AD66981 2

ANMNALYSIS OCF
IMPLEMENTATION ERRORS
IN DIGITAL COMPUTING SYSTEMS

Technical Report No. 6
March, 1968

M T 74
D ET
- ﬁ'—j'-:

K Jute 10068
L

This documesi! 17« Leen cpprove
N o T i
4 LRI 249

(&0
Computer Systems Laboratory
Washington University
St. Lovis, Mo.

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

ANALYSIS OF INPLEMENTATION ERRORS IN DIGITAL COMPUTING SYSTEMS

Robert M, Keller and Donald F. Wunn

TECHNICAL REPORT NO. §

Maich, 1958

Computer Systems Labaratory
Washington University

St. Louis, Missouri

This wark has been supported 2y the Advanced Research Prejects Agancy of the
Degortment af Defense under contract $D.302 cnd by the Divisien of Resserch
Facilities and Resources of the Natiano! Institutes of Health under Grant FRO021D.

11

‘‘Errors, like straws, upon the surface flow;
He who would scarch for pearis must dive below.”

Diyden, All for Love, Prologue

oo g——

o oy

114

ABSTRACT

This regort discusses problems encountered with contol networks in highly restructurable digital
systems. In particolas the treatment of implementation errore is covered with emphasis on concurrent processing.
The implementetion of concurrent processing : :cuworks may reeult in emrors which will be quite complex to
detect and systematic metheds are warranted. A model representing a particular type of computing system is
presented, and methods for introducing concurrent control into the mode!l discussed. The automatic detection of
a certain class of errors caused by improper design of these systems is investigated. Graph theoretic repre-
sentation is employed in demonusiraiing severa! error detection techniques. The properties of these techniques
are compared and it is concluded that one technique, ol those investigated is of sufficient generality,
thoroughness, and s mplicity in impismentation !» be used {or automatic error analysis.

No.

i

2

3.

4.

iv
TABLE OF CONTEN (S
IRREOBUCLION euetieieeieinrtrueeretenseoestneaeetoresosesseorssessresstoontssnsssscnsssassssernsssssrontrsnsssacasssnnns
1.1 MOtIVBION oeitieenieerereeneerensusnnesoesrsesessessesstasssonnstesisonssssssesnssessssssensasussssssnsssesss
1.2 Asynchronous Concurrent Mod: as Compared with Other Modesccoeveieiniinieniennnnnne.
1.2.1 Levels coovviinnnen 60N0BE0000D0GNAOANNANGAC000000C00BA0a00N0E0A0000A0GEO00AC00G0A00A000A00000ADE00]
1.2.2 Synchronous versus ASYNCRIONOUScccivvieriieniriiiniiiieeicreiioieiniernereerasenens
1.2.3 Serial versus CONCUIENTciuiieiiinitiiiiiiiieeceniiininiessie orssernirorsrssererssssssstasnonss
1.3 DOmMain of IHEEIEBE «.cuuenenrriuiiiitereariorieciostiooe toronressorntnssoraressossrnssesstaertssssasesssasacens
1.3.1 Historical Developmentiuvuiiniiiiiceneniiniiiencnieiniorsisineronsanitsroeetnsrsnsnencensnses
1.3.2 Current ReSEAICh cvivuviveiiuiirieiineninticeiiiiieceionietniieeisiiaressstitosesiseoensnsssnonssases
1.4 Problems Introduced by Allowing Explicit CONCUMENCY ...uvuveiniieiiriiiuecnrnnincuininecnniinine,
A Model of the Type of Comnuting System to be Analyzedocovvveiiiiiiiiiniiiiininnni,
2.1 Signals, Paths, Processes, and MEMOTEScccoeiviniiiiiiiiiiiiiiiiiiicisiicnnncan,
2.1.1 Data Signals and MEMOTIEScvuuriuiiininiiiiiniiiiieiariie e st sasasreasrsenseaes
2.1.2 Frocesses which Transform Dataoccoviiiiiiiiiiioiiiiinicn i sinessesnnans
2.1.3 Control Sigrals ...cociiiiiiiiiiiiiiiiiiiitiiiriiii ettt iersreria st esten s teeerttasnensastnanes
2.1.4 General ProceBBes .uvuiiiiiiiiiiiiriieiiiiiiiiisiiteetiensersererstiitstienrasentatneeserensstasnes
2.1.5 Summaty of Elements in the Model and an Exampleoocoiiiiiiniiiiiiininiininnannnnn,
2.2 Process NEtWOTKS ...oouueeiinreerseerioniesiietrsrssieriirssissetsetserssersssserssersessasiosnes tessaraones
2.2.1 Sequential Process NetWorKScoeeiiiniiniiiiiiininiiies cocenieeiineseiinninnisareareaens
2.2.1.1 Synchronous and Asynchronous Sequential Processesoccoevivinniniinnnn,
2.2.1.2 Concepts Encountered in Sequential Asynchronous Networkscoveveees
2.2.1.3 Decision and Merge Processescooviviniriicinininentionnieiiasioineessionnnseess
2.2.2 An Example of Asynchronous Sequential Controlcccoceviviiiiiniiiiiiieiiieninoioneann.,
2.2.3 Concurrent Process NEtWOTKSocivveeiiiiiiiiiiiininierersimorcsctsisenissusmoessasnanctssonces
2.3 Application to Computing SyStemsccceviiiviiiiiirrers sireereisiessisresesseeiiiiiiescassereeenes
2.3.1 Application at the Organizational Levelcocooeviiiniiiiiiiiiiiiiiniin e
2.3.2 Applicatio. at the Program Levelccooiviiiniiiiiiiiccinniniiniiiicscnieneennn e
Graph THeoretic CONCEPLS ..u.vivrieririieruieritieeiiieiieeteetunireersiteraeteeersntesnestessinssensssessransees
3.1 DefiNitiONS viuovurreieeereeieieornsreorsssncussocrsonceesenasssenstiessesasssssssssnssnsostorsnenserencesotonnses
972 (e B e ERD cosonoonoo000000000000000006000060000000000000000A00INAREAANNNEOARN0AN000CAA00000AEE
Errors in Networks of Concurrent Processes with Asynchronous Controlcocoeviiiiiniiinnns
4.1 General Types of Effors ..cooveriiiieiiuiiuiiiiiiiiiiiciiiriietiiseietnitareteniitiiereesrarearaerenes
4.1.1 Infinite DUrBLION ...vivveniiiiieiiinieninreiiiiiiseiesseeieniiiiesssntresositnttrstesieesassasnenonens
Gollo?) BT EETHER cocnoonacoosaanaanosnscaaconoenaceananesncmen000ae 0008600860660608086500000000003 95600000000
4.1.3 INGEterMINACY «.uvureiriiririruiieienrrniereiersuesrsrsesstrseresenesse sesassnsessnsaearacnesssnssssnse
4.1.4 Summary of Implementation EITOISccciiiiiiiiiniiiiiiiiiiinieninnitacianeneeeessssnnenns
4.2 Detection of Implementation EfOr8 ...c..c.vvieiiiiiiiiiiiiiiiiiiicciiieieiniierereinieieieensorsesnes
4.2.1 SIMUIALION .iuiriieeiiiitiiiieiiriiiiisiertcerietretteetenterteesntessneasetoreensesonsnsssnsosesssonns
4.2.1.1 Simulation with Trial Datacoiviiiiiiiiiiiiiiiiiicr e e e,

00 O O O S B L bW N NN NN s s e s

W W W R R R BN B R e e s et e Pt e ped et et e
D O Y - - T - - -~ T - B - - - S S R Y B B~ B]

