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ABSTRACT 

Esary and Proschan show that a lower bound tc system 
reliability can be found by enumerating all mln cut sets 
in the coherent structure, connecting the components in 
each mln cut set in parallel and Joining each of these 
parallel subsystems in series where replicated components 
are replaced by identical yet independently operating 
components.    A module of a coherent structure is a subset 
of the basic components of the system which can be treated 
as a component of the system due to their substructure 
topology. 

In this paper, it is shown that a lower bound estimate 
of system reliability can be derived by decomposing the 
coherent structure about its modules and applying the 
Esary-Proschan lower bound procedure to each module and 
then to the resultant coherent structure where each mod- 
ule has been replaced by a single component whose relia- 
bility is the Esary-Proschan lower bound to that module. 

This estimate of system reliability Is sharper than the 
estimate of system reliability obtained by utilizing the 
Esary-Proschan procedure on the total system directly. 
Furthermore,  this estimate is computationally more effi- 
cient than applying the Esary-Proschan procedure to the 
total system directly since the mln cut sets need only be 
enumerated for each module.    Applications of this result 
are given and analogous results for an upper bound to 
system reliability are stated. 



APPROXIMATIONS TO SYSTEM RELIABILITY USING A 
MODULAR DECOMPOSITION 

by 

Lawrence David Bodin 

1.0 INTRODUCTION 

A coherent structure (C, ^)  Is made up of a set of components C ■ (c.),. , 

which exist in one of two states—working or failed.    Let    x.    be a binary variable 

which designates the states of component    i  ;    x, ■ 1    if the component works and 

0    if failed.     Similarly, define the structure function    $(x)  - «Kx.,   ..., x ) 

to be    1    if the system is working and    0    otherwise.    For the structure to be 

coherent,  the following two conditions must be satisfied: 

(1) Each component    c,    must be essential; that is to say,  there 

exists a realization of the other components    c.   , J ^ 1  , such 

that    «Kl-, x) - 1    and    *(0., x)  «0   where    (.   , x)  - 

(2) If    x    < y      for each    1  ,  then    (j) (x)  < (j>(y)   .    This  condition 

implies  that the state of the system Is not degraded by changing 

a component from a failed condition to a working condition. 

From (1) and (2)   it immediately follows that    (ji(l) ■ 1    and    (ji(0)  - 0  . 

The state of any component in    (C,  i^)    is assumad random with    P(X. " 1) ■ p. 

and stochastically independent of any other component.    The reliability function 

h(p)    is defined to be    E((|i(X)) - P((j>(X)  - 1)   .    To further characterize the 

reliability function    h(p)   ,  the following definitions are needed. 

Throughout this paper a vector    (p-,   ..., p )    is denoted as    p    and a scalar 
function of several variables is designated as    (j>(x)    or    h(p)   . 



• AVB-A+B-AB. 

• y < x -► y. < x  Vl and y. < x. for some 1 . 

• Path Vector of    (C, ^) : Vector x such that ^(x) ■ 1 . 

• Cut Vector of    (C, ^) : Vector x such that ^(x) - 0 . 

• Path Set:    {c, | x - 1 and ^(x) - 1} . 

• Cut Set:    {c. | x - 0 and ^(x) ■ 0} . 

• Min Path Vector:    Vector x such that ^(x) - 1 and 

for all y < x , ^(y) - 0 . 

t Min Cut Vector:    Vector x such that ^(x) - 0 and 

for all y > x , ^(y) ■ 1 . 

• Min Path Set:    B ■ {c. | x ■ 1 and x Is a mln path vector}* 

• Min Path Structure Function:    n(x) ■ II  x. where 
c1eB 

B Is a mln path set. 

• Min Cut Set:    A - {c, ! x « 0 and x Is a min cut vector} . 

• Min Cut Structure Function:    ii(x) - V  x  where 
c1eA   1 

A   Is a mln cut set. 

