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FOREWORD 

The research work described in this report was performed by ARA, Inc., 

West Covina, California, for the Mechanics Division, Directorate of Engineer¬ 

ing Services, Air Force Office of Scientific Research, Arlington, Virginia 22209, 

under Contract Number AF 49(638)-1521. This research represents the sixth-year 

program and is part of a continuing effort in the study of variable geometry energy 

absorbing structures. The Project-Task No. is 9782-4)1. The Project Engineer 

was Dr. Jacob Pomerantz. 

The studies presented began 1 February 1967 and were concluded 31 

January 1968. Mr. Bernard Mazelsky, President of ARA, Inc., was the 

Program Manager. 

Other ARA, Inc. personnel who participated in this program were: 

Analytical and experimental effort - Mr. S. R. Lin and Mr. Chi-Kung Yu. 

Dr. T. H. Lin, Professor of Engineering, UCLA, served as a Consultant on the 

analytical study. 
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Part A 

Large Inextensional Deflection of Thin 
Cantilevered Plates 

I SUMMARY 

The calculation of large bending deflections of thin plates by 

available techniques are either too difficult to use or are limited to 

deflections which are below 20% of the plate's length and/or width. 

The present method predicts, and is substantiated by experiment, the 

maximum deflections of such thin plates within a few percent wherein 

the deflections are larger than half the length and/or width 

of the th.n plate. 

II INTRODUCTION 

The small deflection theory of plates is generally con¬ 

sidered to be valid for deflections which are small in comparison 

with the plate thickness . For deflections larger than the plate thick- 

2 
ness. Von Karman has shown an exact large deflection theory in 

two non-linear differential equations. However, these equations 

are extremely difficult to use. When the loading is resisted 

primarily by the flexural rigidity of the plate, Mansfield 

3,4 
and Kleeman have proposed an inextensional large de¬ 

flection theory which assumes the middle surface of the plate to be inexten¬ 

sional. This does not introduce much error for cantilevered thin plates where 
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the «¡tensional rigidity is large in comparison with the flexural rigidity. The 

validity of this inextensiona! theory has been established by correlation with 

experiment for deflections many times the plate thickness and from comparisons 

with known theoretical solutions of some simple plate problems. This theory pre¬ 

dicts the proportionality of the deflection to the load for any given type of load, 

and does not consider the effect of the change of geometry on the bending moment. 

Hence, when the deflection becomes the same magnitude as the linear dimension 

of the plate, this theory is expected to be inadequate. The present paper describes 

a method which accounts for this change of geometry in the bendirç moment, so as 

to extend Mansfield and Kleeman's inextensiona! theory to very large deflections, 

i.e., those having the same magnitude as the width or length of the plate. 

Ill MANSFIELD AND KLEEMAN'S (NEXTEN SIGNAL THEORY OF PLATES 

For later reference, the inextensional theory of Mansfield and 

Kleeman is first briefly reviewed. Since the middle surface of the plate is inex¬ 

tensional, it must be a developable surface, so the problem is to determine the 

generators of this surface. Consider a cantilever plate as shown in Figure 1 with 

x-axi$ normal to the fixed boundary of the plate. The intersection of tho two 

generators mn and m'n' at H generate angles « and OKdct at the x-axis. 

The strip element mnn'm1 forms part of a conical surface with apex at H. 

From geometry 

? “ TÍ" sio a lx d0( 

where is the distance along the generator from the apex H to the x- ax i s. 
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I 
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<S» 

-¾ 

i 

L«t be the moment per unit length about the generator, and Dÿ the flexural 

rigidity of the plate at y along the generator. Hn and Hm are denoted by 

^ and respectively. Then 

“7 _ 1 
X '7 (2) 

where r^ is the radius of curvature at ^ . From the conical properties of the 

strip. 

7 
(3) 

where c is a constant. 

The resisting moment about the generator is 

7, ,¾ D. 
J Mjd» = cj -J. dn 
\ 7 ( \ ? ( 

(4) 

This must be equal to the applied moment M(a) about the generator. The strain 

energy is 

,¾ 
(5) 

=¿JCm3(«)/ J?| df) d<K 

For a given loading, 

U = 4- J F(0t, X, x') d« (6) 

where the prime denotes differentiation with respect to 0( . The variation of (X 
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with X is determined from the condition that U is a maximum. The condition to 

extremize the integral gives 

x" Fx<x. x ^xx* + F ax' - F„ = 0 (7) 

From Equation (7), the variation of a with x is determined. 