43

——— —_—
]
v
TABLE OF CONTEMTS
l continued
No.
I 4.2.1.2 Monte CarloSimulationocveivieiieinnniee coneveinsnnrences rererraeiertenranas
4.2.1.3 Exhaustive Simulationccoeiieiiiiiiiiiiiiiiiiiiiic e
4.2.2 Topological AnalYSisoeciieriiiieiiiiiiiiiiiiiii i e
] 4.2.3 Symboli: Analysis Using Algebraic EXpressionsccovvviiiininiiiniiiinniiinine.,
4.2.4 The State Transition MEthodovvvriveiiniiiiieet iiteiienienrententserrerieereeceonsersonsenns
N 4.2.5 A Summary of the Techniques of this Studycoooviiiiiiiiiiiiiiiiiiiie e,
j 5. Summacy and Conclusionciieieriieronniiiiin i e e
6. ACKNCWICABOMENT tvvuivtisiinereneirisseses beeeneresserssssses onenertsssossersonsonsorsessernsnstnestennssssanes
| Y Y VLT PP
J T T U0 1T T PN
LI Y FT YT £ 2) 1 OSSP
)
]

vi

LIST OF FIGURES

No. Page
1. Representation of data signal paths and memory 90DOCONO0ND00000N000D00AA000ON0000GA0OE0BDDE0EAN0N0A000TT 5
2. Process with initiation and completion Signalsc.coieiiiiiiiiiiiiiiiiiiiiiii e 7
3. Example of a proccss showing the exisience of signals on control and data paths 9
4. Representation of dECISIONS ...u.vuiiuiiieiiieiniiiiiiiiiiieiiritiiiiioiuereomaitacrieaierersersorotistsornnns, 11
5. Ropresentation of MEIBES ...ovieriiiiirinioririiiierenieiiiiiieriereietioienieessrasersorsnesssseres secesssssnanorns 11
6. Separable process which computes n-factorialcooiiiiiiiiiiiiiiiiiiiiniiiiiiir e eeae, 13
7. Possible subprocesses for Figure 6cocoiviiiiiiiiiiiioiiiiinioieeisiiiiiiieiesieieioereresenens 14
8. Concurrent asynchronous control of processes T, U, and V with the precedence relation T < V,
W @ W ceasooonnosonnnoa0mona0000000005000000000000000000080000000000090050000000050000000000000460000060G000900A003B0A05D0 15
9. Example of & BIaDh ciccviiiiiiiiiiiiiiiiinieeiorsreriiiettsresctisiiersairstostecsttncterstetsottsnroetnssrnrnons 19
10. A strongly CONNECIEd GIAPMuuuuneeiiiirneeirrrtereiessearaesrereaereeesssnessessassssesssenessseecannnes e 21
11. A subgraph of the graph in Figure 10. This subgraph is separablec.coiviiviiiiiiiinniiiinan.. 21
12. The maximal strongly connected subgraph of the subgraph in Figure 11....c.ovvviiiiiiiiinnnninnnin, 21
13. A minimal strongly connected subgraph of the subgraph in Figure 12........cccoecvvnvenniinieniniinnnen, 21
14. Input and output matrices for the graph of FIgUre 9 c.cocovvniiiiiiiiiiiiiiiiiiiciiienii e, 22
15. Arc-node matrix for the graph of Figure 9 ..ocoviviieiiiiiiiiiiiiiniiiininii e, 23
16. The connection and reachability matrices for the graph of Figure 9ccovvviiiiiiinivinininnnee.. 25
17. A network with an infinite duration due to an algofithmocvieveriiiiiiniiiiniii i, 217
18. Networi:s which may have infinite duration errors because of incorrect algorithm 27
19. Networks having infinite duration because of incorrect use of concurrent-control elements 28
20. Regeneration by branch within a strongly connected subgraphc.cooveniiiiiiniiiniiiiiinininn., 28
21. Possible regenesation caused by a haZardccoviiviiiiiiiiniiiiiiiiiiiciiiiiiniie e 20
22. Networks with resudual OOlcoiiiiiiiiiiiiiins crneeiiiiiieiinies serrsreeiiniecsinsrisnesissennes 31
23. Incorrect implementation fOr A € Bicviiies cireruerniiiiniinieiiiierieeestosneessncarssserassnsasessesrennoanes 32
24. Correction of 2tie error in FIgure 23 ..oouiiiiiiiiiiiiiiiiiiiiiiiii e reet e snne s st sseeonenns 33
25, Error-free BraPhS . oot e et et r e e e e e e s et a et e s aaaaoe 35
26. Examples of graphs With EITOTRuiviveiiuerterrerrnsnsreriorumesssrienrestssssstssroesssareisacesresessacsnres kY-
27. A graph displaying the maximum number of combirations for two decisionscovevieninnnnnnn. 38
28. A graph with two decisions and less than the maximum number of combinationscueurene. is8
29. A 3-decision graph with four combinAtioONSccveveiniriiiriniiiiiieeeeisieniiaectirrerseerneneosasesennnns 39
30. Indication of combinations for a strongly connected Braphcovvuveivieiveniiecrernienensenrnsecennnnnss 40
31. Combinations for a graph with a styongly connecied subgraphcccecvvviiiiiiienirinenieniciennane, 40
32. Control for a floating-point &TItAMELIC VBRI veveuieniiereiuireenerusresaesesssssesseernrsensssessssreonessnssnses 41
33. Exhaustive tes? of an eITor-fIee NEIWOIKcieviverieiinrriinieeeinieurecenensencsrensnsereeeesrererasesessnns 45
34. Exhaustive tcst of a network with eIT0r8ceuiviiiiieiiiiiiii i s e e aa s 46
25. Exhaustive test of a network with undetectable ertorsccovvvveveiiiieneriinivnsievieessnseen, 47
36. Symbolic analysis showing @ hazardc.cooiiiiiiiiiiiiii i e e s see e aaes 49
37. Symbolic analysis of an infinite GUIALION CABE ...ccevreviieniiiniiiniiniiiiiriiniteeeireittetteereressnnenanns 29
38. Symbolic analysis of 8n €iTOr-fTEE CABE .. eviviiiniiiiiieinniiiiietriiiraeeeetes st rnrsssanenrenerorerannrenses 51
39. Symbolic analysis of am EITOT CASE ...uvvruueiiiriianerereses teteetatteareaeeeessseesonntorssnseresasesenrasnsnoss 52

vili

LIST OF FIGURES

continued
No.
40. Some simple error-free networks and their corresoonding state transition graphs
41. Partial sta.. transition graph for & BI&RCh .vvvviviiininiiii i e
42. Partial state transition graphs for decisions, merges, and rendezvous eearereeraene
43. State transition graphs fOr rTOr CRABES .. vicveiviiiiiiiiiiiiiiiiiiiiriiirni i stsersrsas e rarans
44, State transition Zraphs fOT @ITOr CALEScvvevverurierenirrrnneecriinusesinrisrenreressnreserronsrnnerees

ANALYSIS OF INPLEMENTATION ERRORS IN DIGITAL COMPUTING
SYSTEMS SUPPORTING ASYNCHRONOUSLY-CONTROLLED
CONCURRENT PROCESSES

1. INTRODUCTION

This report is concerned with digita! computing systems supporting asynchronosusly-controlled concurrent
processes. Systems of this variety present a departure from techniques of conventisaai usage. Certain methods
may be used to provide explicit concurrent control in these systems. If the methode are incomrectly appliied, e
number of different errors, which are unlike those encountezed in conventional sysiems, may result. Presented
here is a discussion of explicit concurrent control methods and an investigation of techniques for automatic
detection of errors introduced in using these methods. Several solutions are demonstrated and their relative
merits evaluated.

t.§ MOTIVATION

The desirability for increased speed in computer systems has focused interzst on tv'o major areas:
1. Digital eiectronics
2. Computer organizution
In the first area, the goal is development of electronic switching networks, ferrite core memoties, and other
coinponents capable of operating at extremely high speeds.’ The second, which is largely independent of the
first, involves efforis toward the effective usage of existing cornonents. It is this latter area which will be of
concern here.

1.2 ASYNCHRONOUS CONCURRENT MODE AS COMPARED WITH OTHER MODES

V.21 LEVELS

Before determining whether a particular computer falls into the asynchroncus concutzent category, the
quulification of level must be made. Three levels will be considered:
1. The logic ievel
2. The cfganizational level
3. The program level
The logic level is that at which the e!ementary entities are gates, flip-flops, clocks. etc. The organiza-
tional level has as elements registers, memorics, and other unitz construcied of logic elemeats. It may also
include arithmetic units, input-output controllers, or even an entire processing unit. At the program levei the
clements are instructions written in a sequence which describes the operations to be performed by a computer.

1.2.2 SYNCHRONQUS VERSUS ASYNCHRONOUS

Synchronous means that operations are conirolled by a clock with a fixed period. Processes at the logic
level in most conventional computers are synchronous. The reason for this is that at the logic level, synchronous
cootrol is easier to use in design.

—————!f——

Contrarily, at the program level, processes usually operate asynchronously. The execution time of in-
riructions in most computers varies depending on the type of operation or the amount of data being manipulated.