Birnbaum, Esary,  and Saunders   [3] show that if    B. B     comprise the mln path 

sets of    (C, ^)    and    n.ivx)    comprise the min paL'a structure functions, 

1-1,  ...,   r , 

h(p) - E V   n.(X) 
1-1   1 

(1) 

and if A.,A., ..., A  are the min cut sets of (C, ^) and p.(X) make up the 

mln cut structure functions, j ■ 1,2, ..., s , 

h(p) - E [AUH (2) 

A method for evaluating  (1)  and (2) has been proposed by Birnbaum,  Esary,  and Saun- 

ders   [3]. 
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A module of a system can be thoight of as "a subsec of the basic components 

of the system which are organized Into some substructure of their own and which 

affect the system only through the performance of their substructure. Rephrasing, 

a module Is an assembly of components which can Itself be treated as a component 

of the system."  The coherent system (A.x.) Is a module  of (C,4) If 

• AC c and A Is not empty. 

A        A' A     A1 

• (j.(x) - i|»(xA(x ), x    )     for all binary vectors    x -  (x  , x    ) 

i i 

where A in  the complement of A and [c. U A ,1^]  Is a coherent system.  In the 

above definition, all components making up set A in the coherent structure  (C,4) 

have been replaced by a single component c. In the coherent system [c. U A ,I|I] , 

and the state of c. Is given by x» » the structure function of the module 

(A,x.) • More generally, the coherent system (0,$)  can be decomposed into modules 
A t 

/A,,xA \ , 1 ■ 1,2, ..., t , such that  U A- C and A. 0 A ■ E , the empty 

set, for k j I .    Replacing each module /A.,»XA \     by a single component M  and 

denoting the state of M.  as xA * the state of module  /A4,xA \ 1 a new coherent M 
structure    (M,i|(]    is formed where   M ■  (M-.M»,  ..., M )    and 

♦ " 'I'/X*  »XA  f  •••» XA \   •    This reduction Is called the modular deaompoaition of 
\  Al    A2 At/ 

a coherent structure. 

Since the computation of    h(p)    is difficult,  a method to approximate    h(p) 

is desired.     Esary and Proschan  [5]  describe such a procedure.    The Esary-Proschan 

lower bound procedure computes a lower bound on    h(p)    by enumerating all min cut 

sets of    (C,$)   , connecting the components of each min cut set in parallel and 

joining each of these parallel subsystems in series where the replicated components 

Birnbaum and Esary [2]. 

J 
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are replaced by Identical but Independent operating components.     In this paper,  the 

modular decomposition of a coherent structure Is utilized together with the 

Esary-Proschan lower bound procedure to obtain the Lower Bound Modular Decomposition 

Theorem. 

The Lower Bound Modular Decomposition Theorem shows that by decomposing a 

coherent structure Into modules and using the Esary-Proschan lower bound procedure 

on [H,ii]    (where the reliability of   M.    is defined to be the Eeary-Proeohan 

lower bound to    lA±*XA \) > the lower bound on   h(p)    thus found Is no worse than 

applying the Esary-Proschan lower bound procedure to    (C,4)    directly. 

In general,  the modular decomposition of a coherent structure Is not unique. 

Hence, the question arises as to which modular decomposition to use.    This question 

is discussed In Section 3.0 by refining the modular decomposition of a coherent 

structure to Include the possibility of decomposing each module further.    Finally, 

In Section 4.0,  analogous results are stated for an upper bound on    h(p)   . 

The following notation is utilized in this paper: 

• Reliability of the coherent structure    (C,$)   : h(p) - h-(p) - h.(p) 
C 9 

• Esary-Proschan lower bound to    (C,(Ji)   : h  (p) ■ h-(p) « h  (p) 



2.0    LOWER BOUND MODULAR DECOMPOSITION THEOREM 

Let    p.(x)   , J - 1,2,   ...,  s  , be the mln cut structure functions of the 
J s 

coherent structure    (C,(|»)   .    Tuns,    4»(x) ■    n    y, (x)   .    The Esary-Proschan lower 
J-l    J 

bound to    (C,^)    Is 

s s 

h*(p) -   n  P(P.(X) - i) -   n  h   (p) O) 
9        j-i     J j-i   yj 

Esary and Proschan [5] show that 

h(p) - yj > h*(p) (4) 

Lemma 1; 

If    XjOO Xt(x)    are disjoint coherent structure functions and 

1 t      * * 
♦ (x) -    V    x.(x)   ,  then      V   h    (p)   > h. (p)  . 