IV MOMENT ARM OF DEFLECTED PLATE 

The original Mansfield and Kleeman's theory is applicable for de¬ 

flections many times the thickness but are small when compared to the other linear 

dimensions of the plate. The theory does not account for the change in the moment 

arm of the load due to large plate deflections. When the vertical deflection of the 

plate reaches the same order of magnitude of its length, the change in the moment 

arm becomes appreciable and must be considered. Let the z-axis be along the 

vertical direction and the y-axis be normal to both the x and z axes. Since 

the deformation is inextensional, on elemental length Ax in the plate before 

bending will retain the same length in the deflected surface, but will have pro¬ 

jections along the three axes Ax , Ay, and Ai, after bending. On this basis, 

Ax = J(txf - (Ayf - (Az)2 (8) 

For a number of cases, Aÿ is small as compared to Az , then Ay maybe 

neglected without introducing a large error. Thus 

Ax = (Ax)2 -• (Az)8 
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For such cases, the calculation of the moment arm in the deflected shape reduces 

to the calculation of vertical deflections z 's at different points along the x-axis. 

V CALCULATION OF LARGE DEFLECTIONS BY METHOD OF VIRTUAL WORK 

Slope and deflections of beams of small deformation have been 

commonly calculated by the method of virtual work. In this method, a fictitious 

unit load is placed at a point along the direction in which the deflection is to be 

determined. 

Consid« a thin cantilever plate; let ntg (« ) denote the bending 

moment in the plate at generator angle at due to a vertical unit load applied at 

B. Neglecting the change of moment arm, M(a) is proportional to P, and 

m, (¢, ) i, independent of P. When the deflection l»com« large and the change 

of moment arm is considered, M(ar)ond mB«x) both may vary non-linearly with 

P and ore written as M(a ,P) ondmB(a,P) . For dot of the plate, the 

change of slope for an incremental load dP is 

de = 
J_ 9M(a#p) „„i ^ dP do< 

The virtual work done by mB(<X,P) is then 

(10) 

mB(a,p) 9M(a,P) 
mB((x,P) de = --— -dP do( 

n I D In -r- 
(> 

? P 

The total internal work done in the plate by m (« ,P) during loading fr g trom 

zero to P equals 

(11) 
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“l f 11 m.(o(,P) 3M(<X,P) 
I [„ _!_dP <h 
J«.J0 0 Ini; 3P 

where ¿X0 and 0(^ are the generator angles at x = o and x = L respectively. 

This work must be equal to the external work done by the fictitious unit load ap¬ 

plied at B : 

. r°,Lfl> "'»(«.p) aM(a,p) M 
1 D ln| 3 P 

1 X z, 

When the change of moment arm is not considered, the above equation reduces to 

the following commonly used virtual work expressions for displacement as 

1 x 2 . r*'- mtísídl ^01) d« 
B D In li 

?• 

The calculation of vertical deflection considering the change in moment arm by 

Equation (13) is illustrated by the following example: 

Consider a cantilevered thin plate of beryllium copper as shown in 

Figure 2 with the dimensions 6" x 6" x .0194" which is subjected to a concentrated 

load P normal to the plate at one end of the free corners (Point A). The Young's 

modulus is 18.5 x 10^ Ib/in* and the flexural rigidity is D = 12.38 lb-in. 

Along AN , 0< < , 

(12) 

(13) 

04) 

COS 0( 

(15) 
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y 

Fig. 2 A Cantilever Square Plate Subjected 

to Concentrated Load P at "A" 
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Along NK, 

P* 
F = F =-~ 

i D 

(X * (X 

r xa sin *cx_> 

I ln(l + —fcL-TTj 
x' sin 2« ' 

in sin a 

F = F 
2 . 2 

r f x sin CX ] 
D (1 +-rVï^) J 

V ' c I M A# / 

The total strain energy is 
x' sin a 

r0*' wi. 
U = yt J F1 (a/x^ x') d0l+ J F (0(,x , x') da ] 

». «, ' 

Bctremizing this integral by calculus of variations shows that Equation (7) is to be 

satisfied for both F and F8 . On both sides of the generator Ol , -îîl « 

1 D r? 
must be the same along this generator, so ""«f be continuous across <X1 . 

Hence, from Equation (1 ), x' must be continuous. With this condition and the 

continuity of « across this generator, together with the conditions (X#= 45° 

and 0(^ = 90°, the solution of a versus x was obtained from Equation (7). 

