
NWL Technical Report
TR-2108

I
THE METHOD AND USE OF NOVACCH, A PROGRAM FOR

"NON-ORTHOGONAL" ANALYSIS OF VARIANCE AND COVARIANCE

By

Klaus Abt

19 April 1968



Best
Avai~lable

copy



ABSTRACT

The report contains the description of a program ("NOVACCI") for
the solution of problems in the area of analyzing "data based on the
general linear statistical model. While the detailed program documentation
is riven elsewhere, the present publication deals with the statistical
method, the logical flow, and the use and application of NOJACC4 in
multiple linear regression and (" non- orthogonal") analysis of variance
and. covariance for crossed classifications with incomplete and unbalanced
data. The method of NOVACC14 is basically a backward ranking procedure
applied to individual and/or groups of independent variables (concomitant
independent variables and/or AINOVA effects, respectively). The result o-L
the ranking is a model ("significant model") which contains only significant
concomitant independent variables and/or AflOVA effects. The method and
use of the program is illustrated by examples of the statistical analysis
of bodies of incomplete experimental data.
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FOREWORD

The work covered by this report was done in the Mathematical
Statistics Branch of the Operations Research Division, Computation and
Anal ysi3 Laboratory, under Foundational Research Pruject No. 29Y,
"Computer Programs for Statistical Analyses."

The report contains the description of the method and use of the
computer program NOVACtM, which performs analysis of variance and
covariance for unbalanced data classifications with missing values,
i.e., for situations which are often met in the analysis of Naval
ordnance experimentation and test data.

NOVACC4 was coded from notes (similar in content to some parts of
the present report) by Mr. T. Herring of the Programming Division,
Computation and Analysis Laboratory. Mr. Herring, who contrlb',÷ed
significantly also to the general methodological concept of NOVAC.M,
is th,,, author of the program documentation of NOVACOM. ("A Prograzuing
Guide to NOVACCW", NWL Technical Memorandum, in preparation.)

Many ideas for the concept of NOVACCM were cont.'ibuted by Messrs.
C. Bates, G. Gemmill and R. Shade of the .1Mathematical Statistics Branch.
Mh'. A. R. DiDonato and Dr. M. P. Jarnagin of the Mathematics Research
Group, Computation and Analysis Laboratory, dveloped the method of
the subroutine ISURX for the computation of the incomplete beta functico
ratio contained in 11OVACal. This method is documented in NWL Report
Ho. 19Jv;, revised October 1966.

The author wishe.m to thank Dr. Sidney Addelman and Mr. James Merrill
of the Research Triangle Institute, Durham, North Carolina, for thdir
valuable comments on the interpretation of the NOVACU-1, results.

The report was typed by Miss Judy D. Merryman.

The work on this report was complete:t on 23 July ]if7.

APPROVED FOR RE.LEASE:

BERWNARD SMITH
Techc±cal Director
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1. INTrM&JCTIGN,

The concept of the program NOVAC(J4 ("Non-Orthogonal VAriance and
COvariance analysis by Multiple Regression techniques"), as described
In this report, is based on the multiple regression approach to analysis
of variance (see, for example, Brownlee [1960)). The underlying method
of NOVACOM was developed in such a manner that a wide variety of
problems in the area of analyzing data based on the general linear
Dtatistical model can be solved. The possible applicaticas of NOVAC04
in this area are: multiple linear regression including polynomial
regression, ("orthogonal") analysis of variance and covariance for
".rossed clascifications with balanced and complete or incomplete data,
and ("non-orthogonal") analysis of variance and covariance for crossed
classifications with incomplete and unbalanced data when possibly some
of the ANOVA effects are confounded.

While regression and "orthogonn!" ANOVA may be considered as bonus
areas of application, it was the third area (of "non-orthogonal" analysis
of variance and covariance for crossed claasifications) 'ur which NOVACCI4
was developed. Most of the theory for the methcd of tht pz'ogran is
described in the present report. A more detailed vit.ine of the theory
is contained in another paper by the author (Abt r i9'11]).

The method of NOVACOM is basically a backward ranking procedure
applies to individual independent variables and/or groups of independent
variables, where the groups represent analysis of variance efrects in
the general linear model. The ranking is done by order of prediction
power for the dependent variable (response variable), where the so-called
"non-significance" serves as criterion for establishing the ranking. In
ranking the independent variables of anaLysis of covariance models, the
program makes an internal decision (based upon a significance level g
specified by the user) whether to include the covariates for the analysis
of variance part of the ranking. There is some restriction in the ranking
of ANOVA effects in tbht at a given step of the rangidng only those effects
are admisephle for ranking whose associated sums of squares are independent
from the restrictions chosen to make the linear model a model of full rank.
(The admissibility is internally determined by the program.) The ranking
procedure leads to a significant mndel which contains those effects (and
covarlates, if any) which are significant at a level specified by the
user, plus those effects, if any, which did not become admissible in the
ranking procedure. Accordingly, NOVACO'I may be considered as a screening
tool for significant factorial effects in (crossed) data olassifications
with possibly highly incomplete and unbalanced data. A special additional
feature allows for the screening for "the most probable significant model"
when there are confounded ANOVA effects.

The model in NOVACCO may include up to 159 independent variables.
The limitation on the number of covariates is determined by the number
of independent vari~tbles representing AN0V.A effects. The factors may have
qualitative and/or t*uantitative levels. In one given problem, up to four
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different dependent variables may be analyzed, however, each one in a
un•jvariate manner and for the same values of the Independent variables.

Some parts of the method of NOVACCM were taken from the program
DA.-MRCA for multiple linear regression (Abt et al. [1966]). Accordingly,
tte reader in often referred to this documentation of MA-MRCA which is
listed as "Reference 2" in Section 4 of the present report. While the
user of DA-MRCP. was also able to perform, though in a asmwhat cumbersome
way, "non-orthogonal" analysis of variance (and covariance), he had no
possibility of axriving at a significant model by ranking methods, and
he had to do the generation of the model and the design matrix mostly
by hand-input. In the method of NOVACaM, considerable emphasis is put
on the automatic generation of the model and the design matrix.

Because of considerations regarding its size, the present report
does not contain any documentation of the programing of NOVACOM. The
FCIRTRAN IV documentation, as well as general programoin notes are
contained in a report by T. Herring C196T] who also programmed NOVACaN.
In accordance with Its title, the present report is restrictcd to the
description of the method and use of NOVACOM. In addition, the report
contains a number of numerical illustrations of the program's possible
applications. Therefore, the report may serve as a manual for the user
of the program, and for this purpose, the report also containa all the
necessary information for operating the program and for interpreting
the results. This necessitated some overlap with the contents of the
afore-mentioned report by T. Herring; for example, both reports contain
the description of the control and data cards. The two reports, each
being self-contained, can be defined am the statistician's guide (the
prevent report) End the programmer'a guide to NOVACO4 (the report by
T. Herrine).
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2. KMO.D OF NOVACC

2.1 General Outline of the Method

2.1.1 The Model

The method of NOVACGM is based on the general linear
statistical model,

N
y - Oo + E O.x; + e, (-v-i

y a "dependent" (random) variable

x. - "independent" (non-random) variables, v 1 I,...,N

-v - regression cot f icients, v a ,. .. N

0o a general constant

e - "residual", or "error" term: a random variable with expectation
zero and variance oa , usually assuned to be independently
normally distributed.

More specifically, tae model (2-1) ir NOVACCI is of the form

N-T N
Y " o 0 + E 1 XVy +E eX (+-2)

vol v-N-T+l

where the first N-T independent variables represent analysis of variance
effects &nd the last T indepenaent variables represent concomitant variables
("covariates" if 0 < T < N). Any one independent variable ("IV") of tile
first N-T will be referred to as a "Design Independent Variable" ("DIV"),
and any one IV of the last T will be-referred to as a "Concomitant Independent
Variable" ("CIIy'). Consequently, with T=N CIVa, the model (2-2) is that
of multiple linear regression; with 0 < T < N CIVa, model (2-2) is that of
analysie of covariance; and with T-O it is the model of analysis of variance.

There are two types of CIVs: (1) those representine the
original, physically observed variables (in other words, the linear terms),
referred to as "Original CIVs" ("OCIVs") and (2) those CIVs representJng
polynomial terms, generated from the OCIVs, referred to as "Generated
CIVs" ("GCIVs"). Therefore, T ( (number of 0CIVs) + (number-of GCIVs].



The N-T DIVe (of the analysis of variance pert of the
model) require a more extensive discuesion.

Since the application of NOVAC(IM is limited to crossed
classification models, all ANOVA effects may be referred to as "factorial"
effects (main effects, two-factor interactions, three-factor interactions,
etc.). Frotm the fact that the factorial effects are represented by groups
of independent variables (DIVa) in the general linear statistical model
(e-;), all factors in the analysis of variance must be considered as
"fixed effects" factors. That is, "random effects" factors (the levels
of which are randomly sampled from finite or Infinite poyulations of
levels) cannot be treated as such by the program NIOVACU4.

First contider a model with only "qualitative" factors,
i.e., factors whose levels correspond to qualitatively specified categories,
such ma "types of material", or "manufacturers". As an example, take the
conventional ANOVA model for a two-way crossed classification with
interaction (the two ways of the data clasiflication corresponding to
two factors, say "0' and "4r):

yaep - m + % + be e abaq + %pp (2-•)

with

S-. 1,... ,P:me

a - .1,...,

Here %m is the number of observation. (y) for the level
combination, or cell, (a,o) of the two factors a and 13; and A and B are
the numbers of ltvels of the two factors, respectively. (For ease of
the following discussion the assumption will be made that I > 0 for all
cells. This assumption, however, is not essential and alltaitures of
the "qualitative" model presently being discussed hold also for cases
with empty coels, that is, for :&see with some but not all %0 . 0.)
Also in (2-3), ;he model 7'onatants (parameters) m, %, bo, and aN#
represent, rcicectively, a general constant, the effect of level a of
factor a, the ofrect or" level 0 of factor 8, and the interaction effect
of levels a and 0 in cell (cr,O). The error term egp Is ajaumed to be
normally, independently distributed with expectation zero and variance
o2

In order to treat the model (2-3) as a linear hypothesis
model of full rank, the parameters o., bN, and atko must be subjected to
linear rcstrictions such that the total number of degrees of freedom for
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factorial effects is AB-i. The restrictions apply identically to the
estimates of the parameters resulting rrnm the solution of the system
of the AB-i normal equations. The set of' restrictions used by Grsybill
f1961] is a very convenient choice with respect to computational simplicity
as will be shown later;

bs - -01

abAI - 0 for - 1,...,B (2-4)

abat - 0 for 1, ,.. .,A

This act of restrltiona allows the rcmC'ning AB-i parameters to be
considered as contrasts with respect to the last levels of the f&ctors.
(For example, a& i a, - % .)

In order to further discuss the model (2-3), it is
convenient to numerically specify A and B, the nrmbers of levels for
factors C7 and B, respectively, Let A-B-3, :or example. Then there will
be AB-1-8 parameters representing factorial effects in the example model.

In the multiple re reasion approach to analysis of variance
(ape, for example, Brownlee [1960]) euch one of' these p•rameters in
considered as a "regression coefficient" of an auxiliary independent
variable which takes on the value 1 when th-e respective effect is present
iaid the value 0 when the effect is not present. (Die auxiliary IVW will
be given the symbols u.-.) In this approach, the general constant m in
considered as the regression coefficient of a duy IV, uo, which has the
constant value 1.

Applyin~g the (raybil, restrictions (2-4) and introducing
the variables uv into the model (2-3) with A-.B3, one can ace that the

S(zxcpt for uo) ropre-evt the -i-T-Ni- "Diva" for qualltative factorial
effects in the general model (2-2):

-G miu + &.lux + &2u2 + btu,3 + bZU4

+ abjju5 + ab12ud + ob 2 1 u, +3I122US + eSp (25)

For cell (, " (1,2), for example, the model (2-5) becomes:
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Y1ap= ml + a,,l + a 2 'O + b1 "O + b 2 I

+ abj1 "O + ab1 _ .+ ab2 1 "O + ab2a'O + e12, (2-6)

= m + a, + b2 + ab j 2 + e12,

As can be seen, the values of the DIVs for interaction constants are the
products of the values of the DIVs for the corresponding main effect
constants. For example, us = 1 = uju4 = l'; and u 8 = 0 = u 2 u4 = Ol.
This "product rule" (when using restrictions of the type (2-4)) applies
generally to all crossed classification models with qualitative factors.
For example, in a three-way classification where factors a, 8, and C,
have A=2, B=3, and C=3 levels, respectively, the numerical values of
the DIV attached to the interaction constant abc,2s l l1-11=l for the
R121 observations in cell (1,2,1) and it is 0 for the observations of
all other cells. The product rule allows a simple generation of the
matrix of the coefficients of the normal equations. (See Section 2.2.)

Next, consider a model with only "quantitative" factors,
i.e., with factors whose levels are specified by numerical values of
continuous variables, such as "temperature", or "pressure." If the
two-way rrossed classification is again taken as an example, the model
for this case can be written:

A-1 B-1 A-1 B-1
YaPýmuo + 1: 01 )4 O) + E Z E ''t4 + e.,0 0 . (2-T)

Here, the a= •(o) and Xb. = Xb(O) are the-numerical values of the.
continuous variables X and X. which specify the levels of the quantitative
factcrs 67 and 8, respectively. (Accordinily, X, and will be cr.led
"quantitative factor variables.") That is, model (2-7, is that of poly-
nomial regression in the usual sense, and the AB-l parameters 8(u), O(v),
and O(L") are the regression coefficients in the usual sense. JNOTE. In
"orthogonal" analysis of variance one would write the model, for this case
of all factors being quantitative, in the conventional way (2-3) rather
than in the way of (2-7). In the course of the analysis, one would
decompose the ANOVA effects into orthogonal contrasts, for example, for
factor L7, into the linear contrast, the quadratic contrast, . . ., the
contrast of (A-l)th order. Since in "non-orthogonal" ANOVA orthogonal
contrasts dc not exist, the form (2-7) of the model is used here.)

As already implied in the form of the model (2-7), alsoin this cr~se the DIVs representing interactions can be generated from
the DIVs cf the corresponding main effects by multiplication. For
example, the DIV representing the A,,.a "quadr.e interaction,
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i.e., X4), is the product of the DIVs representing the linear effect of
a' and the quadratic effect of 13.

Finally, consider an ANOVA model with both qualitative and
quantitative factors. As an example again take that of the two-way
classification, where factor 6' is quantitative, say, and where factor 8
is qualitative. The combination of the two types of models (2-5) and
(2-7) leads to the model of the present case:

A-1 B-1 A1 B-1
YOO mu0 + Ep + E bvuN + I + (2-8)

v=i=i =l V=i

where

44 4(01) = UXOGy) UA

and (p = level number of factor 8!) (2-9)

"Uv {= if

For example, with A=B=3, the W1U represent the interaction terms in the
following manner: W, and W2 are the DIVs of the interaction effect
a~mr x 8, and W12 and WB ere the DIVs of 6quadratte X 1.

Summarizing, there are three types of DIVs in the analysis
of variance part of the NOVACCM model, where each DIV represents an
individual degree of freedom of in ANOVA effect: (1) the uV and their
products representing individual degrees of freedom of qualitative
factorial effects, (2) the V, 4 , ... and their products, representing
quantitative factorial effects, and (3) the W~v, representing individual
degrees of freedom of interaction effects between qualitative and
quantitative factors. All factorial effects involving at least one
qualitative factor with more than two levels are represented by groups
of 2 or more DIVs. These are the groups of DIVs which are subjected
to the backward ranking procedure as will be discussed in Section 2.1.2.

When the given data layout contains unoccupied cells, or
"empty" cells, it is not always possible to fit the constants of the
ANOVA part of the model in a unique way. In other words, in case of
empty cells some of the factorial effects may be confounded. In Appendix
A a method is described for fitting the constants when the model is to
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contain interaction effects and when there are empty cells. The method
includes rules for fitting the constants of the various possible models
in case of the presence of confounded effects.

In the case of confounded effects, the user of NOVACCM
has the possibility to analyze all possible models, and to search for
the "most probable" significant model. Each one of the possible models
is treated as a separate problem by NOVACCH since the design matrix and
the matrix of the normal equations (summation matrix) must necessarily
be different for each model, or set of constants fitted. The various
problems corresponding to the various possible models are, therefore,
referred to as "Set No. v", v = 1,2,3....Since the input of these
different sets of constants is done via Control Card No. 4 of the
program, the sets are also referred to as "Control Card 4 Set No. v",
v = 1,2,3,.... For the use of the results from the various sets see
Sections 3.1.3 and 3.3.2.

For the case of an analysis of covariance model, NOVACCI
provides another option to change the model. The author has shown
(Abt [1960], pp. 102/103) for the case of one covariate (T=l in the
present notation), in which way the analysis of covari•ance results are
related to those of the analysis of variance (excluding the covariate)
when the factors and their interactions exercise significant effects
upon the covariate. (The covariate then, naturally, does not fulfill
the condition of being a "fixed variate"; but one has to face this
situation which often occurs in practice.) In fact, in analysis of
covariance, if the factors have sign34icant effects upon the covariate,
the significance of the factorial el cts, with 'espect to the dependent
variable, may be considerably reducet, when comrwd to the case where the
covariate is not included in the model. (See Lmple 6 in Section 3.4.6.)
A corresponding situation exists, naturally, when there is more than one
covariate in the model. Yn other words, if significant covariates are
kept in the model, the ar1•yst cannot be sare that the tr-e signiificance
of the factorial effects is shown in the re-alts of the analysis of
covariance.

In order to give the user a possibility to Judge the
significance of the factorial effects without having the s:gnificant
covariates in the model, NOVACOM will optionally run an analysis of
variance for the factorial effects part of the model alone, i.e., without
all covariates. Also under this option, additional analyses of iariance
are run for all OCIVs which were significant, i.e., the significant OCIVs
take the place of the dependent variable in these analyces to study the
influence of the factors and their interactions upon the; covariates which
turned out to be significant in the analysis of covariance model. These
additional analyses of variance are identified as "ANVAs" in the program
and will be referred to by this name in the remainder of the present
report. As to the use of the ANVAs see Section 3.3.3.



2.1.2 The Backward Ranking Method

As stated in the Introduction, the program NOVACCM is
mainly intended as a tool to screenr for significant factorial effects,
analysis of variance (or covariance) models for crossed classifications
with incomplete and unbalanced data. The method applied to this end in
NOVACCM is the "backward ranking method" discussed in Abt [19671. By
this method the individual and/or groups of independent variables of the
model (2-2) are ranked in an ascending order of importance.

Speaking, for the moment, of an analysis of variance model
only, i.e., of a model (2-2) without covariates (T=O), the ranking is
done as follows: At the first step, that ANOVA effect (the group of
DIVs) is deleted from the model which among all effects "admissible for
ranking" (to be defined later) has the smallest prediction power for y
as measured by its "non-significance" (also to be defined later); at
the second step, those two ANOVA effects are deleted from the model
which together have the smallest prediction power for y, where one of
the two effects is the one ranked least important at the first step and
where the second effect is an effect "admissible for ranking" at this
second step; and so forth until all ANOVA effects arc ranked. This
method leads to a unique ranking by importance of all AN1OVA effects and
enables the user of the program to define, at a prechosen significance
level a, a "significant model."

When the general model of analysis of covariance (T > 0)
is again assumed, thu T covariates (CIVs) are ranked in a manner corresponding
to that described before for the groups of DIVs, however, in this case one
ind-cpendent variable is deleted from the model at each step. The ranking
of the CIVs is done first, i.e., all original N-T DIVs are kept as part
of the model while the T CIVs are being raraked.

The ranking process of the CIVs is abbreviated as "C140""
"C.ncomitant variables Magnitude (of prediction power for y) Ordering",
and the subroutine which performs CCOe in the program is identically
named. Correspondingly, the ranking process of the groups of DIVs is
abbreviated as "FEMO" = "Facto-rial Effects Magnitude (of prediction
power for y) Ordering", and the subroutine performing FFEv1O in NOVACM,
is again identically named. The names CCMO and FE.4O are also used, in
a more general meaning, to refer to the whole analysis of covariance
part and to the whole analysis of variance part, respectively, of thc
program.

As can be seen from the above, the ranking is porni-ii.,z
cumulativ-oly, that is, at each step all individual and/or groups of
independent variables ranked at previous steps .re included in the gr'oup
of independent variables sought at the present step to ha-.'* minimum
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prediction power for y. (The reason for ranking "cumul tively" is explained
fuirther below. ) The cumulative ranking principle is based on what may be
termed the "main theorem of multiple regression." The content of the
theorem, see, for example, Anderson and Bancroft (1952], p. 172, is as
follows:

MAIN THEOREM. Given the linear model (2-1)

N
y = 0o + E Ovx, + e,

'V=l

the residuals, e, are assumed to be normally independently distributed
with expectation zero and variance co. Under the null hypothesis

o[v= =v• . v = 01, where Ov, O, ' ' Ny, V

are the regression coefficients of a specified met of N-N' independent
variables whose contribution to the "total" regression sum of squares
(due to all N independent variables) is to be tested, the variance
ratio

ss ____ /ATSS-ASSR(N-

N-N n-N-i

is distributed as F with N-N' and n-N-1 degrees of freedom. The
terms in this formula are defined as follows:

ASSR(N) = "total" regression sum of squares adjusted for the mean,
with N degrees of freedom, due to all N independent
variables;

_ A3S(N) - ASSR(N') - "additional" regression sum of'
squares, with N-N' degrees of freedom, due to the
specified set of N-N' independent variables, where
ASSR(N') is as defined below;

ASSR(N') = regression sum of squares adjusted for the mean, with N'
degrees of freedom, due to the N' < N independent variables
left in the model after deleting the N-N' independent
variables whose contribution to the fit is to be tested;

n

ATSS = F (y -7) 2 = total sum of squares (of y) adjusted for the
* i=l mean, with n-i degrees of freedom;

n = total number of observed y-values.
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In the terms of the NOVACO'1 model, the "specified set of
N-N' independent variables" equals the sum of (1) the CIV or group of
DIVs to be considered for ranking at a given step and (2) all previously

* ranked IVa. The prediction power for y of this set may be tested by
F. of (2-10), that is, the null hypothesis that the set of N-N' No. do
not have azW predi1ction power for y may be tested. Obviously, the more

* significant F, is, the more important is the corresponding group of
independent variables for y, and vice versa. This leads to the ranking
criteri~on "Non-Significance" as used in NOVACC'! for the actual ranking:

Non-Significance cp' (F)dF (2-li)
F.

where qi(F) is the probability density function of F with N-N' and n-N-l
degrees of freedom. The non-significance is the tail area under the
density curve of F to the right of the calculated vrAlue F. . One can
easily see from (2-12) that the non-significance equals, the significance
level ot in the teat (2-10) when %* equals F,_...

The importance of the non-significance as a ranking
criterion lies in the fact that, in comparing various sets of independent
v.ariables, the possibly varying degrees of freedom, N-N', of the sets are
taken into account. The term non-significance is derived from the fact
that a set of IVs with a non-significance which is larger than that of
another set of IVs c~n be considered as having a prediction power for y
which is smaller than that of the second set.

At 2ach step of the analysis of variance part of NOVACfM,
the non-tienificences are computrd, for each adeinst ble effect at that
step, with the incomplete beta, function ratio see, for example, Greenwood

and Hartley [1962), p. 182:

Non-Significance E e(F)dF ( I f_, -fj),

F,
where f I

fl = N-N'

f2=n-N-1

deres f redo. heno-sgnfeaceisth tilara ndr1h



In the text of the present report, the computed value of the non-significan.
will be referred to as "I(X)." The subroutine included in NOVACCM for this
computation is called ISUBk and is based on a method by DiDonato and
Jarnagin [ 1966].

One can see that in the analysis of covariance part ofNOVACCM, i.e., in COMO, the ranking criterion "non-significance" is
equivalent to that of the "additonal regression sum of squares", SS,.,-,#
of the Main Theorem, (2-10), because at each step the degree of freedomf, is constant for all CIVs to be considered for ranking. Consequently,
the CIVs are ranked in the program according to 88,_N, . However, oncethe least important CIV at a given step has been found according to the
sma.lleat saN_,, , the I(X)-value (2-12) for the corresponding group ofN-N' CIVs is computed in order to provide information for the determinatioi.
of the significant CIVs.

The program defines the significant CMIe, which tjre to bekept in the model during the later ranking of the factorial effects, as
follows. From the established rianking order in CC4O (which is achieved
while keeping all original N-T DIVs in the model) and the I(X)-valuea the
program looks for the "first significant step", i.e., the step where
I(X) at for the first time. (This value a, which is specified from
one of thaee of-values chosen by the program user, is defined as "a-value
No. KALPHA"; where KALPHA = 1,2, or 3, is also the choice of the user. )All CIVs ranked before the step where I(X) ! ALPHA (KALPHA) for the first
time will be deleted permanently from the model, whereas the others
(i.e., the significant CIVs) will remain paxt of the model throughcut
FEMO.

The ranking of the covariates and the factorial effectsin the manner described above leadu to a Lniquely defined crthogcnal
decomposition of ASSR(N), the "total regression sum of squares", into
the saccessive "additional regression sums of squares." This is the
main advantage of the ranking method compared to other methods of
applying analysis of variance to incomplete and unbalanced data layouts.
If all N-T degrees of freedom available in such a layout are properly
ascribed to factorial effects (see also Appendix A), the regression sumof squares, ASSR(N-T), due to all N-T DIVs with which FEMO started, has
degrees of freedom equal to the number of occupied cells in the layout
minus one. However, it is not always desirable (or possible, due toprogram limitations) to ascribe all degrees of freedom "between cells"
to factorial effects. In any case (whether or not ASSR(N-T) equals thesum of squares between cells), the ranking method should and will tend
to ascribe a maximum portion of the regression sum of squares to a
minimum number of factorial effects. Correspondingly, a maximum portion
of ASSR(N) is ascribed to a minimum number of covariates and factorial
effects, or, in multiple regression, to a minimum number of independent
variables.
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The backward direction of the ranking (as opposed to a
forward direction) is necessitated by the fact that only in this way
are the unities of so-called "compounds" preserved during the ranking
process, see Abt [1967). A "compound" is defined as a set of N (! N)
IVs when the error variance P associated with all V IVs is smaller,
by orders of magnitude, than the error variance associated with any
subset of N-i IVs, i.e., after any single IV has been excluded from
the set of the N IVa comprising the compound.

Note. The reason for ranking the CIVs and/or groups of
DIVs cumulatively on the basis of F. in (2-10) in in order to be able to
maintain a valid ranking criterion through the significant model. The
alternative to the cumulative ranking procedure would be to include in
the numerator of a given F. -value (2-10) the additional regression sum
of squares due to only one given effect considered for ranking. For
example, at the second step of the ranking, if a given effect is repre-
sented by N'-N" DIVs (where N > N' > N") one would use, instead of (2-10),

F = Ss ATSS - ASSR(N)N, -- N-N" n-N-i

to test the null hypothesis that the N'-N" regression coefficients are
all zero. However, this F,-value is distributed as F only if the previour
null hypothesis, Ho•j.• = - -.... 8v , = 0 was accepted. That is,
a ranking order based 6n thii alternative Wricedure would be valid only
until the first significant effect is reachel. From then on, that is, for
all effects except the least important one contained in the significant
model, the rankitg order would be invalid. Since, in the method of NOVACCM,
considerable emphasis is placed on the ranking order of the sitgnificant
effects also, the cumulative dropping procedure based on the F, -value
( _-'-10) is adopted here. It is felt that the ranking order (for non-
significant effects) would be changed little - if at all - if the
alternative procedure would be applied. However, the significance as
given by I(X) is possibly very much dependent. upon whether the cumulat ive
or the alternative ranking method is applied. For this reason, the program
gives the necessary printout to provide the analyst with the information
to determine the significance of the F-test at any given step accordini,
to the alternative method. See Section 3.1.3 for a more detailed discussion.

In addition to the cumulative ranking procedure., thte pi-ogru.i
NOVACCM4 has an option to perform also "single deletion", or "sin lkh d(Ifppint:"
(ol' CIVs and/or groups of DIVs from the model). However, in tLh.! pro, dur-
o single dropping the ranking order is taken from the results of the
cumulatixe procedure without re-employing the I(X)-criterion ur suris ,iP
aquar!s oi lterion for raaking. The single dropping procedure ossent ially
oono.ists of a redefinition of the model at each step, i.e., o1 a poolijg
cif the additional regression sum of squares due to the previously rarkori
CIV and/or group of DIVs with the previous error sum of squares at L.ach
step. For example, at the second step of single dropping in FEMO, the.
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error sum of squares (which was ATS8 - ASSR(N-T) at the first step) is
redefined am ATSS - ASSR(N-T) + Be where SS• ) is the additional
regression sum of squares due to the group of DIVe representing the
factorial effect which was ranked (by the cumulative dropping procedure)
as least important at the first step. This means that, for the second
step, the model is redefined as containing all factorial 3ffects of the
originaL model except the one ranked least important at the first step.

For the factorial effect which was ranked second-least important at the
ar'ond step of the cumrulative dropping procedure, the I(X)-value (2-12)

is then computed with f, = degrees of freedom of effect ranked second-
least important, and with f 2 = n-N+T-1 + DOI 1), where DOI 2) are the
degrees of freedom of the effect raeked least important at the first
step. At the third step of single dropping in FE4O, the above degrees
of freedom f, and f2 are pooled (as are the corresponding sums of squares)
to form the new error degrees of freedom for the third step; and so forth.
The reason for computing the one I(X)-v Jue, as indicated above, at each
step of single dropping is to provide the necessary information for the
determination of a significant model based on this single dropping
procedure.

The reason for having the two ranking procedures in N(VACOI
to determine a significant model and the use of the two procedures are
discussed in Section 3.1.3.