1-1    i i-1    xl        "    * 

Proof; 

Let    X .(x),   ...,  X      (x)    be the mln cut structure functions of    x,(*)   • 

Bl 
Then,    x., (x) -    n    X..(x)   .    From (3) 

A-l    ll 

* Bi "l 
h    (P) -   n  P(x   (x) - i) -   n  h.   (p) (5) 

Xl £-1        1* l-l    Ai£ 

^et    ^1£ " *il^    ^e in^ePendent binary variables,    £ - 1,2,  ..., m.   , 
1 

i - 1.2 t .    Thus,    P(A1£ - 1) - P(Xi]l(X) - 1) - qiSL .    Let    xJ(A) -    n 

so that 

h*  (p) - h *(q) (6) 
xl xl 



*        t   * 
Furthermore, let (|i (A) " V xAh)  .     Since x.M   ,  i - .1,2, ..., t , are 

1«1 

disjoint binary  functions,    X.» (A)    are disjoint binary functions and 

h* 
/ t      * \        t * t t      * 

(q)  - PI  V    x.(A) - 1    -    V    P(x.(A)  - 1) -    V    h *(q) -    V    h    (p) (7) 
>1-1    1 /       1-1 1-1    xl i-1    xl 

If p.(x) , j - 1,2, ..., s , are the min cut structure functions of ^(x) , then 

by Theorem 4.1 of Birnbaum and Esary [2] for mln cut sets, it can be concluded 

that 

y4(x) - V X. (x) (8) 

for some X (x),X- (x), ..., X  (x) .  If we let y.(A) - V A. 
i    ^        f J    i-1 i' 

J « 1,2, ..., a  ,  where ^.(x) ■ A.t in the corresponding expression of (7), 

h^ (p) - h^Mq) (9) 

Thus, by (8), (9), and Theorem 4.1 of Birnbaum and Esary [2], u. (A) , 

)J2(A), ...,y (A) are the mln cut structure functions of $  (A) . Then, 

8 8 * 
. Vq) - n h.*(q) -  n h, (P) - h

A(p) (10) 

But, by (7) and (10) 

t  * *      * 
V - hx (p) - h^(q) > h^(q) - h^(p) (11) 

which proves the lemma.  // 



Let    h h    (p),   ....  hx  (p) 

.    1 t 

and    h    = 
■ * *       . 

h^  (p),   .... h^  (p) 

Theorem 2;    Lower Bound Modular Decomposition Theorem 

If    XiWiXoOO»  •••!  X,. (x)    are disjoint coherent structure functions,  then 

V0 M; Max h hi ,  h ^11 
2Mi°K[hxl-hW 
> h 

* c *i 
(12) 

Proof: 

Recall that    ij» = ii(xk .XA XA )    so that    h  (p) h 1  by (6.21) of 

Birnbaum and Esary [2]. Since h (p) > h (p) by (4) and h [u-,u?, .... u ] is 
XJ XJ I^     X     A U 

monotone in    u.     for each    1  , h. (p)   > h 
l $        » 

vp)-h*Kl and    h > h 

i 
*i * r   i       * 

and h. h  > h, 
^l Xj - 'I' 

* r *i   * 
If we can show h [h | > hA(p) , we have 

* 

.  By (A), 

established the theorem. 

Let <j).(x) - ^.(XjOO, .... X  M)   ,  j - 1,2, ..., s , be the min cut struc- 

ture functions of the coherent structure [M,ii)] where <b(x)  - ij'[x1(x), ..., xt.(x)] . 

Let P.0(x) , 1-1,2, ...,K , be the min cut structure functions of (|).(x) .  It is 

easy to see that U.»(x) are the min cut structure functions of ({i(x) , 

Ä ■ 1,2, ..., K , j ■ 1,2, ..., s .  By Lemma 1, 

t *i   * 
(P) nJ h 

t-i uii 
(P) (13) 



Hence, 

h*[h* sn 
8 8 
n  h. fh*i >   n  h* (p) 

J-i   "j CJ x J-i   *J 

J 
n   h 

J-l i'l    MjA 
(p) h*(p) (14) 

This proves the theorem.     // 

Example 1; 

Let the coherent structure  (C, ^) be given as In Figure 1. 