Then H,. ¡„.„rol J 
'■’I' 7T 

da over various intervals of 0( 

was determined. 

F^ and F3 ore functions of the applied moments about the dif¬ 

ferent generators. The moment arms about these generators change as the plate 

deflection reaches the same order of magnitude as the width of the plate. These 

Fj and Fa functions would be extremely complicated to express and to extremize 

(16) 

(17) 

(18) 

(19) 
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in terms of the deflections of the plate. Hence, the variation of « versus x 

which was obtained from extremizing F, and Fj without considering the 

change of moment arm due to large deflection is assumed to remain the same 

even when the deflections become 1/5 to 1/2 the length of the plate. 

From Equation (13) 

«1 
P P) r 

zbp2-zbp=L-r-0(<X,P2 )-/*(«,?, H d* 
' ^ Din-IS > 

where and z^ are deflections at B due to the loading cf P1 and 

?2 respectively. Divide 0(^- 0to into N intervals of A0Í . Writing the 

above in a finite difference form: 

2BP^ " zBP| ~ ¿it (M(«^i)‘M(0r/P, )1 A0( 
• Din-— ' 

P in mB(*,P) should lie between P, and Pj. For the following numerical 

calculation m^a, P4 ) is used. The deflection increment(z^ - z^) de¬ 

pends on the values of m^a ,p2 ) and M (Of, P* ), which in turn depends on 

zp^ . For the solution of Equation (21), an iteration procedure is used. 

Let the first set of assumed values of (z - z 1 be 
BP2 BP, 

denoted by ^ZBP2 ” zgp ^rom deflections the moment arms are 

computed as well as the moments ny $ and M(«J's together with a set of de¬ 

flection increments denoted by (z^ - z^ )(. These two sets of deflection 

increments are averaged to obtain 

(20) 

(21) 
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(22) 
(zBP, ■ZBP, " 2- í (zBPe " ZBP, ^ + (ZBP2 " ZBP, ^i) 

The deflection at B under load at ®n£l of the second iteration is 

zBPz2 = ZBP, + (I*, - "bp, >* 
(23) 

Omit the subscript P in the preceding equation with the understanding that the 

first subscript of zn denotes the subscript of load P while the second subscript 

denotes the iteration number. On this basis, the preceding equation becomes 

zBaa " ZB, + (ZB2 “ zBi 
(24) 

P^ in this particular calculation is .772 lb which causes a tip de¬ 

flection of approximately one inch. It is found that at this load, the moment arm 

change is insignificant. Next consider the load Pj equal to 1.544 lb where the 

moment arm change is significant. The term - Zg( )#is taken to be those values 

obtained by Mansfield and Kleeman's theory. Let xmn denote the moment arm of 

load P at load P_ at nth iteration. Similarly xD is the horizontal dis- 

tance from the loading point to B at load P at the nth iteration. Equation 
m 

(21) can be written as: 

N 

¡-i Dln! ’> 

(25) 

where the subscript "f" denotes the final value of iteration, and 
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M (Oí ) |f 

M (0( )21 

MW 
P ' 

MjfO p xlt 
P 1 X 

m M (0( ) X 

(26) 

Bti 
it - X 

ill 
P X 

Substituting this result into Equation (25), 

N 

i* I 
' 7' 

(27) 

With initial values of deflections z,, underload Po, known, the ûx,. terms 

are obtained from Equation (9) which in turn determine the x2l and x^ terms. 

The expressions in the square bracket are readily evaluated. 

