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ABSTRACT 

This report describes a digital computer program which uses the 
physical optics approximation to calculate the scattering properties of 
convex perfectly conducting targets with arbitrary shape.    The target 
shape is described in terms of the coordinates of a large number of 
points on the surface . 

The program handles bistatic as well as backscattering problems 
The input data specify the frequency,   the incidence angles (9i,4>i)  and 
the scattering angles (6s,<t>s).    In the CW case,   the output data give the 
complex elements in the scattering matrix. 

The program also handles the pulse case where the incident wave' 
form has a finite number of cycles. 

Graphs are included to illustrate typical results for the following 
target shapes:  sphere,   spheroids,   ogive,   and cone. 
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A COMPUTER PROGRAM FOR PHYSICAL-OPTICS 
SCATTERING BY CONVEX CONDUCTING TARGETS 

I.   INTRODUCTION 

Although the physical optics approximation for scattering by per- 
fectly conducting targets has well-known limitations,   it does provide 
rapid and efficient calculations which,   in many cases,   are reasonably 
accurate when the target is large in comparison with the wavelength. 

In this report we present a digital computer program which uses 
the physical optics formulation to determine the scattering properties 
of perfectly conducting convex targets with arbitrary shape.    Graphs 
are included to illustrate typical results for several target shapes. 

The program is written in the Fortran IV language. 

II.        TARGET   DESCRIPTION 

The target shape is described in terms of the cartesian coordi- 
nates (x, y, z) of a large number of points on the surface.    These points 
are selected on the intersections of the target surface and the planes 
z = zj ,   z = Z2,   etc.    The coordinate origin is located in the interior of 
the target,   and the surface is approximated by triangular facets with 
vertices at the given points.    It is assumed that these points cover the 
surface with a density such that each facet is small in comparison with 
the wavelength.    Experience indicates that reasonably good accuracy 
can be obtained with as few as 20 points per square wavelength on the 
target surface.    The scattering data converge to the physical optics 
solution with approximately 80 points per square wavelength.    Any 
further increase in the number of points will simply raise the conputa- 
tional time . 

When used with an IBM 7094 computer,   the program will handle 
up to 1300 points.    Magnetic tape or disk storage could be utilized to 
extend this capability. 

The meter is used as the unit of length for the input data. 

Punched cards are used for input data with the computer program. 
Figure  1 illustrates suitable input data for a prolate spheroidal target 
with major and minor axis lengths of 2 meters and 1 meter,   respectively. 
The first input data card gives an integer N which specifies the number of 



planes z = Z\,   z = z2, • • . z = ZJSJ employed to describe the target.    The 
first line in Fig.   1 indicates that 30 planes are used for the spheroid. 
This first card is followed by N cards which list the z coordinates  ZI(I) 
of these planes and the number of points NP(I) on each plane.    These 
cards must be ordered with increasing values of the z coordinate.    Thus, 
in Fig.   1,   card 2 indicates that the first plane has z =  -1  and there is 
only one point on this plane.    Card 3 shows that the second plane is at 
z = -0.98525 and has 12 points.    Finally,   card 31 shows that the last 
plane is at z =  1  and has one point. 

The remaining data cards (through 297) list the x and y coordinates 
of all the points on the target surface-    These coordinates are given in 
pairs (x,y),   with three pairs per card.    For example,   card 32 in Fig.   1 
shows that the point on the first plane (z =  -1) is at (0, 0).    The next four 
cards (33-36) specify 12 points on the second plane,   and card 297 locates 
the point on the last plane at (0, 0).    The last cards (298-299) are de- 
scribed elsewhere in this report. 

In the computer program,   the coordinates xj^ and y^ of point k on 
the plane z = z^ are denoted by F(K) and G(K) or FP(K) and GP(K).    The 
input data cards must give these points in an ordered manner,   progress- 
ing in the clockwise direction (for a distant observer located on the 
negative z axis) around the contour on the plane z = z{.    Furthermore, 
the first given point on the plane z = z\ should be the one-nearest the 
first given point on the preceding plane. 

The planes z = z\ usually have unequal spacing. The spacing be 
tween these planes, and the number of points on each contour, should 
be designed to cover the target with a fairly uniform number of points 
per unit surface area. 

The next section develops the physical-optics scattering equations 
used in the computer program. 

III.       THE   PHYSICAL  OPTICS  FORMULATION 

If the transmitting antenna is at a great distance from the target, 
it will illuminate the target with an incident field which is essentially 
a plane wave-    In the CW case we let the time dependence eJ00*- be under- 
stood and represent the incident electric field intensity as follows: 

A 

(1) E1 = (Q{ EJ+<K  EJ>) ejkri 



30 
-1.OOOoO 1 
-0.98525 1 2 
-0.94 750 1 2 
-0.89425 16 
-0.831^0 21 
-0.76175 24 
-0.68800 27 
(CARDS 9 THROUGH 24 ARE NOT SHOWN) 
0.68725 27 
0.76100 24 
0.83025 21 
0.89350 16 
0.94674 12 
0.98449 12 
1.00000 1 
0. 0. 
0.08556 0. 0.O7410 0.042 76 0.04278 0.07410 
0.00000 0 . 06556 -0.04278 0.07410 -0.07410 0.04278 

-0.08556 C.GOOOO -0.,/74 1C -0.04 2 78 -O.04276 -0.07410 
-0.00000 -0.08556 0.0427e -0.07410 0.07410 -0.04278 
0.15988 0. 0.13846 0. J7994 0.0 7994 0.13846 
0.00000 J. 15988 -0.07994 0. 13846 -0.13846 0.0 7994 

-0.15988 0.00000 -0.13846 -0.07994 -0.07994 -0.13646 
-0.00000 -J.15988 0.07994 -0. 13646 0.13646 -C.07994 
0.22378 0. 0.2^675 0.^6564 0.15B24 0.13824 
0.08564 0.20675 0.OOCuU C .22376 -0.08564 0.20675 
-0.15824 0. lr>824 -0.20675 0 .08564 -J.22378 0.00000 
-0.20675 -0.08564 -0.15624 -C. 15624 -0.08564 -0.20675 
-0.00000 -0.22378 0.08564 -0.20b7b J.15624 -0. 1:^824 
0.20675 -J.06564 
(CARDS 47 THROUGH 288 ARE NOT SHOWN ) 
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-0.16099 0.00000 -0.13942 -0.0805O -O.0605C -0.13942 
-o.ooooo -0.16099 0.0805C -0.13942 J.13942 -0.0OC50 
0*08771 0. 0.0 7596 0.J4385 0.04385 0.0 7596 
0.00000 0.08771 -0.04385 0.07596 -0.0 7596 0.04385 
-0.08771 0.00000 -0.0 7596 -0.04385 -0.04385 -0.0 7596 
-0.00000 
0. 
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Fig.   1 .    Typical input data for the computer program 



where {r\,   9^, <\>\) are the spherical coordinates of the transmitting 
antenna,   (r\, Q{, ${) are the corresponding unit vectors,* 

(2) k = 2ir/X, 

X   denotes the wavelength,   and Eg and EJ, are complex constants.    An 
arbitrary point on the target surface is assigned the coordinates (r, 9,<j>), 
the unit vectors (r, 9,$),   and the position vector 

(3) r = r r 

Finally,  the receiving antenna is assigned the coordinates (rs,9s,9s) 
and the unit vectors (rs, os, <f>s).    Thus 9^ and <j>i specify the incidence 
angles and 9S and 9S are the scattering angles.    The magnetic field 
intensity of the incident plane wave is given by 

