
X
Oi

ANALYSIS OF
IMPLEMENTATION ERRORS

£5 IN DIGITAL COMPUTING SYSTEMS
Q

Technical Report No. 6
March, 1968

i

< JUK 1^B68

JUb.

This docurnpnl he ; beeti epprove
for pi-]:'-. :^ u :-1c; itt

Computer Systems Laboratory

Washington University

St. Louis, Mo.

(Upf odue«) by It»
CilARINGHOUSE

for F««teral Scientific & Tochmca!
Infofmatioo Sprinflfwld V«. 22151

<?<

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY .

.t
:._ . ..,

i
I
I
I
I
I
I

ANALYSIS OF IMPLEMENTATION ERRORS IN DIGITAL COMPUTING SYSTEMS

Robert M. Keller and Donald F. Wann

TECHNICAL REPORT NO. 6

March, 1968

Computer Sysfef^D Laboratory

Washington University

St. Louis, Missouri

This werk ha« b*«n ■upportcd b» th* Advanced RcMarch Projaetü Af/tney at the

D^,ertmant of Dafania under eantract SD-303 end by tha Division of Raaaafch

Paeltltla« and Rataurca* a! lha National Institutas o< Hoalth wndar Gianf PR402II.

ii

"Errors, like straws, upon the surface flow;

He who would search for pearls must dive below."

Drydsn, Ali for Love, Prologue

Ill

ABSTRACT

This report discusses problems encountered with control networks in highly restructurtble digital

systems. In particular the treatmeni of implementation error* is covered with «mphasis on concurrent processing.

The implementation of concurrent processing ; jiwotks may result in errors which will be quite complex to

detect and systematic methods are warranted. A model representing a particular type of computing system is

presented, and methods for introducing concurrent control into the model discussed. The automatic detection of
a certain class of errors caused by improper design of these systems is investigated. Graph theoretic repre-
sentation is employed in demonstrating Kevera1 error detection techniques. The properties of these techniques

are compared and it is concluded that Anc technique, of those investigated is of sufficient generality,

thoroughness, and s uplicity in implementation to be used for automatic error analysis.

iv

TABLE OF CONTENTS

No. Page

1. Introduction

1.1 Motivation
1.2 Asynchronous Concurrent Mod; as Compared with Other Modes

l.J.l LeveU ,...
1.2.2 Synchronous versus Asynchronous

1.2.3 Serial versus Concurrent 2

1.3 Domain of Interest 2

1.3.1 Historical Development 2

1.3.2 Current Research 2

1.4 Problems Introduced by Allowing Explicit Concurrency 3
2. A Model of the Type of Computing System to be Analyzed 4

2.1 Signals, Paths, Processes, and Memories 4

2.1.1 Data Signals and Memories 4
2.1.2 Processes which Transform Data 4
2.1.3 Control Signals 6

2.1.4 General Processes 6

2.1.5 Summary of Elements in the Model and an Example 6

2.2 Process Networks 8
2.2.1 Sequential Process Networks 10

2.2.1.1 Synchronous and Asynchronous Sequential Processes 10
2.2.1.2 Concepts Encountered in Sequential Asynchronous Networks 10

2.2.1.3 Decision and Merge Processes 10

2.2.2 An Example of Asynchronous Sequential Control 12
2.2.3 Concurrent Process Networks 12

2.3 Application to Computing Systems 16
2.3.1 Application at the Organizational Level 16

2.3.2 Applicatiox at the Program Level 16

3. Graph Theoretic Concepts 18

3.1 Definitions 18
3.2 Matric Representations 20

4. Errors in Networks of Concurrent Processes with Asynchronous Control 26

4.1 General Types of Errors 26

4.1.1 Infinite Duration 26
4.1.2 Regeneration 29

4.1.3 Indeterminacy 29
4.1.4 Summary of Implementation Errors 34

4.2 Detection of Implementation Errors 34

4.2.1 Simulation 37
4.2.1.1 Simulation with Trial Data 43

TABLE OF CONTENTS
continued

No. Page

4.2.1.2 Monte Carlo Simulation 43

4.2.1.3 Exhaustive Simulation 43

4.2.2 Topological Analysis 44

4.2.3 Symbolic Analysis Using Algebraic Expressions 44
4.2.4 The Stale Transition Method 53

4.2.5 A Summary of the Techniques of this Study 59

5. Summary and Conclusion 61
6. Ackntwledgement 62

7. Appendix , 63

8. References 76

9. Bibliogrtphy 79

vl

LIST OF FIGURES

No. Page

1. Representation of data signal paths and memory 5
2. Process with initiation and completion signals 7

3. Example of a process showing the existence of signals on control and data paths , 9

4. Representation of decisions 11
J. Representation of merges 11

6. Separable process which computes n-factorial 13

7. Possible subprocesses for Figure 6 14
8. Concunent asynchronous control of processes T, U, and V with the precedence relation T < V,

li<V 15

9. Example of a graph 19
10. A strongly connected graph 21

11. A subgraph of the graph in Figure 10. This subgraph is separable 21

12. The maximal strongly connected subgraph of the subgraph in Figure 11 21

13. A minimal strongly connected subgraph of the subgraph in Figure 12.... 21

14. Input and output matrices fo: the graph of Figure 9 22

15. Arc-node matrix for the grsph of Figure 9 23

16. The connection and reachability matrices for the graph of Figure 9 2 5

17. A network with an infinite duration due to an algorithm 27
18. Networks which may have infinite duration errors because of incorrect algorithm 27

19. Networks having infinite duration because of incorrect use of concurrent-control elements 2 8

20. Regeneration by branch within a strongly connected subgraph 28

21. Possible regeneration caused by a hazard 30
22. Networks with resudual control 31

23. Incorrect implementation for A < B 32

24. Correction of the error in Figure 23 33

25. Error-free graphs 35

26. Examples of graphs with error« 36
27. A graph displaying the maximum number of combinations for two decisions 3 8

28. A graph with two decisions and less than the maximum number of combinations 3 8

29. A 3-decision graph wi'Ji four combinations 39
30. Indication of combinations for a strongly connected graph , 40

31. Combinations for a graph with a strongly connected subgraph , 40

32. Control for a floating-point arithmetic unit , 4 1
33. Exhaustive tes» of an error-free network 45
34. Exhaustive test of a network with enors 46

?5. Exhaustive test of a network with undetectable errors 47

36. Symbolic analysis showing a hazard 49

37. Symbolic analysis of an infinite duration case I 3

38. Symbolic analysis of an error-free case . , 5 t

39. Symbolic analysts of an error case 52

r
vii

LIST OF FIGURES
continued

No. Page
40. Some simple error-free networks and their corresponding state transition graphs 54

41. Partial sta^ transition graph for a branch 55
42. Partial state transition graphs for decisions, merges, and rendezvous 56

43. State transition graphs for error cases 57

44. State transition graphs for error ca^es ■ 58

• "0

PAGE

t.

ANALYSIS OF IMPLEMENTATION ERRORS IN DIGITAL COMPUTING

SYSTEMS SUPPORTING ASYNCHRONOUSLY-CONTROLLED

CONCURRENT PROCESSES

1. INTRODUCTION

This report is concerned with digita! computing systems supporting asynchronously-ccntrolled concurrent

processes. Systems of this variety present a departure from techniques of convenej.iai usage. Certain methods
may be uied to provide explicit concurrent control in these systems. If the methods are incorrectly applied, e

number of different enors, which are unlike those encountered in conventional systems, may result. Presented
here is a discussion of explicit concurrent control methods and an investigation of techniques for automatic

detection of errors introduced in using these methods. Several solutions are demonstrated and their relative
merits evaluated.

1.1 MOTIVATION

The desirability for increased speed in computer systems has focused interest on t",o major areas:

1. Digital electronics

2. Computer organization

In the first area, the goal is development of electronic switching networks, ferrite core memories, and other
components capable of operating at extremely high speeds.' The second, which is largely independent of the

first, involves efforts toward the effective usage of existing corponents. it is this latter area which will be of
concern here.

1.2 ASYNCHRONOUS CONCURRENT MODE AS COMPARED WITH OTHER MODES

1.2.1 LEVELS

Before determining whether a particular computer falls into the asynchronous concurrent category, the
qualification of level must be made. Three levels will be considered:

1. The logic level

2. The organizational level
3. The program level

The logic level is that at which the elementary entities are gates, flip-flops, clocks, etc. The organiza-
tional level has as elements registers, memories, and other unit!? constructed of logic elements. It may also

include arithmetic units, input-output controllers, or even an entire processing unit. At the program level the
elements are instructions written in a sequence which describes the operations to be performed by a computer.