As mentioned previously, at each step of the cumulative
ranking procedure only the "admissible" effects are considered for
rankIng at that step. The concept of rankirnU under rules of "restricted
admissibility" (see Abt [19671) is based upon the fact that somv of the
additional regression sums of squares, SS,-., of (2-10), which correspond
to certain null hypotheses, are dependent Upon the type of linear
restrictions chosen for the model constants: see Scheffe'[19591 and
Gosalee and Lucas £1965]. Scheffe*, for example, has shown that the
additional regression sum of squares due to any one of the two main effects,
L7 and S, in the model (2-3) of Section 2.1.1, is dependent upon the
restrictions chosen for the constants % and b4 (t 1,2,...=,A, and

S- 1,2,... ,B) as long as the constants aba6 of the interaction (0 are
contained in the model consisting of the N' IVs. For models with qualitative
factors only the following can be shown to be generally true. The additional
regression sum of squares, SS,-, , due to a factorial effect, is dependent
upon the restrictions chosen for the constants of the model as lorz as a
higher order interaction effect, whose symbol contains all script letters
of the given factorial effect, is retained in the remaining, moidl of the
N' IVs. The given factorial effect, whose symbol consists of script
letters all contained in the symbol of the higher order interaction effect,
will be called a "sub-effect" of that higher order interaction effect.
For example, in a three-way crossed classification with qualitative factors
47, 6, and C, an additional regression sum of squares, SS,_-., containing the
effect d5 is restriction-dependent as long as the constants of the three-
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factor interaction CW# with respect to which M is a sub-effect, are
contained in the model of the N' P~s. Corresponding restriction dependences

can be shown to be generally true for cases with both qualitative and

quantitative factors. The relationq with respect to "sub-effects", among

the factorial effects in these cases will not be explicitly stated here

but are implied in the admissibility rules given further below and in

Section 2.2.2.

Since, in general; the type of linear restrictions is

arbitrarily chosen, it is logical to look for conditions under which the

additional regression sums of squares ae always independent from the

linear restrictions. This independence is achieved by performing the
ranking procedure under so-called "restricted admissibility" rules: In

the backward ranking method, a given factorial effect ie considered
admissible for ranking only when all effects of which the given factorial
effect is a sub-effect have been deleted from the model. For example, in

the two-way crossed classification (both factors qualitative) with inter-

action, the symbols ( and B are contained in the symbol er which makes

a and & sub-effects of cZ. Therefore, the main effects L7 and & will not
be conmidered for ranking before the interaction 4V has been rankod
(deleted). Thus, in "he too-way crossed classification, ranking under
restricted admissibility rules always implies ranking the interaction
effect a$ as least important. Correspondingly, in the three-way classi-
fication, the interaction eflect of second order, ýW, when fitted, will
always be ranked as the least important effect. Once that is done, the
interactions of first order, 03, ýZ!, and M, become admissible for ranking.
The main effect a, for example, would became adssiblle only after 05
and M, in addition to OM, had b.en ranked (deleted). In other words,
according to the backward ranki4j1. method under restricted admissibility
rules, the least important effects are always, and by definition, the
interaction effects of highest order. Whan these interaction effects
become members of the significant model, their "sub-effects" will auto-
matically became members of the significant model too. The lat-er inelre
reflects what Lhe statistician is always aware of: If the interaction
between two factorial effects (of any order) is significant, then, in
general, each one of the two factorial effects themselves is significant

at least at one level (or level combination) of the other effect(s). For
exampl'. take the case of a significant interaction a9. This significance
implies, in general, that factor 7 has a significant effect upon the
response variable at least for one level of factor 6; and vice versa, that
factor B has a significant effect upon the response variable at least for
one level of faý!tor L7. (Even in "orthogonal" analysis of variance it does
not make sense to conclude that "ag is significant but 6 and /9 are not
significant", merely Judging from the F-tests in the ANOVA table. Application
of t-tests at the individual levels of factors a and 1 will, in genera.],
show significant effects.)

15



In light of the above reasoning, the forced inclusion, in
the significant model, of factorial effects which are sub-effects of
significant interactions does not appear to be a serious drawback in the

establishing of a significant model by the backward ranking method under
restricted admissibility rules.

The rules of restricted admissibility In the backward
ranking method are applied, in the way described above, to all qualitative
factorial effects (represented by groups of DIVe of the u-type only, see
Section 2.1.1). Since no linear restrictions are applied to the model
constants of quantitative factorial effects, the problem of dependence
upon linear restrictions does not arise w ith thes e effect s.
Consequently, there is, in general, no need f'or restricted admissibility
rules in the ranking of factorial effects when all factors in the model
are quantitative. The exception is when the tnealyst wants to arrive at
a significant model which contains all polytiu iaJ. tcrms of the quantitative
factor variables having lower order than the significant terms. NOVACCM
does provide an option for the indicated type of restricted admissibility
rules in the ranking of effects when al. factors in the modei are
quantitative. For examle, if the term 4 is significant, r. and X• also
would beccme terms of the significant model under this option. The option
autcmatically also applies to the ranking of the CIVs (if any are in the
model). This type of "restricted admissibility" (which actually is the
name of this option for cues with quantitative factors or CIVy in the
model) applies also to slU cross product terms and can generally be
defined as follows: Under the option of "restricted admissibility",
only those CIVs or DIVs (the latter being powers or cross product terms
of quantitative factor variables) are admissible for ranking at a given
step which are not "Sub-MIVs" (to be defined) or "Sub-DIVa" of other
CIVe or DIVs, respectivel, contained in the remaining model of the N'

IVe. A CIV is called a "Sub-CI" with respect to another CIV when the
symbol of the "Sub-C••' is contained, as a factoir, in the symbol of the
other .CMV, An obviou_ correopl!nn•n afnitio Rrpiles to "Sx.b-DIVa"
(the DIVe being powers or product tgrip of quantitative factor variables).
For example, x1r is a sub-CIV of x3x 3 . Xý is a sub-DIV of 4XX. One
advantage of ranking under the option of "restricted admissibility" is that
the significant model beccmes invariant with respect to variable trans-
formations (for example, when replacing xv by xv-xv for reasons concerning
the accuracy of the matrix inversion). For further discussion see
Reference 2 and S:ecýion 3.1.3 on the use of the ranking options in the
present report. (Note. The program user may choose the option "unrestricted
admissibility" when he does not desire to rank the quantitative factorial
effects and CIVs under the option "restricted admissibility" Just described.)

In the model of the type (2-8), which contains both
qualitative and quantitative factorial effects, ranking under rules of
restricted admissibility will imply a logical combination of the rulea
outlined above separately for each one of the two types of ANOVA effects.
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For example, in the two-way crossed classification, the interaction effect
of the linear component of (quantitative) factor a with (qrualitative)
factor 8 will bear the symbol X,8. Under both options of reatricted and
%urestricted admissibility X1 and 8 are sub-effects of X, 1t and will not
become admissible for ranking until )ý& has been ranked, .I.e., deleted
from the model. Also, X would not be admissible as long as 41 in
contained in the remaining moel (consisting of N' i~s). In the same
exauipl, all interaction effects XM, C, .. ., 4-1, will be eamissible
at the first step of ranking when the option "unrestricted admissibility"
is chosen, which here actually means "relaxed admissibility" since the
admissibility restrictions originating from the presence of the
qualitative effects still do exist. In the cahe discussed before when
the analyst wanits to keep all polynomial terms of lower order (than the
order of the significant ones) in the significant model, the user chooses
the option for "restricted admissibility." Under this option, in the
atove example, at the first step oraly X•'8 1 wmld be admissible, followed
by 4-18 at the second step, and so forth.

Summarizing, there are two options for admissibility when
the NOVACOM model contains quantitative factors or CIVs: "restricted
iadmissibility" according to which all lower order polynomial terms are
kept in the mocdel all the time, and "unrestricted admissibility" according
to which the lower order terms are not necessarily kept in the model.
When applied to the ANOVA part of the model only, "unrestricted
admissibility" is referred to as "relaxed admissibility." For more
details oin the admissibility options see Section 2.2.

The rules for ranking factorial effectN under restricted
admissibility stated so far, if adhered to, assure the indep.ndence of the
additional regression sums of squares, SS,,-,,. , from the linear restrictions
chosen when all cells of the data layout are occupied. For the model of
the type (2-5) with only qualitative factorial effects, adherence t- thv
i-ules miures this independence also for data layouts with empty cells.
However, for tile model of the type (2-8) with both qualitative and
quantitative factorial effects, the established rules are not sufficient
to assure the independence in case of empty cells. For this situation,
this author has not yet been able to completely define the pattern of the
restriction dependence of the additional regression sums of squares.

As a safeguard in this case, a procedure is used in NOVACGM
which in overconservative in its restrictions on the admissibility but
assures the independence of the additional regression sums of squares from
the linu'aiv restrictions imposed on the model constants. The procedure
emsititlly consists of treating certain interaction effects as if they
were interactions between qualitative factors only. For a formial
definition of these "pa'tially fitted full effects", as they are called,
and of the prcccdure indicated, see Section 2.2.2.
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A final remark in this discussion of the backward ranking
method concerns the fact mentioned before that the (cumulative) ranking is
.lot terminated when the "significant model" is reached but is continued
until all factorial effects have been ranked. This continued ranking
through the sigr i ficant model serves two purposes: (1) The analyst will
obtain a ranking of the factorial effects which are contained in the
significant model, i.e., he will know the relative importance of the
effects in the significant model; and (2) he will get an idea of what
his significant model would have looked like had he chosen a different
significance level a for the determination of the significant model.
The second purpose is, to a certain degree, also served by the provision
given in NOVACCM to actua.ly choose three a values for three different
significant models, where a full printout of all pertinent data is given
for each of these significant models.

Ranking through the significant model sometimes leads to
I(X)-values which are so small that they are far beyond the accuracy
limits of the subroutine IBUMX which computes I(X). In order to be able
to rank the factorial effects of the significant model in this case, a
provision is made in the program to automatically redefine the error sum
of squares by one of three pooling piocedures. These pooling procedures
(marked by one, two, or three " +"-signs attached to the step number of
the ranking) increase the error sum of squares, thereby decreasing the
F-v.lue of (2-10) and increasing the I(X)-value according to (2-12). Of
the three pooling procedures the first one (the " +"-procedure) is identical
to the single dropping procedure. The " +*"- and " . t"-procedures are not
justifiable from a theoretical point of view and are just "emergency"
measures to ensure a complete ranking in all cases. For more details, see
Sections 2.3.2 and 2.4.

2.1.3 Accuracy Checks on Matrix Inversions

Since the method of NOVACOM is based on the general linear
model (2-1), the accuracy of the results is dependent upon the accuracy
of the inversion of the matrix of the normal equations of rank N+l and of
all matrices of smaller rank to be inverted at subsequent steps of the
ranking. The matrices may be singular (by faulty fitting of IVs) or they
may be ill-cond'.tioned such that the inverses are fictitious or inaccurate,
respectively. The procedure used in NOVACOM to check on the validity of
the inverses is essentially that of the program DA-MRCA (see Reference 2).
The main features of the procedure are (1) computation of the matrix
I, = .. 'A, where A is the matrix of the coefficients of the normal equat-ons
and A91 is its inverse, and (2) comparison of the main diagonal elementr of
I4 with those of the unit matrix I. If any one of the deviations I i•-1
is larger than a small input value, "TOLI2", where the iv are the main
diagonal elements of I, the inverse A:- is rejected and a new inversion
is tried after a specified admissible CIV or admissible group of DIVs has
been deleted from the model. This procedure is continued until the first



time an acceptable inverse A"' (corresponding to an acceptable, or "good"
model) is found. The step in the ranking method when the "first good model"
is found is called the "first good step." Once the first good step has
been reached, no fu"-ther accuracy checks on the matrix inversions are
performed. The reason is that, at the first good step, all singularities
must necessarily have been eliminated, and that the accuracy of the
inversion is assumed to improve with the monotonic decrease of the rank
of the matrix at subsequent steps.

The reasons for checking only the main diagonal elements
of the matrix I• is derived from the fact that the off-diagonal elements
of Iý are not necessarily indicative of the accuracy of the inversion;
see Section VI.l.b of Reference 2.

Two preliminary checks are exercised before the procedure
described above is executed: (1) a check whether the determinant of the
matrix A is non-positive and (2) a check whether an element of the main
diagonal of the inverse, A9", is negative. Should any one of the two
events happen, the model of the corresponding step in the ranking is
rejected without performing the remaining check(s).

2.1.4 Printout and Comrehensive Analyses

The program gives a "full printout" of all pertinent data
at selected steps of the ranking. The sclected steps include the "first
good step" and each step at which a significant model according to one
of the specified c-values is reached. (As mentioned, up to three such
a-values may be specified of which one is to bt defined as XkLPhA in case
both CC140 and FEO are to be run. The same set of a-values is uried for
boiuh the cumulative and the single dropping procedure and in CC0O as well
as in FEMO.) The full printout consists essenLially of the following:
The elementn cv. of the inverse matrix, A-1; the value of the determinant
of A; the estimated regression coefficients, bv, and their standard
deviations, s/c~v, where a is the square root of the estimated error
variance for the given step; the predicted values, Y, and the prediction
errors, e; the prediction error frequency distribution and the results
of the calculation of the ?-test for normality on the prediction errors.
The full printout for any one of the three of-values in both cumulative
and single dropping should provide the program user with all information
for the model he decides to use as the "significant model."

In audition to the full printout, a complete identification
of the data input is printed at the beginning of each problem, including a
list of the DIVs and CIVs; tne observed values of the quantitative factor
variables, of the OCIVs and the dependent variable(s); all averages and
various other statistics; and the summation matrix (the latter consisting
of the matrix A and the cross product terms with the y's).
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For every step of the ranking, the I(X)-va±oes and their
arguments (a = kf 2 ; b n %fl) are printed, plus an identification of the
admissible CIVM or effects. The latter enables the program user to follow
the ranking process in detail and to see how the program arrived at the
established ranking order of CIVs and/or factorial effects.

At the end of each problem a "Final Comprehensive Analysis",("FCA"), is printed which gives the results of the ranking in condensed
form. There is an FCA printed for both cumulative and single dropping in
case the option of alsn performing the single dropping procedure has been
chosen. Each line of the FCA corresponds to one step of the ranking
procedure, and the following are some of the more important items printed:
The symbol of the CIV or effect ranked at this step; a "Procedure" -
symbol (FRC) consisting of an asterisk when this step corresponds to one
of the three specified significance levels a; the I(X)-value; the two
mean squares in the F-test plus their degrees of freedom; and the
coefficient of determination. See Section 3.3.1 for a detailed discussion
of the FCA. The ANVAs, when applicable (i.e., when there were significant
covariates in an analysis of covariance model and when the ANVA option was
chosen), are also printed in the form of FCAs at the end of a problem.

When several Control Card 4 Sets have been run, a "Final
FCA" is printed, repeating the FCAs from each problem in order to facilitate
a convenient search for the most probable significant model. See Section
3.4.5 for an example of how to use such a Final FCA.

2.2 Automatic Generation and Controls

The present section contains a description of the automatic
generation of the model terms (CIVs, DIVe, effects), the controls over
the admissibility of these terms during the ranking processes, and the
generation of the design matrix in NOVACOM. The notation used is that
which is also printed by the program in the identification of CIVs, DIVs
and factorial effects. Together with the contents of the next section (2.5),
the comtents of the present section originally served as the programmer's
information for coding N(NACCM.

2.2.1 Generation and Admissibility of CIVs

First, the notation will be introduced which is used for
the CIVs (concomitant independent variables) in the analysis of covariance
part of the NOVACOM model.

OCIVs ("Original" CIVs) i.e., CIVs of which a physically
observed value exists for each observed value of the dependent variable, y,
are denoted by their cardinal numbers followed by a "'" in parentheses,
indicating the first power, that is, the OCIV itself: l(1), 2(1), 3(1),
etc., corresponding to x1 , x2 , x3 , etc., respectively, in the usual notation.
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GCIVs ("Generated" CIVs) which are powers of OCIVs are denoted by the
crdinal number of the OCIV followed, in parentheses, by the power to
whick tle OCIV is raised; for example, 2(2), 4(6), etc., corresponding
to x2 , x4 , etc., respectively. GCIVs which are products of powers of
OCIVs are formed by connecting CIVs by "x's", for example, i(i) x J(J)
corresponding to x1 4, and 2(1) X 3X2 x 4(6) corresponding to x2x3 x4 .
Accordingly, the following definitions are introduced:

A "CIV" is identified by one or more pairs of numbers, the pairs
being connected by "x's". The first number in each pair is called
the "cardinal number" or "OCIV-number"; the second number is put in
parenthesen and is called the "power."

Quitp often the user will want to fit a model of order
p > 1 in the concomitant variables. In general, this would mean that
all possible terms up to order p of the OCIVs are desired in the model.
For example, with two OCIVs, 1(i) and 2(l), a complete model of order
p=2 would include the following 5 CIVs: i(i), 2(1), 1(2), 2(2), i(i) x 2(l).
(In usual notation, these are xj, x2 , X1, 421, x1 x2 .) The generation of a
pth order model is done automatically in NOVACCM according to the order
p=P put in columns 14 + 15 of Control Card No. 1. (See Section 3.1.1.)
With TP (columns 12 + 13, Control Card No. 1) being the number of OCIVs,
the program will generate a total number of GCIVs equal to:

T - TP E TP + J - - TP, (2-13)J =l\

and the total number of CIVs will be

T E TP÷+ j- .(-)

In the following Table 2.1, a scheme is given for the
generation of an example model of order P=3 with TP=4 OCTVs. The first
four columns, one each for each 0CIV, give the powers to which the OCIVs
are raised to form, after multiplication, the CIV given in the fifth
column. The last column gives the number of CIVs in each order-group.
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OCIV No.1 2 j_ J" CIv-3y~bo1

1 0 0 0 1(2.)
o 1 0 0 2(l) 4 + 1 )mI4

o 0 1. 0 (i)
o o 0 1 4(1)

2 0 0 0 1(2)
1 0 0(l) x 2(l)
1 0 1 l(l) x 3(l)

1 (1) x 4 (1)

o 2 1 0 2(2) x( + ) - 10

o 2 0 0 2(2) x 3()2
o 1 0 1 2(l) x 4(1)
o 0 2 0 3(2)
o 0 1 1 3(l)x4(l)
o 0 0 2 4(2)

2 0 1 0 1(2) x 5(1)

2 0 0 1 1(2) x 4 (l)

1 2 0 0 1(1) x 2(2)
1 1 0(l) x 2(l) x 3(l)

20 1 o(1) x 2(1) x 4(l)
0 0 2 0 l(1) x 3(2)

(1) x (1) x (4) 3 ) 20
1 0 0 2 l(1) x 4 (2) 3
0 5 0 0 2(3)
0 2 1 0 2(2)1 3(l)0 o 22). x (l)
o 1 2 0 2(l) x 3(2)

o 1 1 1 2(l) x () x 4(l)
o 1 0 2 2(l) x 4'(2)
o 0 3 0 3(3)
0 0 2 1 3(2) x 4 (l)
o 0 1 2 3() x 4 (2)
0 0 0 3 4(3)

Table 2.1

22



..

In addition to the automatic generation feature for CIVs,
NOVACCM provides options to delete CIVs from the automatically generated
se or to add CIVs to this set. The latter mode of specifying the CIV-
part of the NOVACCM model may also be used to input the entire set of
CIVs by hand. The individual CIVs to be deleted or generated will be
put on Control Card No. 5 (see Section 3.1.1) Li the notation as ýecribed
above. The various options are provided to make possible the . economic
generation of the CIV-part of the model. For the use of the optuiPR see.Section 3.1.2.

As mentioned before, the program, user has the choice between
"restricted admissibility" and "unrestricted admissibility" of the CIVB
in the ranking process of the CIVs in CCMO. (See column 58 of Control
Card No. 1, Section 3.1.1. ) "Unrestricted admissibility" simply means that
all CIVs not yet ranked at a given step of COMO are admissible for ranking
at that step.

The restricted admissibility option is governed by the
following definitions:

At a given step of COMO only those CIVs are admissible for ranking
which are not "Sub-CIVs" of other CIVs not yet ranked. A CIV is
a "Sub-CIV4 ' of another CIV when (1) for each cardinal number in
the symbol of the (sub-) CIV there is the same cardinal number
present in the symbol of the other CIV, and (2) the powers of the
(sub-) CIV are not larger than the corresponding ones of the other
CIV.

In order to illustrate the above definitions, take the
example of the model of order P=3 given above. For simplification, assume
that the GCIVs of order P=3 except 1(3), 2(0), 3(0), and 4(3) have been
deleted from the complete set of T=34 CIVs by means of Control Card No. 5.
Then, the relations between the CIVs are as given in Table 2.2. In this
example, therefore, the following 10 CIVs would be admissiblec at the first
step of CaMO, under the option of restricted admissibility: l(1) x 2(1),I(W x 3(l), 1(l) x 4(1), 2(l) x 3(l), 2(l) x 4(1), 3(l) x 4(1), 1(3),
2(3), 3(5), 4•().

2-2.2 Generation of DIVs and Admissihblity of Factorial Effects

The notation for the DIVs (design independent variables)
in the analysis of variance part of the NOVACCt4 model is based on the
following definitions. A DIV is defined to be of order d, where d is the
o•'der of the factorial effect which the DIV is representing (possibly
together in a group with other DIVs). For example, the DIVs of main effects
have order 1; the DIVs of two-factor interactions have order 2; and in
general, the DIVs of interactions between d factors have order d. The
symbol of a DIV contains d pairs of numbers, where the pairs are connected
by "x's". Each pair of numbers Ltands for a factor of the crossed

23



1(l) is Sub-CIV to 1) x 2() )

1(1) x 2(l)
1(1) x 3(l)l(l) x 4(l)
1(0)

2(l) i Sub-CIV to 1(l) x 2(l)
2(2)
2(4) x 3(l)
2(1) x 4(1)
2(5)

3(i) is Sub-CIV to 1(1) x 3(1)
2(1) x 3(i)
3(2)3(11)x 4(i)
3(3)

4(1) is Sub-CIV to l(I) x 4(1)
2(1) x 4(1)
3(1) x 4(1)4 2)

1(2) is Sub-CIV to 1(5)

1(l) x 2(1) is Sub-CIV to NCNE

l(1) x 3(1) is Sub-Cri to NCKE

1(l) x 4(1) is Sub-CIV to NCNE

p2p) is Sub-CIV to 2(3)

2(1) x 5(1) is Sub-ClV to NONE

2(l) x 4(1) is Sub-CIV to NCIE

5(2) is Sub-CIV to 3(5)

3(1) x 4(1) is Sub-CIV to NONE

4(2) is Sub-CrV to 4(3 )

1(3) is Sub-CIV to NONE

2(5) is Sub-CdV to NOE

3(3) is Sub-CIV to NONE

4(3) is Sub-CIV to NONE

Table 2.2
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classification, and the first number in the pair is the cardinal number
of tha factor, to be called the "factor number." For example, the factor
numbers 1, 2, 3, ... correspond to the usual factor symbols a, ,, C...,
respectively. The second number in each pair is connected with the finrt
by an asterisk when the factor is qualitative and equals the level number
of that factor. The second number of the pair is connected with the first
by a point when the factor is quantitative and equals the power to which
the quantitative factor variable is raised. Accordingly, one has the
following definitions:

First naimber in "factor pair" - "factor nu"be-"

Second number in "factor pair" - "level number" when factor qualitative

Second number In "factor pair" - "power" when factor quantitative.

For example, in a three-way crossed classification (with factors L', 8, and
C all at three levels, say) factor No. 1 (e7) may be qualitative, factors
No. 2 and No. 3 (8 and C) may be quantitative. Then, typical DIVs of
order 1 are 1*1 and 1*2, where these two "factor pairs" are the two DIVe
representing the main effect of La, or (qualitative) factor No. 1. Also,
the factor pairs 2.1 and 2.2 are the two DIVs of order 1 corresponding
to the first and second power of the quantitative factor variable of
factor No. 2. (Iii the notation of Section 2.1.1, these twc DIVs stand
for Xb and Xf, respectively. ) The DIVs representing the interaction
between the first and the second factor are then 1*1 x 2.1, 1*2 x 2.1,
1*1 x 2.2, and 1*2 x 2.2. DIVs of higher order are formed in a corre-
sponding, manner.

Whereas in the generation of CIVs the program user may want
to generate a model which contains all CIVs up to a given order P, the user
will want, in general, to generate a model containing all DIVe up to a given
order d=D, say. This order, D, in general, will be equal to the number of
fa'ýtors in the data layout to be analyzed. Accordingly, NOVACCt provides
an option to generate all DIVs up to a specified order D (colums 4-5,
Control Card No. 1; see Section 3.1.1). The total. number of DIVs generated
under this option depends upon the numbers of levels of the factors. These
numnb•rs are input on Control Card No. 2 (see Section 3.1.1). According
t- tho linear restriction (2-4) introduced in Section 2.1.l, the "level
jjnbei" in a "factor pair" representing a qualitative fact-,, can only go
up to one less than the total number of levels of the fac.-.-r. For example,
in the case of 3 factors, where the first factor has 4 levels and is
qualitative, and where the second and third factors have 2 and 3 levels,
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-espectively, and are quantitative, the second numbers in the factor pairs

will go up to 3, 1, and 2, respectively. Therefore, if the specified
order of the model to be automatically generated in D-2, the model
generated will include the (3+1+2) + (3.1+3"2+1.2) - 17 DIVe listed
in Table 2.3.

DIV- Symbol

1*1
1*2

1*3 + I + 2 =6 DiV of Order I
2._1/
3.1

3.2

1*1 x 2.1
1*2 x 2.1

1*1 r. 3.2
1*2 x 3.1 3-1 + 3-2 + 1'2 - 11 DIVs of Order 2
1*2 x 3.2
1*3 x 3.1
1*3 x 3.2
2.1 x 3.1
2.1 x 3.2

Table 2.3

As can easily be seen, the DIVa of order d > 1 can be generated by for.ing
all possible products among DIVe of order dm1 with unequal "factor numbers"
(first numbers in the pairs).

Corresponding to the CIV generation discussed earlier, the
program provides options to delete DIVe from the automtically generated
set or to add DIVs to this set. The individual DIVa to be deleted or
generated will be put on Control Card No. 4 in the notation described
above. For the use of the generation options see again Section 3.1.2.

The fol 1 swing definitions, which are essential for the FE4O
part of the analysis, refer to the fina.l set of DIVe as generated after
the application ot .,ie generation option(s) described above.

An ",ýffevt" (factorial effect, that is) is defined as the group
of all DIVe of equal order which (1) have equal "factor numbers",
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factor by factor, and (2) have equal "powers" in each (quantitative)
"factor pair", pair by pair. (That is, the only quantities which
vary in the symbols of the DIVe representing an "effect" are the
"level numbers.")

Groups of DIVa representing effects according to the above
definition are symbolized by replacing the factor pairs cf the qualitative
factors by the factor numbers alone. For example, the group of DIVs
representing the a x 8 , interaction, when (qualitative) factor 61
has, say, 4 levels, that a., the 3 DIVs, I* x 2.1, 1*2 x 2.1, I3 x 2.1,
is symbolized by 1 x 2.1.

The number of DIVM in a group representing an "effect"
equals the degrees of freedom of -hat effect.

Am discussed in Section 2.1.2, the program user may choose
between two options which control the admissibility of effects for ranking
at a given step of F14O: "restricted admissibility" and "relaxed
admissibility." The two options concern ANOVA models which contain at
least one quantitative factor, but the admissibility rules in both options
cover also the case of only qualitative factors in the model. (The two
options are coupled with the options for "restricted admissibility" and
"unrestricted admissibility" of CIVa, respectively, knd are controlled
by the sare program variable, "CAD", see column 58 of Control Card No. 1.)

The following definitions apply wh. there are no empty
cells in the original and/or marginal data classif:>cutions for which
model terms (DIVs) are fitted.

Under "restricted admissibility", an effect is admissible for ranking
at a given step when it is not a "srb-effect" of other effectc not
yet ranked (i.e., of effects still contained in the model of the N'
IVa). An effect is a sub-effect of another effect, (1) when for ea,-h
factor number in the symbol of the (sub-) effect there is the same
factor number present in the symbol of the other effect, and (2) when
the powers in the quantitative factor pairs of the (sub-) effect are
not larger then the corresponding ones of the other effect.

(Note. In Section 2.1.2, sub-effects represented by onq.
DIV were also referred to as "sub-DIVa.")

For instance, in the example of the three-way crossed
classificat ion discussed earlier, where qualitative factor I had 4 lv,'is
and quantitative factors 9 and C had 2 and 3 levels, respectively, eff,,-t
7 X ' ,or 1 x 3.1, under restricted admissibility is a sub-c ffl.t of
I x x'"x 2.1 x 3.1, and 1 x 2.1 x 3.2. Only when the last threr ef'±f,.cts
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have been ranked (i.e., deleted from the model of the N' IV), does
I x 3.1 become admissible for ranking. Also in this example for restricted
admissibility, 3.1 is a sub-effect of 3.2, 1 x 3.1, 1 x 3.2, 1 x 2.1 x 3.1,
and 1 x 2.1 x 3.2. As another example, in the three-way crossed classifi-
cation with qualitative factors ai, t., and C_, effects 1, 2, 3, 1 x 2, 1 x 3,
and 2 x 3 are sub-effects of 1 x 2 x 3. Once 1 x 2 x 3 is rwiked (i.e.,
deleted from the model), 1 x 2, 1 x 3, and 2 x 3 become admissible. (Note
that in the present example of qualitAtive factors only, effects of equal
order cannot be sub-effects of each other.)

Under "relaxed admissibility" an effect is admissible for ranking at
nx given step when it is not a sub-effect of other effects still
contained in the model of the N' IVs where a "sub-effect" is now
defined u follows: An effect is a sub-effect of another effect
(1) when for each factor rnmber in the symbol of the (sub-) effect
there in the same factor number present in the symbol of the other
effect and (2) when the powers in the quantitative factor pairs of
the (suI-) effect are noyt larger than the corresponding ones of the
other effect, and (3) when the (sub-) effect is of lower order than
the other effect and (4) when the symbol of the other effect cuntaine
at least one qualitative factor.

For instance, in the example mentioned before, where
qualitative factor a has 4 levels and quantitative factors 8 rind a have
2 and 3 levels, respectively, effect a x At or 1 x 3.1, under
relaxed admissibility, is a sub-effect of 1 x 2.1 x 3.1 and 1 x 2.1 x 3.2.
When the latter two effects are deleted from the model, 1 x 3.1 becomes
admissible for ranking. Also under relaxed admissibility, 3.1 is a sub-
effect of 1 x 5.1, 1 x 3.2, 1 x 2.1 x 3.1, and 1 x 2.1 x 3.2.

