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t; ABSTRACT 

A restruclurable computer system offers the user an 
evolutionary approach to the design and use of computer systems. 
To suppcut this, a unified approach is proposed in this report. 
A meta machine and its environment are described which provide 
the ability to treat a macromodular description of a system as 
a program to be >.xecui<.d or as a set of specifications from 
which the system may be directly implemented in macromodulcs. 
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A UNIFIED APPROACH TO THE DESIGN 

AND USE OF RESTRUCTURABLE COMPUTER SYSTEMS: 

THE ^iETA MACROMODULE MACHINE 

1.  INTRODUCTION 

The macromodular project at Washington University is i particular implementation of a class of 
computer systems which are restructurable.1'2 A reslnictut.xble computer system is capable of a 
flexibility in hardware that has long been possible only by programming. In addition, the macromodula: 
concept proposes to make this testructurability available to the user without "quiring him to be concerned 
with logically irrelevant engineering details. The user will have functional units of the nature of 
registers, adders, subtracters, etc.,whose electrical and timing details have been solved for him by the 
designers of the macromodules. 

Although several computer and systems designs have been investigated in the course of the 
of the research, no one has attempted to investigate in general the operating environment of a macro- 
modular system. In particular, the support necessary to achieve the smooth, evolutionary approach to 
computer design that macromodules promise has not yet been investigated. This report identifies the 
problems associated with this evolutionary approach and proposes specific measures to support it. 
The unified approach of the title te»ers to the ability to treat a macromodular description of a system as 
a piogram to be executed or as a set of specifications which will allow the user to directly implement 
the system in macromodules. Central to the approach is the concept that the user-designer may choose 
to implement whatever sections of the design he wishes and leave the rest to be run as a program. 
The paper includes an investigatior, in detail, of that which is necessary to implement the unified 
approach. 
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2. THÜ PROBLEM AND A PROPOSED SOLUTION 

2.1 RESTRUCTURABLE COMPUTER SYSTEMS 

The advantages of restnn turable computet systems have been well documented in the literature.1'2 

The ability to easily construct special and genera! purpose cennuters whose design is tailored to a 
single class of problems is a most desirable goal. Indeed tf.e ecoumy of specialization3 may far outweigh 
the economy o/ scale which has been so completely taken as an absolute truth in the computer field. 

2.2 MACROMODULAR SYSTEMS 

The macromodular project at Washington University is an investigation of a concept of restructurable 
computer systems.2 For the present, macromodules consist of a set of relatively simple, easily inter- 
connected modules from wh.ch working systems can be easily assembled. The modules are functionally 
large enough to reduce logical detail by a significant amount and are relatively easy 'o understand and 
assemble. The modules are directly combined to form larger structures by straightforward mechanical 
assembly and easily connected cables. They have been designed so that the assembling of these units 
into working systems presents no logically irrelevant details such as those related to circuit loading, 
waveform deterioration, signal propagation delay, and power supply interactions regardless of the size 
and complexity of the system. 

2.3 AN OPERATING ENVIRONMENT FOR MACROM^JULAR SYSTEMS 

While   several   computer systems have been designed utilising macromodules,4'S'6'7  very little 
investigation   has   been  done concerning  the operating environment  and the problems that the gr;at 
generality ci icstructurable computer systems pose.  The reason is understandable:   the lack of precedent 
in the   field  tends  to overshadow all  else.     A very reasonable  approach  is  to adopt a wait and see 
attitude with regard to any conventions or aids relating to the use of macromodules. 

It is interesting to note that most of the systems which hav been designed have relied on a fixed, 
rrogrammable computer for support rf the macromodular machine. In some cases5'* the support required 
is merely a replacement for those mpcromodules which have not yet been designed i.e. Input-Output 
while in other cases4 the supporting machine is used to perform some of the operations. Hlc'^comment has 
generally beert made coacerning macromodules that it is difficult to see a situation in which some fixed 
computer would not be required to give operating &ni programming support to the collcciic-n of macro- 
modules. 

2.4 PROBLEMS INTRODUCED BY MACROMODULAR SYSTEMS 

There are several problems, other than the obvious one of programming support, which are inherent 
in the macromodular concep.. For example, one may not wish to actually implement all of a design in 
macromodular Hardware at any one time. There is a general reason for this in that the evolutionary 
approach to the design of a suitable configuration of macromodules is certainly desirable. This is 
often cited as an advantage of restructurable computer systems, but it does not automatically follow. 
There may be other reasons for not actually constructing the complete system. For example, there 
might be a problem with inventory if several asers arc sharing a common inventory of macromodules. 



Finally, there appears to be no real reason, c/.cept for absolute necessity, for actually building special 
configurations. The necessity almost always concerns time in ben real-time an : s;'.aisht computation 
situations. 

Anoti.er problem is tha if one wants to make a change in an already working system, the wires 
have to be changed. It is prcb^' ly not feasible to make a copy of the frame wiring so it will be difficult 
to back up from changes which have been made but do not yet work. Analog computers ! ave removable 
patch panels for interconnection of processing eleinents. However, these panels restrict the number and 
types ot connections which can be made. Maciomodules require the possible interconnection of any 
module to any othei module; a feat not possible with analog computer patch panels. To further complicate 
matters, the physical arrangement may have changed due to the addition of new modules. It will also be 
very difficult to make a quick change to see what effect it has on the operation of the system. This is 
a very important problem and one which has been somewhat overlooked until now. 

Finally there is the problem of simulation.   A natural tool to use in an area of hardware development 
is functional simulation.    Simulation allows one to largely correct a design before building ;   and to try 
out proposed changes.   With simulation comes a ver;  large overhead.   It seems difficult to improve the 
approximately  1000 to 1 ratio in lime with any of the   simulation efforts to date.8-'''0   The 1000 to 1 
figure  is   actually  quite optimistic because  it is quite  easy to  increase  the ratio  several times by 
inefficient code or increased power and flexibility of the simulation effort. 

2.5   A UNIFIED APPROACH 

The ur'fied approach in this report refers to the capability of treating a description of a macro- 
modular system as a program which may be executed or as a set of specifications which will allow the 
user to  directly  implement the system.    It is  proposed   in  support of the unified approach, that an 
essentially fixed machine be constructed whose primarv function is to route control and date transfer 
operations as specified by a description of a macromodular system so as to mediate between actually 

implemented functions and those which must be simulated.   This function defines a class of machines; 
however, enough of the details of the external appearance required of tht JC machines will be defined 
that this class is reduced to a specific machine for the purposes of this paper.   Although an analogy 
between this description and a program has been introduced here, the reader should be cautioned not to 
expect this meta macromodnle machine M4 to have the typical order code organization of conventional 
stored program  machines.   Obviously, the M4 must have suitable features to enable it to interact with 
the   external   macromodular   structures.     A  common,  machine-readable   description of a macromodular 
system can now function as a program for the meta machine or as a specification for actually constructing 
all or parts oi the system.   Functions which must be simulated aje identified as internally implemented 
tunctions while those actually constructed from rracromodules are called externally implemented functions. 
With  proper  design  it is  possible  to sv/itch actively between internally  and externally implemented 
functions at the lowest possible level of macromodular primitive; operations. 