1.2.2 SYNCHRONOUS VERSUS ASYNCHRONOUS

Synchronous means that operations are controlled by a clock with a fixed period. Processes at the logic

level in most conventional computers are synchronous. The reason for this is that at the logic level, synchronous
control is easier to use in design.

^r1

Contraiily, at the procram level, ptoc«sses usually operate asynchronously. The execution timt of in-
Kauctions in most computers varies depending on the type of operation or thr amount of data being manipulated.

1.2.3 SERIAL VERSUS CONCURRENT

Concurrent means that processes occur simulunsously, while serial implies one process proceeding after

another in a particular order. In contrast to the examples in the previous section for conventional computing

system-:, «. f a logic level concurrent processes do occur, while at the program level sey do not. Some qualifi-

tioa needs to be made concerning the latter statement. Mont contemporary computers do provide for concurrency

of input and output operationr, with other ypes of oprrations. However, the program generally does not have
absolute control of these operations. It may be said thnt the programmer does not normally hav; the option of

explicitly declaring costarrrjicy.

1.3 DOMAIN OF INTEREST

The processes to be considered in this research will be entirely at the organization or r'ogram levels.

A model will be proposed which is adequate for the representation of processes at either level and its applica-

bility to existrg computers demonstrated. The model is particularly suited to organization or nrogramming of the
class of computers originally proposed by von Neumann3, in which the greater percentage of existing computers

are included. No attempt is made to show its adequacy for various computers such as SOLOMON1, the Holland

Machine4, and other computers which are described as highly parallel, distributed logic, etc. For & cross sectional

description comparing various types of concurrent processors, see Mvrtha1.

1 .S.f HISTORICAL DEVELOPMENT

Examination of the characteristics of computers since the first large-scale computer, the Harvard Mark I
Calculator6 in 1944, yields an interesting picture regarding concurrent processing. The successor to the Mark I,

the ENIAC (Electronic Numerical Integrator and Computer)7, was capable of sustaining concurrent processes.

This feature v is made possiU, by the use of wired programs.
With the introductions of EDVAC (E'ectronic DUcrete Variable Automatic Computer)2, which was the first

stored program machine, problems with the control increased, and thus, attention was drawn away from concurrent
processing.

As the use of electronic computing increased, it became apparent that certaLi functions of a computer, e.g

multiplication, division, md certain input and output operations, consumed a disproportionate amount of time in

comparison to other operationc. Consequently, during Derations such as these, part of the component« of the

computer remained idle. This renewed interest in applying asynchronous control and concurrency to more effective

utilization of this idle time. Several machine then appeared which allowed multiplication and division to proceed

simultaneously and autonomously*. Another step »as the introductic.i of an input-output overlap feature in the

UNIVAC I. This feature, which allowed input and output operations to proceed autonomously and concurrently
with a program, is present in most commercial and scientific computers presently manufactured. This idea was
then extended to permit other types of instructions to be executed simultaneously by the interconnection of two
or more computers.

1.3.2 CURRENT RESEARCH

Currently, many existing and planned computer systems are incorporating concurrent asynchronous control.
Unfortunately, few of these allow explicit specification of concurrency at ' progrcm level, and some give this

pnviiege to a supervisory program only.
At the organizational level, the trend towarr* more flexibility and modularity of units has offered a growing

opportunity for development of new approaches for concurrent structures. The fixed-ptus-variable computer

proposed by Estrin9 was a major step in this direction. Estrin „uggested that a standard computer be combined

with a network of computer components under common control of a supervisor. The network could be restructured

for particular problems to yield an increase in program running speed.

Another significant advancement, consistine of a collection of au'ionoinously operating modules, was

proposed by Clark10. These modules, called macromodules were to be designed in such a way as toeliminats

the electronic engineering details present in conventional computers and thus provide a means of organizing

computing systems by considering only the functions to be performed. This project is currently in the develop-
ment stage.

1.4 PROBLEMS INTRODUCED BY ALLOWING EXPLICIT CONCURRENCY

The provision for explicit asynchronous control of concurrent processes has introduced problems not en-
countered m computing systems of other types. Some of these problem have been discussed in the literature
and genera.ly deal with questions of how to use this type of system most effecrvely.

The problem of scheduling processes, deciding which processc are handled by which units of the system
and at v.hat tice, is considered in 11, 12, 13, 14. The effects on tiie specification of algorithms is investigated
in 14, }b. 16, 17 and the effect on program-language compilers in it, 19, 20. Discussions of interrupt handling,

memory usage, and other problems peculiar to certain systems may be found in 21. 22, 23.

This lepott concentrates on the proolem of detecting certain types of errors which may be introduced in

implementing concurrent computing systems. These will be called implementation errors. A general approach

applicable to a large class of computers is used, and examples at: presented illustrating the method as utilized
in macromodular constructions. Implementation errors have been previously discussed in 34, 25, 24.

2. A MODEL OF THE TYPE OF COMPUTING SYSTEM TO BE ANALYZED

Prior .o considering implementation errors, it is necesssry to present a Model of the computing system to

be analyzed. The model may be used to represent certain computers at either the organizational level or the

program level. The basic elements of the model are the sigu. . the process, the signal path, and the memory.

2.1 SIGNALS, PATHS, PROCESSES, AND MEMORIES

The definitions of signal «r.d process are of a recursive nature i.e., signals are responsible, among other
things, for initiating processes; but, processes may be said to create signals. To simplify definitions, the

signals are classified into two types: data signals and control signals. The signal path, being a medium for
a signal, will be introduced with the signals. The order of the 'lubjects in the following discus&ion will be:

1. Data signals and memories
2. Processes which transform data signals
3. Control signals
4. Processes in geneial

2.1.1 DATA Slfi -SAI .S AND MEMORIES

A data signai is an entity which conveys information by assuming one of a number of possible values.

It exists in a medium known as a path. The value of the data signal may be recorded by an element known as

a memory. After the value n(a data signal is recorded by memcry, the signal ceases to exist. The memory

element has the property that it subsequently creates data signals having the value which the memory last

recorded. Only one value is retained at any one time. Signals are recreated by a memory whenever they are

requested by a process.
The signals whose values may be recorded by a memory are restricted tc certain paths associated with

the memory.- Similarly, signals may be created only on paths associated with the memory. A memory and
asrociated paths if. represented schematically in Figure 1. The memory is represented by a rectangle while

the paths are represented by arrows. The anew is directed into a memory if the memory records the value of a

signal on the path. The arrow is directed from the memory if the memory creates signals on that path.

For the particular systems which will be modeled, it is required that a path support only one data signal

rt any instant of time. For contrast, a theoretic model not having this restriction is described by Karp and

Miller27and Reiter"'2»-

2.1.2 PROCESSES WHICH TRANSFORM DATA SIGNALS

There are vuious types of processes, one of which functions to transform data signals. By transform,

it is meant that some data signals may be created whereas others are destroyed. When destroying a signal,
a process may inspect its value, which may have an if feet on the subsequent action of the process. Vhe
process may create data signals, the value of which depends on data signals previously inspected. Thus,

the ticnsformation spoken of is really a mapping from the set of all possible data signals into itself.
As with a memory e'ement, a particular process may be allowed to transform only a certain set of signals.

This set is determined by a set of paths associated with the process. The paths may connect to memories and

are represented by arrows, which are the same as those arrows d -cribed for memories in the preceding section.
The arrow is directed into a process if the process requests data from a memory, inspects, and destroys the data

signal on that path. The arrow is directed outward from a process if a data signal may be created on that path.

It should be mentioned that a process may transform data only intermittently. When a process is trans-

„ s.-

DATA
SIGNAL <
PATHS

MEMORY
ELEMENT

FIGURE 1. REPRESENTATION OF DATA SIGNAL PATHS AND MEMORY

-6-

fotming signals, it is said to be arrive. Otherwise, it is inactive. Processes which do tiansform contir.uousiy

are called continuous processes while those which do not are called discrete processes. The processes tobe

considered will be implicitly discrete unless specified otherwise.

2.1.3 CONTROL SIGNALS

If a process is discrete, i.e , it is active only at certain times, it is necessaiy to provide a ireans
of rendering it active, or initiating it. This is accomplished by another type of signal, the control signal.

In contrast to data signals, the control signal simply exists or it does not. There is no associated value.
The control signal, unlike the data signal, may initiate a process spontaneously. Once it has done so, it

is destroyed. When a control signal has this effect on a process, the process is said to accept the signal.
Also, when an existing process has completed its transformation, it ceases to be active and cteates a control

signal indicating its completion. This signal may then be used to initiate other processes.
As with data signals, only certain control signals are associated with any process. These exist on

particular paths, and only one control signal may exist on a path at any given time. The paths are represented

by arrows which are lighter and thinner than those representing data paths. The arrow is directed inward if a

signal on the path initiates the process and outward if the process creates a signal on the path, as in Figure 2.