1.2.3 SERIAL VERSUS CCACURRENT

Concurrent means that processes occur simultanzously, while serial impliez one process proceeding after

another in a particular order. iz contrast to the examples in the previous section for conventional computing
system~, «. U ¢ logic level concusrent processes do occur, while at the program level “ey do not. Some qualifi-

tiza needs to be made concerning the latter statemeni. Moat coatemporary computers do provide for concurrency
of input and output operations with other ypes of operations. However, the program gznerally does not have
absolute control of these opnrations. It inay be said that the programmer does not normally have ihe option of

explicitly declaring concarreucy.
1.3 DOMAIN OF INTEREST

The processes to be considered in this research will be entirely at the organization or program levels.
A model will be proposed whick is adequate for the representation of processes at either level and its applica=
bility to existing computers demonsirated. The model is particularly suited to organization or nrogramming of the
class of computers originally proposed by von Neumann?, in which the greater percentage of existing computers
are included. No attemp: is made to show its adequacy for various computers such as SOLOMONS3, the Holland
Machine4, und ott:er computere which are described as highly parallel, distributed Ingic, etc. For & cross sectional
description comparing various types of concurrent processors, see Murtha®.

1.3.1f HISTORICAL DEVELOPMENT

Examination of the characteristics of computers since the first large-scale computer, the Harvard Mark |
Calculator® in 1944, yields an interesting picture regarding concurrent processing. The successor to the Mark I,
the ENIAC (Electronic Numerical Integrator and Computer)?, was capable of sustaining concurrent processes.
This feature v 1s made possil:. by the use of wired programs.

With the introductions of EDVAC (E'ectronic Discrete Variable Automatic Computer)?, which was the first
stored program machine, problems with the control increased, and thus, attention was drawn away from concusrent
processing.

As the usc of electronic computing increased, it became apparent that certa.r functions of a computer, e.g
multiplication, division, =5d certain input and output operations, consumed a disproportionate anount of time in
comparison to other opeiations. Conscquently, during o~crations such as these, part of the components of the
computer remained idle. This renewed interest in applying asynchronous control and concurrency to more effective
utilization of this idle time. Several machinee then appeared which allowed multiplication and division to proceed
=imultancously and autonomously®. Another step was the inroductica of an input-output overlap feature in the
UNIVAC 1. This feature, which allewed input and output operations to proceed autonomously and concurrenily
with a program, is present in most commercial and scientific computers preseatly manufactured. This idea was
then extended to permit other types of instructions to be executed simultaneously by the interconnection of two
or more computers.

1.3.2 CURRENT RESFARCH

Cusvently, many cxisting and plaaned computer systems are incorporating concurrent asynchronous control.
Unfortenately, few of these allow explicit specification of concurrency at ~° progrem level, and some give this

&

privilege to a supsrvisory program only.

At the organizational level, the trend toward more flexibility and modularity of units has offered a growing
opportunity for development of new approaches for concumsnt structsies. The fixed-plus-variable computer
proposed by Estrin® was a major step in this direction. Estrin .uggested that a stsndard computer be combined
with a network of compute: components under common control of a supervisor. The network could be restructured
for particular problems to yicld an increase in program running speed.

Another significant advancement, consisting of a collectiorn. of anvionomously operating modules, was
proposed by Clark'®. These modules, called macromodules were to be designed in such a way as to climinats
the electroric engineering details present in conventional computers and thus provide a means of organizing
computing systems by considering only the functions to be performed. This project is currently in the develop-
ment stage.

1.4 PROBLEMS INTRODUCED BY ALLOWING EXPLICIT CONCURRENCY

The provision for explicit asynchronous control of concurrent priccesses has introduced pzoblems not en-
countzred :n computing systems of other types. Some of these problem- have been discussed in the literature
and genera.ly deal with guestions of how to use this type of system most effeciively.

The problem of scheduling processes, deciding which processe: are handied by which units of the system
and at vhat time, is considered in 11, 12, 13, 14. The effects on thespecifi.ation of algorithms is investigated
in 14, 15, 16, 17 and the effect on program-ianguage compilers in 18, 19, 20. Discussions of interrupt handling,
memory usage, and other probiems peculiar te ceriaiu systems may be found in 21, 22, 23,

This 1eport cuncentrates on the proolem of detecting certain tvpes of errors which may be inttoduced in
implemeniing concurrem computing systems. These will be called implementation errors. A general spptoach

applicable to a'large class of computers is used, and examples ar: presented illustrating the method as utilized
in macromodular constructions. Implementation errors have been previously discussed in 24, 25, 26.

2. A NODEL OF THE TYPE OF COMPUTING SYSTEM TO BE ANALYZED

Prior .o considering impjementation errors, it is necessary to present a taodel of the computing system to
be analyzed. The modei may be used to represent certain computers at eithar the organizational !evel or the
program level. The basic elements of the model are the sigs. -, the process, the signal path, and the memory.

2.1 SIGNALS, PATHS, PROCESSES, AND MEMCRIES

The definitions of signai and process are of a recursive nature i.c., signals are responsible, among other
things, for initiating processes; but, processes imay be said to create signals. To simplify definitions, the
signals are classified into two types: data signals and control signals. The signal path, being a medium for

a signal, will be introduced with thc signals. The order of the subjects in the following discusaion will be:

1. Data signals and men.ries

2. Processes which transform data signais
3. Coatrol signals

4. Procesees in geneial

2.1.1 DATA Sifi ZA1.S AND MEMCRIES

A data sigru: is an entity which conveys information by assuming one of a number of possible values.
It exists in a medium known as a path. The value of the data signal may be recorded by an element known as
a memory. After the value of a dats signal is recorded by memcry, the signal ceases to exist. The memory
element has the property that it subsequently creates data signals having the valve which the memory last
recorded. Only one value is retained at any one time. Signals are recreated by a memory whenever they are

tequested by a process.

The signals whose values may be recorded by a memory are restricted tc certain paths associated with
the memory: Similarly, signals may be created oniy on paths associated with the memory. A memory and
asrociated paths ir, represented schematically in Figure 1. The memory is represented by a rectangle while
the paths are represenied by arrows. The amrow is directed info a memory if the memory records the value of a
signal on the path. The arrow is directed from the memory if the memory creates signals on that path.

For the particular systems which will be modeled, it is requized that a path support oaly one data signal

st any instant of time. For contrast, a ihearetic model not having this restriction is described by Karp and
Miller?’and Reiter?8.29.

2.1.2 PROCESSES WHICH TRANSFORM DATA SIGNALS

There are various types of processes, one of which functions to transform data signals. By transform,
it is meant that some data signals may he created whereas others are destroyed. When destroying a #ignal,
a process may inspect its value, which may have an =ffect on the subsequent action of the process. the
process may create data signals, the value of which depends on data signals previously inspected. Thus,

the tensformation spoken of is really a mapping from the set of all possible data signals into itself.

As with a memory e'ement, a particular process may be allowed to transform only a certain set of signals.
This set is determined by a set of paths associated with the process. The paths may connect to memories and
are represented by arrows, which are the same as those arrows d acribed for memories in the preceding section.
The arrow is directed into a process if the process requests data fiom a memory, inspects, and destroys the data
signal on that path. The arrow is directed outward from a process if a data signal may be created on that path.

It should be meationed that a process may transform data only intemittently. When a piocess is trans-

G

DATA | SO MEMORY

SIGNAL <

ELEMENT
PATHS | SooSS

FIGURE 1. REPRESENTATION OF DATA SIGNAL PATHS AND MEMORY

forming signals, it is said to be active. Otherwise, it is inactive. Prccesses which do transform contir.uously
are called continuous processes while those which do not are cailed discrete processes. The processes to be
considered will be implicitly discrete unless specified otherwise.

2.1.3 CONTROL. SIGNALS

If a process is discrete, i.e, it is active only at certain times, it is necessay to provide a mzans
of rendering it active, of initiating it. This is accomplished by another type of signal, the contro! signal.
In contrast to data signals, the control signal simply exists or it does not. There is no associated value.

The control signal, unlike tl.e data signal, may initiate a process sporitaneously. Once it has done so, it
is destroyed. When a control signal has this effect on a process, the process is said to accept the signal.
Also, when an existing process has completed its transformation, it ceases to be active and cieates a control
signal indicating its completion. This sigral may then be used to initiate other processes.

As with data signals, only certain control signals are associated with any process. These existon
particular paths, and only one control signal may exist on a path at any given time. The paths are represented
by arrows which are lighter and thinner than those representing data paths. The arrow is directed inward if a
signal on the path initiates the process and ouwtward if the process creates a signal on the path, as in Figure 2.
The data paths are nct always shownif explicit reference is made to memoty elements inside the figure represent-
ing the process.

