by a significant amount and are relatively easy 'o understand and
assemble. The modules are directly combined to form larger structures by straightforward mechanical
assembly and easily connected cables. They have been designed so that the assembling of these units
into working systems presents no logically irrelevant details such as those related to circuit loading,
waveform deterioration, signal propagation delay, and power supply interactions regardless of the size
and complexity of the system.

2.3 AN OPERATING ENVIRONMENT FOR MACROM^JULAR SYSTEMS

While several computer systems have been designed utilising macromodules,4'S'6'7 very little
investigation has been done concerning the operating environment and the problems that the gr;at
generality ci icstructurable computer systems pose. The reason is understandable: the lack of precedent
in the field tends to overshadow all else. A very reasonable approach is to adopt a wait and see
attitude with regard to any conventions or aids relating to the use of macromodules.

It is interesting to note that most of the systems which hav been designed have relied on a fixed,
rrogrammable computer for support rf the macromodular machine. In some cases5'* the support required
is merely a replacement for those mpcromodules which have not yet been designed i.e. Input-Output
while in other cases4 the supporting machine is used to perform some of the operations. Hlc'^comment has
generally beert made coacerning macromodules that it is difficult to see a situation in which some fixed
computer would not be required to give operating &ni programming support to the collcciic-n of macro-
modules.

2.4 PROBLEMS INTRODUCED BY MACROMODULAR SYSTEMS

There are several problems, other than the obvious one of programming support, which are inherent
in the macromodular concep.. For example, one may not wish to actually implement all of a design in
macromodular Hardware at any one time. There is a general reason for this in that the evolutionary
approach to the design of a suitable configuration of macromodules is certainly desirable. This is
often cited as an advantage of restructurable computer systems, but it does not automatically follow.
There may be other reasons for not actually constructing the complete system. For example, there
might be a problem with inventory if several asers arc sharing a common inventory of macromodules.

Finally, there appears to be no real reason, c/.cept for absolute necessity, for actually building special
configurations. The necessity almost always concerns time in ben real-time an : s;'.aisht computation
situations.

Anoti.er problem is tha if one wants to make a change in an already working system, the wires
have to be changed. It is prcb^' ly not feasible to make a copy of the frame wiring so it will be difficult
to back up from changes which have been made but do not yet work. Analog computers ! ave removable
patch panels for interconnection of processing eleinents. However, these panels restrict the number and
types ot connections which can be made. Maciomodules require the possible interconnection of any
module to any othei module; a feat not possible with analog computer patch panels. To further complicate
matters, the physical arrangement may have changed due to the addition of new modules. It will also be
very difficult to make a quick change to see what effect it has on the operation of the system. This is
a very important problem and one which has been somewhat overlooked until now.

Finally there is the problem of simulation. A natural tool to use in an area of hardware development
is functional simulation. Simulation allows one to largely correct a design before building ; and to try
out proposed changes. With simulation comes a ver; large overhead. It seems difficult to improve the
approximately 1000 to 1 ratio in lime with any of the simulation efforts to date.8-'''0 The 1000 to 1
figure is actually quite optimistic because it is quite easy to increase the ratio several times by
inefficient code or increased power and flexibility of the simulation effort.

2.5 A UNIFIED APPROACH

The ur'fied approach in this report refers to the capability of treating a description of a macro-
modular system as a program which may be executed or as a set of specifications which will allow the
user to directly implement the system. It is proposed in support of the unified approach, that an
essentially fixed machine be constructed whose primarv function is to route control and date transfer
operations as specified by a description of a macromodular system so as to mediate between actually

implemented functions and those which must be simulated. This function defines a class of machines;
however, enough of the details of the external appearance required of tht JC machines will be defined
that this class is reduced to a specific machine for the purposes of this paper. Although an analogy
between this description and a program has been introduced here, the reader should be cautioned not to
expect this meta macromodnle machine M4 to have the typical order code organization of conventional
stored program machines. Obviously, the M4 must have suitable features to enable it to interact with
the external macromodular structures. A common, machine-readable description of a macromodular
system can now function as a program for the meta machine or as a specification for actually constructing
all or parts oi the system. Functions which must be simulated aje identified as internally implemented
tunctions while those actually constructed from rracromodules are called externally implemented functions.
With proper design it is possible to sv/itch actively between internally and externally implemented
functions at the lowest possible level of macromodular primitive; operations.

Figure 1 shows the several components of this unified approach. The maciomodular component
consists of the user-designed functions which are implemented by macromodales. This component is not
discussed in this paper. The interface, which partly overlaps the macromodular component, permits
communication between externally and internally implemented macromodular functions. The overlap area
consists of the conventions which must be observed in implementing the macromodular component in
order for it to work with the interface. The entire interface is specified in detail in Sectior 4.

The M4 control permits internally implemented macromodular functions. The macromodulc simulation
component, which is only a part of the M4, provides the capability to perform internally implemented

. - ■ ÄBsi»^ ^-i«ir«e^^*ÄK,«7^*jirt)(Fj|iai

-4-

f MACROMODULES

EXTERNAL

.. MACROMODULE N\
V\ SIMULATION J

' GENERAL-PURPOSE N
>

\ COMPUTATION /
\

M4

THE COMPONENTS OF THE UNIFIED APPROACH

Figure 1

macfomodular functions. The M4 control plus those areas of the macromo le simulation which directly
interact with it are discussed in Section 3.3. The details of simulation oi macromodules by hardware or
software is not of great interest in this report, but some considerations are pusented in Section 3.4 and
one particular scheme is discussed in Appendix 6.4,

Finally, lha details of the general purpose computation, component are beyond the scope of this
report; however general comments regarding this component appear throughout the r'pott.

2.S ADVANTAGES OF THE UNIFIED APPROACH

nc lack of irrelevant engineering detail required in the design of macromodular systems puts a
JbScription of such a system on the level of assembly language programming. The description can ignore
such details as actud physical arrangement of modules and wire placement and leave them for the
construction phase. This means that the description and program for the M4 can be truly idcnlical in all
resptcts. The proposed meta machine approach requires that only those critical portions of the design
need to be implemented in hardware. Also, proposed changes may be made to the programmed structure,
checked out, and only then built with actual macromodules.

Initial studies indicate that the meta machine can typically simulate non-memory operations at a
ratio of 100 to 1 in time and that 50 to 1 is perfectly feasible. See Appendix 6.2 for supporting calcu-
lations. Memory operation jmes approach to a 1 to 1 ratio between externally and internally i...oleracrUea
functions. The meta machine can also be used to provide prograr.iraing support fo»- ihe im.cTomodular
configuration and in any of the supporting roles whi<;h require a stored-program compvte . rinal'y, it can
be seen that the meta machine can itself be constructed from macromodulss. We call th.s the macro-
modular meta macromodule machine f'6. Of course in tie rna! sense, the meta machine should be
constructed in a fixed form except for certain sections.

Because the M4 is essentially fixed, a compiler for hight-r level languages can be written for it.
Then, these languages could be used for macromodular descriptions although because of efficiency of
equipment considerations their results would probably only be executed internally to the M4. If this
higher level language work were done with the unified approach in mind, it would be possible to describe
the solution algorithm in these higher evcl languages in a compatible manner, particularly if operating
efficiency could be sacrificed. See Appendix b.3 for an example

2.7 PROBLEMS ASSOCIATED WITH THE UNIFIED APPROACH

The UH« of a meta macromoduH machine is not without problems. The cistin^tion between
hardware and p-ogram-implemented structures must be at the lowest possible level. This means that it is
possible to impl'men. one register, or one add operation, or even a single control branch as hardware
in the operating ei.vironment envisaged here.

Another problem occurs with the basic unit of storage, the register. It is impossible for a register
to exist both as actual hardware and simultaneously as a storage location within the memory of the meta
machine because of the proHlems of maintaining both images. Once a register exists in macromodular
form, all references to it must nier to the actual register.

A problem also exists in the control area. Naturally a means must be provided for control to cross
the boundary between haidware and program in both directions. This is reasonably straightforward until
we consider concurrent processes. Concurrent processes must be executed in an equivalent sequential
order within the meta machine and any implemented in macromodules must be executed in parallel if
at all possibl«.