The data paths are not always shown if explicit reference is made to memory elements inside the figure represent-

ing the process.

2.1.4 GENERAL PROCESSES

In the preceding sections, a process was described at functionir.c to transform data upon the acceptance of
an initiation signal and to return a completion signal at the end of the Uansfo:metion. Now that control has
been defined, a more general definit;on of process may be given.

A process may accept contro. signals on more than one path to it and the existence of signals on these

paths may affect the process. Also, a process may create more than one control signal, which may initiate
ether processes. It is not necessary that the signal which initiates the process always be on the some path.
Control signals accepted by a process are called input control signals. That which ini.,.ites the process is the
primary input control signal, while others are known as secondary input control signals. Similaily, a single

control signal is created which indicates that the process no longer exists. This will be called the primary

output control signal, while others are known as secondary output control signals. The primary output control

signal is not generally required to be on a particular path. To simplify discussion, if there is more than one

input control, initiation signal may be used to mean primary input control signal and if there are multiple

output controls, completion signal may be used to mean primary output control signal. In •» similar manner,

data signals wil! be described as input or output with respect to a process, depending on whether they are
destroyed or created by that process.

2.1.5 SUMMARY OF ELEMENTS IN THE MODEL AND AN EXAMPLE

A summary of the concepts introdu.:d in sections 2.1.1 through 2.1.4 is now presented. The elements of
the model are:

I. Signals - are accepted and created by processes and memories, and provide for intercommunication.
A. Data signals — convey values

1. Input data signals - are requested, inspected, and destroyed by processes and their
values are recorded by memr.ics.

2. Output data signals -■ are creited by processes or memories.

~7-

<^sss

INITIATION SIGNAL PATH

DATA
SIGNAL
PATHS

COMPLETION SIGNAL PATH

FIGURE 2. PROCESS WITH INITIATION AND COMPLETION SIGNALS

-8-

B. Control signals — control processes and have only a single value.
1. Couirol input signals — are accepted by processes.

a. Primary control input or initiation signals — cause the activation of a i,iocess.
b. Secondary control input signals — control processes but do not initiate them.

2. Control output signals — are created by processes.

a. Primary control output or completion signals — indicate that a process is m
ionger active.

b. Secondary control output signals — are produced by a process prior to com-
pletion.

II. Paths — ate media in which signals exist.
A. Control paths — may sustain control signals only.

B. Data paths — may sustain data signals only.

01. Processes — have initiation and completion signals and the ability to accept and create

control and data signals.

IV. Memories — record the most current value of a certain set of data signals and recreate signals

having this value.

An example of a general process is shown in Figure 3. The timing diagram indicates the presence of
signals on various paths. Those which are due to the process ate indicated by solid lines, while those from
some external source are indicated by dashed lines. In this example, the initiation signal will always be on
path a and the completion signal will be on either path d or e, by asrumption. A secondary control input may be

on either path b or c, but not both. T^e process may be described as follows; After initiation by the signal on

path a, the process waits foi a signal on b or c. If a signal occurs on b, the data signals A and B are compared.

If A and ß have the same value, this value is giver, to a signal created on path C and a completion signal is

created on d. If the values if A and B are different, a signal is created on C with a predetermined value and a

completion signal is created on d. If a control signal appears on c instead of b, the date signals on A and S

are destroyed and ignored. The predetermined value is assigned tc a signal on C and the completion repotted on e.

The timing diagram in Figure 3 shows two example cases. In the first, an input appears on b and the

signals on A and B have the same value, thus the completion is reported on d. In the second, an input appears
on c, thus completion is reported one.

2.2 PROCESS NETWORKS

Networks of processes will now be discussed. A network of processes is a set of processes and memories
interconnected by data and control signal paths. First, asynchronous and synchronous sequential networks
will be compared. Sequential means that only one process is active at any one time and thus, the processes

occur in a sequence, one aUer another. Following the discussion of sequential processes, concurrent processes

will be investigated and iheir advantages described. In concunent process networks, more than one process

may be active at any time. The terms synchronous and asynchronous will be applied to concurrent networks
also, which leads to the type of network with which this report is mainly concerned, asynchronous concurrent
process networks.

-9-

A CSSS

B ess:
ssss^ c

a

b

c

d

A K3 ^ ^

B E3 E3 ^

C

E3

ES

S3 E3

S3 E3

TIME

csssssssssss KWWWWWWWWWWH

IMTIATION

COMPLETION

INITIATION

COMPLETION

FIGURE 3. EXAMPLE OF A PROCESS SHOWING THE EXISTENCE OF SIGNALS ON

CONTROL AND DATA PATHS

-10-

2.2.1 SEQUENTIAL PROCESS NETWORKS

2.2.1.1 SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL PROCESSES

Sequential processes occur one after another in some prescribed order. Sequential processes may be or

two types: synchronous and asynchronous. Synchronous processes are initiated at definite instances in time

by control signals from a clock. The completion signal cf a synchronously controlled process is of no conse-

quence, since the initiation proceeds strictly by the clock, regardless of whether the previous process is

complete or not. Consequently, the initiation signals produced by the clock must be spaced far enough apart to

allow the preceding process to be completed. If the period of activity of a process is variable, then the clock

interval must be at least as large as the maximum period. If the variation in C.e length of activity of a process

is great, and the length tends to be much less than the maximum a large percentage of the time, thtn there is a
considerable length of time where the system is idle. Asynchronous sequencing can be introduced to minimize

this idle time.
In asynchronous sequencing, the completion signal of one process is used to initiate ihe next process.

The sequencing continues in a chain-like manner, and there is no idle time between completion of one process

and initiation of another.

2.2.1.2 CONCEPTS ENCOUNTERED IN SEQUENTIAL ASYNCHHONOUi« NETWORKS

Introduced now will be some terms which describe asynchronous sequential prccesses and networks.

Any process may consist of subprocesses which, themselves are processes. The subprocesses communicate

among themselves with the same types of signals and also accept and create signals outside of the process.

A process is said to be separable if its only control paths are a single initiation path and a it ingle completion

path. Thus, the effect of a separable process is strictly transformation of data. A separable process will be

represented by a rectangle.
A null process is a separable process which has no effect on data, A null process is identical to a

single control path. An asynchronous sequential network may simply be a chain of separable processes which

is also a separable pre :eii. H may also be more complex if decisions and merges are introduced as described
below.

2.2.1.3 DECISION AND MERGE PROCESSES

In networks with synchronous control, certain values of data may cause certain processes not to be

initiated. Selective initiation is accomplished in asynchronous networks by a special process, the decision.
A decision is defined as a process with a single control input path but multiple control output paths.

An output control signal is produced or only one of these paths. The path selected depends on data input

signals. Th-is, the decision process decides on which path the completion signal » ill be created. A decision
with n output paths will be termed an n-way decision.

The decision is usually represented on a conventional flowchart as a diamond shape with a specifica-
tion of »he way in which a choice is made indicated inside the diamond and on the control output paths. The
data input paths are usually implicit. In analyses where tha data is not of concern, a decision may simply be

represented as a circle containing the letter D. See Figure 4 for both of these represemations. The intro-

duction of decisions produces conlroi signals which will exist on only one of a number of possible paths
To recombine these possibilities into a signal on only one path, the merge element is required.

A process is sa'd to be an r.-way merge if it has n input signal paths and a single output signal path,
and has the property of creating its completion signal upon acceptance of an imlianon signal on any control

-11-

A = 0

3-WAY CONVENTIONAL FLOWCHART 3-WAY, THIS RESEARCH

FIGURE 4. REPRESENTATION OF DECISIONS

CONVENTIONAL THIS RESEARCH

FIGURE 5. REPRESENTATION OF MERGES

-12-

input. Th<: merge is represented by a circle containing an M, as in Figure 5. Merging is shown on a conventional

flowchart as simply the junction of two paths.

2.2.2 AN EXAMPLE OF ASYNCHRONOUS SEQUENTIAL CONTROL

Figure 6 shows a separable process which computes n! from a -nemory elemsnt which has recorded
n(>n and puts the result into a second memory element. In Figure 7, subprocesses are b.iown which achieve

the result using elementary processes which assign, add, and multiply the values of data signals to produce

an output data signal. The numeric value 1 is assumed to be built into the processes requiring it. Upon

accepting the initiation signal, the separable process p'oceeds autonomously until the computation is complete

at which time the result will be recorded and the completion signal produced.

