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Abstract: The probability distributions of the amplitude of the
envelope energy spectrum of both Geussirn noise and
amplitude modulated Gaussian noise are derived. From
these probability distributions the probability of
detection of the modulation is calculated by comparing
the distribution at the modulating frequency to the
distribution at an adjacent frequency. Confidence
percentages as a function of modulation factor are
also calculated and compared with experimental results.
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¢HAFTER I

INMrODUCTION

In recent years, the study of the characteristics of complex

noise signals has become Increasingly mcre important in the fields

of ccmunications and acoustics. Several mathematicas surveys of
*

this subject have been written by Rice [i] Davenport and Root [2],

and others Although these papers cover many ut rne preperrt~e uJ

noise, none is involved with amplitude modulation of Gaussian ncose

which is an impcrtant ccnsideration in the area cf signs. detection.

The surveys mentioned above contain the basic material needed

for this study. Rice's definitions of narrow band Gaussian noise

and the envelope of nacrov-tand jaussisn noise are used throughcut

this thesis Of special interest is the treatment by both Rice and

Davenport and Root of the output of squate law detector& :f the

input to such a device is narrow-band 'aussion noise, then the

output is proportionai to the square of the ervelcpt The authors

treatment [1,2) includes Ueriving the Lxpressicn for the spe..trar

density output of the detector for a C'ausslan noise input.

In this study. the frequency spectrum distributicn of the

output cf a square-laow dete:tor will be calcuLated this

distribution can thLn be related to the power spectral density

NNumbers in brazket• are referan~as in the bibliography.

C
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that has been derived in the literature Then the probability

density of the frequency spectrum wii be derived for an input

of amplitude moduiated Gaussian noise to the square law detector.

For this case. a spiks will appear at the modulating frequency of

the sFectrum and the amplitude distributicn of this spike wiil not

be the same as the distribution of the spectrum at adjacent

frequencies, The amplitude distribution of the spike wili be

derived separateiy and Will be or primary importance in finding the

probability of detection of the modulation

The frequency distribution, once derived, wil, be modified to

a spe:ial case so that the theoretical results can be compared to

the results found by experiment :he modification is a function of

the spectrum analyzer used for the experiment For the experiments

done in this study, a Quan Te.h Wave Anekyz,: Modei 304M will be

used Th- theoretical resuits wil be modified so that they can be

compared with the output of this particular analyzer

From the final frequen-y distribution, it wl. bte possibie to

establish a threshold ievel at the moduiating frequency such that

the rroaability of the output being above that thireshold for

unmodulatd Gaussian noise is a set 4a,ue Using this threshold.

the probabi•ity cf the output being aboVe that threshold for

modulated noise can be found and plctted as a function of the

percentoge of modulation 7t is these plots foz different

threshold leveis that viI1 be the main result of this research.



CHAT•ER II

SPECTRAL DENSITY FOR A SQUARE LAW DETECTOR IN RESPONSE
TO NARROW-BAND GAUSSIAN NOISE

Several articles have been written by various people,

including Rice and Davenport and Root, in which an expression has

been derived for the power spectrum of the square of the envelope

of Gaussian noise. This is done by finding the power spectrum of

the output of a oystem shown in Figure 2 :, consisting of a square

law device followed by a low pass filter If the input is narrcw-

band Gaussian noise, n*t), then according to Davenpcrt and Roct, n:t)

can be expressaed as:

Ac

n't) Ek't, coa t -&t t ,.

where E(t) is the envelope of the 6aussian ncise, t w /2n is

the center frequency of the input spectrai density and 0 t is the

input phase, The output of the square law devict vcuid be.

S(t - '+÷A cos [24,)t * z0't'j ý2,
2 2

if the bandwidth of the noise is narrow compared with the center

frequency, the spectral density of the twc terms in Zquattcn 2

wi;.l not overlap. Then if S(t, is peased through an idea. low

pass filter, the output of that filter. &ýt), will bei

2
2
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n(t) SFUARE LAW DEVICE Sq ) a P DZS (t) = an2 (1)LOPASFTE

Figure 2.1 Square L-w Detector



This can be normalized by making a • 2 so that the output cf the

filf•r will be equal to the square of the envelope.