Figure 1 shows the several components of this unified approach. The maciomodular component 
consists of the user-designed functions which are implemented by macromodales. This component is not 
discussed in this paper. The interface, which partly overlaps the macromodular component, permits 
communication between externally and internally implemented macromodular functions. The overlap area 
consists of the conventions which must be observed in implementing the macromodular component in 
order for it to work with the interface.   The entire interface is specified in detail in Sectior 4. 

The M4 control permits internally implemented macromodular functions. The macromodulc simulation 
component, which is only a part of the M4,  provides the capability to perform internally implemented 
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macfomodular functions.   The M4 control plus those areas of the macromo    le simulation which directly 
interact with it are discussed in Section 3.3.   The details of simulation oi macromodules by hardware or 
software is not of great interest in this report, but some considerations are pusented in Section 3.4 and 
one particular scheme is discussed in Appendix 6.4, 

Finally,  lha details of the general purpose computation, component are beyond the scope of this 
report; however general comments regarding this component appear throughout the r'pott. 

2.S ADVANTAGES OF THE UNIFIED APPROACH 

nc lack of irrelevant engineering detail required in the  design of macromodular systems puts a 
JbScription of such a system on the level of assembly language programming.   The description can ignore 
such details   as   actud physical   arrangement  of modules   and wire placement and leave them for the 
construction phase.   This means that the description and program for the M4 can be truly idcnlical in all 
resptcts.   The proposed meta machine approach requires that only those critical portions of the design 
need to be implemented in hardware.   Also, proposed changes may be made to the programmed structure, 
checked out, and only then built with actual macromodules. 

Initial studies indicate that the meta machine can typically simulate non-memory operations at a 
ratio of 100 to 1 in time and that 50 to 1 is perfectly feasible. See Appendix 6.2 for supporting calcu- 
lations. Memory operation jmes approach to a 1 to 1 ratio between externally and internally i...oleracrUea 
functions. The meta machine can also be used to provide prograr.iraing support fo»- ihe im.cTomodular 
configuration and in any of the supporting roles whi<;h require a stored-program compvte . rinal'y, it can 
be seen that the meta machine can itself be constructed from macromodulss. We call th.s the macro- 
modular meta macromodule machine f'6. Of course in tie rna! sense, the meta machine should be 
constructed in a fixed form except for certain sections. 

Because the M4 is essentially fixed, a compiler for hight-r level languages can be written for it. 
Then, these languages could be used for macromodular descriptions although because of efficiency of 
equipment considerations their results would probably only be executed internally to the M4. If this 
higher level language work were done with the unified approach in mind, it would be possible to describe 
the solution algorithm in these higher evcl languages in a compatible manner, particularly if operating 
efficiency could be sacrificed.   See Appendix b.3 for an example 

2.7   PROBLEMS ASSOCIATED WITH THE UNIFIED APPROACH 

The UH« of a meta macromoduH machine is not without problems. The cistin^tion between 
hardware and p-ogram-implemented structures must be at the lowest possible level. This means that it is 
possible to impl'men. one register, or one add operation, or even a single control branch as hardware 
in the operating ei.vironment envisaged here. 

Another problem occurs with the basic unit of storage, the register.   It is impossible for a register 
to exist both as actual hardware and simultaneously as a storage location within the memory of the meta 
machine because of the proHlems of maintaining both images.   Once a register exists in macromodular 
form, all references to it must nier to the actual register. 

A problem also exists in the control area.   Naturally a means must be provided for control to cross 
the boundary between haidware and program in both directions.   This is reasonably straightforward until 
we consider concurrent processes.   Concurrent processes must be executed in an equivalent sequential 
order within the  meta machine and  any implemented in macromodules must be executed in parallel if 
at all possibl«. 

-j   - "'■anfiyntn'a 
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Naturally the meta machte must be capable of tepresenling macromodular systems subject to 
♦*»« constraint of indefinite extension. In general this rrust be accomplished without rescrt to changing 

the meta machine. 

«.rtB-ffi.   p   



-7- 

3.  DISCUSSION OF THE META MACROMODULE MACHINE 

3.1 INTRODUCTION TO THE DISCUSSION OF THE META MACROMODULE MACHINE 

In this section the organization, operation, and implementation of the meta macromodule machine 

are discussed. The basic requirement of the meta machine is that it be able to route control and data 

transfer operations and communicate with external macromodular structures as specified by a description 

of a macromodular system. Questions of the operations of the M4 are required to support the unified 

approach are discussed in terms of macromodular designs. 

3.2 ORGANIZATION OF THE META MACROMODULE MACHINE 

The most obvious organi?ation of the M4 is as a   basic computer whose order code consists of 

the   primitive   operations   available   with  macromodules  plus   control  and  data options  which permit 

communication with external macromodules.    A suitable programming language could then be de /eloped 

to   accompany  this machine.     For  example,  any   of th'   functional macromodular simulation languages 

could provide a model for this development,8''',3 or ^ee Appendix 6.4 for a specific example. 

This approach is less than satisfactory, however, because a given macromodule can often be used 

in several different ways. For example, a data gate rrr romodule may be used to transfer data into a 

macromodular register or to indicate data to be stored intr a macromodular memory. Indeed, it is possible 

for a single, multiple-length data gate to perform both of these operations simultaneously. This is in 

contradiction to the simulator languages which treat these as two distinctly different operations because 

of the lack of context dependence in such languages. Also, should new slightly different macromodules 

be designed, it is just possible that t'ie functional language descriptions could not handle such new 

modules. 

The requirements imposed by command oriented languages are awkward wh^n compared to the usual 

mac.oiiTy jular design process. A macromodi'lar sysiem is cc.npletely described by a picture of the 

connectivity of data processing operations and a flowchart of the control operations which are performed. 

This rotation is desciibed as a uniform and consistent scheme of notation in Appendix 6.1. A far more 

direct approach would be to find some suitable way to enter the diagrams and flowcharts into the meta 

machine and have the execution diret'iy oriented to the actual internal operations of the macromodules. 

Because of the above, all of the material in this report is presented independent of any actual machine 

langiMge code for the M4. 