(4) H1 = (ft E^ - ft Efc) 

A 
Jk rt.£ 

where 

(5) n=N/{l77 

The current density induced on the illuminated portion of the target 
surface is approximated as follows: 

(6) J = ZnXtf 

* The unit vectors in the spherical system are related to those in the 
rectangular system by r = (xx + yy + zz)/r,   9 =-x sin 9 + y cos 9 
and £ X 9=cj>, 



where n denotes the outward unit normal vector on the surface.    The 
vector potential for the distant scattered field is given by 

(7) A-—H- e"Jkrs   rCjejk^'I     ds       . 
—      4irrs J  J ~ 

At a great distance from the target,   the scattered field is 

(8) Es = - joo A= -JSiiL.    e"Jkrs   Cf    ftxHleJk*»'I    ds    . 
2TT rg J   J 

From Eqs.  (4) and (8), 

-jkrs      A A 
(9) Es = S     (9t Ei - ^ E*)X S 

rs Y o 

where 

(10) S= (j/X)      f J    AeJk(ri+rs).r   dg      _ 

The distant scattered field is represented by 

A       .    e-J
krs (11) ES = (§s Ee +$s Ej) 
rs 

where E§ and Em denote complex constants.    From Eqs.  (9) and (11) 
and the following vector identity, 

(12) A • (B x  C) = (A X B)  •  C   , 

it is found that 

A A ;    A A 
(13)        EJJ = (E^tx es+Elesx Bt) • s 

and 



(14) E| = (E* Jt x $s + EJ $s X $i )  • S 

It is convenient to define the CW scattering matrix as follows: 

-y \     /Sn       S12 \ I EQ 
(15) 

%>/    \w•      "»/ v^, Ei. /     \ S21       S22 / V Ej. 

From Eqs .  (13) through (15),   the complex elements in the scattering 
matrix are given by 

(16)        Su = ($i x es) • s 

(17) SU   = (K x %) • S 

(18) S21 = ($i x £s) -_S 

(19) S22   = ($s x ^i) • S 

It is convenient to define a "vector area function" A(w) as follows: 

A(w) ejkV'   dw     , S = (jA)      f 

where 

(Zl) w = (rt + rs)   •  r 

It may be seen from Eq.  (Zl) that w represents one of the coordinates of 
a point on the target surface,   in a rectangular coordinate system that is 
rotated in space with respect to the (x, y, z) system.    The w axis is co- 
planar with r^ and rs and bisects the angle between these unit vectors. 
The unit of length for the w coordinate generally differs from that for 
x, y,   and z. 



For any point (x, y, z) on the target surface, 

(22) w = (sin8-[ cos ${ + sin9s cosife)x + (sinQ^ sin4>{ + sinds sin<J>s)y 

+ (cos ti{ + cos Bs)z    . 

Once the vector area function has been calculated, S can be determined 
efficiently from Eq. (20) by numerical integration. Equation (lu) would 
take more computation time since it involves a surface integral instead 
of a line integral. 

Once S has been calculated,   the elements in the scattering matrix 
are determined as follows: 

(23) Sn  = Sx X„ + Sy Y„  + Sz Z„ 

(24) S12  - Sx Xi2  + Sy YX2  + Sz Z12 

(25) S2i   = Sz Z21 

(26) S22   = SXX22   + Sy Y22 + Sz Z22 

where 

(27) S = x Sx + y Sv + z Sz 

(28) Xn = - cos 4>i sin9s 

(29) Yn = -  sin4>i sin9s 

(30) Zn = - (sin<(>i sin <\> s + cos 4>i cos^s) cos 9g 

(31) Xi2 = cos 9^ sin<)>i sin9s  - sin9^ cos 9S sinc(>s 



(32) Yi2 = sin6i cos9s cos4>s - cos 9^ COSCJJ^ sin9s 

(33) Z12 = (sin4>i cos4>s " cos <t>i sin4>s) cos Q{ cos9j 

(34) Z21 = cos<j>i sin<j)s  -  sincf)^ cos4>s 

(35) X22 = - sinQi cos<j>s 

(36) Y22 = - sinSi sin«j>s 

(37) Z22 = - (cos<j>i cos4>s + sin<j>i sinct>s) cos 9^ 

In the pulse case,   the incident wave is considered to have M 
complete cycles and a square modulation envelope.    M is assumed to 
be an integer,   and the incident field is expressed by 

(38) E1 = (o\ EJ, + 4>i E\)   sin (wt + k r{ •  r ) 

.   [ u(wt + k r^  •  r) - u(cot + kr^  • £ - w T ) ] 

where Eg and EJ) are real constants,  u(x) denotes the unit step function, 
f is the carrier frequency, 

(39) W  =   2TTf     , 

(40) T = l/f   , 

and 

(41) T = MT 



The scattered field is given by 

(42) Es(rs>t) =[6S Es
e(t - rs/c) + Js E|(t - rs/c)J —    , 

rs 

where c denotes the speed of light in free space. 

It is convenient to write the following matrix equation 

/Ee(t)\     /Fn(t)      F12(t)\    /EJ 

\E|(t)J      \F21(t) F22(t)/     IE^ 

The pulse response of the target is thus defined with four functions 
of time given by 

(44) Fu(t) = & X 68)  • F(t) 

(45) F12(t) = (£s X $i)  •  F(t) 

(46) F21(t) = (${ x <j>s)   • F(t) 

(47) F22(t) = ($s x bi)  • F(t) 

where 

(48) F(t) =     i      \      \     n cos(cot + kw) 

•   [ u(wt + kw)  - u(wt + kw - wT)J   ds 

Equation (48) can also be written as follows 

(49) F(t) = -     \    A(w) cos(wt + kw) [ u(wt + kw)  - u(wt + kw - wT)J   dw 



Equation (49) is employed in the computer program since it 
permits more rapid calculations than Eq. (48). 

The scattering waveforms Fn(t),   Fi2(t),   F2i(t) and F22(t) are 
calculated at a discrete set of equally spaced points in time.    The 
spacing between these points is determined by an integer L,   included 
in the input data,   as follows 

(50) AT = T/L 

The first and last points coincide with the initiation and the 
termination of the pulse response. 

It must be noted that the above formulation for the pulse response 
assumes the incident plane wave has linear polarization.    However,   it 
appears that the more general situation could be programmed quite 
readily. 

The physical-optics scattering program is described in some 
detail in the following sections. 

IV.      APPROXIMATING  THE  TARGET 
WITH  A  POLYHEDRON 

Figure 2 shows the first 91 statements or cards in the computer 
program.    Card 26 reads the integer N which specifies the number of 
planes used in describing the target surface.    Card 29 reads the z 
coordinate ZI(I) for each of these planes and the number of points NP(I) 
on each plane.    The dimension statements reserve core storage for 200 
planes,   500 points on each plane,   and a total of 1300 points. 

Card 37  reads the x and y coordinates of the points on the first 
plane,   and card 48 reads the coordinates of the remaining points. 