2.1.4 FENERAL PROCESSES

In the preceding sections, a process was described as functioniny to transform data upon the acceptance of
an initiation signal and to return a completion signal at the end of the transfo:metion. Now that control has
been defined, a more general definit‘on of process may be given.

A process may accept contro: signals on more than one path to it and the existence of signals on these
paths may affect the process. Also, a process may create more than one control signal, which may initiate
cther processes. It is not necessary that the signal whick initiates the process always be on the same path.
Control signals accepted by a process are called input control signals. That which ini..ates the process is the
primary input control signal, while others are known as secondury input control sigrals. Similaily, a single
control signal is created which indicates that the process no longer exists. This will be called the primary
output control signal, while others are known as secondary output control signals. The primary output cortrol
signal is not generslly required to be on a particular path. To simplify discussicn, if there is more than one
input con‘rol, initiation signal may be used to mean primary input control signal and if there are multiple
output controls, completion signal may be used to mean primary output control signal. In a similar manner,

data signals wil! be described as input or output with respect to a process, depending on whether they are
destroyed or created by that process.

2.1.5 SUMMARY OF ELEMENTS IN THE MODEL AND AN EXAMPLE

A summary of the concepts introdu.=d in sections 2.1.1 through 2.1.4 is now presented. The elements of
the model are:

l. Signals — are accepted and crcated by processes and memories, and provide for intercommunication.
A. Data signals — convey values
1. Input daia signals — are requested, inspected, and destreyved by processes and their
values are recorded by memc.ics.

2. Output data signals -- are created by processes or memories.

sy

INITIATION SIGNAL PATH

fm DATA
CSSSSSY process SIS SIamAL

PATHS

COMPLETION SIGNAL PATH

FIGURE 2. PROCESS WITH INITIATION AND COMPLETION SIGNALS

-8~

B. Control signals — control processes and have onlv a single value.
1. Corntrol input signals — ate accepted by processes.
a. Primary control input or initiation signais — cause the activation of a piocess.
b. Secondary control input signals — control processes but do not initiate them.
2. Control cutput signals — are crcated by processes.
a. Frimary control output or completion signals — indicate that a process is n>
onger active.
b. Secondary control output signals — are produced by a process prior to com-
pletion,
11. Paths — are media in which signals exist.
A. Control puths — may sustain control signals only.
B. Data paths — may sustain data signals only.
[i1. Processes — have jnitiaiion and completion signals and the ability to accept and create
control and data signals.

IV. Memories — record the most current value of a certain set of data signals and recreate signals

having this value.

An example of a general process is shown in Figure 3. The timing diagram indicates the presence of
signals on various paths. Those which are due to the process are indicated by solid lines, while those from
some external source are indicated by dashed lines. In this exampie, the initiation signal will always be on
path a and the completion signal will be on either path € or e, by ascumption. A secondary contro! input may be
on cither path b or ¢, vut not both. The process may be described as follows: After initiation by the signa! on
path a, the process waits for a signal on b or ¢, If a signal occurs on b, the data signals A and B are compared.
If A and B have the same value, this value is giver to a signal created on path C and a completion signaij is
created on d. If the values >f A and B are different, a signal is created on C with a predetermined value and a
completion signal is created on d. If a control signal appears on ¢ instead of b. the datc signals on A and 8
are destroyed and ignored. The predetermined value is assigned tc a signalon C and the completion reported on e,

The timing diagram in Figure 3 shows two example cases. In the first, an input appears on b and the
signals on A and B have the same value, thus the completion is reported on d. In the second, an input appears

on ¢, thus completion is reported one.
2.2 PROCESS NETWORKS

Networks of processes will now be discussed. A network of processes is a set of processes and memories
interconnected by data and cortrol signal paths. First, asynchronous and synchronous sequential networks
will be compared. Sequential means that only one process is active at any one time and thus, the processes
occur in a sequence, one after another. Following the discussion of sequcmial pIccesses, COncurrent processes
will be investigated and iheir advantages described. In concument process networks, more than one process
may be active at any time. The terms synchronous and asynchronous will be appiied to concurrent networks
also, which leads to the typs of network with which this report is imainly concerned, asynchronous concurrent
process networks.

it sl

[== R S

L

wey Emes A

T —

®© o o o o

A K3
CENN
c

TIME

FIGURE 3.

NN

NN

PROCESS KSSSSSSY €

—— e — e -

N &S (NN
BN Y }::9 NN
ANANANNNN [ANRANAANANRRNNRNNANRNRNN
INITIATION INITIATION
COMPLETION COMPLETION

EXAMPLE OF A PROCESS SHOWING THE EXISTEMCE OF SIGNALS ON

CONTROL AND DATA PATHS

-10-

2.2.1 SEQUENTIAL PROCESS NETWORKS
2.2.1.1 SYNCHRONOUS AND ASYNCHROMOUS SEQUENTIAL PROCESSES

Scquential processes occur one after another in some prescribed order. Sequential processes may be of
two types: synchronous and asynchronous. Synchronous processes are initiated at definite instances in time
by control signals from a clock. The completion signal of a synchronously controlled process is of no conse-
quence, since the initiation proceeds strictly by the clock, regardless of whether the previous process is
complete cr not. Conscquently, the initiation signals produced by the clock must be spaced far enough apart to
allow the preceding process to be comgpleted. If the period of activity of & process is variable, then the clock
interval musi be at least as large as the maximum period. If the variation in ti.2 length of activity of a process
is great, and the length tends to be much less than the maximum a large percentage of the time, then there is a
considerable length of time where the system s idle. Asynchronous sequencing can be introduced to minimize
this idle time.

In asynchronous sequencing, the comp!etion signal of one process is used to initiate i{he next process.
The sequencing continues in a chain-like manner, and there is no idle time between completion of one process

snd initiation of another.
2.2.1.2 CONCEPTS ENCOUNTERED IN SEQUENTIAL ASYNCHRONOUS NETWORKS

Inttoduced now will be some terms which describe asynchronous sequential prccesses and networks.
Any process may consist of subprocesses which, themselves are processes. The subprocesses communicate
among themseives with the same types of signals and also accept and create signals outside of the process.
A process is said to be separable if its only control paths are a single initiation path and a single completion
path. Thus, the effect of & separable process is strictly transformation of data. A separable process will be
represented by a rectangle.

A null process is a separable process which has no effect on data. A null process is identical to a
single control path. An asynchronous sequential network may simply be a chain of separable processes which
is 2ls0 a separable prc cess. Tt may aiso be more complex if decisions and merges sze introduced as described
below.

2.2.1.3 DECISICN AND MERGE PROCESSES

In networks with synchronous control, certain values of data may cause certain processes not to be
initiated. Selective initiation is accomplished in asynchronous networks by a special process, the decision.

A decision is defined as a process with a single control input path but multiple control output paths.
An output control signal is produced or only one of these paths. The path selected depends on data input
signals. Thus, the decision process decides on which peth the completion signal v ill be created. A decision
with n output paths will be termed an n-way decision.

The decision is usually represented on a conventional flowchart as a diamond shape with a specifica-
tion of the way in which a choice is made indicated inside the diamond and on the contol output paths, The
data inpui paths are usually implicit. In analyses where the data is not of concem, a decision may simply be
represented as a circle containing the letter D. See Figure 4 for both of these represeniations. The intro-
duction of decisions produces controi signals which will exist on only one of a number of possible paths
To recombine these possibilities into a signal on oniy one path, the merge element is required.

A prccess is sa'd to be an r-way merge if 1t has n input signal paths and a single output signal path,

and has the properiy of creating its compiction signal upon acceptance of an initiation signal on any contiol

A<

A>0
J 3-WAY CONVENTIONAL FLOWCHART 3-WAY, THIS RESEARCH
i FIGURE 4. REPRESENTATION OF DECISIONS
|
CONVENTIONAL THIS RESEARCH

FIGURE 5. REPRESENTATION OF MERGES

-12-

input. The merge is represented by a circle containing an M, as in Figure 5. Merging is shown on a conventional

flowchart as simply the junction of two paths.
2.2.2 AN EXAMPLE OF ASYNCHRONOQUS SEQUENTIAL CONTROL

Figure 6 shows a separable process which computes n! from a memory elewnsnt which has recorded
n{>1) and puts the result into a second memory element. In Figure 7, subprocesses are saown which achieve
the result using elementary processes which assign, add, and multiply the values of data signals to produce
an output data signal. The numeric value ! is asswiaed to be built into the processes requiring it. Upon
accepting the initiation signal, the separable process proceeds autonomously until the computation is complete
at which time the result will be recorded and the completion signal produced.