According to the definition of relaxed admissibility, in an
ANOVA model containina only quantitative factors a611 effects are admissible
for ranking at the first step and at all subsequent steps of FEMO. That
is, for data claasifications with only quantitative factors, "relaxed
admissibility" corresponds to "unrestricted admissibility" in the ranking
of CIVa in CC14O.

When there are empty cells in the original and/or marginal
data classifications for which DIVs are fitted, with both quantitative
and qualitative factors present, the following definitions apply.

A "full effect" is defined as the group of all those "effects" of
equal order (containing both qualitative and quantitative factors)
which have equal "factor numbers", factor by factor, when a complete
set of DIVs has been generated and no DIV has been deleted. The
number of DIVe in a "f'u.i1 effect", or the degrees of freedom of the
full effect, is defined as the product of the d factor level numbers,.
each reduced by one.
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For instance, in the example with A-4, B-2, C=3 discussed
before, the full effect ac x /9 x C is represented by (4-1)(2-1)(3-1) - 6
DIVe, i.e., has 6 degrees of freedom.

A "airtwi fitted full effect" ("PTFE") is defined an being the
group of all those effects of equal order which have equal factor
numbers, factor by factor, of which at least one factor must be
quantitative, and where at least one DIV is missing preventing the
grouAp from being a "full effect."

For instance, in the above example, a x 8 x C. is 1 "PFFE"
when the effect 1 x 2.1 x 3.2 (represented by 3 DIVe - 3 degrees of
freedom) is not fitted because of the presence of ezpty cells.

The following admissibility rule applies, no matter whether
the program user chooses the option of "restricted a4misu!bility" or that
of "relaxed admissibility":

In case of a data clmasification with empty cells where the set of
factorial effects contains FFFEs, an effect is adissible for ranking
at a given step when it is not a sub-effect of a PFFE which is still
contained in the model of the N' IVs. An, effect is a "sub-effect"
of a "P7M" when for each factor number of the (sub-) effect there is
the same factor number present in the PFFE, and where the order of the
(sub-) effect is smaller than that of the 2FFE.

According to the above definition, individual effects within a PFFE are
not sub-effects of that PFFE. In the above example, where the effect
I x 2.1 x ý .2 was assumed to be excluded from the full effect a x 1 x a,
the effect I x 2.1 x 5.1, for instance, is not a sub-effect of the PFFE

.l x B xC; however, the effect 1 x 3.2, or a x is a sub-effect
of tnat wrzi.

In order to illustrate, in a combined manner, all admissibility
rules defined, the example of a three-way crassification from the beginning
of the present section is fully discussed, where factors a', 6, and C. have
3 levels each and where factor c7 is qualitative and factors 8 and C are
quantitative.

The 26 DIVs listed in Table 2.4 would result from the user's
specification to generate a model of order D=3. In Table 2.4, 7 of the 26
DIVa are marked (by dash lines) to indicate that they have been deleted from
the set by means of Control Card No. 4, assuming that the pattern of empty
cells does not allow the fitting of these DIVs. (See also Appendix A.)
The reduced set of 26-7 19 DIVa is given in Table 2.5 which also contains
the gruuping of the DIVs into effects and the grouping of effects into PFFEs
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as applicable. (The symbols of PMfls contain only the factor numbers,
that is, they appear as if they were the symbols of effects containing
only qualitative factors. In fact, this is how the PFFe]s wre actually
treated in the definition of a sub-effect of a PMF'E. The symbols for the
PFFEs are only used in the present section.)

Table 2.6 contains the relations whi.h exist among the 15
effects with respect to the definition of a "stO-effect" in restricted
and relaxed admissibility. Clearly, the relations listed in Table 2.6
govern the ranking at the very first step of F240 and an effect becomes
admissible for ranking once tlU those effects have been ranked (delot-d
from the model, that is) of which the effect was a sub-effect at the
first step.

DIV - Symbol

1*2
2.1
2.2
3.1
3.2

1*1 x 2.1
1*1 x 2.2
1*2 x 2.1
1*2 x 2.2

1*1 x 3.1
1*1 x 3.2
1*2 x 3.1
1*2 x 3.2 ------
2.1 x 3.1
2.1 x 3.2
2.2 x 5.1
2.2 x 3.2

1*1 x 2.1 x 3.1
1*1 x 2.1 x 3.2------
1*1 x 2.2 x 3.1
1*1 x 2.2 x 3.2------
1*2 x 2.1 x 3.1------
1*2 x 2.1 x 3.2 ------

1*2 x 2.2 x 3.1------
1*2 x 2.2 x 3.2 ------

Table 2.4
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DIV Effect PFFE

1*2 j

2.1 2.1

2.2 2.2

3.1 3.1

3.2 3.2

1*1 x 2.1 1 1 x 2.1
1*2x 2.1 j

1*1 x 2.2 1 1 x 2.2
1*2 x 2.2 J

1*1 x 3.1 1 x 3.1
1*2 x 3.1 1x3

1*1 x 3.2 1 x 3.2

2.1 x 3.1 2.1 x 3.1

2.1 x 3.2 2.1 x 3.2

2.2 x 3.1 2.2 x 3.1

2.2 x 3.2 2.2 x 3.2

1*1 x 2.1 x 3.1 1 x 2.1 x 3.1
1x2x3

1*1 x 2.2 x 3.1 1 x 2.2 x 3.1

Table 2.5
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Restricted Relaxed
Admissibility Admissibility

is a sub-effect of 1 x 2.1 1 x 2.1
1 x 2.2 1 x 2.2
I x 3.1 1 x 3.1
Ix;.2 1x 3.2
1 x 2.1 x 3.1 1 x 2.1 x 3.1
1 x 2.2 x 3.1 1 x 2.2 x 3.1

2.1 is a sub-effect of 2.2

1 x 2.1 1 x 2,1
I x 2.2 1 x 2.2
2.1 x 3.1
2.1 x 3.2
2.2 x 3.1]
2.2 x 3.2
I x 2.1 x 3.1 1 x 2.1 x 3.1
I x 2.2 x 3.1 1 x 2.2 x 3.1

2.2 is a sub-effect of 1 x 2.2 1 x 2.2
2.2 x 3.1
2.2 x 3.2 ----
1 x 2.2 x 3.1 1 x 2.2 x 3.1
1 x 2 x 3 (PFFE) 1 x 2 x 3

3.1 is a sub-effect of 3.21 x 3.1 1 x 3.1

I x 3.2 1 x 3.2
2.1 x 3.1

21 3.2

2.2 x 3.1
2.2 x 3.2
I x 2.1 x 3.1 1 x 2.1 x 3.1
1 x 2.2 x 3.1 1 x 2.2 x 3.1

3.2 is a sub-effect of 1 x 3.2 1 x 3.2
1x3 (PFFE) 1 x32 .1 x 3.2
2.2x3.2 ----
1 x 2 x 3 (PFFE) 1 x 2 x 3

I x 2.1 is a sub-effect of I x 2.2
1 x 2.1 x 3.1 1 x 2.1 x 3.1
1 x 2.2 x 3.1 1 x 2.2 x 3.1

I x 2.2 is a sub-effect of 1 x 2.2 x 3.1 1 x 2.2 x 3.1
1 x 2 x 3 (PFFE) 1 x 2 x 3

Table 2.6

(Cont 'd)
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Tabie 2.6 (Contd) Restricted Relaxed
Admissibility Admissibility

1 X 3.1 is a sub-effect of 1 x 3.2
1 x 2.1 x 3.1 1 x 2.1 x 3.1
1 x 2.2 x 3.1 1 x 2.2 x 3.1

I x 3.2 is a sub-effect of 1 x 2 x 3 (PFFE) 1 x 2 x 3

2.1 x 3.1 is a sub-effect of 2.1 x 3.2 ----

2.2 x 3.1
2.2 x 3.2
1 x 2.1 x 3.1 1 x 2.1 x 3.1
1 x 2.2 x 3.1 1 x 2.2 x 3.1

2.1 x 3.2 is a sub-effect of 2.2 x 3.2
1 x 2 x 3 (MFFE) 1 x 2 x 5

2.2 x 3.1 is a sub-effect of 2.2 x 3.2
1 x 2.2 x 3.1 1 x 2.2 x 3.1
1 x 2 x 3 (PFFE) 1 x 2 x 3

2.2 x 3.2 is a sub-effect of 1 x 2 x 3 (PFFE) 1 x 2 x 3

1 x 2.1 x 3.1 is a sub-effect of 1 x 2.2 x 5.1

I x 2.2 x 3.1 is a sub-effect of NGNE NONE

Also note in Table 2.6 that an effect is not listed as a
sub-effect of a IFFE when the effect is already listed as a sub-effect of
the individual effects contained in the FFFE. For example, effect 1 is
a sub-effect, under both options of "restricted" and "relaxed admissibility",
of effects 1 x 2.1 x 3.1 and 1 x 2.2 x 3.1 which two effects together
comprise the F'FE I x 2 x 3 (see Table 2.5). When an effect is a sub-
effect of only some of the effects comprising the PFFE, the effect is
listed as a sub-effect of the entire PFFE also. For example, effect
3.2 is listed as a sub-effect of 1 x 3.2 and of the PFFE 1 x 3.

According to Table 2.6, under the option of "restricted
admissibility", tYie effects would become admissible for ranking in FEr.O as
follows. At the first step of FEMO, only effect I x 2.2 x 3.1 wculd be
adLnissibie an, consequently, would be ranked as the least important
effect. At the second step, once I x 2.2 x 3.1 has been deleted, only
1 x 2.l x 3.i is admissible and will be ranked as second least important
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effect. At the third step, i.e., after deletion of the PFFE 1 x 2 x 3,
effects 1 x 2.2, 1 x 5.2, and 2.2 x 3.2 become admissible. Admissibility
at the fourth step depends upon which one of the three admissible effects
of the third step will have been ranked (deleted from the model); and so
forth.

Under the option of "relaxed admissibility", the ranking,
at the first two steps, would be the same as before. At the third step,
in addition to the three effects being admissible under "restrictedadmissibility", the 5 effects 1 x 2.1, 1 x 3.1, 2.1 x 3.1, 2.1 x 3.2,

arid 2.2 x 3.1 would become admissible; etc.

2.2.3 Generation of the Design Matrix

The design matrix is defined as the matrix, with n rows
and N+l columns, of the n coordinate values of the F independent variables,
augmented by a column vector of n l's for the constant, xo a 1. Speaking
in terms of the model (2-1), n is the number of observations of the dependent
variable, y. The number N of IVW in the sum of the number (T) of CIVs and
the number (N-T) of DIVa. This implies that. the presently discussed
generation of the design matrix refers to the final set of IVs which enter
the analysis.

The CIV-part of the design matrix is generated as follows.
For each of the n observations of y there is one observation each for the
TP 0CIVs. The set of observations on the TP 0CIVs (for each value of y)
are put on Data Card No. 3, see Section 3.1.1, and enter as such (but
normally coded for reasons of the accuracy of the matrix inversions, see
below) into the design matrix. The GCIVTrvzluez, being powers and/or
products of OCIV-values, are computed by the program, according to the
specifications given by the user, and then enter the design matrix. For
example, if there are TP=-3 OCIVa, the set of the three numericiLl 0CIV
observations, for one selected y value from the total of n observations, may
be 15, 2, and -1.1. If there is a GCIV in the model with symbol, say,
1(2) x 2(3) x 3(l), (?1x)&; in the usual notation), the program will assign
to it, as a covariate value for the one selected y observation, the
numerical value 152 x e x (-1.1)" = 225 x 8 x (-1.1) = -1980.

In case the program user chooses the option for coding the
OCIV values (see columns 20-23 of Control Card No. 1, Section 3.1.1) this
coding will be done by NOVACC14 according to the formula

Xt= xv, - V; v 1,... ,TP; i 1,...,n (2-15)
CRv
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where
n

xv E =

MAX(x,1 ) - ?I.N(xv, n - 1,...,n,

and where C is an arbitrary constant usually chosen as C=l. (For a dis-
cussion of this coding, see Abt et al. [19661, Section VII.2.a., and
Section 3.1.3. of the present report.) For example, if n-6, and if the
XCIV x, has the values 15, 6, 2, 18, 10, and 3, one would have

= (15 + 6 + 2 + 18 10 3) = 9

R, = 18 - 2 - 16

and the first coded value would read (if C=1):

x 2 = 8 = 0.375.

The program, under the coding option, uses the coded
values to generate the GCIV values.

The DIV-part of the design matrix is generated from the
information contained in the cell-identification which is given as input
for each one of the n y-observations, see the lst Data Card, Section 3.1.1.
The cell identification consists of the level'numbers of the cell to which
the y-value corresponds. For inatance, in the example of Table 2.5
(Section 2.2.2) the coll defined by y=l, 0=3, and y=l has the cell identifi-
cation "131." In accordance with the derivations in Section 2.1.1, NOVACCM
assigns values to the DIVs of first qrder (i.u., to DIVs representing main
effects) and then generates all DIVs of order d > 1 by multiplication.

A DIV of order 1 for a qualitative factor is assigned, as
numerical value, a 1 when the level number of the DIV equals the corresponding
level number in the cell identification. If the two level numbers are
unequal, the DIV is assigned the value zero. In the example of Table 2.5,
Y1s3, as mentioned, corresponds to cell 131. Accordingly, for this obser-
vation of y, DIV 1*1 receives a 1, DIV 1*2 receives a zero.

A DIV of order 1 for a quantitative factor is assigned the
numerical value of that level whose number is given in the cell identification,
and the level value is raised to the power of the DIV. (The level values
of the quantitative factor variables are input on Control Card No. 6, see
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Sectttn 3.1.1.) For instance, in the example of Table 2.5 the numerical
vn•ues or the levels of (quantitative) factor No. 2 my be -0.15, -0.01,
and +0.2C, For th ý value y3] then, DIV 2.1 is assigned the numerical
value 0o?0. and DIV 2.2 is assigned the value (0.20). If the three
levels of Uu.ntitative) factor No. 3 are -0.50, +0.10, and +0.45, say,
DIVe 3-1 and 3.. are assigned, for again observation y13, the values
-0.50 and (-0.50)* respectively.

As example for the assignment of numerical values to DIVM
of order d > 1 by multiplying the values of the respective DIVe of order
1, see the following table of selected DIVa (all DIV-values again for
observation Y13 1 ):

Asaigned Value

DIV for Observation rm

1*1 x 2.1 l'0.20 - 0.20

1*2 x 2.1 0.0.20 = 0

1*1 x 2.2 l.(0.20) - 0.04

1*2 x 2.2 o.(o. 2 0 )f = 0

1*1 x 3.1 1.(-0.50) = -0.50

. . . . . . . . . ... . . . .. .

1*1 x 2.2 x 3.l 1'(0.20)2.(-0.50) - -0.02

The coding option of NOVACCH applies also to the values
of the quantitative factor variables, and the coding formulae are similar
to (2-15), for example, for quantitative factor variable one has:

X• LL!b,, p=l,...,B (2-16)
Rb

where

R X1

and
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For instance, if Xb has the B-4 levels, say, 10, 23, 37, and 82, Xb wilU
be 38 and b will be 72. The first level would then have the coded value
(10-38)/T2 =-0.3889. Under the coding option, DIVs of order d > I are

generated by NCIVACOM using the coded values of the DIVs of order 1.

The generated design matrix plus the n observations each

on the possibly up to 4 different dependent variables, y, form the "data
matrix." From the data matrix the program generates the matrix of the
sums of the cross-products ("summation matrix") for the N+l IVs (including
the column vector of l's) and the dependent variable(s). For the algebraic
representation of the summation matrix see Herring [19671.

The summation matrix consists of the matrix ("A") of the
normal equations with rank N+l and the column vectors whose elements are
the cross-product terms with y.

2.3 The Ranking Subroutines of NOVAC04

In this section the backward ranking subrcutines COMO and FE4O
are described in detail for the ranking of CIVs and of groups of DIVs,
respectively. For simplification, the matrix A of the normal equations
for the model containing all N IVs is assumed to have been successfully
inverted, that is, the first step in the ranking process is also
considered to be the first "good step." The consequences of deviations
from this assumption can be seen without difficulty by following the flow
charts given in Section 2.4.1. (In the flow charts, CC14O and FE4O are
given in loop representations. This and the fact that the possibility of
rejected models is included in the flow charts account for some differences
in the notations used in the present section and in the flow charts.) When
the matrix inversions of one or more steps in CCMO or FEMO had to be
rejected on the grounds of the accuracy criteria imposod, the principal
methods of CCMO and FEMO, as outlined below, remain unchanged.

2.3.1 CaMO

First, the option for only cumulative dropping of CIVs
will be described, then, the option for the additional single dropping
procedure. The description of COMO ("C.ncomitant variables Magnitude [of
prediction power for y] Ordering") is given in terms of a general step
No. h, where h = 1,2,.. .,T. (Since T CIVs are assumed in the model, the
total number of steps in COMO is identical to the total number of CIVs in
the model.) At Step No. h, h-l CIVs will have been ranked, that is, will
have been dropped from the model and are no longer contained in the zot
of the N' IVs; see the Main Theorem in Section 2.1.2. The droppinc of
CIVs from the model i bynonymous with the deletion of the corrsponding
rows and columns from the matrix A of the normal equations. II is also
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assumed that the program user has decided upon one of the two options for
the admissibility of CIVs: "restricted" or "unrestricted admissibility",
as previously discussed.

Step No. 1' of COMO, cumulative dropping:

(1) Determine the admissible CIVs of this step (No. h).

(2) Invert toe matrix A of the normal equations of this step with
rank N+l-(h-l) = N-h+2. (If h=l, this is the matrJx of the full model
with rank N+1 corLtaininF the constant, N-T DIVa, and T CIVs. If h > 1,this is the matrix from which the rows and columns corresponding to the
h-i CIVs previously ranked have been deleted.)

(3) Compute, for all admissible CIVs (xv 'a) of this step, the terms

SS(h,v) =

where
4h ) - regressLcn coefficient of xv at step h,

=b) main diagonal element (corresponding to xv ) of the
inverse matrix, AK-, with rank N-h+2.

(4) Find, for all admissibl,.. CIVs xv, MINtSS(h,) = SS(h,-), and
de~imte thc CIV for whi:h S3(h,v) is minimum al xt.. The CIV x, is the hth
least irriportant CIV. Store its symbol for the Final Comprehensive Analysis.

.Compute

h
ss(l h) = E ss(i,-)

,DF(:L)(h h

SS(2)(h) - ATSS - ASSR(N) = SS(2)(1) = const.

*DF(2)(h) ý n-N-1 = DF(2)(-) = const.

h-i
ASSR(N) - O 3S(i,-)

*COFFF DErj h) _i
Ai•S
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and define

*DIFF MS() h aSS(h,-)

*DIF7 DF(h) - 1 = const.,

where the notation used is that of the Main Theorem, Section 2.1.2.
Store the terms marked by asterisks for the Final Comprehensive Analysis.

(6) Using the terms in (5), compute

DF(l)( h)

SS(2)( h)
SDF(2)(h - (2)(1) - const.

DF2()(h) FS

*I(X)(b) " I(X(b) DF(2)(b) DF(l)(

where

+3VI.( is the value denoted as x, in (2-12).
1+SS(")( h

Store the terms marked by asterisks for the Final Comprehensive Analysis.

(7) Go to Step No. (h+l) by replacing, in the above computatiezui

(1) through (6), the index h by h+l.

Final Coi�prehensive Analysis of C(_O cumulative dropping.

The Final Comprehensive Analysis (FCA) of COMO, cumulative droppinC,
contains for each step the 9 values marked by asterisks in (5) and (M)
above. Also in the FCA, each step is identified by its number, and the
symbol of the CIV is given which was ranked at this step. There i: One
more column in the FCA, marked "PRO", in which as asterisk is printed fer
that stcp uL" CCMO whe!n I(X) ! • for the first time oacurs where cy may
assume up to three different specified inpat value& so that asterisks
may possibly be printed at 3 different steps of C(MO, cumulative drupping.
For the use of the FCA see Section 3.3.1.
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COMO4, mfilse 9.,RUpi.

In the following, the aingle dropping procedure of COMO is described
in the terms of the cumulative dropping procedure given before. (The
general step number, h, is the same as in C•MO, culmative dropping. In
the flow charts, see Section 2.4.1, in the single dropping procedure of
CGOW, the general step number Is denoted for clarity an "p.") When the
program user chooses the option for "cumulative and single dropping",
(column 24, Contro3 Card No. 1. see Section 3.1.1), the CC4O single
dropping procedure will te performed In addition to the cumulative
procedure. In other worus, thet cumulative dr'ppiLg procedure is always
executed. COO, single dropping, uses the rankin4 order of the CIVM
established by the cumulative ranking procedure. See also Section 2.1.2
for a more extensive discussion.

Step No. h of CCHO, I.Mile droping:

(1) compte

SS(l)(1) - 88(h,-)

• •()() ..M const.
h-i

s3(2•) 10AT13S - ASSR(N) + , •:ss(i0-)

*DF(2)(1) = n-N+h-2

ASSR(N) - h ss(i,-)
*COWF DET(h) =m =e.-----.-.--- ssl- j

ATSS ATSS

and define

*D3,F7 Cb) - SS(h,-)

*DIFT D1) 1 1

Store the terms marked by asterisks for the FCA.

(2) Use the terms In (1) and compute MS(C1)(), ME(2)(h), F~h) eand
I(X) as shown in (6) of Step h, C*OW, cumulative dropping, and store
them for the FCA.

(3) Gu to Step No. (h+l) by replacin& in the above computations (1)
and (2), the index h by h+l.
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The Final Comprehensive Analysis of CCMO, single dropping, I
corresponds in all features to the FCA of COMO, cumulative dropping.
Therefore, no further discussion is necessary. i

2.3.2 FEMO

After terminating CCO0 (if applicable), the program goes to
the subroutine FEMO ("Factorial Effects Magnitude [of prediction power for
y] Ordering") for the ranking of factorial effects represented by groups
of DIVs. As was discussed in Section 2.1.2, the model of the first step
of FM40 includes the significant CIVs f-'cm CGMO if there were significant
CIVs according to the a-value No. KALPHA, cA P,,,A. The step of C@MO at
which 1(X) s , feW the first time is referred to, in FEMO, as he.
See also paragraphs (2) and (5) below.

The description of FEMO is given in terms of a general
step No. k, where k - 1,2,..., number of step at which last effect is
ranked. The droppirg of a factorial effect from the model is synonymous
with the deletion, (from the matrix A) of the rows and columns which
correspond to the DIVs in the group of DIVs representing the factorial
effect.

The following definitions, which correspond to those
used in COMO, are used in the formulation of FEMO: The admissible
effucts at the kth step of FEMO nre defined by the argulments (k,i),
where i " l,&,..., is the set of admissible effects at this step. The
argument (k,i) is usod, for example, in SS(k.i) = Additional Regression
Sup oU Squjes, at the kth step, due to that group of DIVs which represent
admisslbl' .. ffcct "." The conpatation of SS(k,i) in paragraph (3) below
is Rs give.i, for example, in Hader and Grandage [1958]. The term DF(k,i)
stands for "Degrees of Freedom" of the effect with argument (k,i), or:
of Cffcf:t (k,i), and is equal to t.he nwmber of DIVs represeonting effect(k,i).

If FEMO was preceded by a CctOM, the same option rcgarding
the admissibility as was chosen for CCW) is applicable for FEMO when
quantitative factors are contained in the ANOVA model: "restricted
admissibility" of factorial effects, or "unrestricted admissibility"
which here means "relaxed admissibility." Otherwise (assuming there was
no CCMO), it is supposed that the program user has decided upon one of the
two option,.. The option V'or only cumulative dropping of groups3 of DIVs
will be Thsvibed first.
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Step No. k of FEMO, cumulative dropping:

(i) Determine the admissible effects (k,i).

(2) Invert t o matrix A of li>e normal equations with rank MM, where

k-1
Mk = N+2 - ho - Z DF(,i,-) if there were significant CIVs (ho - T)

j=l

or k-1

Mk = N+l - T - E DF(j,-) if there were no significant CIVs or
J=l no CIVs at all (T=O).

(ilote: The argument (j,-) dUnotes one of the factorial effects ranked by
FEMO prirr to Step No. k. See paragraph(6) below.)

The above implies the inversion of a matrix which results from.
the original (N+l)x(N+l) matrix of tht normal equations by deleting (a) the
(ho-l) or T rows and columns corresnonping to the (ho-i) or T, respectively,
ncn-significan± CIVs and (b) those r ,DF(j,-) rows and columns which
correspond to the DIVs representing Th effects ranked at the previous
k-1 step s. That is, the matrix with rank M. contains, if applicable, the
T-ho+l rows and columns ccrresponding to the significant CIVs from COMO.

(3) Compute for all admissible effects (k. i) of this step the values

... bS k C - c( ) .. c k ... It)o - b( )

C ( kIC~ (c k C( k~i -1(
12"- , k ) C lt21 t%1 Vt 1210 I1P

(k) (k)k)
.. c( b(i )

C2 k . (k C~k k0I 1 t01-2 lotv too o
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where

iv subscript indicating one of the DIVs which represent

effect (k,i), with

V1,2:... ,D, where D = DF(k,i)

bI)V regression coefficient for DIV No. i at Step No. k

c(k• = element of inverse matrix with rank M. for rowivv° corresponding to DIV No. i and for column corresponding
to DIV No. iv, i!

(4) Compute, for all admissible effects (k,i) of this step, the values

k-i
s(1)( ss(j,-) + ss(k,i),

J=1

k-1
DF(1)(k'l) = E DF(j,-) + DF(k,i)

J=l
ho-1

SS(2)(k) = SS(2)(1) = ATSS - ASSR(NI) + T SS(i,-) if there were
i=l ho-i

significant CIVs (ho < T), where E ss(i,-) is
i=i

tak . 'tom C1MO;

or T
SS(2)(k) SS(2)("2  = ATSS - AZSR(N) + Z SS(i,-) if there were

i=l
no significant CIVs or no CIVs at all (T=O).

DF(2)(k) = DF(2)( 1 ) = n-N-2 + ho for first case above (ho q T);
or

DF(2)(k) - DF(2)(1) = n-N-i I T for second case above.

(5) Using the terms from above, compute

I,((k ) ]:X k, 1) DF(2)( k DF(i)(k£2 2 )

where
1 S(i)l(' i)

SS(2)( )
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(6) Fiind, for the admissible effects (k,i) of this step
_gi(X)(k,. i)] = I(X)(k.- and let the kth least important effect (k,-)
be defined by this equation, if MpXtI(X)(kI)) > Co _lOT • (The

numericL' value of the constant Co has been chosen as ITO in accordance
with the computational accuracy of the I(X)-subroutine. Note that, if
M•I(X)(k. I ]._ Co, the ranking procedure must have advanced well into the
sni ficant model since any chosen significance level o will be larger than
* O0.) In this case, i.e., if MKI(X)(k'l)1 > Co, campute and/or store
the following terms for the Final Comprehensive Analysis of FMO:

(a) Symbol of effect (k,-)

(b) I(X)(k) I(X)(k,-)

(c) DIFF -(k) = SS(k,-)/DF(k,-)

(d) DIFF DF70) = DF(k,-)

(e) DF(l)(k) = m()(k,-)

(f) I(2)(k

(g) S (1)(k ) SS,1)(k.-)

(h) W(2 )(k ) =SS(2 )(k)
DF(2)(k)

(i) M()-(k )(k

Uj) COEFFDET<k) .ASSR(M-1) 1 SRN ho 1-l i-ATS S ASSi

k-i
£ SSUJ,-)I if there were significant CIVs

J=l J (ho :9 T)

or:

ASSR(Mk-1) 1 [ T
- I ASSR(N) - Z ss(i,-) -

ATSS ITSL ~

k-I
E SS(j,-l) if there were no significant CIVs

j=l or no CIVs at all (T=O).

If MAX[I(X)(k I)] !g Co, go to the " +-procedure" as outlined below.
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(7) Go to Step No. (k+l) by replacing, in the above computations
(i) through (6), the index k by k+l.

The " +.-procedure" (Step le.) of FEMO, cumulative dropping:

This modification of FEMO (the " + -procedure") will apply only when
I V[l(X)(k I)] Co, where the superscript of I(X) may also read (Wc + 8, i),
+ E, i), etc., see further below. In the +-procedure, the terms which

S...:ere computed at Step No. k as described above are used. Therefore, the
4-procedure is also referred to as "Step X'." The +-procedure serves to
increase the I(X)-values in order that the remaining factorial effects in
the significant model may be ranked with respect to their relative

-7rtance. This is achieved by pooling all previously ranked effects
ii,,o the experimental error, that is, by a redefinition of the model,
as follows:

(1) Compute and/or define

ss(l)(k+,1) = SS(k,i)

DF(l)(k+, ) = DF(k,i)

k-l

SS(2)( k÷+ c, S(2)"-) + k. SS(j,-)
j-l

k-1
DF(2)(k÷) - DF(2)(1) + E DF(J,-)

j=l

Using the above four terms, compute the values I(X)(k+, I) as in
paragraph (5) of Step No. k.

(2) Find, for the admissible effects (k,i) of this step (which are
Ll•:: same as in Step k):

MAX[I(x)0k+.i)] = I(X)(k+-).

It' this maximum is greater than Co = 1i8, let the kth least important
o.i'fý,ft (k,-) be defined by this equation. In this case, compute and/or
stove, for the FCA, terms (a) - (j) as given in paragraph (6) of Step k,
roplacing the index k by k÷. In the FCA, print the symbol " +" in the
Pj\C rciULmn fGo2 this step. Then go to Step (ke + 6), starting with 6=1,

outlined bcio,:.. In case of MWX[I(X)(k * Co, go to the " '-procedure"
outlined further below.
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Step No. (le + 8) of FD.1O, cumulative drpig

With 6 1,2,..., this is a general step after the +-procedure had
to be applied. The experimental error, which was redefined at Step e~
remains again constant, and the sums of squares due to the effects ranked

* are pooled again, as seen in paragraph (2) below.

(1.) Determine the admissible effects (k + 8, 1).