Assume the spectral density of the narrcw band caussian ncis•

to be as shown in Figure 2 2. Then Davenport and Root i 2 j nave

found the srictral density of the output of the square law detector.

This Is :-ver by the foliewing,

22 k.22.
S 4a N W 6J 4 4a N WI -

where N is the height of the spectral density of the Input. W iso

the bandwidth of the input, and bý.f) is the Dirac delta function

S is shown in Figure 2.3 as a function of frequency,

It will be convenient in this study to further normalize the

amplitude of-E. t. so that the height cf the continuous part of Sz

at f - 0 te one, lrnis will not •:hange the results and wiii help

simplify the equations derived, The constant factor would arop ouw

when comparing the amplitude of adjacent frequencies of the

frequency spect-rum, To normaiizý, let

4a 2N 2W - 1 5

With this normalizing factor, Equation 4 can be rewritcen as the

foll cwing

S -W b5'ý 1 f 1 /W6l
zn

When the input noise is modulated by a sine wave, the

expression for rhe modulated noise would be of the form
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Figure 2.2 Spectral Density of Gaussian Noise
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Figure 2.3 Spectral Density for a Square Law Detector Given
a Narrow-Band Gaussian Noise Input
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4 m cos w t) n(t); where m is the modulation factor and w is them m

modulation frequency. It is then corzecE to say that the envelope

of the noise is modulated in the same way. Therefore, the square of

.2 2.
the envelope of the modulated noise is (1 +m cos wt' E ..

The type of modulated noise that is of primary interest in this

study is that of wide band modulated noise that is then passed

through a narrow-band filter. The modulation produces sidebands in

the power spectrum which wil have impulses at plus and minus the

modulating frequency. The problem is then to find the probability

of the amplitude of this impulse being above a set threshold as

a function of modulation factor,



CHAPTER III

THEORETICAL DISTRIBUTIONS

3.1 Unmodulated jaussian Noise

If the Gaussian noise under consideration is ci finite

duration of time, then the amplitude of the energy spectrum of the

envelope squared will be a random value with a ctrtain disaribution.

If this amplitude distribution is found, then its variance can be

related to the average power of the envelope squared as found in

Chapter II. Then using a modified distribution which assumes

amplitude modulated noise as an input, detection probabitities as

a function of modulation factor can be caiculated.

To begin, narrow-,band Gaussian noise, nm•ti-, has ben

represented by Rice in the following way

nit) - at cos w t - blti sin w t

where a.*t and b(t,ý are both ý-aussian funztions oi time and

f - w /2x is the midband frequency of the noise The square of

the envelope is then defined as the toA.owing.

E tL) - a 2(t', b 2, 8

Noils of bandwidth W can be specified by taking samples at

every seconds. If a record of noise T secords in lura ion is

considered, then 2WT degrees of treedom are obtained by taving
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the samples at intervals of Lseconds. In representing the noise

as in Equation 7, WT samples of a(t. and WT samples of bt' wil

also specify the noise and give 2WT degrees of feedom. The

amplitude of the samples of aet) and bt'ý w:tl. have a Gaussian

distribution wtth zero mean and with variancs 'i If the Fower

2
of the noise in i-s pasaband is Nc , then a 2 M 2N r

The next step is to convert the samples o4 a.'t into the

frequency domain, Le: a:t'l be xrEpeserted by its samples ai in

Equation 9,

tsin nt 82 sin wWt-L sin i'vWr-•WT.i&
a (t) aI nt a r2Wtý'l 7 aw .. IWt-,W4,i

.9

where a, a . ar are the magnitudes of the WT sam;les of

at,ýo If A(f) zepresents the Fourier transform c± a t., then tae

Fourier transform of both sides of Equation 9 :an be taken to obta.n

the following,:

A f' • a. * 2 a c s ZifiW ja. sin 2niWW L 2

a as, .a 4jtaW - isn3 Sin W -

10

The sampits of Aif, ate located a, intervais AIT cver the band

-W/2 < f < W/2. There are WT samples sc that they iocated at

f v n/T where n - Ri The valus of
A r2•

frieu" Equalon in 1Aix



WT Wr

A( r) -a kos a sin I' 2
w L kC WT W L k Wr

k-l k-i

ThL distribution of a sum of n Caussian variables with zero mean.
2

and variance at is itself Gaussian with zero mean and varianz-e
equal to nat2 Therefore, the samp2les of ,•T have an amplitude2

distribution which is Gaussian., If afr represents the varianca of

the real part of A( } and oaj 2  the variance: of the

imaginary part of A(a), then
T'

2 WT
2 a t Co 2 ik-WAn2n

ofr W2 L WT
k-1

2 WT 2,

W2 " W 1  2W

and
2 WI

CFfi W 2 k-1 sn ,-'

2 Wf -. I C O G 2  i v l e2 T.

11- 2 2 " .T I 2W a
W k-

Nov tet a represent the samp.eu of A' and ft reprtsect th.

samples that vould be obtained in converting b-,t, into the ttsqdenfy

domain. Then



an An Cos wnt T j A n sin wnt !i4.

On Bn ccs W n t 4 j B n sin wt n5

where A A Bn n are Gaussian variables with zero mean and
41 n n

variance N T as found in Equatic.s i2 and 13 To find the

distribution of the enve.ope squared in the frequency domain. the

distribution of Akf zon'olved with itself pius B'f,, -onvo.ved wLch

itself must be found, Let F.f be the result of the sum of :t.e

convolutions, Then at a particular frequency n/1,

WT/2

F 7R) ýca a ~ n103  -A,I _ m n mm-n

2

where * signifies the :ompiex ccnjugste or the vatiable.

Then using Equations 14 and 15.

WT/2
r :- Cora4jt . ]A sin , t A cos -

m m m m a~n m n

2

jA %*n sin ý., ti
C' -n sn

* 8mco •" D sin•t•n cos ,..t -jB a n •n .•.t.



! . IWr/2; / '( VAA + A A B B 1 B B Cos'w •t - t

2 m m-n mMn m m-n M M n-

2

+ (AeA - AA ' m-n 6 -B m ') cos n t
m m-n 4 m-n mmn m BM-n M

1 -n m m-n m rn-n m m-n n inn

" m A m m-n m 0n mmn . an

nf 3)

Each product of variab2es has a distribution of the product of two

Gaussians with zero mean and a variance

2 • 22
M 4W2  o

This is derived from the generai theorem that states. if twc
2

independent variables have meana, . and p. and variance. J
2

and 02 , respectively, then the distribution of the prcduct of rth

22 2 2
two variables has mean 4 a2and variance j, 2 o- * 2 32 - P :

2 2
In this came u 2 0 an2 - a-2  N T

Equation 17 shove that F P, consists of a sum of i6W4W *-;n/r'.
N 2 T'

samapes at- vith zero mean and variance . by asaucing

ourselves that i6TkW - Inl/Il; is a large number, the centrai iimit

theorem can be used to apprcxtuate the distribution of VA. The

only restriction in asking 16T'W - In/TIl large enough ti to mate



sure that the frequency of interest is near zero as compared with

W or - W. The distribution of F(Ay can be approximated by a

2
Oaussian distribution with zero mean and a variance a - where

n
2T2

2 2 T6( 2/~ 2 3 U-2- T 4 W - T-
23

S6T(W - I n/Tj'.n.-_. 4 N20 T W"-'•I

-4 N 2 T 3 W( - ffj/W.) ii9,O

Since a finite duration of time, T, is being dealt wih.
2

a is then equal to the average energy of the envelope squazed in

the bandwidth L/T. To normalize this variance., the energy must be

related to the power spectrum shown in Figure 3 From Equation 6,

the average power per cycle at a frequency f is A1 - f XiW. T.hex K

power over LI/T cycles vii, then be ,i - f /W, • Therefote, the
X T

energy in a bandwidth lIT around the frequency f is Q - f /Wx T
2

Now Equation 19 can be norma.`zed by setting a at f equal to

- f /W;.x

4,N 2 T• t; W,1 f /Wf' a kl - f /W;