In addition to reading the target description,   this first section 
of the program sets up a polyhedral approximation for the target.    This 
polyhedron has many triangular facets,  with vertices at the given points. 
If each facet is small in comparison with the wavelength,   the scattering 
properties of the polyhedron will be nearly the same as for the real tar- 
get of interest. 
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SEXECUTE IbJOri 001 
*IBJOB MAP 0»i2 
SIBFTC PHYSOP  NOOECK 0C3 

21 FORMATClX.dE15.7) 004 
22 FORMAT(1X.8F15.7) 005 
23 FORMAT(1H0) 006 
24 FORMAT(IX.10F12.4> 007 
25 FORMAT(8F9.3) 008 
26 FORMAT(7F10.5) 009 
27 FORMAT(7I10) 010 
28 FORMAT(1M1) Oil 
29 FORMAT(1F10.5«6I10) 012 
31 F0RMAT(1X.7H  TH1 =.F1G.4.7H  PHI =.F10.4.7H  THS =.FlO«4. 013 

27H  PHS =.F10.4/) 014 
32 FORMAT(IX.5HFMC =.F10.4.8H  *AVE =.F15.7/> 015 
33 FORMATCIX.5HS11 =.2F15.7.7H  S12 =.2F15.7.7H  S21 =.2F15.7/ 016 

27H  S22 =.2F15.7/) 017 
34 FORMAT(IX.6HEA11 =.Fl5»7.bH  EA12 =.F15.7.8H  EA21 =.F15«7«BH  EA2 018 

22 =.F15.7/> 019 
OIMENS10N AX(500)»AY(500).AZ(500> 020 
D1MENSION X(2600)•Y(260 0). Z(2600),XN(260 0).YN(2600)«ZN(2600) 021 
DIMENSION F(500).G(500).FP(500).GP(500).ZI (200 ) »NP(200> 022 
COMPLEX SX.SY.SZ.SI 1.S12.S21.S22.UA.QP.OC.QO.QK.QL 023 
DATA TP.FPI ,RA0/6»2831d53. 12.56637. .01 745-3/29/ 024 

1    J=0 025 
READ<5.27)N 026 
*RITE(6.27)N 027 
DO 60 I si ,N 028 

60  READ(5.29)ZI(I).NP(I) 029 
FN*N 030 
M*NP(1) 031 
MM=M+1 032 
ZA=ZI(1) 033 
NC*(M+2)/3 034 
DO 80 I = 1.NC 035 
K=3»I-2 036 

80  READ<5.26)F(K).G(K).F(K+1 ).G(K+1 ).F(K+2>.G(K+2 ) 037 
F(MM)=F(1) 038 
G(MM)=G(1) 039 
IF(M.EQ.1) MM=1 040 
00 150 I I=2.N 041 
MP*NP( I I ) 042 
MPP=MP+1 043 
ZC*Z!(II) 044 
NC*(MP+2)/3 045 
DO 90 1=1,NC 046 
<=3»I-2 047 

90  READ(5.26)FP(K)«GP(K).FP(K+l ) ,GP(K+1 ).FP(K+2).GP<K+2) 048 
FP(MPP)=FP(1) 049 

GP(MPP ) =GP(1 ) 050 
IF(MP.EQ.l) MPP=1 051 
L=l 052 
LP=1 053 

95  XA=F(L) 054 
XC=FP(LP) 055 
YA=G(L) 056 
YC=GP(LP) 057 
J=J+1 Oad 
IF(L«EQ.MM) GO TO 98 059 
IF(LP«EO.MPP) GO TO 100 OOO 
RA=(FP(LP+l)-F(L))**2+(0P(LP+l)-O(L))**2 061 

Fig.  2.    First section of the computer program. 

11 



RB = (FP(l_P)-F<L+l > >*»2+(GP(LP>-G(L+l ) )**2 062 
IF(RA.GT.Rd) GO TO 100 063 

98  LP = t_P+l 064 
XB = FP(l_P> 065 
YB=GP(LP) 066 
Z6=ZC 067 
GO TO 110 06b 

100 L=l_+1 069 
XB = F(1_) 070 
YB=G(L) 071 
ZB=ZA 072 

110 X(J)=(XA+XB+XC)/3« 073 
Y<J)=<YA+YB+YC)/3» 074 
Z ( J)= (ZA+ZB+ZO/3. 075 
XN<J) = ( (YB-YA)#(ZC-ZA >-<Zri-ZA )#<YC-YA) )*.5 076 
YN(J)=((ZB-ZA)«(XC-XA)-(XB-XA)*(ZC-ZA))*.b 077 
ZN(J)=((XB-XA)*(YC-YA)-(Yd-YA)#(XC-XA))*«^ 078 
IF<L«LT.MM.OR.l_P«LT.MPP ) GO TO 95                                             079 
DO 120 1=1.MPP 080 
F< 1 )=FP< I ) 081 

120 G( I )=GP< I ) 082 
M=MP 083 
MM=MPP 084 
ZA=ZC 085 

150 CONTINUE 086 
NT=J 087 
DZ=»0 088 
DO 155 I=2tN 089 
DEL = Zl(I)-ZI<1-1) 090 

155 IF<DEL.GT.DZ)DZ=DEL 091 

Fig.  2.    First section of the computer program,    (cont.) 
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Since each facet is assumed to be small,   the only parameters 
that must be determined and stored for each one are its vector area 
and the coordinates of its midpoint. 

Each triangle is assigned an index number denoted by J.    The 
coordinates of a point at the center of triangle J are denoted by X(J), 
Y(J) and Z(J).    The cartesian components of the vector area (using 
the outward normal direction) of triangle J are XN(J),   YN(J) and ZN(J). 
The dimension statements reserve core storage for these parameters 
for 2600 triangular facets.    The number of triangles is approximately 
twice the number of points on the target surface,   and is denoted by NT. 

The technique for fitting a polyhedron to a given array of points 
is illustrated in Fig. 3.    The computer first processes all the tri- 
angular facets on the first "zone" of the surface (i.e.,   the portion of 

CONTOUR n - I 

ZONE 
n-i 

CONTOUR H 

y 

L+ I 

LP 

LP + I 

Fig.  3.    A typical triangular facet on the polyhedron. 
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the surface bounded by the first two planes z = zj and z = z2).    It then 
proceeds to the next zone.    In the situation illustrated in Fig.  3,   the 
computer is identifying and processing the triangles in Zone II-1 .    The 
x and y coordinates of the points on contour II-1 are denoted by F and 
G,   and those on contour II by FP and GP.    The first triangle on this 
zone has one vertex at the point x = F(l),   y = G(l) and z = ZI(II-l). 
Another vertex is at x = FP(1),  y = GP(1) and z = ZI(II).    The third 
vertex of this first triangle is at (F(2)„G(2)) or (FP(2), GP(2)),   which- 
ever yields the "most compact" triangle. 

When the computer has completed the processing of a given 
triangle in a given zone,   two vertices on the next triangle are prede- 
termined since they coincide with two of the vertices on the last 
completed triangle.    In Fig.  3,   these two vertices are indicated by 
points A and C.    Point A is the L-th point on contour II-1  and its 
coordinates are XA=F(L),   YA= G(L) and ZA=ZI(II-1).    Point C is the 
LP-th point on contour II and its coordinates are XC = FP(LP), 
YC = GP(LP) and ZC = ZI(II).    To establish the third point on the 
triangle,   the computer compares the lengths of the lines AD and BC 
and selects the shorter one to form one side of the triangle.    As shown 
in Fig.  3,   B denotes the (L+l)-th point on contour II-1,   and D is the 
(LP+l)-th point on contour II. 