(2) Arter carrying out the computationis similar to those of paragraphs
(2) and (3) of Step No. k, compute and/or define, for the admissible effects
(k + 8, i) of this step:

k+6 -1
SS(l)(k++8.1) = Z SS(J,-) + SS(k + 8, 1)

j=k

DF~)( +81)= E DF(J,-) +- DF(k + 8, 1)
J=k

~+

DF(2)(k + 8) = DF(2)(k )

where the latter two right-hand terms are from paradueaph (1) of Step eked
Using the above four terms, cin pute the values 1 (e k ow.) as in paragraph
(5) of Step No. k.

(3) Find, for the admissible effects (k + 8, i) of this step,

MAX[I(X)(k+*81)] = ((k+. .

If this maximum is greater than Co, let the (k + s)th least important effect
(k + 6, -) be defined by the above equation. In this case, compute and/or
store, for the FCA, terms (a) - (Q) as given in paragraph (6) of Step No. k,
replacing the index 1. acy (k' + 8). Then goto StepNo. (le + 8+ 1) as
outlined above, i.e., by replacing the index 8 by (8+1). If MAXII(X)]
Co + 1 , go to Step (e + 8 ), i.e., follow the procedure as outlined
in Step le), replacing the index k by (le + 8).

The "~ Lýý rocedure" (Step e+4 ) of FEMO, cuimulative dropping:

This modification of FEMO (the " "~-procedure") will apply only when
W;.xrI(X)(k+,,)l !g Co = l~a where the superscript of I(X) may also read
tk' + 6)D, F1, [(k++8 + ' )+, i, etc., see further below. The ,-procedure

is also referred to as "Step le+." The aim of the ++-procedure is to
further increase the ()-values (which, at Step en, still were all
below C - 0nd,1 -c that the remaining factorial effects in the significant
model may be ranked with respect to their relative importance. For this
purpose, at Step + the sum of squares due to one of the admoissible
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effects is added to the error sum of squares according to the definition

in paragraph (1) below. Later, in the computation of I(X), an "F-value"

according to (2-10), see Section 2.1.2, is implied which contains this

very same sum of squares in both the numerator and the denominator. So,

actually, it is not an F-value, but the computational procedure of I(X)

is employed nevertheless in order to have, also in this case and if

applicable, a ranking criterion by which to establish the relative

importance of the (highly) significant factorial effects.

The ÷"-procedure is as follows.

(1) Find, among the admissible effects of Step No. k, and using
the terms SS(k,i) from Step No. k,

y-j[ ,, ss(2)(k*) + ssWk~ ,o).

IN°MM•N LDF(2)(k) + DF(k,i)j •

Thu above equation defines the effect, wnich minimizes M.S i)k by the

argument (k,O).

(2) Compute and/or define

= SS(k,i)

OF(l)(k÷' ') -= DF(k,i)

SS( 2Y k*÷) = SS(2)(k÷) + ss(ko)

F(,)( k÷+ ) = DF(L2)(k') + DF(k,O)

Using the above four terms, compute the values I(X)(k++, I) as in
paragraph (5) of Step No. k.

(3) Find, for the admissible effects (k,i) of this step (which are
still the same as in Step k):

MAXEI(X)(k*.1)3 - (X(

If this maximum is greater than Co, let the kth least important effect
(k,-) be defined by this equation. (Note that effect (k,-) will not
necessarily be equal to (k,O).) In this case, comzpute and/or store for

thc- FCA, terms (a) - (J) as given in paragraph (6) of Step k, replacing
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the index k by ei. In the F(A, print the symbol " +" in the PRC column
for this step. Then proceed to Step (k+ + c), starting with c=l, as
outlined below. If MKXtI(X)('++i)] s Co, proceed to the " '-procedure"
as outlined further bblow.

Step No. (i+ + 0) of FE4RO cumulative dropping:

With s = 1,2,..., this is a general step after the +"-procedure had
to be applied. The error sum of squares is now defined to consist of the
sum of squares of the original error sum of squares pooled with the sums
of squares due to all effects ranked before and at Step No. k. For
e = 1,2,..., the error sum of squares remains constant again. From Step
No. k++l on, the sums of squares duw) to the effects ranked are pooled
again, as seen in paragraph (2) below.

(1) Determine the admissible effects (k + c, i).

(2) Af` 5r carrying oat the computations which are similar to those
of paragraphs (2) and (3) of Step No. k, ccmpute and/or define, for the
adminisible effects (k + c, i) of this step:

k+¢-1
= E SS(j,-) + SS(k + e, i)

J =k+l

k+c -I

D(1 ( E DF(J,-) + DF(k + €,
J =k+l

k
Zs(2)k ++C-) = ss( 2 )(k) + r ss(j,ý)

J=l

k

DF(2) k (+) = DF(2)(k) + Z DF(j,-)
J=l

Using the above four terms, compute the values I(X)("÷++ ,i) as in
paragraph (5) of Step No. k.

(3) Find, for the admissible effects (k + c, i) of this step,

VAX[ I(x)k+++C, ] I(X)(k++÷+ ,-1.

!4



If this maximum is greater than Co, let the (k + C)th least important
effect (k + c, -) be defined by the above equation. In this case, compute
and/or store, for the FCA, terms (a) - (J) as given in paragraph (4) of

Step No. k, replacing the index k by kX' + c. Then go to Step (k÷+ + c + 1)
as outlined above, i.e., by replacing the index 6 by (€+l). If
1AKI(X)(K+÷++0] -< Co, go to Step (kW + c)÷, i.e., proceed as in Step le,
replacing the index k by (k+÷ + c).

The " '++-procedure" (Otep kl' ) of FE.O, cumulative dropping:

This ý*st modification of FE0O will apply only when
MAX[I(X)(k .I)] - Co where the superscript of I(X) may also read
[lie + 6)÷4, i], [(k*+ + c)÷4, i], etc. The ++-procedure is also
referred to as "Step k÷e÷ ." The aim of the procedure is to define, for
Step No. k of the ranking, a least important effect after even the
++-procedure failed to increase the I(X)-values sufficiently.

In this case merely define effect (k,O) from Step k44 to be effect
(k,-). Then compute and/or store for the FCA the terms (a) - (J) as given
in paragraph (6) of Step k, replacing the index k by e++. In the FCA,
print the symbol " '" in the PEC column for this step. Then proceed
to Step No. (ke+ + €), starting with 6=1, as was described before.

FEMO, single dropping.

Finally for FE240, the single dropping procedure will be discussed.
"Single dronping" is executed in addition to F'MO, c'mulative dropping,

when the appropriate option is chosen (column 24 of Control Card No. 1,
see Section 3.1.1). As was coriespondingly the case for CCMO, single
dropping, the single dropping proc.dure of FEMO uses the ranking order of
the factorial effects established by the cumulative dropping procedure.

The single dropping procedure of FE4O then simply consists of the

" -procedure" described before, which is followed all the way through,

from the first to the last step. At appropriate places, the terms computed
in the cumulative dropping procedure are used for the computations and/or
for the Final Comprehensive Analysis, FEMO, single dropptng. Since the
ranking order has already been established in the cumulative procedure,
the single uropping opt' on never needs ge into the 44_ or -+_procedures.

Final Comprehensive Analyses of FM1O.

The Final Comprehensive Analyses for both the cumulative and the
single dropping procedure in FD-10 correspond to those de!scribed for COMO.
As was mentioned at the appropriate places, the symbols " a" " " nd
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it +++It are printed in the PRC column when the corresponding procedure led

to the ranking of the effect for which the syinhol is printed. Also in the
PRC column, an asterisk is printed whenever I(X) is smaller, for the first
time, than one of the possibly up to three c-significance levels used as
input, thus marking the "significant model" which corresponds to the
respective a-level.

When there are two or more sets of Control Card No. 4, i.e., when
the data of a given classification has been analyzed by fitting two or
more models respectively, all FCAs of FDMO are repeated at the end of
the problem in order to facilitate the search for the "most probable
significant model." (See also Section 3.3.2.)

2.4 Computational Flow

2.4.1 Flowcharts

In this section the computational flow of NCIVACaK is
given in the form of logical flowcharts where these flowcharts reflect
only the method of the program and are not expressed in the terms of a
progruming languMe. Soe features which were discussed in previous
sections, like the determination of the admissible CIVa or effects, are
not contained in the charts. Wherever it is considered necessary for the
understanding of the flowcharts, comments are provided whien are liL3ted
in Section 2.4.2. The flowchart boxes for which comments are given in
Section 2.4.2 have been marked by decimal classification numbers of which
the first is the number of the chart and the second is the box number
within the chart.
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values~~ randes Prints "AT tPT

Printoln the printin of the~eT
qusictitaidva N tor vurlforeControl

Card 4 Se No ): Uco

-rae -fe1. anfi Rangle@le an vro &@@ of (uIt-ýa

Prints (it Idenit;(pinto) the, uncuaerid c'

-icigecutivelv for thl vrLftinal model rontainingf all

cerpute ancikr pri~nt ( old I '-values if aspplic'af'le)t
!"LL [UATA WI)t-f .1, fI\it,,jo mC~Arpol( A.-FA-1,EZ AIDS-
value(s) (c-lý P,,r C'.r. 4 S.t :o. 1).

Chart 1

51.



11. the data been analyzed Hes C tro3. Card I. Set .1-. v
I'r all derindent. variablea be-nCOanalyzed for -.ll diaien~lent

* varivbleiaoles

Noo yenpl ~iO
M IA :a iv "Fr o m "n tW 11;h

Wco ta ne thno an C.CniLiSentNo.Tv.

staPrit onlyaton th' thea~ model afonii-
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11, and Aeesatimi 6.v

No Yes

Prnt "ICA ~ r only. ~ EI'liHED nFC ny
Print . fi' .A\, and the b.Is

Prnt "IDENt Mt'jX .Iký EJ:r I"'poi rr~ )oi

in (ca. only.c.

I~rInt;C , , ad Che rt I



S . . .. . .. .- ___•- - ,. .. ; • • • , P -7 • - . . . .

1-s this an attempted Cg.M3?

No Yes

ss there an attempted C4OC
(:ithout any good steps)?

No Yes

4.1

Set g = g-T

4.2 4.41

Define the admissible effects. Define the a4inisuible C1Va.
("Restricted" or "Relaxed Adnissibility"- ("Restricted" or "Unrestricted Admissibility"-
option, as chosen. ) Delete "; •ghtaost" option, as chosen.) Delete "rightmost"
admissible effect with minimu'• degrees adalssible CrV, calling it xa. Print the
of freedce. Define this effect a symbol of xi in the FCA.
"(C,-)" (with DT(g,-) degrees of free-
dnm) and print its symbol in the MCA.

Is g =T

No Yes

II the option for both cuwzlative and singleJ~l Idropping ct~sen?

Yes No Yee No

S•~.5
Is tino h'c1ýn j'rr i-,th uni e I Folluwing the heading "FCA CCMu

Sý 3GLI DROPPNG", print: "NO
PRINTr0U FOR COMO ET'GLE DROPPING

Yes No .SINCE NO VALID S1JM - i3WARES WERE
C4lPUTED.

4.5

Following the heading Will there be a FEM0?
"7CA FEMO SINGLE DROPPrh"
print: "NIO PRNTCM oe, lYes No
FEMO Sr. ;LE 1,r,0Pp7; f Sr r II
NO VALID S)TV. ýF S(i,.
WERE C4)',1UTEF,, ,,

,and s na

S(Ch at (Ch. 2)

Chart 4
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14 13

5.1

Firt good" t I h T?
Bet g - II if CCNO
Set g - k, ifN Yes

Is thia COMO? Set¶ -1+1. FormS~new matrix A by
No Yea deleting the CIV

defined before to
be deleted and

CAt 0 ccaowwte A"
cumulat ive dropping

5.2

Redefine rank cf model
(at Step )',) as:
N4 = N+2-h'.
Set fl = 0.

9 (Ch. 10) 10(Ch. 6)11(.')
SChart 5(h
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6. 1T

Step h (h'+11) of C014O, rimnuative dropping:

Define the admissible CIVa. ("Rpstricted" or "Unrestricted
Admissibility"-option, &a chosen.)
Print the numbers of the admissible CIV.
Compute the bý/cvv for all admissible CIVs.
Find MlUtt4/cv = SS(h,-) and define corresponding CIV for

V

later deletion from the model. h-1
Compute: ASSR(MW-1-r1) - ASSR(N-h'+l) - E SS(i,-)

i-h'

Compute (and store for FCA): CEF'F. DET. - 1 ASR(M 1-1-i1)
ATBI

Comnpite nnnd/r define (asnd store for FCA):

h
ss~l)•) • ss~i,-)

i-h'

DF(1)(%) = h-h'+l

MS(l)(") = SS(l)(b)/DT(l)(h)

ss(2)(%) ATSS-ASSR(Nt-1)

DF(2)(1) - n-MN - n-N-2+h'

DIF SO() = SS(h,-)

D1UT De = I

IsF} DF(2(1 - 07

6.2

Compute anc' slore for FCA: Zero error perfect fit at h h' (but
MS(2)( . MS(,)(W) - SS( 2 )(h)/DF( 2 )Cb) the following values apply aflso at all

!b) =MS(1)()/MS(2)(%) subsequent steps):

b(WO) Set, in FCA:
Print the I(X)-vwlu.s and their
arguments at intornidiate st,.ps. MS2)( 0

I(X)( 0
Set IMS(2)(') 0 0
Set (stand. dev. of b ']a) v 0

Chart 6

56



..-- rocedure In this step?

"rint ",or or
We. :there suich a " m*as sOWriLtO, inj
pro cdure in any PpIC ro1 of "CA.

"V r it rr~vims~

Yes Is there at least Ora

t==T ~ Car 7cre t n
I(X) S

'Fn
-1mo s



Was the. r,-ni4SnII Iean~e level No. KALJ'HA reached
(by I(X)) at a nt.'p ho - hfl '+( i I

No Yoe

Cool-ate (aimo store for- FE4O):

(_1'4 T
S(-C) A7Z3.ASSR(Ro4- TsS(I.-)

AfSS-ASSH(rN-T)
flF(2)( " n-l-N

lHatore the model of Sltep ~,containing
n~ N-T DIV* and T-N +1 CIV9. Compute
(a.nd store for "T'N)-

t1, -1
*ATSS-AB3Ii(MN-)+ 1: 65(1,-)

I i-h'

LF2( n-N-2+h0

h I S 1!

Chart



coo single* droppine.]

9.1

Use the mod~l, of Atop, h' of C2OO#
('umuLativ* dturpinal, I-@-# the
"ecil with

Ov -**2hh

/ort defne ator otorfo
printtift in ?CAi

Sa 98) - 58(p/W 0~

Char 1ý 0I .m 1 'I)F

WWI) ~~'98l(0-DFM

P-1



734, craO~JMLre druffiu

wasn there BfL attempted CMiM

'Itt, ti.- "40 (41-1. -:equentiyo X" of this M~el) Urse the model ("n, Consequently, A-' vr this model)

It"~ first gm~d stop of FUCO, wt rankt decided u&pon at the end of camo, cumalat ive dr,.pping,

V-1i.e., the "ldl wilth FaMIl

J-1 aid with error suo, or square* and degrees of fre-d.a,

ASSN4 - "R(HN. u(1 ATOO-ASIR(M-,)
C(Zrr 1;6T AZRl AT.;Z n

VF(: ~ 3~ J-. -r V%.1 If there wer sigkficant CIV.
If there w~re no significant I1Vs

3*.t k' 1

II. . ~ Chart 10
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effects ami print

Wa h'erc, at, far, a vr a

B~et x k' Wnus the latst.a a "-procedurr?

Set k~ le*t ~

Cotr.Inho ant/or dtefiti, for tMr.

('~n~I~ iif~~d I'Invi, for the adtmimsiblv rrfek-tn (~

K-1

XeD IF.~

V-0%

Y-I s N

Ih 
l- r.h( 

h. 1



Nvf~iue 88Wbt 485(k,l)
lwW :: * rw(k,i) -

c~puk r I()~~ C (j,-)

Jk-

I~ ~ X)x' I(X) fAM OT

D,(2M' " D(k, 1)

I - - F

Define Sam 40 0 (k.1)

EF 2 1 * 58(24P " 0 + (k, o)

Cceputs the I(ý*,)and find v4x[I(x)"6 II)3

Print the I(X)..v~luesa egM th-ir orgwuients.

No yen

Store S3(a')(I' and bP(.-)(k*1 for next stop

Chart__ 12 (Ch. nA)
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[T,,fIr .*I U (k,D) I rop SAPP to to YA~ i(x)1 am *rrqct (m,-) for

etrl .(t ) -3 Pr(. for

n rxt I~r rni. edu ,~~

in t ))ý 1CA (rnk - e, e*, or b",pitIgI h A
a, appropriate):

PY(M.) q

I tw(. - [((,I _

Cu.Wputr *hi~'or Aet in. 0y pr iatird in
tiw fCA( -K , e, e, ore". as
appropriate):

IMX IwI -

Chart 15



141

Delete effect (k,-) defined previous

L I I
k

Is E DF(J,-) = N-T?J--1

Set~N Yes~ n nvr h rntF& 30
Set w = +1 and invert the JPr int FL-A, FM•O,

matrix with rank: cumulative dropping
k-1i"

v = Mk.- E DF(J,-).
J=k'

Compute:
ASSR ASSR(M,,-I)

Is the option for both cumulative
and a.2ie dropping chosen?

Yes No

17(Ch. 11) 21(Ch. 15) 6(C.2)

Chart 1.4
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21

FD4O, B ingle Droppinig

Use the model of Step k' of Fr•,
cumulative dropping, a.e., the
model kith M,, , SS(2)CY , and
DF(2)(a) as defined there.
Set t =0.

1).1

Ccmpute and/or define, and store for printing in YCA, as applicable:
SS(l)( -- SS(q,-)*)
DF(1)(4) . DF(q,-) - DIn Dr *)
MS()( 33(- S )(1)(, /DF(l)(') . DIFF HS

q-l
S(2)() It SS( 2 )(V) + SSe(J,-) a)

juk'
q-1

DF(2)()= DF(2)(k) + 1: DF(j,-) *)
j=k'

MS(2)( ) - SS(2)( )/DF(•)( )F(o4) =5(1)" q I/MS(2)1 q
I(X)(q )

q-1
•"- =P.¢ " Z DF(J,-) *

J=k'
ASSR( 4) =ASSR(MN -1)

COEFF DE7 I ) = ASS1 R')/ATSS

a) The SS(J,-) and W(J,-) are from the corresponding steps of
7D40, cumulative dropping.

Print "*' in PRC column of FCA if -,his step, according to I(X)(10,
"is the first step to reach one of the up to three *-significance
levels. .'Ive fll text prinitout for this step (first to be
significant at one of the &'s) only when the corresponding step
in FEMO, cumulative dropping, did not receive a full printout.

Is E2 DF(J,-) N-'f?
J=l

INo Y es

Set p I Print FCA FEMO, single dropping

Chart 15 (Ch. 2)
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2.4.2 Comments on Flowcharts

The following comments refer to the flowcharts and to the
boxes in the flowcharts of the previous section, where the flowchart
numbers and box numbers are as given.

Chart 1.

Box 1.1 The uncoded OCIV values are printed in order to provide a
possibility to check the input. If coding is requested, the ranges and
averages (and the range factor C) are printed to facilitate the back-
transformation of output values if desired and feasible.

The bar charts (in regression only) of the uncoded OCIV values are
printed to give a possibility of visual checks on the distributions of
the values, i.e., on their approximate normality and on outlying values.

Box 1.2 See comments Box 1.1.

Box 1.3 The "Full Data Matrix" is the (N+W) x n matrix of the n values
(coded, if applicable) of the N IVs and the W dependent variables (W ! 4).
It is this matrix from which the (N+l) x (N+l+W) "Summation Matrix" is
generated by the program. The summation matrix is the (N+l) x (N+l) matrix
of the coefficients of the normal equations augmented by W < 4 row vectors
containing the cross products with the y's. (In most problems, there will
be only one dependent variable, y, and the summation matrix will consi'st of
the matrix of the normal equations augmented by one row vector containing
the cross products with y.) The ATSS-values (one each for each dependent
variable) are the total sums of squares (of y) adjusted for the mean. The
ATSS are, naturally, equal for all C. C. 4 sets if there are several such
sets.

Chart 2.

Box 2.1 This applies when the problem is one of regression only.

Box 2.2 The additional analyses of variance ("ANVAs") are essentially
given in the form of FE4O-FCAs. The ANVAs are cc'-r'ted and printed (1)
for each dependent variable for which significant IVs ,,ere found in an
analysis of covariance and (2) for each OCIV which is significant or is
a sub-CIV of a significant GCIV. In addition to the FCAs, the symbols of
the admissible effects and all computed I(X)-values and their argurents
are printed for each step of each ANVA. See also Sections 2.1.1, 3.3.3
and Example 6 in Section 3.4.6.
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Box 2.3 The "Final FCA" is a reprinting of the individual FCAs for
each Control Card 4 set. The Final FCA enables the program user to compare
more easily the results from the various Control Card 4 sets and, thereby,
facilitates the search for the "moat probable significant model." See
also Section 3.3.2 and Example 5 in Section 3.4.5.

Chart 3.

B Step No. g is a general step of the ranking procedure (CadO
or FEM0)before an acceptable inverse of the matrix A of the normal equations
is found. See also Section 2.1.3.

Box 3.2 Although the inverse is rejected, A 1 , ', and the ba'a are
printed in order to give the user an impression of the amount of the
inaccuracy.

Box 3.3 The same reasoning as given for Box 3.2 applies here. "DENT.
MATRIX DIAG. ELE. NE 1" is short for "At least one identity matrix diagonal
element is not equiLL to 1, given the tolerance TM•I(2)."

Box 3.4 The value ASSR (Regression sum of squares adjusted for the
mean) is given for a rejected first step of an attempted COMO or FEM4O
because it will enable the user to check the amount )f the computational
inaccuracy in case of a perfect fit. Namely, in a pitrfeet fit for any
data classification into "cells", ASSR should equal -.he sum of squares
"between cells", where the latter can be calculated 'by hand."

Chart 4.

Box 4.1 If there was an attempted CC40 wvtluat may good steps,
g=g-T makes the step numbering in FW0 start with "1."

Box 4.2 The "rightmost" admissible effect to be deleted here is
"right; twith respect to the position of the DIVs representing the
effect in the model. Since the generation of the model is such that the
highest-order interactions and the highest powers of the quantitative
factor variables are located "rightmost" these are the effects deleted
first after FEMO steps have been rejected. (Note that there cannot be
statistical criteria by which to delete the effects from the model in
this case of a rejected model. ) The "minimum degrees of freedom"
condition (applicable in FF24O only) serves the purpose of reaching an
acceptable model under the smallest loss of degrees of freedom possible.
The present way of deleting effects may not be the fastest one to arrive
ai an acceptable model. In case of a singular matrix A, for example,
there may be only one IV which causes the singularity, but this IV may
not necesnarily be deleted at the first step of an attempted COMO or
FEMO. See Exzmple 7 in Section 3.4.7.
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Box 4.3 Since there were no accepted FI4O steps, there is no basis
for a FEMO, single dropping procedure. (The single dropping procedure
takes the ranking order from the cumulative procedure, see Section 2.3.2.)

Box 4.4 The corresponding comments as given for Box 4.2 apply also
here, except for the "minimum degrees of freedom" condition since in CCMO
only individual IVs are dt ted.

Box 4.- See corresponding comments on Box 4.3.

Chart 5.

Box 5.1 h' and k' are the numbers of the "first good step" in Co4e
and FY140, respectively. Note that, according to the common matrix A, all
steps of FE4O will be accepted when h' was reached in CGMO.

Box 5.2 The rank, 14 ., - N+2-h', of the matriA of the normal equations
for the first good step of COMO is the difference of N+l (for N IVs of the
original model and the constant, xo) and h'-1 (for the h'-l CIV9 deleted
prior to the first good step).

Chart 6.

Box 6.1 For more details on the ranking of CIVs by the cumulative
dropping procedure of COMO, see Section 2.3.1.

Box 6.2 When DF(2)=O, one deals with a "zero error perfect fit",
which can be reached only at the first good step of the ranking procedure.
Naturally, MS(2), F, and I(X) have to be defined in this case and cannot
be computed. Since 1DF(2)=DF(2)(b' ) remains constant throughout CCMO,
cwi-alative dropping, the definitions of Box 6.2 apply at each of the
remaining steps of C0MO, cu•~mative dropping.

Chart 7.

Box T.,1 If there was a or -procedure in any of the
previous MO4 steps, this means I(X) had been smaller than Cc = icr8, that
Is, smalUer than any significance level o' specified by the user. Therefore,
no fu..l printout will be given (in cumulative or single dropping) beyond
this step of FEMO.

Box 7.2 The asteaioks printed in the PRC column of the FCA indicate
clearly the steps of the ranking procedure where the significant models
corresponding to the up to three specified significance levels o have
been reached. Note that the asterisk is also printed when, in Cct4O, a
zero error perfect fit was reached at this step. This is because the
zero error perfect fit is by definition the first good step, and as such
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leads to an I(X) value of zero (also by definition) which necessarily is
smaller than any specified a-value. Therefore, only one fi.L printout
will be given in case of a zero error perfect fit. This printout is at
the same time that of the first good step.

Box 7.3 The option to print the b 's at every step of the ranking
is provided to supply the user with some information for the intermediate
steps where no full printouts are given. The regression coefficients, bV
which, for example, in FEO are the estimates of the individual model
parameters, are considered to be the most important numerical values.

Bo The "full printout" is similar to that given in the program
DA-MRCA (Abt et al. [1966]). The Chi-square test computations for testing
the normality of the distribution of the residuals are exactly like in
DA-MRCA. The "Residual or Error Stun of Squares"; the "Check error sum of
squares" and the "Square root of (the) residual variance" are specifically
computed for the step at which they are printed. That is, the "Residual
or Error Sum of Squares" equals ATSS - ASSR(N') when the model of the
given step contains N' IVs. In the single dropping procedure, one has
ATSS - ASSR(N') = SS(2) where SS(2) is the value which, if divided by
DF(2), gives MS(2) as printed in the FCA. (See Section 3.3,1.) A
detailed general formulation of the "full printout" in NOVACCM is given
in Herring [196T]. See also Section 2.1.4 of the present report and
Example 1 in Section 3.4.1.

Chart 8.

Bo:. 3.1 The a-significance level No. KALPA is the one (specified
by the uscr) which determines the significant CIVs to be kept in the
anlaysis of covariance model when ranking the factorial effects by FEMO.
See also Section 2.1.2 and Control Card No. 1, column 25 (Section 3.1.1).

Box 8.2 Since all T CM~s are deleted from the model, FEMO will
operate on an analysis of variance model only.

SBox 8.3 The significant CyVs will be kept in the model, therefore,
FEMO will operate on an analysis of covariance model.

Chart 9.

Boy ). 1 The single dropping procedure starts with the model which
was that of the first good step of the cumulative dropping procedure.

Box 9,. For a more detailed descript on of the single dropping
procedure' in COMO, see Section 2.3.1.
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Box 2.1 The zero error perfect fit is the same as that reached in
Cow4, cumulative dropping. (See Box 6.2 in Chart 6.) However, since in
single dropping the degrees of freedom corresponding to all previously
ranked CIVa are accumulated in DF(2), at Step (p+i) one will have DF(2) > 0
and, consequently, M.W(2), F, and I(X) can be computed fromn Step (p+l) on.

Box 9.4 For the case of a perfect fit (zero error perfect fit, that

is) see the comments on Box 7.2 in Chart 7.

Chart 10.

Boxes 10.1 and 10.2 See comments on Boxes 8,2 and 8.3, respectively,
in Chart B.

Chart 11.

Box 1-1.1 For a more detailed description of FD4O, cumulative dropping,
sele Section 2.3.2. FEMO, cumulative dropping, in preisen~ted in Charts U1
through 14 in loop form which is more concise than the detailed manner in
which FENO is described in Section 2.3.2. The various modifications of
MO4, cumulative dropping, (the " " , and +++'" procedures) in
addition to the basic procedure, can be sumasrized as follows:

No " at all: SS(l) and DF(l) are due to the group of all
previousl r~ned 7eleted) effects plus the effect presently
searched for. SS(2) and DF(2) are those of the first good step of
FEMO0 and remain constant thereafter.

"o +1": SS(l) and DF(l) are due only to the effect presently
searched for. SS(M2 and DF(2) are due to the group of all previously
ordered effccts. At the first step following the ""~"-procedu~re, the
pooling Rtart.s anew for SS(1) and nF(l), but 003(2) tv~id DF(2) remain
constant.

=~: (This procedure is always preceded by the " "1 -procedure.)
SS(1) and PF(l) are due only to the effect presently searched for.
38(2 and DF(2 are due to the group of all previously or~dered effects
plus effect "(k,0)". At the steps following the '*+%procedure, effect
(k,0) is replaced, in SS(2) and DF(2), by effect (k-;and S3(2)
and DF(2) remain constant from Stop (ke++l) on. Also at Step (k"+l),
SS(1) and DF(l) are due only to the effect- then searched for. From
Step (k+~+l) on, pooling starts anew for SS(1) and DF(l).

S(This procedure is always preceded by the '-procedure.)
Here, effect "(k,QY' of the " "-procedure takes the place of effect
11(e++ -Wt.I Otherwise, the ++"-~procedure is as the the

procedure.

Box 11.2 If DF( 5 2)=0, the data used leads to a zero error perfect
fiti in FEIO1. Since there is no basis, in this case, to rank the factorial
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effects by the 1(X)-criterion (the camputation of I(X) requires an error
sum of squares 58(2) > 0), FD(O cannot be executed. The program, therefore,
stops and then goes to the next dependent variable or CC f set. In order
to avoid the stop, the program user must provide for DF(2) > 0 (which will
imply S5(2) >0) at the first good step. He may do so by deleting one or
more of the factorial effects.

Chart 12.

(See comments given for Box 11.1 in Chart 1.1.)

Box 12.1 The reason for defining effect "(kO•" as the one which is
to be pooled into the error sum of squa'res, 8S(2)j?'', is that (k,0) is
the effect which should reasonably be defined a" the "least imortant
effect" at this step in case the " ""'"-procedure becMen necessary. By
previously using (ktO i £ hhe'"'procedure (one e*"ect ha to be defined
for pooling into 88(2)" ) 1), no additiona&'- compAtt$ifm*b are necessary
in case of the " +"-procedure.