23-

N 2 Is - 20o 3T)
0 T 3

Zero frequency ts a spectLa :sae and must be treated

separately. IRevriting Equation 16 for n - 0 lives us
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WT/2V() [ * *
F(O) a +p mP ] 2 )

2

Again using Equations 14 and 15:

WT/2

F(0) - V [(A cos wt + jA, sin wt).%A cos %t - JA m
L m

2 sin w t)

+ (B. cos wit + jB sin wt)(B. cos wt -J sin wt)j

WT/2
[A0 ' 2 2 ' 2 (A 2 ' 2 2 . 2-+B +B +( -A +3 - B

2 m m M M

2 Cos 2mmtm

"22)

Since each variable ts Gaussian, the distribution nf the squi.re of

the variable is a chi-squared distribution vith mean equal to N r0

2 2
and variance 2H 0 T. Again suming over these variables and appiying

the central limit theorem, we can approximate the distribution of

FkO) as a Gaussian distribution with a mean

2
Uo, 4" • 2 or2v •

and variance

a 2 Mt 2 !U- ') - 'T3 N 2 W 24)0
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This distribution cin now be normalized with the heip of

Fquation 20, to obtain

2Tw 2 25)•on -F W

and

2 4T 3W I26;
on 4:3W

Now the amplitude distribution of the envelope squared in the

frequency domain is specified at any frequency. rhe distribution

is Gaussian at all frequencies with a mean of zero and variance of

(1- Ifj/W) at any non-zero frequency. At zero, the mean ls-V•-

and the variance is 1.

3.2 AmDlitude Modulated Gaussian Noise

Now the distribution of the square of the envelope must be

found given that the input noise is amplitude modulated by a sine

wave of frequency f.. The noise n (t) can be represented in the

following way,

n (t) - n(t. ti + m coo ait) k27)

Subdtituting for n(t) from Equation 7,

n (t) - a(t) (1 + a coo w t) coo wlt - bit) (1 + a coat wt) sin wIt.

t 28)
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"Then from Equation 8, if E ýt) is the envelope of n kt),

2 2 2
[E (t)] [8(t) (1 + F cos •,t)] + jb(t) (1 + m. cos t))

(29,

Converting a(t) (1 + m cos m t) into the frequency domain will give

A(f) as in Equation 10 plus two sidebands of magnitude A(f) m/ 2 .

That is, if the samples of A(f) have zero mean and variance N T as

In Equations 12 and 13, the samples of the sidebancs will have

2
zero moan and variance N m /4.0

Now let the samples of A(f) be denoted by an and the samples

of the upper sideband by a 1 and the samples of the lower sideband

by can 2 . To find [a(t) (1 + m cos wmt)]2 in the frequency domain,

we must convolve the frequency spectrum of a(t) (1 r m cos , mt)

with itself. If G(n) is the result of this convolution, ue wili

have-

WT/2
42 [nvmmn + * mlml*n

m W

t i +Cx ac +aa +mQmt

*_• * * * *
""l amn + M ml-n +am2 m-n+ %"m2-n ' aml'm2-n + 'm2,.ml-n

k30)

Froceeding similarly to the case with zero modulation, G(A) consists
T

of 72T(W - In/TI) samples with zero mean. Applying the central

limit theorem to the sum, G(n) will be Gaussian with zero mean and

variance
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22T2 + 2N 2 2m4 4No2T2 + 2N 2T2m4
2 8T(W - In/TI) - ±+

9 0 , 64 16 64

_2
a 2N TW( If2/W)(l + ) k31)

Since the same procedure can be used for the samples of b(t), the

distribution of a sample of the square of the envelope in the

frequency domain, F (f), will be G,'issL'n with zero mean and

2variance a equal to•m

2 4N 02T3WI I fI/W)(l + T)2 32)

Now we must take into consideration that the convolution of

the square of the envelope will give spikes at zero frequency,

at the modulating frequency, and at twice the modulating frequency.

