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UNCLZSSIFIED

Abstract:

The probability distributions of the amplitude of the
envelope energy spectrum of both Geussiesn noise and
emplitude modulated Gaussian noise ere derived. From
these probability distributions the probability of
detection of the modulation is calculated by comparing
the distribution at the modulating frequency to the
distribution at an adjacent frequency. Confidence
percentages as a function of modulation factor are
also calculated and compared with experimental results.
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CRAFTER |
iNTRODUCTLON

In recent years, the study of the characteristics of complex
noise signals has become increasing.y mcre important in the fields
¢f communications and acoustics. Several mathematica. surveys of
this subject have been written by Rice [i]*, Davenport and Root (2],
and others. Aithougn these papers cover many ul the preperties vi
ncise, none is invoived with ampiitude moduiation of Gaussian ncise
which i{s an impcrtant ccnsideration in the area ¢f signa. detection.

The surveys mentioned avove contain the basic material needed
for this study. Rice's definiticns of narrow dand Gaussian noise
and the envelope of narrow-tand saussian noisc are used throughcut
this thesis Of specia. interest 1s the treatment by both Rice and
Davenport and Root of the output of square law detectoss if the
input to such & device 1s narrcw-band Jaussian noise, then the
output is proportionai to the square of tne erveicpe The authors
treatment {1,2] tncludes deriving tha :xpressicn for the speitral
density ocutput of the detector fcr & Gaussian noise input.

In this study the fregquenly spectrum distriduticn of the
cutput c¢f a square-law deteztor will be caicuiated This

distribution can then be related to the powsr spectral density

.
Nuabers in bra:kets sre referen:es in the Bibliography.




that has been derived in the iiterature Then the probabiiity
density of the frequency spectrum wil: be derived for anm input

of amplitude modulated Gaussian noise to the square law detector.
For this case. & spike will appear at the moduiating frequency of
the sgectrum and the amplitude diatributicn of this spike wiil not
be the seame as the distribution of the spectrum at adjacent
frequ:sncies. The amplitude distribution of the spike willi be
derived separateiy and wii. be ot primary importance in finding the
probability cf detection of the modulation

The frequency distribution, cnce derived. wil. be modified to
a spezi1al case so that the theoreticai resuits can be compared to
the results fcund by experiment. The mcdification 18 a function of
the spectrum anaiyzer used for the experiment For the experiments
done in this study, a Quan Te:h Wave Ana.yz:- Modei 30«M will be
used The theoreticai resuits wi.l be modified so that they can be
compared with the output cf this particular snalyzer.

Frem the finai frequency distribution, 1t wil. be possible to
establish a threshold lave]l at the moduiating frequency such that
the protability cof the output being above that threshold for
ummodulst>d Gaussian noise 18 e set va.ue Using this thréshclid,
the probadiiity cf the output being above that threshoid for
modulated noise can be found and picited as a function of the
percentage of modulation Tt i1s these plots for different

tiireshold leveis that wil. be the main result of this research.




CHAPTER II

SPECTRAL DENSITY FCR A SQUARE LAW DETECTOR IN RESFONSE
TO NARROW-BAND GAUSSIAN NOISE
Several articies have been written by various peop:e,
including Rice and Dsvenport and Root, in which an expression has
been derived for the power spectrum of the square of the enveiope
of Gaussian nroise. This is done by finding the power spectrum of
the output of a system shown 1n Figure 2 :, consisting of a asquare
law device followed by a low pass filter If the input 18 narrcw-
band Gaussian noise, n(t), then according to Ddavenpsrt and Roct, nit)

can be express~d as:
a’t) * Bty cos {ptt + gt | R Q1

where E(t) is the envelope of the Gaussian ncise, f =~ wC/ln 18
the center frequency of the input spectrai density and @ t. 18 the

input phase. The output of the square law device wouid be.
2. .. 2
S(tu -LE—LS-’-¢!—§—& cOs (Z“‘t - tC't‘] ‘.2,

1f the bandwidth of the noise is narrow compared with the center
frequency, the spectral density of the twc terms in Equaticn 2
wi.l not overlap. Then 1f S(t, 1s pasred through an ides. low
pass filter, the output of that filter, g(t). will be:

2
z(t. = ‘-E—‘-U' ; )]




n(t)
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This can be normalized by making a * 2 so that the cutpur cf the
fiiter will be equal to the square of the envelcpe.