-j - "'■anfiyntn'a

-6-

Naturally the meta machte must be capable of tepresenling macromodular systems subject to
♦*»« constraint of indefinite extension. In general this rrust be accomplished without rescrt to changing

the meta machine.

«.rtB-ffi. p

-7-

3. DISCUSSION OF THE META MACROMODULE MACHINE

3.1 INTRODUCTION TO THE DISCUSSION OF THE META MACROMODULE MACHINE

In this section the organization, operation, and implementation of the meta macromodule machine

are discussed. The basic requirement of the meta machine is that it be able to route control and data

transfer operations and communicate with external macromodular structures as specified by a description

of a macromodular system. Questions of the operations of the M4 are required to support the unified

approach are discussed in terms of macromodular designs.

3.2 ORGANIZATION OF THE META MACROMODULE MACHINE

The most obvious organi?ation of the M4 is as a basic computer whose order code consists of

the primitive operations available with macromodules plus control and data options which permit

communication with external macromodules. A suitable programming language could then be de /eloped

to accompany this machine. For example, any of th' functional macromodular simulation languages

could provide a model for this development,8''',3 or ^ee Appendix 6.4 for a specific example.

This approach is less than satisfactory, however, because a given macromodule can often be used

in several different ways. For example, a data gate rrr romodule may be used to transfer data into a

macromodular register or to indicate data to be stored intr a macromodular memory. Indeed, it is possible

for a single, multiple-length data gate to perform both of these operations simultaneously. This is in

contradiction to the simulator languages which treat these as two distinctly different operations because

of the lack of context dependence in such languages. Also, should new slightly different macromodules

be designed, it is just possible that t'ie functional language descriptions could not handle such new

modules.

The requirements imposed by command oriented languages are awkward wh^n compared to the usual

mac.oiiTy jular design process. A macromodi'lar sysiem is cc.npletely described by a picture of the

connectivity of data processing operations and a flowchart of the control operations which are performed.

This rotation is desciibed as a uniform and consistent scheme of notation in Appendix 6.1. A far more

direct approach would be to find some suitable way to enter the diagrams and flowcharts into the meta

machine and have the execution diret'iy oriented to the actual internal operations of the macromodules.

Because of the above, all of the material in this report is presented independent of any actual machine

langiMge code for the M4.

3.3 OPERATIONS OF THE META MACROMODULE MACHINE

Now the internal operations of the meta machire are described which ar? required tc support

externally implemented macromodular functions. The operations which must be supported are the transfer

of data in both directions across the M4-external interface a.id the ability of the M4 to generate and

accept macromodular control signals 'rhe external aspect of these operations is discussed in Section 4,

For the present, we are not concerned with the rest of the M4.

It is assumed that registers and controi points are properly marked in the description so that the M4

may make the decision between external or internal implementation. For an example of a suggested

symbolic marking technique, see Appendix 6.1. A more detailed possibility for the marking is presented

in Appendix 6.4. For external implementation, a number must be associated with each unique register

:~.-:^--

-8-

and control point to serve as a reference for the purpose of crossing the interface between the M4 and
externally implemented functions. It is possible that extra memory will be required in the M4 to provide
space for this marking duta, but this must be accepted in an approach with as much generality as is
being proposed here. This marking function must be a cential part of the Vi4 design so that all irternal
operations may make use of it.

3.3.1 DATA FETCH FROM EXTERNAL REGISTER

Figure 2 shows the operations necessary to 'etch the contents of an externally implemented
macvomodular register. The number of the external register, which is available as a consequence of
the operation of the M4, is first transferred into the External Register Select Register. Control then
exits to the external environment and fetches these data as shown in Section 4.2. After the data have
been made available to the M4. control returns to the M4 for processing of the data. Note that only one
such operation is executed at one time because as far as the M4 is concerned all data are transferred
sequentially in 12-bit segments.

3.3.2 DATA STORE INTO EXTERNAL REGISTER

Figure 3 shows the internal operations required to store data into an externally implemented
macromodular register, i'he operations are analogous to those of Section 3.3 I except that control exits
and returns at a different set of control points.

3.3.3 SOME INTERNAL CONTROL OPERATIONS

Before discussing control signal generation and return, it is necessary to discuss, in general
terms, the internal M4 operations required to start the next internally specified macromodular function.

Figure 4 shows the operation when strictly sequentia functions are specified.
If the next function is internally implemented, it is decoded and executed in a form similar to the

typical stored-program computer. If the function is externally implemented, an external control signal is
generated as explained in Section 3.3.4 and ihen control enters a wait status. Central to the control
structure of the M4 is a stack, which can be either first in-first out or last in-first out, which is used .
remember control operations which cannot immediately be executed. Returning external control, as will
be shown in Section 3.3.5, forces a pointer to the next internal function to be performed into the control
stack. The wait status therefore simply causes a pause in operation until a pointer becomes available
at the top of the stack.

Concurrent control requires that at least two functions be performed at the same time. This two-
way splitting or branching must be capable of operation for all combinations of external and internal
functions specified as the branch operations. Also, it is required that all concurrent sequences whi'-'n
are externally implemented be truly concurrent with each other and with internally implemented functions.
Finally, it is required that internally implemented functions are executed in correct sequential order even
if concunent processing is indicated. Figure 5 shows the design for initiation of concurrent control.

3.3.4 EXTERNAL CONTROL OUTPUT

Figure 6 shows the design for generation of external control. Concurrent operations are possible;
therefore the rendezvous is used to protect the operation of storing a new control sequence number.

EXTERNAL

REGISTER

DATA

<:

(@) EXTERNAL REGISTER SELECT

LOAD EXTERNAL REGISTER SELECT
_____ _.

rCh

EXTERNAL
KEGISTER
NUMBER

EXTERNAL M4

DATA FETCH FROM EXTERNAL REGISTER

Figure 2

-10-

STCRE COMPLETED

STORE INTO
EXTERNAL REGISTER

4

(REG) EXTERNAL REGISTER SELECT

LOAD EXTERNAL REGISTER SELECT

7(V

EXTERNAL
REGISTER
NUMBER

<^

EXTERNAL

DATA TO BE
STORED INTO
EXTERNAL REGISTER

M4

STORE DATA INTO EXTERNAL REGISTER

Figure 3

-11-

NO / IS NEXT FUNCTIONA YES

V EXTERNAL? J

\ 1

EXECUTE
FUNCTION

GENERATE EXTERNAL

CONTROL SIGNAL

i

WAIT

\ \

GET NEXT
FUNCTION

SEQUENTIAL INTERNAL CONTROL

Figure 4

-12-

NO

NO /""FIRST FUNCTION

^ EXTERNAL?

REMEMBER

POIN'ER

YES

SECOND FUNCTION
EXTERNAL?

YES

PLACE POINTER TO

SECOND FUNCTION
INTO CONTROL STACK

GENERATE

EXTERNAL
CONTROL

-*$

£XECUTr

FIRST

FUNCTION

GENERATE
EXTERNAL
CONTROL

NO SECOND FUNCTION
EXTERNAL?

EXECUTE

SECOND

FUNCTION

YFi

GENERATE

EXTERNAL

CONTROL

WAIT

CONCURRENT INTERNAL CONTROL

Figure 5

GET NEXT
FUNCTION

.

EXTERNAL
CONTROL STARTED

-13-

I
I
I
I

CONTROL OUT

^

REG) CONTROL SEQUENCE NUMBER

LOAD CONTROL SEQUENCE NUMBER

yfK

CONTROL
SEQUENCE
NUMBER

J
®—<B)

GENERATE
EXTERNAL
CONTROL

EXTERNAL M4

EXTERNAL CONTROL OUTPUT

Figure 6

-14-

The dot by ont of (lie rendezvous inputs indicates that the rendezvous is preset with that input active.
Note that the returning control signal External Control Started indicates only !' at the externally imple-
mented sequence has been started and a nev sequence number can be loaded, not that the external
control sequence has actually been completed.

3.3.5 EXTERNAL CONTROL RETURN

Figure 7 shows the design for the NW operations which process external control sequence returns.
The interlock is required because control returns occur asynchronously with respect to other M4 oper-
ations. The M4 memory must contain a 'able which relates returninp. control sequence numbers to the
place in the description where internally implemented functions are U. be resumed. The pointers, when
read from memory, are placed into the control stack where they are eventually read and used by the M4.