For the situation shown in Fig.  3,   BC is shorter than AD.    There- 
fore,   B is selected as the third vertex of the triangle and assigned the 
following coordinates:    XB = F(L+1),   YB = G(L+1) and ZB = ZA.    The 
coordinates of the midpoint of this triangle are calculated in cards 73, 
74 and 75.    The vector area of the triangle is given by (P *  Q)/2,   where 
the vector P extends from A to B and the vector Q extends from A to C. 
This calculation is arranged by cards 76,   77 and 78 to determine the 
rectangular components of the vector area. 

Having completed the processing of triangle J,   the computer 
proceeds with the next triangle in a similar fashion. 

When the computer finishes the first section of the program,   it 
has in storage a complete list of the midpoint coordinates and the vector 
areas of all of the triangular facets on the polyhedron. 

V.   COMPUTING THE VECTOR 
AREA FUNCTION 

The second section of the computer program reads the coordinates 
(9^, 4>t) of the transmitting antenna and (Qg.^s) of the receiving antenna 

14 



and calculates the corresponding vector area function A(w) for the 
target.    This part of the program is shown in Fig. 4. 

Card 92 reads &L, cpi,   6s and <j>s •    These angles are denoted by THI, 
PHI,   THS and PHS.    They must be given in degrees (rather than radians) 
in the input data.    For example,   card 298 in Fig.   1 assigns a value of 20 
degrees for Q{ and 9S,   and zero degrees for <$>{ and <j>s • 

In the DO LOOP in cards 115 through 137,   the computer scans 
the w coordinates for all the illuminated facets on the polyhedron to 
determine the maximum and minimum values of w on the illuminated 
portion of the target surface.    These are designated WMAX and WMIN. 
WX,   WY and WZ represent the coefficients of x,   y and z in Eq. (22). 

Cards 138 through 147 calculate the coefficients Xy,   Yn,   etc., 
defined by Eqs . (28) through (37). 

The rectangular components of the vector area function A(w) are 
denoted by AX(K),   AY(K) and AZ(K).    The program is designed to 
calculate several values of AX,   AY and AZ,   representing samples of 
the functions for uniformly spaced points on the w axis.    The dimension 
statements allow for a maximum of 500 sampling points.    The area 
function is nonzero only for values of w between WMIN and WMAX. 
Therefore,   this portion of the w axis is divided into KX segments and 
the sampling points are selected at the centers of these segments.   Thus, 
AX(1),   AY(1) and AZ(1) represent the components of A(w) at the center of 
the first segment (i.e.,   the segment which begins at WMIN).    Likewise, 
AX(KX),   AY(KX) and AZ(KX) represent the components of A(w) at the 
center of the last segment (which terminates at WMAX).    The length of 
each segment (and the spacing between the sampling points) is denoted 
by DEL.    WI and WF denote the values of w at the first and last sampling 
points . 

If the number of sampling points is too small,   the area function 
will not be represented adequately and one cannot expect accurate scat- 
tering data.    Therefore,   the program always calculates the largest 
number of samples consistent with the input data.    To obtain a more 
detailed area function for a given target,   one simply supplies a more 
detailed description of the target via the input data. 

The following expression for the vector area function can be ob- 
tained by comparing Eqs.  (10) and (20): 
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(51) A(w) =    _!      f    f 
dw     %J     J 

n ds 
dw 

The significance of Eq. (51) can be clarified by considering the equivalent 
finite-difference approximation: 

(52) A(K) =  L_       \    \ n ds   , 
— DEL      J   Jo, DEL ^Sk 

where A(K) represents the area function at the point w = wk and Sk 
denotes a narrow zone on the illuminated portion of the target surface 
bounded by the planes w = wk - DEL/2 and w = wk + DEL/2. 

For the polyhedron with small facets,   Eq. (52) takes the following 
form: 

(53) A(K) =     )    xXN(I) + ft YN(I) + £ ZN(I) 

The summation indicated in Eq. (53) is programmed in cards 162 through 
199 in Fig. 4.    In Eq. (53) it is understood that the summation extends 
only over the illuminated facets with w coordinates in the range wk ± 
DEL/2. 

A simple shadowing test is programmed in cards  163 and 164. 
RDTN represents the quantity f\  • n.    RDTN is calculated for each facet 
on the polyhedron.    The facet is considered illuminated or shadowed 
according as RDTN is positive or negative.    This test is,   of course, 
adequate only for convex targets. 

Figure 5 shows the vector area components AX(w) and AZ(w) 
for a prolate spheroid.    AY(w) is zero for this problem.    The input 
data in Fig.  1 were used for these calculations. 

Although independent data are not available for comparison with 
the curves in Fig. 5,   there are two indications that these curves are 
reliable.    First,   these area functions lead to accurate physical-optics 
scattering data.    Second,   the area functions calculated in the same 
manner show close agreement with known results for the following 
cases:   backscatter and bistatic scattering from spheres and axial 
backscatter from spheroids,   ogives and cones. 
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2    READ(5.26>THI.PHI.THS.PHS 092 
*RITE<6.31>THl,PHI.THS.PHS 093 
STHI=SIN(RAD*THI) 094 
CTH1 =C0S(RA[)*THI ) 095 
STHS=SIN<RAD*THS> 096 
CTM5=C0S(RA0*THS) 097 
SPHI=SIN(RAD#PH1) 098 
CPH|=COS<RAD*PHl) 099 
SPHS=SIN(RAD*PHS> 100 
CPHS=COS(RAD*PHS) 101 
SSCS=STHS*CPHS 102 
SSSS=STHS*SPHS 103 
SICI=STHI»CPH1 104 
SISI=STHI*SPHI 105 
WX=SIC1*SSCS 106 
WY=SISI+SSSS 107 
WZ=CTHI+CTHS 10a 
DEL=DZ*SQRT(WX**2+WY*«2+WZ**2> 109 
WMAX*-100^000. 110 
WMIN=1OOOCoO. 1 1 1 
K = 2 112 
ZA = ZI < 1 ) 113 
ZC = ZI (2 ) 114 
DO 200 I = 1 .NT 1 15 
RDTN«XN(I )*S1C!+YN( 1)*SISI•ZN(I >*CTHI 116 
IF(RDTN.LE.O.) GO TO 200 117 
ZNI=ZN<I) 118 
ZB=Z(I> 119 
IF<ZC.GE«ZU)GO TO 170 120 

165 K=K+1 121 
ZA = ZI (K-l ) 122 
ZC = ZI <K ) 123 
IF (ZC.LT.Zb)GO TO 165 124 

170 DEN = X< I )*XN< I )+Y( I )*YN< I ) 125 
D=DEN+ZB*ZNI 126 
F=(D-ZA*ZNI>/DEN 127 
•*A = X<I)»F#*X + Y(I>*F#WY + ZA»WZ 128 
Fx(D-ZC*ZNl)/OEN 129 
*C=X(I>«F*WX+Y<I)*F*WY+ZC*WZ 130 
IF(WC.GE«WA)G0 TO 175 131 
WW = *A 132 
*A = WC 133 
*/C = W* 134 

175 IF(WC.GT.WMAX )WMAX = WC 135 
IF(WA.LT.WM1N>WMIN=WA 136 

200 CONTINUE 137 
XI1=-CPH1*STHS 138 
Y11=-SPHl»STHS 139 
Z11=-(SPHI*SPHS+CPHI*CPHS)*CTMS 140 
X12=CTHI*SPHI*STHS-STHI*CTHS*SPHS 14 1 
Y12=STHI*CTHS»CPHS-CTHI#CPHI*STHS 142 
Z12=(-CPHI#SPHS+SPHI*CPH5)*CTHI#CTHS 143 
Z21=-SPHI»CPHS+CPHI*SPHS 144 
X22=-STHI#CPHS 145 
Y22=-STHI#SPHS 1*6 
Z22=-(CPHI*CPHS+SPHI*SPHS)«CTHI 147 
DO 205 <=1.500 148 
AX <K ) =0.0 149 
AY(K) =0.0 150 

205 AZ(K>=0.0 151 
KX=(WMAX-toWIN)/DEL 152 

Fig. 4.    Second section of the computer program. 