Assume the spectral density of the narrcw band Saussian ncise
to be as shown in Figure 2 2. Then Davenport and Root 12 nave
focund the syictral density of the output of the square law detector.

This 13 7 ven by the folicwing:

2

S ~ 4aN ‘W 5.t paly 2
Zz o] (%}

WL- E /W o

where Nc is the height of the spectral density of the input. W 1s
the bandwidth of the input, and 5. f) is the Dirac de.ta function
Sz is shown in Figure 2.3 as a function of frequency,

Tt will be convenient in this study to further normaliize the
ampiltude of E.t" so that the height cf the continuous part of Sz
at £ = 0 {ig ona. This willi not change the results and wii. help
s1nplify the equations derived. The constant facter weuld drop ou:
vhen comparing the ampiitude of adjacent frequencies of chs

frequency spectrum. To ncrmaliz:; let

&azN 2w « 1 T 530
o

With this normaiizing factor. Equation &4 can be rewritcen as the

follewing:

zn

When the input noise is modviated by a sine wave; the

expresslon for rhe modulated noise would be of the form
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Figure 2.2 Spectral Density of Gaussian Noise
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Figure 2.3 Spectral Density for a Square Law Detector Given
a Narrow-Band Gaussian Noise Input




1+ m cos wmt) n{t), where m is the meodulation factcr and Wy is the
modulation frequency. It is then cor:tect tc say that the envelope
of the ncise is modulated in the same way. Therefore, the square of
the envelope of the modulated ncise is {1 + m cos wmtjz Ezit}”

The type of modulated ncise that is of primary interest in this
study is that of wide band modulated noise that is then passed
through a narrow-band fiiter. The moduiation produces sidebands in
the pcwer spectrum which wili have impulses at pius and minus the
mcdulating frequency. The problem is then to find the probabiliity
of the amplitude of this impulse being above a set threshold as

a function of modulation factor.
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CHAPTER TII

THEORETICAL DISTRIBUTIONS

3.1 Upmodulated Gaussian Noisge

If the Gaussian noise under consideration 1s of finite
duration of time, then the amplitude of the energy spectrum of the
envelope squared will be a random value with a csrtain distribution.
If this amplitude distribution is tound, then its variance can be
related to the average power of the envelore squared as fourd 1in
Chapter II. Then using a modified distribution which assumes
ampliitude modulated noise as an input, detection probabiiities as
a function cf mcdulation factor can be caiculated.

To begin, narrow-band Gaussian noise, niti, has bsza

represented by Rice in the folicwing way

.‘J

nit) = a{t» cos w, t - biti sin . t s

[

where a.t; and b{t: are both (aussian functions of time arnd
fr - uc/Zn is the midband frequency of the noise The square of

the envelope is then defined as the fokiowing:

Ez(t) " az(t'. . bzﬂvt) . ‘8

Noise of bandwidth W can be specified by taking samples at
every é; seconds. If a record of noise T secords 1n dura:ion is

considered, then ZWT degress of treedom are cbtainad by taring
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the sampies at intervals of %a seconds. In representing the noise q
as i1n Equaticn 7, WY sampies of a(t: and WT sampies of br&) wirll
alsc specify the noise and give 2WT degrees ¢ freedom. The
ampiitude of the sampies of a/t) and bit, wil. have a Gaussian
distributicn with zerc mean and with variance :tzo +f the power
of the noise 1n iis pasaband is Nc. then ctz = ZNGWJ

The next step is to convert the samples o a.t: intc the

frequency domain, Le: a‘t} be represerted by 1ts sampi2s a¢ in

Equation 9,

\ sin Wt gin grWe-i, . sin y We-WI+i;

alth =&, it %27 el | T T T x We-WI+s
’9

where a,, a,; - ..c. ., aur are the magnitudes cf the WI samp.es of

alt», 1If A(f) vepresents the Fourier transform cf a t., then tae
Fourier transform of both sides of Equation 9 :an be taken to obtain

the following.