3.3 OPERATIONS OF THE META MACROMODULE MACHINE 

Now   the   internal  operations of the meta machire  are described which ar?  required tc support 

externally implemented macromodular functions.   The operations which must be supported are the transfer 

of data   in both directions across  the M4-external  interface  a.id the ability of the M4 to generate and 

accept macromodular control signals   'rhe external aspect of these operations is discussed in Section   4, 

For the present, we are not concerned with the rest of the M4. 

It is assumed that registers and controi points are properly marked in the description so that the M4 

may make the decision between external or internal implementation. For an example of a suggested 

symbolic marking technique, see Appendix 6.1. A more detailed possibility for the marking is presented 

in Appendix 6.4.    For external implementation, a number must be associated with each unique register 

:~.-:^-- 
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and control point to serve as a reference for the purpose of crossing the interface between the M4 and 
externally implemented functions. It is possible that extra memory will be required in the M4 to provide 
space for this marking duta, but this must be accepted in an approach with as much generality as is 
being proposed here. This marking function must be a cential part of the Vi4 design so that all irternal 
operations may make use of it. 

3.3.1 DATA FETCH FROM EXTERNAL REGISTER 

Figure 2 shows the operations necessary to 'etch the contents of an externally implemented 
macvomodular register. The number of the external register, which is available as a consequence of 
the operation of the M4, is first transferred into the External Register Select Register. Control then 
exits to the external environment and fetches these data as shown in Section 4.2. After the data have 
been made available to the M4. control returns to the M4 for processing of the data. Note that only one 
such operation is executed at one time because as far as the M4 is concerned all data are transferred 
sequentially in 12-bit segments. 

3.3.2 DATA STORE INTO EXTERNAL REGISTER 

Figure 3 shows the internal operations required to store data into an externally implemented 
macromodular register, i'he operations are analogous to those of Section 3.3 I except that control exits 
and returns at a different set of control points. 

3.3.3   SOME INTERNAL CONTROL OPERATIONS 

Before discussing control signal generation and return, it is necessary to discuss, in general 
terms, the internal M4 operations required to start the next internally specified macromodular function. 

Figure 4 shows the operation when strictly sequentia  functions are specified. 
If the next function is internally implemented, it is decoded and executed in a form similar to the 

typical stored-program computer. If the function is externally implemented, an external control signal is 
generated as explained in Section 3.3.4 and ihen control enters a wait status. Central to the control 
structure of the M4 is a stack, which can be either first in-first out or last in-first out, which is used . 
remember control operations which cannot immediately be executed. Returning external control, as will 
be shown in Section 3.3.5, forces a pointer to the next internal function to be performed into the control 
stack. The wait status therefore simply causes a pause in operation until a pointer becomes available 
at the top of the stack. 

Concurrent control requires that at least two functions be performed at the same time. This two- 
way splitting or branching must be capable of operation for all combinations of external and internal 
functions specified as the branch operations. Also, it is required that all concurrent sequences whi'-'n 
are externally implemented be truly concurrent with each other and with internally implemented functions. 
Finally, it is required that internally implemented functions are executed in correct sequential order even 
if concunent processing is indicated.   Figure 5 shows the design for initiation of concurrent control. 

3.3.4 EXTERNAL CONTROL OUTPUT 

Figure 6 shows the design for generation of external control. Concurrent operations are possible; 
therefore the rendezvous is used to  protect the operation of storing a new control sequence number. 
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The dot by ont of (lie rendezvous inputs indicates that the rendezvous is preset with that input active. 
Note that the returning control signal External Control Started indicates only !' at the externally imple- 
mented sequence has been started and a nev sequence number can be loaded, not that the external 
control sequence has actually been completed. 

3.3.5 EXTERNAL CONTROL RETURN 

Figure 7 shows the design for the NW operations which process external control sequence returns. 
The interlock is required because control returns occur asynchronously with respect to other M4 oper- 
ations.    The M4 memory must contain a 'able which relates returninp. control sequence numbers to the 
place in the  description where internally implemented functions are U. be resumed.    The pointers, when 
read from memory, are placed into the control stack where they are eventually read and used by the M4. 

3.4   IMPLEMENTATION OF THE META MACROMODULE MACHfNE 

This report has intentionally remained gene al and has not specified any particular implementation 
of  th;  M4.     In  this  section  some  comments  ate made  concerning  several possible implementations. 
Each  »mplementaticn has  its   own particular characteristics which may indicate  which implementation 
would be better for a particular application. 

3.4.1 MACROMODULAR META MACROMODULE MACHINE 

The most obvious implementation, in macromodules, is described in detail elsewhere1 ' and is 
summarized in Appendix 6.4. This implementation is flexible in that newly defined macromodules can 
be added to the meta machine at the cost of changing the internal operations. Of course, if the set of 
macromodules is closed, then a considerable overhead is inherent in the design using macromodules. 
Note that a class of instructions which are not macromodular operations must exist for this machine. 
This is necessary to control input-output devices which make the machine capable of general support 
of macromodules. 

This implementation represents an extieme in the continuum of M4 implementalions; it combines 
maximum hardware, case of interface with external macromodules, maximum speed of simulation, end 
minimal space required for the specification of the macromodular system.    The speed of simulation is 
essentially the 100 to 1 figure mentioned as an upper bound on speed in Section 2.6.1.   However, maximum 
hardware is indicated by the count of over 100 data processing modules required, making this at least a 
medium-sized   computer.    This  figure does not  include any  general-purpose computation capability or 
instructions   which  provide  general  programming  support;  however,  these  can be  supplied by  H very 
elegant method  discussed  in Section 3.5.     A  single  4096 word memoiy matromodule  can  store the 
specification   for   a   system   containing  approximately  500  macromodular  operations   and   100 register 
macromodules, exclusive of any memory macromodules.    Typically, u small computer, such as a PDP-5 
contains   approximately  40 macromodula'' operations  and 6  register macromodules while  a reasonably 
large  machine,  such as one designed for linear programming problems, might have  approximately 300 
macromodular operations and 40 register mactomodules. 

The use of the macromodular meta macromodule machine W6 requires that the user have available a 

more than basic inventory of macromodules because so many are required for its construciion. Its use 
may be indicated if the user does not have a suitable existing computer or if his existing computer does 
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not lend itself ;o interface with macromodules.   Of course, if 'he user does not have the talent locally to 

interface his cxisr  % machine with macromodules, he may be forced into this implementation if he wishes 

to use the iii, ..cd        oach. 

3.4.2   FIXED, MICRO-PROGRAMMED MACHINE 

An implementation which would permit the addition of new macromodule types, if they did not 

vary drastically from the present general concepts, and yet not require the overhead associated with 

macromodules, consists of a fixed machine which couid be microprogrammed by u fast resd only memory. 