Charts 13 and 14.

(See coments given for Box 11.1 in Chart 11.)

Chart 15.

Box 15.1 For a more detailed description of the 7D40, single dropping
procedure, see Section 2.3.2. Note that, since in FD6O, single dropping,
the ranking order of the effects is taken from the cumulative procedure,
there is no need for the " + or '1 ""-procedure.
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L_ USE OF NOVACCO

3.1 Input Prevaration

3.1.1 Control Cards and Data Cards

In this section the input preparation for NOVACCM is
discuused as far as the control cards and data cards are concerned. The
consequences of the choices of the various options and the use of the
options are described in Sections 3.1.2 and 3.i,3,

The cards are described below in the order of input. The
deck uf the identification card, the 6 types of control cards and th6 3
types of data cards comprise a "problem deck." An arbitrary number of
problem decks may be stacked one deck after the other; WOVACCI4 will
perform all the problems in that given order. An end of file card at the
end of one problem deck will terminate the NOVACO4 computations.

Identification Card

This card contains an 80 column problem identification. The
information on this card is completely at the discretion of the user.

Control Card No. 1

Program
Columns Variable Format Description uRange

1-2 E 12 The number of factcrs. Zero or 0-99
blank when regression (CO4O) only;

S~in which came, columns 4-11 are not
used.

3 NX(MV Il The mnuber of dependent variables. 0-4•

Zero, blank or 1 implies one
dependent variable.

4-5 D 12 The order up to which the program 0-6 and
will automatically generate DIVe. D t E
Zero or blank when DIVs are to be

i put in entirely by means of CC No.4.

6 GDD Al GDD = G - generate DIVs described G, D, or
on CC No. 4 and include these blank
DIVs with any which may have
been autotically generated,

= D - delete the DIVs described
on CC No. 4 from those which
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CC No. 1 (Cont'd)

Columns Variable Format Description Range

have been automaticaly
generated,

ODD - blwak - neither generate
nor delete DIVa by means of
CC No. 4.

"7-9 NCC4 I The number of DIVa to be generated Generation

or deleted. Blank or zero when ODD O-139
- blank. (NCC4 w constant for all Deletion:

N8CC4 ete; of CC No. 4, sea columns 0-255
10-11.)

10-il NSCC4 12 The nmiber of sets of CC No. 4. 0-99

Zero, blank, or 1 when one met only.

12-13 TP 12 The number of OCIVs. Zero or blank 0-99

when analysis of variance (FEM0)
on3l; in which case, columns 14-19
are not used.

14-15 P 12 P - 1 if OCIVe only, or OCIrV and 0-6
additional hand-generated uCIVs
(by nieans of CC No. 5).

1 < Pr 6 if GC1Vs to be autcaati-
cLU.y generated vp to powersum
P, plus ponsIbly hand-generated
or deleted OCIVa (by means of
CC No. 5).

P - 0 or blank only if OCIVs (TP>0)
to be put in entirely by means
of CC Nu. 5. (An unusual situ-
ation.)
(Note. GCIVs of powersum 7 to 21
may be hand-generated by means
of CC No. 5 only.)

16 ODC Al GDC = G - generate CIVs described on G, D,
CC No. 5, blank
D - delete CIVM described on
CC No. 5 from the automati-
cally generated set of ClVs,

- blank - no CIVs to be gen-
erated or deleted by means of
CC No. 5.
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CC No. I (Cont'd)

Program
Columns Variable Format Description Range

17-19 NCC5 1.3 The number of CCs No. 5, i.e., the Generation:
number of CIVM to be deleted or 0-139
hand-generated. Blank or zero when Deletion:
OD' blank. 0-254

20 CODE Il CDE 0 - code the OClV& and the OI
quantitative factor level
values. For coding, the form

C-R x, is used, withC.R
n

-E x and R - max(x) -
n1

min(x) and C as specified in
columns 21-23 below; n in the
total number of observations
for OCIV coding or is the
number of level values of a
factor for quantitative
factor level coding.
I - do not code.

22-25 C F3.0 The coefficient of R in x' (see
column 20) for OCIV coding. (C a I
for quantitative factor level
coding.)
C a zero or blank has the same

effect as C - 1.0.

24 DROP II DROP v Zero or blank - cutlulative 0,1
droppin- only.

- I - :umulative and single
dropping.

25 KALPHA Ii The cardinal number of the ALFHA 0-3
value which value (in CO014) will be
used as the significance level for
the inclusion of CIVa in the FE40

model. In case of FEMO only, the
program ignores this column.
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CC No. 1 (Cont'd)

Prograi
Colwnns Variable Format Description Range

26-29 A9ILA(i) F4, 14 First significance level for CMO .0001-I.0
and FEMO

0-35 AL (2) F14.4 Second significance level for COMO O.0-.9999
and F1MO.

54-37 ALPIIA(5) F4.4 Third uignificance level for CMO 0. O_.OI4-9
and FE4O.

NUMr Th.-!se values should be in
descending order. Th" prosram
uses only the first non-zero
entries.

33 CAD II CAD a 0 - use restricted admibsl-
bility rules for ranking in
CCMO and F!E4O.

> 0 - use unrestricted admissi-

bility rules for ranking in
Come and FF10 (i.e., relaxed
admissibility rules for F240
when both qualitative and
quantitative factors are
present).

59-hii IOL12 E6.2 A tolerance which is used to ,heck
the main diagonal elements of the
identity matrix formed from the
produc. ;5f ".11c m.at -. cf the normal
equations with its inverse. If' thes
diagonal elements deviate from I by
an absolute value Iuss than the va.lue
of TOLI2 then the inverse is con-
sidered acceptable.

45 IRCO Ii IRCO 0 0 - do not print the O,1
reEression coefficients at
every step of NOVACOM.
1 I - print the regression

e1'Ilicientc rlt rxcry step.

4u ADA II ADA 0 - do not perform additional
analyses of variance ("ANVAs").1
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CC No. 1 (Cont'd)

Program
Columns Variable Format Description Range

ADA > 0 - perform additional analyses
of variance ("ANVAs") for the
dependent variable(s) after
exclusion of all CIVs from the
model and for each significant
OCIV and for each OCIV con-
tained in a significant GCIV.

Control Card No. 2

(Optional - omit when regression only: E = 0.)

Colurm: 1 2 3 4 5 6 7 8 9 10 11 12
a3 g3 3 , .. 3

Factor No.: 1 2 3 4 5 6 E g 99

CC No. 2 gives the number of levels of each factor. Example given
above: Factors 1, 2, and 3 have 3 levels each.

With two columns per factor there may be eni ties for 40 factors per
card, the maximum number of levels per factor being 99. Use a second card
if there are more than 40 factors and also a third card if there are more
than 30 factors. Entric are read with an 12 format.

Control Card No. 3

(Optional - omit when regression only: E = 0.)

Column: . 2 3 4 5 6 7 8 9 10

'2

CC No. 5 gives the factor numbers of the quantitative factors using
2 columTns for each factor. Example given above: Factors Nos. 2 and 5
quant itat ire.

Biank card (or cards) when there are no quantitative factors (i.e., all
factors are qualitative). Entries are read with an 12 format.
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Control Card No. 4

(Optional - omit when E = 0, or GDD = blank and NCC4 = 0.)

Column: 1 2 3 4 5 6 7 8 9 10 U 1 2 13 14 15 16 17 18

'I* I 2 . 1 13 1 1. 2 2 1
Factor Pair: tFirt Second I- Thfrd 1

Each CC No. 4 gives a DIV to be deleted from the automatically
generated set or to be generated (possibly in addition to the automatically
generated set of order D). The number of CCs No. 4 equals the number of
DIVs to be deleted or generated. (The number of CCs No. 4 is given in
columns 7 to 9 of CC No. 1.) There will be . DIV symbol per card of
CC No. 4 format. Provid:Lng 2 digits for each factor mamber and for each
level number or power, the symbol for a DIV of first order will occupy
5 columns; a DIV of second order will occupy 10 columns, etc., (5 columns
for each "factor pair"). The maximum order for a DIV is 6. Example above:
DIV 1*1 x 2.1 x 3.2.

There may be several sets of CC No. 4, each containing the same
number of cards = number of DIVs. The number of sets of CC No. 4 is given
on CC No. 1, columns 10-11. Each set of CC No. 4 means a separate analysis
and, therefore, mepns a separate f.nal comprehensive analysis (FCA). If
there is more than one set of CC No. 4, then the program repeats, as the
"Final FCA", all the FCAs for FEMO, cumulative dropping, together as one
printout; likewise for FEMO single dropping. Sets of CC No. 4 are stacked
one after the other.

When preparing CC No. 4, include in one group DIV descriptions of the
same order. Within one of these groups, it is not necessary, but slightly
faster, to include together DIV descriptions having the same factors.
Arrange the groups by increasing order.

The program works even if the natural (increasing) order of factors
in a DIV description is violated. For example, writing either 1*1 x 2.1
or 2.1 x 1*1 is possible.

Control Card No. 5

(Optional - omit if NCC5 = 0 or blank and GDC = blank.)

Coluin: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Notc: A ýBICB I DIA
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CC No. 5 (Cont d)

Note A: two columns for the OCIV number.

Note B: the parentheses are here only for the purpose of conforming
with the printout. These columns could be left blank.

Note C: one column for the power.

Note D: X indicates multiplication.

Each CC No 5 describes a CIV to be deleted from the automatically
generated set of CIVs or to be generated and included with any CIVs which
may have been automatically generated. Hence the number of CCs No. 5
equals the number of CIVs to be deleted or to be "hand-generated" and
is given in columns 17-19 of CC No. 1.

If TP > 0 and no GCIVs are to be generated, P in column 15 of CC No. 1
must be set equal to one.

As an example, GCIV 2(1) x 4(2) (xA in the usual notation) is written
in the format illustrated above. In this example the power sum is 3; the
maximnu power sum for a GCIV is 21. No GCIV may contain more than 6 OCIVs
and no OCIV can be raised to a power greater than 9. CC No. 5 input is the
only way to obtain GCIVs with power sums > 6.

When preparing CC No. 5, include in one group CIV descriptions with
the same power sum. Arrange these groups by increasing power sum. On any
CC No. 5 the OCIV numbers must be in increasing order from left to right.

Control Cird No. 6

(Optional - omit w!hen there are no quantitative factors.)

Colu-an: 1 2 3 •-• 12 13 ... 22 23 "'" 32

S3.5 6.5 11.5

Factcr number of
Quantitative factor

A set of CC No. 6 gives the (uncoded) quantitative factor levels for

one of the facto:rs which are indicated as being quantitative on CC No. 3.
These sets of CC No. 6 should be in the same order as the quantitative
factor numbers are entered on CC No. 3.
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cc No. 6 (Cont'd)

In columns 1-2 of the first of a set of CC No. 6 for a particular
factor there must be punched, right adjusted, the factor number. In
columns 3-12 the value of the first level is entered, in columns 13-22
the value of the second level, ... , in colunns 63-72 the value of the
seventh level. The value of factor level 8 vould begin on the next
card in columns 3-12 (with columns 1-2 blank) "nd so on until the values
of all levels have been entered for this factor. The level values are
read with an F1O.5 format.

As an example, the values of the three levels of quantitative factor
number 2 are entered: 3.5, 6.5, and 11.5 for the first, second, and third
level, respectively.

Data Cards

1. The ist data card (optional - omit if regression only: E = 0) gives
the cell identification, using two columns for each factor and as many
cards as necessary, until a level, number has been entered for each factor.
If there are several observations of the dependent variable(s) y in one
cell, the first data card(s) must be repeated for each of them.

Example: Cell 131

Column: 1 2 3 4 5 6 7 8r ll ,31

Factor No.: 1 2 3 4

2. The 2nd data card givwa the vle(s) of the dependent variable(s) y
in the cell identified by the lst data card and/or associated with the
0CIV values entered on the 3rd data card(s). Each y-value occupies 10
columns beginning with columns 11-20. The values of up to 4 dependent
variables may be entered depending upon the value of NG0DV in column 3
of CC No. 1. In order to specify the last "2nd data card", columns 1-4
of the 2nd data card must have the characters LAST. Otherwise, columns
1-10 are blank. The y-values are each read with an FlO.5 format.

Example: N(OSDV=2; this card is the last 2nd data card in the
problem deck; the value of the first depe-ndent variable Is 2.0 and the
value of th,ý second dependent variable is 4.5.

1 2 3 4567891011 ... 20 21 0
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3. The 3rd data card (optional - omit when there are no OCIVs: TP - 0)
gives the (uncoded) values of the OCIVs as they are observed together with
the y-values(s) entered on the 2nd data card. The nmber TP of OCIVs is
given in column 12-13 of CC No. 1. Each OCIV value occupies 10 columns,

values per card. Each OCIV value is read with an F10.5 format. If
there are several observations of the dependent variable(s) y for a given
set of OCIV values, the third data card(s) must be repeated for each
observation.

3.1.2 Model Generation l•ptions

As can be seen from the description of the Control Cards,
the generation of the N lVs of the NOVAC0E model i. controlled by the
entries in columns 1 to 19 (except column 3) of CC No. 1 and by the
entries in Centrol Cards No. 2 to 5. The options fo the generation of
the FPRO part of the model will be discussed first.

The data classification to be avalyzed by NOVACCO may
have a maximum number of E"99 factors (column 1, CC No. 1). Slnce the
limitation of the number N of IVs in the model is 139, the restriction
on the feasible amber of factors will be severe in most cases.

The order D (cohbns 4-5 of CC No. 1) up to which the program
will automatically generate DIVs, csnnot be larger than 6. This means that
the highest order interaction which can be included in the FdO part of the
model is that among 6 factors. (The maximum order 6 of DIVs is also
reflected by the specifications of CC No. 4.) For example, if the user
has a case with E=6 factors, f1, f2, ... , , and specifies D-6, the
program will automatically generate . F,-1 DIVe, where F, is the number
of levels of factor /f j m I,2,..,,. With F| a 2, that iN with a e -
data rlassification, . -I-63 DIV& will be automatically generated. The
upper limit of the number of amtcwtiea1y generated IVs (DIVs and/or CIVS)
is P55. For example, the DIVe of a fouzr-factor classification, where each
factor has 4 levels, could be generated autometically by specifying E=D--4:
There are 4'-1=255 DIVa in the fll model of this case. However, since
the model limitation is N-139, at least 25' - 139 = 116 DIVe would have
to be deleted from the automaticaly generated set of 255 DIVs. The
deletior in this case, would have to be done via CC No. 4 by specifying
the 116 DIVe to be deleted.

The program variable GDD, column 6 of CC No. 1, controls
the 4 options of the generation of the FEMO part of the model; see further
below.

The number, NCC4 of Control Cards '* (columns 7-9 of CC No. 1)
equals the number of DIVs to be deleted or "hand"-generated. The range of
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NCC4 indicates that it is theoretically possible to generate up to 139 DIVa
by hand (i.e., to go to the limit of N=139 Mys), or to delete up to 255
DIVe from the automatically generated set of up to 255 DIVa. In general,
the user will generate or delete considerably fewer DIVe by means of CC No. 4.

When the number NSCC4 (columns 10-Ul, CC No. 1) of sets of
CC No. 4 is larger than 1, the number of DIVs = number of cards, NCC4, is
the same for each of these sets. The only reason for having two or more
sets of CC No. 4 is the presence of two or more, respectively, confounded
constants for the data layout, see Appendix A. When there are two
confounded constants, it means that 2 models can be fitted which differ
only in one DIV, that is, N-T-1 DIVe are identical in both models. The
one remaining DIV represents, in each "possible" model, a different one-
degree-of-freedom-effect, where these two effects are completely confounded.
If more than two constants are confounded for a data layout, there are more
than two "possible" models which are represented by more than two sets of
CC No. 4. FEMO executes the ranking of the factorial effects for all NSCC4
models put in by the corresponding number of sets of CC No. 4. See also
Section 3.3.2 and Example No. 5 in Section 5.4.5.

Obviously, there is a number of possibilities to generate
the FEMO part of the NOVACCH model. The set of the N-T DIVs (with possibly
T=O) of the model may be generated in the following 4 ways:

I. by automatic generation only;

II. by automatic generation and "hand"-generation via CC No. 4;

III. by automatic generation and deletion via CC No. 4;

IV. by "hand"-generation only.

I. "Automatic generation only" (by the program variable D, columns
4-5, CC No. 1) is applicable only when a "full model" is to be generated.
For the ANOVA part in FEMO, a "full model" means that all factorial effects
up to a given order (D) are to be generated and can be generated which
requires the presence of observations in all cells of the associated data
classifications. For example, in a three-way classification with factors
a, 9, and C, all DIVs representing main effects and 2-factor interactions
may be generated (D=2) if none of the three two-way classification tables
has empty cells: the L x 3, the a x •, and the 8 x 0, table. (Note. In
the above discussion the absence of "identities" was assumed, see Appendix
A.)



II. "Automatic generation and hand-generation" of the DIVs may be
used in order to save on input writing in cases where a "full model" is
not to be generated. For instance, in the example mentioned under "I"
above, the user may wish to fit and be able to fit some DIVs representing
degrees of freedom of the three-factor interaction in addition to the full
model of order D=2. Rather than writing all N-T )IVs of the model on
CC No. 4 (which the user may do if he wishes to, see "IV." below), the
user may automatically generate the second order model (D=2) and write
only the additional third order DIVs by means of CC 4. See example 4 in
Section 3.4.4.

III. "Automatic generation and hand-deletion." Again taking the
above examlle, this third way of model generation enables the user to
automatically generate the third-order model (D=--3) and then to write on
CC No. 4 the DIVs representing those degrees of freedom of the three factor
interaction which are not wanted in the fit (or cannot be fitted) and are
to be deleted. (See Example 5 in Section 3.4.5.) The method of input
(II or III) in such a caae is left to the user. In general, the user
will choose the way which means the least &mount of input writing via
CC No. 4.

IV. "Hand-generation only." This option may be usef±ul in some
cases when the input writing of DIVs to be deleted from an automatically
generated set involves more work (and more possibilities of writing
errors I ) than wculd be encountered in specifying the whole set of N-T DIVs,
to be generated, on CC No. 4. See Example 6 in Section 5.4.6.

The options for the generation oZ the CCMO part of the
NOVACC..i model are very similar to those of the FEMO pact.

The program variable P, columns 111-15, CC No. 1, ir the
"power-sum" up to wnich the program will automatically geiierate CIVs.
The power-sum is defined, ar the name suggests, as the sum of all powers
in a CIV. The GCIV x:x1c.4, for example, has a power sum of 2+3+1=6.

The power-sum, P, up to which the program will automatically
generate CIVs, is equivalent to the "order" of the CIV-model as it was
called in Section 2o2.1. The reader is referred to that section and to
formula (2-14) giving the total number, T, of CIVs in the model when P
is specified. A "full model" of order P means that all GCIVs may be
generated which, in general, is the case if no linear dependencies are
introduced into the matrix A by this generation. For a more detailed
discussion of linear dependencies ("obvious" and "non-obvious") in
regression models see Reference 2.

While the upper limit for P is 6, GCIVs of higher order, or
larger power sum, may be "hand"-generated by means of CC No. 5. The maximum
power sum of GCIVs thus generated is 21.
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The options I - IV described before for the generation of
DIVe apply correspondingly for the generation ef CIVs. The 4 options are
controlled by the program variables GDC (column 16) ai,- NCC5 (columns
17-19) of CC No. 1. As a consequence of the 4 options to generate each
part of the NOVACCH model, there are, in a model which is to contain
both CIVs and DIVe (i.e., in an analysis of covariance model), 4x4=16
different ways of generating the same model, provided one deals with
"full models" in both DIVs and CIVs.

3.1.3 Ranking .Options

The ranking options in COMO and FE4O are controlled by the
entries in columns 24 to 38 of CC No. I.

The input value for the program variable DROP, column 24,
determines whether cumulative dropping alone is performed in CC4O and/or
FEMO (DROP = 0), or both cumulative and single dropping (DROP = 1). Since
in single dropping the ranking order of CIVs or factorial effects is taken
from the order established with the cumulative dropping, the additional
running time for single drrpping is small. Therefore, the program user
will probably choose, in most cases, the option for both cumulative and
single dropping.

The differcnce-between the two dropping procedures is in the
determination of the significant model. Since the two ranking orders are
identical, the difference between the procedures is only the step at which
the "non-significance," i.e., the -(X)-value, reaches a given significance
level a (see columns 26-37 of CC No. 1). In some cases, the two significantmodels will be identical; in other cases, they will be different. Therefore,

the user who chooses the option for both dropping procedures may face the
problem of ht'!ing to decide between two significant models.

The problem is similar to the one cncountcrcd in "orthogonal"
ANOVA: Should one pool the non-significant effects into the error term or
not? Whereas in orthogonal ANOVA the reason for pooling is usually the
desire to increase the number of the degrees of freedom for error, the
pooling in NOVACCI4 is a feature of the ranking method employed here.
There is pooling in both dropping procedures. In cumulative dropping,
the pooling takes place in the numerator mean square of the F-value (of
the Main Theorem, see ('-10) in Section 2.1.2), whereas in single dropping
the pooling takes place in the denominator mean square. Among the two
ranking proLedures of NOVACCZ4 tho cumulative dropping procedure obviously
is the "right" one, because singiQ dropping implies a redefinition of the
moiel at each step according to an intermediate renault of the analysis.
However, the single dropping is provided as an additional procedure since
cumulativw dropping tends to be less powerful than single dropping. An
ex&Lmple may serve as an illustration: In the ranking order, as established
by FEO, cumulative dropping, of the factorial effects in a giveni problem,
the first k-l effects ranked as least important may, in the true model of



the problem, be non-existent. Their associated mean square is then an
estimate of the error variance. The kth effect, however, may exist and
may have a relatively large contribution to the numerator mean square in
the Fe -value of the Main Theorem. But as a consequence of the pooling
with the k-i non-existing effects, the I(X)-value at Step k in FEMO may
only be slightly decreased as compared to Step k-i. In contrast to this,
single dropping would "detect" the significance of the kth least inm'ortant
effect since it would have pooled all the k-i non-existing effects into the
erior term where they actually belong according to the assumption made for
this example: the 1(X)-value at Step No. k of single dropping would
definitely be much smaller than thLt of Step No. k-l, and would indeed
possibly reach a given significance level a.

In maty. cases the gap between the two significant models
may be closed by apl.ying essentially the equivalent of the alternative
ranking procedure discussed in Section 2.1.2, provided one makes the
(reasonable) assumption that the ranking orders resulting from the cumulative
and the alternative ranking procedures would be identical. In that case,
the non-significant I(X)-values at the steps of the cumulative dropping
procedure indicate which null hypotheses may be accepted. At each such
step where all previous null hypotheses could be accepted, the additional
regression sum of squares due only to the effect ranked at that step ma
be divided by the associated degrees of freedom to give e mean square
("DIFF M" in the FCA; see Section 3.3.1) which has expectation c? if the
null hypothesis concerning the offect ranked at the step is true. Therefore,
if in the single procedure the I(X)-value reaches a given significance
level v* at a step No. k 1 , say, and if, in the cumulative dropping procedure,
I(X) reaches w* at a later step No. ks, say, (k 2 > k 1 ), one can divide
DIFF MO from Step k, in the cumulative procedure by the original error
mean square based on n-N-1 degrees of freedom to form a valid F test. If
this V-value is significant at the same level as the F-value at Step k,
in the :31ngie dropping procedure, the two s.gnificant modcls arc identical
and the gap is closed. See also Section 5.3.1 and the discussion of the
numerical examples in Section 3.4.

The user of NOVACOM should keep in mind that the main
purpose of the program is to screen imcomplete and unbalanced data
classifirations for significant factorial effects. NOVACOM, by its nature,
cannot always give clear-cut answers such as may be possible in "vrthogonal"
analysis cf variance.

Therefore, if the gap betwe-en the two significant mcdels
canmL I b-. i;c.ed -.y any means, the statistician may conclude that the
trf, .ji2ifl-t model is between the two models from the two procedures.
Thic :-ituation will indicate the need for additional efforts to further
3aialrze the given body of data. (See Example 6 in Section 3.4.6.)
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The variable KALPIIA (column r ' iu CC No. 1) specifies .Aich
of the possibly up to three significance levels o (coliumis 20 to 37) will
be used for the determination of the signIfica'at nivIel Jin CCrO, cuumulative
dropping, when the model also contains a FEMO part. That in, KALPRA has
importance only in the case of an snalysis of cor/ariance. (In case of
regression only the specified value of KAILPHA hac no influence upon the
printout.)

The variable KALP would not have been requireA in NOVACOM
(for analysis of covariance cases) assuming there was only one a-.vmlue
(instead of three) to be sp-_cified for the determination of the significant
model. However. for reasons given below, up to three such a-levels may
be specified by the user and, therefore, oniv uf them has to be chosen for
COM0 by means of the variable provided, KALIA. (The program could have
been constructed such that up to three FEMOs wuIld have been performed
corresponding to the three a-v].2ueu; however, this possibility was
disregarded in order not to add unnecessarily to the eomputer running
time of a given problem.)

8ince KALPI de cr.zinea which one tV th(.e thr'vo sit.nificance
levels is to be used in CCQO, cumulative dropping, for M10, nnd 'onsiderin6
the fact that cumulative dropping in sume 7ase yields signil'icant mcodels
which contain fewer terms than actually atr. si(,gnficant, the cholce of
the three a-values and KALPHA should be made accordingly. That is, in
analysis of covariance it will be adrvantagfuu- to choose the fIrst of the
three at-values larger than actually desircd for the determination fl' the
significant model and then set KALPHA=I. For exam~ple, if " 0.0.1 is
the desired level for the significant ifodl in an analysis of -,-varianve
case, one could choose a - 0.05, az= 0,01, and a1 ý 0-.0X), say, where
then, with KA.LIIA=l, the significant CIVs to be carried thr'ough the FEMO
part' of the ramking would be determined at the O.•) levei oc nignificancce
in CC4e, cumnlative dropping. See also Example , Iin 3,,tLion 3.4.(,.

The above is one reason fur havii,- tho' pt,;'siAiIity tu
specify ,a.io' than one of-level of signifivan,.e, in AOVAC(k. Another reason
is that the program gives a "full printout" vcntainint, all. peit inent
information for a given step of the rankint, only vhon a 3l,,ilicd a-level
is reached by I(X). By specifying; the marximxwu of 5 a-leveIs, say, !NOVACOM
will give, at the most, 3 Piull jprintikjts fk,• btth clunulativO and single
dropping in both COMO and FiMO (other than I'tY the 1'ir'zt g(ood stepI),
provided the 3 levels are reached by 1(X) at diifc-icnt i;l hi ei.ia
procedure. (Note. NOVACCVi could hiave I tLn c,'nstrucLte ;uti u thI a he i
"full printout" would have been givwn at tut _h step of the r'akiiws, huwever,
this possibility was disregarded because of problem runnin,- t in... ,',,•ie rationn.)

The analyst, in chouslji-ý iitoi-' thU.n %!w niK nI'i' 1, vl
and in obtainine, the corresponding Vuli pri:;toul .9, !;i ,,m i,.d I ,ri.aien
his Judgment concerning the sirtni ficanc oI' the CmV. uI,, ! :'a,-' .r!ýLi
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effects. By choosing two "neighboring" significance levels in addition
to tho onfe principal level decidud upon in advance, the user obtains all
ilkfVFMnit iL4n abuut tic MOtdels wh!q.h would have resulted from the other
two significancv levels. In gf.:ner~l, the user will choose, if he makes
use of the option, ant! a-level above and one below the one principal
significance Ievt.'l. Fur example, he may have chosen a -0.05~ as hie
principal signii'ictwice level. Hie would ttrite a - 0.05 into columns
30-53 of' CC No. 1 use ALPIIA(2) if he wouldi like to specify two additional
values, These could Ibe ALFHA(l) -0.10 and ALPHA(3) - 0.01, for example.
It should be noted that the at-values must br put in by decreasing order,
tnat, is, ALPIIA(l) > ALP1IA(I2) > ALMI(5). Thin order in in accordance
with the characteristics of' the backward rownking technique.

The variable CAD (column 538 of CC No. 1) specifies whether
to use restricted or unrestricted (relaxced) admisslbl~lity rules in the
ra.nking process. The terms "restricted" and "uraritd concern only
the admissiblity rules for ranking CIV& and/or factorial effecte containing
quantitative factors. (The ranking of factorial effects with respect to
the qualitative factors contained in them is &.lwaya done under "restricted"
admissibility rules.) The choice of' the type of tidmissibility rules is
entirely up to the user. Restricted admissibility in the ranking of CM~
or factorial effects containing quantitative factors is necessary if t: e
option for coding the OCCV values and level values is chosen (in order to
achieve computational accuracy) provided the user wishes to have a
possibility to retransform the resulting values (for example, the regression
coefficients) without changing the significant model, see Abt et al. [1966).
Another application of restricted admissibility Is when a significant model
is desired which is to contain all polynomial terms having lower order than
the significant Lvrms. For example, a significant model may result, under
unrost~rictedl admissillility rules, which contains onlv second order terms.
fIf the user winhtcs, in thin case, for reasons of physical interpretation,
a model also containing the first order (linear) terms, he can achieve this
by applying the restricted admissibility rules.

Rankcing under restricted admissibility rules is also the
only meuns to &r'v at a breakdown of the sums of squares which corresponds
to the breakdown a.,hie'vex by the method of orthcwonal polynomials., As
known, orthogonal polyn'wni&iai are constructed such that each polynomial
inermisnflytof "in addtion"ethe onpeviuses ortthogna coermsicTiens inothe
inepnerm is' fitte " additin whthron alpeiusly fittedna toerms.ieths holdse
case of equiL;in it levels or actually constructs the polynomials in the
case of non-eq"Wiw±.sturit. levels, Therefore, in the use of orthogonal
polynomials, the quadretic cuntrast as such, for example, is meaningless;
only the fact that. it iL fitted in addition to the linear contrast gives
it mc~in1nj;. Thii t',-aLure of fitting "in addition" to all. lower order terms
Is avhieved by the restricted admissibility rules in NOVACOM.