- N / . & ;
r X ) <cs enf/W ]a; sin 2n&/W

< @8, 138 “rt/W - ja; sin wnf/W -
19
Tne sampiz:s of A(f, ate iocated at intervais ./T cver th:z band
“W/2 < £ < W/2. There sre WI samples sc that they iocatad at

f * n/T where n s - ¥1 .o ¥1 + 1 ce gx . The valus of

A{%‘ from Equarion 10 {a-




A o rta- e

WwT WI
Al = 1 Zakco,wm %}:a o Liki2zn

L wT

k=1 k=1

The distribution of a sum of n Caussian variables with zero mean

2 : ) X
and variance cJt is itself Gaussian with zero mean and varian:e

.
T

distribution which is Gaussian. If cfrz represents the variance of

equal to notz. Therefore, the samples of A’ have an ampiitude

the real part of A(‘%) and ¢ 2 repcesents the variance of the

fi
imaginary part of A(%), then

2 W

. o i 4n
g Lt 4 c:oe;2 fkoiiZsn
fr w2 wT
k=1
o 2 wI : L2,
.t d o4 4 ogakilieml (L L yr v
w2 2 2 wI 2w 3
k=1
and
2 WI
2, % ¥ im
Gfl - wz Z, sin k.. W
kel
N 2 wr ‘l 3 21
- L l - & { | m - -L- ry B [ K
uz Z [2 2 cos th-2 m! W vor 11

kel

Now ,et a, represent the samp.cs of A“% snd Bn repres2ct th:

ssuples that would be obtained in converting b:t, i1nto the tcraquen.v

domain. Then
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Q w * j W ) . 4
i j n » .

R L F n are Gausstan variables with zero mean and

where A . A
a n

n
variance NoT as found in Equaticns i2 and 13 To find the
distributicn of the enve.ope squared 1n the frequency domain. the
distribution cf A7£} convolved with itself pius B f. :onvo.ved with

itgself nmust be found. Llet F-f. be the result of the sum of :le

convolutions. Then at a particular fréquen;y n/1,

WI/2
'27\ - 7 * *
th’ L Celmen * BmBm-nl nf0 . -6
o 2

where ¥ significe the zomplex ccnjugate ot the vatiable.

Then using Equations 1l& and i5:

wr/2
F(%ﬂ - 24 A cosu t ¢ ] A sing, t A cos ot
d oom m m m m-n m 0
n- 4
JA sin L
mn-n m n

4+ (B cosw < - 3B sin o t,: B cos | t - B a1t t -
“*m W ® “a " mn “m n ® an “a&n




- WT/2
l N " [l [}
. 2; {{A A + A A + BB +B B c08"w » t
2 W men mD wmaDn ) - m-n
w--
[} [ ] 3 [
+(AA - A A BB -B B Y cos {w_* w t
m m-n m-n mmwn m n m m-n
2 ¥
+3 {:AA + A A +« B8k « B B Yosin Wt W ¢
m m-n ™ m-n m  m-n ®n m-n n mn
] (] & » A
- {AA -A A _+ 3R - B B, o8in w *w _'t'])
m m-a m m-n m m-n mmen m ra
nfd . 1

Each product of variables has a distribution of the product of two

Gausgsians with zero mean and a variance
J "4‘-—""‘12 . ‘8

This is derived from the generai theorem that states. 1f twc

independent variablies have means, M, and My and vartiance, J

1
and 021, respectively, then the distribution of the prcduct cf the
two variszbles has mean ) and variance 3,2022 . ulza;Z - u‘Z:l‘

In this case u * Wy * 0 ani 712 v 022 - NOI

Equation 17 shows that ¢ &, conutsts of & sum of 16™«W -~ ;n/T!,
" N4 T4

sanp.es a:. with zero mean and variasnce "

Ay assuring
ourselves that (6T(W - ;n/7|, (s & large number, K the centrai 11mit
theorem can be used to spprcximate the distridution cf F(g‘. The

only restriction in making 16T:W - |n/T|) large enough 13 to mexe

|
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sure that the frequency of interest is near zero as compared with
W or - W. The distribution of P(%) can be approximated by a

Gaussian distribution with zerc mean and a variance anzy vhere

2 2
2 N T 2.3 B
o ° = 16TW - |n/T} B—— =4 N T W - | |_u
n 4 o T
-4 uoz v - €)Wy . (191

Since a finite duration of time, T, is being deait wi'h.