The spike at zero arises when A(f) is convolved with itself and

when either sideband is convolved with itself. The spike at fm

arises when A(f) is convolved with either sideband and the spike at

2f arises when one sideband is convolved with the other.
m

First, consider the spike at zero frequency,

WT/2

G(O) - [% * ÷ %1'1 +

2

+ %(x +I' '% 1 + %2a% + %%C2 + O'%1%2 + %2%a ]

(33)

The first three terms give distributions which are chi-squared, while

the remaining terms have a distribution of the product of two
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Gaussian variables. Sumiing over these variables and applying the

centra1 limit theorem, G(O) can be approximated by a Gaussian

distribution with mean

2W -,L-2 + 2No - No T W (I + 2M) 34')

and vsriance

I 2N 2 T2  4N 2T24 4N 2 T2 2 2N2T2m4

fo 1 4WT 10 + -,, + 8WT 0 -+--
om 464 L 16 * 64

2 3 m2
- 2N T3W [l + _]2 •35;

If we now take into account the terms for b(t), both the mean and

variance of F (0) will be twice what was calculated in Equation 34

and 35. Therefore, the distribution of F (0) is Gaussian with mean

11 - 2N T 2W (0 + m 2/2) (36)

and variance

2 2 3 2 2
o2 4No2T3W Tl +m2/2) t37;

For the spike at f a fm' Equation 30 can be written as

WT/2

G(f) 7 (ca or +i *t
( m- m-fT ml ml-f T + %2%2-f I

n m m

2

+ Cylca*•f T + a l-T.f + c *-f T + 01'0-f T +

as2 .1f T)
U
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The fifth and sixth terms will have a chi-squared

distribution, while the other terms will have a distribution of the

product of two Gaussian variables. Again applying the central limit

theorem on the sum, G(f m) can be approximated as a Gaussian variable

with mean

f (Wf) ; J 2N N W1o2a (1 - f /W) , (39)
-f 2 m 2 0 m
m

and variance

2 24N 0 2 2 2N 2T 2 N 2T24 2N 2T2m2

1' 2=4T( -2 --) --o -8T(W FNOTA_ 2N Tm 2NTamJ T(W4f)[ 16 I m 4 64 t 16 t

2N 
2 T2 a 4

64

=2N 2 T3 W (1 + j 2L 1-f . (40)

If the terms for b(t) are taken into account, both the moan and
I

variance of F (f m) will be twice what was calculated to Equations 39
U!

and 40. Therefore, the distribution of F (fa) is Gaussian with mean

JAf -2No0r2a [I - fta/W) (4A)

and variance

20 -4N 2 T P+ 2L2 1 - f/V (.42)
f 2

Sine* the variance in Equation 32 must now be norualized as

in the case of modulation, a similar procedure is used to obtain
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a value for N 2 Referring to Equation 20, the following equation is0

obtained,

4N 2T 3W (1 - f/W) (1 + m2 /2)2 (1 - f/W)0

N 2 1 2 2 (43)
4T W(l + m /2)

Therefore, the distribution of a sample of a frequency fU

will be Gausstan with mean

m~ftl - f /W)
WT = 1 

(44)
(1 + a 2/2)

and variance

2 2 (1 - f /W) k45,
S U



CHAPTER IV

EXFERIMENrAL ANALYSIS

The information given by Equations 44 and 45 ts sufficient

for finding the probabiiity of detection of the modulation as a

function of the modulation factor. However, to verify these

equations, they must be modified so that the experimental results

can be compared with the theoreticas tesults. The modification

oi these equations will depend on what equipment Is used to find

the experimental values and this can be seen best by explaining

the experimental setup. A blck diagr&m of the system used is

shown in Figure 4.1.

