LI R N IR W R TR M L AL NPT ST T F

A7 R

I
I
T
[
L
[

p—— ’ i

oo

-amE POy ey ey e 7

ADE71195

A UNIFIED APPROACH TO THE DESIGN
AND USE OF RESTRUCTURABLE COMPUTER SYSTEMS:
THE META MACROMODULE MACHINE

Technical Report No. 7
June, 1968

Compiter Systems Laboratory
Washington University
St. Louis, Mo.

BEST
AVAILABLE COPY

A UNIFIED APPRCACH TO THE DE .iGN
AND USE CF RESTRUCTURABLE COMPUTER SYSTEMS:
THE META MACROMODULE MACKINE

Robert A. Ellis

TECHNICAL REPORT NO. 7

June, 1968

Computer Systems Laboratory
Washington University

St. Louis, Missouri

D D

G T LA 7
‘t JUL 81968
uuL_“.;:U UT:»

This work hos been supported by the Advanced Reseorch Projects Agency of the
Ceportment of Defense under controct $SD.30% ond by the Division of Reseorch Focilities

ond Resources of the Motiono! Institutes of Heolth undar Gront FR-00218,

This decurien: hes been approved
far public 17leaze 4nd sale; its
distribution i3 u-Un ited

1] ' ’ . ' ’v; l V’.,m '

[
.

1

————

Y ey e

ABSTRACT

A restructurable computer system offers the user an
evolutionary approach to the design and use of computer systems.
To support this, a unified approsch is proposed in this report.
A meta machine and its environment are described which provide
the ability to trcat a macromodular description of a system as
a program to be .xecuied or as a set of specifications from
which the system may be directly implemented in macromodules.

No.

1

1o

28

iv

TABLE OF CONTENTS

ILEEOUCT Dal 4 evtneenentereneanene s eaanaeaseseansacaneansnte sanasonsorsnsunesenescssnsonsasssssssnsonsassnsinssnsnssonss
The Problem and a Proposed Solutioncoeviveiiiiiiiiiiiiiiiiiiiii s ra e r e
2.1 Restructurable Computer SYSIEMS ...o.uiiiiiiiiiiiiiiiiiiiiiiiiitieeiirtrareeresossenentnsessosssrssres
2.2 Macromodular SYSLEMS .ouveiiiiiiitiriiiiivtitiiiiii i et e ca e ra st ea e
2.3 An Operating Envirorunent for Macromodular Systemsocoiiiiiiiiiiiiiniiiiiiicncna
2.4 Problems Intioduced by Macromodular SyStemsccet ciiiiiieiiiiiiiiiiiiiii e reee s eee
2.5 AUnified APpProach (oo e e s e e s
2.6 Advantages of the Unified APpProachcoveiiiiiiiniiiiiiiiiis viiiii e eenee e eensaone
2.7 Problems Associated with the Unified Approachcooiviiiiiiiiiiiiiiiiii i i cninaienens
Dis‘ " 'sion of the Meta Macromodule Machinecoiiiiiiiiiiiiiiiiiiiiiiiiii s
3.1 iatroduction to the Discussion of the Meta Macromodule Machinecocovvveviveininininnnnnns,
3.2 Organization of the Meta Macromodule Machineoooiviiiiiniii,
3.3 Operations of the Meta Macromedule Machine «....oooovviiiiiiiiiiiiiiiiinii i i creeen e
3.3.1 Data Fetch from External Kegistercooviiiiis ciiiiiiiiiiiiiiiiiiinineinineinennonnienienees
3.3.2 Data Store into External Register ..oovi veiiiiiiiiiiiiiiiiiiii i eene e e ceiae e enns
3.3.3 Some Internal Control OPerations ..o.coeeieeiiiiriinioriuiinnierarersersosrossanesneorsnsarnsonnans
3.3.4 Extemnal Control QUL U ooeiiiieiitireeitereeereeiorrnsttssonnersesrssesersssssnsnnsontonessnsnssssnen
3.3.5 External Control DetUM .. cvvieiiiernrnriiiciiiiiiiiiiii e §00000000000000300a0008

3.4 Implementation of the Meta Macromodule Machinecocovviiiiiiiiiiiiiiiiiiiiiiiiiiee,
3.4.1 Macromodu’ar Meta Macromodule Machine £00000006E000000G000E0C0BE0B0DEO00000Y
3.4.2 Fixed, Micro-Prcgrammed Machingcccooiiiiiiiiiiniiiiiiiiiiiine s vevineennenes
3.4.3 ExXiSUNE MACRINEG tviuiiiieiiiiiiiiieiietriienisierntataesoeiernnsassssossssssonssssassansasorsnsnnonss

3.5 CONCIUSIONS weiiniriiieeettieuniioressenteetanensansasssscsssassessessesssesionssssesssseonsossssesnsnsnnsssnses
Externally Implemented Macromodular Functionscocevviiiiiiiiiiiiiiiiiii i,
T R 1118 (Yo Lo 4o e
4.2 ReEBISIEN GIOUD tvvrurninininnunereinrntererennenenensnsnesseaanesssssseeuerssotoentorssossonsssnsssrsonarsoos
4.3 CONIIOL GIOUD 1euivnurireenuntnenerensenreaesreesensneriaonensssenoesssessssitonsanorors ostoveiessessnsnnensonns
4.3.1 Control Output from the M4 ..o i e e e e
4.3.2 Control Retummn 10 the M ...t iiiiiiiiiiiiiiiiiiiiieiiisisiseteritrttenensensasseosonsasnenns

4.4 Implementation CONSIJEIAtIONS t..vuiuiuerieiererrtiniiininiiietiiitieitiaeent it eatiiiresenirnronsasasasennsn
Conclusions 50080000000ONB0AEECC0B0CN00E0AI0ACN00a 000I0000006E00A0BIA000E0000A00AE0000AC000000a0E00A0B000000]
Appendix 6.1 A Uniform and Consistent Notation for Describing a Macromodular System
T T R T T4 T e R
6.1.2 The Data riocessing Descriptionccovvviieiiiiiiiiiiniiiiiiiiiii e
6.1.3 Control DesCriPlion covuieveiuiiieneitiieiiiieieiaeiernteasereensntenessesonseessssssnsnsnsss onssnnns
6.1.4 CONCIUSION tviveenrereiernreacnrerenereatneneornrnensnsneesasssrsensisnenonsens PN
Appendix 6.2 Calculation of the Ratio of Simulation Time Compared te Actual Operation Time .
6.2.7 INLTOUCTION utiiiiniee ittt titeeeiineeneeeeenneeensssassntonataretnnsoratnnessnsnaosssssessnnsorass
6.2.2 The CaleulBUON «..vvieiiiirriieteirnetcrnantieeeesrnrrorassrartonstnsonsonisssstsssensssosonnensanes
6.2.2.1 The Problem .ooviieiiiiiiiiit i v s e e

6.2.2.2 The Simulation Machinecooovriiiiiiiiiiiiiiiiiiiriiniiereeiisnsrononsrsnsnonos

6.2.3 CONCIUSION tteriertiiinitieiren tetenrinrarteateneieaestaessesstasassesssaseonsssessassonsnsssansanssss

00 00 QO OO0 ~)) ~I N W U W NN NN

Pt s et et et et et s
GO 00 N A A b on

No.

TABLE OF CONTENTS

continued

Appendix 6.3 An Example ..o

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6

Appendix 6.

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

7. References

HaOEE oM 000000000000800000606000000000006600000005000000006A0A000000ONGO00I CI0CO0AOE0I0ABEA0A0GA0HT
R T 20T ¢ 1 P PN
B YT LR 1T Y T N
Implsment Table Look-Lip Call Externallycooooviiiiiiiiiiiiiiiene
Iraplement Parallelism with Most Calculations Internalcooiiiiiiiiiiiiinnnnn,
All Operations Implemented Externally with Macromodulesoooeviviininn..
4 A Macromodular Meta Macromodule Machine (M6)c.ocveviiiiiiiininiiniinnn.nn,
T 0 Te FT o o R
Program and Instruction format 300000080066000080AA00000085E00060000800000000000000808G00 €
Daia OperalionS ..ovviviiieerirreiererenreeeneeenenreensresenenmseneienenae et trer e e
CONETOl OPEIAtIONS tuvurnitiuerentatrertenenreeeeanaeteaeataesasnentesaeneeneneoeentnteneeenenenes
Exampies of the M6 DeSign vovvuveiuniiiiiiiiiiiiiniiieiitirtereeereieienrnenenesneiareneeeens
6.4.5.1 Data FetCh coovniiiiiiiiiiii i et e e e e ea e
6.4.5.2 AND OpeIation tvvieveiiieiitiiiiiiirinttiientteteetesteeieraetretieieneeretreenetseeenens.
6.4.5.3 ADD O ration cvvvviiiiitiiiii ittt e e e
6.4.5.4 COMPARE OPeration ..coovieiieiiuienneeeeineeeenereenerreeesionseinrereneesennseneess