0“2 is then equal to the average energy of the enveliope squa:ied 1n
the bandwidth 1/T. To normalize this variance. the energy must be
related to the power spectrum shown in Figure 3 From Equaticn €.
the average power per cycie at a frequency tx 1s '1 - fx/U". The
power over 1/T cycles wil. then be :i - fx/H- %. Therefore, the
energy 1n a bandwidth 1/T szcund the frequency fx is 1 - fx/" %«
Now Equstion 19 can be norma.:zed by setting onz at t! equai to

(1 - ix/H;.

4N 2 73 Wi - £ /M =1 - £ /W
° x x

,1..43.. | 20
° o'W

Zerc frequency (s a specisi zsae and must be treated

stparately. Rewriting Bquation 16 for n = O gives us:
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wT/2
F(0) = }; [a%pm* + ampm*] . (21
m--g-T-

Again using Equations 14 and 15:

Wr/2
)
L

1
[(Am cos umt + jA o sin umt);Am cos mmt - JA o

.74
2

F(0) =

sin wmt )

' .
+ (Bm cos w t + jB  sin wmt)\sm cos w t - JB  sin umt)i

[ 1 [ )
-% [A2+A2+82+Bz+(A2-A2+Bz~32)

‘22)
Since each variable is Gaussian, the distribution ~f the squére of
the variable is a chi-squared distribution with mean equal to Nor
snd veriance 2“0272. Again summing over these variables and spp.ying

the central liwit theorem, we can approximate the distribution of

F(0) &s a Gaussian distribution with a wean

and variance

2 | '+ SR »
o, = BWT (2= eut NV (2




16

This distribution can now be normalized with the hein of

Fquation 20, to obtain

u = -2—1-1 .'\/w’r \25)

and

o o — - 1 . \26,

Now the amplitude distribution of the envelope squared in the
frequency domain is specified at any frequency. The distribution
is Gaussian at all frequencies with a mean of zero and variance of
(1 - | £|/W) at any non-zero frequency. At zero, the mean 13\/25?

and the variance is 1.
3.2 d dular augsian N

Now the distribution of the square of the envelope must be
found given that the input noise is amplitude modulsted by 2 sine
L
wave of frequency fu' The notse n (t) can be represented in the

following way,

L
n (t) = n(t, (1 + = cos u_t) . W27,

Substituting for n(t) from Equation 7,

n (t) = a(t) (1 + m com g t) cos “it - b(t) (1 + » cos u.t; sin “lt'
-

(28)
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' ¥

Then from Fquation 8, 1f E (t) is the envelope of n (t),

[E'(t)}2 = [a(t) (1 + » cos mr_t)]2 + {b(t) (1 + m cos wmt)]2

(29,
Converting a(t) (1 + m cos wmt) into the frequency domain will give
A(f) es in Equation 10 plus two sidebands of magnitude A(f) m/2.
That is, 1f the samples of A(f) have zerc mean and variance NOT as
in Equstions 12 and 13, the samples of the sidebands will have
zero mean and variance N mZ/&.

Now let the samples of A(f) be denoted by o, and the samples

of the upper sideband by a, and the samples of the lower sidebaad

1
by & - To find [a(t) (1 + wm cos wmt)]2 in the frequency domain,

we must convolve the frequency spectrum of a(t) (1 + m cos mmt}

with itself. If G(%ﬁ is the result of this convolution, we wiii

have:
g%{Z
n * <* o
G(T) L [aﬁam-n * %1%m0 ¥ %m2%n2en
mw -8
2
* * * . * . )
T %%en +'O§Pm1-n + am2am'n % %m2-n ~ %1%m2-n + amZGmlvnj

{30)
Froceeding similarly to the case with zero modulation, G(%) consists
of 72T(W - |n/TI) samples with zero mean. Applying the central
limit theorem to the sum, G(ib will be Gausasian with zero mean and

variance
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: y 4
) [ N02T2 2Nozrzm‘ 6N 2,2 mi 2N ;sza
o, = BT(W - In/T)) l — + —2= T + ==
2.3 2,
= 2N TOW(L - £ /W)(L + %—; . 31)