17 



FK = KX 153 
DEL=(WMAX-*MIN)/FK 154 
*RITE<6.22>DZ.DEL.WMIN.^MAX 155 
DELT=DEL/2. 156 
rfl =WMIN + DEI_T 157 
WF=WMAX-DELT 158 
K = 2 159 
ZA = ZI(1) 160 
ZC=ZI(2> 161 
DO 230    1=1iNT 162 
RDTN = XN( I )*SIC1+YN( I ) *S1SI+ZN( 1 )*CTHI 163 
IF(RDTN.LE.O. ) GO TO 230 164 
ZNI=ZN(1) 165 
ZB = Z( I ) 166 
IF(ZC.GE.Zd)GO TO 21b 167 

210 K=K+1 168 
ZA = ZI<<-l ) 169 
ZC=ZI(K) 170 
IF(ZC»LT.Za)GO TO 210 171 

215 DEN=X(I>*XN(I>+Y<I)*YN(I> 172 
D=DEN+Z8*ZNI 173 
F=(D-ZA»ZNI)/DEN 174 
WA = X< I )#F*«fX + Y( I >*F#*Y+ZA»WZ 175 
F=(D-ZC*ZNI>/DEN 176 
WC = X ( I >«F*I*X + Y( I )*F*WY + ZC*»/Z 177 
IF(WC.GE.WA)GO TO 218 178 
Wt* = WA 179 
*A=WC 180 
WC=WW 181 

218 KA=(WA-Wl )/DEL+l.5 182 
KC= <*/C-*I )/DEL+l .5 183 
IF(KA.NE.KC)GO TO 220 184 
AX(KA)=AX(KA)4XN<I) 185 
AY(KA>=AY(KA>+YN(1> 186 
AZ(KA)=AZ<KA)+ZN< I ) 187 
GO TO 230 188 

220 FKA=KA-1 189 
W=FKA*DEL+WI+DELT 190 
D=(W-WA)/(WC-»A) 191 
AX(KA>=AX(KA)+XN(I)*D 192 
AYCKA)=AY(KA)+YN(I)*D 193 
AZ(KA>=AZ(KA)+ZN(I)*D 194 
F=l.-D 195 
AX(KC)=AX(KC)+ XN(I)*F 196 
AY(KC)=AY(KC)+YN(1>*F 197 
AZ(KC>=AZ(KC)+ZN(I >*F 198 

230 CONTINUE 199 
W=*I 200 
00 235 K=liKX 201 
AX(K)=AX(KJ/DEL 202 
AY(K)=AY<K)/DEL 203 
AZ(K )=AZ(K)/DEL 204 
FK = K 205 
*RITE(6.22> FK.*»AX(K).AY(K>.AZ(K) 206 

235 *=*+DEL 207 
AX(KX+1 )=2»*AX(KX)-AX(KX-l ) 208 
AY(KX+I )=2«*AY(KX)-AY(KX-1 > 209 
AZ(KX + 1>=2»*AZ(KX)-AZ(KX-1) 210 
WRITE (6.23) 211 

Fig. 4.    Second section of the computer program,    (cont.) 
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Fig.  5.    Calculated area functions for a prolate spheroid 
using input data from Fig.   1 . 
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VI.      COMPUTING THE  CW SCATTERING MATRIX 

The third section of the computer program,   shown in Fig.  6,   reads 
the frequency in megahertz and calculates the CW scattering matrix and 
the corresponding echo areas.    In addition to the frequency,   card 212 
also reads the integers L and M which are defined in the next section. 
L and M are not needed for the CW calculations and could just as well 
be read later at card 249-    Suitable input data for card 212 are shown 
in card 299 in Fig.   1 • 

This section of the program calculates the vector S defined by 

nwmax 
(54) S = (jA)     \     A(w)   eJkw    dw     . 

/mm 

The integral in Eq. (54) is evaluated with the "piecewise linear method" 
described in Reference 1 •    We integrate over segment k on the w axis 
and then sum on k.    Segment k has length DEL and is centered at w = w^. 
On segment k a straight-line approximation is used for the area function: 

(55) A(w) = ak + bk w 

By fitting Eq.  (55) to the stored samples A(K) at w^ and A(K+1) at w^, 
we find that 

(56) a^ = [ A(K) wk+1   - AK+1) wkj/DEL 

and 

(57) bk =  [ A(K+1)  -  A(K)]/DEL 

When k is used as a subscript it represents the index of a segment on 
the w axis and is denoted in the program by K.    When used otherwise,   as 
in Eqs .  (54) and (59),   k is defined by Eq.  (2) and is denoted in the program 
by TPL. 
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The integration in Eq. (54) can be performed analytically when A(w) is 
given by Eq. (55).    This leads to the following expression 

KX 

(58) S   - _J      Y    [QK A(K) + QL A(K+1)]    , 
—        2TTDG    LI    

fc        — — 
k=l 

where 

(59) DG = k DEL , 

(60) QK = (GL - j) QD - QC   , 

(61) QL = QC - (GK - j) QD   , 

(62) QC = GB eJ GB - GA e> GA   , 

(63) QD=eJGB-eJGA    , 

(64) GA = k(wk -  DEL/2)    , 

(65) GB = k(wk + DEL/2)    , 

(66) GK = k wk   , 

and 

(67) GL = k wk+i 

The summation in Eq. (58) is programmed in cards 223 through 
236.    The rectangular components of S are denoted by SX,   SY and SZ. 
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Equations (23) - (26) are programmed in cards 238 - 241 to cal- 
culate the complex elements in the scattering matrix.    This scattering 
matrix is the principal output of this section of the program.    With it 
available,   one can use Eq. (15) to calculate the scattering properties 
of the target for any given incident polarization. 

The remaining output from this section does not necessarily 
have any significance except in special cases.    In backscatter problems, 
however,   EAl 1  represents the echo area in square meters.    Further- 
more,   EAl 1 and EA22 represent the E-plane and H-plane echo areas 
when §{ = 4>s and the target has axial symmetry with respect to the z 
axis . 

Using the techniques described above and the input data shown 
in Fig.   1,   the computer yields the following CW scattering data for 
the prolate spheroid at 300 MHz: 

511 = S22 = -0.1191 + j 0.0637 

512 = S21 = 0 

EA11 = EA22 = 0.229 

EAl 2 = EA21 = 0 

Although the piecewise-linear integration technique is efficient 
and successful for most problems,   it is not appropriate in forward 
scattering problems (where w = 0 everywhere on the target) or in 
specular scattering from a flat region on the target (where w is constant 
over a significant portion of the surface).    Therefore,   the computer out- 
put data are not reliable in these cases. 

VII  .   COMPUTING THE   PULSE  RESPONSE 

The pulse scattering problem is treated in the fourth and last 
section of the program shown in Fig. 7.    The entire program is ready 
for the computer when the four sections are put together (with the card 
numbers  running sequentially from  1 through 345) and backed up with 
suitable input data (such as cards  1 through 299 in Fig.   1). 