vi

LIST OF FIGURES

Z
=

. Page
1 The Components ol the Unified Approachccueviiiiiiiiniiiiiiiniiniit s, 4
2 Data Fetch From External Register ovuiuiiiiiiiiioiiiaiiiiiiiiieiie i eeeie e senennasaenesaanens 9
3 Store Data into External RegiSter .ocoiiiiiiiiiiiiiiiiiiiii st e s an e 10
4 Sequential Internal Com iol .ottt i e it e s te s s e teasa s eaneresasantannraeeses 11
5 Concurrent Internal Control ..o e e s re s aeente st aassaiss saraaneans 12
6 External Control Outputcooeeen oo 3000000300090AA00A0EAAANAA0N0A0ARNA0A0C00AENAN00ANAE0000000AAN00G] 13
7 External Control Return .. oiiiiiiiiiiiiiiiiiiiies ciititiiiet it atntesiie st st stansasesenaaanastonssnnanns 15
8 EX1ernal RegiSter GrOUD ..uuvvuiriiiieiinitiiiieeeienererietaetetotoannnesanmsenssenenoroesensnensosnssstasennns 19
9 Externa! Control Output From M4cccoennen et e tteaeattee et b ea ettt et e eaeaebeae ey 20
10 External Control Return 1o Ma ... it e e e aae e 22
6.1.1 Data Processing DescriPlion .ooiviieeeiiiiiiiiiiiiitiiiiiiiiiieiiiieentieonrettosanssrsssnensssaneenes 25
6.1.2 CoNOl DESCIIPUON 1ueineriitueirrueretienrareeaersestttstnesaetaeatssuesersestsmoessatnserenestassnsneenses 26
6.3.1 Table Look-Up - Data Processing Modulescccovviiiiiiiiiiniiiiiiiinii e e, 31
6.7.2 Table Look-Up — ContIol 1oiuiniriiiitiiitiiie ettt or et s it e ettt saaaonenessnsnnnnts 32
6.3.3 Table Look-Up — External Call-Controlcoeiiiiiiiiiiiiiiiiiiiiiiii i e 34
6.3.4 Implement Paralle!ism Most Calculations Internal- Data Processing Moduleso.ooeveninnnne... 35
6.3.5 Implement Parallelism Most Calculations Internal-Coentrolcoooiviniiiiiiiniiiiniiiniinin, 36
6.3.6 Complete External Implementation — Data Processing Modulesocooviiiniiiiinininiiiciinnnn, 37
6.3.7 Complete External Implementation — Co: "0l ciivviiniiiiiiiiiiiiiiii e e, 38
6.4.1 Data Fetch for Simulated Operationcoviiieiiiiiiiiiiit i it st renieeseonetenaneseesrnrnenaens 45
6.4.2 The AND ODEIAtion .ouvueeerrerereneneneraieeerrrneseassseterssnensnrmmsentonestasntostssssatstsoneronneensnnmnnnns 46
6.4.3 The ADD ODEIAlION .eveviviririrrriirnieiiinensteeenenseseeresnsnsareanssesanetennonsnossssnssnsnsronsnenennananes 47
6.4.4 The COMPARE Operation ... voeueusieiiineniireinsininiiiiiiiiitieiaseieniitienetseetiesseisesastssstomnananes 48

* e RS

v ——

A UNIFIED APPROACH TO THE DESIGN
AND USE OF RESTRUCTURABLE COMPUTER SYSTEMS:
THE WETA MACROMODULE MACHINE

1. INTRODUCTION

The macromodular project at Washington University 1s 1 particular implementation of a class of
computer systems which are restructurable.!'® A restructurable computer system is capable of a
flexibility in hardware that has long been pussible only by programming. In addition, the macromodula:
concept proposes to make this restructurability available to the user without »~quiring him to be concerned
with logically imrelevant engineering details. The user will have functional units of the nature of
registers, adders, subtracters, etc.,whose electrical and timing details have been solved for him by the
designers of the macromodules.

Althcugh several computer and systems designs have been investigated in the course of the
of the research, no one has attempted to investigate in general the operating environment of a macro-
modular system. In particular, the support necessary to achieve the smooth, evolutionary approach to
computer design that macromodules promise has not yet been investigated. This repost identifies the
problems associated with this evolutionary approach and proposes specific measures to support it.
The unified approach of the titie reiers to the ability to treat 8 macromedular description of a system as
a piogram to be executed or as a set of specifications whictk will allow the user to directly implement
the system in macromodules. Central to the approach is the concept that the user-designer may choose
to implement whatever sections of the design he wishes and leave the rest to be run as a program .
The paper includes an investigatior, in detail, of that which is necessary to implement the unified
approach.

NSk

-2-

2. THE PROBLEM AND A PROPOSED SOLUTION

2.1 RESTRUCTURABLE COMPUTER SYSTEMS

The advantages of restructurable computer systems have been well documented in the literature.' 2
The ability to easily construct special and general purpose comnuters whose design is tailored to a
single class of problems is a most desirable goal. Indeed tke ecu.wumy of specialization3 may far outweigh
the economy of scale which has been so completely taker as an absolute truth in the computer field.

2.2 MACROMODUL.AR SYSTEMS

The macromodular project at Washingt~1 University is an investigation of a concept of restructurable
computer systems.2 Fcr the present, macromodules consist of a set of relatively simple, easily inter-
connected modules from wh.ch working systems can be easily assembled. The modules are functionally
large enough to reduce logical detail by a significant amount and are relatively easy o understand and
assemble. The modules are directly combined to form larger structures by straightforward mechanical
assembly and easily connected cables. They have been dezigned so that the assembling of these units
into working systems presents no logically irreievant details such as those related to circuit loading,
waveform deterioration, signal propagation delay, and power supply interactions regardless of the size

and complexity of the system.

2.3 AN OPERATING ENVIRONMENT FOR MACROM!*-JULAR SYSTEMS

While several computer systems have been designed utilizing mactomodules,*-3.6.7 very little

investigation has been done concerning the operating environment and the problems that the gr=at
generality c(testructurable computer systems pose. The reason is understandable: the iack of preczdent
in the field tends to overshadow all else. A very reasonable approach is to adopt a wait and see
ittituge with regard to any vonventions or aids relating to the use of macromodules.

It is interesting to note that most of the systems which have been desigaed have relied on a fixed,
rrogrammable computer for support ~f the macromedular machine. In some cases’/8 the support required
is merely a replacement for those mecromodules which have not yet been designed i.e. Input-Output
while in other cases? the supporting machine is used to pzrform some of the operations. Thecomment has
generally beern made coacerning macromoduies :hat it is difficult to sce a situation in which some fixsd
comput2r would not be reyuired to give operating znd programming support to the colleciicn of macro-

modules.
2.4 PROBI.EMS INTRODUCED BY MACROMCCUL AR SYSTEMS

There are several problems, other than the cbvious one of programniing support, which are inherent
in the macromodular concep.. For example, one may not wish to actually implemen! all of a design in
macromodular Yardware at any one time. There is a general reason for this in that the evclutionary
apnroach to the design of a suitable configuration of macromodules is certainly desirable. This is
often cited as an advantage of restructurable computer systems, but it does not automatically follow.
Theie may be other reasons for not actually constructing the complete system. For example, there

might be a problem with inventory if several asers arc charing a common inventory of macromodules.

Finally, there appears to be no i1cal reason. c.cept for absolute necessity, for actuallv building special
contigurations. The necessity almost always concerns time in bc.n real-time an! sitaight computation
situations.

Anoti.er problem is tha if one wants to make a change in an zlready werking system, the wires
have to be changed. It is prch~"ly not feasible to make a copy of the frame wiring so it will be difficult
to back up from changes which have been made tut do not yet work. Analog computers 'ave removable
patch panels for interconnection of processing elements. However, these panels restrict the number and
types of connections which can be made. Macromndules require the possible interconnection of any
module to any otheir module; a feat not possible with analog computer patch panels. To further complicate
matters, the physical arrangement may have charged due to the addition of new modules. It will also be
very difficult to make a quick change to sce what effect it has on the operation of the system. This is
a very important problem and on¢ which has been somewhat overlooked until now.

Finaily there is the problem of simulation. A natural tool to use in an area of hardware development
is functional simulation. Simulation allows one to largely correct a design before building ** and to try
out proposed changes. With simulation comes a ver; large overhead. It seems difficult to improve the
approximately 1000 to 1 ratio in time with any of the simulation efforts to date.8.7:1% The 1900 to 1
figure 1s actually quite optimistic because it is quite easy to increase the ratio several times by
inefficient code or increased power and flexibility of the simulation effort.

2.5 A UNIFIED APPROACH

The urtfied approach in this report refers to the capability of treating a description of a macro-
modular system as a program which may be executed or as a set of specifications which will allow the
user to directly implement the system. It is proposed in support of the unified approach, that an
essentially fixed machine be constructed whose primarv function is to route control and date transfer
operations as specified by a description of a macromodular system so as to mediate betwcen actually
implemented functions and those which must be simulated. This functior. defines a class of machines;
however, enough of the details of the external appearance required of these machines will be defined
that this class is reduced to a specific machine for the purposes of this paper. Although an analogy
between this description and a program has been introduced here, the reader should be cautioned not to
expect this meta macromodnle machine M4 to have the typical order code organization of conventiona!l
stored program machines. Obviously, the M4 mus: have suitable features to enable it to inieract with
the external macromodular structures. A common, machine-rcadable description of a macromodular
system can now function as a program tor the meta machine or as a specification for actually constructing
all or parts o1 the system. Functions which must be simulated 2:¢ identified as intemally implemented
functions wbile those actually constructed from rracromodules are called evternally implemented functions.
With proper design it is possible to switch actively between internally and externally implemented
{unctions at the lowest possible level of macromodn!a: primitive operations.

Figure 1 shows the several components of this unified approach. The maciomodular component
consists of the user-designed functions which are implemznted by macromodules. This component is not

discussed in this paper. The interface, which partly overlaps the macromodular component, permits
communication between externally and internally implemented macromodular functions. The overlap area

consists of the conventions which must be observed in implementing the macromodular component in
order for it to wotk with the interface. The entire interface is specified in detail in Sectior 4.

The M4 control permits internally implemented macromodular functions. The macromodule simulation
component, which is only a part of the M4, provides the capability to psrfomm internally implemenied

7 2 e e e e %

4

SRR ST MM O AN

, e — —

-4-

—_—— =
”~ ~

/ A Y
MACROMODULE M

o ™ ™~ W\ SIMULATION
MACROMODULES () INTEKFACE CONTROL "N _ -7
____"// \ ’;"’-‘\\
-~ ~

EXTERNAL

7 \\
/ GENERAL-PURPOSE

L CuiPUTATION J
N\ /
~ o~ ,t/

.
N — ——

M4

THE COMPONENTS OF THE UNIFIED APPROACH

Figure 1

macromodular functions. The M4 control plus those areas of the macromo le simulation which directly
interact with it are discussed in Section 3.3. The details of si:nulation oy macromodules by hardware or
software is not of great interest in this report, bul some considerations are pizsented in Section 3.4 and
one patticular scheme is discussed in Appendix 6.4.

Finally, the details of the general purpose computation component are beyond the scope of this
report; however general comments regarding this component appear throughout the r~rort.