Since the same procedure can be used for the samples of b(t), the
distribution of a sample of the square of the envelope in the

]
frequency domain, F (f), will be Gaussien with zero mean and

2
variance O equal to:

o’ = 4N°2T3W(1 - elmya + %i)z , (32)
Now we must take into consideration that the convolution of

the square of the envelope will give spikes at zero frequency,
at the modulating frequency, and at twice the modulating frequency.
The spike at zero arises when A(f) is convolved with itself and
when either sideband is convoived with itself., The spike at fm
arises when A(f) is convolved with either sideband and the spike at
me arises when one sideband is convoived with the other.

First, consider the spike at zero frequency,
wT/

A ) %* »
G(o) = }; [amam + amlnml + amZQEZ
¥I
2

*

m B e
+ * L * % + * . *
Ym1%n + Hml T %m2%n M Ynm2 %n1%m2 %n2%m1 ]
133
The first three terms give distributions which are chi-squared, while

the remaining terms have a distribution of the product of two
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Gosussian variables. Summing over these variables and applying the
central limit theorem, G(0) can be approximated by a Gaussian

distribution with mean

! ’E I‘m2 ] 2 m2
M oom = 2WT t >t - J =HIW(1+3) (34)
and variance
I
Vo _259 2,2 4N°2T2ma 4N02T2m2 ZNOZTZm’ 1
(o om] = 4vT 4 + 64 + 8WT 16 * 64
2
- 2N°2T3W [+ %-]2 (355

If we now take into account the terms for b(t), both the mean and

¥
variance of F (0) will be twice what was calculated in Equation 34

t
and 35. Therafcore, the distribution of F (0) is Gaussian with mean

2 2 -
Hom = N,IW (1 +m/2) (36)

and variance

2 2.3 2,..2 .
% om QNO TW(l +m /2) . 37;

For the spike at f = fm' Equation 30 can be written as

WT/2
£ - Sﬂ { * + * + *
G( m) i -t T ¥ %n1ml-£ T~ %@2%m2-f 1
- n n n
a=-4

* * * * |
POt T YOOt Tt Ta%af T Y %Cm2-6 T Y Cat%m2-£ T
-} | ] | | ] | ]

* (38
201 - f.r’ \38)




The fifth and sixth terms will have a chi-squared

distribution, while the other terms will have a distribution of the
product of two Gaussian variables. Again applying the central limit

theorem on the sum, G(fm) can be approximated as a Gaussian variable

with mean
' zl ’ZNTm 2 ,
m £ =5 (W-f) [-—%—- = NW'm (1 - ¢ /W) , (39)
and variance
[T (o8 12t - Ny 292 _ A
a s .AT(Wf)l T '1'3T(W‘fm)[ - Tt
- m
2N zrzn“ )
L
64
2,3 2.2
- 2N0 TVW (1 + 2 17 (1 - f_/w) . (40)

If the terms for b(t) are taken into account, both the mean and
]
variance of P (fn) will be twice what was calculated to Equations 39

L
and 40. Therefore, the distribution of F (f-) is Gaussian with mean

2 i
uf' - ZNOHT m [1l - f_/wl s (41)
and variance
2
2 - 23 Lz - ..
0 f- kno TV [1 + 7 1° 1 f-/U] . (e2)

Since the variance tn Equation 32 must nov be normslized ss

in the case of modulation, a similar procedure {s used to obtein
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a value for Noz. Referring to Equation 20, the following equation is

obtained,

4N°2T3W (1 - £/W) (1 + m2/2)2 = (1 - £/W)

Noz - 3 1 T . (43)
4TW(1l + m"/2)

Therefore, the distribution of a sample of a frequency fm

will be Gaussian with mean

w)/WT (1 - £ /W)
A
u -

: (44)
- s (1 + ul/2)

. and variaance

2 ,
o, = - f_/w) . 465,




CHAPTER 1V

EXFERIMENTAL ANALYS.S

The information given by Equations 44 and 45 1s sufficient
for finding the probabiiity of detection of the modulation as a
function of the modulation factor. However, to verify these
equations, they must be modified so thac the experimental results
can be compared with the theoretica: 1esulus. The modification
ol these equations will depend on what equipment 1s used to find
the experimental values and this cun be seen best by explaining

the experimental setup. A blcck diagram of the aystem used is

shown in Figure 4.%.