•*—< 

.•—» 

3 

CD1 

D 
10 

FIGURE 1 

Let (k±,  X^    be the modular decomposition of  (C, ♦) where A - (C.. ,. C-.) , 

i-1,2,3,4,5 .  Then, 

h.(p) - h 
9 

h* 
X ] -hI^ xi Bhjra-hj(p> (15) 

The coherent structure which generates h*. 

Figure 2. 

[Nj'n^x] and h'i(p)  is given in 

1 

10 

3 

5 

6 

7 

9 

10 

FIGURE 2 



The method suggested by the Lower Bound Modular Decomposition Theorem has two 

Inherent advantages over the Esary-Proschan procedure: 

(1) It Is a more accurate estimate of h.(p) . 

(2) It requires the enumeration of all mln cut sets over a set of 

coherent structures with less components.  Since the work 

required to enumerate all mln cut sets of a coherent structure 

Increases exponentially with the number of components In the 

structure, this enumeration can be carried out more efficiently. 

To illustrate the accuracy of the approximations to system reliability 

obtained by utilizing the Lower Bound Modular Decomposition Theorem as opposed 

to the Esary-Proschan procedure applied directly to the coherent structure, con- 

sider the frllowlng example. 

Example 2; 

Figure 3 Illustrates the coherent structure under consideration. 

FIGURE 3 
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Define (A , x.,) > 1"1.2 , to be the modular decomposition of (C, $) where the 

modular sets are A. - {1,2,3,4,5} and A. - {6,7,8,9,10} . Applying the Lower 

Bound Modular Decomposition Theorem, we  find that. 

VP)  " ^[V10, h2(p)l 

^h^hJCp). h*(P)] 
(15) 

-h*[h*(p),h*(p)] 

> h*(p) 

Assuming each component to have the same reliability, we obtain the following 

table  (Figure A). 

uuuipuucui. 

Rellabilltv VP> ly[h*(p),h*(p)] h*(p) 
..... .'P 

.99 .99999996 .99999996 .99999996 

.95 .99997275 .99997251 .99997243 

.90 .99953689 .99952217 .99951609 

.73 .98077010 .97799376 .97584785 

.50 .75 .67585658 .56262773 

.25 .25811386 .12385429 .011416517 

.10 .042576889 .00529541 .533 x 10"6 

.01 .40 x 10"3 .698 x 10"6 

FIGURE 4 

.941 x 10"2 
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3.0 EXTENSIONS 

Since the modular decomposition of a coherent structure is not necessarily 

unique, the question arises as to which modular decomposition to utilize. 

Insight into this question is given by the results of this section. 

Let w (x) , j-1,2, ..., s , i"l,2, ..., t be disjoint coherent structure 

functions and o. (w) , i"l,2, ..., t be disjoint coherent structure functions such 

that xAx)  - o.Cw 1(x),w12(x) w^ (x)) . Let 9(w) be the coherent structure 

function defined by e(w) - iKa.(w), ..., a (w)) . Then 

e(x) - «(Xj^Cx) xt(x)) 

al^Wll^ Wls ^X^' ',•, at^Wt ^X^ Wts ^X^^   ^16^ 
1 1 t 

e(w11(x) w (x)) 

Thus,    XiC*) Xt.(*)    define the coherent structure functions of a modular 

decomposition of    (C,  (jO    while    w . (x) w      (x)    define the coherent struc- 

ture functions of a modular decomposition of  the coherent structure defined by 

XjCx)   .     Let    h ■   Hi     (p),   ..., h 
Wi Wil Wl81 

(P)' 

X    X ) «. i    ■ • • i    u    • 

Theorem 3: 

and    h*    ■ 
w 

1 
h*  (p) K   (p) 

il Wls1 

(a) h* Ih 1 > h* (h    ,h     h 
iH xJ -    e[ "i   w2 w

t 

(b) h( fh*] < h0Ih*  ,h* h* 'I'l XJ -    91 Wj^   w2
, '    wt 

(17) 
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Proof: 

(a)      w   . (x)   , j-1,2,   ..., a     , 1-1,2 r  , are Independent binary ran- 

dom variables.    Let    q  . - Pfw    (X)  - 11   , J-1,2 s     ,  1-1,2 r .    By 

the Lower Bound Modular Decomposition Theorem, 

>[ho1
('1^  0"°s "a^'l   - "6' h*[h,  (q),   ..., h^  (q)]    > h*(q) 