To explain the pulse calculations,   it is convenient to write Eq.  (49) 
in the following form 
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3         READ(5.29)FMCL»M 212 
*AVE=299.79/FMC 213 
«IRITE<6.32>    FMC«WAVE 214 
TPI_ = TP/WAVE 215 
SX=(.u..0) 216 
SY=(.0,.0 ) 217 
SZ=(.0..0) 218 
GK=TPL»WI 219 
GA=TPL*WMIN 220 
DG = TPL*DEl_ 221 
QA=CMPLX(C0S(GA).SlN(GA)) ZZZ 
DO   240   K=l .KX «:23 
GB=GA+DG 224 
QB=CMPLX(COS(GB).SINCGB)) 225 
GL=GK+DG 226 
QC*GB*QB-GA*QA 227 
QD=QB-QA 228 
OK*QU*Gl_-OC-< .0« 1 • )*U0 22V 
QL*OC-QD*GK+(.0.1.)*QD 230 
SX*SX+QK*AX(K )+OL*AX(K*l ) 231 
SV*SY + QK*AY(K )+0L*AY(K'f 1 ) 232 
SZ*SZ+QK*A^(K>+QL*AZ<K+1) 233 
GA=GG 234 
GK*GL 235 

240   QA*QB 236 
DEN=TP*DG 237 
SI 1 *(SX*X11+SY*Y1l+SZ*Zl1 >/D£N 238 
SI 2*<SX*X12 + SY»Y12 + SZ*Z12)/DEN 239 
S21=SZ*Z2l/DEN 240 
S22=(SX*X22+SY*Y22+SZ*Z22)/DEN 241 
WRITE<6»33>    SI 1.S12.S21«S22 242 
EA11 = (CABS(S1 1 >**2>*FPI 243 
EA12=<CABS{S12)**2)*FP| 244 
EA2l=(CABS(S21)**2)*FPI 245 
EA22«<CABS(S22)**2)*FPI 246 
WRITE<6»34)   EA1I.EA12.EA21«EA22 247 
WRITE    (6.23) 248 

Fig. 6.    Third section of the computer program 
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(68) Fit) = -1 
— 2TT 

:os wt \     A(g) cos g dg - sinwt \      A(g) sing dg 

where 

(69) g = kw   , 

(70) xa = GN or -wt (whichever is larger)   , 

(71) Ya. ~ GX or WT
 " wt (whichever is smaller)   , 

(7 2) GN = k WMIN, 

and 

(73) GX = k WMAX 

The area function_A(g) is the same as A(w),   and it has already been 
calculated and stored in AX(K),   AY(K) and AZ(K). 

The integer L determines the number of points per cycle to be 
calculated on the scattering waveforms .    Card 254 calculates the size 
of the increments in wt as follows: 

(74) DWT = 2TT/L  . 

The integer M specifies the number of complete cycles in the incident 
waveform.    The pulse width of the incident waveform,   as measured in 
radians and observed at an arbitrary point in space,   is calculated by 
card 253 as follows: 

(75) wT = WTAU = 2TTM 
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The scattering function F(t) is nonzero only in the following interval: 
-GX < ut < «T ~ GN. 

It is convenient to assign symbols to the integrals in Eq. (68) 
as follows: 

pYa 
(76) U(t) =     \       A(g)cosgdg, 

and 

pYa 
(77) V (t)    =    \     A(g) sing dg    . 

These are functions of time by virtue of the time dependent limits xa 

and ya«    In the program the rectangular components of U(t) are denoted 
by UX,   UY and UZ,   and the components of V(t) are VX,"VY and VZ. 
WT,  SWT and CWT denote wt,   sinut and cosut. 

U(t) and V(t) are identically zero for all values of wt less than 
or equal to - GX.    Thus,   the computer begins the pulse-response 
calculations by setting wt = - GX (card 261),   initializing U(t) and V(t) 
to zero (cards 269 -  274) and writing out the first data point on the scat- 
tering waveform (card 268).    At this point in time,   the integration limits 
are found from Eqs . (70) and (71) to be xa = ya = GX. 

Suppose the computer has just completed the calculation of the 
scattering data for a given value of oot,   has incremented wt in card 277, 
and is preparing to calculate    the next point on the scattering waveform. 
The first step in the procedure is to determine the integration limits 
xa and ya,   denoted by XA and YA.    This is accomplished in cards 281  - 
292 in accordance with Eqs. (70) and (71).    These cards also determine 
the indices KA and LA of the segments on the g axis which contain the 
points g = XA and g = YA,   respectively. 

The integrals U(t') and V(t') currently in storage have limits now 
denoted by XB and YB by virtue of cards 338 and 339.    Since XA and YA 
are equal to or less than XB and YB,   respectively, 

£B pYB 
A(g) cosg dg -    \       A(g) cosg dg 

_    A »/-v  A 
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and 

rB pYB 
A(g) sing dg -    \       A(g) sing dg      . 

J^A JYA 

Calculations based on Eqs .  (78) and (79) are,   of course,   far more efficient 
than Eqs.  (76) and (77). 

Equations (78) and (7 9) are programmed in cards 294 - 329-    The 
piecewise-linear technique is employed to evaluate the integrals in these 
equations.    The integrals with limits XA and XB are evaluated in the 
first pass through the DO  LOOP that begins with card 299,   and those 
with limits  YA and YB are calculated in the second pass.    In each pass, 
ZA and ZB denote the limits of integration.    Initially I denotes the index 
number of the g-axis segment containing the point g = ZA and G is the 
value of g at the center of this segment.    A(g) is treated as a linear 
function over this segment in the same manner as in Eqs.  (55) through 
(57).    GP denotes the value of g at the center of segment I + 1,   and HA 
and HB are the limits of the subintegral on segment I.    When the inte- 
gration on segment I is finished,   the computer moves on to the next 
segment (unless ZA and ZB lie on the same segment).    The following 
equations are used in cards 310 - 319 to evaluate the subintegral on 
segment I: 

(80) \      A(g) cos g dg =   _L    [ CI A(I)  +CII A(I+1)J   , 
V~ DG - - 

(81) \   ~A(g) sin g dg =   _L   [ DI A(I) + DII A(I+1)J , 
1     — DG — — 

(82) CI = (ha -  gi+i) sinha + (gi+i - hb) sinhb + cos h a -  cos hb 

(83) CII = (gi - ha) sinha + (hb -  gi) sinhb + cos hb - cosha   , 

(84) DI = (gi+i - ha) cos ha + (hb -  gi+i) cos hb + sinha -  sinhb 

and 
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(85) DII = (ha -  gi) cosha + (gi - ht>) cos hb + sinhb -  sinha 

DG is defined in Eq.  (59)-    In the program,   g^,   gi+i •   ha and hb are 
denoted by G,   GP,   HA and HB .    SGN is positive in the first pass through 
this integration loop and negative in the second pass,   in accordance with 
the plus and minus signs in Eqs .  (78) and (79). 

When the vectors U(t) and V(t) have been calculated,   Eq.  (68) is 
used to determine F(t).    The rectangular components of F(t) are denoted 
by FX,   FY and FzTn cards 330-332.    Finally cards 333 - 336 calculate 
the scattering functions defined by Eqs.  (43) through (47),   and card 337 
arranges the writeout of these data on the scattering waveforms for the 
pulse situation. 

The results obtained in this manner (using the input data in Fig.   1) 
for a prolate spheroid are illustrated in Fig.  8. 