This wu.!d be a most attractive implementation, which represents an intermediate approach; however, 

it involves the designing of a completely new computer tailored toward simulation of rp.^ciomodules and 

is not diicussed further here. 

3.4.3   EXISTING MACHINE 

Another  im, kinentation could utilize a macromodule  simulation program on an existing machine 

with  iime   interface   to macromodules.     Such  an effort  is  underway in the  laboratory using a LLNC 

(Laboratory INsttument Computer) and a LINC-macr'module interface designed by an associate of the 

autuor.12   The availability of the LINC software whi^h includes a macro facility and th, ease of use anü 

programming make  this  a natural choice.    Macromodule simulation exists for the LINC,8  but does not 

embody the concepts presentsd in this report.   A useful aspect of 'his  type of implementation is 'hat the 

machine language of the existing computer can be used whenever such use is more appropriate than use 

of {he macromodular funrtions. 

The   requirement that the user construct an interface between his existing machine and macro- 

modules is one of the most important characteristics of this implemefita,, in.   It does not seem reasonable 

that the designers ol macromodules se've this problem except by providing an M4 macromodule.   This 

would   eqüirc that the unified appi^ach be., r" the standard method of usinj   .lacroiTiodules.   This  is a 

very real possibility, but it is   oo early in jie development of macromodules to do more than speculate. 

If the user chooses this implementation, he has provided himself with the opposite ;me to 

that discussed in Section 3.4.1.   This implementation provides the. slowest speed of s. iulation combined 

with a minimum amount of hardware.    Most existing small  computers can reasonably  be used in this 

implementation.   The machine should be capable of indefinite extended precision arithmetic, and  it is 

convenient if it is  a 12 bit computer    Of course, the user also has all of the features of tlr* inputer 

to use in any way he desires, not an insignificant advantage. 

O't; experiences with the existing LINC macromodule simulation effort indicate the ^„rameters 

«»«sociated with this implementation. The LINC is a 12 bit computer with an 8 microsecond cycle time 

and 2048 words of memc:y. The simulation consists of a set of macros and subroutines assembled to 

form a LIN«J program which simulates the operation of a macromodular system. The simulation soeed .or 

12 bi* ma:romodiile operations is approximately 1300 to ) as compared to real time macromodular 

operations. This ratio essentially increases linearly vith increased length of simulated macromodular 

operations. Systems with a maximum of about 70 macromodular operations can be simulated. There is 

a direct trade between number of simulated registers and the amount of simulated memory. However, 

systemr with only 70 0|:crations almost never invoi.e more than a dozen or so 'egisters leaving 1024 

words of 12 bit memory for simulated memory macromodules. If an interpretive simulatior technique 

were used,  the number of simulated operations could be increased with the penalty of decreasing the 
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simulation speed by  a factor of two or three.    Of course, a 2048 word memory is extremely modest for 

even the typical small computers currently available. 

The use of a large scale computer as an M4 has not been considered at all in this report. Neither 

have such things as several users of macromodules tiu.c sharing a large cntrally located computer been 

discussed here.   It is felt that the inclusion of these topics is not necessary in the present discussion. 

3.5   CONCLUSIONS 

This secticn has discussed the met^ mactomodule machine which supports the geneial concept 

presented in this report. The evaluations of alternate organizations and implementations have been left 

to future research. A few general concluding remarks seem to be in order at this tiiiic. Possibly the 

foremost concern in the specification of the meta machine must be to provide a machine which is straight- 

forward and easy to use. In fact it should be possible to work with a specification of a macromodular 

system for execution on this machine directly at the lowest possible level and to by-pass any software 

support for some operations. This is a particular concern cf the author, but the serious student of 

computer systems will see that a great aniount of inefficiency mav result. However, it must be remembered 

that this machine is intended to simulate hardware operations implemented in tern > of macrovnodules. 

Thus a description of 1000 macromodules represents a large hardware system while a program of 1000 

instructions i» quite a small system. 

The foregoing does -loint up one problem, however, that exists in some implementalions and 

organizations of the M4. If the M4 is used to provide gerera! software support for a collection if 

macromodules, then some programming operations are needed. The organization of the M4 may not b 

well suited to programming because, for example, th...^ eed not be any addressing or indexing fiexibiUty 

provided. Two solutions have occurred to ine author. One, which has been rejected for lack of elegance, 

would provide a set of instructions to be used in general programming of the M4. A rrore elegant approach 

would be to design a suitable machine in terms of macromodules and then use this description as an 

interpreter for a more convenient machine language. This is certainly elegant and is probably feasible 

f'om i. pragtraii;, standpoint because any dcmaiidiiig .o;.ipuiai:ons woulU be perfomiec oy externally 

implemented macromodular operations. Compilfvs and arithmetic compilation oriented machines can be 

designed for macromudules5-* which could then be efficiently interpreted by a macromodular description 

in the M4. 
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4.  DiSCUSSiON OF EXTERNALLY IMPLEMENTED MACROMODüLAR FUNCTIONS 

4.1    INTROnUCTSON 

In Section 3J the use of externally irnplemented macromodular registers ai;d control was discussed 
in connection with the mcta maciomodule machine.   In this section the conventions are discussed which 

I have to be observed in implementing external functions so that the interface between them and M4 can 
be standardized. 

4.2   REGISTER GROUP 

Figure 8 shows the conventions which muvt be followed  to permit communication between external 
macomodu'u rcgif   TS and M4.   The dotted line indicates the physical and logical boundary of the M4. 
As  can  be  seen,  quite a large number of macromodular operations must be implemented by the user; 
however, they are quite regular and should pose no problems 

The example shows two registers implemented exi-rnully to the M4. One register is 12 bits and 
the other is 24 bits wide. Additional data processing midules are shown on the registers to indicate 
that the registsrs have externally implemented transfers, adders, etc., which involve them. The user 
roust number the registers and provide the proper decoding of control signals. Because only 12 bits of 
data can be transferred at one time, each register module in a more than 12 bit register must be considered 
as a separate register for the purpose of these transfers. 

It is the responsibility of the M4 to establish the proper data out signals and then generate a 
macromodular control signal on the proper line. The M4 processing is stopped until the proper return 
conuol signal is received. Because of ti.is responsibility on the part of the M4, the user actually 
has very little to be concerned with when he implements the required operations. 