836



If none of the three discussed reasons for using restricted
u-bIiiia•ibility rules in the ranking are present, the analyst shuild choose
tht option fur "unrestricted, admissibility" (CAD-1). lie may even have a
atrong reason to do so becauue the relationship he is anulyzing,
statistically may be theoretically known to contain no linear terms, for
example. One can often observe that ranking (by NOVACOM) of CIVs or
,:rff'ot. under "unrestricted admissibility" leads to significant models
containing many fewer terms than result from ranking under restricted
admissibility, (See Example 3 in Section 3.4.3.) That is, unrestricted
admissibility may lead to a significant model in which a minimum number
of terms can explain a maximum of the total variability.

3.2 Running Time Formula

The running time needed by NOVACCM for a given problem obviously
is dependent upon many pirameters. In order to find an approximate time
formula, a prediction equation was evaluated by applying the program ID-MRCA
to the actual running times of a number of problems which had been run with
NOVACCM on the IB'M 7030 (STRETCi). In this study, the actuql running time
used by NOVACC14 was the "dependent variable", y, in minutes. As "independent
variables" (OCIVa, that is) the following three variables w,,re used:
x, = N number of IVs; x2 m G a number of factorial effects; and
x3 = n number of observations. The BIVOR-subroutine of DA-!RCA lod to
a more concise formula as comparvd to the one2 resulting from IVOR. in
order to) account for the time consumption caused by some of the other
paruTaL'ters, the coefficients W, S, and H (see below) are introduced in the
formula. All actual running times which entered the least squares
evaluualions art, from problems where the ranking option for both cumulative
mid i•igl. drpj)p1n. was chosen. In previous studies, only little differences
ý,'•'> noted between the running times of rankings with restricted and
unrestricted admi_•ihilt~y rulees The par-.etcr rd,,u rt, .- •d
admissibility is, therefore, neglected in the formula. The number of full
pjiitouts in the problems, whose times were used in the evaluation, may be
considered as representative of the typical problem.

The formula is as follows (T - NOVACaM - time in minutes on IM 7030
S'TR C):

T z 0.0 + WS [ll 4nN + 2(HGN4 + 0.l1¶ý ]t?3

whorv thie ayboln have the following meaning:

W = number W' dependent variables

S number of sets of CC No. 4

II number of ANVAs performed (this must be estimated since 1i is
dupendent upon the results of the analysis)
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n = number of observations

N = number of IVs

G = number of effects. (In case of multiple regression, use G=N.)

In the use of the formula, the third term in the expression in brackets
may be neglected as long as n < 100, say. Only in analysis of covariance
has H to be estimated. In the two other types of problems, H=l. S > 1
applies only in cases with confounded constants; otherwise, 8=1.

Since the estimated standard deviation for the least squares
fit of KIVOR was 0.9 (minutes), the formula is not very precise for the
running times of small problems. (See also the running times printed
for the examples in Section 3.4. ) For example, for G=lO, N=20, and n=lO0
(W=S=H=l, say), the formula yields:

T = 0.6 + l0G[Ell'4 100"20 + 26"10"400 + 0.159,10,10000]

= 0.6 + 10768228000 + 104000 + 15900]

= 0.6 + 0.5348 = 0.948 f l(minute).

However, the actual running time for a case like this may be as much as
three minutes. The relative accvracy is much better for large cases for
which the formula is mainly intendtd. In the largest case used for the
time study, where n-7 6 8 , 1,1=138, G=88, the actual running time of NOVACaK
was 6-. minutes. The predicted time, by the formula given, for this case
i. y-4.5 minut-es.

3.3 Interpretation of Results

In this section the meaning and use of the results contained
in the Final Comprehensive Analysis printouts of NOVACCM will be discussed.
The formulation of the complete printout for a problem is not given in
algebraical terms. However, the complete printout is discussed with
Example No. 1 in Section 3.4.1. For a general formulation of the complete
printout see Herring [19671 and the general interpretation of the printout
of DA-MRCA (Reference 2) which is similar to the complete printout of
NOV. 7CM. (i~ote. "Complete printout" means the entire printout for a
problem; whereas the "full printout" consists of the pertinent data at
a significant step in the ranking.)

5.3.1 The Final Comprehensive Analysis (FCA)

The format of the Final Comprehensive Analysis is the same,
for CCaO, FEMO, and for the ANVAs. (In case of more than one set of



CC No. 4, the FCAs of FFM'O are merely repeated as the "Final FCA" at the
end of & problem printout.) If the corresponding option is requested
(column 24 of CC No. 1), the FCA is printed for both the cumulative and
the sin•gle dropping procedure in COMO and/or FE4O.

The FCA format has 12 colurms which are discussed below,
starting from the left.

"STEP". This column gives thp step number of the ranking procedure.
(These are the same numbers which identify the "full printouts.") If COMO
has been part of the ranking, FEMO will always start again with step
number "I." The step numbers are not influenced by the fact that one
or more models cauid not be accepted by the program. (See Example 7 in
Section 3.4.7.)

"CMiC VAR" (C3MO) or "EFFECT" (FEMO). The second column from the
left gives the symbol of the concomitant variable ranked at a given step
of CC140 or the symbol of the effect ranked at a given step of FEMO. The
symbols used are explained in Section 2.2.

"PRC". In this column the PRoCedure is indicated which was used in
the ranking of an effect at a given step of FE24O. Depending upon whether
the +-, +-, or +++-procedure occurred at the given step, the corresponding
symbol is printed in this column. Also printed in the PRC colum) is an
asterisk if, at the given step, I(X) reached one of the up to throe
speCified significance levels a for the first time. Since even the
smallest specified a-value will be larger than the value Co = l"e which,
if reached by I(X), activates the + (or '+-, or -) procedure, the
printing of the symbol (or , or always has predominance
over the asterisk.

An asterisk indicates which step in the ranking corresponds to the
significant model for the &-level which is associated with that asterisk.
That is, the CIVs or effects whose symbols are printed at the step number
where the asterisk occurs and at all higher step numbers belong to the
significant model corresponding to that asterisk.

' ). This c lumn gives the computed value of I(X) which is
associated with the CIV or effect ranked at a given step. In general,
the printed I(X)-values will decrease with increasing step numbers. Due
to the behavior of the values which enter the I(X) computation, however,
the I(X)-values may fluctuate considerably 'in some cases.

Naturally, the asterisk in the PRC column a c a given step corresponds
to the I(X)-value which reaches, for the first time, a value smaller than
or equal to the significance level a associated with that asterisk. For
example, if the first asterisk printed corresponds to cy 0.05, the
I(X)-value of this step will be smaller than or equal to 0.05.
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"DIFF MS". The abbreviation of this column stands for "DIF~erence
Mlean aquare." The value printed is the difference between the regression
sums of squares of two consecutive steps in the ranking, divided by the
degrees of freedan of the CIV (which is always 1) or the effect ranked
at the given step. In "orthogonal" analysis of variance, DI"F HS equals
the mean square which one would obtain in a regular ANOVA table (see
Examples 2 and 3B in Section 3.4.).

In "non-orthogonal" ANOVA, as was discussed in Section 3.1.3, DIFF MS
can be used as a basis for a valid F test only when the null hypotheses
corresponding to all previously ranked CIVa or effects could be accepted.
The user would, in this case, divide DIY MS by MS(2) (given in a column

* ~of the FCA discussed further below) tc obtain an F-value whose si.. "ficance
* he can find from an F-table.

In the single dropping procedure where the user is willing to redefine
his model at each step of the ranking order (which was established by the
cumulative ranking procedure), DIFF MIS actually is the basis of the F-value
printed in an. FCA column more to the right.

"DI'F W" The abbreviation of this column stands for "DIFFerence
2 egrees of Freedom," and the number DIFF DF printed is associated -with
DZFF MS as indicated before. Independently of that association, the
DIFF flF columnn takes the place of the usual degrees-of- freedom column
in a 'regular" AN OVA table.

"F". This column gives the F-value of the Main Theorem, see (2-10)
in Section 2.1.2, as computed for the CIV or effect ranked at the given
step, for the cumulative or the single dropping procedure, as applicable.

"WS(1)". This column gives the ccputed mean square of the numerator
in F of the previous column. In single dropping, 145(1) equals DIFF MS for
obvious reasons.

"DFUl)". This is the number of degrees of freedom in the numerator
of the value in the F-column. If, in cumulative dropping, DF(l) is
multiplied by the 145(l)-value of the previous column, the result is theS.additional regression sum of squares", SS.. of the Main Theorem, due
to the N-N' IVs which have been deleted at the given step (when the number
of IWs remaining in the model is N'). In single dropping, one has merely
DF/%l) =DIFF BF' and DF(l) - MS(1) = DIFF MS.

"M()" This column gives the computed mean square of the denominator
in the F-value printed in the F-column. MS(2) is the estimate of the
residual variance and is used as such in the ranking procedure. In
cumulative, dropping, MS(2) remains constant through all steps until a"
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or , or is printed in the PRC-column. (See the FDO-part of
the flowcharts in Section 2.4.I.) In single dropping, MS(2) is rolef ined
at each step according to the redefinition of the model at each step in
this ranking procedure.

"DF(2)". This is the munber of degrees of freedom in the dencminator
of the value in the F-column. DF(2) in associated with MB(2) of the
previous column in an obvious manner. If the two value's are multiplied,
the result is the residual rum of squares.

"CCEFF DEVt. Li this column the value of the coefficient of
determination is prinved for the model of a given step before the CIV or
effect ranked at the stop has been deleted. This means, for example, that
the value of the coefficient of determination printed at the first step
of the FCA for CC1O is the one for the model containing all N IVs.

3.3.2 The Final FCA

In case there is more than one set of Control Cards 4 in a
given problem when FEMO is used, the program will repeat, at the end of
the printout of the problem, all FEMO FCAs which had been printed earlier
at the ends of the printouts for each individual set of CC 4. The reason
for printing the Final FCA is to ease the conparisons between the results
corresponding to the various sets of CC 4.

In genera:, aach FCA corresponding to a set of CC 4 will
show a different significant model. It should be remembered that each
set of CC 4 corresponds to a different model which includes one possible
selection fron the set of the confounded co-stants (see Appendix A).
Consequently, there are, in general, as many models, or sets of CC 4
(and, therefore, as many FE4Os in the Final FCA), as there are possible
selections from the set of the confounded constants. The Final FCA then
serves in finding that significant model which contains the least nrmber
of significant effects which is then called "The most probable significant
model." For further discussion of the use of the Final FCA the reader is
referred to Example 5 in Section 3.4.5.

The sequence of the printout of the individual FCAs in the
Final FCA is as follows, assuming the most general case where several
dependent variables have been analyzed and where both dropping procedures
have been performed (using the actual form of the printout in the identifi-
cation of the individual FCAs):
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SI / 2 St /1
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Note. In the FLza£ I•A, Uly the resulta of steps withaccepted models are given. This iS the only possible deviation frcm theprintouts of the individual FCAi .

3.3.3 Additional Analyses of Variance ("1ANVA.")

As mentioned earlier, in case of analyr, as of covariancewhen significant CIVs were found in COMO (cumulatie droppirg) andaccordingly were kept in the model through the FEMO ranking, the programperforms additional rankings of the factorial effects for the dependent
variable(s) after exclusion of all CIVs from the model and for eachsignificant XIV and for each OCIV contained in a significant GCIV,
provided the corresponding option (ADA > 0 in column 46 of CC No. 1) isrequested. Only the cumulative ranking procedvre is performed in theANVAs which are actually FEKOs for y and the OCIVs concerned.
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The ANVA for an OCIV may sho,; factorial effects to be
siguificant when the OCIV is not a "fixed" variate (i.e., does not correspond
to the theory of analysis of covariance) but is a random variable itself
like the dependent variable, y. For example, if one "factor" in the data
layout is "time of the day" (with levels 8 a.m., i2 noon, 2 p.m., cay), and
if one covariate is air temperature, the factor "time of the d•ql' 4ll
almost certainly appear to have an influence upon this OCIV.

If, in this example, the response variable y is a true
function of the time of day (independent of air temperature) the factor
"time of day" will appear to have a significant effect also upon y. There-
for, both the ANVAs for y and the OCIV (temperature) will show the effect
"time of day" to be significant. If both variables are analyzed in
combination in an analysis of covxriance model, and if temperature exercises
an additional effect upon the response variable, the OCIV "temperature"
may be significant (in COMO): and if kept in the model through the FE4O
ranking, may cause the effect "time of day" to be nom-kignificant with
respect to y. In other words, in performing an analysis of covariance
alone there is the possible danger of not detecting the significance of
a factorial effect. Performance of the ANVAs for y and the OCIVs will
prevent the indicated danger. Also, the ANVAs will givq in combination
with the analysis of covariLance, a much better general picture of the
relationship between the variables concerned than the analysis of covariance
results alone could give. See also Example 6 in Section 3.4.6.

The final comprehensive printouts of the ANVAs are
complemented by listings of the admissible effects at each step of an
ANVA and the associated I(X)-values and their argtments. These
complementary printouts serve, as they do in the other printouts, to
inform the analyst how the ranking of the factorial effects was actually
performed.

3. 4 Enaames of Application

In this section, 7 examples of application of the NOVACGM
program are discussed. Since it is not possible to show all features of
the program in the printout of one single example, those parts of the
printout of the examples are reproduced which show features not exemplified
in other examples. For Example 1, the complete printout is reproduced.
For some examples, only the Final Comprehensive Analyses (FCAs) are
reproduced.

Following is a list of the headings of the 7 examples:

Example 1: Multiple Regression (Duncan, 1959)

Example 2: Half Replicate of 2x2x2x2 Factorial (Davies, 1956)
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Example 5: 3x4 Factorial (Hicks, 1964, and Robscn, 1959)
I SA: Restricted Admissibility, noe

B: Unrestricted Admissibility, Uncoded

C: Unrestricted Admissibility, Coded

Example 4: 2x4x4 Factorial, 5 cells empty (Stevens, 1948)

Example 5: 3x3x2 Factorial, 5 cells empty, 3 constants confounded

Example 6: 3x3x3 Factorial, 9 cells empty, with 3 OCIVs, 2 dependent
variables

Example T: 3x3x3 Factorial (Example 6 modified) with singularity in
matrix A.

The areas of application exemplified are as follows:

I. Multiple (polynomial) regression: Example 1.

II. Analysis of variance for orthogonal data layouts: Examples 2,
3A, 3B, 3C.

III. Analysis of variance foi non-orthogonal data layouts without
confounding: Example 4.

IV. Analysis of variance for non-orthogonal data layouts with
confounding: Example 5.

V. Analysis of covariance for non-orthogonal data layouts with

confounding: Example 6.

The various features of the program are illustrated as follows:

1. Complete printout: Example 1.

2. Multiple dependent variables: Example 6.

3. Model generation options (not all possibilities illustrated):

CIVs, all automatically generated: Example 1.

CIVs, automatically generated; and deleted via CC No. 5:
Example 6.
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DIVe, all hand-generated via CC No. 4: Exaailes 6, 7.

DIVs, all automatically generated: Example 3.

DIVs, automatically generated; and hand-generated via CC No. 4:
Examples 2, 4.
DIVs, automatically generated; and deleted via CC No. 4:
Example 5.

4. Types of factors:

All qualitative: Examples 2, 4, 5.

All quantitative: Example 3.

Both qualitative and quantitative: Examples 6, 7.

5. Coding: Examplea 3C, 6, 7.

6. Admissibility for ranking:

Restricted: Examples 1, 3A, 6, 7.

Unrestricted/Relaxed, Examples 3B, 3C.

7. ANVAs: Example 6.

All example problenrs were run with the option for both cumulativeand single dropping and in all exdmples, except No. 1 and No. 2, 3 signifi-cance levels & were specified (1 only in Examples 1 and 2).

3. 4.1 Example 1

This example i exhibited in order to show the capability of
NOVACCH in multiple regression. The example also serves to illustrate theentire printout of the program for this case. The exhibit of the completeprintout allows a comparison with the treatment of the problem by DA-MRCA(Reference 2). The same data was also ised as an example in the documentation
of DA-MRCA.

The data is taken from Duncan [1959), pý e 697. There aretwo OCIVs (xl = Plate Thickness in inches, and x2 = Brinnell Hardness&umber) and one dependent variable (y = Ballistic Limit in Feet/Sec.).A model of third order in xx and x2 is automatically generated which leadsto N=9 CIVs. The number of data points is nz20. See the reproduced input
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sheet for this example. Following the input sheet is the reproduced
printout from NOVACO4 on which are written the numbers of the notes which
follow below. The reader is also referred to the notes on the flowcharts
in Section 2.4.2 which explain many of the features of the complete
printout.

Notes on (comqlete) printout Example 1.

(References to "boxes" are to the comments in Section 2.4.2.)

Note 1.1. The entries on Control Card No. 1 are printed for identifi-
cation purposes.

Note 1.2. The 2 CCIVe ("IV 1" and "IV 2") and the 7 autcMticLUy
generated GCIV& (P-3, CC No. 1, columns 14-15) are identified. See
Section 2.2.1 for the notation used.

Note 1.3. The data input is printed (xl,x 2 ,y). See comments on
Box 1.!.

Note 1.4. The maximum and minimum value for each OCIV io given plus
the range and the interval size ("DEUTA") for the frequency bar charts of
the CCIV values. See comments on Box 1.1.

Note 1.5. The "FULL DATA MATRIX" contains the values of the 9 CIVs
(2 0CIVs and 7 GCIVs) and of the dependent variable. The horizontal and
vertical marginal identifications give the IV numbers and the observation
numbers, respectively. See comments on Box 1.3.

Note 1.6. The "SUMMATI(i MATRIX" is the (N+2)x (N+2) - matrix composed
of the (N+l) x (N+I) matrix (A) of the coefficients of the normal equations,

i.e., of the terms E xvixV I r v - O,1,...,N, (N-9 here), with xt w 1; and
tt(only the row vector prtd)and t-o

marginal identifications give the IV numbers, v 1 1,...,9. e comments on
Box 1.3.

Note 1.7. The averages of the values of the N-9 CIVs and of yi are

printed. (For example, E1  X t M 0.i24 979 .. , and y - 1,To • I o.Y97 =. 11T9- -• 15.)

Note 1.8. This is a printout of the IV-numbers of the admissible
CIVS -ZEETiJeirst step r COMO. See Note 1.2: under restricted admisuibility,
only xcl, xjx, xjxj, ar A% are admissible for ranking at the first step.

Note 1.9. The regression coefficients are always printed at the first
step.
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Note 1.10. The I(X)-value corresponding to the CIV (IV No. 6: x4)
ranked lasat irportant at the first step of CCMO is printed together with
its arguments: ARG I a JfR.5 and ARG 2 - Vfi-0.50. (See also formula
(2-12) in Section 2.1.2.)

Note 1.11. The printout identification indicates whether this in a
C(040 or a FE4O ranking; the number of the dependent variable in given
("Y1" if there is only one dependent variable as in the present example);
the ranking option is indicated: CUW.L - cumulative dropping; SINGLE
single dropping; and the number of the SET of Control Cards No. 4 is given.
If there is none or one Set of CC 4, or if the problem is one of multiple
regression (as is the case here), "SET 1" is printed here. (See also the
identification lines at previous places of the present example: "SET 1"
Is printed everywhere, whereas the other 5 spaces are left blank when not
applicable. )

Note 1.12. The inverse matrix A" is printed for the first step
of CC1O wTere the model contains all Nw9 V•s.

Note L1.. The main diagona.l elements of the computed identity
matrix A*A are not printed since all deviations from 1 were smaller than
TOLI(2) • 0,001 which was used as input value.

Note .14. Following are the printouts assorlated with the Chi-squa~re
cacputationse ?or the normality test of the residut:. . These printouts are
alwkys given for the first (good) step.

Note 1-15. Admissible for ranking at the second step are CIVs Nos. 7,
8 and 9; that is, after dropping x4 from the model, no CIV became additionally
admissible for ranking. Following are the ranking informations for steps
L' throu&h 7 (see Notes 1.d and 1.10) and the values of the regression
coefficients for each step because IRCO-1 in column 45 of CC No. 1.

Note 1.16. At Step Number 7, I(X) reacheq for the first time, the
first specified a-level: a, = 0.05, see columns 26-29 of CC No. I. The
"full printout" for thin step follows; see the comnients on Box 7.4.

Note 1.1T. The statement "DEVIATICOS OF MAIN DIAGCNAL IDENTITY MATRIX
ELEWNTF =S THAN .001" is printed, however, the actual computational check,
in this example, was done for the first step only. Otice the model of a
step has been accepted by NOVACtM, the accuracy checks are not performed
anymore after that step. See also Section 2.1.3.

Note 1.18. The "RESIPAL OR ERROR SUM OF SQUARES", at this point of
the '"full printeut" is defined as ATSS-ASSR(N'), with N'=9-(7-1)=5 in the
present example. That is, should the anilyst decide to use the mlo.d"l k,:
this step (the "significant model" at a = 0.05, containing 5 CIVs) as the
prodictimo model, while pooling all non-significant CIVs into the, error,
the value printed is tr.l pooled error sum of squares. The "CILECK ERROR
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SUM OF SQUARES" is the sum of the squarea of the prediction errors given
further below (see Note 1.19). It serves as an additiona1 check on the
computational accurLcy. The "SQUARE ROCT (F (the) RESInUAL VARIANCE" is
the estimated error standard deviation, a, for this step based on the Error
Sum of Squares discussed above. The value a is used in the computations of
the standard deviations of the regression coefficients given later in the
full printout (see Note 1.20). See also cements on Box 7.14.

Note 1.19. The "PREDICTED VAUES", the "PREDICTION ERRCRW", and the
subsequent Chi-square computations are based on the model of this step,
that is, on the model containing the 3 significant CIVs. See Note 1.18.

Note 1.20. The "STANDARD DEVIATICJS CF THE REG2ESICR CCEVfICIEDTS"
are the-values r /,, v M 0,1,2,4 in the present example, where s Is the

standard deviation of this step, see Note 1.18.

Note 1.21. The last 9 lines give the information on the 1(X)-computations
for C(HO, single dropping.

Note 1.22. The FCA for CGaO, cumulative dropping, shows that the
significant model, at the o a 0.05 level, based on this dropping procedure,
contains xjx2 , xj, and x2 (in their order of ranking, with x2 being the most
important CIV). See also Section 5.5.1 on the interpretation of the 1CA
results. A ccesparison with the treatment of the same problem by DA-MRCA
(Reference 2) shows the amwe significant model obtained by NOVACOH and by
the BIVOR option of TA-MRCA.

Note 1.24. The significant model, at the a - 0.05 level, resulting
from single dropping is the same as the one resultin= from cumulative
dropping.

Note 1,24. The indicated probim running time is 28 seconds. This
is approximately the same time which the problem took when analyzed by
tDL4MCA.
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3.4.2 Example 2

Example 2 is to show the capability of NOVACCM in the
analysis of variance for incomplete but balanced data classifications.
This capability is demonstrated with one of the simplest cases possible,
namely that of a half-replicate of a 2'-factorial experiment. The data
is taLken from Davies r1956] p. 455. The layout of the 8 observations is
given in Table 3.1. (The cell numbers are indicated in the upper left
corners of the cells. ) On the reproduced input sheet for this example
note that only 2 of the 3 two-factor interactions have been fitted in
order to provide the minimum of 1 degree of freedom for error in the
FEMO ranking. The two interaction effects fitted are (Z and 1; their
respective aliases CW and W could have been fitted as well. The four
main effects are automatically generated whereas the two interactiono
are written on two CCs No. 4, that is, they have been "hand" -generated.

.B-1 C22.

1111 1122

47 1212 2 1221

2112 2121
_____ii_____ 121 ____

62 -3 2211 114 2222
52___ 1301 1 132__

Table 3.1

Data Layout Example 2

A partial reproductton of the printout of this example
is given in order to show features which could not be shown with Example 1.
The notes on these features follow beloi..

Notes on printout Example 2.

Note 2.1. The numbers printed here are programming information on
the admissibility of effects; see Herring [I1967.
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Vote 2.2. The DIVs and the effects are identified. In the present
case the number of DIVs equals the number of the el'ects since all factorial
effects are one-degree-of-freedom effects.

Note 2.3. For a crossed data cOAssification the FULL DATA MATRIX also
contains the cell identifications. The numerical values of IVs No. 1
through 6 are the design point coordinates which values are either 1 or 0.

Note 2.4. At the first step (of F240), effects No. 4, 5, and 6 are
admissible for ranking, that is, 8, c. and X,. a, 8, and C are sub-effects
of 09 and tZ and, therefore, are zot adzUssible at the first step.

Note 2.5. ThL three 1(X)-values corresponding to the three effects
4, 5, and 6 are printed. The second I(X)-value, that is, the I(X)-value
corresponding to effect No. 5, is the largest one. Therefore, effect
No. 5 (9) is r nked as the least important and deleted from the model.
With a deleted from the model, effect No. 2 (1) becomes admissible for
ranking in addition to effects No. 4 and 6 at the second step.

Note 2.6. The last 5 lines of the 1(X)-printouts are the first
five of FEMO, single dropping. Note that the last I(X)-value is smaller
than ALPHA(l) = 0.05. Therefore, a full printout is given for step No. 5
of FEMO, single droppLng.

Note 2.7. The FCA for FEMO, cumulative dropping, shows that there
are no significant effects. However, one must not forget that this
conclusion is based on only 1 degree of freedom for error. For the
orthogonal data layout of this example, the DIFF Ml - column shows the
mean squares as given by Davies [1956), p. 456.

Note 2.8. The FCA of FMO, single dropping, does show a significant
model which contains the two main effects d and 8, with & being the effect
ranked most important. By covious reasons in the present example, w'ich
is exhibited for the purpose mentioned, it does not make sense to try to
close the gap between the results of the two ranking procedures.

Note 2.9. Problem running time was 24 seconds. This is relatively
long; however, one must not forget that a program like NOVACOM is bound
to be inefficient (timewise) for a small case as the present one.
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3.4.3 Example 3

Example 5 is exhibited in order to illustrate the effect of
coding and of the restricted admissibility rules upon the determination of
a significant model when there are quantitative factors. At the same time,
the example demonstrates the applicability of NOVACCI in analyzing orthogonal
date layouts when the quantitative factor levels are non-equidistant.

1. 82 03 84

X =0 X2 =1 X, 3 =3 Xb4=6

16 12 17 13X. I =0 14 11 19 11

E =30 E =23 E =6 E =24

=2 15 1A4  15 126615 17 18 14

E =30 E -31 E =33 Z =26

10X 3=5 10 T 10 99 6 14 13

T=719 E =13 E =24 E =22

Table 3.?

Data Layout Example 3

The data as exhibited in Table 3.2 is taken from two
sources: the 24 values of the response variable, y, are from Hicks [1964),
p. 129, and the quantitative factor variable values are from Robson [1959].
(The totals for each cell are given for purposes to be seen later.)

The data in the 3x4 classification with both factors
and S being quantitative (leading to a breakdown into 11 one-degree-of-
freedom components of the sum of squares between cells) is treated in
three different ways:
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A (Example 3A): factor levels uncoded; restricted admissibility
in the ranking of factorial effects.

B (Example 3B): factor levels vncoded; unrestricted admissibility
in the ranking of factorial effects.

C (Example 3C): factor levels coded; unrestricted admissibility in
the ranking of factorial effects.

The resulting significant models are different in all three cases as
will be discussed with the reproduced printout of the FCAs. Besides the
FCAs again only those parts of the actual printout are reproduced which
show features not exhibited in tie two previous examples.

Not-es on printout Example 3A.

Note 3.1. The level values (values of the auantitative factor
variables) are identified.

Note 3.2. The quantitative factorial effects (all with 1 degree of
freedom) are identified.

Note 3.3. Only effect No. 11 (Qjl usd x a uble ) is admissible for
ranking at the first step since all oMher effects are sub-effects of this
effect.

Note 3.4. The 1(X)-value corresponding to effect No. 5 (Sbtl ) is the
larger one among the two computed at this step so that this effect is being
dropped fram the model at this step (No. 8). Since t ie I(X)-value
corresponding to e,,bt, is also sma.ller than ALaRA(Z, 0.01, a full
printout for this step is given.

Note 3.. Step No. 7 in "single dropping" yields an I(X)-value
which is smaller than ALPHA(2) = 0.01. Sinc^ no full printout for step
No. 7 had been given before, it is given here.

Note .6. With restricted admissibility in the FEMO ranking, the
"DUTFF MScolumn in the FCA shows, for this orthogonal case, the breakdown

of the sum of squares between cells into orthogonal. components as one would
obtain them by application of orthogonal polynomials.

The value DIFF MS = 5.2457707 for 9adr. x 8
1,aar (Step 5 of the

ranking) may be checked in employing the coefficients given by Robson [1959],
ir his "Table 4.'. The sum of squares (1 degree of freedom) due to the
compnn.nt Q.4t is computed as follows, using the totals from Table 3.2
given earlier:
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-15.30
+-25-30
-1019
- 9"23
+15'31
- 613
+ 3'36
- 5-33

+ 2.24
+21.24
-35-26
÷i+ l22

Sum = 183

Sum of squared coefficients = 3192

Sum of squares due to "0.Is" - (183)3 5.2457707-
2-3192

Note that the significant model, at the t = 0.05 level, contains all 11
effects.

Note 3.7. The FCA for the single dropping procedure shows the same
significant model at the 0.05 level as did the FCA for cumulative dropping.
For the 0.01 significance level there is a gap between the two models.
This gap may be closed by dividing DIFF MS = 36.266447 of Step 7 in
cumulative dropping by MS(2) = 2.875 to give a value of F = 12.614 which,
with 1 and 12 degrees of freedom, is significant at ALPHA(2) = 0.01.

Note 3.8' This is the FCA, 10, c•milat•ve dropping, for Example 3B.
Due to the unrestricted admishibility in the ranking, the ranking order Is
different from that obtained in Rample 3A. Note the differences also in
the values of DIFF HE in thAs orthogonal case: none of the D•IF MS-values
is equal for Example 3A a"I 3B. The significant model is equal for
cumulative and single dropping at both levels ALPHA(.1) = 0.05 and
ALPA(2) = 0.01. Note that at the 0.01 level of significance, the
significant model as defined by the ranking now contains the effect
44,,, only. However, dividing DnF MS - 39.ZT2801 for 19,usir. (Step 9)by (2) = 2.875 yields F n 13.660 which is also significant at the 0.01

level.