2.2.3 CONCURRENT PROCESS NETWORKS

Introduced here is the concept of concurrent precesses, in which the testriction of a strict sequence, as
in sequential process neiworks is removed. The synchronous mode applies also to concurrent processes. In
faci, the processes at the logic level in conventional computers are synchronous concurrent. However, the
problem. at the program or organizational leve! in requiring that pincesses oe synchronous is tiic same as for
the séquential case; namely, that there is generally a large amount of idle time.

In considering ways in which processes may concur, certain restrictions must be observed, First, there
must be a definite ordering between certain pairs of processes, i.e., one must occur before the othetr. Second,
certain sets of processes may not occur at the same time if the data signals of one process are tequited 10r use
by the second process. This is due to the required use of the input signals to a second process. Examples
of this may be fouad in Figure 7, the n-factorial example.

The ordering between two proscsses may be expressed as a binary relation, <. If A and B are two
processes, then A < B means A must precced B, A relation of this sort is known as a predecent relation. 39
If neither A < B nor B < A, then A and B may concur, which will be written A=B.

Two processes that wili be used specifically for the control of concurrent processes are now introduced.
These are the branch and the rerdezvous. Suppose there are three separuble processes T, U, and V which must
occur with the following restrictions: T < V and U < V, T 4nd U may be allowed to concur, but both must
precede V. To do this, a process known as an n-way branch is introduced. It involves control signals only,
with one centrel input and n control outputs. When the initiatii n sigeal is accepted, output control signals are
created on all n of the output conirol paths. Using a ‘wo-way branch v'ith connections from the nutput control
paths to the input control paths of T and U, en initiation signi! applied at the input of the tianch causes the
concurrent activation of both T and U.

It is required that both T and U be complete befor initiating V and for this puipose the rendezvous
process is introduced. A process is an n-way rendezvous if it has n control inputs, a single control output,
and no data paths. An initiation signal may occur on any one of the input paths, but no completion signal is
given until all signals have been accepted on all input paths. By connecting the completion paths of T and U
to a 2-way rendezvous, the rendezvous does not report completion until both T and U are complete.

A schematic of this eatire network is presented in Figure 8. The branch and rendezvous are represented
by circles with the letizrs B and R, respectively. The examples demonstrated so far have been simple. Even
with only four elements: branch, decision, rendezvous, and merge, together with separable processes, the
networks which may be constructed can be quite complex. This will be supported in Chapter Four, where it is
shown that errors may be inadvertently introduced when implementing these concurrent process networks, and

automatic means of detecting them are investigated.

.

[i |

o

- e W

-13-

INITIATION

"n-FACTORIAL"

MEMORY FOR n

S
==_

MEMORY FOR n.

COMPLETION

FIGURE 6. SEPARABLE PROCESS WHICH COMPUTES n-FACTORIAL

-14-

INITIATION

e T R ——

COMPLETION

FIGUPE 7. POSSIBLE SUBPROCESSES FOR FIGURE 6

— DATA

— (CONHTROL

-15-

/A)QAY BRANCH

-

CONCURRENT
T PROCESSES u
2-WAY RENDEZVOUS
v

FIGURE 8. CONCURRENT ASYNCHRONOUS CONTROL OF PROCESSES
T, U, AND V WITH THE PRECEDENCE RELATION T< Vv, U< V

=16~

2.3 APPLICATION TO COMPUTING SYSTEMS

{t has been stated that the model presented applies to computers at both the organizationel level and the

progrum level. The validity of this statement will now be lemonstrated.
2.3.1 APPLICATIC AT THE ORGANIZATIONAL LEVEL

The terms branch, rendezvous, aud merge are from the description of macromoduiar systems by Clark,
et al.'%32.39 The model was strongly influenced in cther ways by macromodular systems, since th~se systems
present what is probably the tirst major steps i. separating the functions of processes at the organizational
level from the engineering details of these processes.

A macromodular sy.tem has electrenic upits known us macromodules. These correspond to the processes
in the modul. There are also data cables and control cables cotresponding to the sigral paths of the model.
Tonirol and data signals are ¢lectrical signals on the cables.

A few specific typcs of macromedules will now be mentioned. The memory modules are of two forms:
registers, constructed of flip-flops, and core memory. Associated with registers are several function vnits
which perform logical, arithmetic, and shift operations. There are also gates which transfer data between
registers. Al of these processes are separable.

Affeciing control are branch, rendezvous, and merge units, the function of which is identica! to the
corresponding two-way units of the model. The decision process sppears in two forms: a defec*~r which
compares signals from two registers under a mask signal from a third register and creates a control signal on
one of two control output paths, depending on whether or not the comparands are equal under the mask; and a
decoder, which decodes three bits of data signal to sclect one of eight possible control output paths.

Since the control cables for any process may be wired into only one sequence, call ur‘ts are provided.

Call units effectively aliow a process to be used as a subprocess within several different processes.
2.3.2 APPLICATION AT THE PROGRAM LEVEL

Several techniques have been proposed for the inclusion of explicit concurrent control into procedure
oriented program languages."'“ This area is usually found in the available literature classified oy terms such
as parallel programming, multiprocessing, and multiprogramming. The control oi processes asyachronously at
this level i1s accomplished in various ways, the discussion of which is not pertinent here. Th« general scheme
may be described as two or more processing urits execuiing instrictions simultaneously and communicating via
a common core memory. Examples of ex‘sting and proposed machines for this purpose may be found in 42:43:44,

The languages utilized are similar to Fortran or Algol, with the addition of several statements which
serve to sg:cify concurrency. The control signals in the model correspond to the sequencing of instructions
in these languages and the flow of data corresponds to assigning values to variables. One type of instruction
introduced is analogoas to the branch. This is the FORK instruction, by which a label is given instructing
the computer to begin a concurrent sequence at that statement with the label. The statement comresponding to
the rendezvous is written as JOIN, indicating that the contrcl of the sequence containing the join statements
referencing a particular label will meet at a statemer: with that label. The comesponding machine language
instsuctiors (o accomplish this have also been described in the referenced literature. A less flexible method,
which is equivalent to requiring that all concurmrent process existing at once be controlled by the same branch-
tendezvous pair, has been suggested using the statements DO TOGETHER, AND and PARALLEL FOR,
This specifies that certain sequences are to be executed concurrently, e.g., the DO-group of Fortran or the
block in Algol. The reason these schemes are iess flexible is there can be no transfer out ot'lhe'scquences

or among them.

=17~

A third and more flexible way has also been proposed and has been included in the definitioncf a
language which is currently being implemented.*! This technique may be described as using certain special
data signals which may be called flag or semaphore quantities, or events. Briefly, flag quantities may be
tested for a particuiar value and depeuding on that value, the completion of the testing process may be reported
or it may be delayed until the flag does assume ‘*hat parucular value. This, coupled with the ability to
terminate coniurol (i.e., destroy it without creating any other conttol signals), may be used to function as the

tendezvous or in seveia! other ways which are generally unachi-vable with only the branch, rendezvous, decision,

and merge eclements.

-18-

3. GRAFH THEORETIC CONCEPTS

In discussing networks of processes, it is desirable to have a concise language cvailable for describing
them. Since an autematic analysis of aetworks is sought, it is °lso desirsble to have a convenient way of
representing such networks to a computer. The branch ¢f mathematics known as graph-theory is well-suited to
this purpose.

Thorough discussions on the theoretic aspects with some applications are given in Bcrsc‘s. Orc“. and
Harary, et al.”. Applications of graph theory to procesges in digital computers may be found in 24.26,48.59.

3.1 DEFINITIONS

The definition of a graph, as presented here, is similar to Hatary's definition of a net. A graph, P, is
a system (N, A, f, p where
N is a finite set of elements called ncdes
A is & finite set of elements cailed arcs
fis a mapping of A into Nvi¢|
g is a mapping of A into Nvi¢]
¢is a special element distinct from any element of N.
A graph may be schematically represented by « diagram as shown in Figure 9 which immediately suggests its

usefulness in describing the interconnection of processes. Thke amows represent the arcs and the circles
represent the niodes. The functions f and g are defined as follows:

Let ¢ be an arc, n be a node. Then
f(c} = n if and only if the head of ¢ connecte to n.

c is then said to be an input arc with respect to n.

8(c) = n if and only if the tail of ¢ connects to n.
¢ is then said to be an output arc with respect to n.