There is a problem in that the overflow indication cannot be transferred from ire M4 to the 
PX*«. ii roisters. Therefcic li .s not possible io porfoim an internal operation on an external register 

and then have the correct overflow indication transferred to the register. "The only difficulty is that 
an external test of overflow will always indicate no overflow after an internal operation. This is a 
rather small point but still one which the user must remember. A possible solution would be to build some 
macromodular registers which are capable of having overflow turned on by a control signal. However, 
from the pragmatic point of view it is felt that the user can live with the problem. 

If there is a possibility of concurrent operation between M* and externally i   plemented functions, 
interlocks must be placed at the appropriate places in th; register operations.   This  is left entirely tc 
the user and follows directly the normal macromodular use of the interlock. 

- 

4.3   CONTROL GROUP 

This Section discusses the conventions required of externally implemented control functions 
which permit a standardized interface with the M4. 

: 

4.3.1 CONTROL OUTPUT FROM THE M4 

The M4 presents a daia word which represents a control sequence number which must be decoded 
by external decoders. Figure 9 indicates the necessary operations. A requirement of external control 

is thai it be capable of concurrent operation with internal functions of the M4.   Therefore after a control 
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sequence has been decoded, the control signal must branch to indicate to the M4 that internal opera'ions 
may be resumed. The interlock is required because there is a possibility that the M4 might be able to 
generate a control signal on another input to the call element before it has been cleared bv the return 
signal. This possibility is very slight because the M4 must do a memory operatioi before anotler 
contiol signal could Le gemmated. There is a considerable responsibility placed on the operation of 
the M4 in ordc to insure the proper operation of these concurren' sequences. 

4.3.2   CONTROL RETURN TO THE M4 

Figure 10 shows the use of - introl returns. Returning control must gate a number representing 
the control sequence into a register. Then control must pass to the M4 to process the return. The 
completion signal from the processing operation must finally rend', .vous with the start of the particular 
control sequence because the M4 could inimediately reactivate the same external control sequence. 

Failure to do this may mean that two control signals could be actwe in a uingle comrol sequence; an 
illegal operation in macromodules. The dot on an input to a rendezvous element is a standard notation 
to indicate the input is preset to an active state. An interlock is shown between control sequences 
1 and 2 indicating that they may be concurrently active. Once again we see that he M4 is responsible 
for a considerable amount of control information. 

44   IMPLEMENTATION CONSIDERATIONS 

The implementation of external control and register operations has been shown as a purely 
macromodular implementation. This assumes a proper maciumodular interface with the M4. In the 
non-macromodular implementations of t'ue M4, it may be important to reduce the number of interface 
points between the M4 and externally implemented macromodular functions. A possible technique is 
to use a memory to centralize the actual interface connections.12 The resulting changes in the designs 
shown here are not discussed but it is still possible to use these general ideas. 
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5.  CONCLUSION 

This .eport has nresented a unified approach to the design anü use of macromodular computer 

systens. Central to the concept is a meta machine which is capable of routing control and data transfer 

operations as specified by a description of a macromodular system and also provides p stmdard interface 

for externally implemented macromodular functions. Several implementations of the meta macromodule 

machine ,VW have been discuss.ed. The M4 is also capable of providing general programming support for 

a macromodular system. 

It is felt that the unified approach is a very valuable concept which permits an evolutionary approach 

to computer design by allowing small incremental changes to be made and evaluated before they become 

a  fixed part of the system.    Even while these changes are being made, the user always has an easily 

recoverable working system.    The unified approach appears to be a very useful means for providing a 

convenient input form for functional simulation of digital systems. 

For the user who is not oriented toward computer hardware, the unified approach permits the use 

of the concept of designing a special machine which may, but does not have to, be built. If the user 

chooses not to build the machine, he still is able to do a very efficient interpretation of his machine 

using the meta machine. If he does decide to build the computer, he is not required to build all of it. 

The unified approach gives the software oriented user a fixed target for compiler development by 

providing ti.   capability of having a system on which to run the compi'er and its results. 

Finally- and probably the most importapi, the unified apprc^i permits the best hardware-software 

tvade-offs to be made.   Note that many parts  of the solution can be expressed in a high level language 

if that is convenient.   It is  important to note that the hardware-software balance can always be changed 

as jxpenence with a system grows. 

These conclusions represent the contribution of the unified approach to the development and use 

of macromodules. Although only the relationship with macromodules has been discussed in this report, 

it seems that the unified approach can be applied to other restructurable computer systems. It is after 

all, primarily a way of :' ; king about a problem and as such has great generality. 
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APPEh 5[XA! 

A UNIFORM AND CONSISTENT NOTATION F;  \  DESCRIBING A MACROMODULAR SYSTEM 

6.1.1    INTRODUCTION 

In this section a uniform and consistent notation is discussed which may be used to describe a 
macromodular system design. Besides being capable of completely describing the system, the nota,;.on 
is convenient to use. A macromodular system is completely described by considering two separate 
aspects. The exact definition of the meaning, or semantics, of operation is determined by the physical 
placement of the modules. This placement indicates what data may be added together, what data 
transfer operations may take place, and all the other considerations of meaning. Second, the order in 
which these operations are carried out, or syntax is defined by the routing of control cables \ hich link 
together in specified sequences the various operati ns. Notice that neither one of these alone complete- 

ly describes a system and both have distinct functions. The method of notation takes advantage of 
these considerations. 

6.1.2   THE vATA PROCESSING DESCRIPTION 

The data processing operations, or semantics, are described by a pictorial diagram which corres- 
ponds roughly tc the actual physical placement of modules. Because the width, in terms of multiples 
of the basic macromodules, is quite flexible, the a^ual width of operations is shown by drawing short 
vertical lines between modules to indicate operations of mo'e than one module length. The area above 
the dotted line is used to give a name to the operat' 'hich then appears in the control sequence 
descriptions. Additional names may be indicated as a^ematives within this area of any single module. 
This arbitrary name extends for the full width of the defined operation. The module type appears in a 
circle in the lower left corner of each box. Module type information mrv have an e or i subscript to 
denote an externally or internally implemented function. These designations are subject to the rules on 
implementation. For example, it is not possible to have an internal register with an external adder on it. 

The area below the dotted line is used to describe data cable inputs, the name of a register, or other 
input information. Note that a line is used for each different cable input so some modules may take up 
more space in the picture than they actually do. Fixed parameters may be written in octal in place of 
cable input names.   Figure 6.1.1 shows a typical description. 

6.1.3   CONTROL DESCRIPTION 

The description of the control sequences, oi syntax, consists of flowcharts.    Each entry consists 
of the name of an operation which has been defined in the data processing description.   Control branch 
and rendezvous units are shown as small circles, operations   as rectangular boxes, decisions as ovals, 
and subroutine calls as  trapezoids.   Figure 6.1.2 shows a typical flow chart for the operations defined 
in the previous section. 