2.5 ADVANTAGES OF THE UNIFIED APPROACH

.ne lack of irrelevant engineering detail required in the design of macromodular systems puts a
description of such a system on the level of assembly language programming. The description can ignore
such details as actuci physical arrangcment of modules and wire placement and leave them for the
censtruction phase. This means that the description and program for the M4 can be truly identical in all
respects. The oroposed meta machine approach requires that only those critica! portions of the design
need to be implemented in hardware. Also, proposed changes may be made to the programmed structure,
checked out, and only then built with actual macromodules.

Initial studies indicate that the meta mackine can typically simulate non-memory operations at a
ratio of 100 to 1 in time and that 50 to 1 is perfectly feasible. See Appendix 6.2 for supp~rting calcu-
lations. Memory operation .imes approach to a1 to 1 ratio between externally and internally i...nlemented
fanctions. The meta machine can also be used to provide prograraming support for the muctomodular
configuration and in any of the cupporting roles which require a stored-program compvee . [ina:'y, it can
be seen that the meta nachine can itself be constructed from macromoduiss. We call th.s the macto-
modular meta macromodule machine 46, Of course in tle fina! sense, the meta machine should be
censtructed in a fixed form except for certain sections.

Because the M4 is essentialiy fixed, a compiler for highcr level lunguages can Se written for it.
Then, these languages could be used for macromodular descriptions although because of efficiency of
equipment considerations their results would probably only be executed internally to the M4. If this
higher level language work were done with the unified approach in mind, it would be possible to describe
the solution algorithm in these higher .evel languages in a c.mpatible manner, particularly if operating
efficiency could be sacrificed. Sce Appendix 6.3 for an example

2.7 PROBLEMS ASSOCIATED WITH THE UNIFIED APPROACH

The us¢ of a mcta macromoduls machine is not without problems. The cistinstion between
hardware and p-ogram-implemented structures must be at the lowest possible level. This mesans that it is
possible to impl men. one tegister, or one add operation, or even a single control branch as hardware
in the operating environment envisaged here.

Another problem occurs with the basic unit of storage, the register. 1% is impossible for a rcgister
to exist both as actual hrrdware and simultaneously as a storage location within the memoty of the meta
machine because of the prohlems of maintaining both images. Once a register exists in macromodular
form, all references to it must r=ier to the actual register.

A problem aiso exists in the control area. Naturally a means must be provided for control to cross
the boundary between haidwate and grogram in both directions. This is reasonably straightforward until
we considet concurrent processes. Concurrent processes 'must be executed in an equivalent sequential
order within the meta machine and any implemented in macromodules must be executed in parallel if

at all possible.

Naturally the meta machire ust be capable of 1epresenting macromodular systems subject to
*he constraint of indefinite extension. In genera! this must be accomplished without rescrt to changing
the meta machine.

samend dd

oEEEh S o P N e e et S ek sk ek el 0 Sl

Lt 4 LS oy

3. DISCUSSION OF THE META MACROMODULE MACHINE

3.1 INTRODUCTION TO THE DISCUSSION OF THE META MACROMODULE MACHINE

In this section the organization, operation, and implementation of the meta macromodule machine
are discussed. The basic requirement of the meta machine is that it be able to route control and data
transfer operations and communicate with external macromodular structures as specified by a description
of a macromodular system. Questions of the operations of the M4 are required to support the unified

approach are discussed in terms of macromodular designs.
3.2 ORGANIZATION OF THE META MACROMODULE MACHINE

The most obvious organization of the M4 is as a basic computer whose order code consists of
the primitive operations available with macromodules plus control and data coptions which permit
communication with external macromodules. A suitable programming language could thew be developed
to accompany this inachine. For example, any of thr functional macromodu'ar simulation tanguages
could provide a model for this development,®:9.13 or see Appendix 6.4 for a specific example.

This approach is less than satisfactory, however, because a given macromodule can often be used
in several differenrt ways. For example, a data gate m~ romodule may be used to transfer data into a
macromodular register or to indicate data to be stored intc 4 macrormodular memory. Indeed, it is possible
for a single, multiple-length data gate to perform both of these operations simultaneously. This is in
contradiction to the simulator languages which treat these as two distinctly different operations becaase
of the lack of context dependence in such languages. Also, should new slightly different macromedules
be designed, it is just possible that the funciional language dcscriptions could not handle such new
medules.

The requirements imposed by command oriented laiguages are awkward when compared to the usual
mac.omotuiar design process. A mactomodular sysem is cenpletely described by a picwre of the
conneciivity of data precessing operations and a flowchart of the control operations which are performed.
This rotation is desciibed as a uniferm and consistent scheme of notation in Appendix 6.1. A far more
direct approach would be to find some suitable way to enter the diagrams aud flowcharts into the meta
machine and have the executicn directiy oriented to the actual internal operations ol the macromodules.
Because of the above, all of the material in this report is presented independent of any actual machine
language code for the M4.

3.3 DPERATIONS OF THE META MACROMOL ULE MACHINE

Now the interna! operations of the meta machire are described which ars required tc suppon
externaily implemented macromodular functions. The operations which must be supported are the transfer
of data in both directions across the Md-external interface aad the ability of tte M4 to generate and
accept macromoduiar control signals. The external aspect of tanese operations is discussed in Section 4.
For the present, we are not concerned with the rest of the M4.

It is assumed that registers and contro. points are properly marked in the description so that the M4
may make the decision between external or internal implementation. For an example of a suggested
symoolic marking technique. see Appendix 6.1. A more detailed possibility for the marking is presented
in Appendix 6.4. For external implementation, a number must be associated with each unique register

and control point to scrve as a reference for the purpose of crossing the interface between the M4 and
externally implemented functions. It is possible that extra memory will be required in the M4 to provide
space for this marking data, but this must be accepted in an approacn with as much gererality as 1s
being proposed here. This marking function must be a cential part of the M~ design so that all ir ternal

operations may make use of it.
3.31 DATA FETCH FROM EXTERNAL REGISTER

Figure 2 shows the operations necessary to ‘etch the contents of an extemally implemented
maciomodular register. The number of the external register, which is available as a consequence of
the operation of the M4, is first transferred into the External Register Select Register. Control then
exits io the external environment and fetches these data as shown in Section 4.2. After the data have
been made available tc the M4, control returns to the M4 for processing of the data. Note that only one
such operation is executed at one time because as far as the M4 is concerned all data are trarsferred

sequentially in 12-bit segments.
3.3.2 DATA STORE INTO EXTERNAL REGISTER

Figure 3 shows the internal operations required to store data into an externally implemented
macromodular register. ihe cperations are analogous to those of Section 3.3 | except that control exits
and returns at a different set of control points.

3.3.3 SOME INTERNAL CONTROL OPERATIONS

Before discussing control signal generation and return, it is necessary to discuss, in general
terms, the internal M4 operations required to start the next internally specified macromodular function.
Figure 4 shows the operation when strictly sequentia. functions are specified.

1f the next function is inteznally implemented, it is decoded and executed in a form similar to the
typical stored-program computer. If the function is extemally implemented, an external control signal is
generated as explained in Sectivn 3.3.4 and then control enters a wait status. Central to the control
strecture of the M4 is a stack, which can be either first in-first out or last in-first out, which is used
remember control operations which cannot immediately be executed. Returning external control, as will
be shown in Section 3.3.5, forces a pointer to the next internal function to be performed into the control
stack. The wait status therefore simply causes a pause in operation until a pointzr becomes available
at the top of the stack.

Concurrent control requires that at least two functions be performed at the same time. This two-
way splitting or branching must be capable of operation for all combinations of external and internal
functions specified as the branch operations. Also, it is required that all concurrent sequences which
are extemnally implemented be truly concurrent with each other and with internally implemented functions.
Finally, it is required that internally implemented functicns are executed in correct sequential order even
if concurrent processing is indicated. Figure 5 shows the design for initiation of concurrent control.

3.3.4 EXTERNAL CONTROL OUTPUT

Figure 6 shows the design for generation of exterral control. Concurrent operations are possible;
therefore the rendezvous is used to orotect the operation of storing a new control .equence number.

EXTERNAL -l }
REGISTER F =
DATA J

FETCH COMPLETED

FETCH EXTERNAL REGISTER

(: L
]
EXTERNAL REGISTER SELECT
LOAD EXTERNAL REGISTER SELECT
——————————————— q
b
" FxTERNAL !
KEGISTER
NUMBER
EXTERNAL M4

DATA FETCH FROM EXTERNAL REGISTER

Figure 2

SESSE - RS S

e

T SRS B

-10-

STCRE COMPLETED }

STORE INTO
EXTERNAL REGISTER
—

Z
&
~—

EXTERNAL REGISTER SELECT

—

LOAD EXTERNAL REGISTER SELECT

L o e o o — — e —— e —— e

C EXTERNAL
REGISTER
NUMBER

o

, DATA TO BE
< STORED INTO

L_-EXTERNAL REGISTER

EXTERNAL M4

STORE DATA INTO EXTERNAL REGISTER

Figure 3

-11-

NO IS NEXT FUNCTION YES

EXTERNAL?
EXECUTE GENERATE EXTERNAL
FUNCTION CONTROL SIGNAL
WAIT
GET NEXT
FUNCTION

SEQUENTIAL INTERKNAL CONTROL
I

Figure 4

-12-

REMEMBER

POINER

—

NO / FIRST FUNCTION \ YES
EXTERNAL?

NO /~ SECOND FUNCTION '\ YES

1

GENERATE
EXTERNAL
CONTROL

'

NO /~ SECOND FUNCTION) YF®

EXTERNAL? EXTERNAL?
PLACE POINTER TO GENERATE EXECUTE GENERATE
SECOND FUNCTION EXTERNAL SECOND EXTERNAL
INTO CONTROL STACK CONTROL FUNCTION CONTROL
.{ WAIT
cAECUT"
FIRST -

FUNCTION
GET NEXT
FUNCTION

CONCURRENT INTERNAL CONTROL

Figure 5

EXTERNAL
CONTROL STARTED

-13-

CONTROL QUT

—

EXTERNAL

CONTROL SEQUENCE NUMBER

LOAD CONTROL SEQUENCE NUMBER

e — e — E— e - — e —— —

CONTROL
SEQUENCE
NUMBER

M4

EXTERNAL CONTROL QUTPUT

Figure 6

GENERATE
EXTERNAL
CONTROL

@O

PRSI e

-14-

The dot by onc of ilie rendezvous inputs indicates that the rendezvous is preset with that 1aput active.
Note that the returning control signal External Control Started indicates only *.at the extemnally imple-
mented sequence has been started and 4 new sequence number can be loaded, not that the extemal

cuntrol sequence has actually been completed.
3.3.5 EXTERNAL CONTROL RETURN

Figure 7 shows the design for the Md operations which process external control sequence returns.
The interlock is required because control returns occur asynchronously with respect to other M4 oper-
ations. The M4 memory must contain a table which relates retumning control sequence numbers to the
place in the description where internally implemented functions are t. be resumed. The pointers, when
read from memory, are placed into the control stack where they are eventually read and used by the M4.