The terms j 1 . were calculated by Mansfield and Kleeman's 
‘ D In-^ 1 

method. Hence, the right hand of Equation (27) is readily calculated. Then the 

Zg2Ji terms are obtained from Equations (22) and (23). From these deflections, 

we obtain x ,, and x_ . The incremental deflection 
Bzj 

w 
(J - xB) 

- z8, ), = 2 ( - r. )) 
I» I 

[MÇOD/P)1 

Omi; (28) 

allows for the calculation of terms z 
B29 

for the next iteration. This process 

is repeated until the difference between (zg^ - Zg ) and (Zg - Zg ) 

is small. Then the final value of this deflection increment is taken to be 
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(zB2 * Vf ' 2 t (IB» ' II, K-i * (zBz- zB,>n J (29) 

When P is increased from P2 10 P3 * iniHal incremental 

deflection is taken to be 

ZBi Jf 

and Equation (27) is replaced by 

(30) 

i» I 

<x - "s’* 
X 

lM(«;/p)z 

oinf; Í (31) 

A similar iteration procedure is utilized. This calculation was performed for the 

square plate previously described with loads equal to .772, 1.544,2.650and 

3*970 lbs. The calculated deflection curves at these loads are shown in Figures 

3 and 4. 

VI EXPERIMENTAL TEST 

Bcperimental deflection data was obtained on the flat plate con¬ 

figuration and loading conditions described in Figure 2. All plate deflections 

were measured vertically, regardless of the plate deflection amplitudes, as a 

function of the incrementally increasing corner loads. The plates were fabri¬ 

cated from a six inch by nine inch sheet of Berylco 25 beryllium-copper alloy 

which was heat treated to the full-hard condition. The nominal sheet thickness 
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was . 0194 inches. Three inches of each specimen were rigidly clamped between 

heavy ground-steel blocks on the support fixture which resulted in a six inch by 

six inch square configuration for the actual deforming section. 

The steel blocks (for clamping the specimen) were rigidly mounted 

on a steel angle plate which, in turn, was set level upon a surface plate. Level 

tolerances were kept to - .0002 inches. A grid of node points (1 inch by 1 inch) 

was painted on the upper surface of each specimen. 

The vertical deflections were determined using a vernier height 

gage (Storrett Model No. 254) using a needle-point dial indicator. An optical- 

shadow technique was used to determine the point of contact of the dial gage with 

the plate node-point. To insure true height measurements, a back-up dial indi¬ 

cator, which could measure 0.0001 inch increments was placed on the surface 

plate to indicate possible deflections on the plate during the vertical height 

measurements. As a further check to the back-up dial indicator method, (which 

could cause an error due to its physical contact with the plate specimen), an 

optical method for measuring the vertical deflections was used which eliminated 

the use of the dial indicator. A telescope (Bushnell Scope Chief with 6 X mag¬ 

nification), fitted with special lenses for short range viewing, was mounted on 

the vernier height gage. The scope was precision-levelled with respect to the 

surface plate. Height readings were measured at the grid node-points from the 

vernier gage. 

The loads at the corner of the plate were applied by suspending 

weights through a small, free-floating steel eyelet fitted into a small hole drilled 
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very close to the specimen corner. Load levels were selected so as to permit ap¬ 

preciable non-linear deformation within the proportional limit of the specimen. 

For the flat plate configuration considered herein, a suitable maximum deflection 

which exhibits appreciable non-linearity within the proportional limit is a value 

of ~ = 0.70. 

Typical experimental results are provided in Figure 3 for the de¬ 

flection of the edge of the square plate where the load is applied (leading edge) 

as a function of its length at several levels of applied loads In Figure 4, the 

experimental data is given in a non-dimensional form for the deflection of the 

plate along the edge where the corner load is applied (leading edge). Although 

similar plots could be made for other deflection locations, the results of Figure 4 

are representative and should suffice to determine the validity of the theoretical 

techniques provided herein. 

VII CONCLUSION 

The measured deflections of the leading edge at different loads 

and the measured tip deflections versus load are plotted in Figures 3 and 4. It 

is seen that the agreement between the experimental values and the deflections 

calculated by the proposed method is excellent. 

The calculation of large bending deflections of thin plates by 

using Von Karman's non-linear equations is a formidable task even with the aid 

of computers. The inextensional theory for large deflections by Mansfield and 

Klceman has simplified greatly the calculations of deflections of inextensible 

thin plates. For the plates calculated, Mansfield and Kleeman's theory pre¬ 

dicts well the deflections many times the thickness and within about 20% of the 

length; but when the deflection exceeds this amount, the discrepancy between 

- 17 - 



Mansfield and Kleeman's theory and experiments increases rapidly with load 

(Figure 4). The present method gives deflections which check with experi¬ 

ment within a few percent for a tip deflection of more than half of the plate 

length. 

The method shown is an approximate numerical method for 

calculating large inextensionai deflections of cantilever and thin plates. 