Note 3.9. Example 3C differs from Example 3B only by the coding of
the quantitative factor level values, For instance, the three levels of
factor a, i.e., X1  5 = 0, X, 2, and X - 5, with Range = 5-0 = 5, and
with average = (0 + 2 + M3 = 2.35, are in coded form: -0.4667, -0.0667,
+0.5333. The ranking is again different (from those of Examples 3B and 3A)
and the significant models contain even fewer terms than in Example 3B. The
gap between the significant models of cumulative and single dropping at the
0.05 level may be closed by dividing DIFF M = 17.402285 of (S• 6 1 7 (5tep 6)
by M•(2) = 2.875, leading to F = 6.053, which is significant at ALPHA(l) = 0.05.
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3.4 .4 Example 4

Example 4 is the first in this series of examples of
NOVACC•4 applications which deals with an incomplete and unbalanced data
layout. The data is that of the example treated by Stevens [1948] and
the layout of the values of the response variable y = "gain in weight"
is given in Table 3.3 in slightly different arrangement than given in
"Table l" on page 349 of the Stevens paper. The factor symbols used
correspond to the 3 (qualitative) factors as follows:

Factor L: Sex (67, = "M", L7a = "F)

Factor 8: Type of wheat in diet (81= "A", 6z = "B", 8s "C",
84 = "D")

Factor J: Litter (C2. "I", C12 "II", C3 = "I1I", C4 = "IV )

41 43 73 81 67
58 59

S2 3 75 i01 00- 8-5 89 1

93 91 85 92 106
88

134 b 9 105 109
89 108

83 58 62 71

82 60 71 76
BaEa2 70 TO 73

58
84 69 76

1 1 172

Table 3.3

Data Layout Example 4

The fitting of constants follows the rules given in Appendix A. All
main effects and all two-factor interactions can be fitted, however,
because of the five empty cells, only 4 constants for the aR interaction
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can be fitted. This interaction would be represented by 9 constants
(9 degrees of freedom) in a "full model." There are no "identities"

for this layout, that is, there is no confounding among the factorial
effects. The fitting process for the 4 tPree-factor-interaction constants
is illustrated in Table 3.4 where the types of checkmarks explained in
Appendix A are used. The four circled "X's" indicate the four constants
fitted: abc,1 1 , abC1 1 3 , abc, 12 , and abc 1 3 2 . (Other sets of 4 constants
could have been chosen for the M interaction.)

Ci C2 C3 C4

81. ® V 0 V
/92 (D Vy ve,
83 V 0• V

34 \X _)(

67 2 yr V

Table 3.4

Fitting of M Constants in Example 4

The model containing 26 DIVs was fitted by generating
automatically the full model of order D=2 (CC No. 1, columns 4-5) and
by adding the four M-constants via CC No. 4; see the reproduced input
sheet.

Of the NOVACGM printout for Example 4 only the two FCAs
are reproduced. The cumulative dropping procedure results in a significant
model (at the level ALPHA(2) = 0.05) containing only the main effects of
e and 6. The single dropping procedure results in a model, at again the
0.05 level, containing the effects a, 3, C,, and a9. Dividing
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DF7 M= 197.28205 of aq in cumulative dropping (Step 4) by MS(2) =49.722222
yields F=3.968 which with 3 and 9 degrees of freedom is significant at

S- 0.05. Therefore, the gap between the two significant models can be
closed, and the conclusion wouild be that the significant modeý., at the 0.05
level, contains the three main effects (with 7 degrees of freedom) and the
&7 x 8 interaction (with 3 degrees of freedom). The ranking order within
the significant model shows that L and 1 are of approximately equal
importance, wherea C. and 4 are less important with a being marginally
significant.

The above conclusions are essentially those which are
reached in the analysis by Stevens ("Table 12" on page 365 of the paper).
However, Stevens separated one degree of freedom from the a9-interaction
which enabled him to allocate the significance of a to this one degree
of freedom. In NOVACCM, the split-up of qualitative factorial effects
into single-degree-of-freedom contrasts is not possible.

Table 12 of the Stevens paper also allows a comparison with
the sums of squares obtained by NO•ACCI4.

The following table of values is computed from the FCA,
cumulative dropping, columns "ME(l)" and "DF(l)."

Stevens
Step SS(l)-.M()xD(l) DF() De to Value

7 9272.50 26 all effects 9272

4 1401.07 19 all interactionn

Difference 7871.-43 7 3 niain effects 7871

7 9272.50 26 all effects 9272

3 809.22 16 dldw 813

Difference 8463.28 10 7,8,0,4 8459

4 1401.07 19 all interactions --

ý3 809.22 16 =W.14321 813

Difference 591.85 3 588
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The discrepancies between the values obtained by Stevens and those by
NOVACOM are amall and may be attributed to the lesser accuracy of the
computational procedure employed by Stevens. Note that the Stevens
value 538 for the sum of squares due to O is the sum of the values
462 and 126 in his Table 12.
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3.4.5 Example5

Example 5 is a numerical illustration of Example E (a 3x3x2
frctorial) which is trIated in general t-rms in Appendix A. Examvltl 5
serves to illustrate the capability of NOVACCI in ianlyzing incomplete
and unbalanced data classifications when there is confounding among the
factorial effects.

- e numerical data of the example has been generated
according to the following model in which all effects involving factor C,
are absent:

yaoyp , YUA e Gao, m + % + b + abGl + e OsVp,

where egfp NID(0,1) and where, according to the structure of Example E,
a 1$,2,3; - 1,2,3; y - 1,2. Actually, therefore, one deals with a two-

factor classification containing a dummy third factor, C'. Consequently,
the ranking process is expected to yield a significant model c*ontaining
orly the constants 1., 1, and aba,.

In the construction of the data the following values were
assigned to the model constants:

m= 13

a., 4 b, - -3

a 2  11 b2 = 8

ab=1 1  5
&ab2 l -19 abu - 3

With these values, the following Table 3.5 of expected cell means, ,
and actual "observations", y.O. = + euppO, has been constructea,
using a table of random normal aeviates with a=l. (See also Figure 5a
in Appendix A.) For example, YL. -• 13 + 4 - 3 + 5 = 19, and ell,, - 0.8.
Note also that repeated observations yapo p have been included in 5 cells
which will provide an estimate of oa=l based on 5 degrees of freedom.

1140
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(7i
(Y11 -.• 19) ( Yzs -17 )

C Y112•.}.193.8 Y13iu1I.'" I

Yiiý-,--20.7 Y13MM -16. 1

(Y211 -2) (Y22i -35)

Clya2222-35.3

Y21y3 5.63 .0

cia.J -1)-25
a, y¥.11-0.8

Ce Y312112.8 Y3221=21.6 Y33•%'13.•
y-,__. "r20.3

Table 3.5

Data La&Vut E•zMam. 5

Because of the cwfounding in the given data layout, there are three
possible models upon which the ranking process can be based, as is
described in Appendix A. All three models have in common the following
part:

.•0) = M + a1xI + a 2 X2 + bjx3 + b2x4 + cjx 5

+ ablixe + ab22x7 + acjxG + bc 1 xq + abc Il~x 1 o.

Each model, in addition to YO) , contains two more constants, namely
a pair from the three confounded constants abol, RcLp and beaj. Thus
the three models are defined as follows:
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- _ _ _ _

Model I :~ Y( Yo) + ab,141) + a 1 j

Model IT : Y(XI) - i(o) + ab.141') + bcs1 j~)JX

Model III: Y(111) - Y(o) + ace3 14j") + bcs,. 1 91I)

The three models are gencAated by NO'ACO( as follows. A third order
model (D-3, columns 4-5, CC No. 1) Is generated autotically from which,
in each case, 5 DIVs are deleted via CC No. 4. The 3 respective sets of
CC No. 4 have in canon the 4 DrVo &b1 5 , abc1 3 1 , *bCall, and &bc~22. In
addition, Cc 4 Set No. 1 contains the constant be8 3 ,, Set No. 2 contains
acia, and Set No. 3 contains aba 1 , correosoding to the three models
defined before.

Since Model III contains two constants (acp1 and bca 1 )
representing intera&ttime with the dusr factor ., this model must be
expected to yield improbable resIlts becsase the effect appropriately
measured by the constant abi 1 in assigned to degrees of freedom asociated
with aý and M- Models I and II, however, should yield the proper
significant model since both contain the constant abl.

The asIraptions mie verified by the results of the ranking
processes as shown in the MeA.

In thua example, only the "Final FC&" is reproduced which
cosbines the individual FlAs given for the three sets of CC 4, that is,
fur the threc models.

In practice, the user of NOVACCH doas not know which CC 4
Set will yield the proper sign•fi•eant model. Hwever, as was discuased
in Section 3.3.2, he my conelu.1de that the significant model containing
the smallest number of effects in the prper one. This model has been
ca.led "the most protw.ble signficant model."

Looking at the rankings as established for the three models
(the FCAs for "SET 1", "sBT 2", and "SET 3"), one can see that the first
two significant models contain only the effects 8, a, and a at all three
significance levels a used as input. Model III (Set 3), however, leads to
& significant model (at c - 0,05 in cumalative dropping and ' - 0.01 in
single dropping) containing all effects except aW. Therefore, the user
would conclude that either Model I or Model II mei the right one to use
since both led to the same "most probable significant model."
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Althouh the problems of stlaition are not discussed in the
present report, it is interesting to see how Plose to tk*ir true values the
constants are estimated in the significant model which reads as follows
for both Models I and II (the pirntaut of the regression coefficients of
Step 5 for "Bet 1" and "Set 2" is not reproduced):

- 15.2 + 2.7x, + l0.8Bx - I-9x3 + 7.8x4 + 5.6xe + 3.4x7- 20.Oxj.

That is, one hag:

-Lw . -1.9

ikb -1. 8• " 5.8
aba m--20.0 ;ba, 3 4

None of these estimates is significantly different fram the true values
(which were listed earlier) when testing at the 0.05 significance level.
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3.4.6 .Examle 6

Among all examples exhibited in the present report, Example 6
shows the largest number of NOVACC14 features in combination. Example 6
is one of analysis of covariance for an unbalanced and incomplete 3x3x3
data classification with 2 dependent variables and 3 OCIVs. The data is
synthetic.

Of the 27 cells of the layout 9 were randomly selected to
be enpty. Factors d and C. are quantitative, and factor 8 is qualitative.
The quantitative factor level values are unequally spaced and their values
are coded as are those of the 3 OCIVs.

Two different models were used in the construction of
the data for the two dependent variables: For Yj a model was used in
which C, is a dummy factor, whereas for Y2 a model wa used where LI is a
dummy factor. The constants of the two models are at follows:

For Y3.:

m= 13

a]= 5 b, -6
a2: 9 b2 3

abl, = 2 ab12 - 40
ab 2 l = -10

For Yp;

m 13

bi= 20 ci= 5
b2 = 10 c2 =25

bci = 1 bc 1 2 = 30
bC2 1 = -16 bce2 60

(Note. The constant aU2 2 was not needed in the model for Yj; see further
below.)

Table 3.6 shows the data layout of the values of Y1 and Y•,
i.e., of the expected values of the response variables. Also shown are
the numbers of repeated observations in the cells, R 'f, and the values
(factor levels) of the quantitative factor variables X and X.
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C2 CSY-- 1 )%•=2X 3 --9

R 1 11=2 Y1=14 R1 12 =1 Y=-14 R1 13 =2 Y1 =l4
81 Y2 =39 Y2=88 Y2=3

Xi -2 82 R1 2 1 =O R1
22--4 Y 1=61 R123=O

R131 =2 Y1=18 R13=1 Y1=18 R133 =1 Y=18
y2 =18 Y2 -38 Y2 =13

,I R21 1 =3 Y1=6 R212=O R213=O
81 Y2 =39

a2 Y-.6 82 R221 =l Y1 =25 R222 =O Ra2M=1 Y1 =25
Y2-12 Y2 =23

RaM=ll Y1 -=22 Ram=3 Y1 =22 R2 3 =l YI=22
y2=18 Y2=38 Y2=13

R311=2 Y1=7 R3 1 2 =l Y1=7 RF3 s=2 Yi=7Si Y2 =39 Y2 =88 Y2=53

ac7 YS3=7 132 R32 1 =O Rq22=O Pa3=O

, % R 3 1=l Y1=13 R332=1 YI=13 R333=D
Y2=18

Table 3.6

Data Layout Example 6

Considering, for the moment, all three factors as being
qualitative, Table 3.7 shows the fitting of Ocm-constants using the method
explained in Appendix A. Only one cm-constant may be fitted; abc,11 wasselected from the two possible constants (the other one being abcll).
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Tble C2 C

a 81a

a72  82 V

493

'63 se

Table 3.7

Fitting of cM-Constants in Example 6

Since factors a and C are, in reality, quantitative factors,
the fitt-d constant abc1 11 must be interpreted accordingly. One can easily
see that abc 3 • can represent the interaction between the component
t Ix C I, and factor S. Therefore, abc 1 11 is equivalent to Xab,)c with

1 degree of freedum. In the terms of the NOVACGM notation this is the DIV
1.1 x 2*1 x 3.1. Since this is the only DIV representing the interaction
6W (containing both qualitative and quantitative factors), this DIV is
also a PFFE.

Tables 3.8 a-c show the fitting of two-factor interaction
constants. Again, all three factors are considered to be qualitative
for the moment. As can be seen, 3 of the 4 4-constants can be fitted,
and all 4 Xc- and all 4 503-constants can be fitted. Since all 6 main
effc-ct constants can be fitted, one has 6 + 11 + 1=18 constants which
app- ,r ac if they can be fitted. However, there are only 27 - 9 - 1 = 17
degrees of freedom "between cells." Consequently, there must be one
identity in the duta. Looking at Table 3.7, one notes at once that
elininatine all observations fram cell a1e_ also eliminates all observations
frow cell e. Therefore, the icentity is:
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I

6i 2 83

a' ®R

473V_

@ @a2 @2  c

C1, C2 C3

Tables 3.8 a-c

Fitting of the Two-Factor Interaction Constants in Example 6

One can fit either ab1 2 or bc 2 2 , but not buth at the eame time.

In order not to add unnecessarily to the amount of printoutto be reproduced, it was decided to have only one CC 4 set and to fit bcap.(The fitting of be22 leaves the interaction cn, which is represented by2 constants, to be the only other PFFE in addition to cM.) Since C is adummy factor for Yl, the fitting of bcaa (instead of able) should lead toa false significant model containing factorial effects which involve factorC,. For Y 2 , a1 is a dummy factor, and the fitt 4 .ng of bc22 (instead of able)should lead to a realistic significant model. These assumptions are verifiedby the FEMO rankings, see further below.
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The interpretation of the 1 fitted constants for the real
situation of factors a and C, being quantitative is not difficult. The
relations for al 17' constants fitted are as follows:

Fit X, and 4 instead of aI and &2.

Fit X0 and )instead of cl and C 2 .

Fit X)ýb and Xb1 instead of ab1 1 and ab2.,

Fit XXk, X,1, XX, 4 instead of &C1 1 , &e1 2, aC21, ac22.

Fit bNX and bNX instead of bcjj and bc 12 .

Fit bX, and b5X instead of bc 2 1 and bc 2 2 .

Fit XY.NX, instead of abc, 1 1 .

The 17 DIVs were "har.d"-generated via CC No. 4; see the
reproduced input sheet. A third order model in the three OCIVs was
automatically generated from which 9 GCIVs were deleted via CC No. 5,
leading to a total of 10 coveriates (CIVs) in this analysis of covariance
example.

The residual terms, e, in the observed values, y - Y+e, of the
two dependent variables were taken from a table of normal random deviates
with a=l. The 30 values each of Yi and Y2 and the 30 values each of the
thkuee OCIVs are given on the reproduced input sheet.

The significant CIVs, if any, to be kept in the model for
the FEMO ranking are determined by the choice of KALA = 1 and ALPHA(l) = 0.05.
ALPIIA(2) = 0.01 may be considered as the principal significance level in this
example. See also the discussion in Section 3.1.3. All rankings in the
present example are performed under restricted admissibility rules (CAD = 0
in column 58 or CC No. I).

The printou•t exhibited for Example 6 consists of the
identification of the IVM, all FCAs, and the ranking information for the
ANVA of OCIV 1. Following are the notes referring to the printout.

Notes on printout Example 6.

Note 6.1. The coded factor levels (values Qf the quantitative factor

variables) are printed. For example, XV3 = ±IJL±5.= __- _ o.4.
R 5

Note 6.2. The identification of the 17 IVs and the 14 effects is
reproduced since an example of the identification for which the number of
IVs is differcnt from the number of effects was not shown previously.
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* (Also, the numbering of the effects is necessary information if the reader
wants to follow the ranking process in the ANVA for OCIV No. 1; see Note 6.11
further below.) Note that effects Nos. 6 and 7 represent the PFFE a9 with
2 degrees of freedom and that effect No. 14 represents the FFFE c with I
degree of freedom.

Note 6.3. For yl, only OCIV No. 1 is significant at the 0.05 level.
Note that due to the fact of having fitted 10 CIVs there are only 2 degrees
of freedom for error: DF(2) = 2.

With OCIV No. I being significant at ALPHA(l) a 0.05, this OCIV will
be kept in FEMO and, therefore, the program will per'form the ANVAs for
y. and OCIV No. 1.

Note 6.4. CCMO, single dropping, yields a significant model (at
0.05) containing 4 CIVS. However, with only 2 degrees of freedom for

error in CGIO, cumulative dropping, it does not make sense to try to close
the gap between the two models. (In practice, one would not fit such a
large covariate-model as was done here for demonstration purposes.)

Note 6.5. The significant model for yj resulting from FEMO,
cumulative dropping, contains four factorial effects involving the dummy
factor C, as was predicted. DF(2) equals 11 after one degree of freedom
for OCIV No. I was subtracted from the degrees of freedom "within cells."

Note 6.6. The single dropping procedure of FEMO for yi results in
the z-:.c significant model as was obtained with the cumulative procedure.

Note 6.T. For the second dependent variable, y2 , C1MO, cumuýative
dropping, does not houw any significant CIVe. Therefore, no ANVA will
be performed for y2 or any cther OCIV than No. 1.

Note 6.8. The single drorpping procedure of CC.MO for y2 does show
significant CIVs, however, again because of only 2 degrees of freedom for
error in the cumulative dropping procedure, closing the gap between the
two models is not worthwhile trying.

Note 6.9. FEMO, cumulative dropping, yields a significant model for
y2 which contains effects involving factors 8 and C only, as was predicted.
That is, there are no factorial effects in the significant model involving
factor Lj, which is a dummy factor for y2. The significant model is reached
rather abruptly at Step 10: the ++-procedure had to be applied in order to
continue the ranking. The ranking order within the significant model shows
factor C to be by far the more important of the two factors.

Note 6.10. The single dropping procedure of FEMO results in a
significant model for Y2 which contains, at the 0.05 level, also the two
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degrees of freedom representinp the main effect of the dummy factor t.
Indeed, dividing DIFF MS - 4.O0T2454 of Step 8 ia FD40, cumulative dropping,
by MS(2) = .68833353 yields F - 5.•321 which, with 1 and 12 degrees of
freedom, is marginally significant at the 0.05 level. However, because of
this margina] significance (which actually is random, as is known from the
construction of the data!) and because ALPHA(2) - 0.01 was decided upon in
advance to be used as the principal significance level, one may say that
both dropping procedures show the same significant model (containing effects
involving r3 and C. only).

Note 6.11. This. is the printout of the ranking information for the
ANVA of OCIV No. 1. (This and the FCA is the only information ever given
for any ANVA. )

Note 6.12. In the last step of the FEM'O-type ranking for OWIV No. 1,
the +÷procedure had to be applied. (For practical purposes, this has no
influence upon the ranking here since effect No. 3 is the only one left
not yet ranked and, thereby, is the most important effect by definition.)
The last three I(X)-values are those of "Step 14", "Step l14"", and "Step 14++ ."

Note 6.13. In the identification of the ANVA printout th'o cardinal
number of the OCIV or the symbol of the dependent varihble, Y, is given.
Since the present ANVA is that for OCIV No. 1, the identification "00l" is
printed.

Note u.14. The FCA, ANVA (cumulative dropping) for OCIV No. 1 shows that
the factois aii their interactions, in the present example, had significant
effects upon this concomitant independent variable. Except for the
interaction CR, all factorial effects contained in the significant model
for yj in the analysis of covariance (see Note 6.5) are also contained in
the sienifiant model (at a = J.01) for OCIV No. 1. This happens because
the numerical values of OCIV No. I were constructed such that they are
highly corrclated with the values of Yl.

Note 6.15. This is the FCA, ANVA, for yl. (The precedinr rankinLf
informittion is not exhibited here. ) In other words, the FCA shown is that
which would have been obtained for y1 if no OCIVs had been incluatd in the
FD40 ranking. (See the degrees of freedom for error: DF(2) z 1Z which is
the number of degrees of freedom for "within cells.")

The ranking order within the significant model for y1 alone is
slightly li'f'.rent from that obtained in the analysis of covariancc (stýe
Note u.), but both significant models contain the same set of cffct:. It
is obvioum. that the significance of the factorial effects is much higher
when CIV 1hu. 1 is cxcluded from the model. That is, the pres,'nt (x:Lniple
.Ahows ho- the use of covariates can cause a decrear.: in t.h1- po,-', ol' the
F-test althougih the residual variance is considerably reduw,,i (,'rom MS(A)=
l.u'55qu with 1 dogrees of freedom to VS(2) - .11•T3742 with 11 -cr1e'rls



I

of freed. in the present came). Without having the ANVAs available the
analyst would not know whether thw factors had effects upon the covariate(s)
nor whether the sensitivity of the a.naysis was decreased by perff"ruIng an
analysis of covariance ranking rather than an analysis of variance ranking..

Note 6.16. The "Problem Running Time" of 4 minutes and 11 seconds in
that for both dependent variables Lnd includes the time for the 2 ANVAs.
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3.4.7 Example 7

The purpose of exhibiting Example 7 is to show the capability
of UOVACCM in dealing with unaoceptable inverses of the matrices (A) of the
normal equations. In order to show this, Example 6 was modified such that
a singularity is introduced into the matrix A of rank N+l. This was
achieved by fitting both confounded constants ab 1 2 and bc 2 2 while abcs1 1
was not fitted, which again makes 17 constants fitted as in Example 6.
(In the proper interpretation considering that factors Ll and C are
quantitative and in the NOVACCWM notation, the two confounded constants
are 1.1 x 2*2 and 2*2 x 3.2; see also the reproduced input sheet.)

Because of the purpose mentioned, the problem was executed
for y, only, and as covariates only the 3 OCIVs were used, i.e., no CIVs
were generated for Example 7.

The numerical values for Y, and the 3 OCIVs used in the
present case are the same as in Example 6. Again only the FCAs are shown
in the reproduced printout.

Notes on printout Example 7.

Note 7.1. The inverses, A- , for all three steps in COMO were ej(ected
because the determinants were found to be negative. The 3 0CIVs were
deleted "from the right": in the order of input, OCIV No. 3 was the
"rightmost" admissible CIV and, therefore, was deleted from the model at
the first step. See also Flowchart No. 4 in Section 2.4.1.

Note 7.2. The FCA for C(CMO, single dropping, shows the appropriate
statement fom. this case.

Nlote 7.3. The first 6 steps in FE4O led to rejections of the inverses
bheause only at Step 6 of the rauking cis the constant 2*2 x 3.2 delt ted
from the model whereby the si4nularity in the matrix of the r.ormal equations
was eliminated. Because of the rather arbitrary deletion of effects which
are "rightmost" among the effects admissible for ranking at a given step,
the program is not very efficient in eliminating the singularity at the
earliest possible step. If the effect 2 x 3.2 (which was admissible at the
first step!) had been deleted at the first step, the remaining 12 steps
would have represented a genuine FEMO ranking. However, the analyst who
meets a similar situation will, no doubt, execute the problem a second time
after correc!ting for the cause of the rejections. The results of the first
trial will usually be of considerable help to the analyst for the indicatc i
correction. In the present example, the analyst would rightfully suspect
that effecT 2 x 3.2 caused the previous model rejections and he would take
the appropriate corrective action. (The cause for the rejections could be
other than in the present exanple where it was assumed that the analyst
made a mistake in fitting the constants. For example, the eause may be the
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;insufficient accuracy of the inversion process. One may also consider
using the corrective capability of NOVACCI for the detection of confounding
If It cannot be detected otherwise.) Note that DF(2) = 19 at Step 7 are the
12 degrees of freedom "within cells" pooled with the 7 degrees of freedom
due to the 6 deleted effects.

Note 7.4. The FCA of FDMO, single droppirg, shows only the "good"
steps, i.e., the steps at which "he inverses were o, .cepted.
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4. GLOSSARY C TE USED IN~ TH REPCRT

The page numbers in the following alphabetical glossary give the
pages wnere the main definitions are introduced (page number underlined)
or where additional pertinent information concerning a term is given
(page ýmbvr not underlined). The glossary is not a complete reference
to &U pcs where a term is discussed or mentioned. Rather, the glossary
is Intenided zs a guide to the page where a given term is introduced.

A (- matrix of normal equations) 18

A (= number of levels of factor L) 4

Additional analysis of variance (ANVA) 8,20

"Additional" regression aum of squares (w SB., 140,14,17

Admissibility (of CIV or effect for ran g) 14,A2,20

ALPHA (ALHA) 12

ANVA (= Additional AN aluis of VAriance) 8,20

ASSR(N) (- "total" regresion sum of squares adjusted 10
for the mean)

ATSS (= total sum of squares adjusted for the mean) 10

Automatic Generation (of CIVs) 21

Automatic Generation (of DIVs)

Auxiliary independent variable (N )

B (- number of levels of factor 8) 4

I•ckward ranking method 2,13

CIV (= Concomitant Independent Variable) •,21

Coding (of oCIVs)

Coding (of quantitative factor variables) 36

COMO (= COncomtant Variables Magnitude [of prediction 2
power for y] Ordering)
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Complete printout 88

Compound

Control Card 4 Set 8,80,91

Cumulative dropping (in CCMO)

Cumulative dropping (in FEMO) 4i1

Cumulative ranking 2,15

D (= order of DIV-model) 2

Data input

Data matrix

Deletion (of CIVS)

Deletion (of DIVe) 26

Design Independent Variable (DIV) 2,7

Design matrix ý4

DIV (= Design Independent Variable) •,T

Effect (= factorial effect) L,26

Factorial effect 4,26

Factor nmwber 2_5,26

Factor pair 25,27

F0  10

FCA (= Final Comprehensive Analysis) 20

FEO (= Factorial Effects Magnitude [of prediction
power for y]- Cderini)

Final Comprehensive Analysis (FCA) 20

Final FCA 20

First good step 12
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II
II

Full data matrix 66

Pual effect 28

Full model 81

Pall printout (at significant step of ranking) 18,12

GCIV (= Generated CIV) ,I21

Generated CIV (GCIV) 1,21

Generation (of CIVs) 21

Generation (of DIVs)

Good model

Good step 19

Hand-generation (of ClIVs) 2, 83

Hand-generation (of DIVs) 81

I, (= A-'A = computed identity matrix) 18

ISU•X 12

IV (= Independent Variable) 3

I(X) (= Non-Significance) 12, 20

KALPHA 12

Level number 25

Main Theorem (of multip2., regression) 10

Matrix of normal -quations (A) 18

"Most probable" significant !null 8.21

N (- total number of independent variables)

n (= total number of obscrved y-values) 10
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t . ----

"Non-orthogonal" analysis of variance 1

Non-Significance (I(X)) 1U

NUVACCI 1

ociv (- 2riginal CXV) 1,2o

OCIV number 21

"Order (of DIIv)

Original CIV (OcIV) 1,20

"Orthogonal" analysis of variance 1

P (w order of Cr1-model) 21

Partially Fitted Full Effect (Pl) ITi2

PFFE (- Partially Fitted Full Effect) LY,_2

Power (of CIV) .1, 3

Power (of quantitative factor variable)

Power-ssurm 82

-procuclure 1,.4v

Omal Itfttive factor 4

Quantitative factor 6

Quantitative factor variable (M ,x•,...) 6

lO.. (- number of observations in cell a0My...) 4

Rejected model R

Relaxed admissibility (of effects for ranking) 17.28

Restricted admissibility (of CIVs or effects for rnking) 14,12,16,17,23,27

Restriction-dependence (of 3 2 N_ -values) L4.,17

Significant model 9, ,, 1), 19
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Single dropping

Single d .ropping (In c04o) 4o

Single dropping (in FEMO) ý
S8S6 .. , (, 'additional" regression am of square@) lO,14,l7

Sub-CIV 16Q,_

Sub-DIV 16,2T

Sub-effect 14 P

Summation matrix 19P21

T (a total number of covariates) .1,21

TOLL2 18

"Total" regreusion mm of squares ( AS8R(N)) 10

TF (- total number of OCIVi) 21

1v (v .th auxiliary independent variable) 27

Unrestricted admissibility (of CIVa or effects for rankIng) 17

W (u number of dependent variables in a problem) 66

X, ( quantitative factor variable for fctor ) 6

S(• quantitative factor vr''Able for factor 8) 6

Zero error perfect fit 68

180



1. Abt, K. [19603. Analyscle Cuvarian..c et Analyse par Differences.

2. Abt, K., Gmnill, u., Herring, T., and Shade, R. [1966). A-MCA: A

FORTRAN IV Progran for Multiple Lineax Reeression. U. S. Naval Weapons

Laboratory Technical Report No. ZO55.

3. Abt, K. [1967]. On the Identification of the Signifirant Independent

Variables in Linear Models. Metrika 12, 1-15.

h. Anderson, R. L. and Bancroft, T. A. t19•2 . Statistical Theory in

Research. McGraw-Hill Book Co., Inc., N,-w York.

5. Brownlee, K. A. [1960]. Statistical Theory anA Methodology in Science

&nd Engineering. John Wiley and Sons, Inc., New York.

6. Davies, 0. L. (Ed.) [19561. The Design and Analysis of Industril

Experimlents. Hafne' PFubl. Co., New York.

7. DiDonato, A. R. and Jarnagin, M. P. [196u]. A Method for Com[puting

the Incompletef Beta Function F"itio. 11. S. rlav*kl Wkapons Laboruatery

Technical Report No. 1949, rcvised.