3.4 IMPLEMENTATION OF THE META MACROMODULE MACHINE

This report has intentionally remained gene al and has not specified any particular implementation
of ths M4. In this section some comments are made concerming several possible implementations.
Each implementaticn has its own particular characteristics which may indicate which implementation
would be better for a particular application.

3.4.¢ MACROMODU.LAR META MACROMODULE MACHINE

The most obvious implementation, in macromodules, is described 1n detail elsewhere'' and is
summarized in Appendix 6.4. This implementation is flexible in that newly defined macromodules can
be added to the meta machine at the cost of changing the intemal operations. Of course, if the se! of
macromodules is closed, then a considerable overhead is inherent in the design using macromodules.
Note that a class of instructions which are not macromodular operations must exist for this machine.
This is necessary to control input-output devices which makc¢ the machine capable of general support
of macromodules.

This implementation represents an extreme in the continuum of M4 impleinentaiions; it ccmbines
maximum hardware, case of interface with external macromodules, maximum specd of simulation, &nd
minimal space required for the specification of the macromodular system. The speed of simulation is
essentially tke 100 to 1 figure mentioned as an upper bound on speed in Section 2.6.1. However, maximun
kardware is indicated by the ccunt of over 100 data processing modules required, making this at least a
mediwn-sized computer. This figure does not include any general-purpose computation capability or
instrictions which provide general programming support; hcwever, these can be suppiied by a very
clegant method discussed in Section 3.5. A single 4096 word memoly macromodule can store the
specification for a system containing approximately 500 macromodular operations and 100 register
macromodules, exclusive of any memory macromodules. Typicaliy, u small computer, such as a PDP-5

contains approximately 40 macromodular operations and 6 register macromodules whiie a reasonahbly
large machine, such as one designed for linear programming problems, might have approximately 300

macromodular operations anc 40 register macromodules.

The use of the macromodular metz macromodule machine M6 rvequires that the user have available a
more than bacic inventory of macromodules because so many are required for its construcuion. Its use
may be indicated if the user does not have a suitable existing computer or if his existing computer does

fo——

&

... d

-15-

—

e e e i —— e —— o e — —— e e — e s

MEMORY ADDRESS

RET. CONTROL SEQ. NC.—% MEM. ADDR. &
h @ N
RETURNING @ 4
CONTROL) g
SEQUENCE
NUMBER | r #
READ MEMORY
MEMORY OuiPUT TO
' CONTROL STACK
(INTERLOCK)
XTERNAL CONTROL RETURN [
EXTERNAL CONTROL]j T o [o
L M4 MEORY
EXTERNAL CONTROL RETURN z OPERATIONS
‘7
PROCESSED f
EXTERNAL Ma

EXTERNAL CCNTROL RETLRN

Figure 7

]

-16-

not lend itself t¢ interface with macromodules. Of course, if the user does not have the talent locally to
interface his exist’ 3 machine with macromodules, he may be forced into this implementation if he wishes

to use the u,. ..cd -nach.
3.4.2 FIXED, MICRO--PROGRAMMED MACHINE

An implementation which would permit the addition of new macromedule types, if they did not
vary drastically from the present geneial concepts, and yet not require the overhead associated with
macromodules, consists of a fixed machine which couid be microprogramnied by « fast read only memory.
Tris wo.'d be a most attractive implementation, which represents an intermediate approach: however,
it involves the designing of a completely new computer tailored toward simulation of maciomodules and
15 not avscussed further here.

3.4.3 EXISTING MACHINE

Another ini, luinentation could utilize a macromodule simulation program cn an existing machine
with some inierface te macromodules. Such an effort is underway in the laboratory using a LINC
(Laooratory [INstrument Computer) and a LINC-macr- module interface designed by an associate of the
avtnor.'2 The availability of the LINC scfiware which includes a macro facility and th. ease of use ana
~rogramming make this a natvral choice. Macromodule simulation cxists for the LINC,8 but does not
¢mbody the concepts presentad in thisreport. A useful aspect of this type of implementation is *hat the
machine language of the existing computer can be used whenever such use is more appropriate than use
of the macromodular functions.

The requirement that the user construzt an interface between his existing machine and macro-
modules is one of the most important characteristics of this implementai >n. It dces not seem reasonable
that the designers of macromodules sc've this problem cxcept by providing arn M4 macromodule. Tlus
would “equire that the unified appirach be...~ = the standard method of using aacromodules. This is a
very real possibility, but 1t is oo early in .ne deveiopment of macromodules to do more than speculare.

if the user chooses this implementation, he has provided himself with the opposite :me to
that discussed in Section 3.4.1. This iinplementation provides the. slowest speed of si .ulation combined
with a minimum amount of hardware. Most existing small computers can reasonably be used in this
.mplementation. The machine should be capable of indefinite extended precision arithinetic, and it is
convenient if it is a 12 bit computer Of course, the user also has all of the features of the “nputer
to use in any way he desires, not an insignificant advantage.

Jnz experiences witn tne existing LINC macromodule simulation effort indicate the p.rameters
2ssociated with this implementation. The LINC is a 12 bit computer with an 8 microsecond cycle time
and 2048 words of memc:y. The simulation consists of a set of macros and subroutines assembled to
form a LINC program which simulates the operation of a macromodular system. The simulation soeed .or
12 bit mma:romodille operations is anproximately 1300 to 1 as compared to real tinie macromodular
operstions. This ratio essentially increcases lincarly ~ith increased length of simulated macromodular
operations. Systems with a maximum of abovt 70 macromodular operations can be simulated. There is
a direct trade between number of simulated registers and the amount of simulated memory. However,
systemr with only 70 ocerations almost never invoi.-e more than a dozen or so registers leaving 1024
words of 12 bit memery fer simulated memory macromodules. 1f an interpretive simulatior technique
were used, the number of simuiated cperations could be increased with the pesalty of decreasing the

-17-

simulation speed by a factor of two or three. Of course, a 2048 word memory is extremely modcst for
even the typical small computers currently avaiiable.

The use of a large scale computer as an M4 has not been considered at all in this report. Neither
have such things as saveral users of macromodules tune sharing a large centrally located computer been

discussed here. It is felt that the inclusion of these topics is not necessary in the present discussion.

3.5 CONCLUSIONS

This secticn has discussed the meta macromoduic machine which supports the general concept
presented in this report. The evaiuations of alternate organizaticns and implementations have been left
to futere research. A few general concluding remarks seem to be in order at this titae. Possibly the
foremost concern in the specification of the meta machine must be to provide a machine which is straight-
forward and easy to use. In fact it should be possible to work with a specification of a macromodular
system for execution on this machine directly at the lowest possible level and to by-pass any software
suppert for some operations. This is a particular concern of the author, but the scrious student of
computer systems will see that a great anount of inefficiency mav result. However, it raust be remembered
that this machine is intended to simulate hardware operations implemented in tern's of macromodules.
Thus a description of 1000 mactomodules represents a large hardware system while a mrogram of 1000
instructions 1< quite a small system.

The foregoing does noint up one problem, however, that exists in some implementations and
organizations of the Md4. If the M4 is used to provide gereral sofiware support tor a collection « ¢
macromodules, then some programming operations are needed. The orgenization of the M4 may not b
well suited to pregramming because, for exannple, th... ‘eed not be any addressing or indexing fiexibility
provided. Two solutions have occurred to «ne author. One, which has been rejected for lack of elegance,
would provide a set uf instructions to be uscd in general programming of the M4. A more elegant approach
would be to design a suitable machine in terms of macromodules and then use this description as an
interpreter for a more convenient mz~hine language. This 1s certainly elegant and is protably feasibie
from « progmaiic standpoint because any demanding coiapuaiations would be perfonned oy uxtematly
implemented macromeduiar operations. Compilevs and arithmetic comprtation oriented machines can be
designed for macromodules3:® which could then be efficiently interpreted by a macromodular description
in the M4,

i e Ll K

15‘

4. DISCUSSION OF EXTERNALLY IMPLEMENTED MACROMODULAR FUNCTIONS

4.1 INTRODUCTION

In Section 3.3 the use of externally implemented macromodular registers ad control was discussed
in connection with the meta maciomodule machine. In this section the cenventions are discrssed which
have to be observed in implemsnting external functions so that the interface between them and M4 can
be standardized.

4.2 REGISTER GROUP

Figure 8 shows the conventions which must be followed to permit communication between external
macromodu’ it regic ‘1s and M4, The dotted line indicates the physical and logical boundary of the M4.
As can be seen, quite a large number of macromoduiar operations must be implemeated by the user;
however, they are quite regular and should pose no problems.

The example shows two registers implemented exiernuily to the M4, One register is 12 bits and
the other is 24 bits wide. Additional data processing mcdules are shown on the registers to indicate
that the registers have externally implemented transfers, adders, etc., which irvolve them. The user
must number the registers and provide the proper decoding of control signails. Because only 12 bits of
data can be transfeired at one time, each register module in a more than 12 bit register mus! be considered
as a separate register for the purpose of these transfers.

It is the responsibility of the M4 to establish the proper data out signals and then generate a
macromodular control signal on the proper line. The M4 processing is stopped until the proper return
conirol signal is received. Becausz of tias responsibility on the part of the M4, theuser actually
has very little to be corcarned with when he implements the required opcrations.

There is a problem in that the overiiow indication cannot be transferred from ire M4 to the
exter. ui ripistezs. Thereii:s (i s noi possible w perform an internal operation on an external register
and then have the correct oveiflow indication transferred to the register. “ The only difficulty is that
an external test of ovarflow will always indicate no overflow after an internal operation. This is a
rather small point but sti:] one which the user must remember. A pnssible solution would be to build some
macromodular registers which are capable of having overflow turned on by a control signal. However,
from the pragmatic peint of view it is felt that the user can live with the problem.