If either f(c) = r or g{c) = n, then ¢ is said to be
incident with n.
The functions and g for the graph in Figure 9 are defined below the graph.
f n anu m are two nodes and ¢ is an arc such that n= g(c) and m = f(c), then n is said to connect tom

while m is said to connect from n. In ecither case, n and m are said to beconnected. The arc, ¢, may be

represented by zn ordered pair of nodes (m,n).

The out-degree of a node, n, is the number of arcs, c, for which f{c) = n. The in-degree of a n is the
number of atcs, d, for which g(d) = n.
If b und ¢ are nodes, there is said to exist a semipath between b and ¢ if one of the following holds:
1. b and c are connected
or 2. bis connected with a node d and there is a
semipath between d and c.
If b uid c are nodes, then there is said to exist a path from b to ¢ if one of the following holds:
1. b connects to ¢
or 2. bis connected to a node d and there is a
path fromd to c.
In this case c is said to be reachable from b, or b reaches c.

Path should not be confused with signal path from Chapter 2.

N={(1,2,3,4)

A = (a, b, C, d’ e, fa g, h’ 1)

1]

<o
—
= o
~—

i
+

FIGURE 3. EXAMPLE OF A GRAPH

~-20-

A graph is said to be weakly connected if between any two nodes there exists a semipatn. The graph of
Figure 9 is weakly :nnectsd. Similarly, a graph is said to be strongly conrected if between any two ncedes
there exists s path. Thus, a strongly connected graph is weakly connected but the converse does .ot necessarily
held. In cases where the conveise does not hold, the graph is said to be strictly weakly connected.

A subgraph of a graph P = (N, A, f, g is a graph, Q = (N", A", i", g7, where N’is a subsetof Nand A”*
is the set of arcs incident with the nodes N°. Thus f° and g’ are restrictions of the mapping f to A" where
ceA”if and only if f(c) ¢ N and g to A”’"wherc d ¢ A"’ if and only if g(d) e N”.

An arc of a subgraph is said to be input with respect to that subgraph if it is input to sume avde in that
subgraph but is not output to any node in that subgraph. An arc of & subgraph is said to outpur with respect to
that subgraph if it output to some node in that subgraph but is not input to any node in the subgraph.

A subgraph is defined io be separable if it has only one input arc and one output arc.

A subgraph is saia to be minimal of a property L if the removal of any cornected node results in a subgraph
which does not have property L. A subgraph is said tn be maximal of a property L .if the addition of anvconnected
node tesults in a subgiaph which does not have property L. Thus a maximal strongly <onnectea subgraph is one
in which the property of sttong-connectedness is lost when 2ny node connected to the subgraph is added.

A ncde is said to be self-connected if it connects to itself.

A set of arcs (a].azu-an) are said to be rarallel if f(a]) = f(a,) == f(a) and g(a]) - g(a,.‘ - = g(a“).

Examples ar: shown in Figures 10 through 13.

3.2 MATRIC REPRESENTATION

Matric notation has been shown to be a convenient representation for graphs, especially if the matrices
are to be maaipuiated by computer.

The mappings { and g may be represented by allowing each cci. 1 of a matrix to correspond to a node and
and each row to an arc, and letting the (i,j)th entry assume the val'e I if (he arc corresponding to row i
maps irto the node which curresponds to column j. Denots by F and G the matrices for the mappings f and g.
F and G will be respectively called the input and output matrices. The matrices F and G for f and g of
Figure 9 ue shown in Figure 14,

Gther useful matrices may be derived from the input and output raatrices. The first, known as *he
arc-node matrix, A, can be used to represent both F and G provided that theie is no arc which 15 self-connected.
By definition A = F — G. If no nodes are self connected, there wiil be no entries in F and G which are both I,
but if ti.ere are nodes which are self connected, there will be such entries. Identical entries resuit in the
correspording entry of A being ? which is indistinguishable tfrcm no connections at all to that particular rode.
If such entries do not occur, F and G can be obtained from A. Figure 15 shows the arc-node matrix for the
graph in Figure 9. Notice the (i,2) eatry.

An interesting algorithm is presented by Wann?* using the arc-node matrix, A, in testing a subgraph for
separability. It may be stated as follows: A suhgraph consisting of a particular set of nodes is ceparable if

and only if the sum of the correcponding columns of the arc-node matrix contains a single +1 and a single -1
entry.

Two other mautices which may a’ ;o be computed from F and G are as follows:
The node-node 31 connection matrix, C = 'GF (where 1 indicates transpcse of)

defined by C.’ i = the number of arcs input to node j and output from node i.

The arc-arc matrix, D = F'G. defined by D, - 1 if arc 1 is input to a node

from which arc j is output, and ¢ otherwise.

<D1=

)_
: &

FIGURE 10. A STRONGLY FIGURE 1. A SEPARABLE
CONNECTED GRAPH SUBGRAPH OF THE GRAPH
IN FIGURE 10

4 A

FIGURE 12. THE MAXIMAL FIGURE 13. A
STRONGLY CONNECTED SUBGRAPH MINIMAL STRONGLY
OF THE GRAPH OF FIGURE 11 CONNECTED SUBGRAPH

OF THE GRAPH OF
FIGURE 12

-22-

a v o o 0]
b 0] 0 0
C 0 0 0 1
d 0 0 1

F=e 0 0 1 0
f 0 0 0]
g 0 0 0 0
h 0 0 0 0
R 1 0 0

- -
a |0 0 0 0
b {1 0o o o0
c v 0o 0o o0
d v o ¢ o0
G=e (O 0 0 1
f o 1 o0
g |0 o 1 o0
h fo o o0
U T

Figure 14, Input and cutput matrices for the graph of Figure 9.

[

]

PR R

-23-
] 2 3 4
a [o o o]
b -1 1 0 0
o -1 0 0 1
d -1 0 1 0
A=c¢e 0 0 1 -1
f 0 -1 0 1
g 0 0 -1 0
h 0 0 0 -1
i L 0 0 0 0 N

Figure 15. Arc-node matrix for the graph of Figure 9,

-24-

Another matrix, the reachability matrix, K is defined as Rll =1 if there 15 a vath from node i to node j,

and 0 otherwise. The reachability matrix may be computed from the connection matri= as follows:

C], the first power of C, gives, for any two nodes, the number of paths !-»m one to

the other of iength 1. (The length of a rath between twe nodes being the number of

arcs traversed in tracing from one node to the other.) [t can be shown that C", the

nth power of C, gives for any two nodes, the number of paths fiom one to the other

of length n. Define a function, W, as W(x) = 0 otherwise. Ther (W(C")”- 1if

ther¢ is any path from i to j of length n, and 0 otherwise.

Thus WC) V W(Cz). where VY is the Boolean sum, gives all paths of length 1 or 2.

q
Similarly, |!l W(C') gives paths of length i, or 2, or . ., orn. For any finite
graph, all paths which are greater than a certain length, say p, necessarily

include a loop, thus the Boolean sum '!] W(C" will be identical to y ‘w(cl)

for any n2p. The point here being that to detemmine the reachability matrix,
only a finite number of matrices need be summed.

An equivaient method for computing the reachability matrix, which is computationally more efficient, is given
in 80 Other useful algorithms, such as one for the determination of strongly-connected subgraphs from the

reachability matrix, are given by Ramnamoorthy.57 The connection matrix for the graph of Figure 9, and the

construction of the reachability matrix are exhibited in Figure 16.

In succeeding sections, process networks will be represented by graphs, and graph-theoretic terminology

will be employed in their descriptions. The analysis will be concemed mainly w.th control. Cor sequently,

data paths will not be shown, The nodes of graphs will represent non-ser arable processes, particularly branches,

merges, decisions, and rendezvous. The arcs will represent control signal paths. Arcs will also be used to

represent separable processes, since a separable process has only one input and one output control path. The
terms graph and network wiil be used interchangeably. The description of an arc as being active means that a
signal exists on the corresponding control path.

O T o T e Y T =

Figure 16.

.25
- “‘1
0] 1 0
0 1 0 1
C =
0 5 0 0
0 0 1 0
0 1 1 1
0 1 1 1
e = = W(C?)
0 0 0 0
LP G 0 0
6 1 1 1]
0 1 1 1
chn = = W(Cch) n>2
0 0 0 0
0 0 0 0
R=CV (2=

!
o
-t
e
e

J

The connection and rcachability matrices for the graph

of Figure 9.

-26-

%

4. ERRORS IN NETWCRKS OF CONCURRENT
PROCESSES WITH ASYNCHRONOUS CONTROL

4.1 GFNERAL TYPES OF ERRORS

Process neiworks which are employed in the solutions of computational problems are generaliy separatle.
The solution begins with the introduction of an initiation signal to the separable proc:ss. The data, initiauly
ir menmuty elements, is inspected by the process and data produced indicating the results. At the compietion
of the solution steys, a single completion signal is produced.