3.4 IMPLEMENTATION OF THE META MACROMODULE MACHfNE

This report has intentionally remained gene al and has not specified any particular implementation
of th; M4. In this section some comments ate made concerning several possible implementations.
Each »mplementaticn has its own particular characteristics which may indicate which implementation
would be better for a particular application.

3.4.1 MACROMODULAR META MACROMODULE MACHINE

The most obvious implementation, in macromodules, is described in detail elsewhere1 ' and is
summarized in Appendix 6.4. This implementation is flexible in that newly defined macromodules can
be added to the meta machine at the cost of changing the internal operations. Of course, if the set of
macromodules is closed, then a considerable overhead is inherent in the design using macromodules.
Note that a class of instructions which are not macromodular operations must exist for this machine.
This is necessary to control input-output devices which make the machine capable of general support
of macromodules.

This implementation represents an extieme in the continuum of M4 implementalions; it combines
maximum hardware, case of interface with external macromodules, maximum speed of simulation, end
minimal space required for the specification of the macromodular system. The speed of simulation is
essentially the 100 to 1 figure mentioned as an upper bound on speed in Section 2.6.1. However, maximum
hardware is indicated by the count of over 100 data processing modules required, making this at least a
medium-sized computer. This figure does not include any general-purpose computation capability or
instructions which provide general programming support; however, these can be supplied by H very
elegant method discussed in Section 3.5. A single 4096 word memoiy matromodule can store the
specification for a system containing approximately 500 macromodular operations and 100 register
macromodules, exclusive of any memory macromodules. Typically, u small computer, such as a PDP-5
contains approximately 40 macromodula'' operations and 6 register macromodules while a reasonably
large machine, such as one designed for linear programming problems, might have approximately 300
macromodular operations and 40 register mactomodules.

The use of the macromodular meta macromodule machine W6 requires that the user have available a

more than basic inventory of macromodules because so many are required for its construciion. Its use
may be indicated if the user does not have a suitable existing computer or if his existing computer does

-15-

) ^>

RETURNING
CONTROL
SEQUENCE
NUMBER

REG) MEMORY ADDRESS

RET. CONTROL SEQ. NO. —»► MEM. ADDR. •-

EXTERNAL CONTROL RETURN

EXTERNAL CONTROL RETURN

PROCESSED

READ MEMORY

MEMORY OulPUT TO
CONTROL STACK

OTHER
< M4 MEMORY

OPERATIONS

EXTERNAL M4

EXTERNAL CONTROL RETURN

Figure 7

-16-

not lend itself ;o interface with macromodules. Of course, if 'he user does not have the talent locally to

interface his cxisr % machine with macromodules, he may be forced into this implementation if he wishes

to use the iii, ..cd oach.

3.4.2 FIXED, MICRO-PROGRAMMED MACHINE

An implementation which would permit the addition of new macromodule types, if they did not

vary drastically from the present general concepts, and yet not require the overhead associated with

macromodules, consists of a fixed machine which couid be microprogrammed by u fast resd only memory.

This wu.!d be a most attractive implementation, which represents an intermediate approach; however,

it involves the designing of a completely new computer tailored toward simulation of rp.^ciomodules and

is not diicussed further here.

3.4.3 EXISTING MACHINE

Another im, kinentation could utilize a macromodule simulation program on an existing machine

with iime interface to macromodules. Such an effort is underway in the laboratory using a LLNC

(Laboratory INsttument Computer) and a LINC-macr'module interface designed by an associate of the

autuor.12 The availability of the LINC software whi^h includes a macro facility and th, ease of use anü

programming make this a natural choice. Macromodule simulation exists for the LINC,8 but does not

embody the concepts presentsd in this report. A useful aspect of 'his type of implementation is 'hat the

machine language of the existing computer can be used whenever such use is more appropriate than use

of {he macromodular funrtions.

The requirement that the user construct an interface between his existing machine and macro-

modules is one of the most important characteristics of this implemefita,, in. It does not seem reasonable

that the designers ol macromodules se've this problem except by providing an M4 macromodule. This

would eqüirc that the unified appi^ach be., r" the standard method of usinj .lacroiTiodules. This is a

very real possibility, but it is oo early in jie development of macromodules to do more than speculate.

If the user chooses this implementation, he has provided himself with the opposite ;me to

that discussed in Section 3.4.1. This implementation provides the. slowest speed of s. iulation combined

with a minimum amount of hardware. Most existing small computers can reasonably be used in this

implementation. The machine should be capable of indefinite extended precision arithmetic, and it is

convenient if it is a 12 bit computer Of course, the user also has all of the features of tlr* inputer

to use in any way he desires, not an insignificant advantage.

O't; experiences with the existing LINC macromodule simulation effort indicate the ^„rameters

«»«sociated with this implementation. The LINC is a 12 bit computer with an 8 microsecond cycle time

and 2048 words of memc:y. The simulation consists of a set of macros and subroutines assembled to

form a LIN«J program which simulates the operation of a macromodular system. The simulation soeed .or

12 bi* ma:romodiile operations is approximately 1300 to) as compared to real time macromodular

operations. This ratio essentially increases linearly vith increased length of simulated macromodular

operations. Systems with a maximum of about 70 macromodular operations can be simulated. There is

a direct trade between number of simulated registers and the amount of simulated memory. However,

systemr with only 70 0|:crations almost never invoi.e more than a dozen or so 'egisters leaving 1024

words of 12 bit memory for simulated memory macromodules. If an interpretive simulatior technique

were used, the number of simulated operations could be increased with the penalty of decreasing the

-17-

simulation speed by a factor of two or three. Of course, a 2048 word memory is extremely modest for

even the typical small computers currently available.

The use of a large scale computer as an M4 has not been considered at all in this report. Neither

have such things as several users of macromodules tiu.c sharing a large cntrally located computer been

discussed here. It is felt that the inclusion of these topics is not necessary in the present discussion.

3.5 CONCLUSIONS

This secticn has discussed the met^ mactomodule machine which supports the geneial concept

presented in this report. The evaluations of alternate organizations and implementations have been left

to future research. A few general concluding remarks seem to be in order at this tiiiic. Possibly the

foremost concern in the specification of the meta machine must be to provide a machine which is straight-

forward and easy to use. In fact it should be possible to work with a specification of a macromodular

system for execution on this machine directly at the lowest possible level and to by-pass any software

support for some operations. This is a particular concern cf the author, but the serious student of

computer systems will see that a great aniount of inefficiency mav result. However, it must be remembered

that this machine is intended to simulate hardware operations implemented in tern > of macrovnodules.

Thus a description of 1000 macromodules represents a large hardware system while a program of 1000

instructions i» quite a small system.

The foregoing does -loint up one problem, however, that exists in some implementalions and

organizations of the M4. If the M4 is used to provide gerera! software support for a collection if

macromodules, then some programming operations are needed. The organization of the M4 may not b

well suited to programming because, for example, th...^ eed not be any addressing or indexing fiexibiUty

provided. Two solutions have occurred to ine author. One, which has been rejected for lack of elegance,

would provide a set of instructions to be used in general programming of the M4. A rrore elegant approach

would be to design a suitable machine in terms of macromodules and then use this description as an

interpreter for a more convenient machine language. This is certainly elegant and is probably feasible

f'om i. pragtraii;, standpoint because any dcmaiidiiig .o;.ipuiai:ons woulU be perfomiec oy externally

implemented macromodular operations. Compilfvs and arithmetic compilation oriented machines can be

designed for macromudules5-* which could then be efficiently interpreted by a macromodular description

in the M4.

le-

4. DiSCUSSiON OF EXTERNALLY IMPLEMENTED MACROMODüLAR FUNCTIONS

4.1 INTROnUCTSON

In Section 3J the use of externally irnplemented macromodular registers ai;d control was discussed
in connection with the mcta maciomodule machine. In this section the conventions are discussed which

I have to be observed in implementing external functions so that the interface between them and M4 can
be standardized.