2.2.3 CONCURRENT PROCESS NETWORKS

Introduced here is the concept of concurrent processes, in which the restriction of a strict sequence, as

in sequential process networks is removed. The synchronous mode applies also to cencunent processes. In

fack, the processes at the logic level in conventional computers are synchronous concurrent. However, the
problem, at the program or organizational level in requiring that piocesses be synchronous is Uis same as for
the sequential case; namely, that there is generally a large amount of idle time.

In considering ways in which processes may concur, certain restrictions must be observed. First, there

must be a definite ordering between certain pairs of processes, i.e., one must occur before the other. Second,
certain sets of processes may not occur at the same time if the data signals of one process are required for use

by the second process. This is due to the required use of the input signals to a second process. Examples
of this may be found in Figure 7, the n-factorial example.

The ordering between two processes may be expressed as a binary relation, <. If A and B are two

processes, then A < B means A must preceed B. A relation of this sort is known as a predeceni relation.30

If neither A < B nor B < A, then A and B may concur, which will be written AsB.

Two processes that will be used specifically for »he control of concunent processes are now introduced.

These are the branch and the rendezvous. Suppose there are three separable processes T, U, and V which must

occur with «He following restrictions. T < V and U < V. T and U may be allowed to concur, but both must

precede V. To do this, a process known as an n-way branch is introduced. It involves control signals only,
with one control input and n control outputs. When the initiativ n signal is accepted, output control signals are
created on a/1 n of the output cantrol paths. Using a 'wo-way branch v.ith connections from the output control
paths to the input control paths of T and U. en initiation sigm1 applied at the input of the bianch causes the
concurrent activation of both T and U.

It is required that both T and U be complete befort initiating V and for this puipose the rendezvous

process is introduced. A process is an n-way rendezvous if it has n control inputs, a single control output,

and no data paths. An initiation signal may occur on any one of the input paths, but no completion signal is
given until all signals have been accepted on all input paths. By connecting the completion paths of T and U
to a 2-wBy rendezvous, the rendezvous does not report completion until both T and U are complete.

A schematic of this entire network is presented in Figure 8. The branch and rendezvous are represented

by circles with the letters B and R, respectively. The examples demonstrated so far have been simple. Even

with only four elements; branch, decision, rendezvous, and merge, together with separable processes, the

networks which may be constructed can be quite complex. This will be supported in Chapter Four, whsre it is
shown that errors may be inadvertently introduced when implementing these concurrent process networks, and
automatic means of detecting them are investigated.

-13-

INITIATION

MEMORY FOR n

MEMORY FOR nl

t COMPLETION

FIGURE 6. SEPARABLE PROCESS WHICH COMPUTES n-FACTORIAL

-14-

INITIrtTION

H COMPLETION

FIGURE 7. POSSIBLE SUBPROCESSES FOR FIGURE 6

DATA

CONTROL

-15-

B) 2-WAY BRANCH

R) 2-WAY RENDEZVOUS

FIGURE 8. CONCURRENT ASYNCHRONOUS CONTROL OF PROCESSES

T, U, AND V WITH THE PRECEDENCE RELATION T< V, U< V

-16-

Z.3 APPLICATION TO COMPUTING SYSTEMS

ll has been stated that the model presented applies to computers at both the organizational level and the

program level. The validity of ;his statement will now be leTionstiated.

2.3.1 APPLICATIC AT THE ORGANIZATIONAL LEVEL

The •erms branch, rendezvous, and merge are from the description of macromodular systems by Clark,

et al."'32,3' The model was strongly influenced in other ways by macromodular systems, since th~se systems

present what is probably the first major steps i.i separating the functions of processes at the organizational

level from the engineering details of these processes.

A macromodular syo'em has electronic units known as macr^modules. These correspond to the processes
in the model. There are alt>o data cables and control cables corresponding to the sigral paths of the model.

"oru.ol and data signals sre electrical signals on the cables.
A few specific types of macromcdules "vill now be mentioned. Tb-; memory modules are of two forms:

registers, constructed of flip-flops, and core memory. Associated with registers are several function units
which perform logical, arithmetic, and shift operations. There are also gates which transfer data between

registers. Ali jf these processes are separable.
Affecting control are branch, rendezvous, and merge units, the function of which is identical to the

corresponding two-way units of the model. The decision process appears in two forms: a de'.ec'^r which

compares signals from two registers under a mask signal from a thiro register and creates a control signal on

one of two control output paths, depending on whether or not the comparands are equal under the mask; and a

decoder, which decodes three bits of data signal to select one of eight possible control output paths.

Since the control cables for any process may be wired into only one sequence, call urrts are provided.

Call units effectively allow a process to be used as a subproccss within several different processes.

2.3.2 APPLICATION AT THE PROGRAM LEVEL

Several techniques have been proposed for the inclusion of explicit concurrent control into procedure

oriented program languages.33'41 This area is usually found in the available literature classified by terms such

as parallel programming, multiprocessing, and multiprogramming. The control of processes asynchronously at

this level is accomplished in various ways, the discussion of which is not pertinent here. Th*^ general scheme
may be described as two or more processing ur'ts executing instnivtions simultaneously and communicating via
a common core memory. Examples of ex'sting and proposed machines for this purpose may be found in 42'43«44.

The languages utilized are similar to Fortran or Algol, with the addition of several statements which

serve to sf. ;cify concurrency. The control signals in the model correspond to the sequencing of instructions
in these languages and the flow of data corresponds to assigning values to variables. One type of instruction

introduced is analogous to the branch. This is the FORK instruction, by which a label is given instructing

the computer to begin a concurrent sequence at that statement with the label. The statement corresponding to

the rendezvous is written as JOIN, indicating that the control of the sequence containing the join statements

referencing a particular label will meet at a statement with that label. The corresponding machine language
instructions to accomplish this have also been described in the referenced litcratLre. A less flexible method,

which is equivalent to requiring that all concurrent process existing at once be controlled by the same brancli-

rendezvous pair, has been suggested using the statements DO TOGETHER, AND and PARALLHL FOR.

This specifies that certain sequences are to be executed concurrently, e.g., the DO-gwup of Fortran or the

block in Algol. The reason these schemes are less flexible is there can be no transfer out of the sequences
or among them.

-17-

A third and mote flexible way has also been p.-oposed and has been inchded in the definition of a

language which is currently being implemented/1 This technique may be described as using certain special

data signals which may be called flag or semaphore quantities, or events. Briefly, flag quantities may be

tested for a particular value and depending on that value, the completion of the testing process may be reported

or it may be delayed until the flag does assume 'hat pariicular valur. This, coupled with the ability to

terminate conuol (i.e., destroy it without creating any other control signals), may be used to function as the

rendezvou» or in seveia! other ways which are generally unachievable with only the branch,rendezvous, decision,

and merge elements.

-18-

3. GRARH THEORETIC CONCEPTS

In discussing networks of processes, it is desirable to have a concise language cvailable for describing

them. Since an automatic analysis of networks is sought, it is «iso desirable to have a convenient way of

representing such networks to a computer. The branch cf mathematics known as g'aph-theory is well-suited to

this purpose.
Thorough discussions on the theoretic aspects with some applications are given in Berge , Ore , and

Harary, et al. . Applications of graph theory to processes in digital computers may be found in ■ • • •

3.1 DEFINITIONS

The definition of a graph, as presented here, is similar to Hatary's definition of a net. \ graph, P, is

a system (N, A, f, g) where
N is a finite set of elements called nodes

A is a finite set of elements called arcs

f is a mapping of A .nto Nv|<^ |

g is a mapping of A into Nv|ö !

<f>is a special element distinct from any element of N.

A graph may be schematically represented by d. diagram as shown in Figure 9 which immediately suggests its

usefulness in describing the interconnection of processes. The arrows represent the arcs and the circles
represen* the nodes. The functions f and g are defined as follows:

Let c be an arc, n be a node. Then
f(c) > n if and only if the head of c connects to n.

c is then said to be an input arc with respect to n.

g(c) ■ n if and only if the tail of c connects to n.
c is then said to be an output arc with respect to n.

If either f(c) - r or g(c) - n, then c is said to be
incident with n.

The functions f and g for the graph in Figure 9 are defined below the graph.
If n ana m are two nodes and c is an ire such that n =■ g(c) and m > f(c), then n is said to conned to m

while ro is said to connect from n. In either case, n and m are said to beconnected. The arc, c, may be

represented by an ordered pair of nodes (m,n).

The out-degree of a node, n, is the number of arcs, c, for which f(c) - n. The in-degree of a n is the
number of arcs, d, for which g(d) - n.