VIII.   CONCLUSIONS 

A digital computer program is described which uses the physical 
optics approximation for scattering by convex perfectly conducting tar- 
gets with arbitrary shape.    The target size and shape are specified by 
input data giving the coordinates of many points on the surface.    This 
program handles bistatic and backscatter problems.    The input data 
specify the frequency,   the incidence angles {Q[, ${) and the scattering 
angles (9s»4>s)«    In the CW case,   the output data give the complex 
elements in the scattering matrix.    Typical results are shown in the 
Appendix for scattering from spheres,   spheroids,   ogives  and cones. 

This scattering program also handles the pulse case where the 
incident wave has a finite number of cycles.    For this case,   the 
following additional input data are required:    the number of cycles in 
the incident wavetrain,   and the number of points per cycle to be computed 
for the scattering waveforms.    The output data give the four waveforms 
associated with the four elements in the scattering matrix. 

Simple modifications can be made in the program,   if desired,   to 
increment the frequency,   the incidence angles or the scattering angles . 
This is convenient for generating various types of scattering curves 
such as those in the Appendix. 
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4  CONTINUE 249 
LM=L»M 250 
FL=L 251 
FM=M 252 
l*ITAU = TP*FM 253 
D*T=TP/FL 254 
IF (L.M.EU.V, >G0 TO 300 255 
DGT=TPL*DELT 256 
GI=TPL*WI 257 
GX=TPL*WMAX 258 
GN=TPL*WMIN 259 
DEN=TP#DG 260 
WTA=-GX 261 
vKTB = WTA<J-GN 262 
*T=WTA 263 
Fl1=0.0 264 
F12=0.0 265 
F21=0.0 266 
F22=0.0 267 
WRITE(6t22> WT.Fl1tF12.F21»F22 268 
UX=.0 269 
UY=.0 270 
UZ=.0 271 
VX=.0 272 
VY=.0 273 
VZ=.0 274 
X3 = GX 275 
YB=GX 276 

260 «/T = WT+DwT 277 
IF<*T.GT.WTB) GO TO 300 278 
SwT=SlN(WT> 279 
CWT=C0S(WT) 280 

XA = GN 281 
KA=1 282 
XX=-WT 283 
IF(XX.LE.XA) GO TO 265                                                                264 
XA=XX 285 
KA=(XA-GI >/DG-M .5 286 

265 YA=GX 287 
LA=KX 288 
YY=WTAU-WT 289 
IF(YY.GE.YA) GO TO 268                                                            290 
YA=YY 291 
LA=(YA-GI J/DG+1.5 292 

268 SGN=1. 293 
ZA = XA 294 
ZB = XB 295 
1=<A 296 
F=I-1 297 
G=F*DG+GI 298 
DO 290 K=lt2 299 
IF(ZA.GE.ZB) GO TO 285                                                         300 

270 GP=G+DG 301 

HA=G-DOT 302 
HB=G+DGT 303 
IF(HA.LT.ZA) HA=ZA                                                                      304 
IF(HB.GT.Za> HB = ZB                                                                 305 
5A=SIN(HA) 306 
SB=S1N(HB) 307 
CA=COS(HA) 308 
CB=COS(MB) 309 

CI=(SA*<HA-GP) + 5B*<GP-Hrj)+CA-CB )*SGN 310 

Fig. 7 .    Last section of the computer program. 
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Cl I = < SA*(G-HA )+SU*(nd-G)+Cu-CA)*SGN JlJ 
UX = UX + (_I*AX( I )+C1 I*AX( 1 + 1 ) 312 
UY = UY-fCI *AY ( I )+C I 1 *AV ( I + 1 ) Jl3 
UZ=UZ*C1*AZ< 1 )+CI l*AZ< I +1 ) 314 
DI = (SA-SB + CA#(GP-HA >-Kit)* < HB-GP ) )*SGN 315 
DI I * (SB-SA + CA* (MA-G >*Ct)# <G-HiJ ) ) *SGN 316 
VX=VX+D1»AX( I )-fOI I *AX( 1 + 1 > 317 
VYsVY+01*AY(I)+D(I*AY(1+1) 318 
VZ=VZ+DI*AZ<I)+DII*AZ<1+1) 319 
IF(Hd.GE.Zd) GO TO 28b 320 
I»I•1 321 
G = GP 322 
GO TO 270 323 

285 ZA=YA 324 
ZB = YB 325 
I=LA 326 
Fal-l 327 
G=F*DG+GI 328 

290 SGN=-1. 329 
FX=<UX*CWT-VX»SWT)/DEN 330 
FY=(UY*CWT-VY*SWT)/DEN 331 
FZ=<UZ*CWT-VZ*SWT)/DEN 332 
FI1=FX»X11+FY*Y11+FZ*Z11 333 
F12*FX«X12+FY*Y12+FZ*Z12 334 
F21=FZ*Z21 335 
F22=FX#X22+FY#Y22+FZ*Z22 336 
WRITE(6.22) WT,Fl1.F12.F21.F22 337 
XB*XA 33b 
YB=YA 339 
GO TO 260 340 

300 CONTINUE 341 
WRITE (6.23) 342 
STOP 343 
END 344 

SDATA 345 

Fig- 7.    Last section of the computer program,    (cont.) 
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APPENDIX 
NUMERICAL RESULTS 

This Appendix presents the results obtained with the physical- 
optics computer program for several target shapes .    Table I lists the 
number of planes used to describe each target,   the total number of 
points on the target,   and the time required for an IBM 7094 to process 
the target description data and set up the polyhedral approximation. 
The last column lists the additional computer time needed to calculate 
the area function and the CW scattering matrix. 

TABLE  I 
STATISTICS  FOR  THE   TEST  CASES 

Time for 
Target Shape Planes Points Polyhedron 

Sphere 30 1083 8.6 sec 

Prolate 
Spheroid 30 774 6.4 

Oblate 
Spheriod 30 1257 9.9 

Ogive 50 1008 8.2 

Cone 35 1176 9-8 

Area Function 
and CW Matrix 

1 .6 sec 

1.3 

1.9 

1.8 

3.3 

The dimensions of the targets are specified in Figs.  9 through 13. 

It is found from Table I that the computation time for processing 
the target description data and setting up the polyhedron increases 
linearly with the number of points on the target surface.    The computer 
handles about 125 points (to establish 250 facets) per second,   regardless 
of the shape of the target. 

In generating the area function and the CW scattering matrix,   the 
computer spends very little time on the shadowed facets.    Thus,   the 
computation time for this work increases linearly with the number of 
illuminated facets on the target.    This explains why the computer spent 
twice as much time on the cone (3.3 seconds) as on the sphere (1.6 seconds) 
as shown in Table I      This sphere has approximately 2000 facets,   and half 
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of them are illuminated.    The cone also has approximately 2000 facets, 
and all of them are illuminated for axial incidence.* 

In calculating the area function,   the computer handles about 670 
illuminated facets per second. 

To use the computer program most efficiently,   one would cal- 
culate a significant amount of scattering data for one target before 
passing on to the next one.    Furthermore,   to minimize the area-function 
calculations,   one would calculate the scattering data for many different 
frequencies before changing 6^,   cj>^,   0S   or   (j)s •    When these incidence 
and scattering angles are held constant,   the computer generates  CW 
scattering data for 20 different frequencies in one second for the oblate 
spheroid in Table I,   and for 10 frequencies per second for the cone. 
For the sphere,   it generates CW and pulse-response data for a new 
frequency in one second (with three cycles in the incident wavetrain 
and 20 calculated points per cycle in the scattering waveform). 