Notice that the flowchart contains annotation to describe external and internal functions. In some 
sense this is redundant information because these attributes are defined by the data proces , module 
drawings. However, the small numbers on the connecting arcs are necessary and are used to assign 
number., to control exit and return tines. 

■ ■     
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6.1.4   CONCLUSION 

The above notation has been used by the author and has been found to be very convenient. Even 
though the notatiii, is complete, it is not felt that the required detail is a drawback. Because th? 
designer is committing actual expensive hardware, he must know exactly which operations, are currently 
available The number of flowcharts required is not large because a system with a *r.- hundred oper- 
ations in it represents a large system, whilf the same number of machine language instructions would 
represent only a vciy small program. One flowchart entry may represent several actual macromodules 
because of multiple width operations. 

The ability to name the operation in the scmancic description and then use it in the control 'low- 
charts make possible flowcharts which are completely annotated yet are directly related to the definition 
of the operations.   This  is an extremely important aspect of the descriptive notation presented here.   In 
the future it may be possible to name groups of operations ard  therefore introduce a macro facility into 
the notation. 

After using this descriptive notation for a v.hile, one is extremely unhapp.  to be required to render 
the description almost completely uninteUigible in order to transform it to a machine readable lorm.   A 
concerted effort must be taken to d'-.ise a method of introducing the descriptive notation into a computer 
in a more direct form. 

■,.::,_ 
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APPENDIX 6.2 

CALCULATION v <-" THE RATIO OF SIMULATION 

TIME CC  PARED TO ACTUAL OPERATION TIME 

6.2.1    INTRODUCTION 

In this appendix an approximate ratio is derived for the time required foi simulation of macro- 

modular operations compareu to the time required for the actual .Tiacromodular operations. Because of 

the asynchronous operatio" of i.iacrornouules these calculations yield only an order of magnitude tyt^ 

va'ut for this comparison. The calcuJations indicate that an order oT magnitude »f 100 to 1 's a reason- 

able vi'ue for a machine which is ideally suited for simulation of macromodules. Of course, for 

simulation en a typical digital computer the ratio is likely to be much h'^her. 

6.2.2 THE CALCULATION 

i 2.2.1    THE PROBLEM 

As H typical macromodular operation, take a register to register transfp operation operating on 

?6-bit registers. This corresponds to three register macromodules connected to form one larger register. 

The . ttive data gate on the destination register is the fourth one from the registei in the stack of data 

ga'es. Finally, it is assumed that there are five data processing modules above the* register. These 

details err important because operation times are dependent on these factors. Although formulas can be 

derived for liming operatums, this is not an appropriate plac5 for presenting this information.'3 The time 

for this operation in the actual macromodules is 250 nanoseconds.'4 Experienced intuition is the only 

guide for describing this as a typical operation. 

62.2.2   THE SIMULATION MACHINE 

Thi machine  which will be ashamed in this calculation is ideally suited for simulation of r.iacro- 

modi 'es  in that it follows the  speiificaiion of the meta macromodUe machine.    This  means thai the 

machine  c^n simulate  the register transfer operation with only one instruction.    However, because a 

basic   i2 bit machine is postulated,  several memory references are requited to perform the operation. 

Our calculations   therefore involve counting only memory references.    One nemory reference is required 

to access   t!     operation code.     A memory reference  is  require& to ge.  the addresses  of -he memory 

locations for the. three source  and  three destination registers.    Finally three words of data must be read 

from memory ano  "lored into three other memory locations     Therefore   thirteen memory references aie 

required to perform the operation described in section 6.2.2.1      If a memory cycle   time of two micro- 

seconds is used, the total tim' for simulation of this operation is 26 microseconds.   This is 100 times 

the 250  nanoseconds  required for the  actuai operation.    If a one microsecond memory is  available, 
the ratio becomes 50 to '.. 

6.2.3 CONCLUSION 

It has   been  shown  that a ratio of 100  to  i  for functional  simulation time compared to actual 

operation time is realistic.   The reader should be cautioned .nat this ratio holds only foi the particular, 
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but realistic,  situations described here.    If functional simulation is   to be a realistic design aid ratios 

of this order are required. 

Because this ratio can easily grow by decimal orders of magnitude, it is an extremely important 

factor lor «.ranlatjrs ii be aware of.    Nr matter how convenient a particular simulation tool may be, if a 

user requires several hours of computer time to simulate a few    econds of real lime, the tool is not very 

iseful. 
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APPENDIX 6.3 

AN EXAMPLE 

6.3.1    INTRODUCTION 

The  example,  which is part rf an actual investigation, concerns the requirement for translating 

spherical to rectangular coordinates.   The following equations define the translation: 

x = p sin <t> cos 6 (I) 

y = p sin <6 sm 6 (2) 

z = p cos 4> (3) 

The  existence   of a compiler for a  FORTRAN-like  language  to the M4 operations  is  assumed.   The 

example will show the evolution of the coordinate translation from a completely internal version to on; 

implemented entirely in macromodules.   The routine finds the input arguments in three variables called 

p, <^, and d.   The output of the routine is left in three variables called x, y, and z. 

6.3.2   INITIAL FORM 

Initially the coordinate translation is   to be specified as a program in a higher level language. 

phi - phi * 3.14/180:        I        translate degree arguments 

thttt = thcta * 3.14/180; j        into radians 

x = rho * sin (phi) * cos (theta); 

y = rho * sin (phi) * sin (theta);    )        compute x, y, z 

z = rho • cos (phi), } 
The language is almost FORTRAN and the execution time for single pr vision,fixed point results is 

estimated to be approximately 500 microseconds on a machine with a two microsecond memory cycle 

time.   The sine and cosine are computed by the standard, built-in trigonometric  subroutines. 

6.3.3 TABLE LOOK-UP 

The next step is the realization that because the angles for this application are physically measured 

with values known 'w only i l7 degree, the trigonometric functions can be performed by simple table 

look-up. An externally implemented table look-up routine is designed and called by simulated macro- 

modular call elements. Naturally <.]:' subroutine could be marked and run in internal implementation 

for debugging purposes. Figure 6.3.1 shows.^he data processing module layout including those modules 

necessary for communication with the M4, Figure 6.3.2 is the control network flow chart. Note that 

internal   functions   are   designed which operate on externally  implemented registers. 

6.3.4 IMPLEMENT TABLE LOOK UP CALL EXTERNALLY 

The next step might be to implement the subroutine call externally.    This   is   a reasonable step 

because the internal execution of the call  jnd return takes about the same length of time as the entire 
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table look-up operation.  Because the subroutine is called from three places, three centre! lines in each 

direction   between  the  M4 and externally  implemented functions  are  required.    The data processing 

structure is not shown because it is almost identical to Figure 6.3.1.   The control neiwerk flew chart 

is shown in Figure 6 3.3. 