4.2 REGISTER GROUP

Figure 8 shows the conventions which muvt be followed to permit communication between external
macomodu'u rcgif TS and M4. The dotted line indicates the physical and logical boundary of the M4.
As can be seen, quite a large number of macromodular operations must be implemented by the user;
however, they are quite regular and should pose no problems

The example shows two registers implemented exi-rnully to the M4. One register is 12 bits and
the other is 24 bits wide. Additional data processing midules are shown on the registers to indicate
that the registsrs have externally implemented transfers, adders, etc., which involve them. The user
roust number the registers and provide the proper decoding of control signals. Because only 12 bits of
data can be transferred at one time, each register module in a more than 12 bit register must be considered
as a separate register for the purpose of these transfers.

It is the responsibility of the M4 to establish the proper data out signals and then generate a
macromodular control signal on the proper line. The M4 processing is stopped until the proper return
conuol signal is received. Because of ti.is responsibility on the part of the M4, the user actually
has very little to be concerned with when he implements the required operations.

There is a problem in that the overflow indication cannot be transferred from ire M4 to the
PX*«. ii roisters. Therefcic li .s not possible io porfoim an internal operation on an external register

and then have the correct overflow indication transferred to the register. "The only difficulty is that
an external test of overflow will always indicate no overflow after an internal operation. This is a
rather small point but still one which the user must remember. A possible solution would be to build some
macromodular registers which are capable of having overflow turned on by a control signal. However,
from the pragmatic point of view it is felt that the user can live with the problem.

If there is a possibility of concurrent operation between M* and externally i plemented functions,
interlocks must be placed at the appropriate places in th; register operations. This is left entirely tc
the user and follows directly the normal macromodular use of the interlock.

-

4.3 CONTROL GROUP

This Section discusses the conventions required of externally implemented control functions
which permit a standardized interface with the M4.

:

4.3.1 CONTROL OUTPUT FROM THE M4

The M4 presents a daia word which represents a control sequence number which must be decoded
by external decoders. Figure 9 indicates the necessary operations. A requirement of external control

is thai it be capable of concurrent operation with internal functions of the M4. Therefore after a control

-19-

OVERFLOW?

DATA OUT

DATA IN

REGISTER

SELECT

EXTERNAL REGISTER GROUP

Figure 8

-20-

CALL

UNIT
• • • L

INTERLOCK • • ■£

toi>

SEQUENCE,

SEQUENCE 0

rrr

j

• • •

(DECODER)

-fr

EXTERNAL

M4

CONTROL STARTED

CONTROL OUT

SEQUENCE

NUMBER

EXTERNAL CONTROL OUTPUT FROM M4

Figure 9

-21-

sequence has been decoded, the control signal must branch to indicate to the M4 that internal opera'ions
may be resumed. The interlock is required because there is a possibility that the M4 might be able to
generate a control signal on another input to the call element before it has been cleared bv the return
signal. This possibility is very slight because the M4 must do a memory operatioi before anotler
contiol signal could Le gemmated. There is a considerable responsibility placed on the operation of
the M4 in ordc to insure the proper operation of these concurren' sequences.

4.3.2 CONTROL RETURN TO THE M4

Figure 10 shows the use of - introl returns. Returning control must gate a number representing
the control sequence into a register. Then control must pass to the M4 to process the return. The
completion signal from the processing operation must finally rend', .vous with the start of the particular
control sequence because the M4 could inimediately reactivate the same external control sequence.

Failure to do this may mean that two control signals could be actwe in a uingle comrol sequence; an
illegal operation in macromodules. The dot on an input to a rendezvous element is a standard notation
to indicate the input is preset to an active state. An interlock is shown between control sequences
1 and 2 indicating that they may be concurrently active. Once again we see that he M4 is responsible
for a considerable amount of control information.

44 IMPLEMENTATION CONSIDERATIONS

The implementation of external control and register operations has been shown as a purely
macromodular implementation. This assumes a proper maciumodular interface with the M4. In the
non-macromodular implementations of t'ue M4, it may be important to reduce the number of interface
points between the M4 and externally implemented macromodular functions. A possible technique is
to use a memory to centralize the actual interface connections.12 The resulting changes in the designs
shown here are not discussed but it is still possible to use these general ideas.

-22-

CONTROL
SEQUENCE
NUMBER
/fls

EXTERNAL CONTROL RETURN TO M4

FIGURE 10

-23-

5. CONCLUSION

This .eport has nresented a unified approach to the design anü use of macromodular computer

systens. Central to the concept is a meta machine which is capable of routing control and data transfer

operations as specified by a description of a macromodular system and also provides p stmdard interface

for externally implemented macromodular functions. Several implementations of the meta macromodule

machine ,VW have been discuss.ed. The M4 is also capable of providing general programming support for

a macromodular system.

It is felt that the unified approach is a very valuable concept which permits an evolutionary approach

to computer design by allowing small incremental changes to be made and evaluated before they become

a fixed part of the system. Even while these changes are being made, the user always has an easily

recoverable working system. The unified approach appears to be a very useful means for providing a

convenient input form for functional simulation of digital systems.

For the user who is not oriented toward computer hardware, the unified approach permits the use

of the concept of designing a special machine which may, but does not have to, be built. If the user

chooses not to build the machine, he still is able to do a very efficient interpretation of his machine

using the meta machine. If he does decide to build the computer, he is not required to build all of it.

The unified approach gives the software oriented user a fixed target for compiler development by

providing ti. capability of having a system on which to run the compi'er and its results.

Finally- and probably the most importapi, the unified apprc^i permits the best hardware-software

tvade-offs to be made. Note that many parts of the solution can be expressed in a high level language

if that is convenient. It is important to note that the hardware-software balance can always be changed

as jxpenence with a system grows.

These conclusions represent the contribution of the unified approach to the development and use

of macromodules. Although only the relationship with macromodules has been discussed in this report,

it seems that the unified approach can be applied to other restructurable computer systems. It is after

all, primarily a way of :' ; king about a problem and as such has great generality.

-24-

APPEh 5[XA!

A UNIFORM AND CONSISTENT NOTATION F; \ DESCRIBING A MACROMODULAR SYSTEM

6.1.1 INTRODUCTION

In this section a uniform and consistent notation is discussed which may be used to describe a
macromodular system design. Besides being capable of completely describing the system, the nota,;.on
is convenient to use. A macromodular system is completely described by considering two separate
aspects. The exact definition of the meaning, or semantics, of operation is determined by the physical
placement of the modules. This placement indicates what data may be added together, what data
transfer operations may take place, and all the other considerations of meaning. Second, the order in
which these operations are carried out, or syntax is defined by the routing of control cables \ hich link
together in specified sequences the various operati ns. Notice that neither one of these alone complete-

ly describes a system and both have distinct functions. The method of notation takes advantage of
these considerations.

6.1.2 THE vATA PROCESSING DESCRIPTION

The data processing operations, or semantics, are described by a pictorial diagram which corres-
ponds roughly tc the actual physical placement of modules. Because the width, in terms of multiples
of the basic macromodules, is quite flexible, the a^ual width of operations is shown by drawing short
vertical lines between modules to indicate operations of mo'e than one module length. The area above
the dotted line is used to give a name to the operat' 'hich then appears in the control sequence
descriptions. Additional names may be indicated as a^ematives within this area of any single module.
This arbitrary name extends for the full width of the defined operation. The module type appears in a
circle in the lower left corner of each box. Module type information mrv have an e or i subscript to
denote an externally or internally implemented function. These designations are subject to the rules on
implementation. For example, it is not possible to have an internal register with an external adder on it.

The area below the dotted line is used to describe data cable inputs, the name of a register, or other
input information. Note that a line is used for each different cable input so some modules may take up
more space in the picture than they actually do. Fixed parameters may be written in octal in place of
cable input names. Figure 6.1.1 shows a typical description.

6.1.3 CONTROL DESCRIPTION

The description of the control sequences, oi syntax, consists of flowcharts. Each entry consists
of the name of an operation which has been defined in the data processing description. Control branch
and rendezvous units are shown as small circles, operations as rectangular boxes, decisions as ovals,
and subroutine calls as trapezoids. Figure 6.1.2 shows a typical flow chart for the operations defined
in the previous section.

Notice that the flowchart contains annotation to describe external and internal functions. In some
sense this is redundant information because these attributes are defined by the data proces , module
drawings. However, the small numbers on the connecting arcs are necessary and are used to assign
number., to control exit and return tines.