Refinement may be made by considering both Aÿ and tS. Ay may be 

calculated by the same principle of virtual work with the unit fictitious 

load applied along the rearward directions. 



Port B 

Effect of Bi-Axial Stresses On 
Low Cycle Fatigue 

I SUMMARY AND INTRODUCTION 

In recent years, demands for lighter weight structures, together with 

extensive developments and advances in the knowledge of plasticity theory have en¬ 

couraged engineers and designers to consider a finite life approach to certain engin¬ 

eering problems. There are many applications of this approach; consider for example 

the design and fabrication of pressure vessels, landing gears, working parts of guns, 

missiles, etc., where the total life may involve only some hundreds of thousands 

of stress cycles. For a limited number of cycles, the material can withstand stresses 

appreciably above its normal high cycle fatigue limit. The technology of low cycle 

plastic straining of metals has been applied to the design and successful fabrication 

. L . 5 
of energy absorption devices . The specific energy absolution (SEA) capability of 

metals under cyclic plastic straining has been found to be high. Hence, the tech¬ 

nology of low cycle fatigue is not only of academic interest, but also is useful for 

many practical structures. It is known that high hydrostatic pressures greatly in¬ 

crease the ductility of metals. On this basis, it appears that certain favorable 

combined stress states which produce compressive mean stress will increase the 

low cycli fatigue life of metals. The present report describes the results of a 

study on low cycle fatigue which includes the effect of steady axial stress on 

torsional fatigue strength of metals. 
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Il EXPERIMENTAL TEST SET-UP OF LOW CYCLE TORSION TESTER 

The apparatus used in this study is described schematically in 

Figure 5. Photographs of the assembly (See Figures 6, 7, 8 and 9) illustrate 

the mechanical-electrical layout of the system. The apparatus is designed to 

apply cyclic torsion strains of known amplitude and frequency to "dumbell" 

shaped samples while the samples are under a steady tension or corrpression 

load. 

The total strain range is set by the adjustment of an eccentric 

. (8)* 
cam mechanism coupled to a gear rack which oscillates a pinion gear. The 

amplitude of this oscillation determines the total arçjular displacement applied 

to the "driven" end of the sample^. The cyclic rate is varied with respect 

(5) 
to the motor drive rate by means of various sheave' ' combinations between 

(3-3A) (7) /o) 
one of two motors , a 60:1 speed reducer , the magnetic clutch' , 

(8) 
shaft, and the camshaft' . 

The actual number of cycles from initial start to shutdown is 

predetermined by a preset subtraction counter^ . This counter also measures 

(2) 
the total complete cycles for each run**. The magnetic clutch control unit' ; 

(0) 
connects the camshaft to the motor and the engagement is adjusted to con¬ 

trol the acceleration forces. 

The magnetic clutch^ ^ is engaged after the flywheel^ reaches 

full shaft speed. When the counte/ ^ reaches zero, the clutch^ ^ is 

*Numbers refer to the designated component in Figure 5. 
**A certain overrun results from inertia in the system at high cyclic rates 
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r

Fig. 7 Close-Up View of Recording Equipment 
For Cyclic Torsion Apparatus
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I

Fig. 8 View of Axial Tension-Compression Beam and 
Deflection Recording Technique 

For Cyclic Torsion Apparatus
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Fig. 9 Close-Up View of Axial Load Bearing Housing 
For Cyclic Torsion Apparatus
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(3) 
automatically disengaged. The drive motor ; is then shut off and allowed to 

(8) 
coast to a stop without transmitting further motion to the camshaft . 

A multi-channel oscillograph recorde/^ and amplifie/^ 

control unit were used to record the stress-strain history, as well as the total 

number of cycles per run. This record provided a time base for the reduction 

of the recorded data. 

(12) 
The stress history of each cycle is generated by a strain gage 

(12) 
which measures the torque of each cycle. This strain gagev is at the "fixed" 

end of the sample and is so mounted to be mechanically unaffected by axial 

loading. 

(9) 
A pulse generating potentiometer driven by anti-backlash 

(8) 
gearing mounted on the eccentric camshaft' ' provides a record o f the angular 

twist. 

(13) (15) 
Along with the oscillograph recorder , an oscilloscope 

(16) 
with a polaroid-land camera attachment was employed to photograph the 

actual stress-strain hysteresis loop. This provided an accurate method of 

cross-checking the recorded data, as well as eliminating ^e need for ex¬ 

haustive data reduction to determine the stress-strain hysteresis loop shape 

accurately. 