If b and c are nodes, there is said to exist a semipath between b and c if one of the following holds:

1. b and c are connected
or 2. b is connected with a node d and there is a

semipath between d and c.
If b luid c are nodes, then thee is sa.d to exist a path from b ro c if one of »he following holds:

1. b connects to c

or 2. b is connected to a node d and there is a
path from d to c.

In this case c is said to be reachable from b, or b reaches c.

Path should not be confused with signal path from Chapter 2.

-19-

N = (1, 2, 3, 4)

A = (a, b, c, d, e, f, g, h, i)

g{b) = g(c) = g(d) = 1

g(f) = g{i) = 2

g(g) = 3

g(e) = g(h) = 4

g(a) = 0. THE : SPEC IAL ELEMENT

f(a) -- 1

f(b) = f(i) = 2

f(d) = f(e) = 3

f(c) = f(f) = 4

f(g) = f(n) =■■ 0

FIGURE 3. EXAMPLE OF A GRAPH

-20-

A graph is said to be weakly connected if between any two nodes there exists a semipat'n. The graph of
Figure 9 ig weakly nnect^d Similarly, a graph is said to be strongly conrecJed if between any two nodes
there exists a path. Thus, a strongly connected graph is weakly connected but the converse does .lot necessarily
held. In cases where the converse does not hold, the graph is said to be strictly weakly connected.

A subgraph of a graph P - (N, A, f, g) is a graph, ^ - (N', A', i", gO, where N'IS a subset of N and A'

it the set of arcs incidcit with the nodes N'. Thus f and g'are restrictions of the mapping f to A" where

c t A" if and only ir f(c) t N' and g to A'" where A (A'" if and only if g(d) < N'.
An arc of a subgraph is said to be input with respect to that subgraph if it is input to some node in that

subgraph but is not output to any node in that subgraph. An arc of a subgraph is said to output with respect to

that subgraph if it output to some node in that subgraph but is not input to any node in the subgraph.

A subgraph is defined ia be separable if it has only one input arc and one output arc.

A subgraph is said to be minimal of a property L if the removal of any connected node results in a subgraph

which docs not have p/operty L. A subgraph is said to be maximal of a i,roperty L if the addition of any connected

node results in a subgraph which does not have property L. Thus a maximal strongly connected subgraph is one
in which the property of strong-connectedness is lost when any node connected to the subgraph is added.

A node is said to be self-connected if it connects to itself.

A set of arcs (a a.-a) are said to be narallel if f(a,) - f(a,) - •■— f(a) and g(a,) - g(a,) - ••- g(a).
\ 2 n 1 2 i» " 1 " 2 "n

Examples ar^ shown in Figures 10 through 13.

3.2 MATRIC REPRESENTATION

Maine notation has been shown to be a convenient representation for graphs, especially if the matrices

are to be manipulated by computer.

The mappings f and g may be represented by allowing each ccl 1 of a matrix to correspond to a node and

and each row to an arc, and letting the (i,j)th entry assume the val' e i if the arc corresponding to row i
maps ipto the node which corresponds to column j. Denote by F and G the matrices for the mappings f and g.
F and G will be respectively called the input and output matrices. The mitiices F and G for f and g of

Figure 9 ire shown in Figure 14.

Other useful matrices may be derived from the input and output matrices. The first, known as the
arc-node matrix. A, can be used to represent both F and G provided that there is no arc wnich is self-connected.
By definition A « F — G. If no nodes are self connected, there will He no entries in F and G which are both 1,

but if there are nodes which are self connected, there will be such entries. Identical entries result in the
cortespording entry of A being 0 which is indistinguishable from no connections at all to that particular node.
If such entries do not occur, F and G can be obtained from A. Figure 15 shows the arc-node matrix for the
graph in Figure 9. Notice the (i,2) entry.

An interesting algorithm is presented by Wann using the arc-node matrix. A, in testing a subgraph for

separability. It may be stated as follows: A subgraph consisting of a particular set of nodes is ceparable if
and only if the sum of the corresponding columns of the arc-node matrix contains a single +! and a single -1
entry.

Two other matiices which may a JO be computed from F and G are as follows:

The node-node or connection matrix, C - GF (where t indicates transpose of)

defined by C - the number of arcs input to node j and output from node i.

The arc-arc matrix, D - F^G, defined by D| - 1 if arc i is input to a node

from which arc j is output, and 0 otherwise.

-21-

FIGURE 10. A STRONGLY
CONNECTED GRAPH FIGURE n. A SEPARABLE

SUBGRAPH OF THE GRAPH
IN FIGURE 10

FIGURE 12. THE MAXIMAL
STRONGLY CONNECTED SUBGRAPH
OF THE GRAPH OF FIGURE 11

FIGURE 13. A
MINIMAL STRONGLY
CONNECTED SUBGRAPH
OF THE GRAPH OF
FIGURE 12

-22-

1 2 3 4

a 'l 0 0 0

b 0 1 0 0

c Q 0 0 1

d 0 0 1 0

F = e 0 0 1 0

f 0 0 0 1

9 0 0 0 0

h 0 0 0 0

i 0 1 0 0

a

1

0

2

0

3

0

4

0

b 1 0 0 0

c 1 0 0 0

d 1 0 0 0

G = e 0 0 0 1

f 0 1 0 0

g 0 0 1 0

h 0 0 0 1

1 0 1 0 0__

Figure 14. Input and output matrices for the graph of Figure 9.

]
J
.1
i

.1

-23-

2 3 4

a 0 0 0

b -1 1 0 0

c -] 0 0 1

d -1 0 1 0

A = e 0 0 1 -1

f 0 -1 0 1

9 0 0 -1 0

h ü 0 0 -1

i 0 0 0 0

Figure 15. Arc-node matrix for the graph of Figure 9.

-24-

Anothet matrix, the reachability matrix, R is defined as R - 1 if there is a lath from node i to node j,
and 0 otherwise. The reachability matrix may be computed from the connection matrix as follows:

C , the first power of C, gives, for any two nodes, the number of paths ? >m one to
the other of length I. (The length of a path between two nodes being the number of
arcs traversed in tracing from one node to the other.) It can be shown that Cn, the
nth po'^er cf C, ^ives for any two nodes, the number of paths dorn one to the other
of length n. Define a function, W. as W(x) - 0 otherwise. Then (W(CB) . 1 if
there is any path from i to j of length n, and 0 otherwise.

ThusWH'C) V W(C >, where V is the Boolean sum, gives all paths of length 1 or 2,

Similarly, V W<C) gives paths of length 1, or 2, or . ., or n. For any finite

graph, all paths which are greater than a certain length, say p, necessarily

include a loop, tnus the Boolean sum V wtC*) will be identical to V WCC1)

for any nip. The point here being that to determine the reachability matrix,

only a finite number of matrices need be summed.
An equivalent method for computing the reachability matrix, which is computationally more efficient, is given

in Other useful algorithms, such as one for the determination of strongly-connected subgraphs from the

reachability matrix, are given by Ramamoorthy. The connection matrix for the graph of Figure 9, and the

construction of the reachability matrix are exhibited in Figure 16.

In succeeding sections, process networks will be represented by graphs, and graph-theoretic terminology

will be employed in their descriptions. The analysis will be concerned mainly w th control. Co equently,

data paths will not be shown. The nodfs of graphs will represent non-sej arable processc?,particularly branches,
merges, decisions, and rendezvous. The arcs will represent control signal paths. Arcs will also be used to
represent separable processes, since a separable process has only one input and one output control path. The
terms graph and network will be used interchangeably. The description of an arc as being active medns that a
signal exists on the corresponding control path.

-25-

C =

C2 =

Cn =

R =

Ü 1 1 0

0 1 0 1

0 0 0 0

0 0 1 0

0 1 1 1

0 1 1 1

0 0 0 0

0 G Ü 0

~0 1 1 1

0 1 1 1

Q 0 0 0

0 0 0 0

C V c2 =

~0 1 1 1

0 1] 1

0 0 0 0

0 0 1 0

"I

= W(C2)

J

WCC1) n^2

Figure 16. The connection and reachability matrices for the graph

of Figure 9.

-26-

4. ERRORS IN NETWORKS OF CONCURRENT

PROCESSES WITH ASYNCHRONOUS CONTROL ^

4.1 GFNEBAL TYPES OF ERRORS

Proceäs networks which are employed in the solutions of computational problems are gencraüy separable.

The solution begins with the introduction of an initiatioti signal to the separable proc :ss. The data, initiaüy

ip memory elements, is inspected by the process and data produced indicating the results. At the completion

of the solution steps, a single completion signal is produced.