Seveial types f errors may occur in such a separahle process network. The generai characteristic of an
error is that the desired result is not produced

Errors may be clascified into the ways in which they .~¢ produced:

1. A proccess physically malfunctions

2. The solution steps of an algorithm are incomrectly specified

3. Concurrent control is incorrectly specified
The first of theee is of no concem hete. The second will be called an algorithm error, but detection of this
t=pe of error wiil not be considered because of its general infeaxsibility. The third will be called an implemen-
tation error becauss it is introduced by impiementation of an algorithm as a concurrent process network.

The following properties are postulated as being desirable for separable processes, the lack of them
beiag an error:

1. “inite duration — After initiation, a separable process
:nust complete within a finite period of time.
Non-regeneration < Once initiated, 8 seDaruble process
will create only one output control signal.
3. Determinacy — A separable pzocess, for any activaiior,
will aiways produce the same output data if the input
data is the rane.

Sequeniial networks ure always nun-1_generative aad determinate, but may not be of 11nite duration if the
control of iteration is specified incc.::2ctiy. In networks of concurrent processes, ali of these piperties may be
lacking due tc improper specification of concurrent control. As a clarifving pcint, it might be mentioned that
such errors are dynamic. For some data, the retwork may function nomallv while for ~ther data it may malfunction
in different wsys. A network will be sa.d to have certain types of errors if it is possih!e for the ntwork to

malfunction in certein ways. The means by which ¢ach of these errors are .ntrodv. ¢C :a%0 ne.vorks is now
investigated.

4.1.1 FINITE DURATION

The name given to the error in proces: networks which do not complete in a finite length of time
18 infirite duralion. lc¢ was mentioned that infinite duration may be due . .n errot in an aigorithm for graphs
guch as in Figure !7. It is 1e-emphasized that strongly connected subgrapns, ac in iy re 18, do not necessarily
imply an error, but that data must be con<idei=d before determining if the ,etwork is in etror. Again it is

mentioned that such algo:ithm errors are infearivle to detect.

Infinite duration caused by introuction of conrurrent control is generzlly the result of prucesses internal

to the neiwork which 2re not able to report completion. This is the case in a network in which oaly one input
to 2 re. Jezvous eve: becomes active, as in Figure 19,

~27-

FIGURE 17. .\ NETWORK WITH AN INFINITE DURATION DUE TC AN ALGORITHM

¢ 1uURE 18. NETWORKS WHICH MAY HAVE INFINITE DURATION
ERRORS BECAUSE OF INCORRECT ALGORITHM

-28-

~

FIGURE 19. NETWORKS HAVING INFINITE DURATION BECAUSE OF
INCORRECT USE CF CONCURRENT-CONTRQL ELEMENTS

FIGURE 20. REGENERATION CAUSED BY A BRANCH WITHIN A
STRONGLY CONNECTED SUBGRAPH

-y

-29-

4.1.2 RESENERATION

Netwo:ks which are regenerative may produce multiple output contro! signals after being initiated only
once. Thi\, may be caused in twu ways. The first is by sllowing a branch to produce &n output from a stroagly
connected subgraph. This is show. in Figure 20. It should be mentioned that not every strongly connected
subgraph with a branch implies an error.

Regeneration is also produced by what will be called a hazard, due to its similality to the hazard in
switching networks (cf. McCluskcy.“) The hazard is found by consideration of the merge process. Suppose
there 1s a 2-way merge with input arcs, @ and b, and output arc c. The arc ¢ 1s the output arc of a separable
process, P, as shown .n Figure 21. Suppose it is possible that @ and b may have signals sim ‘tancously.
Because of this possibility, one of two phenomena may occur (1) If @ and b havs signals whicl, overlap in
time, the merge receives two initiation signals and the result is unpredictable, since, by definition, a merge is
initiated by a signa! on only one of its input arcs. (2) If a and b do not overlap, the process P may report
completion twice.

in summary, the possibility of more than one input signal to a inerge may cause cither of these probiems,
and will be identified as a hazard. The hazard is also responsibie for prodvcing indeterminacy, as will be

seen in the following section.
4.1.3 INDETERMINACY

A retwork is said to be tndeterminate if different output data are produced in two or raore different activa-

tions of the network for the same input data. Three ways in which a network may be indeterminate are: (1) by
the failure to observe constraints on processes, (2) by the process reporting completio~ with some residual
control signals stil! present within the network, and (3) by the failure to observe precedence requirements in
designing the control.

Failure to observe constraints on processes occurs when, as in the previous discussion of hazards, a
process is Initiated twice. Similarly, two consecutive signals io the same input of a rendezvous is a violation
of the constraints for this process.

Ii is possible for a process to report completion only once but, for some control to remain active within
the network. This occurs when a tendezvous has accepted a single control input and the petwork cuntaining
the rendezvous has reported completion. When the separable process is activated a second time. a control
signal to the other input will cause the rendezvous to report completion. Thus, 2ven though the data may be
the same, the results could be different for two successive activations. Networks which may report completion
while rendezvous remain active are said to possess residual control. lixamples of residual control are shown
in Figure 22,

Failure to observe precedence relations, as mentioned in section 2.2.3, may cause erroneous output data,
even though the crrors in control previously liscussed are not piesent. Since no assumptions are made a“out
relative times of processes in asynchronous control networks, a possible ve:iatior in time of processes which
are active concurrently may cause varying results for identical data. For example, consider two processes,
Aand b, where 4<B is a requirement. If the network is implemente:, as in Figure 23, where C and D represent
other processes unrelated to A o1 B, an assumption that C will last longer than A may not be supported, and the
outpu: data from A which is required for inpui to B may not have been sct when 8 requites it. Thus, B may
reference the data which was previously in memory e. nents, and c¢rroneous results produced.

The ertor exemplified 'n tne preceding paragraph may be detected by observing the possibility of A and B

concurring whereas it is required that A precede B. A correct implemeniation appears in Figure 24. An error

-30-

FIGURE 21.

POSSIBLE REGENERATION CAUSED BY A HAZARD

FIGURE 22.

=31~

NETWORKS WITH RESIDUAL CONTROL

~32~

A C

Y Y

L B
FIGURE 23. INCORRECT IMPLEMENTATION FOR A< &

Proe——

SESSEAE T S B

-33-

FICURE 24. CORRECTION OF THE ERROR IN FIGURE 23

-34=

of this kind will be calied a race because the time duration of the processes allect the results. The insertion
of processes to eliminate races is called interlocking. This exemple has presented a very simple case of

interlocking. More complex intetlock schemes may be devised to allow more freedom and still meet precedence
. . q q 62
tequirements. These are discussed by Littlefield.

4.1.4 SUMMARY OF IMPLEMENTATION ERRORS

1. Infinite duration — The process does not complete within a finite time safter
initiation. Infinite doration is produced by the impossibility of completion
of an active rendezvous.
2. Regeneration — The process produces multiple output control signals after
a single initiation. Regeneration i3 caused by:
a) Certain sitongly connected networks with branches connecting to
output arcs
b) Hazards
3. Indeterminacy — The process produces erratic results. Indsterminacy is
produced by:
a) Razards
b) Residual control
¢) Races
In con-~idering detection of erzors in networks, it is helpful to regroup the sources of errors into those
categories which are similar. The regrouping is shown below with short names provided for simplicity of
discussion.
1. Incomplete rendezvous — the only source of infinite duration. and the source
of residual control producing indeterminacy
2. Reentered branch — the branch in certain strongly connected suugraphs which
produces regeneration
3. Hazard — the source of some regzneration and indeterminate cases
4, Races — the soutrce of indeterminacy by violation of precedence requirements
For comparison, additional ex-mples of error and error-free cases are shown in Figures 25 and 26. It
should be noted that these errors display the¢ imcomnlete rendezvous, reentered branch, and haz.rd only. The
race may appear in any network with concurrent processes. It should also be noted that no assumption is made
about the dependency of various decision elements upon data.

4.2 DETECTION OF IMPLEMENTATION ERRORS

One method for detecting errors is to construct the network and perform a number of trial activations.
Construct implies connecting the electronic units and making the necessary connections if the organizational
level is being considered. Depending upon the fiexibility of components, this task may be quite time consuming.
At the program level, construct means writing the program and putting it into fom for input {o the computer
system. The trial implementation has the advantage that algorithm crrors as well as implementation emors
may be checked. Tt has the following disadvantages:

1. Construction of the network is usually a lengthy task at the organizational
level.
2. Itis difficult, if not impossible, to devise trial data which tests the

network with sufficient thoroughness.