If there i+ u possibility of concurrent operation between Ma and externally i plemented functions,
interlocks must be placed at the appropriate places in th: register operations. This is left entireiy tc
the user and follows directly the normal macromoduiar use of the interlock.

4.3 CONTRCL. GROUP

This Section discusses the conventions required of externally implemented control functions
which permit a standardized interface with the M4.

4.3.1 CONTROL OUTPUT FROM THE M4

The M4 presents a daia word which represents a control sequence aumber which must be decoded
by external decoders. Figure 9 indicates the necessary operations. A requirement of extemai control
is that it be capaule of concurrent operation with internal functions of the M4. Therefore after a control

-19-

|
|
i
I
| DATA IN
| RETURN
\
I
))
° i
o | M |
o | EL | OVERFLOW
—af R
—o] 6 [| RETURN
LE)
|
I
f_'j I
I
\ ;E; | NO OVERFLOW
" G| | RETURN -
° | E |
4 —J
[
e[|
° i
(XoR) Y g | DATA OUV
]
|
(RES)) REGg) U ’-//I__,____‘:E :RET”R"
w—
- :
’ie@-)f/-?\—“ | |
@ | & , DECODER) fe—1— OVERFLO?
L] ®
. . DECODER -—: DATA OUT
— !
=" (DECODER e—— DATA IN

EXTERNAL
M4
DATA REGISTER
ouT SELECT
EXTERNAL REGISTER GROUP
Figure 8

o

-20-

i

CONTROL STARTED

CONTROL OUT

|
!
|
|
|
CALL Q0 I
it :@} '
51§ |
|
|
|
|
-4 |
INTERLOCK oo @ |
¥ |
SEQUENCE, <— 1t :
|
SEQUENCE , =— / |
eo o | 0 :
DECODER ﬁ |
|
|
|
|
|
_____ EXTERNAL Ml __1]
M4
SEQUENCE
NUMBER

EATERNAL CONTROL OUTPUT FROM M4

Figure 9

sequence has been decoded, the control sigral must branch to indicate to the M4 that internal operations
may be resumed. The interlock is required because there s a possibility that the M4 might be able to
generate a control signal on another input to the call element before it has been cleared by the return
signal. This possibility is very slight because the M4 must do a memory operatior. before anotter
contiol signal could Le genrated. There is a considerabie responsibility placed on the operation of

the M4 1n order 10 insure the proper operation of these concurrent sequences.

4.3.2 CONTROL RETURN TO THE M4

Figurc 10 shows the use of .ontrel returns. KReturning control must gate a number representing
the control sequence into a register. Then control must pass to the M4 to process the retwrn. The
completion signal from the processing operation must finally rend« .vous with the start of the particular
control sequence because the M4 could immediately reactivate the same extemal control sequence.
Failure to do this may mean that two control signals could be actise in a single ccuwrol sequence; an
illegal operation in macromodules. The dot on an input to a rendezvous element is a standard notation
to indicate the input is preset to an active state. An interlock is shown between control sequences
1 and 2 indicating that they may be concurrently active. Once again we see tha! he M4 is responsible

for a considerable amount of control information.

4.4 IMPLEMENTATION CONSIDERATIONS

The implementation of external control and register operations has been shown as a purely
macromodular implementation. This assumes a proper macivmodular interface with the M4. In the
non-macromodular implementations of tiie M4, it may be important to reduce the number of interface
points between the M4 and externally implemented macromodular functions. A possibie technique is
to use a memory to centralize the actual interface connections.'? The resulting changes in the designs

shown here are not discussed but 1t is still possible to use these general ideas.

CONTROL

SEQUENCE
NUMBER
AN M4

N T __ -

EXTERNAL |

|

: | PROCESS

: | CONTKOL RETURN

CONTROL RETURN CALL UNIT |

COMPLETE PROCESS
CONTROL RETURN

@ 0000
@ 0001

: 0G 0002

\

INTERLOCK

/
“

" CONTROL
SEQUENCE0

START CONTROL
SEQUENCEo

START CONTROL
SEQUENCE

CONTROL
SEQUENCE |

START CONTROL
SEQUENCE,,

CONTROL
SEQUENCE2

—— —— —— — e ———— — —— — —— — — — — — — — — —— — — —— — ——— — —p

EXTERNAL CONTROL RETURN TO M4

FIGURE 10

5. CONCLUSION

This -epert has nresented a unified approach to the design and use of macromodular computer
systems. Central to ihe concept is a meta machine whkich is capable of routing control and data transfer
operations as specified by a description of a macromodular system and also provides & standard nterface
for externally impiemented macromodular functions. Several implementations of the meta macromodule
machine M4 have been discussed. The M4 is also capable of providing general programming support for
a macromodular system.

1t is felt that the unified approach is a very valuable concept which permits an evolutionary approach
to computer design by allowing small incremental changes to be made and evaluated before they become
a fixed part of the system. Even while these changes are being made, the user always has an easily
recoverable working ‘system. The unified approach appears to te a very useful means for providing a
convenient input form for functional simulation of digital systems.

For the user who 1s not oriented toward computer hardware, the unified approach pemits the use
of the concept of designing a spacial machine which may, but does not have to, be built. If the user
chooses not to build the machine, he still is ahle to do a very efficient interpretation of his machine
using the meta machine. If he does decide to build the computer, he is not required to build all of it.
The unified approach gives the software oriented user a fixed target for compiler development by
providing ti. capability of having a system on which to run the compiter and its results.

Finally. and probably the most importar., the unified apprcaca permits the best hardware-software
tiade-offs to be made. Note that many parts of the solution can be expressed in a high level language
if that is convenient. 1t is important to note that the hardware-software balance can always te changed
as :xperience with a system grows.

These conclusions represent the contribution of the unified approach t¢ the development and use
of macromodules. Although only the relationship with macromodules has been discussed in this report,
it seems that the unified approach can be applied to other restructurable computer systems. Itis after
all, primarily a way of :"*~king abcut a problem and as such has great generality.

HER,

APPE} 21X 6.1

A UNIFORM AND CONSISTENT NOTATION F: * DESCRIBING A MACROMODULAR SYSTEM

6.1.1 INTRODUCTIOM

In this section a uniform and consistent notation is discussed which miay be used to describe a
macromodular system design. Besides being capable of completely describing the sysiem, the notaticn
is convenient to use. A macromodular system is completely described by considering two separaie
uspects. The exact definition of the meaning, or semantics, of operation is detemmined by the physical
placcment of the nodules. This placement indicates what data may be added together, what data
transfer operations may take place, and all the other considerations of meaning. Second, the order in
which these operations are carried out, or syntax is definedby the routing of control cables v-hich link
together in specified sequences the various operati ns. Notice that neither one of these alone complete-
ly describes a system and both have distinct functions. The mcthod of notation takes advantage of
these considerations.

6.1.2 THE LATA PRUCESSING DESCRIPTION

The data processing operations, or semantics, are described by a pictorial diagram which corres-
ponds roughly toc the actual physical placement of modules. Because the width, in terms of multiyles
of the basic macromodules, is quite flexitle, the ar*ual width of operations is shown by drawing short
vertical lines between modules to indicate operations of more than one module length. The area above
the dotted line is used to give a name to the operat’ ‘hich then appears in the control sequence
descriptions. Additional names may be iadicated as a'*eiratives within this area of any single module.
This arbitrary name extends for the full width of the defined operation. The module type appeats in a
circle in the lower left corner of each box. Module type information mev have an e or i subscript to
denote an externally or internally impJemented function. These designations are subject to the rules on
implementation. For example, it is not possible to have an internal register with an external adder on it.
The area below the dotted line is used to describe data cable inputs, the name of a register, or other
input information. Note that a line is used for each different cable input so some modules may take up
more space in the picture than they actually do. Fixed paramelers may be written in octal in place of
cable input names. Figure 6.1.1 shows a typical description.

6.1.3 CONTROL. DESCRIFTION

The description of the control sequznces, o1 syntax, consists of flowcharts. Each entry consists
of the name of an operation which has been defined in the data processing description. Control branch
and rendezvous units are shown as small circles. operations as rectangular boxes, decisions as ovals,
and subroutine calls as trapezoids. Figure 6.1.2 shows a typical flow chart for the operations defined
in the previous section.

Notice that the flowchart contains annotation to describe external and internal functions. In some
sense this is redundant information because these attributes are defined by the data proces - .. module
drawings. However, the small numbers on the connecting arcs are necessary and are used to assign
number. to control exit and return lines.

COMPARATGR 1

>

36 BIT ADDER L

- CATCRNAL REGiISTERS \L.

36 BIT CLEAR 7\,.

12 BIT DATA GATE =

CR + A — CR
D a |G w
COMPARE 2
w7777 | w7777 | meacoo |
(CPe) v: 0077|(CPe) v: 0000 |(CPe) v: Al
ADD
@ o [G oo |
L2 |
[N RN ENN
6 —= LCR
(@) ou00 [(%g) 0000 [(¥9) 0000 |
CLEAR L LOAD CR
(%) o000 | a1 | a2

peen s

Al |(REG;) A2
B 0—A
“o000 [(35) ouoo |
K A

—mn

DATA PROCESSING DESCRIPTION

Figure 6.1

B

-26-

()] 0 —~ LCR {4

l(EXTERNAL)
0
: (1)

0—=A

(i) X —=A

(1) /7, (LeR)» Lcé\

COMPARE?

{e)| CLEAR L

(EXTERNAL }

f, (LCR) —= LCR
(1)

ADD te)

CONTROL DESCRIPTION

Figure 6.1.2

-27-

6.1.4 CONCLUSION

The above notation has been used by the author and has been found to be very convenient. Even
though the notation is complete, it is not felt that the required detail is s drawback. Because the
designer is committing actual expensive hardware, he must know exactly which operaticns are currently
availeble. The number of flowcharts required is not large because a system with 2 €2+ hundred oper-
ations in it represents a large system, while. the same number of machine language instructions would
represent only a very smell program. One flowchart entry 1nay reptesent severai actual macromodules
because of multiple width operations.