A modulating freques.y of 50 Hz was used to modulate
broadband noise. The modulated noise wss then passed through a 2-4
kHz octave band f:.lter and mplified. To obtain the square of the
envelope, the modulated noise wus rectified, squared, and passad
through a low pass filrer. The resulting signal was then converted
into the frequency domsin by use of a Quan-lech Wave Anslyzer. A
one-cycle bandwidth filter in the anslyzer was used in keeping with
the equations derived in Chapter (Il1. TIhe snaiyzer wes set on the
frequency of interest, 50 Hz, and the amplitude of the output of
the snalyzer at thst frequency was recorded on an X-Y plotter for
500 seconds. The emplitude distridbution of the output of the
analyzer was found by plotting & histogrsm of the smplitude at

evary half-second for the 500 seconds. The curve beceme
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sufficiently smooth after using 1000 points so that it could be
compared with # theoretical curve.

A 50-second sample of an X-Y recording is shown in Figure 4.2.
in this sample, no modulation was present on the input signal. Since
the amplitude of the output voltage ranged from .ero to 0.3Z volts
over the entire 500 seconds, amplitude increments of 0.02 volts
were used to plot the histogram. For each modulation factor, ten
samples of data similar tc that shown 1in Figure 4.2 were used to
find the amplitude distribution of the output of the analyzer

The theoretical distribution can be fcund, knowing how the
spectrum analyzer treats the signal. In this case, the output of
the one-cycle fiiter in the analyzer is passzd through a voltage
doubier and a low pass fiiter In effect, this gives the envelope
of the signal coming out of the fiiter In Chapter 1lI1, the
output of the one-cycle filter was found to have a Gaussian
distribution with mean Mg given by Equation 44 and variance Js
given by Equation 45. 1f there is no modulation present, g 18
zerc and the distribution of the 5aussisn noise will be a Rayieigh
distribution. When modulation 1s introduced, the mean Mg becomes
ncen-zero and the distribution of the envelope wiii be a ftunzticn cf
Ly Rice has derived the distribution oi the .nveicpe o1 Gaussian
ncise pius a D.C. voltaze. In this case, the D.C voltage is the
mean of the Gaussian distributicn The distribution of the
envelope of Gaussian noise with mean Mg and variance 0.2, according

tc Rice 15 the following:
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vhere Io(x) is the modifieo Bessei function »f zero order and can
be conven{ently found in the Chemical Rubber Company Tables [5].

To normalize the above equation with the distributions found
experimentally, the mean of the ..>ve equation for Hg = 0 was set
equali to the mean found in the experimental distribution for m = 0.
The mean of Equation 46 for Mg = 01is 1.25 o, S0 that the value of
g, can be calculated. The experimental mean for the distribution
was found to be (.118v. so that o, = 0.0944 and 0‘2 = 0.0089.

Knowing this vslue and calculating T from Equation 44 for a given
value of m and normalizing g Equation 46 can be plotted and compared
to the distributions found experimentally. Five different modulation
factors of m = 0, 0.025, 0.05, 0.075, and 0.1 were used in the
sxperiments and the plots of the distributions for each of these
modulation factors is shown in Figures 4.3 - 4.7. The indicated
modulation factors for the experimantal distributions were found by
using the mean of the distribution to determine what value of m

would give that mean theoretically. These indicated aodulation
factors are wall within the accuracy of the equipwment used for the
expariment.