Several typ«s -»f errors may occur in such a separable process network. The genera! characteristic of an
error is that the desired result is not produced

Errors may be clastified into the vays in which they ."e produced:
1. A process physically malfunctions
2. The solution steps of an algorithm arc incorrectly specified
3. Concurrent control is incorrectly specified

The first of theee is of sio concern here. "'Tie second will be called an algorithm error, but detection of this
t^'pe of error will not be considered because of its general infea^ibility. The third will be called an implemen-

tation error because i! is introducer! by implementation of an algorithm as a concurrent process network.

The following properties are postulated as being desirable /or separable processes, the lack of them

being an error:
1. P'.nite duration — After initiation, a separable process

must complete within a finite period of time.

2. Non-regeneration — Once initiated, a separable process
<«ill create only one output control signal.

3. Determinacy - A separable rrjccss, for any activatior,
will always produce the same output data if the input
data is the ""«se.

Sequential networks are always nun-t.generative and detrnninate, but may not be of unite duration if the

control of iteration is specified iocc.:jcUy. In networks of concurrent processes, all of these puperties may be
lacking due to improper specification of concurrent control. As a claritving point, it might be mentioned thit
such errors are dynamic. For some data, the network may function normal'v while for ether data it may malfunction
in different ways. A network will be said to have certain typet of errors if it is possibl? for 'he n.^work to

malfunction in certein ways. The m*.ans by which each of these etrors are introdi' id :nto iif ..vorks is now
investigated.

4.1.1 INFINITE DURAT!ON

The name given t^ the error in process networks which do not complete in a finite length of time

is infinite duration. It was mentioned that infinite duration may be due t. .o error in an algorithm for graphs

such as in Figure .'V. It is te-emphasized that strongly connected subgraphs, as in ^ig ce 18, do not necessarily

imply an enor, hat that data must be con^idei-H before determining if the network is in error. Again it is
mentioned that such algorithm errors are infeariule to detect.

Infinite duiation caused by intro'.uclion of concurrent control is generally the result of processes internal

to the network which arc not able to report completion. This is the case in a network in which only one input
to a it. dezvous eve-- becomes active, as in Figure 19.

-27-

-H M

X f 0

X = 0

i —^ X

X f 0

X = 0

FIGURE 17. A NETWORK WITH AN INFINITE DURATION DUE TO AN ALGORITHM

L ibURE 18. NETWORKS WHICH MAY HAVE INFINITE DURATION

ERRORS BECAUSE OF INCORRECT ALGORITHM

-28-

FI6URE 19. NETWORKS HAVING INHNITE DURATION BECAUSE OF

INCORRECT USE OF CONCURRENT-CONTRQL ELEMENTS

FIGURE 20. REGENERATION CAUSED BY A BRANCH WITHIN A

STRONGLY CONNECTED SUBGRAPH

-29-

4.1,2 REGENERATION

Netwo/ks which arc regenerative may produce multiple output control signals after being initiated only

once. Thi-, may be caused in two ways. The first is by allowing a branch to produce an output from a strongly

connected subgraph. This is show.i in Figure 20. It should be mentioned that not every strongly connected

subgraph with a branch implies an error.

Regeneration is also produced by what will be called a hazard, due to its similarity to the hazard in

switching networks (cf. McCluskey.) The hazard is found by consideration of the merge process. Suppose

there is a 2-way merge with input arcs, a and b, and output arc c. The arc t is the output arc of a separable

process, P, as shown .n Figure 21. Suppose it is possible that a and D may have signals sinv'taneously.

Because of this possibility, one of two phenomena may occur (1) If a and b have signals whici. overlap in

time, the merge receives two initiation signals and the result is unpredictable, since, by definition, a merge is

initiated by a signal on only one of its input arcs. (2) If a and h do not overlap, the process P may rtport

completion twice.

in summary, the possibility of more than one input signal to a merge may cause either of these problems,

and will be identified as a hazard. The hazard is also responsible for producing indeterminacy, as wilt be

seen in the following section.

4.1.3 INDETERMINACY

A r.ttwork is said to be indeterminate if different output data are produced in two or more different activa-

tions of the network for the same input data. Three ways in which a network may be indeterminate are' (1) by

the failure to observe constraints on processes, (2) by the process reporting completio1- with some residual

control signals stil! present within the network, and (3) by the failure to observe precedence requirements in

designing the control.

Failure to observe constraints on processes occurs when, as in the previous discussion of hazards, a

process is initiated twice. Similarly, two consecutive signals to the same input of a rendezvous is a violation

of the constraints for this process.

It is possible for a process to report completion only once but, for some control to remain active within

the network. This occurs when a rendezvous has accepted a single control input and the network iuntaining

the rendezvous has reported completion. When the separable process i« activated a second time, a control

signal to the other input will cause the rendezvous to report completion. Thus, even though the data may be

the same, the results could be different for two successive activations. Networks which may report completion

while rendezvous remain active are said to possess residual control. Examples of residual control are showi

in Figure 22.

Failure to observe precedence relations, as mentioned in section 2.2.3, may cause erroneous output data,

even though the errors in control previously iiscussed are not piesent. Since no assumptions are made aSnut

relative times of processes in asynchronous control networks, a possible vtiation in time of processes which

are active concurrently may cause varying results for identical data. For example, consider two processes,

/4 and 6', where .4<ß is a requirement. If the network is implementeii as in Figure 23, where C and D represent

other processes unrelated to A oi B, an assumption that C will last longer than A may not be supported, and the

outpu; data from A which is required for input to B may not have been set when B requires it. Thus, B may

reference the data which was previously in memory e. nents, and erroneous results produced.

The error exemplified •n the preceding paragraph may be detected by observing the possibility of A and S

concuning whereas it is required that A precede S. A rorrect implemen;ation appears in Figure 24. An error

-30-

FIGURE 21. POSSIBLE REGENERATION CAUSED BY A HAZARD

I
rc-gaFüEiaa-..- .M/SS.-^

I
1
1

■3,1-

FIGURE 22. NETWORKS WITH RESIDUAL CONTROL

-32-

FIGURE 23. INCORRECT IMPLEMENfATION FOR A < B

-33-

FICURE 24. CORRECTION OF THE ERROR IN FIGURE 23

-34-

of this kind will be called a race because the time duration of the processes affect ths results. The insertion

of processes to eliminate races is called interlocking. This example has presented a very simple case of

interlocking. More complex interlock schemes may be devised to allow more freedom and still meet precedence

requirements. These are discussed by Littlefield.

4.1.4 SUMMARY OF IMPLEMENTATION ERRORS

1. Infinite duration — The process does not complete within a finite time after

initiation. Infinite duration is produced by the impossibility of completion

of an active rendezvous.
2. Regeneration — The process produces multiple output control signals after

a single initiation. Regeneration iz caused by:
a) Certain strongly connected networks with branches connecting to

output arcs

b) Hazards

3. /ndeterminacy — The process produces enatic results. Indeterminacy is
produced by;

a) Hazards
b) Residual control
c) Races

In considering detection of errors in networks, it is helpful to regroup the sources of errors into those

categories which are similar. The regrouping is shown below with short names provided for simplicity of

discussion.
1. Incomplete rendezvous — the only source of infinite duration, and the source

of residual control producing indeterminacy

2. Reentered branch - the branch in certain strongly connected subgraphs which

produces regeneration
3. Hazard — the source of some regeneration and indetemiinate cases
4. Races — the source of indeterminacy by violation of precedence requirements

For comparison, additional exciiiples of error and error-free cases are shown in Figures 25 and 26. It

should be noted that these errors display the imcomnlete rendezvous, reentered branch, and haz.'id only. The

race may appear in any network with concurrent processes. It should also be noted that no assumption is made
about the dependency of various decision elements upon data.

4.2 DETECTION OF IMPLEMENTATION ERRORS

One method for detecting errors is to construct the network and perform a number of trial activations.

Construct implies connecting the electronic units and making the necessary connections if the organizational
level is being considered. Depending upon the flexibility of components, this task may be quite time consuming.
At the program level, construe» means writing the program and putting it into fom for input io tho computer
system. The trial implementation has the advantage that algorithm errors as well as impletnentation errors

may be checked. '' has the following disadvantages:
1. Construction of the network is usually a lengthy task at the organizational

level.

2. It is difficult, if not impossible, to devise trial data which tests the

network with sufficient thoroughness.

-35-

FIGURE 25. ERROR-FREE GRAPHS

■36-

FIGURE 26. EXAMPLES OF GRAPHS WITH ERRORS

-37-

3. Errrirs due to races may not occur at a!i during a lest but may occur during

some subsequent use of the network.

4. The amount of time required to perform a sufl -lent number of tests may be

prohibitive.