The ability to name the operation in the semantic description and then use it in the control tlow-
charts make possible flowcharts which are completely annotated yet are directly related to the definition
of the operations. This is an extremely important aspect of the descriptive notation presented here. In
the future it may be pussible i0o name groups of operations ard therefore introduce a macro facility‘into
the notation.

After using this descriptive notation for a while, one is extremely unhapp_ to be required to render
the description almost completely uninte!higible in order to transform it to a machine readable torm. A
concerted 2ffort must be taken to devise a method of introducing the descriptive notation into a computer

in a more direct form.

L28-

AFPENDIX 6.2

CALCULATION « ¥ THE RATIO OF SIMULATION
TIME CC 'PARED TO ACTUAL OPERATION TIME

6.2.1 INTRODUCTION

In this appendix an approximate ratio is derived for the time required for simulation of macro-

modular cperations compareu to the time requirzd for the actual nacromodular operations. Because of
the asynchronous operatior of macromoaules these calculations yield only an order of magnitude ty, ¢
value for this comparison. The calcuiations indicate that arn order of magnitude »f 100 to | *s a reason-
able value for a machine which is ideally suited for simulation o" macromocules. Of course. for

simulation cn a ivpical digital computer the ratio is likely to be much higher.
€.2,.2 THE CALCULATION
T 2.2.' THE PROBLEM

As a typical macromodular operction, take a register to regisier transfe’ operation operating on
26-bit registers. This corresponds to taree regisier macromodules connected to form one larger register.
The . .tive data gate on the destination register is the fourth one from the registet in the stack of data
gates. Finally, it is assumed that there are five data processing modules above the register. These
details at2 important because operation iimes are dependent on these factors. Although formulas can be
derived for timing operations, this is not an appropriate place for preseniing this information. '3 The time
for this operation in the actual macromodules is 25C nanoseconds.'4 Experienced intuition is the only

guide for describing this as a typical operation.
6.2.2.2 THE SIMULATiION MACHINE

Th: machine whicl will be ascamed in this calculation is ideally suited for simuiation of macro-
modt {¢5 in that it follows the spedification of the meta macromodule machine. This means tha: the
meachine c.n cimulate the register transfer operation with only one instruction. However, beccuse a
basic 12 bit machkine is postulated, several memory refeiences are required to petform the operation.
Our calculations therefore invelve counting only memory references. One iiemory reference is required
to access ti . operation code. A memory reference is requirea (o ge. the addresses of -ie memory
locations for the tinee source and three destination registers. Finally three words of data misi be read
from memory anc =tored inio three other memory locaticns Therefore. thirteen memory teferences a.e
required o perforru the operation described in section 6.2.2.1. If a memory cvcie time of two micro-
seconds 15 used, the total tims for simulation of this operation is 26 microseconds. This is 100 times
the 250 nanoseconds required for the actua. operation. If 2 one mirrosecond memory is available,

1

the ratio becomes 50 to .
6.2.3 CONCLUSION

It has bezn thown that a ratio of 10% to 1 for functioral smmulation time compared tc actuil

operation time is realistic. The reader shouvid be cautioned .nat this ratio holds only fo1 the particular,

.29-

but realistic, siuations descnibed here. If functionai simulation is to be a realistic design aid ratios
of this order are required.

Because this ratio can easily grow by decimal orders of magnitude, it is an extremely important
factor for simulaters ty be aware of. Nc matter how convenient a particular simulation tool may be, if a

user requires several hours of computer time to simulate a few -.econds of real time, the tooi is not very

wseful.

-30-

APPENDIX 6.3

AN EXAMPLE

6.3.1 INTRODUCTION

The example, which is part ~f an actual investigation, concerns the requirement for translating
spherical to rectanguiar coordinates. The following equations define the translation:

X =p sin¢ cos § (D
y=psin¢ sin 6 2)
Z=pcos¢ (3)

The existence of a compilzr for a FORTRAN-l:ke language to the M4 operations is assumed. The
example will show th2 evolution of the coordinate translation from a complaetely internal version to one
implemented entirely in macromodules. The routine finds the input arguments in three variables called
p, ¢, and 8. The output of the routine is ieft ir three varia™les called x, y, and z.

6.3.2 INITIAL FORM
Initially the coordinate translation 1s to be specified as a2 program in a higher level language.

phi = phi * 3.14/180; translate degree arguments
theta = theta * 3.14/180; into radians

x = rho * sin (phi) * cos (tneta);

y = rho * sin (phi) * sin (theta); compute X, y, Z

z = tho * cos {phi);

The languuge is almost FORTRAN and the execution time for single pr cision fixed Doint resulls is
estimated to be approximately S00 microseconds on a machine with a two microsecond memory cycle
time. The sine and cosine are computed by the standard, built-in trigonometric subroutines.

6.3.3 TABLE LOOK-UP

The next step is the realization that because the angles for this application are physically measured
with values known f. only *+ % degree, the trigonometric functions can be performed by simple table
look-up. An externaily implemented table look-up routine is designed and called by simulated macro-
modular call elements. Naturally «:» subroutine could be marked and fun in int=rnal implementation
for debugging purposes. Fignre 6.3.1 showsthe data processing module layout including those modules
necessary for communication with the M4, Figure 6.3.2 is the control network flow chart. Note that
internal functions are designed which operate on externally implemented registers.

6.3.4 IMPLEMENT TABLE LOOK UP CALL EXTERNALLY

The next step might be to implement the subroutine call externaliy. This is a reasonable step
because the i1aternal execution of the call and return takes about the same length of time as the entire

uu&—.n—n—————-——m-n—nm

R A ——

DATA —»T1

e — — e — o —

o — — — —— — —

f e — v —— — — e — —

e T R ———

(08), DATA OUT

MEM —e T2

P —— e — ——— . — =

(06, MEM
REG), S
DATA — 5§
DG)e DATA OUT
T — S
®, T
T2 — S
——————————— 4
05), 12

@), S
@. 1
@,]

e — o ——— — — —

e — — — — — ——

b e m— —— v . —— ——

(OCOR), REG OUT

e e mme — ——— — o —

(DCOR)e REG QUT

k DCDR)e CONTROL ouf!

L

TABLE LOOK-UP - DATA PROCESSING MODULES

Figure 6.3.1

T (TR

l (INTERNAL?

tl «— ¢ + SINTABLE
t2 e« e + COSTABLE

/ TABLE LOOK-UP '\

X a—p * tl * t2

!

t1<e— ¢ + SINTABLE]
t2e— 8 + SINTABLE J

/" TABLE LOOK-UP "\

ye—p0*tl * tz

!

tieg + COSTABLE

l { INTERNAL)

SINTABLE & COSTABLE ARE CONSTANTS

WHICH ARE STARTING ADDRESSES OF TABLES

TABLE

LOOK UP SUBROUTINE

I
l (EXTERNAL)

T1 -5

READ MEMORY

MEM = T1

72—+ 5

.@:

READ MEMORY

MEM —» TC

0
{ INTERNAL)

TABLE LOOK-UP - CONTROL

Figure 6.3.2

-33-

table look-up operation. Because the subtoutine is called from three places, three control lines in each
direction between the M4 and externally implemented functions are required. The data processing

structure is not shown because it is almost identical to Figure 6.3.1. The control newwork flow chart
is shown in Figure 6.3.3.

6.3.5 IMPLEMENT PARALLEL!SM WITH MOST CALCULATIONS INTERNAL

The next step is a redesign bascd on the fac) *hat it is possible to use some concurrent processing.
1t is possible to compute a sine or cosine function at the same time that a multiplication is being donec.
Also, there is a common subexpression in the equations for x and y which only needs to be computed
once. Finally, at this time -ve do not wish to perform the multiplication in macromodules but do, however
want to shift the focus so that the coordinate translation 1s essentially controlled by the extemally
implemented functions. Again we note that any of the macromodular functions may be internally imple-
merted by the M4, Figure 6.3.4 shows the data processing modules required, excluding most of those
used for communication with the M4, Figure 6.3.5 gives the control network flowchart.

6.3.6 ALL OPERATIONS IMPLEMENTED EXTERNALLY WITH MACROMODULES

Finally, the entirc coordinate translation is implemented externally with macromodules. The
execution time for this implementation is approximately 20 microseconds, a 25 to 1 improvement in
speed over the original implementation. For this description a multiply macromodule is postulated even
though it is not part of the initial set oif modules. Obviously, the multiply function can be implemente
in terms of the original set of modules.

The completely external implementation is shown in Figures 6.3.6 and 6.3.7.

SHSHEL T il

234-

| (INTERNAL)

(i)| t1e— g + SINTABLE
(i)| t2 «—e + COSTABLE

} 0 EXTERNAL SEQUENCE 0
(e} /" TABLE LOOK UP "\

§ 0% CXTERWAL RETURW 0
(i) | xe=p * t1 * t2
t] - g }SINTABLE
12« @ + COSTABLE

TABLE LCOK UP SUBROUTINE

(e)
t1 «— g + COSTABLE

12 T1 = S

(e) / TABLE LOOK UP "\ READ MEM
2 A

1 2z * t] B
(1)) MEM —= T1 - T2 =S

¢ (INTERNAL) '\I/‘
READ MEM
MEM —& T2

l(e)

'

TABLE LOOK-UP - EXTERNAL CALL - CONTROL

Figure 6.3.3

®®)e T

p—+T
LG)e P
(06)e DATA OUT
——————————— —
(REQe U

MEM — U
@e wen |
(REG)e p
s o — —— ——]
REDe ?
e e

S + COSTABLE

®e mmam
S + SINTABLE
®e nnonn
QB s
p—S
@O /
8 -+ S
L<§§)e e
(REG)e X

DG)e DATA OUT

e

P e —— — — — —— t— —]

e —— —— — — — — — —

(06)e DATA OUT

IMPLEMENT PARALLELISM MOST CALCULATIONS
INTERNAL - DATA PROCESSING MODULES

Figure 6.3.4

(e)

-36-

/liEXTERNAL)

p—=T

1

p S

,(§>=

S + SINTABLE

READ 4EMORY

HEM —= U

0

@~

TeT*y

C

(e)
_—.@

e > S

S + COSTABLE

READ MEMORY

MEM — U

A
®

X T %y o - S
1 S + SINTABLE
(;e) READ MEMORY
MEM —> U
2 A
YT *y & g —S
12) S + COSTABLE
p— T .@‘ READ MEMORY
(e)] MEM—>U
l3
(i)] Z-T*U