■ ■

-25-

COMPARATGR

36 BIT ADDER

: EXTERNAL RtGISlERS

35 BIT CLEAR

12 BIT DATA GATE

CR + A -*- CR 1

© A1 IG) A2 1
COMPARE ? j

"U M: 7777

(C^g^V: 0077

M: 7777

(CP^V: 0000

M:4000

(CPg) V: Al j

1*
ADD i

(5) ^000 P A2 j (%?) oooo !

"I*
LOVFL ?

(REGj) L (REGj) C CREGe) R j

1*
0 —•- LCR j

(DGg) 0000 (DGg) 0000 (MJ) 0000 j

~u
CLEAR L LOAD CR 1

(DGe) 0000 (DGJ) AT ® A2 j
24 BIT DATA GATE

!CREGi) Al (REG;) A2 |
0 "*"A 1

|(DGJ) 0000 © 0000 1
I

I X -•► A |

\<B x © Y

DATA PROCESSING DESCRIPTION

Figure 6.1.1

■ ■----^T----- m Su*«r-S.- :

T*erfaies«w-^ri.-iä/5ai^

-26-

(e) 0 —t^ LCR

(EXTERNAL)

0 —•► A

i) Sf. (LCR)-»-LCR

(EXTERNAL)

(i)

f, (LCR)—^ LCR

(i)

2

ADD (e)

2

(1)

CONTROL DESCRIPTION

Figure 6,1.2

-27-

6.1.4 CONCLUSION

The above notation has been used by the author and has been found to be very convenient. Even
though the notatiii, is complete, it is not felt that the required detail is a drawback. Because th?
designer is committing actual expensive hardware, he must know exactly which operations, are currently
available The number of flowcharts required is not large because a system with a *r.- hundred oper-
ations in it represents a large system, whilf the same number of machine language instructions would
represent only a vciy small program. One flowchart entry may represent several actual macromodules
because of multiple width operations.

The ability to name the operation in the scmancic description and then use it in the control 'low-
charts make possible flowcharts which are completely annotated yet are directly related to the definition
of the operations. This is an extremely important aspect of the descriptive notation presented here. In
the future it may be possible to name groups of operations ard therefore introduce a macro facility into
the notation.

After using this descriptive notation for a v.hile, one is extremely unhapp. to be required to render
the description almost completely uninteUigible in order to transform it to a machine readable lorm. A
concerted effort must be taken to d'-.ise a method of introducing the descriptive notation into a computer
in a more direct form.

■,.::,_

-28-

APPENDIX 6.2

CALCULATION v <-" THE RATIO OF SIMULATION

TIME CC PARED TO ACTUAL OPERATION TIME

6.2.1 INTRODUCTION

In this appendix an approximate ratio is derived for the time required foi simulation of macro-

modular operations compareu to the time required for the actual .Tiacromodular operations. Because of

the asynchronous operatio" of i.iacrornouules these calculations yield only an order of magnitude tyt^

va'ut for this comparison. The calcuJations indicate that an order oT magnitude »f 100 to 1 's a reason-

able vi'ue for a machine which is ideally suited for simulation of macromodules. Of course, for

simulation en a typical digital computer the ratio is likely to be much h'^her.

6.2.2 THE CALCULATION

i 2.2.1 THE PROBLEM

As H typical macromodular operation, take a register to register transfp operation operating on

?6-bit registers. This corresponds to three register macromodules connected to form one larger register.

The . ttive data gate on the destination register is the fourth one from the registei in the stack of data

ga'es. Finally, it is assumed that there are five data processing modules above the* register. These

details err important because operation times are dependent on these factors. Although formulas can be

derived for liming operatums, this is not an appropriate plac5 for presenting this information.'3 The time

for this operation in the actual macromodules is 250 nanoseconds.'4 Experienced intuition is the only

guide for describing this as a typical operation.

62.2.2 THE SIMULATION MACHINE

Thi machine which will be ashamed in this calculation is ideally suited for simulation of r.iacro-

modi 'es in that it follows the speiificaiion of the meta macromodUe machine. This means thai the

machine c^n simulate the register transfer operation with only one instruction. However, because a

basic i2 bit machine is postulated, several memory references are requited to perform the operation.

Our calculations therefore involve counting only memory references. One nemory reference is required

to access t! operation code. A memory reference is require& to ge. the addresses of -he memory

locations for the. three source and three destination registers. Finally three words of data must be read

from memory ano "lored into three other memory locations Therefore thirteen memory references aie

required to perform the operation described in section 6.2.2.1 If a memory cycle time of two micro-

seconds is used, the total tim' for simulation of this operation is 26 microseconds. This is 100 times

the 250 nanoseconds required for the actuai operation. If a one microsecond memory is available,
the ratio becomes 50 to '..

6.2.3 CONCLUSION

It has been shown that a ratio of 100 to i for functional simulation time compared to actual

operation time is realistic. The reader should be cautioned .nat this ratio holds only foi the particular,

-29-

but realistic, situations described here. If functional simulation is to be a realistic design aid ratios

of this order are required.

Because this ratio can easily grow by decimal orders of magnitude, it is an extremely important

factor lor «.ranlatjrs ii be aware of. Nr matter how convenient a particular simulation tool may be, if a

user requires several hours of computer time to simulate a few econds of real lime, the tool is not very

iseful.

-30-

APPENDIX 6.3

AN EXAMPLE

6.3.1 INTRODUCTION

The example, which is part rf an actual investigation, concerns the requirement for translating

spherical to rectangular coordinates. The following equations define the translation:

x = p sin <t> cos 6 (I)

y = p sin <6 sm 6 (2)

z = p cos 4> (3)

The existence of a compiler for a FORTRAN-like language to the M4 operations is assumed. The

example will show the evolution of the coordinate translation from a completely internal version to on;

implemented entirely in macromodules. The routine finds the input arguments in three variables called

p, <^, and d. The output of the routine is left in three variables called x, y, and z.

6.3.2 INITIAL FORM

Initially the coordinate translation is to be specified as a program in a higher level language.

phi - phi * 3.14/180: I translate degree arguments

thttt = thcta * 3.14/180; j into radians

x = rho * sin (phi) * cos (theta);

y = rho * sin (phi) * sin (theta);) compute x, y, z

z = rho • cos (phi), }
The language is almost FORTRAN and the execution time for single pr vision,fixed point results is

estimated to be approximately 500 microseconds on a machine with a two microsecond memory cycle

time. The sine and cosine are computed by the standard, built-in trigonometric subroutines.

6.3.3 TABLE LOOK-UP

The next step is the realization that because the angles for this application are physically measured

with values known 'w only i l7 degree, the trigonometric functions can be performed by simple table

look-up. An externally implemented table look-up routine is designed and called by simulated macro-

modular call elements. Naturally <.]:' subroutine could be marked and run in internal implementation

for debugging purposes. Figure 6.3.1 shows.^he data processing module layout including those modules

necessary for communication with the M4, Figure 6.3.2 is the control network flow chart. Note that

internal functions are designed which operate on externally implemented registers.

6.3.4 IMPLEMENT TABLE LOOK UP CALL EXTERNALLY

The next step might be to implement the subroutine call externally. This is a reasonable step

because the internal execution of the call jnd return takes about the same length of time as the entire

-31-

■®e Tl

DATA-^Tl

®e DATA OUT

MEM —•► Tl

®e MEM

(REG)e T2

DATA -♦ T2

®e DATA OUT

MEM —^ 12

®e MEM

®e S

DMA —** S

®e DATA OUT

T1 ^ S

®e Tl

T2 —•> S

®e T2

(REG)e DATA IN

(52)e S

®e Tl

(S£)e T2

REG)P CONTROL RETURN

®e GOOO

DCDR)0 REG OUT

.DCDF^p REG OUT

DCDR)P CONTROL OUT

TABLE LOOK-UP - DATA PROCESSING MODULES

Figure 6.3.1

.-■.-:■ . , -.