8. Duncan, A. J. [19591. Quality Cuntrcl and Industrial Statif•ties.

Richard D. Irwin, Int.. , Hlui , ].linois.

v/. Gossleq D. G. and Lu,'as, iH. L. [i -5. iti.lysis of V:wiance of

DisproportionatQ Data when Interaction i1 Present. fiometrie 21,

115-135.

10. Grajybi11, F. A. [19613. Ar Introduction to Linear 3tatiztic1a M'kodels,

Vol'=c I. McGramw-H!il Beck Cc: Inn., ",w York.

U1. Greenwood, J. A. and Hartley, H. 0, [1'-,. Guide to Tablts in
Mathematical Statistics. Prieoton llni',.-r'aity Pzrs,}hlik:Utor,

New Jersey.

12. Had,.r, R. J. and Grandage, A. H. E. [19i.•81. Simplu and FuiipI,
Rogrvooion Analyrn, ,;. In: Exp(erLr.n iil. PtD,ýigns in Industry.
(Ch•w, V., Ed. ) John Wiley and Sow, In,., New York.

15. ll•i'•iiW., T. \1901]. A Pr'oj'nmiin4 Gil', tu NOVAC(4., , ;A2C.. ;ornntci
1'Togram for -,,rtho~onal" Anal-:.sis of .'aritnie and Cvariancu.
U. S. Naval Weapons Laboratory Technical Report No. "-2iY.

11.. Hicks, C. R. [ly1Li . Fund•in.ntal Cu•ne.,.,t, in the Dc:;i. f vf Expec.imwtnita.
holt, Rinehart and Winston, ½w York.



15. Robson, D. S. [19591. A Simple Method for Constructing Orthogonal
Polynomials when the Independent Variable is Unequally Spaced.
Biometrics 15, 187-191.

16. Scheffe, H. [1959]. The Analysis of Varience. John Wiley and Sons,
Inc., New York.

17. Stevens, W. L. [1)481. Statistical Analysis of a Non-Orthogonal
Tri-Factorial Experiment. Biometrika 35, 346-367.

13"12



APPENDIX A



p.i-

Ie

BLAN-K-.. P-AGE.



Appendix A:

METHOD OF FITTING CONSTANTS FUR NOP-ORTHCINAL

IAYOUTS WITH INTERACTIONS AND 34KTY CELLS

The method proposed in this Appendix is developed for the case of
only qualitative factors in a given data layout. However, an extension
to cases with quantitative factors is easily possible. The method of
fitting constants is treated strictly from the viewpoint of hypothesis
testing. Therefore, emphasis is put on the proofs that the nul1l
hypotheses are testable when the backward ranking technique of the
factoripl effects is applied.

In order to introduce some of the concepts of the proposed method,
the two-way crossed classification example from Section 2.1.1 of the present
report is used (Example A below) together with two modifications (Examples B
and C). Then, a three-way crossed classification example (Example D) where
all cells are occupied is treated. Finally, all the essential features of
the method are exemplified, in a combined manner, with a three-way crossed
classification where some cells are empty (Example E).

Example A

In Figure I the layout of Example A is given together with the two
marginal one-way classifications for factors 7 and 8. The following are
some of the concepts and symbols which are used fo: the various features
of the fitting process: A cell is identified by the sequence of the
factor level symbols (in alphabetical order of the factors) which uniquely
define the cell. For example, the cell identification for the cell defined
by the first level of a and the second level of R is given by a182. A
distinction is made between "basic cells" and "marginal cells": basic cells
are those of the basic (original) classification, whereas marginal cells are
those of the marLinal classifications which result from summing over all
levels of at least one factor. For example, cell 'i8 2 in Figure 1 is a
basic cell, and cell a, is a marginal cell (resulting fran summing over
the 3 leveAs of factor f). A "row" of cells is defined as the group of
cells (basic or marginal) which is formed by keeping constant the levels
of all but one factor in the layout of the basic or marginal cells. For
txwple, by ?eeping 1 1 constant in Figure 1, the three cells LirI, c-91,

and (7.y? form a row of basic cells. An "X" in a cell (basic or marginal)
means that the cell is occupied, i.e., that there are observations in this
cell. A circle around the "X" means that a constant (parameter) has been
fitted based on the observation(s) in this cell; and a checlkmark (of one of
three types to be defined) through an "X" means that a constant either has
not bc-on fitted or can not be fitted based on the observations in the
checdgarked cell.
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. .. .....

In Figure 1 the two marginal one-way classifications ("rows of
marginal cells" by structure) will be used to demonstrate the fitting of
main effect constents, and the two-way classification (of the basic cells)
will be used to demonstrate the fitting of the interaction constants.

SI 82 83

O32

K ® _ _

Figure 1: Layout of Example A.

Legend:

V/ : Type I-Chec-kmark
(S'ee Rule I)

: Type II-Checknark
(See Rule IIa)

Since a linear restriction has to be imposed on each set of main
effect constants (i.e., for 67 and 13), a constant based on the observations
in one of the (A=3 and B=3) marginal cells is linearly dependent upon the
constants based on the observations in the other (two) cells. Generally,
the two constants do not have to be based on the first two cells (as done
for both factors I7 and & in Figure 1). However, if the linear restrictions
of the Graybill type, a;=N=O, are chosen as suggested in Section 2.1.1 of
the present report, the last cell can not be used as a basis for fitting a
constant since this constant is eliminated a priori from the model.
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Under the corresponding restrictions fcr the interaction constants,
(ab* = abAp = 0 for 1 = 1,...,A; 1 = 1,...,B) the same argument applies
to each row and each column of the two.way classification: only the
interaction constants abl1 , ab 1 2 , ab 2 1 , anud ab22 can be fitted. This
completes the full set of AB-1=8 constants contained in the model as
given in equation (2-5) of Section 2.1.1.

The argumentation just used is the basis for the fittIng of mein
effect and interaction constants by visual inspection, according to which
the fitting will be performed from here on: circles are used (Figure 1)
in the four cells a,, a'2, 81, and 82 to indicate that main effect constants
have been based on the observations in these cells. As a consequetice of
this choice, the last cells in both rows of marginal cells have to be
checkmarked. "Checknarking" is used here as a synonym for equating to
zero the constant which would have been based on the cell if it had been
possible. The first rule for checkmArking a cell is thus stated:

Rule I. If, in a row of basic or marginal cells, all but one
occupied cell have been circled (where the cboice of cells to be
circled is up to the analyst), the one occupied cell left will
receive a "Type I - checkmark": see legend in Figure 1.

Note that, as indicated before, it would inave been possible to choose,
for example, the marginal cells L and 6F3 2or circling, which would have
left cell L2 to receive a Type l-checkmark. (This would have implied
a set of linear restrictions different from the Graybill type.)

In fitting the four interaction constants in the two-way layout c-f
basic cells as shown in Figure 1, the last cella in the 4 rows defined by
o=l, 'q=2, 8=I, and 0=2 also receive Type I-checkmarks according to Rule I.
Then, the only occupied cell not yet considered in the fitting process by
visual inspection is a03. The reasoning for not being able, in the visual
process, to bade W, interaction constant on this cell, given the four
interaction constants have been fitted as indicated in Figure 1, is as
follows. Each interaction effect (of any order), to be represented by a
fitted constant, must be interpretable as a contrast of contrasts and,
therefore, requires two occupied cells in the rows of (basic or marginal)
cells with which the effect is to be associated. Further, if two occupied
cells in a row are available, a choice must obviously exist to actually base
the constant on the one or the other occupied cell. This feature of having
the choice to base the constant on either one of the cells in the row will
be called "reversibility."

Inspecting, in Figure 1, the row of basic cells defined by 8=3, one
can see that once the cells c7183 and daas are checkmarked (by Rule I),
there arc no cells left (in the row =-3) for which reversibility exists.
Therefure, no interaction constant can be based on cell C103, and it is
checkmnaarked according to "Rule IIa":
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Rule lla. If. in a row of basic or marginal ceils, all but one
cell have been checkmarked according to Rule I such that no
reversibility (as defined above) exists for thi- one cell left,
the cell will receive a "Type II-checkmark": bee legend in
Figure 1.

(Note: A "Rule hib" and a "Rule 11c" according to which the Type II-
checkmraxk will again be applied, are given in the discussions of Examples
B and D, renpectively, fteir the definition of a "RIhle III.")

Notice that, with respect to cell 0ý83, the necessity of applying
the Type II-checkmark is also evidenced by the two Type I-checkmarks in
the row defined by a=3.

This completes the fitting process by visual inspection, following
the established Rules I and hIa, for Example A.

Performing, in Eample A, th* analysis of variance corresponding to
the backword ransing process unider reatricted admissibility (see Section 2.1.2),
the only admissible null hypothesis at the first step is the null hypothesis
concerning the interaction effect a9, i.e., Ho[abii-ab12=ab2a=ab2=O>. This
Joint hypothesis is testable since for each of the four ab-constants there
is a lineaz. funetion of the observations having the particular ab-constant
(parameter) as expectation under the given model. For example,
E[Y12o-yl3P-Y32•+Y733) = ab1 2 . At the second step, provided the null
hypothesis about 0fl was not rejected and the ab-constanth were deleted
frcm th- model, the null hypotheses about the main effects of both factors
a2 aid 13 are admissible. Both hypotheses Ho[ai=aauO] and Ho(bl=b2=O) are
testable since there are linear functions of the observations which have
al, az, b2 , or b2 , whichever is Applieable, a. expectation under the
given model.

Considering only degrees of freedom, the AB-l-8 degrees of freedom
"between cells" are assigned to the three factorial effects as follows, as
would be expected for a laycat in which all cells are occupied:

S2
S2

Total = "between cells" 8
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Example B

Example B is a modification of the previous Example A: the (basic)
cells 6'±82, 103, and c7383 are now empty, whereas the other six cells are
occupied as before; see Figure 2. By employing the fitting process by
visual inspection, the main effect constants are fitted as before which
consumes 4 of the now 5 available degrees of freedom "between cells."
Obviously, this time only 1 interaction constant can be fitted.

Inspection of the two-way layout in Figure 2 shows that cell c7183
is the only occupied cell in the row of basic cells defined by 0=3. As
stated before, any fitted constant requires the availability of two
occupied cells in the row of cells with which the effect (= contrast),
represented by the fitted constant, is to be associated. Therefore,
certainly no constant can be based on a single occupied cell in a row such
as aA33 in Example B. This leads to the simple "Rule III":

Rule III. If, in a row of basic or marginal cells, there is
only one cell occupied, this cell will receive a "Type III-checkmark":
see legend in Figure 2.

a, 82 9

12 a2 (D'~

Figure 2: Layout of Example B.

Legend:
Tyne II-Checkmark
(See Rules lla and lib)

Type III-Checkmark

(See Rule III)

A-5



Once cell a163 in Figure 2 is checkmarked, cell a remains the
only occupied cell not checkra~rked in row (y-1. Therefore, no reversibility
exists for the two occupied cells in that row, and it ire not possible to
base an interaction constant on cell L7181 either. However, unlike in
Example A, this time the checlwmarking of a cell, which is the only cell
not yet checlosarked in a row of cells, is not a consequence of fitting
constants by choice (i.e., of circling cells in other rows), but a
consequence of checkmarking a cell when no alternative exists. This
leads to the definition of "Rule I~b":

Rule Ilb. If, in a rowl of basic or marginal cells, all but one
cell have been checkirarked according to Rule III, the one cell
left will receive a "Type II-checkmark." (See legend in Figure 2.)

The fitting process by visual inspection in Example B is completed
*by choosing to base the one interaction constant on cell L~~j for

example. TVis is done in Figure 2, and cell 670 in circled accordingly.
As a consequence, cells a2?a and a381~ are checkma ked following Rule I
and cell a,,02 in checkmarked following Ruxle Iha.

At the first stLcp of the ranking process, the only admissible null
* hypothesis is again that on the interaction, IHotabai0O). This hypothesis

is testable since E[Y21p-Y2Ap-Y331p4Y32p] -a0 2 .1 under the given model.

Ex!Mple C

The layout of Example C, as given in Figure 3, results from
Exa-irle A by deleting the observations in the four cells L'73.82, 6pel
6Flrjj, nd1 6V32, as indicated.

a.-TV __ V

Figure 3: Layout of Example C.
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Niow five basic cells are occupied and It appears, i'rcm applying Rules
III, I, and Ila, (see the checkm.arks in Figure 3), that five ._of..aX.tw
can be fitted as is indicated by the circles. (The two 'T's in the
marginal cello 7_, and R2 will be explained later.) However, actua&lly
only 4 degrees of' freedom "between cells" are available to be amsigne~d

* to factorial effects, The reason for the discrepancy is simple: The
dvletion of the obnervation(s) in cell c~a92 woujld lead not only to the
loss of one degree of freedom "between cells", but also t') the loss of'
one degree of freedom~ for each of the main effects of factors 67 and R.
In other words, the observation(s) occupying the basic cell 62,ý cause
both marginal cells a. and 62 to be occupied; that is , deleting all
observations fromn cell 7V also deletcs all observations from cell 82.
The type of' relation swong non-empty cells (basic or marginal) thus
exemplified will bu expressed in an algebraic identity containing the
symbols (identifications) of the cells involved in the relation, that is,
in tVie present example

Each such identity represents one confounded degree of freedon.
That is, one degree of freedom of all those factorial effects, whose
const~ants are based on the cells reprernented by their cell symbols inl
the identity, is confounded. In Example C, therefore, one degree of
freedom of each of the main effects is confounded since thle constants
a2 and b2 are based on the (marginal) cells 672 and R~2, respectively.
For this reason, cells cia and ý? are markeýd with an "I" (for Identity)
in Figure 3. Clearly in this case, either a2 or b,! can be fitted, but
not both simultaneously. Thereforc, at the first ttep of' ran~kiig, in thin,
example, 1H0[abl=01 will be tested with thle model ccrltainitir either the
conLstaiits EL ., aý, bl, or aI, b3,, b2 . At this first ,Itep it makes no

diif~inu~whether &_ or bz is ritted in addition to V,, and bl.

Oct~e the interaction constant abl 1 is deleted from thL_ model
(assuming that HO~ab, 1 -1~ was not rejected) the fitting of, a,2 or b½
depends upon which null hypothesis is to be tested. For example, in ordeor
to test Ho~b1 ý01, i.e., to test the hypothesis that there is nu main effect
clue to factor )9 in addition to the main cffect tcI. facItor dJ, t.he( rn(dJJLd model
m~ust contain the constants al anki aý,. Tile corresýpondink; argument. hohis oru
thle t,..ting of 1-ofn1 -0) , in, which case b, arnd bL Must be. conrtain'ed1 in theý,
rCeduce'd 10ic-IA. Petii null hypotheses about a, and b, are t(Lstable?, sinlce, fol.
example, 1,1h and E~y3,y ,,1 , 0 - = a, under theý incels, coritaining
a,, :t-. 03 , nd a1 , U1 , bz? res]W~t ,ivcl\v. Naturally, not rejectinog thf,
kiypoth-Lis di(bl=0i, foi, CXample, dioes not imply that the overall main effect
0f13f i.s o 3i .- ifnlicant, but it does 'm!tply, given the pattern of empty cells,
1hat thjn .iii'lerenceoz amonig the 'I ovll means canl suffic iently hi? explained by
tho matin ''itect of factor (7 aic'ii'. Tn this case, once the, coilstantA hi has
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been deleted from the model, the hypothesis Hofa 1=a.o) is testable. A
similar argument holds for the case of not rejecting the hypothesis Ho(al-O].
Rejecting Ho[a&=O) or Ho(b3.O] means that the corresponding main effect is
significant, at least based on the one unconfounded degree of freedom.

The concept of identities will be further discussed in Example E

below.

ExaznMle D

Example D is the basis for Example E which will be used to demonstrate
all features of the fitting process in a combined manner. Example D results
from Example A by introduction of a third factor, C?, with C=2 levels. All
AxBxC 5x3x2 cells are assumed occupied, and the layout is given in Figure 4.

82  S2  )93

a, 2 1X 0, 1 G '

e0®y

ta3

Figurt! ': Layout of ExampIe D.P

The three marginal toe-waiy classification.) and the three mar'in two-way
classification'q are not shown SiLice the. fLii.• of•1 (stauits and testine
Of' null hynothe.ses for mFin cffQccts and f'ilrst order interactions correspond
to those showii in Exumpw.ne A,
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The fitting of second-o.ler interaction constants (abc-terms) by
visual inspection follows the rules established before. For example, in
the row of basic cells defined by ý-2 and y=l only two abe-constants can
be fitted. Circling the cells a and c7oaai (i.e., fitting the
constants abc1 2 1 and abc2 1 ) leads to the checkm1rks in cells L1g,

_,eLand C73•i according to Rule I. The other two constants fitted are
abc,1 1 and abc 2 1 1 , and the checkmarks in the remaining cells except Q3&3C2
are applied in an obvious manner following Rules I and Ha. The t'%ckmark
(of" Type II) in cell L-1%C• is applied following a similar reasoning as
that used for Rule Ila: Cell • is the only occupied cell left unmarked
in all three rows of basic cells to which it belongs. In these three rows
(defined by av--,, 8=3; •:3, y=2; and 0-3, y=2) aUl other cells have been

'hbeckrlarked according to Rule Ila as a consequence of previous checkmarking
according to Rule I which was done as a consequence of fitting the four
abc-constaits as indicated. Therefore, no reversibility exists for the
remaining cells once the 4 cells as indicated are circled, and cell cr3_
accordingly is also checkmarked. This argumentation can also be generalized
to higher-way layouts and thus leads to the last rule to be defined for the
fitting process by vimial inspection:

Rule IIc. If, in a row of basic or marginajl cells, all but one cell
have been checkzmaxked according to Rule Iha, or, as a consequence
of Rule IIa, according to the present Rule IIc, such that. no
reversibility (as defined before) exists for the occupied cells
of the row concerned, the one cell will receive a "Type II-checknail;."

hiýte. Rules IIa, Ilb, and HIe could be ,combine.d into one "Rule I1" which
would ntatc the following: Any cell will receive a Type II-checknark
which is left as the only unmarred occupied cell in a row of basic or
mariginal c'lirs wherc all other cells have been checkmarked according to
•ule"3l2 -1i or, as a Qunacquence of Rule I or Iil, according to "Rule II."

After finishing the fitting process for Example D, th,- choice of
the fo•u abc-constants fitted can be seen to correspond to the choicc cif
the lincar restrictions of the Gra~bilil type. The restrictions read, for
the three-factor interaction constants: abqaB¢ C O for all (oi,5); abc,ýae ý 0
for all (o,y)j ind abcAOY = 0 for all (8,y).

At the first step of the ranking process, the only null hypothesis
adbnissible is that toncerning the three-factor interaction CM, gind obviously,
this hypothlcsis is tentable.

Eý.=•Ipl> E

"Thin oxwnnplc results frm Exanple 1) by deletion of t),.a obsv.rvatloans
in io'rl as indicated in Figurc 'a. The example contains all tlh essenrtial
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features of the method as they were successively introduced in Exanples A
through D. Example E, therefore, will be used to demonstrate all the
essential aspects of the proposed method.

In addition to the layout of the three-way classification given in
Figure 5a (in which factor C is treated as a "subclassification"), Figures
5b and 5c shcw the same classification arranged such that factors 8 and LI,
respectively, are treated as the "subclassification." These three possible
arrangements are convenient for the demonstration as will be seen. Figures
5d, 5e, and 5r show the three marginal two-way classifications for fitting
OR-, &-, r,-interaction constants, respectively.

R1z 8" 83

•a

Figure 5&: LAYOut of Example E. (C as "subclassification")
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c3. aa a3 •
I2 03

8 X X X

CIL 82 X

13 X X

C 2 X X

SX X X

Figure 5b: Example E. (6 as "subclassification")

az X X
81 672 X

a3  x x

a2 •a X X

a3 x

L1  X X

/33 L12  x

_a3  X X

Figure 5c: Example E. (a as "subclassification")
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Figure 5d: Example E, Interaction a

Figre5e EaplE, ntrc2in•

Figure 5e: Example E, Interaction

811
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a 3 -V



A convenient first approach is to fLit, ".)y the process of visual
inspection, all constants which apprear as if they can be fitted, according
to the rules previously established, in all marginal classifications and in
the basic (three-way) classification. If, in this way, k move constants
result than there are degrees of freedom "between cel2.s", then exactly k
identities must exist for the given data. Naturally, if the number of
constants uhus fitted is equal to the number of degrees of freedom "between
cells", identities do not exist for the given data. In the present example,
the fitting of main effect constants (the three marginal one-way classifi-
cations not shown for this example) and first-order interaction constants
(see Fignures 5d-5f) yiel.ds 2, 2, and 1 constants for c7, 8, and C, respectively;
and 3, 2, and 2 constants for OU, 6r-, and W,, respectively. In order to
evaluate the possibilities of fitting abce-constants, consider Figure 5a.
Four cells, as indicated, are checkmarked according to Rule III. For
example, cell cla9(ýr is the only occupicd cell in the row of basic cells
defined by 0=2 and y=l. Cell c729Lc is checIWnarked following Rule Irb
(as a consequence of the Type III-checkmark in cell L•9e). Without
fitting an abc-constant first, the remaining 3 occupied cells can not be
checmarked. If cell L79C 1 is chosen as the basis for a constant fitted
(i.e., for abc 1 1 1 ), the remaining 7 cells can be checkmarkod following
Rules I, IIa, and IIc. Summarizing the results from the fitting wprocess,
the following degrees of freedom are preliminarily assigned to the 7 factorial
effects:

a 2
13 2
C

99 3

? 2

Total 13

However, only 13 basic cells are occupied (Figur.. 5a), concequently, there
are only 12 degrees of freedom "between cells." Accordingly, 15-1241
identity must be present in the given layout.

The search for the identities, if these are not obvious as in
Example C, can bc done either systematically oi by trial and error. Fer
example, the analyst can systemati.lully delete the observations of each
basic and marginal cell, cell by ýeell, and examine the nunbe~rz of constants
whioh can be! fitted in each situation. In general, this exwaination should
give suffi.,i,.nt hints as to the "loc-aticn" of the identities. 0 the other
hand, rm. 'xperience with the peculiarities of idei~jties wizi ,nab!.. h
analyst to find the identities of a given layout much faster by t, ial and
error. In the present example, for instanc.Ž, it is eci diffjiult to fini
that deloting, the observations from the marginal cells f and iz•-C auces
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the marginal cell L to be empty too. Algebraically, this relationship

is expressed by the identity

(21+ S;j6aja

Thin identity implies the following (aee Figurer 5d-5f in which the 3
affected cells are marked with an "I"): One degree of freedom is confounded

in each of the three two-factor interactions, i.e. , in a, c,, and M. The

three constants affe+-d are those based on the observations in the three
marginal cells whose symbols are contained in the identity, i.e., ab8 1 ,
ac21 , arid bc 2a.. Any pair of these three constants can be fitted; the

simultaneirs fitting of all three constants is not possible since it would

lead to a singular matrix of the normal equations.

The above identity happens to contain only cell symbols for which no
factor is at its last level, i.e., at a-A=3, =-B-3, or y-C-2. This absence
of last levels is very desirable since cell symbols at the last level of

any factor can not be associated with constants to be fitted because these
constants are deleted a priori from the model if one uses the suggested

linear restrictions of the Graybill type. Whenever applicable and possible,

therefore, the levels of the factors should be interchanged such that the

identities contain only cell symbols in which none of the factors is at its

last level. The interchanging is feasible when the method being discussed

is applied to cases with only qualitative factors or (quantitative) factors
which are treated as qualitative factors. Should it be impossible to free
the identities frc. cell symbols at last factor levels, it will still be

possible to find, for Raoh identity, a set of constants which can not be

fitted sirraltaneous] (Note that, for the proper testing of null hypothcscs,

a set of constants wiiich can not be fitted simultaneously must be found. )
The search for this set of constants again may have to be done by trial and
error, i.e., by observing whether or not the matrix of the normal equations
is non-singulsr Ohile trying various possibilities of fitting.

There may be more than one identity for a given bet of data. However,

a.1 identities must be linearly independent. from each other in order to

acccunt for one confounded degree of freedom each. (The latter implies that,

in a system of identities, the cell symbols can be added to and subtracted
from each other, which is stated without proof.) For instance, two or more
identities are linearly dependent when they can be added to yield a "trivial"
identity. A trivial identity is one which does not account for a confounded
degree of freedom. In the present Example E one such trivial identity is
(see Figure 5a)"

A-I4



As can be seen, with cell 4, being empty, Iroth sidc of the identity
are equal to )2.

After findinig the identities (if pe.w)and finding, for each
Identity, one set of confounded constant-| which -,:s ,wt be fltedd
simultaneously, the appropriate null hyl.!nthescs can be tested.

In the present examp].e, at the f irst step of' the ranking pro-,ess,
only Ho~abc1.. 1 -O] is admissible for tenting (assuming there is a possibility
for testing, i.e., there exists a valid estinate of the experimental error).
This hypothesis is testable since there in a linvar IPinction of' the obser-
vations which has aboll, as expectation, under the model containing the
constants abc,1 1 , ab1 1 , aba2, ac1 l, bell, a&, a2, bl, b2, cl, plus any two
of the three confounded interaction constants, abZ1, "c2 1 , bC2 1 :

E[ (Y11p-Y131p-Y112p+Yl3p) - (Y3 1Yp-y 1 0o-Y3 12 p+Y3S 2 p)3 J O'C11.

Assuming abc1 11 -O to be true (and, ,oo-. *unt ly, assnm•ini; abl) 1  to
have been deleted from the model), at the ,ien tup ot' t~h ranking
process for this example, the null hyputl1uzcs about the I tacxon effects
a9, cZ, W are admissible for testing. In tLrdtcr to st.e how the ,.cnfounding
will affect the possibilities of' testing, a 1i nt of thv expected values of
the functions indicated below is advanl.agen. For the present investigation
only, the model is assumed to contain all so._uun interacti(,n cunstants
(besides the fixe main effect constants), QhIC i:, abl 1 , ab;.,1 ,ab 2  c,
ac~l, bQ1 1 , alnd bcz2 .

The •oenrtruction of the fanctials D, (0.' indlividal obnc-rvations,
Yd ,having the desired expected va~lues) was facililated 1by inspection

of UPbvxes 5a, 5b, and 5c:

E[D 1) - EY1i1p-Y311p-Y131l4_Y331P1 ai

1• D21 E[Y222p-Y322p-Y p+Ys3 ý:p] = -,
EID33 - E1y111p-y112p-y311'y.1:,Up1 'U.. I.

ED 43 - E[Y111p-Y131p-Y11o+Y1jiO] I 'I

Et D.j] E[ y- p-y. -- y3 +3 = a.':I, l,'

FE[Do3 ElY111-Y;211p -Y132(+YL3:_p1 - 'U" I -o-:Lb ; I

El :?21p-21Q-YL~pY3-Lp



The last two flunctions will be replaced by linear combinations with other
functions such that the expected values of the new functions contain only
confo, cded effects;

E[N~] -E[D1+DS-D,5) &b21 +ac. 1

E[ý] ED2-D4 -D,] - &b2 l-bC2 1

When equating to zero one of the three confounded constants, i.e., ab 2 l,
AC21, or bc2 1 , one can see that the null hypotheses on all three interaction
effects, d?, cX, and W, arn testable. For example, if abgl is set eqUal
to zero (i.e., if ab 21 Is deleted from the model), the znU hypotheses
HO ab,1 -ab22-O], HO(ac,-saC2 1 =0), and Hofbc11 -bc2z1 O) are testable since
the functions D1, D2, Dec, DW, D4 , and (-]$) have the respective constants
as expectations. However, if according to the test reult, Ho(abiiwab2-O)
does not have to be rejected and is assumed to be vald, cue does not
have evidence that the interaction ce is not significant. The only valid
cunclusicn is, given the ;attern of empty cells, that all two-factor inter-
action effects (if present) can sufficiently be explained by the interactions
M and f. Corresponding arguments aply when ac2 1 or bc 2 1 are deleted from
the model and Ho(lacx-O) or Ho~bc 1aO], respectively, are assumed to be
valid on groands of the test result•.

If each of the null hypotheses on the three interaction effects O,
C, and W has to be rejected, regardless of' which one of the threeconfounded constants is deleted from the model, the conclusion is clearly
that &ll two-factor interactions are significant and that the ranking process
has reached the significent model. Naturally, there are many more possible
reffults- n__ of "hxch can not !- discussed her., when teztian the intcrac~ion
effects under the condition of the confawi• as contained in Example E.
For example, the deleted constent my be asc, and Ho(bcIlbbc 2 1 0O] may be the
only one of the three mal hypotheses on interaction effects which does not
have to be rejected. This also wuld mean that the significant model is
reached in the ranking process.

Once the main effects in Example E beccve admissible for testing
(i.e., once all interaction constants have been deleted from the model),
their testing Is straightforward since they are not affected by identities.

(Note. For a numerical illustration of Example E see Example 5 in
Section 3.4-5.)
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DIT1BTRIBI]'ON OF THIS DOCUMEN~T IS UnIMhIPR

It IUIPPLtIhE14VAI.' NOV11e It 111 "OINS -NU WILI!*"T ACTl'01`1

IS A&SYRAC?

The report contains the deseription of a programa ("NOVAcC*4) for the solution
of prcroblownina4 the mru arba-~lyiiuno daace based on thle gUD~rSl linear statiati~al
m~odel. Whil~e the detailed program documentation Is given e~lsewhere, the present
publication dealis with the statistical method, the logica.1 flaw, and the use and
application of NOVACOM in multiple linear regression and ("non- orthogona~l")
analysis of' variance and covariance for crossed classifications with inaampleteI
and unbalanced data. The mnethod of NOVACOt4 Is basically a backward ranking~
pr'cvedure applied to individual and/or groups of independent variables (conccanitan')
Independent variablea and/or ANOVA effects, roespectively).F The resu~lt of the
ranking is a m~odel ('signif icant model ") which contains 'only signif icant nonca;tv#A
Indcpendent variables and/or ANOVA effectsg. Thu method and use of the progra~in -.
Ill]ustrated by examples of the statistioa~l analysis of bodies of' inecznplet~e
expel Inmejiýal data.
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