With the informstion svailable ivom the preceding

distributions, confidence percentages can be calculeted for s given
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modulation factor The confidence percentage is defined as the
probability of detecting the modulation for a given threshoid levei.
The threshold level can be calculated for a given probabiiity of
allowing the signal to exczecd the threshold for zero modulation
Since the amplitude distribution cf the signal for zero modulation
was found to be a Rayleigh distribution, the threshcids can be

calculated from the following eguation

t 2. 2
’P-%e‘”‘% Eal-p | ar

o 08

where t is the threshold and p ts the probability of the signa. being
above t. The left-hand side of Equation 47 1s 1ntegrable :in ciosed
form and becomes:

2 2
1-¢" /203 =i-p

2 2
ot /207, 0 ’ 48

Since 0.2 is known to be O 0089, values cof t can be calcuiated for
given values of p and these values are shown in Table ¢ :

For each cof these thresholds e confidence percentage can be
calculated by integrating Equation 46 from t tow. This wil. give
the probsbility that the modulsted signs. 1s sbove the threshoid t.
Since the expression for the distridbution cannct be integrated
readily. the integration wes done numericelly by the use of Simpson's

rule. PFigures 4.8 - 4.1]1 show the result of this integration as




TABLE 4.1

PROBABILITY OF THE SIGNAL BEING ABOVE THE THRESHOLD

Threshold ¢

0.28
0.22
0.20

0.16

Probabiiity of

Signal Being Above t
0.01

0.05
010

0 25
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a functicn of modu ~tion factor. The experimental results were
focund from the histograms by counting the number of sampies abcve
the threshold and dividing by 1000. This gives an approximate value
fct the area of the curve above the threshold. From these plots, the
percentage of the time the signal 1s above a2 given threshcld can
be found as a function of the mojulaticn factor.

It must be remembered that the experimental results in this
study are obtained for noise of a particular bandwidth cf 2 kdz
It can be seen from Equation 44 that the mean value of the spike at
the modulating frequency 1s propertional to the square rvot of the
noise bandwidth. Suppose the noise was of bandwidth 20 kRz.
This would incresse the mean value of the spiks hy a facter cf
3 1t and would make the ccnfidence percentages even higher sin:a
the output of the analyzer wou.d be above the threshcld more of the
time Likewise, the confidence percentage for a given modulation
factor wouid be less {f the bandwidth of the noise 1a less than the
Z kiiz used 1r the experiment. The coniidence percentages for
different dandwidths can be found by repiotting Equation &¢ with the
new value for the mean and by finding the area under the curve

apove the threshold vaiue.




CHAPTER V
SUMMARY

5.1 Results and Conclusions

An important result of this study is found in the curves of
chapter IV showing the percentage of time the frequency spectrum
of the envelope of modulated Gaussian noise is above a certain
threshold at the modulating frequency. It can be seen from these
curves that 10 percent mocdulation will almost always be above a
threshold for which a signal with nc modulation would only be above
one percent of the time. This means that the spike at the modulating
frequency in tke frequency Specrtum will be easily detectable
avove th: adjacent frequencies for any noise of bandwidth 2 kHz
that 1s modulated at least 10 percent by a sine-wave. Of ccurse,
iowering the threshcld will inérease the chance of detecting the
spike but that also will increase the false alarm rate. That is,
there wiil be a greacer chance of the signal being above the
"hreshold when there is no modulation present.

A more general result that hes been found is that the
distribution of the frequency spectrum for the envelope of modulated
saussian noise is a Gaussian distribution with meen Hg given by
“gquaticn 44 and 082 given by Equation 45. 1In this study, the
spectrum analyzer used gives the envelope of this frequency

spectrum but this is not always the case. Yor example, several
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spectrum analyzers use a square law detector at the output to
give the energy spectrum. This would give an output entirely
different trcm the one that was obtained in this study. 1In any
:ase, knowiedge of how the spectrum analyzer treats the signal is
essential 1n determining the amplitude distribution of the output
of the analyzer and this distribution must be found so that the

theoretical and experimental results can be compared.

5.2 Areas_ for Further Study

One area for further study would be to find the probability
cf detection of mcdulaticn by using the amplitude distribution
of the moduiated Gaussian noise rather than the spectral
distribuzion as used in this study. The results could then be
compared with the probabilities of detection found in this study.
Another area for’study would be to consider several other
types of mcdulation beside .ine wave modulation. Amplitude
modulation of a noise carrier from a radiated noise source may
not a.ways be sine wave modulated. The modulation might be closer
to square wave modulaticn or even triangular wave modulation. These
types of moduiations shoﬁid be studied and compared with the results

of this study which involves only sine wave modulation.
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