-32-

(INTERNAL)

t
tl •^— t + SINTABLE j

t2 *-- e + COSTABLE j

^ TABLE LOOK-UP N \
x -*-/)* tl * t2

 L
tl*-«i + SINTABLE

t2*-e + SINTABLE

TABLE LOOK-UP

tl * t2

tl-^0 + COSTABLE

/ TABLE LOOK-UP \

p * tl

u (INTERNAL)

SINTABLE k COSTABLE ARE CONSTANTS

WHICH ARE STARTING ADDRESSES OF TABLES

TABLE LOOK UP SUBROUTINE

0
(EXTERNAL)

Tl

READ MEMORY

MEM -* Tl
r—®—* 12

READ MEMORY

MEM

0

v (INTERNAL)

TABLE LOOK-UP - CONTROL

Figure 6.3,2

-33-

table look-up operation. Because the subroutine is called from three places, three centre! lines in each

direction between the M4 and externally implemented functions are required. The data processing

structure is not shown because it is almost identical to Figure 6.3.1. The control neiwerk flew chart

is shown in Figure 6 3.3.

6.3.5 IMPLEMENT PARALLELISM WITH MOST CALCULATIONS INTERNAL

The next step is a redesign based en the fac 'hat it is possible to use seme concurrent processing,

it is possible to compute a sine or cosine function at the same time that a multiplication 'S being dene.

Also, there is a common subexpression in the equations for x and y which only needs to be computed

once. Finally, at this time ve do not wish to perform the multiplication in macromodules but do, however

want to shift the focus so that the coordinate translation is essentially controlled by the externally

implemented functions. Again we note that any of the macromodular functions may be internally imple-

mcrted by the M4. Figure 6.3.4 shows the data processing modules required, excluding most of those

used for communication with the M4. Figure 6.3.5 gives the control network flowchart.

6.3.6 ALL OPERATIONS IMPLEMENTED EXTERNALLY WITH MACROMODULES

Finally, the entire coordinate translation is implemented externally with macromodules. The

execution time for this implementation is approximately 20 microseconds, a 25 to 1 improvement in

speed over the original implementation. For this description a multiply macromedule is postulated evi i>

though it is not pari of the initial set of modules. Obviously, the multiply function can be implemente

in terms of the original set of modules.

The completely external implementation is shewn in Figures 6.3.6 and 6.3,7.

-34-

(INTERNAL)

(i)

(i)

tl-^-M SINTABLE

t2 -*- e + COSTABLE

(e)/"

0

TABLE LOOK UP

0

EXTERNAL SEQUENCE 0

EXTERNAL RETURN 0

(i) x^-p * tl * t2

I
tl <- «i + SINTABLE

t2 -^ e + COSTABLE

(e) / TABLE LOOK UP \

(i) y^-p * tl * t2

tl -•- 0 + COSTABLE

*)/ TABLE LOOK UP

(i)l z*_p * tl

(INTERNAL)

TABLE LOOK UP SUBROUTINE

(e)

Tl -*► S

READ MEM

MEM-*» Tl
" ©—*•

12-*- S

READ MEM

MEM -^ T2

(e)

TABLE LOOK-UP - EXTERNAL CALL - CONTROL

Figure 6.3.3

-35-

(RLG)P T

C^)P

D-^ T

P

(DG)e DATA OUT

u
MEM -* U

DG)e MFM

dDe P

s +

0e

COSTABLE

m m m m

S + SINTABLE

©e n n n n

(M)e S

t~*s
CDe 0

e -^S

(De e

(RDe X

f®e DATA OUT

(R|G)e Y

(De DATA OUT

(RDe Z

L
(De DATA OUT

IMPLEMENT PARALLELISM MOST CALCULATIONS

INTERNAL - DATA PROCESSING MODULES

Figure 6.3.4

(i)

(i)

(i)

(e)

-36-

(EXTERNAL)

p-^T
®-

6 -* S

S + SINTABLE

READ MEMORY

MEM -*- U

T *-! * U r ^J—- e -- S

/ S + COSTABLE
(e)

READ MEMORY

(e)

*©•
MEM -♦ Ü

 r^—©—* T * U V-^

(e)
H<R>K

e -♦$
S + SINTABLE

READ MEMORY

(e)

MEM -•• U

Y-«- T * U 4)—►

{e}

(e)

(1)

±.
I6--S

S + COSTABLE

READ MEMORY

[e)

MEM—^ U

Z -^ T * U

v (EXTERNAL)

IMPLEMENT PARALLELISM MOST CALCULATIONS INTERNAL - CONTROL

Figure 6.3.5

-37-

I T x

|(S)e

U -*►!

U

\(M)e T

 P_

lCM)e

~*"T

P 1

U x T -^ U 1

jClDe T '

(R^e u
MEM — u J

®e MEM

|(REG)e P 1

(«De t]

dSe 8 !

s

"©e"

+ COSTABLE 1

m TI m m ,

r©e~'
+ SINTABLF I

n n n n '

(REG)e S |

i®l
«5-^S j

0

e-^S j

®P e j

CREG)e
—

X j
U -* X 1

®e U J

U -^Y

U-*Z

COMPLETE EXTERNAL IMPLEMENTATION - DATA PROCESSING MODULES

Figure 6.3.5

-38-

Ic EXTERNAL)

■

^(R>-

S + SINTABLE

READ MEMORY

MEM -♦ U
temp

U x T <B)—^
costheta

-®*

e -*► S

S + COSTABLE

MEM -*- U

comp x

T x U -*- U

IZ

^—

READ MEMORY

sintheta

^

S + SINTABLE

READ MEMORY

MEM -*• U

comp y JL cosphi

TxU-U^f (&~^—~S

E -4>—
-MSK

S + COSTABLE

READ MEMORY

®-
MEM -*► U

T x U -► U

(EXTERNAL)

COMPLETE EXTERNAL IMPLEMENTATION - CONTROL

Figure 6.3.7

-39-

APPENDIX 6.4

A MACROMODULAR META MACROMODULE MACHINE (M6)

6 4.1 INTRODUCTION

This appendix summarizes the design of an M6 which has been referred to in the body of the

report. Ti e important details of the \h communication with external registers and control were pre-

sented in the body of the report and are not repeated here.

There IN one primary register, which is 36 bits long, where all the macromudular data processing

operations take place. Because of the great flexibility with which data cables may be connected, all

of the simulated data cable inputs to a function must be read from actual or simulated registers before

the operation starts. The M6 uses first-in fust-out buffer stacks for the purpose of holding these operands.

6.4.2 PROGRAM AND INSTRUCTION FORMAT

The program and instnetion format of M6 is analogous to a stored program digital computer. In

general commands are stored in memoiy which describe macromodular operations and are executed

sequentially except for decision-making operations. Along with each command is stored information

regarding the simulated registers which are to be used in the command. The operation sequence can be

broken by unconditional o: conditional transfers to other sequc-.ces of operations. In this section we

assume that the M6 has a 4096 word x 12 bit memory. Expansion of memory capacity can be handled

by some type of paging scheme. The M6 really should also be capable of executing instructions to

perform I/O and other support functions. These are not discussed further here.

The command is a two word sequence in which the first word is used to specify the macromodular

operatioi; and the second word is used to flag options on the command. The only flagged operation

currently specified is the very important one of specifying whether or not control is to remain within the

tneta machine or is to exit to externally implemented macromodular functions. Only one bit is needed to

specify this option; however, if control is to exit at this point, the remaining eleven bits are used to

specify the external control sequence. This allows 2048 different external control sequences to be

specified.

As long as no concurrent operations are implemeited, external control f j-.ieration and return is

quite simple. However, if concurrent operations exist and some of them are external and some are

internal, the situation becomes more complex. It is required that all externally impleniented concurrent

operations proceed in a truly concurrent form while internal operations proceed in the required sequential

form. A first-in first-out stack is used to remember internal control sequences which have been encoun-

tered but not executed. Rtlurning external control signals put the address of where internal operation

is to resume into this stack. Thus, as internal rendezvous elements are encountered, the uncompleted

sequences ate executed but external control may be executed in true concurrent form.