Now, 

h*fh I   - h* h^q),   ..., ho^qj| 

> h*(q)  - hjfh     h    1 
-   e ^       e  wi t 

(b)  By the Lower Bound Modular Decomposition Theorem 

(18) 

(19) 

h* (p) < h  lh* 1, 1-1,2 t 
'i ^i] 

(20) 

Since h  is nondecreasing. 

i. fh*l < h, lh /h* \ h /h* \ *l Xj -  * [ a^ wj«     at( wj 

i lh* , .... h* 1 
e|Wl      WtJ 

// 

(21) 

The modular decomposition of (C, $) defined by the coherent structure 

functions w..(X) is a refinement of the modular decomposition of (C, ^) 

defined by the coherent structure functions %.(x) . Let 

$(*) " ^kfxiir^i *,,, Xr kl » km0t.,   ..., k* , be a series of increasingly 

refined decompositions where r - 1 , Xii,^ * ♦M , tp [^(x)] - (j)(x) , 

r. Ä - n , the number of components in the coherent structure, X-JV* * x* ' 

i"1»2 n »  *k*^xlk* xnk*J " *(x) and ^^Ik*' •••' xnk*J * **(x) 
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Then,  from Theorem 3, 

h*(h ] 
I» X 

(k) 
^fx„.(p) hx_,(p) If 

'IV. r,k 

r 

Is nonlncreaslng in k , k-0,1,2, ..., k 

hjh*](k) -h... fh* (p) h^ (p) r"x \\ xik lr,.k 
is nondecreasing in k , k-0,1,2 k 

where 

hjth/0)" Vp) 

h.(.[h*]
(o) - h*(p) 

r x r 
(22) 

Let, 

S^^-^Cp) 

h*[h*](k) - h* 
* X      * K    (P) h*  (p) 

vlk ^r,.k 
(23) 

Then, by the Lower Bound Modular Decomposition Theorem 

h*[h*](k) <Min hj(hx)
(k), h^(h*)(k)] , k-0,1,2 k* (24) 

These results can be qualitatively depicted as follows (Figure 5) 
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Vp) 

«;<p) 

k*-l   k* 

FIGURE 5 



15 

A.O UPPER BOUND MODULAR DECOMPOSITION THEOREM 

Let r\.M   ,  j"l,2, ■..., r , be the min path structure functions of (C, $) 
^  r 

where (Kx) - V n.(x) . The Esary-Proschan upper bound to (C, $) is 

h**(p) - V P(n.(X) - 1) - V h 

*     J-l   J        J-l nJ 
(P) (25) 

where 

h**(p) > h(p) (26) 

Results similar to those derived previously in this paper can be shown.    These 

results are stated without proof since the proofs are analogous to those given 

previously. 

Lemma 5; 

If    XiW.x^M»  •••» Xt(x)    are disjoint coherent structure functions and 

t t 
*(x)  -=    n    x.,00   ,  then    n    h**(p)      h**(p)   . 

1-1    i i-1    xi        "    * 

Theorem 6:    Upper Bound Modular Decomposition Theorem 

If    Xj(x)»   •••» Xt(x)    are disjoint coherent structure functions, then, 

VP) mh*[\]  <Mi^hJ*[hx], h^h**]} 

< Max{h**[h  ], h,[h**]} 
*      X        "I*    X 

< h**[h**] 
■ V Y 

(27) 

< h**(p) 
-    V 

where    h    ■ 
X [\ (p),   •• hY   (P) 

^t 
and    h** 

X 
h**(p), 

Xl 

, h**(p) 
xt 



Theorem 7: 
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** ** 
(a;    h,    h 1   < h 

Ül V       ■ 

(b)    h, fh" 

* [hx] -he [S \ 
** ** 

e ^ hw 

(28) 

> h.fh" 

where the coherent structure functions    w    (x)    are defined as in Section 3,0, 

a     - fh w1 w (p),   ..., h        (p) 
il Wi81 

, and 
**       r ** ** - 

hw   "    hw    (p) hw      W     ' 
1      [   il Wi81 

J 
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