Some c mment may be made as to what a sufficient number of tests implies. Regardless of how many

trial activations are performed with consistent results, there is always a possibility of a race. Thus, a

sufficient number impiier that races are not being considered.

The term combination is u^ed to indicate a particular set of arcs on which control signals appear during

the activation of a separable network. It may be observed that, in an error-free network, there may be several

unique combinations, the number of which depends upon the number of decisions and their degree. The maximum

number of rombmations is n where d, is the out-degree of the ilh decision and n is the number of decisions.

For instance, a graph is shown in Figure 27 with two 2-way decisions. Four combinations are shown in the

accompany-ng diagrams. Figure 28 depicts a graph with two decisions and less than the maximum number of

combinations. A lower bound on the number of combinations for a g'ven number of decisions depends on the

manner in which the nodes are connected. The configuration yielding the fewest combinations is the tree-

structure, as shown in Figure 29. The number of combinations for such a tree is a complex function of the

number of decisions and their out-degr^s, cf. Iverson. For a graph composed of n 2-way decisions, the

bounds are n+ 1 and ^n.

Another point that might be mentioned concerning combinations is that in graphs with strongly connected

subgraphs, a fixed result for each decision does not always produce an output control, but if an alternate is

provided for the second encounter of a decision, it may be possible to praduce an output control, in this case,

combinations are indicated ^s in Figure 30, where the number at the output arcs of the decision indicatf 'he

order in which the outputs are used. A second example of this is shown in Figure 31.

The point demonstrated by the above is that for networks of considerable complexity, the number of

combinations may be very large. A practical example is the control network for a floating-point arithmetic unit

as shown in Figure 32.

In view of the disadvantage of trial impiemen.lation of networks, a method i^ desired which will test a

network and which eliminates these disadvantages. A method which is suitable for implementation on a computer

is also desirable. Four areas of approach have been investigated in this research,

1. Simulation

a. Trial data test

b. Monte Carlo test

c. Exhaustive test

2. Topological analysis

3. Symbolic analysis using algebraic expressions

4. State transitions

These methods are described in the following sections.

4.2.1 SIMULATION

It is possible to simulate concurrent process networks on sequential digital computers anvl detect certain

errors. The simulation of sequential processes is simple to accomplish since all that need be done is to

implement a program to perform the desired data operations. The flow of cntrol is the same as the execution

of program steps. While decisions and merges are found in conventional programs for sequential computers.

-38-

M

D

M

FIGURE 27. A GRAPH DISPLAYING THE MAXIMUM NUMBER OF
COMBINATIONS FOR TWO DECISIONS

I >
/

FIGURE 28. A GRAPH HITH TWO DECISIONS A'O LESS THAN
THE MA'IMUN NUMBER Of COMBR'ATIONS

I
1
I
]

-39-

FIGURE L9. A 3-DECISION GRAPH WITH FOUR CO FOUR COMBINATIONS

-40-

M

D

FIGURE 30. INDICATION OF COMBINATIONS FOR A STRONGLY

CONNECTED GRAPH

M

0

FIGURE 31. COMBINATIONS FOR A GRAPH WITH A STRONGLY

CONNECTED SUBGRAPH

I
I
1
i
-

-i1.

THREE
MUTUALLY
LXCLUSIVE
ENTRIES

FIGURE 32. CONTROL FOR A FLOATING-POINT

ARITHMETIC UNIT (CONTINUED ON FOLLOWING PAGE)

-42-

TWO
MUTUALLY
EXCLUSIVE
RETURNS

nr. IGURE 3?(CONTINUED;

-43-

ihc branch and rendezvous are not. To simulatt branch and rendezvous, certain records must be kept, n bits

are associated with each n-wgy branch or rendezvous. Each bit corresponds to a particular output arc for a

branch or input arc for a rendezvous. All bits are initially zero. When a branch unit is encountered during

simulation, one arc is selected on which simulated control is to proceed. The bus corresponding to the other

arcs of the branch are set to !. When a particular input to a rendezvous is encountered, the bit conesponding

to lha input is set to 1. Next, ail of the other bits of the same rendezvous are compared. If all are 1, then

all inputs to the rendezvous have been accepted and the bits are reset to zero, the control proceeding to the

output of the rendezvous. If all bits ate not 1, then control cannot proceed to ihe output. Instead, the bits of

branches are checked until one is found which is a 1F indicating that control may proceed on the corresponding
arc. The bit is then reset to a 0.

When a simulated signal is present on the input to a merge, the control simpi^ proceeds to the output.
Similarly, after the output arc is selected by a decision, control proceeds to that arc.

Error checking in simulation will now be described. Some races may be delected by varying »he order in

which output arcs are chosen at a branch, but a test of all of these ways for every combination is infeasible.

All hazards are not checked, because this too would require stepping the control through the ".etwork in

every possible way for each combiiiation. Reentered branches may be found by examining the bits corresponding

to the branch or rendezvous when encountered by control and this may indicate a hazard or regeneration

Hazards cannot be located by checking for reentered merges or decisions because this reentry is perfectly

legitimate,as in strongly connected subgraphs. Thus, some hazards will escape detection.

Two types of errors may be checked when simulated control proceeds to the output arc of the graph in

question At this time, all branch bits may be checked, and if any are 1, active control arcs are implied. This

could ultimately produce fegsrr.eration or other errors The existence of incomplete rendezvous is determined
by examining the bits of each rendezvous for the value 1.

Three methods were investigated in the a« *(simulation: the trial data test, the Monte Carlo test and
and the exhaustive test. The distinction between these is presented in sections 4.2.1.1 through 4.2.2.3.

4.2.1.1 SIMULATION WITH TRIAL DATA

This method attempts to provide data which would be typical for usage by the physical network for problem

solution. The method has the advantage that it also provides checking for errors in algorithms, but it is

generally unlikely that all possible combinations will be tested, especially with a large number of decisions
in the graph.

4.2.1.2 MONTE CARLO SIMULATION

Application of this technique, suggested by Ellis, simulates :ontrol only. A random number is generated

each time a decision is encountered to determine which output au is to be followed in the simulation. The

Monte Carlo technique has the disadvantage that there is always a finite probability that some combination
will not be tested. Also, not all combinations are equally likely to be tested.

4.2.1.3 EXHAUSTIVE SIMULATION

The exhaustive technique also simulates control only. A'l combinations of • network a.e tested. This is

done by keeping a record in the simulation of the output arc selected for each decision, and simulating control
for each possible combination of decisions. Exhaustive simulation generally re.ults in more simulations thsr,

necessary, since the numbfr of distinct combination' is usually somewhat less than the upper bound, i.e , the

■44-

product of the out-degree of ail decision nodes. However, since it is not possible to tell a ptiori whether a
combination has been tested, the exhaustive test necessarily simulites the upper bound of combinations.

Examples of the exhaustive test are presented In Figures 33 through 35. Two-way elements are assumed.

Branches and rendezvous each have two bits associated with them, as previously explained. Three bits are

associated with the decision, ''"wo of these bits indicate on which arc the decision is to produce a control

output. The other bit is 0 if conirol has not previously entetec» ihe decision, and 1 otherwise. The purpose of

thiG bit is to provide a means for control to leave a strongly connected subgraph, rather than proceed in a loop

indefinitely. Figure 33 is an error-free cas^ and Figure 34 is not. Figure 35 g»ves a case with a hazard which

is not detected by exhaustive testing.

4.2.2 TOPOLOGICAL ANALYSIS

Some errors may be detected by a topologicel analysis of the network. Topologies analysis involves

examining the interconnection of nodes in the network. Certain rules have been found which govern proper

network construction, but no techniques using topology alone have been able to locale all errors. Several of

theje rules may be slated here. These will bo justified in the appendix.

1. Parallel arcs from a branch to t merge are in error.

2. Parallel arcs from a decision to a rendezvous are in error.

3. Separable graphs composed entirely of decisions and merges are error free.

4. Strongly connected graphs composed entirely of branches and rendeivous ate

in enot.

The main problem with topological analysis is that, generally, no inspection of subgraphs of any given

number of nodes always yields a definite conclusion as to errors. Some topological reductions aid in simplifying

the problem, however. An example of such a reduction is the technique explained in Chapter 3 for determining

separable subgraphs.

4.2.3 SYMBOLIC ANALYSIS USING ALGEBRAIC EXPRESSIONS

The following method, whu;h w^s derived from suggestions by Stucki, indicates some errors. The

method is heuristic and is suggested by observing that the outputs of the -jndezvous and merge are functions of

their inputs in a manner which is similar to the Boolean functions of getes at the logic level. Specifically, the

merge is an exciusive-or in the serse that it produces an output if either but not both inputs are present.