Data refeiences to rea1 or simulated registers consist of a sequence of addresses of register

specifications preceded by an integer which specifies the number of ba'.iw 12 bit register modules in

the reference. There are as many consecutive sets of data references as are called for by a particular

macromodular f iction. For example, iata gates and registers require two data references while a

comparator requires three. The following forms indicate the use of a data gate operation for both 12

and 24 bit data references;

-40-

12-BIT

word n data gate
n ♦ 1 flag
u ♦ 2 1
n + 3 source re^istsr sreuification address
r ^ 4: 1
n ♦ 5: destinUion register specification address

24-BIT

word n: data gate
n + 1: flag
n + 2; 2
n + 3: source register sp;cification address fot bits 0-11
n + 4; source registe; specification address for bits 12-23
n + 5; 2
n + 6: desti.i-'tion register specification address for bits O-H
ii ♦ 7: destination register specification address for bits 12-23

Register specifications consist of cither a single word or two consecutive words in the
M6 memory. The first word contains one bit which specifie» whether the register is simulated
in memory or exist« üuisidc the mela machine implemented as an actual macromodular register.
If this is the ca; -, the remaining 11 bits are used to specify a registe: number. Ftiüs it is
possible to access a total of 2048 externally impletr:nted regis.ers. If .lie register is simu-
Inted within memory, the first specification word also contains a bit which is a true reflection,
in the macromcdulv.- sense, of the overflow condition of the register. The remaining ten bits
are available for other, fnure uses. Finally ,the seco; J word holds the contents of the
simulated register.

Control operations in M6 ire analogous to those in stored program computers. For non-
decision operations control passes to the next operation specified in contiguous memory-
locations. A location register is used as in a programmed computer. Decision operations
interrupt the consecutive flow of control for all possible decision outputs. A "ransfer of control
is specified by a 12 bit address which indicates the start of a nev control sequence. This is

directly analogous to branch or jump instructions in a stored program computer.

6.4.; UATA OPERATIONS

The instruction formats of all macromoajles whici; process or monitor data are presented
here. Each word of the operation is not specified in detail. Specifically, the command and
flag words are assumed to be part)f the mnemonic for t^e operation and the details of the data

•references arc subsumed in »he notation: operand,, cperand2. etc Note also that the numerical
code for ;ach operation has not been specified, "n general, the 'rst operand specifies a c.ble
input, and the second operand specifies the register on which the command operates. The
parentheses are used to denote, the contcnis of the register specif,ed by. Thus, (op rand.)

means that operand, is a register specification address and the data described by th'ji specifi-
catioii are used in the operation.

-41-

DATA GATE

dg, operand,, operandj

(operand,) -, (operand2)

ADDER

ad, operand,, operandj

(operand,) + (operandj) . (operand-,)

SUBTRACT CABLE

subc, operand,, operand2

(operand2) - (operand,) -. (operand2)

SUBTRACT REGISTER

OR

subr, operand,, operand2

'operand,) - (operand2) -• (operand2)

or, operand,, operand2

v-tperandp + (operand2) ■• (operand2)

EXCLUSIVE OR

Xor,operand,, opciand2

(operand,)('+.(operand2) -♦ (operand2)

AND

and, operand,. operand2

(operand,) . (operand2> • (operand2>

WRITE MEMORY

wrm, ad;'..ess cf memory specifiiation, operand,, operand2

The ccntents of the register specified by op-rand, are ured as thi address at which to
store the contents of the register specified by operand2. The memory specification consists
of ne or two consecuti.e words which give the address in the memory of the M4 which corres-
ponds to address zero of the simulated memory. Consecutive 12 bit words are used to store
the data. The operation does not pemit writing into 12 bit fields of a wider memory module,
an operation currently under feasibility study by the designers of macromodules.

1 llf HMW« -, i.-i-rKüäBiSii

-42-

READ MEMORY

tdm, addr of memory specification, operand,, operandj

The contents of the register spccifieJ by operand, are used as an address whose contents are

moved into the register specified by operand.. Th" other details of the operation are specified in the

in the previous paragraph.

SHIFT LEFT

shl, operand,, operandj

(operandj) is shifted left one bit position. The left most bit is lost and the vacated bit position
is filled from the left most bit of toperand,).

SHIFT RIGHT

shr, operand,, operand,

(cperandj) is shifted right one bit position. The right most bit is lost and the vacated bit position
is filled from the right most bit of (operand,).

6.4.4 CONTROL OPERATIONS

This section specifies the macromodular control operation commands.

COMPARATOR

corns i.odwss,, address^,, operand. operand2> operand3

The cctcnls of the register specified by operandj are compared to the contents of the register
specified by o^rand, using the contents of the register specified by operandj as a mask. If the com-
parison is false, the next command is taken from address,. If the comparison is true, the next command
is taken from addres^. No data ace changed by this operation.

TEST OVERFLOW

tov, operand], address,, address]

If the ov ..flow indicator of the register specified oy operand, is on, the next command is taken
from address,, o:.-^rwise the next command is taken from address].

TRANSFER OF CONTROL

to, address,

Control is unconditiopally transferred to the comrand at address,.

CALL ELEMENT

cle, address,, address]

-43-

Control is transferred to the first command of the macromodular subroutine which starts at
addressj. The command at address, must be a transfer of control w! ch is used to return control to

the place from which the subroutine was called.

DECISION CALL ELEMENT

dee, address,, address2) addre^, address,,, addresss

Control is transferred to the tv return subroutine beginning at addresss. Address) is the address
of the command which follows the call for one return of the subroutine. Address^ is the address of the

transfer of control at the end of the subroutine for this same return. Address* and address^ have the
same functions as address, and addressj for the other return from the subroutine.

BRANCH UNIT

bru, address,, addressj

The branch unit initiates the two concurrent sequences which start at address, and address?
Externally implemented sequences are initiated immediately while internal sequences are ini iated in
turn with more than one stored in the control stack.

RENDEZVOUS UNIT

rvu 1, rvu r, mark

The rendezvous unit terminates concurrent sequences. Thei 'e two inputs, left and right, which
must be specified in that order. The mark word is used to indicate whether or not the rendezvous has
had both inputs activated. If contrc! has been activated at both inputs, the command immediately
following is executed. If only one input has been activated, control must pass to a sequence whose
starting address has been stored in the control stack.

DECODER

dec, operand,, operand2, address0, address,,.. , address^

The contents of the register specified by operand, used a^ a mask which indicates three con-
tiguous bits of the register specified by operandj to be decoded. Control passes to address., address,

depending on the octal value of the three decoded bits.

INTERLOCK

Not simulated.

6.4.5 EXAMPLES OF THE M6 DESIGK

Although it is difficult to present some of the design of the M6 without presenting the detailed
design in its entirety, this section will discuss, in general terms, the design of a few selected areas
of the M6.

s

-44-

6.4.5.1 DATA FETCH

An important operation in the M6 is the fetching data which is to be u^.ed as a cable input to a
simulated operation. The data may consist of any number of register segments up to the capacity of the
buffer stacks mentioned in 6.4.1. There is also the requirement that any of the register segments may be
implemented externally. The design is shown as a general flowchart in Figure 6.4.1.

6.4.5.2 AND OPERATION

The AND operation represents that class of macromodular data processing functions which can be
performed by simple iteration of segments. Each segment is complete by itself and there is no need to
know information from any other segment. The design of the AND is presented in Figure 6.4.2. Notice
that all segments for the cable input are fetched and stored into a buffer stack. Then each segment for
the register operand is fetched, the next cable segment read from the stack, the operation performed, and
the result restored to the proper segment. The operations concerned with fetching and restcung the
register operand segments contain commands similar to those discussed in 6.4.5.1.

6.4.5.3 ADD OPERATION

The ADD operation represents a class of operations in which each segment is dependent on other
segments. In this case, provision must be made to propagate the carry generated in each segment on
to the next segment. This is done by having registers to the left and right of the i>;gister where the ADD
takes place. The carry is generated into the leftrrost register which is then moved to the most, signifi-
cant bit position of the rightmost register. The ADD operation then adds zero to the leftmost register,
the cable segment to the center register, and a constant with a one in the mos'. significant bit position
to the rightmost register. The overflow indicator is cleared fo; all bit the most significant segment. The
design is described by th" flowchart in Figure 6.4.3.

6.4.5 4 COMPARE OPERATION

The COMPARE operation represents those operations which cause a transfer of control. This is
simply a matter of moving one of two possible addresses to the P register or location counter. The
COMPARE operation requires two cable inputs. Because no data is changed, there is no need to restore
any segments. Finally, if the comparison fails on any segments except the last, the remaining segments
are not checked but there is some overhead required to clear the previously filled buffer stacks. The
design of the COMPARE operation is shov .i in Figure 6.4.4.