6.3.5   IMPLEMENT PARALLELISM WITH MOST CALCULATIONS INTERNAL 

The next step is a redesign based en the fac 'hat it is possible to use seme concurrent processing, 

it is possible to compute a sine or cosine function at the same time that a multiplication 'S being dene. 

Also, there is a common subexpression in the equations for x and y which only needs to be computed 

once. Finally, at this time ve do not wish to perform the multiplication in macromodules but do, however 

want to shift the focus so that the coordinate translation is essentially controlled by the externally 

implemented functions. Again we note that any of the macromodular functions may be internally imple- 

mcrted by the M4. Figure 6.3.4 shows the data processing modules required, excluding most of those 

used for communication with the M4.   Figure 6.3.5 gives the control network flowchart. 

6.3.6   ALL OPERATIONS IMPLEMENTED EXTERNALLY WITH MACROMODULES 

Finally,   the   entire  coordinate   translation  is  implemented externally  with macromodules.   The 

execution   time  for this  implementation  is  approximately 20 microseconds,  a 25  to 1   improvement in 

speed over the  original implementation.   For this description a multiply macromedule is postulated evi i> 

though it is not pari of the initial set of modules.   Obviously, the multiply function can be implemente 

in terms of the original set of modules. 

The completely external implementation is shewn in Figures 6.3.6 and 6.3,7. 
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APPENDIX 6.4 

A MACROMODULAR META MACROMODULE MACHINE (M6) 

6 4.1    INTRODUCTION 

This appendix summarizes the design of an M6 which has been referred to in the body of the 

report. Ti e important details of the \h communication with external registers and control were pre- 

sented in the body of the report and are not repeated here. 

There IN one primary register, which is 36 bits long,   where all the macromudular data processing 

operations take place.    Because of the great flexibility with which data cables may be connected, all 

of the   simulated data cable inputs to a function must be read from actual or simulated registers before 

the operation starts. The M6 uses first-in fust-out buffer stacks for the purpose of holding these operands. 

6.4.2   PROGRAM AND INSTRUCTION FORMAT 

The program and instnetion format of M6 is analogous to a stored program digital computer. In 

general commands are stored in memoiy which describe macromodular operations and are executed 

sequentially except for decision-making operations. Along with each command is stored information 

regarding the simulated registers which are to be used in the command. The operation sequence can be 

broken by unconditional o: conditional transfers to other sequc-.ces of operations. In this section we 

assume that the M6 has a 4096 word x 12 bit memory. Expansion of memory capacity can be handled 

by some type of paging scheme. The M6 really should also be capable of executing instructions to 

perform I/O and other support functions.   These are not discussed further here. 

The command is a two word sequence in which the first word is used to specify the macromodular 

operatioi; and the second word is used to flag options on the command. The only flagged operation 

currently specified is the very important one of specifying whether or not control is to remain within the 

tneta machine or is to exit to externally implemented macromodular functions. Only one bit is needed to 

specify this option; however, if control is to exit at this point, the remaining eleven bits are used to 

specify the external control sequence. This allows 2048 different external control sequences to be 

specified. 

As long as no concurrent operations are implemeited, external control f j-.ieration and return is 

quite simple. However, if concurrent operations exist and some of them are external and some are 

internal, the situation becomes more complex. It is required that all externally impleniented concurrent 

operations proceed in a truly concurrent form while internal operations proceed in the required sequential 

form. A first-in first-out stack is used to remember internal control sequences which have been encoun- 

tered but not executed. Rtlurning external control signals put the address of where internal operation 

is to resume into this stack. Thus, as internal rendezvous elements are encountered, the uncompleted 

sequences ate executed but external control may be executed in true concurrent form. 

Data refeiences to rea1 or simulated registers consist of a sequence of addresses of register 

specifications preceded by an integer which specifies the number of ba'.iw 12 bit register modules in 

the reference. There are as many consecutive sets of data references as are called for by a particular 

macromodular f iction. For example, iata gates and registers require two data references while a 

comparator requires three. The following forms indicate the use of a data gate operation for both 12 

and 24 bit data references; 
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12-BIT 

word n data gate 
n ♦ 1 flag 
u ♦ 2 1 
n + 3 source re^istsr sreuification address 
r ^ 4: 1 
n ♦ 5: destinUion register specification address 

24-BIT 

word n: data gate 
n + 1: flag 
n + 2; 2 
n + 3: source register sp;cification address fot bits 0-11 
n + 4; source registe; specification address for bits 12-23 
n + 5; 2 
n + 6: desti.i-'tion register specification address for bits O-H 
ii  ♦ 7: destination register specification address for bits 12-23 

Register specifications consist of cither a  single word or two consecutive words in the 
M6 memory.   The first word contains one   bit which specifie» whether the register is simulated 
in memory or exist« üuisidc the mela machine implemented as an actual macromodular register. 
If this   is   the   ca; -,  the  remaining  11   bits   are  used  to  specify  a registe: number.    Ftiüs it is 
possible  to  access  a total of 2048  externally  impletr:nted regis.ers.    If .lie register is simu- 
Inted within memory, the first specification word also contains a bit which is   a true reflection, 
in the macromcdulv.- sense, of the overflow  condition of the register.    The remaining ten bits 
are   available   for other,   fnure  uses.     Finally   ,the   seco; J  word  holds   the  contents   of the 
simulated register. 

Control operations in M6 ire analogous to those  in stored program computers.    For non- 
decision   operations   control   passes   to   the   next   operation   specified   in   contiguous memory- 
locations.      A   location register   is   used  as   in   a programmed  computer.     Decision operations 
interrupt the consecutive flow of control for all possible  decision outputs.   A "ransfer of control 
is specified by a 12 bit address which indicates the start of a nev   control sequence.   This  is 

directly analogous to branch or jump instructions in a stored program computer. 