A modulating frequei 7y of 50 Hz was used to modulate

broadband noise. The modul.ited noise was then passed through a 2-4

kHz octave band f-Iter and ,mplified. To obtain the square of the

envelope, the modulated noise wLs rectifted, squared, and passed

through a low pass filter. The resulting signal was then converte4

into the frequency doiin by use of a Quan-Tech Wave Analyzer. A

one-cycle bandwidth filter in the analyzer was used in keeping with

the equations derived in Chapter iII. The anasyzer was set on the

frequency of interest. 50 Hs, and the amplitude of the output of

the analyzer at that frequency vas recorded on an X-Y plotter for

500 seconds. The amplitude distribution of the output of the

analyaer was found by plotting a histogram of the amplitude at

every half-second for the 500 seconds. The curve became



23

0 W.

V) 0

-i -J

-. 4
$4.



24

sufficiently smooth after using 1000 points so that it could be

compared with P theoretic~i curve.

A 50-second sample of an X-Y recording is shown in Figure 4.2.

in this sample, no modulation was present on the input signal. Since

the amplitude of the output voltage ranged from Lero to 0.32 volts

over the entire 500 seconds, amplitude increments of 0.02 volts

were used to plot the histogram. For each modulation factor, ten

samples of data similar tc that shown in Figure 4.2 were used to

find the amplitude distribution of the output of the analyzer

The theoretical distribution can be found, knowing how the

spectrum analyzer treats the signal, In this case, the output of

the one-cycle filter in the analyzer is passed through a voltage

doubler and a low pass filter In effect, this gives the envelope

of the signal coming out of the filter In Chapter III, the

output of the one-cycle filter was found to have a Gaussian
2

distribution with mean 4j given by Equation 44 and variance as

given by Equation 45, If there is no modulation present, p Isi

zero and the distribution of the -ausslan noise will be a Rayleigh

distribution. When modulation is intcoduced, the mean p s becomes

ncn-zero and the distribution of the envelope wili be a function of

" Rice has derived the distribution oi the Lnveicpe oi Gaussian

noise plus a D.C0 voltage. In this case, the D C voltage is the

mean of the Gaussian distributicn The distribution of the
2

envelope of Gaussian noise with mean a and variance a a according

to Ri:e is the following.
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Fx E' E.t46)2  E22 2s

where I (x) is the nodifiej Bessei fUnction of zero order and can

be conveniently found in the Chemical Rubber Company Tables f51.

To normalize the above equation with the distributions found

experimentally, the mean of the ' wve equation for ps a 0 was set

equal to the mean found in the experimental distribution for w, - 0.

The mean of Equation 46 for 4s a 0 is 1.25 aa s that the value of

a can be calculated. The experimental mean for the distribution

2
was found to be 0.118v. so that a a 0.0944 and a - 0.0089.

Knowing this value and calculating gs from Equation 44 for a given

value of m and normalizing V., Equation 46 can be plotted and compared

to the distributions found experimentally. Five different modulation

factors of a - 0, 0.025, 0.05, 0.075, and 0.1 were used in the

experiments and the plots of the distributions for each of these

modulation factors is shown in Figures 4.3 - 4.7. The indicated

modulation factors for the experimental distributions were found by

using the mean of the distribution to determine what value of m

would give that mean theoretically. These indicated modulation

factors are well within the accuracy of the equipment used for the

experiment.

With the information available from the preceding

distributions, confidence percentages can be calculated for a given
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modulation factor The confidence percentage is defined as the

probability of detecting the modulation for a given threshold levei.