3
l (EXTERNAL)

Figure 6.3.5

IMPLEMENT PARALLELISM MOST CALCULATIONS INTERNAL - CONTROL

B TxU-—»T S + COSTABLE
@we v || ©e mamm |
S + SINTABLE
®D. 1 (®e nnnn
P — T
ZE(D_ o _P ““““““ &G—e—‘- “S“]
B g —oS
@. s |
Ux T-»U e— S
@, 1 @. o
_&E;"jr__m
MEM — U
(@e mv | (@ x|
y-—»X B
(@ v
RE®e L D _
(RE®e !
y-—»y
@ v |
[
I
[
I el O
[N @,

COMPLETE EXTERNAL IMPLEMENTATION - DATA PROCESSING MODULES

Figure 6.3.6

~-38-

KL(EXTERNAL)
\ -

B
p—T U; b —> S
S + SINTABLE
READ MEMORY
MEM —» U
temp costheta
—&
UxT->T | 6 — S
S + COSTABLE
:§: READ MEMORY
MEN —»=
comp x /i\ sintheta
TxU-»iU & 8 — S
y-—oX S + SINTABLE
'<;>‘ READ MEMORY
MEM — U
comp y /i\ cosphi
- B ¢
Txu—vuf = p—5

U—eY

o

— T

m—ct

S + COSTABLE

READ MEMORY

MEM —» U

TxU—+U

Uu-—=»172

l (EXTERNAL)

COMPLETE EXTERNAL IMPLEMENTATION - CONTROL

Figure 6.3.7

APPENDIX 6.4

A MACROMODULAR META MACROMODULE MACHIJE (M6)
6.4.1 INTRODUCTION

This appendix summarizes the design of an M6 which has been referred to in the body of the
report. The important details of the M. communication with external registers and control were pre-
sented in the body of the report and are not repeated here.

There is one primary register. which is 36 bits long, where all the macromudular data processing
operations take place. Because of the greal flexibility with which data cables may be connected, all
of the simulated data cable inputs to a function must be read from actual or simulated registers before

the vperation starts. The M6 uses first-in first-out buffer stacks for the purpose of holding these operands.

6.4.2 PROGRAM AND INSTRUCTION FORMAT

The program and instriction format of M6 is analogous to a stored program digital computer. In
general commands are stored in memoty which describe macromodular operations and are executed
sequentially except for decision-making operations. Along with each command is stored information
regarding the simulated registers which are to be used in the command. The operation sequence can be
broken by unconditional o: conditional transfers tc other sequc-ces of operations. In this section we
assume that the M6 has a 4096 word x 12 bit memory. Expansion of memory capacity can be handled
by some type of paging scheme. The M$ really shouid also be capable of executing instructions to
perform |1 ‘O and other support functions. These are not discussed further here.

The command is 3 two word sequence in which the first word is used to specify the macromodular
operatici: and the second word is used to flag options on the command. The only flagged operation
cunently specified is the very impurtant oune of specifying whether or not control is to remain within the
meia machine or is to exit tc externally implemented macromodular functions. Only one bit is needed to
specify this option; however, if control i1s to eait at this point, the remaining eleven bits are used to
specify the external control sequence. This allows 2048 differenit external control sequences to be
specified.

As long as no concurrent operations are implemented, external control g-.eration and return 1s
quite simple. However, 1l concurrent operations exisi and some of them are extemal and some are
internal, the situation becomes more complex. [t is required that all externally implemented concurrent
operations proceed in a truly concurrent form while internal operations proceed in the required sequential
form. A first-in first-out stack is used to remember internal control sequences which have been encoun-
tered but not executed. Reiurning external control signals put the address of where intemal operation
is to rasume into this stack. Thus, as internal rendezvous clements are encountered, the uncompleted
sequences are c¢xecuted but externa! control may be executed in true concurrent form.

Data references to rea! or simulated regisiers consist of a sequence of addresses of register
specifications preceded by an integer which speciiies the number of basic 12 bit register modules in
the reference. There are as many consecutive sets of data references as are called for by a particular
macremodular - nction. For example, {ata gates and registers require two data references while a
comparator requires three. The following forms indicate the use of a duta gate operation for both 12

and 24 bit data references:

-40-

12-8BIT

word n- data gate

n+ 1l flag

nt2 1

n +). source re,ister srecification address

r+td 1

n + 5. destinition regiscer specification address
24-BIT

word n: data gate

n+l: flag

n+2 2

n + 3. source register sp2cification address foi bits 0-11

n + 4: source register specification address for bits 12-23
n+S5: 2

n + 6: destization register specification address for biis 0-11
1. +7: destination register specification addrz2ss for bits 12-23

Register specifications consist of cither a single word or two consecutive words in the
M6 memory. The first word contains one bit which speciiies whether the register is simulated
in memory or exists cuiside the meta machine implemented as an actual macromodular register.
If this is the ca: -, the remaining 11 bits are used to specify a registe; number. Thus itis
possible to access a total uf 2048 externally implemr:nted regis.eis.- If e register is simu-
tated within memory, the first speciiication word also contains a bit which 15 a true reflection,
in the macromcdule: sense, of the overflow condition of the register. The remaining ten bits
are available for other, futu-e uses. Finally ,the secuo d word holds the contents of the
simulated register.

Countro! operations 1n M6 are analogous to those in stored program computers. For non-
decision operations control passes tc the next operaiion specified in contiguous memory
locatioas. A locetion register is used as in a programmed computer. Decision operations
interrupt the consecutive flow of control for all possible decision outputs. A ‘ransfer of control
is specified by a 12 bit address which ixdicates the start of a nev control sequence. This is

directly analogous te branch or jump instiuctions in a stored program computer.
6.4.2 UATA OPERATIUNS

The instruction foimats of all macromoasles whici. process or monitor data are presented
here. Each word of the operation is not s,ecified in detail. Specifically, the command and
flag words are assumed to be part »f the mnemonic for the oneration and the details of the data
teferences arc sabsumed in the notation: operand,, cperand,. etc. Note also that the numcrical
code for sach operation has not been specified. "n general, the irst operand specities a c. ble
input, and the second operand specifies the register on which the command operates. The
parentheses are used to denote, the continis of the register specified by. Thus, {op randl)
means that operand, is a register specificstion address and the data described by thoc specifi-
cation are used in the overation.

-

-31-

DATA GATE
dg, operand |, operand,
(operand,) + (operand,)

ADDER

ad, operand,, operand,

{operand,) + (operand,) » (opeiand.)
SUBTRACT CABLE

subc, opetand,, operand,

(operandz) - (operand,) - (operand,)
SUBTRACT REGISTER

subr, vperand,, operand,

foperand,) - (operand;) - (operand,)
OR

or, operand,, operand,

perand,y) + (operandy) + (operand,)
EXCLUSIVE OR

Xor.operandl. operand,

(operand,) (s (operand,) + (operand,)
AND

and, operand,, operand,

(operand,) - (operand,) - (operand,)

WRITE MEMORY

wrm, add.ess cf memory specification, operand,, operand,

The contents of the register specified by oprrand, are used as the address at which to
store the contents of the register specified by operand;. The memory specification consists
of ne or two ccnsecutive words which give the address in the memory of the M4 which corres-
ponds to address zero of the simulated memory. Consecutive 12 bit words are used to store
the data. The operation dees not permit writing into 12 bit fields of a wider memory module,
an operation currently under feasibility study by the designers of macromodules.

weth:

READ MEMORY

tdm, addr of memory specification, operand,, operand,

The contsnts of the register specified by operand, are used as an address whosc contents are
moved into the register specified by operand,, Th~ other details of the operation are specified in the

in the previous paragraph.
SHIFT LEFT

shl, operand,, operand,

(Operandz) is shifted left one bit position. The left most bit is lost and the vacated bit position
is filled from the left most bit of (operand,).

SHIFT RIGHT

sht, operand,, operand,

(eperand,) is shifted right one bit position. The right mnost bit is lost and the vacated bit position
is filled from the right most bit of (operand,).

6.4.4 CONTROL OPERATIONS

This section specifies the macromodular control operation commi.nds.
COMPARATOR

com; i0dicss,, address,,. operandl, operand,, operandy

The co~tents of the register specified by operand; are compared to the contents of the regisier
specified by v, crand, using the contents of the register specified by operand, as a mask. If the com-
parison is false, the next command is taken from address,. If the comparison is true, the next command
is taken from address,. No data are changed by this operation.

TEST OVERFLOWN

tov, operand,, address,, address,

If the o\ ..flow indicator of the register specified vy opemnd3 is on, the next command is taken

from address,, o.-~rwise the next command is taken from addressy.
TRANSFER OF CONTROL

to, address,

Conirol is unconditiorally transferred to the comrand at address,.

CALL ELEMENT

cle, address,, addressy

.)

— — —-—— - [] ["] —_——

-43-

Control is transferred to the first command of the macromoduiar subroutine which starts at
addressy. The command at address; must be a transfer of control w!. ch is used to return control to

the place from which the subroutine was called.
DECISION CALL ELEMENT

dce, address,, address,, addre«sy, address,, addressg

Control is transferred to the tw . return subroutine beginning at addresss. Address; is the address
of the command which follows the call for one return of the subroutine. Address2 is the address of the

transfer of control at the end of the subroutine for this same return. Addressa and addressg have the

same functions as address, and address, for the other return from the subroutine.

BRANCH UNIT

bru, address,, address,

The branch umit initiates the two concurrent sequences which start at address, and address,
Externally implemented sequsnces are initiated immediately while internal sequences are ini.iated in
turn with more than one stored in the control stack.

RENDEZVOUS UNIT

rvu 1, rvae r, mark

The rendezvous unit terminates concurrent sequences. Thei e two inputs, left and right, which
must be specified in that order. The mark word is used to indicate whether or not the rendezvous has
had both inputs activated. If contrc! has been activated at both inputs, the command immediately
following is executed. If only one input has been activated, centrol must pass to a sequence whose
starting address has been stored in the control stack.