Temperature changes occurring during the test were recorded 

(23) 
both visually on an electric thermometer (by the operator), and auto- 

(13) 
matically on a channel of the oscillograph recorder by means of a 

thermocouple wire to the galvanometer. 
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Axial loading was provided through a 20:1 ratio moment arnt 

connected directly to the fixed end of the sample bypassing the strain gage. 

(21) 
Weights were suspended from the moment arm to provide loads up to 

20,000 psi to the sample. Axial deflection was monitored visually by the 

operator reading a 1/10,000" dial indicator^' so that actual growth of the 

sample could be accurately calculated. In order that this information could 

be recorded (graphically), a rectilinear potentiometer was also attached 

to the moment arm (11) 

A. Calibration 

(9) 
Calibration of the pulse generating potentiometer 

relative to the recorder and oscilloscope was done optically. A high-powered 

(19) # (20) 
telescope and a vernier height gage were employed along with o de¬ 

flection pointe/ ^ mounted on the output end of the camshaft at the sample 

collet. By accurately measuring the pointer travel, the angular deflection 

(strain) could be preset or measured within - .01 degree. Calibration data 

was obtained for 1%, 2%, 4%, and 7% strain rotes. 

(12) 
The strain gage y was calibrated by using a moment 

(18) . . , 
arm rigidly mounted to the "fixed" end of the sample. An electronic 

calibrator ar i dead-weight loads (to the sample) were applied to achieve 

calibration of the oscilloscope^^ and oscillograph^ ^ records. 

The oscillosgraph recorder thermocouple, as well as 

(23) 
the electric thermometer were both calibrated simultaneously against a 

1% tolerance mercury thermometer in a controlled (temperature) rise bath. 
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The calibration of the rectilinear potentiometer^^ and 

oscillograph record were accomplished against the dial indicator. 

Ill TEST SPECIMENS 

Two types of metallic materials were used for the cyclic torsion 

fatigue test and discussion; they were aluminum alloy 2024 (T4 and T351) and 

Beryllium Copper 25. Their mechanical properties are given in Table I. Fatigue 

tests were conducted using the thin wall tubular structure shown in Figure 10. The 

rigidity of the supporting ends is much stronger than the central portion of the test 

tube; thus, the recorded twist is produced mainly by the reduced gage portion of 

the tube. 

TABLE I 

Mechanical Properties of Test Specimens 

Material 

Yield 

Strength 

psi 

Ultimate 

Strength 

psi 

Modulus of 

Rigidity, Gpji 

Density 

Ib/in* 
Elongation 

In 2 Inches, % 

Beryllium Copper 75,000 115,000 7.0 X 106 0.297 5 

Aluminum 

Alloy 

2024 

T4 47,000 68,000 3.97 X 106 0.100 19 

T351 40,000 60,000 3.97 X 106 0.100 10 

IV TEST RESULTS 

A number of specimens of aluminum alloy 2024 and beryllium copper 

were tested under different amounts of cyclic torsional strain subject to different 
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axial stresses at 102 cycles/min. The test results are tabulated in Table II. The 

specimens are subject to a given twist per unit length. The outermost torsional 

strain varies linearly with the outside diameter of the specimen. Since this 

diameter varies by a small amount from one specimen to another, the outer¬ 

most torsional strain varies with the diameter. It is seen from Table II that 

these specimens having a larger outside diameter are subject to larger alter¬ 

nate torsional strain which results in a lower number of cycles to failure. 

A. Aluminum Alloy 

A plot of the number of cycles to failure as a function 

of plastic torsional strain for aluminum alloy 2024-T4 is given in Figure 11. 

The effect of axial stress on the cycles to failure for aluminum alloy 2024 

T-351 is shown in Figure 12 for 3% total shear strain and in Figure 13 for 

4% total shear strain. The effect of axial stress on the total energy dis¬ 

sipated for aluminum alloy 2024 T-351 is shown in Figure 14 for 3% total 

shear strain and in Figure 15 for 4% total shear strain. 