The threshold level can be calculated for a given probability of

allowing the signal to exceed the threshold for zero moduistion

Since the amplitude distribution of the signal for zero modulation

was found to be a Rayleigh distribution, the threshoids can be

calculated from the following equation

Ft -E 2  a 2
Je s dE - I - pSa2

0 5

where t is the threshold and p is the probability of the sxgnal being

above t, The left-hand side of Equation 47 is integrable .n closed

form and becomes*

t212 2

- t212a 2

a r s p 480

2
Since a is known to be 0 0089, values of t can be calcuisted for

given values of p and these values are shown in Table 4 _'

For each of these thresholds a confidence percentage can be

calculated by integrating Equation 46 from t to a. this wVlL give

the probability that the modulated signs! is above the threshoid t.

Since the expression for the distribution cannot be integrated

readily. the integration wvs done numerically by the use of Simpson's

rule. Figures 4.8 - '.l1 show the result of this integration as
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TABLE 4. 1

PROBABILITY OF THE SIGNAL BEING ABOVE THE THRESHOID

Threshold t Probability of
,Sinnal Being Above t

0.28 001

0.22 0035

0.20 0 10

0.16 0 25
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a functicn of modu ýtion factor. The experimental results were

found from the histograms by counting the number of sampies above

the threshold and diviolng by 1000. This gives an approximate value

fcr the area of the curve above the threshold. From these plots, the

percentage of the time the signal is above a given threshold can

be found as a function of the mouiuaticn factor,

It must be remembered that the experimental results in this

study are obtained for noise of a particular bandwidth of 2 kHz

It can be seen from Equation 44 te~at the mean value of the spike at

the modulating frequency is proportional to the square rvot of the

noise bandwidth. Suppose the noise was of bandwidth 20 khz.

Thi.s would increase the -an value of the spe by, A- ft-ror cf

A and would make the ccnfidence percentages even higher sinza

the output of the analyzer vould be above the threshold more of the

time Likewise, the confidtnce percentage for a given modulation

factor would be less if the bandwidth of the noiqe Is less than the

2 kiz used in the experiment. The conLiden:e percentages for

lifferent bandwidths can be found by replotting Equation 0 with the

new value for the mean and iy finding the area under the curve

soavr the threshold value-

I



CHAPTER V

SUMMARY

5.1 Results and Conclusions

An important result of this study is found in the curves of

chapter IV showing the percentage of time the frequency spectrum

of the envelope of modulated Gaussian noise is above a certain

threshold at the modulating frequency. It can be seen from these

curves that 10 percent modulation will almost always be above a

threshold fcr which a signal with no modulation would only be above

one percent of the time. This means that the spike at the modulating

frequenc) in the frequency specrtum will be easily detectable

anove tht adjacent frequencies for any noise of bandwidth 2 kHz

that is modulated at least 10 percent by a sine-wave. Of course,

lowering the threshold will indrease the chance of detecting the

spike but that also will increase the false alarm rate. That is,

there will be a greacer chance of the signal being above the

"-hreshold when there is no modulation present.

A more general result that hes been found is that the

d.1stribution of the frequency spectrum for the envelope of modulated

oaussian noise is a Gaussian distribution with mean j15 given by

2!•auation 44 and a given by Equation 45. In this study, the
8

spectrum analyzer used gives the envelope of this frequency

spectrum but this is not always the case. For example, several
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spectrum analyzers use a square law detector at the output to

give the enfrgy spectrum. This would give an output entirely

different ircm the one that was obtained in this study. In any

:ase, knowiedge of how the spesttrum analyzer treats the signal is

essential in determining the amplitude distribution of the output

of the analyzer and this distribution must be found so that the

theoretical and experimental results can be compared.

5.2 Areas for Further Study

One area for further study would be to find the probability

cf detection of modulation by using the amplitude distribution

of the moduiited Gaussian noise rather than the spectral

distribution as used in this study. The results could then be

compared wit' the probabilities of detection found in this study.

Another area for study would be to consider several other

types of modulation beside jine wave modulation. Amplitude

modulation of a noise carrier from a r~diated noise source may

not aLways be sine wave modulated. The modulation might be closer

to square wave modulation or even triangular wave modulation. These

types of modulations should be studied and compared with the results

of this study which involves only sine wave modulation.
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