Figures 9 through 13 display the numerical results for scattering 
by several different target shapes.    The dots represent the output data 
from the computer program described herein.    The input data listed 
the coordinates of a large number of points (Table I) distributed almost 
uniformly over the target surface.    The source of the physical-optics 
data (the solid curves in Figs.  9 -  13) is described a little farther on 
in this Appendix. 

Figures 9a through 13a show curves of backscatter echo area 
(in square meters) versus frequency for axial incidence.    For each of 
these targets,   it may be noted that the computer output agrees closely 
with the physical optics solution for all frequencies up to 600 MHz. 
(This simply indicates that the computer program does a good job in 
generating physical optics data.    It is not implied that the physical 
optics formulation always gives a good approximation to the exact 
scattering data.)    To obtain equally good results at higher frequencies, 
it would be necessary to include more points in the input data description 
of the target. 

*   For all the targets listed in Table I except the cone,   the input data 
points covered the whole surface and the computer set up a closed poly- 
hedron.    For the cone,   however,   the input data did not cover the flat 
plate at the base.    Since the base is shadowed for all cases shown in 
Fig.   13,   the computed data apply to a cone with a circular disk at the base 
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Although the computer program has not been adequately tested 
for the most general target shapes and bistatic situations for which it 
is designed,   it is believed that it will give accurate physical-optics 
data except for concave targets,   forward scattering,   and specular 
scattering from a large flat subsurface.    The program could be 
modified without much difficulty to remove the last two of these 
exceptions . 

All of the targets considered in this Appendix have axial symmetry 
with respect to the z axis.    To check the accuracy of the computer out- 
put data shown in Figs.  9a -  13a,   closed-form expressions were derived 
for the vector area function for each of these targets for the backscatter 
situations with axial incidence.    Letting B{ = ${ • 9S = <j>g = 0,   we find 
from Eq.  (22) that w = 2z.    From symmetry considerations,   Ax(w) = 
Ay(w) = 0.    For targets having axial symmetry with respect to the z 
axis,   it is convenient to describe the target shape with an equation of 
the form p = p(z) where (p>§, z) represent the coordinates in the 
cylindrical system.    Then it is easy to show,  with the aid of Eq.  (51), 
that 

(84) Az(w) = - irpp '     , 

where p' represents the derivative of p(z) with respect to z.    Equation (84) 
applies over the illuminated region of the target where p' is negative, 
and Az(w) = 0 over the shadowed region where p' is positive. 

All the targets considered in this Appendix can be represented 
with the following equation: 

(85) F(p, z) = Ax p2 + A2 z
2   + A3 pz + A4 z + A5 p   + A6  = 0 

From Eqs •  (84) and (85),   the area function for axial backscatter is 
given in closed form by 

(86) Az = TT p (2A2z + A3p   + A4 )/(2AxP  + A3z + A5 ) 

For spheres,   prolate spheroids and oblate spheroid,s, 
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(87) Az = _    TTZ   B2 

A2 

where A and B denote the semimajor and semiminor axes,   respectively 
For the ogive, 

(88) Az =        "Pz 

NJB2   - z2 

where B is the radius of the circular are that generates the ogive. 

For the cone, 

(89) Az = irz tan2 a    , 

where o. denotes the half-angle of the cone. 

For axial backscatter from a target with axial symmetry,   it is 
found from Eq.  (54) that Sx = Sy = ° and 

(90) Sz= (2jA)  y Az e2Jkz dz  . 

The integral in Eq •  (90) can be evaluated to obtain closed-form expressions 
for the scattering matrix and the echo area for the cone and the spheroids. 
The resulting data are shown by the solid curves with the label "physical 
optics" in Figs.  9a,   10a,   11a and 13a.    For the ogive in Fig.   12a,   the 
"physical optics" curve was obtained from Eqs .  (88) and (90) with 
numerical integration. 

Figure 9b shows backscatter results for the sphere as a function 
of the aspect angle.    For a true sphere,   the echo area is of course 
independent of aspect angle.    Thus,   the variations in the computer out- 
put data arise from the polyhedral approximation. 

Figures  1 Ob -  13b show the backscatter results as a function of the 
aspect angle (0i = 0S = 0) for the spheroids,   ogive and cone.    The solid 
curves with the label "physical optics" were obtained with another com- 
puter program which is designed especially for backscattering from tar- 
gets with axial symmetry.    The input data for this auxiliary program 
describes the target shape by assigning numerical values to the coefficients 
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in Eq. (85).    The angles 4>i and <ps are assumed to be zero,   the cylindri- 
cal coordinates (p, §, z) are employed for points on the target surface, 
and 

(91) w = 2(p sin8 cos <|) + z cos 6). 

It is found that Sy = 0, 

(92) S = (j/\)    \    \   (x cos4> - z p') p   eJkw dcf) dz , 

(93) Sn  = S22   = - Sx sin9 - Sz cos 6   , 

and S12   = S21  = 0«    The auxiliary program uses numerical integration 
to evaluate S in Eq. (92). 

Bistatic scattering results are shown in Figs.  9c -  13c and 9d - 
13d.    These curves apply for axial incidence with Q{ = <pi = 4>s = 0>   so 
that 

(94) w = p   sin8s coscp + z( 1 + cos9s) , 

P ikz(l+ cos 0 = ) 
(95) Sx = - k     \   p   J1(kpsines)e

J     V s' dz    , 

(96) Sy = Siz   = S2i = 0   , 

P . ikz(l + cos0s) 
(97) Sz = - jk   \    p p»  Jo(kpsin0s) eJ dz   , 

(98) Su  = - Sx sin9s - sz cos6s   , 

(99) S22  = - Sz   , 

and J0 and Jj  represent Bessel functions. 
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Equations (94) - (99) apply only for axial incidence on a target having 
axial symmetry.    (Similar expressions are given in Reference 2.)    These 
equations were used to develop another auxiliary computer   program to 
generate the E-plane and H-plane curves with the label "physical optics". 
This program also used the coefficients in Eq.  (85) as input data for the 
target shape,   and evaluated Sx and Sz with numerical integration. 

The bistatic curves in Figs .9-13 agree with the physical-optics 
echo area expression for the forward-scattering situation: 

(100) o-  = 4TTA
Z
/\

2
     , 

where A represents the area of the target projected along the line of 
sight between the transmitting and receiving  antennas.    In the forward- 
scattering situation (and also for backscattering),   the physical optics 
echo area shows no polarization dependence even for a target with 
arbitrary shape.    Equation (100) is not restricted to symmetrical tar- 
gets or axial incidence. 

Though all the data in Figs.  9-13 were obtained with the aid of 
various digital computer programs based on the physical-optics con- 
cepts,   the close agreement between the dots (with the label "computer 
output") and the curves (with the label "physical optics") is significant 
for two reasons.    First,   the general program uses a target description 
technique which differs greatly from that used in the specialized programs 
Furthermore,   some of the specialized programs used closed-form ex- 
pressions and others were based on equations involving line integrals or 
surface integrals,   whereas the general program handles each problem in 
the same manner (setting up the polyhedron,   calculating the vector area 
function,   and integrating the area function to obtain the scattering mat- 
rix).    Having demonstrated that this general procedure gives correct 
physical-optics data for a variety of target shapes and bistatic and 
backscatter situations,   we have  confidence that the program will perform 
equally well with other targets and situations. 
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