DECODER

dec, operand,, operand,, addressy, addr2ssy,..., addressy

The conteats of the register specified by operand; used a< a mask which indicates three con-
tiguous bits of the register specified by operand, to be decoded. Control passes to address,, address,,...,
depending on the octal value of the three decoded bits.

INTERLOCK
Not simulated.
6.4.5 EXAMPLES OF THE M6 DESIGN
Although it is difficult to present some of the design of the M6 without presenting the detailed

design in its entirety, this section will discuss, in general terms, the design of afew selected areas
of the M6.

-44-

6.4.5.1 DATA FETCH

An important operation in the M6 is the tetching data which is to be u<ed as a cable inputto a
simulated operation. The data may consist of any number of register segments up to the capacity of the
buffer stacks mzntioned in 6.4.1. There is also the requirement that any of the register segments may be
implemented externally. The design is shown as a general flowchart in Figure 6.4.1.

6.4.5.2 AND OPERATION

The AND operarion represents that class of macromodular data processing functions which can be
performed by simple iteration of segments. Each segment is complete by itself and there is no need to
know information from any other segment. The design of the AND is presented in Figure 6.4.2. Notice
that all segments for the cable input are fetched and stored into a buffer stack. Then each segment for
the register operand is fetched, the next cable segment read from the stack, the operation performed, and
the result restored to the proper segment. The operations concerned with fetching and resteiing the
register operand segments contain commands similar to those discussed in 6.4.5.1.

6.4.5.3 ADD OPERATION

The ADD operation represents a class of operations in which each segment is dependent on other
segments. In this case, provision must be made to propagate the carry generated in each segment on
to the next segment. This is done by having registers to the left and riglt of the segister where the ADD
takes place. The carry is gencrated into the leftmost register which is then moved to the most signifi-
cant bit position of the rightmost register. The ADD operation then adds zero to the leftmost register,
the cable segment to the center register, and a constant with a one in the most. significant bit position
to the rightmost register. The overflow indicator is cleared fo: all bit the most significant segment. The
design is described by th= flowchart in Figure 6.4.2.

6.4.54 COMPARE OPERATION

The COMPARE operation represents those operaticns which cause a transfer of control. This is
simply a matter of moving one of two possible addresses to the P register or location counizr. The
COMPARE operation requires two cable inputs. Because no data is changed, there is no need to restore
any segments. Finally, if the comparison fails on any segments except the last, the remaining segmenis
are not checked but there is some overhead required to clear the previously filled buffer stacks. The
design of the COMPARE operation is shov s in Figure 6.4.4,

o aad [re— [reem—1 PO

as

-45-

1

GET NUMBER OF SEGMENTS

YES ——f'
THE NUMBER OF SEGMENTS
A TO BE DONE = 0
l NG,

GET REGISTER
SEGMENT FLAGWORD

B
REGISTER SEGMENT
LOCATION?
EXTERNAL 1INTERNAL
)
EXTERNAL REGISTER DATA FROM DECREMENT NUMBER OF
SEGMENT — BUFFER MEMORY — BUFFER SEGMENTS TO BE DONE

;

Y

DATA FETCH FOR SIMULATED JPERATION

Figure 6.4.1

A it AL

-36-

|

=
FETCH CABLE SEGMENTS |

1

SEGMENT FETCH

INITIALIZE REGISTER

@)

v

FETCH NEXT
REGISTER SEGMENT

READ SEGMENT FROM
BUFFER STACK

@

{

PERFORM MACROMODULAR
AND WITH REGISTER &
OUTPUT OF BUFFER

CLEAR OVERFLOW
INDICATOR

v

RESTORE SEGMENT
RESULT

YES
T < ALL ggﬁggnrs)
lno

DECREMENT
SEGMENT
COUNT

THE AND OPERATION

Figure 6.4.2

| o i mrsund] o) umgd —] _— ——

L ¢] ———— L

{ % l
INITIALIZE ADD FETCH CABLE
OPERATION SEGMENTS

I .<;>‘ |

INITIALIZE REGISTER
SEGMENT FETCH
]
N
B
N4 t
FETCH NEXT READ SEGMENT

REGISTER SEGMENT

FROM BUFFER

|

——¢

ADD OPERATION

YES !
£-——-—{: LAST SEGMENT ?

:} NO

FIX OVERFLOW
INDICATOR

L

CLEAR OVERFLOW

INDICATOR
il

T

RESULT

RESTORE SEGMENT

YES ALL SEGMENTS

D

THRU DONE?
NO
{ & b
PROCESS DECREMENT
CARRY SEGMENT
COUNT

’C?t

THE ADG OPERATI

Figure 6.4.3

ON

Do LTI VT TI R AL 5 Kl 1l VS

A e

- PRI YAt MUt 5 YO b

-48-

|

INITIALIZE COMPARE OPERATIGN

FETCH CABLE, SEGMENTS

FETCH CABLE2 SEGMIMTS

INITIALIZE REGISTER
SEGMENT FETCH

‘ o/

'

FETCH NEXT
REGISTER SEGMENT

READ CABLE SEGMENT
FROM BUFFER

t COMPARE?

DECISION —
CALL

LAST NO
SEGMENT?

YES

DECREMENT
SEGMENT
COUNT

TRUE FALSE
NOT LAST NOT LAST
S —
SKIP OVER
TRUE FALSE
LAST LAST REMAINING SEGMENTS
v I

DG TRUE
BRANCH

DO FALSE
BRANCH

THE COMPARE OPERATIGN

Figure 6.4.4

-

fooed g Geuyd Gund OGued A R B e Y e

.

-

-

-

.

-

10.

11.

13.

14.

-49-

7. REFERENCES

Estrin, G.. Organization of Computer Systems: the Fixed Plus Variable Structure Computer,
Proceedings of the Western Joint Computer Conference, 1960, 33-40.

Clark. W. A., et al, Macromodular Computer Systems, Proceedings of the Spring Joint Computer
Conference, 1967,335-401.Reprinted as Technical Repori No.4,Computer Systems raboratory,
Washington University, St. Louis, Missouri, June 20,1967.

Cox, J.R., Economy of Scale and Economy of Specializetion, Submitted for publication.

Molnar, C.E., Onstein, S.M.. and Arnd, A., The Chasm: a Macromodular Computer for Analyzing
Neuron Models, Proceedings of the Spring joint Compute: Conference, 1967, 393-401.

Ball, W.E., A Macromodular Meta Machine, Proceedings of the Spring Joint Computer Conference,
1967. 377-392.

Rawizza, A.R., Valgol Il Machine, M.Sc. Thesis, Wachington ''niversity, St. Louis, Missour,
June, 1967.

Molnar, C.E., A Macromodular Fouries Transform Computer, Technical Memorandum No.38, Computer
Systems Laboratory, Washington University, St. Louis, Missouri, August 8,1967.

Franiford,C., and Ellis,R.A,, Macromodular Simulation on the LINC, Technical Memorandum No.1,
Compater Systems Laboratory, Washington University, St. Louis, Missouri, August 24, 1966.
Dammkoehler, R.A . A Macromodular Systems Simulator (MS2), Proceedings of the Spring Joint
Computer Conference, 1967. 371-376.

Kitch, D.. and Keller,R., A Macromodular Programming Language (MACPL), Technical Memorandum
Mo. 43, Computer Systems Laboratory, Washington University, St. Louis, Missouri, October 1967.
Ellis, R.A., A Macromodular Meta Macromodule Machine (M5), Technical Memotandum No. 47,
Computer Systems Laboratory, Washington University, St. Louis, Missouri, November, 1967.
Couranz, G.R., A Proposed LINC-Macromodule Interface, Technical Memorandum No.33, Computer
Systems Laboratory, Washington University, St. Louis, Missouri, August 15, 1967,

Stucki, M.J., Timing Study: Transfer L.ogic of Modules Containing the Up-Bus, Technical Memoran-
dum No. 44, Computer Systems Laboratory, St. Louis, Missouri, Ociober 24, 1967.

Stucki, M.J., Personal Commurication.

BLANK PAGE

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R& D T

(Sscurity classilicaticn of title, body of ulstract and indexing annctation must be entered when ihe overail report ls classified)

1. ORIGINATING ACTIVITY (Corporate author) 20. REPORT SECURITY CLASSIFICATION
Computer Systems Laboratory Unclassified

Washington University 2b, GROUP
St. Louis, Missoun

3. REPOART TITLE

A Unified Approgch to the Design and Use of Restructurable Computcr Systcms:
The Meta Macromodule Machine

4. CESCRIPTIVE NOTES (Type of repoct and inclusive dates)

Interim

8. AYTHOR(S) (First name, middle initial, last name)

Robert A. Ellis

§. NEPORT DATE 78. TOTAL NO. OF PAGES 7. NO. CF REFS
January, 1968 49 14

38, CONTRACT OR GRANTN Ca, CRIGINATCR'S REPORT NUMBER(S)

(1) DOD(ARPA) Contr act SD-302
{2) NIH(DRFR) Grant No. 00218

5. PROJECT NO. Technical Report No. 7
(1) ARPA Project Code No. 5880
c. Order No. 655 $b. OTHER REPORT NOI(S] (Any other numbers that may be seslgned
this report)

+C OISTRIBSUTION STATEMENT

Distribution of this documert is unlimited

11. SUPPLEMENTARY NOTES 12. SPONSORING MILI TARY ACTIVITY

ARPA-Information Processing Techniques,
Washington, D.C. N.LH., Div. of Research

13. ABSTRACT

A restructurable computer system offers the user an evolutionary approach to the design and use of
computer systems. To support this, a unified approach is proposed in this report. A meta machine
and its environment are described which provide the ability to treat a macromodular description of a
system as a program to be executed or as aaset of specifications from which the system may be

directly implemented in macromodules. -

- N A . . o
REPLACES OD FORM 1478, 1 JAN 84, WHICH |3
ORSOLETE FOR ARMY USK. Unclassified

‘woves1473

Security Clavaification

Unclassified

arity Clsssl:ication

14. LINK A LINK & LINK C—
KEY WORDS —

ROLE wY ROLU LA ROoLE wT
Restructurable Computer Systems
Macromodalar Computer Systems
Functional Simu!ation
Operating Environment
Use of Restructurable Computer Systems
Evolutionary Design
Uniform Hardware—Software Notation

h
h

Security Clsssification