M RSN R traousi 1, .

~35-

FIGURE 25. ERRUR-FREE GRAPHS

T

FIGURE 26. EXAMPLES OF GRAPHS WITH ERRORS

-37-

3. Errors due to races may not occur at all during a test but may occur during
some subsequent use of the network.

4. The amount of time required to perform a suff c1ent number of tests may be
ptohibitive.

Some comment may be made as to what a sufficient number of tests implies. Regardless of how many
trial activations are performed with consisient resuits, there is always a possibility of a race. Thus, a
sufficient number implie= that races are not being considered.

The term combination is used to indicate a particular set of atcs on which conuol signals a~pear during
the activation of a separable network. lt may bc observed that, in an error-free network, there may be several
unique combinations, the number of which depends upon the number of decisions and their degree. The maximum
number of combinations is 151 where d, 1s the out-degree of the ith decision and n is the number of decisions.
For instance, a graph is shown in Figure 27 with two 2-way decisions. Four combinations are shown i the
accompanying diagrams. Figure 28 depicts a graph with two decisions and less than the maximum number of
combinations. A lower bound on the number of combinations for a given number of decisions depends on the
manner in which the nodes are connected. The configuration yielding the fewest combirations is the {ree-
structure, as shown in Figure 29. The number of combinations for such a tree is a complex function of the
number of decisions and their out-degress, cf. Iverson.®? For a graph composed of n Z-way decisions, the
bounds are n+1 and 2"

Another peint that might be mentioned concerning combinations is that in graphs with strongly connected
subgraphs, a fixed resuit for cach decision does not always produce an output control, but if an alternate is
provided for the secoend encounter of a decision, it may be possible to produce an output control. In this case,
combinations are indicated as in Figure 30, where the number at the output arcs of the decision indicats the
order in which the outputs are used. A second example of this is shown in Figure 31.

The point demonstrated by the above is that for networks of considerable complexity, the number of
combinations may be very large. A practical example is the control network for a floating-point arittmetic umté‘
as shown in Figure 32.

In view of the disadvantage of trial impiementation of networks, a method is dezsired which will test a
network and which eliminates these disadvantages. A method which is suitable for impiementation on a computcr
is also desirable. Four areas of approach have bzen investigated in this research.

1. Simulation
a. Trial data test
b. Monte Carlo test
c. Exhausuve test
2. Topological analysis
3. Symbolic analysis using algebraic expressions
4. State transitions

These methods are descrited in the following sections.

4.2.f SIMULATION

It is possible to simulate concurrent process networks on sequential digital computers and detect certain
errors. The simulation of sequential processes is simple to accomplish since all that necd be done is to
implement a program to perform the desired data operations. The flow of ceatrol is the same as the execution

of program steps. While decisions and merges are found in conventional programs for sequential computers,

~.

FIGURE 27. A GRAPH DISPLAYING THE MAXIMUM NUMBER OF
COMBINATIONS FOR TWO DECISIONS

;s\ .
\\’w

\ |
M

)/

FIGURE 28. A GRAPH WITH TWO DECISIONS AM% LESS THAN
THE MAYIMUM NUMBER OF COMBINATIONS

O

(/’"‘\

4-WAY MERGE i:)

FIGURE .9,

A 3-DECISION GRAPH WITH FCUR COMCINATIONS

-40-

i 4
[{

FIGURE 30. INDICATION OF COMBINATIONS FOR A STRONGLY
CONNECTED GRAPH

FIGURE 31. COMBINATIONS FOR A GRAPH WITH A 5TRONGLY
CONNECTED SJUBGRAPH

baid (el ey

t=d

-y

|-

THREE
MUTUALLY
EXCLUSIVE
ENTRIES

FIGURE 32. CONTROL FOR A FLOATING-POINT
ARITHMETIC UNIT (CONTINUED ON FOLLOWING PAGE)

42

TW0

MUTUALLY (

i

EXCLUSIVE N

_/

RETURNS

FIGURE 32(CONTINUED).

r~—=|-——|—3

|
4
-4 rA4-——t—--—-—-

N

4

~

S

-3

the branch and rendezvous are not. To simulate branch and rendezvous, certain records must be kept. n bits
are associated with each n-wey branch or rendezvous. Each bit comesponds to a particulay output arc for a
branch or input arc for a rendezvous. All bits are initially zero. When a branch unit is encountered during
simulation, one arc iz selected on which simulated contro! is to procced. The bits corresponding to the other
arcs of the branch are set to !. When a particular input to a rendezvous is encountered, the bit comesponding
to thut input is set to 1. Next, all of the other bits of the zame rendezvous are compared. If all are 1, then
all inputs to the rerdezvous have been accepted and the bits are reset to zero, the control proceeding to the
output of the rendezvous. 1f all bits are not 1, then control cannot proceed to the output. Instead, the bits of
branches are checked until one is found which is a 1, indicating that control may sroceed on the comesponding
arc. The bit is then resetto a U.

When a simulated signal is present on the input to & merge, the control simpi, proceeds to the output.
Similarly, after the output arc is selected by a decision, control proceeds to that arc.

Error checking in simulation will now be described. Some races may be detected by varying the order in
whicn output arcs are chosen at a branch, but a test of all of these ways for every combination is infeasibie.

All hazards are not checked, because this too would require stepping the control through the «etwork in
every possible way for each combinaiion. Reentered branches may be found by examining the bits corresponding
to the branch or rendezvons when encountered by control and this may indicate a hazard or regenecration.
Hazards cannot be located by checking for reentered merges or decisions because this reentry is perfectly
legitimate, as in strongly connected subgraphs. Thus, some hazaras will escape detection.

Two types of errors may be checked when simulated control proceeds to the output arc of the graph in
question. At this time, all branch bits may be checked, and if any are 1, active control arcs are implied. This
could ultimately produce regczeration or other errors The existence of incomplete rendezvous is determinad
by examining the bits of ecach rendezvous for the value 1.

Three methods were investigated in the a= f simulation: the trial data test, the Monte Zarlo test. and
and the exhaustive test. The distinction between these is presented in sections 4.2.1.1 through 4.2.2.3.

4.2.1.1 SIMULATION WITH TRIAL DATA

This method attempts to provide data which would be typical for usage by the physical network for problem
solution. The method has the advantage that it also provides checking for ermors in algorithms, but it is

generally unlikely that all possible combinations will be tested, especially with a large number of decisions
in the graph.

4.2.1.2 MONTE CARLO SIMULATION

Application of thiz techmique, suggested by Ellis,*® simulates :ontrol only. A randem number is generated
each time a decision 18 encountered to determine which vutput aic is to be followed in the simulation. The

Monte Carlo technique has the disadvantage that there is always a finite probability that some combination
will not be tested. Also, not all combinations are equally likely to be tested.

4.2.1.3 EXHAUSTIVE SIMULATION

The exhaustive technique also simulates control only. A'l combinations of 8 network ac tested, This is
done by keeping a record in the simulation of the output arc selected for each decision, and simulating control
for each possible combination of decisions. Exhaustive simulation generally resuits in more simulaticns than

necessary, since the number of distinct combination- is usually eomewhat less thap the urper bound. i.¢ , the

—b4—

product of the out-degree of all decision nodes. However, since it is not possible to teli a piiori whether a
combination has been tested, the exhaustive test necessarily simulites the upper bound of combinations.
Examples of the exhaustive test are presented in Figures 33 through 35. Two-way elements are assumed.
Branches and rendezvous each have iwo bits associated with them, as previously explained. Three bits are
associated with the decision. “wo of these bits indicate on which arc the decision is to produce a control
output. The other bit is O if conurol has not previously entered ihe decision, and 1 otherwise. The purpose of
thiz bit it to provide a means for control 10 leave a strongly connected subgraph, rather than procesd in a loop
indefinitely. Figure 33 ie an error-free cas~ and Figure 34 is not. Figure 35 gives a case with a hazard which

is not detected by exhaustive testing.
4.2.2 TOPOLCGICAL ANALYSIS

Some errors may be detected by a topologicel analysis of the network. Topologica! analysis involves
examining the interconnection of nodes in the network. Certain rules have been found which govern proper
network construction, but no techniques using topology alone have been able to locate ail errors. Seversl of
these rules may be stated here. These will be justified in the eppendix,

1. Pa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>