B. Beryllium Copper 

Similar to the plots shown for the aluminum alloys, 

a plot of the number of cycles to failure with plastic torsional strain is given 

in Figure 16 for beryllium copper. Effects of axial stress on the cycles to 

failure are shown in Figure 17 for 3% total shear strain and in Figure 18 

for 4.5% total shear strain. Finally, the total energy dissipated by the 

beryllium copper during cyclic torsion as affected by axial stress is shown 

in Figure 19 for 3% total shear strain and in Figure 20 for 4.5% total shear 

strain. 
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Fig. 12 Effect of Axial Stress on Cyclic Torsion Fatigue Failure 
of Aluminum Alloy 2024 T351 With 3% Total Shear Strain 
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Fig. 17 Effect of Axial Stress on Cyclic Torsion Fatigue Failure 

of Beryllium Copper With 3% Total Shear Strain 
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V DISCUSSION AND CONCLUDING REMARKS 

Considerable work has been expended on the study of fatigue under 

combined loadings; see for example Reference 6. Review of the open literature 

indicates that there is little low-cycle fatigue data in torsion under constant 

axial stress. The present tests provide some basic data for this case. In general, 

fatigue data experiences quite a bit of scatter and as a result, extensive tests are 

required before conclusive results can be drawn. However, based on the present 

study, several preliminary conclusions can be made as follows: 

A. Correlation of Data with Coffin's Equation 

From Figure 11, the variation of log A € vs log N 
P 

is linear where A6 is the range of plastic shear strain and N is the number 
P 

of cycles to fracture. This linear relationship in the log-log plane seems to 

satisfy the type of equation proposed by Coffin . 

m 
N A 6 = C 

P 

m log N + log Aé p = log C 

(32) 

where m is the slope of this straight line and C is the value of p a* 

N=l. If A£ is in %, m and C for aluminum alloy 2024 T4 were found 
P 

to be .7075 and 68.12, respectively. Unfortunately, due to time limitations, 

an insufficient number of specimens of beryllium copper have been tested. How 

ever, based on existing data, if an equation of Coffin's type is assumed to best 

fit the data points in Figure 16, the corresponding values of m and C were 

found to be .4771 and 19.20. 

-44- 



6. Effect of Axial Stress on Fatigue ond Absorbed Energy 

Based on the data shown in Figure 18 and 20 when the bery¬ 

llium copper specimens are subjected to an alternate torsional strain of - 4.5%, 

the presence of steady tensile stress clearly decreases the number of alternate 

torsional cycles to fatigue failure and the total energy absorbed in fatigue life. 

On the other hand, steady axial compressive stress increases the number of cycles 

to failure and the total absorbed energy. When the same material is subjected to 

an alternate torsional strain of - 3%, (as shown in Figures 17 and 19), a steady 

tensile stress did not decrease the number of cycles to failure or the total ab¬ 

sorbed energy; however, a steady axial compressive stress did considerably in¬ 

crease the number of cycles to failure and the absorbed energy. For the alumi¬ 

num alloy specimens, the data shown in Figures 12, 13, 14, and 15 are quite 

scattered. A general trend does exist in that a steady compressive stress in¬ 

creases the number of cycles to failure and the total energy absorbed. 

C* Effects Due to Work Hardening 

When a metal is twisted to a strain "e" beyond its elastic 

limit, the stress-strain curve is a straight line up to the elastic limit and then de¬ 

creases in slope. If this meta! is then unloaded, the first portion of unloading 

is again a straight line. The transition from elastic unloading to plastic de¬ 

formation during reverse loading takes place at a reversed stress much lower 

than the elastic limit of the initial loading. This phenomenon is known as the 

Bauschinger effect. The presence of the Bauschinger effect in polycrystalline 

metal can be explained by considering two neighboring crystals which undergo 
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rhe same (tensile) strain, but which have different stress-strain relations as caused 

by the difference in orientations . On unloading, both are assumed to behave 

elastically. When the applied load is zero, one will be in tension, and the 

other in compression. On unloading in the opposite sense, the residual stress 

in the softer grain is in the direction to make it yield even earlier than before. 

The combination is softer for the reverse loading than it was in the virgin state. 

This explains the Bauschinger effect which is the main cause of the hysteresis 

loop. Rigorous calculation of the hysteresis loop of a polycrystalline aggre- 
9 

gate was shown by Lin and I to in 1964 . 