-45-

GET NUMBER OF SEGMENTS

YES I
THRU -*-

NUMBER OF SEGMENTS
TO BE DONE * 0

NO

GET REGISTER
SEGMENT FLAGWORD

I
REGISTER SEGMENT
LOCATION?

EXTERNAL

EXTERNAL REGISTER
SEGMENT-♦ BUFFER

INTERNAL

DATA FROM
MEMORY-►BUFFER

DECREMENT NUMBER OF
SEGMENTS TO BE DONE

T

-KR>

DATA FETCH FOR SIMULATED OPERATION

Figure 6.4.1

-46-

m FETCH CABLE SEGMENTS

INITIALIZE REGISTER
SEGMENT FETCH

I <l>
FETCH NEXT
REGISTER SEGMENT

READ SEGMENT FROM
BUFFER STACK

PERFORM MACROMODULAR
AND WITH REGISTER &
OUTPUT OF BUFFER

THRU «•-

CLEAR OVERFLOW
INDICATOR

*®.

RESTORE SEGMENT
RESULT

YES f ALL SEGMENTS
DONE'

NO

DECREMENT
SEGMENT
COUNT

THE AND OPERATION

Figure 6.4.2

-47-

INITIALIZE ADD
OPERATION

FETCH CABLE
SEGMENTS

*®-
INITIALIZE REGISTER
SEGMENT FETCH

FETCH NEXT
REGISTER SEGMENT

1
READ SEGMENT
FROM BUFFER

■®-~

YES c
ADD OPERATION

i
LAST SEGMENT ?

>

NO

FIX OVERFLOW
INDICATOR

CLEAR OVERFLOW
INDICATOR

T
RESTORE SEGMENT

RESULT

THRU -*■ ALL SEGMENTS
DONE?

YES/"

L (5>
PROCESS
CARRY

DECREMENT
SEGMENT
COUNT

-KRV

THE ADD OPERATION

Figure 6.4.3

, - . , ! - -

-48-

INITIALIZE COMPARE OPERATION

FETCH CABLE1 SEGMENTS

FETCH CABLE2 SEGMENTS

INITIALIZE REGISTER
SEGMENT FETCH

FETCH NEXT
REGISTER SEGMENT

READ CABLE SEGMENT
FROM BUFFER

TRUE C COMPARE?
DECISION
CALL

DECREMENT
SEGMENT
COUNT

TRUE
NOT LAST

FALSE

TRUE
LAST

LAST
SEGMENT?

YES

FALSE
NOT LAST

FALSE
LAST

NO

1
SKIP OVER
REMAINING SEGMENTS

-*t*

DO TRUE
BRANCH

DO FALSE
BRANCH

THE COMPARE OPERATION

Figure 6,4.4

-49-

7. REFERENCES

1. Estrin, G., Organization of Computer Systems: the Fixed Plus Variable Structure Computer,
Proceedings of the Western Joint Compuiei Conference, 1960, 33-40.

2. Clark, W. A., et al, Macromodular Computer Systems, Proceedings of the Spring Juint Computer
Conference, 1%1,335-401. Reprinted as Technical Report No.4,Computer Systems laboratory,
Washington University, St. Louis, Missouri, June 20,1967.

3. Cox, J.R., Economy of Scale and Economy of Specialization, Submitted for publication.
4. Molnar, C.E., Ornstein, S.M.. and Anne', A., The Chasm: a Macromodular Computer for Analyzing

Neuron Models, Proceedings of the Spring Joint Compute; Conference, 1967, 393-401.
5. Ball, W.E., A Macromodular Meta Machine, Proceedings of the Spring Joint Computer Conference,

1967. 577-592.
6. Rawizza, A.R., Valgol II Machine, M.Sc. Thesis, Washington ''nivcrsity, St. Louis, Missouri,

June, 1967.
7. Molnar, C.E., A Macromodular Fourie/ Transform Compurer,Technical Memorandum No.38, Computer

Systems Laboratory, Washington University, St. Louis, Missouri, August 8,1967.
8. Franrford.C, and Ellis,R.A., Macromodular Simulation on the LINC, Technical Memorandum No.l,

Compi'tor Systems Laboratory, Washington University, St. Louis, Missouri, August 24, 1966.
9. Dammkoehler, R.A A Macromodular Systems Simulator (MS2), Proceedings of the Spring Joint

Computer Conference, 1967. 371-376.
10. Kitch, D.. and Kcller,R., A Macromodular Programming Language (MACPL), Technical Memorandum

No. 43, Computer Systems Laboratory, Washington University, St. Louis, Missouri, October,1967.
11. Ellis, R.A., A Macromodular Meta Macromodule Machine (M6), Technical Memorandum No. 47,

Computer Systems Laboratory, Washington University, St, Louis, Missouri, November, 1967.
12. Couranz, G.R., A Proposed LINC-Macromodule Interface, Technical Memorandum No.33, Computer

Systems Laboratory, Washington University, St. Louis, Missouri, August 15, 1967.
13. Stucki, M.J., Timing Study: Transfer Logic of Modules Containing r/ieUp-ßus. Technical Memoran-

dum No. 44, Computer Systems Laboratory, St. Louis, Missouri, October 24, 1967.
14. Stucki, M.J., Personal Communication.

if t

BLANK PAGE

^m'-im%i.mm>M*r«.^m m ."/ >_ ••ft^mmmmmm

Unclassified
Security CU««ific«tion

DOCUMENT CONTROL DATA R&D
(Smtuilty claflllcnior. ol nil», body ol aLtlrmcl mmt Indflnj mtngimllon AIU»(b» tnfrmd whmn lh» ovrall tmpoet I» elmtmllMj

I. ORioiNATiNC ACTIVITY (Corporal* author)

Computer Systems LaboraJory
Washington University
St. Louis, Missouri

la. ntPomr SBCURITV CLAtairicATioN
Unclassified

ab. GROUP

1 REPORT TITLC

A Unified Approach to the Design and Use of Restructurable Computer Systems;
The Meta Macromodule Machine

4. DESCRIPTIVE HOTt» (Typa ol rapotl and Intlualira daiaa)

Interim
8. ALMHORISI (Flral naota, mlddla Inlllal, laal nama)

Robert A. Ellis

«. «EPORT DATE

January, 1968

7a. TOTAL NO OF PAGES

49

lb. NO. OF REP'S

14
M. CONTRACT OR GRANT NO

(1) DOD(ARPA) Contract SD-302
(2) NIH(DRFR) Grant No. 00218

b. PROJECT NO.

(1) ARPA Project Code No. 5880
c Order No. 655

M. CRIOINATCR'l REPORT NIJM-»ER<»)

Technical Report No. 7

»b. OTHER REPORT NOISt (Any othar numbar* thai may ha aaaljnad
Otla raport)

■ C DISTRIBUTION STATEMENT

Distribution of this document is unlimited

II. SUPPLEMENTARY NOTES 12. SPONSORING MILI 'ABY ACTIVITY

ARF'A-Information Processing Techniques,
Washington, DC. N.I.H., Div. of Research

13. ABSTRACT

A restructurable computer system offers the user an evolutionary approach to the design and use of
computer systems. To support this, a unified approach is proposed in this report. A meta machine
and its environment are described which provide the ability to treat a macromodular description of a
system as a program to be executed or as aaset of specifications from which the system may be

directly implemented in macromodules. ■

IMr\ FORM 4 A 1** REPLACES OO rORb l«T>. I J
y y , NOv (g I 4 / & OrSOLBTS POR ARMY USE.

AN •«, WHICH I«
Unclassified

Security Cta» jlflcaUon~

..J=^ ^--^■-r^^,' \S~ifEfüä£S^m,A n&üi^iUaaUaK A3£n»f«» *., ■&-;-!«

Unclamified
BCSMS CU«>l;'te«"tton

KtV WOROS
ROLfl WT

Pestiucturable Computer Systems
Macromodular Computet Systems

Functional Simulation
Operating Environment
Use of Restructuraole Computer Systems

Evolutionary Design
Uniform Hardware-Software Notation

Bacurltr CUasincation