6.4.;   UATA OPERATIONS 

The instruction formats of all macromoajles whici; process or monitor data are presented 
here. Each word of the operation is not specified in detail. Specifically, the command and 
flag words are assumed to be part )f the mnemonic for t^e operation and the details of the data 

•references arc subsumed in »he notation: operand,, cperand2. etc Note also that the numerical 
code for ;ach operation has not been specified, "n general, the 'rst operand specifies a c.ble 
input, and the second operand specifies the register on which the command operates. The 
parentheses are used to denote, the contcnis of the register specif,ed by. Thus, (op rand.) 

means that operand, is a register specification address and the data described by th'ji specifi- 
catioii   are  used  in the operation. 
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DATA GATE 

dg, operand,, operandj 

(operand,) -, (operand2) 

ADDER 

ad, operand,, operandj 

(operand,) + (operandj) . (operand-,) 

SUBTRACT CABLE 

subc, operand,, operand2 

(operand2) - (operand,) -. (operand2) 

SUBTRACT REGISTER 

OR 

subr, operand,, operand2 

'operand,) - (operand2) -• (operand2) 

or, operand,, operand2 

v-tperandp + (operand2) ■• (operand2) 

EXCLUSIVE OR 

Xor,operand,, opciand2 

(operand,)('+.(operand2) -♦ (operand2) 

AND 

and, operand,. operand2 

(operand,) . (operand2>  • (operand2> 

WRITE MEMORY 

wrm, ad;'..ess cf memory specifiiation,  operand,, operand2 

The ccntents   of the register specified by op-rand,   are ured as thi  address at which to 
store  the  contents of the register specified by operand2.    The memory  specification consists 
of    ne or two consecuti.e words which give the address in the memory of the M4 which corres- 
ponds  to address  zero of the  simulated memory.    Consecutive  12 bit words are used to store 
the data.    The operation does not pemit writing into  12 bit fields of a wider memory    module, 
an operation currently under feasibility study by the designers of macromodules. 

1 llf HMW« -, i.-i-rKüäBiSii 
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READ MEMORY 

tdm, addr of memory specification, operand,, operandj 

The  contents   of the register spccifieJ by operand,  are used as an address whose contents are 

moved into the register specified by operand..    Th" other details of the operation are specified in the 

in the previous paragraph. 

SHIFT LEFT 

shl, operand,, operandj 

(operandj) is shifted left   one bit position.   The    left most bit is lost and the vacated bit position 
is filled from the left most bit of toperand,). 

SHIFT RIGHT 

shr, operand,, operand, 

(cperandj) is shifted right one bit position.   The right most bit is lost and the vacated bit position 
is filled from the right most bit of (operand,). 

6.4.4   CONTROL OPERATIONS 

This section specifies the macromodular control operation commands. 

COMPARATOR 

corns i.odwss,, address^,, operand.   operand2> operand3 

The cctcnls of the register specified by operandj are compared to the contents of the register 
specified by o^rand, using the contents of the register specified by operandj as a mask. If the com- 
parison is false, the next command is taken from address,. If the comparison is true, the next command 
is taken from addres^.   No data ace changed by this operation. 

TEST OVERFLOW 

tov, operand], address,, address] 

If the ov ..flow indicator of the register specified oy operand,  is on, the next command is taken 
from address,, o:.-^rwise the next command is taken from address]. 

TRANSFER OF CONTROL 

to, address, 

Control is unconditiopally transferred to the comrand at address,. 

CALL ELEMENT 

cle, address,, address] 
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Control   is   transferred  to  the   first   command  of the  macromodular  subroutine  which  starts at 
addressj.     The command at address, must be a transfer of control w!  ch is used to return control to 

the place from which the subroutine was called. 

DECISION CALL ELEMENT 

dee, address,, address2) addre^, address,,, addresss 

Control is transferred to the tv    return subroutine beginning at addresss.   Address) is the address 
of the command which follows the call for one return of the  subroutine.   Address^ is the address of the 

transfer of control at the end of the subroutine for this same return.    Address* and address^ have the 
same functions as address, and addressj for the other return from the subroutine. 

BRANCH UNIT 

bru, address,, addressj 

The  branch unit initiates   the  two concurrent sequences which start at address,  and address? 
Externally implemented sequences are initiated   immediately while internal  sequences are ini iated   in 
turn with more than one stored in the control stack. 

RENDEZVOUS UNIT 

rvu 1, rvu r, mark 

The rendezvous unit terminates concurrent sequences. Thei 'e two inputs, left and right, which 
must be specified in that order. The mark word is used to indicate whether or not the rendezvous has 
had both inputs activated. If contrc! has been activated at both inputs, the command immediately 
following is executed. If only one input has been activated, control must pass to a sequence whose 
starting address has been stored in the control stack. 

DECODER 

dec, operand,, operand2, address0, address,,.. , address^ 

The contents of the register specified by operand, used a^ a mask which indicates three con- 
tiguous bits of the register specified by operandj to be decoded.   Control passes to address., address,  

depending on the octal value of the three decoded bits. 

INTERLOCK 

Not simulated. 

6.4.5   EXAMPLES OF THE M6 DESIGK 

Although it is difficult to present some of the design of the M6 without presenting the detailed 
design in its entirety, this section will discuss, in general terms, the design of a few selected areas 
of the M6. 

s 
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6.4.5.1    DATA FETCH 

An important operation in the M6 is the fetching data which is to be u^.ed as a cable input to a 
simulated operation. The data may consist of any number of register segments up to the capacity of the 
buffer stacks mentioned in 6.4.1. There is also the requirement that any of the register segments may be 
implemented externally.   The design is shown as a general flowchart in Figure 6.4.1. 

6.4.5.2   AND OPERATION 

The AND operation represents that class of macromodular data processing functions which can be 
performed by simple iteration of segments. Each segment is complete by itself and there is no need to 
know information from any other segment. The design of the AND is presented in Figure 6.4.2. Notice 
that all segments for the cable input are fetched and stored into a buffer stack. Then each segment for 
the register operand is fetched, the next cable segment read from the stack, the operation performed, and 
the result restored to the proper segment. The operations concerned with fetching and restcung the 
register operand segments contain commands similar to those discussed in 6.4.5.1. 

6.4.5.3   ADD OPERATION 

The ADD operation represents a class of operations in which each segment is dependent on other 
segments. In this case, provision must be made to propagate the carry generated in each segment on 
to the next segment. This is done by having registers to the left and right of the i>;gister where the ADD 
takes place. The carry is generated into the leftrrost register which is then moved to the most, signifi- 
cant bit position of the rightmost register. The ADD operation then adds zero to the leftmost register, 
the cable segment to the center register, and a constant with a one in the mos'. significant bit position 
to the rightmost register. The overflow indicator is cleared fo; all bit the most significant segment. The 
design is described by th" flowchart in Figure 6.4.3. 

6.4.5 4   COMPARE    OPERATION 

The COMPARE operation represents those operations which cause a transfer of control. This is 
simply a matter of moving one of two possible addresses to the P register or location counter. The 
COMPARE operation requires two cable inputs. Because no data is changed, there is no need to restore 
any segments. Finally, if the comparison fails on any segments except the last, the remaining segments 
are not checked but there is some overhead required to clear the previously filled buffer stacks. The 
design of the COMPARE operation is shov .i in Figure 6.4.4. 
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