In the present tests, under constant alternate torsional strain, 

cyclic stress increases rapidly in the first five to ten cycles for aluminum 

alloy 2024 with or without axial load. Thereafter, the cyclic stress remains 

approximately constant until fracture occurs (See Figures 21, 22 and 23). 

Hence, aluminum alloy 2024 work hardens in the early stage of fatigue 

loading. On the other hand, the beryllium copper specimens, either with 

or without axial load initially experience the greatest maximum shear stress, 

and then for succeeding cycles, the maximum shear stress decreased monotoni- 

cally as shown in Figures 24, 25 and 26. Thus, beryllium copper work softens 

with fatigue loading with or without axial stress. 

Under axial compressive load, the plastic axial strain increases 

with cycles of torsional loading for both aluminum alloy and beryllium copper 

(See Figures 22, 23, 25 rnd 26). This agrees qualitatively with the kinematic 

hardening theory proposed by Pragar10; i.e., the loading surface moves in 
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translation without change in size or shape and coincides with the plastic po¬ 

tential. However, this axial plastic strain increases at a diminishing rate for 

bervllium copper. This effect cannot be explained by the kinematic hardening 

and appears to be due to the fact that the active slip systems have been found to 

correspond more to the alternate shear r,tress than to the steady stress. 

D- Effect of Cyclic Torsion Strain on Axial Strain 

One interesting effect which was experienced by the 

aluminum alloy Al 2024-T-35I is illustrated in Figures 22 and 23 by compar¬ 

ing the axial deflection data for a 20,000psi axial compressive stress at 3% 

and 4% cyclic torsional strain. Comparison of the two axial deflection curves 

indicate that the axial strainjs independent of the cyclic torsion strain at a 

steady axial compressive load. When additional data becomes available for 

other materials, the existence of this trend would be interesting 

E. Some Analytical Considerations 

An empirical stress-strain relation curve for metals 

was proposed by W. Romberg and W. R. Osgood11 and is given as follows: 

£ = 
r 

where £ is the strain, s is the stress, 01 is the linearity constant, K is 

a positive constant, and JT is a positive number greater than one. Approxi- 

mating the cyclic torsional stress-strain relationship by a similar equation, it 

is found that 

, r 
A 6 = 20( A£ 

P e 

(33) 

(34Ï 
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1 

[ 

l 
I 

where 

•max 

max . Therefore, the total energy dissipated in fatigue loading becomes 

E Q> A^p ^max N 

where C0 is a proportional constant. By using Equation (32) and (34), the 

total dissipated energy can be expressed in terms of plastic strain range 

-54- 

(35) 

In the preceding equations, the following additional relationships have been used: 

total shear strain range: éT=2é=2A6 +A£ 
I e p 

and modulus of rigidity: G = K 

To find the values of 0( and IT that give the best fit between equation (34) and 

experimental data, a logarithmic plot must be made of the plastic strain range 

A6 p versus the applied stress "Cmax which in turn can be expressed by the 

elastic strain range A£e . Thus 0( and T are the intercept and the slope of 

the straight line which best fit the data of this logarithmic plot. The data pro¬ 

vided in Figures 27 and 28 illustrate this type of curve fit for aluminum alloy 

2024-T4and beryllium copper. It is found that (X and JT for aluminum alloy 

2024-T4 are 2.195 and 12.17, respectively. The values of 0( and JT for 

beryllium copper are 1.886 and 6.77, respectively. 

The test data also indicate that the shape of the hysteresis loop 

is unchanged. Hence, it can be assumed that the area of the hysteresis loop 

varies linearly with the plastic st ain range, 66 p and the stress amplitude, 

(36) 

t 
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where Cg is a constant. If a logarithmic plot is mode of the total dissipated 

energy versus the plastic strain range, then the slope of the straight line which 

fits best the test data must be equal to . In other words, 
1 ¿T m 

with the slope of ] + J_L , a straight line can be found, which fit 
JT m 

best the test results. Then the constant is given by the value of total 

energy at = 1%. Figure 29 shows that this logarithmic energy plot 

for aluminum alloy 2024-T4 with a straight line slope of I + J— -L. = 
9" rr 

■O. 3313 best fits the test data. From this plot, the constant is found to 

be 1.758 X 10 . Hence, a semi-empirical energy formula for aluminum 2024- 

T4 has been obtained and is provided as follows: 

6 -.3313 
E = 1.758 X 10 A£p 

where E is in in-!b/lb and A€p in percent. 
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