Likewise, the rendezvous is an and :n the sense that both inputs are required to produce an output. Expressions

are synthesized, for each arc, which indicate the possibility of a control appearing on that arc as a function of

the results of decision«.

Assume, for simplicity in illustration, that a graph is constructed only of two-way nodes. Two sets of

symbols, a^ aj, 83, and x,, X2, Xj, are used. The a's represent expressions on arcs, x, and T,

represent the two possible completion arcs of tht ith dec sion.
Expressions are foiraed for the output of arcs given their input arc expression by the following tu'.es;

1- H a^ is the input to the ith decision, the outpufcare labelled a^x,

ia^joUowed by x,) and a^x, (a,, followed by "not" x,).

,. If a|(is the input to a branch, the outputs ate both labeled a^

3- If a and a± are inputs to a rendezvous, then one of the following
is applied:

a) If &i and ak are identical, then the output arc is labeled a|.

T
1
I

.45-

ACTIVE DECISION

.]

D
3

BEGIN TEST OF FIRST COMBINATION

2
4
3
5
6

10

END TEST OF FIRST COMBINATION

NO ERRORS

BEGIN TEST OF SECOND COMBINATION

0 0 0 0 0 0
0 1 0 0 0 0
C 1 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1]
0 0 0 0 0 0
0 0 0 0 0 0

0 1 0
0 1 0
0 1 0
0] 0
0 1 0
0 1 0
0 1]

1 0 0 0 C 0 0 1 0
2 0 1 0 0 0 0 1 0
4 0 1 0 0 1 0 1 0
3 0 0 c 0 1 0 1 0
5 0 0 0 0 1 1 1 0
6 0 0 0 0 G 0 1 0
7 0 0 0 0 0 0 1 0
8 0 0 0 1 0 0 1 0
4 0 0 0 1 1 0 1 0
9 0 0 0 0 1 0 1 0
5 0 0 0 0] 1 1 0
6 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 1 0

END TEST OF SCCl

NO [

JND COMB I

:RRORS

NATION

0
0
0
0
0
0
1
1
1
1

FIGURE 33. EXHAUSTIVE TEST OF AN ERROR-FREE NETWORK

- INDICATE DECISION ENTERED

-46-

ACTIVE
ARC

NODE
ARC -

BRANCH

4 5
b--f

9 10

REND.

6 7

DECISION

2 3 *

BEGIN TEST OF FIRS1 COMBINATION

1
3
4
6
5
7
8

10

END TEST OF FIRST COMBINATION

ERROR - A^C 9 ACTIVE

BEGIN TEST OF SECOND COMBINATION

0 0 0 0
0 0 0 0
0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
1 0 0 1 0
i 0 0 1 0
1] 0 1 0
0 0 0 1 0
0 0 0 1 0

1
2
6

0 0 0 0
0 0 0 0
0 0 0 0

0 0
0 0
0 Ü

1 0 0
1 0 0
1 0 0

END TEST OF SECOND COMBINATION

ERROR - NON COMPLETION

FIGURE 34. EXHAUSTIVE TEST OF A NETWORK WITH ERRORS

INDICATES DECISION ENTERED

-47-

D

ACTIVE
ARC

NODE

BRANCH REND. DECISION

A

ARC —
U

c r
 c

i 2 3 bo — 5 6 *

BEGIN TEST OF FIRST COMBINATION

1 0 0 0 0 0 1 0
2 0 1 0 0 0 1 0
4 0 1 0 0 0 1 0
6 0 1 0 1 0 1 1
3 0 0 C 1 0 1 1
4 0 0 C 1 0 1 1
5 0 0 1 1 0 1 1
7 0 0 0 0 0 1 1

END TEST OF FIRST COMBINATION

NO ERRORS

BEGIN TEST OF SECOND COMBINATION

1 0 0 0 0 1 0 0
2 0 1 0 0 1 0 0
4 0 1 0 0 1 0 0
5 0 1 1 0 1 0 1
3 0 0 1 0 1 0 1
4 0 0 1 0 1 0 1
6 0 0 1 1 1 0 1
7 0 0 0 0 1 0 i

END TEST OF SECOND COMBINATION

NO ERRORS

FIGURE 35. EXHAUSTIVE TEST OF A NETWORK WITH UNDETECTABLE ERRORS

* - INDICATES DECISION ENTERED

-48-

b) If a end aj, ere known to be mutually exclusive, then an incomplete

render ous is indicated.

c) If it is not known at the time whether a. and a^ are identical or

exclusive, then the output is labeled *,* a^ (a, and a^).

4. If a. and ak are inputs to a merge then one of the following is applied.

a) If a. and ik are mutually exclusive then a combination i» made

according to the usual rule for Boolean expressions'a.x, + aiX, = a

where + means exclusive or).

b) if a. and a^ are known not to be mutually exclusive, a hazard is

indicated.

c) If it is not known at the time whether a. and a^ are esclusive, the

output is labeled a. *• ai, (a, or a^).

Figures 36 and 57 indicate the steps involved in performing symbolic analysis. The input arc to the separable

graph is labeled ao. Whenever all inputs to an node are labeled, the output arcs may be labeled. This is

continued until it is impossiole to proceed further due to an error, or until the output of the graph is labeled.

This label specifies which decision combinations produce the output control signal.

In strongly connected graphs, there are one or Tore stages at which the labeling is not complete, but can

proceed no further because no nodes remain with all inputs Inbeied. At this stage, a decision or branch is

selected, and its input is assigned a unique label a.. The labeling then continues, new labels being assigned

as needed. Because of the introduction of these labels, there will be instances in which the input of a branch

or decision would be labeled, but has already been assigned a ^bel ak. Let L represent the label which would

be assigned if the arc were not previously labeled a^. One of the following is then applied

1. If L is the input to a branch, then.

a) If L is in terms of ak, a reentered branch error is indicated;

b) If L is not in terms of a^, all occurrence of a,, in all expressions

are replaced by L ,

2. If L is the input to a decision, then:

a) If L is in terms of a|i> an iteration is indicated. The situation is

similar to a recursive definition, a^ = L where L « a^x, -t- a., i. e.,

ak = a, or a^ followed by %.,. All occurrencs of a^ are then replaced

by a u x. meaning a. followed by any nu^hei of xt.

b) If L is not in terms of ak, all occurrences of ak in all expressions

are replaced by L.

The analysis continues until an error is encountered, making continuation impossible, or until arcs are in

terms of ao and x'r- only. In the latter case, the network is not necessarily error-free, but any errors present

remain undetected. Figures 38 and 39 show examples with strongly connected graphs.

The symbolic analysis technique has the disadvantage that it is cumbersome to .mplerrient on a computer,

in addition to not being able to detect all errors. It does have the advantage of providing an expression indicating

the condition for the cistence of a signal on any arc as a function of the outcomes of decisions.

It is not implied ihat W symbolic analysis is useful or is able to detect all errors. Possibly some more

thorough technique may be found. The symbolic analysis presented here is representative of several which

'-^^r^PJm^i,'.

-49-

INPUTS TO MERGES AT THIS

STAGE OF ANALYSIS NOT

EXCLUSIVE. INDICATING

A HAZARD

FIGURE 36. SYMBOLIC ANALYSIS SHOWING A HAZARD

-50-

a.x1

aoxi

Vi+aoxrao

INPUTS TO RENDEZVOUS KNOWN TO BE
NOT IDENTICAL

FIGURE 37. SYMBOLIC ANALYSIS OF AN INFINITE DURATION CASE

-5i-

a1x1

a^a^^aj, = a0#x1

a0(#x1)x1

a0(#x1)xi * a0

FIGURE 38. SYMBOLIC ANALYSIS OF AN ERROR-FREE CASE

-52-

al=a1xl+ao

ao^X]

a1(#x1)x1

=a0#x^

a0(#x1)x1

a0(#x1)x1

(a0(#x1)x|)*(ao(#x1)x1)

FIGURE 39. SYMBOLIC ANALYSIS OF AN ERROR CASE

•DJ-

weie invesiigaled in this study. A problem which is likely to be conunon to many symbolic approaches is the
difficulty in computer implemen'&tion.

4.2.4 THE STATE TRANSITION METHOD

The final technique to be presented will be called the state Uanaiticn method, due to a similarity to the

representation of a sequential switching network as a graph displaying transitions between states. It i«

suitable for digital computer implementation and can detect all of the implementation errors discussed, including

somr ^accs. h hlso appears tc be extendable to other types of control processes, such as the flag described in

2.3.* The state of a network will be defined, followed by an explanation of error indication by the consideration

of possible states, and possib'e transitions between them.
A label is assigned to each arc of the graph in consideration. A state of the network is a !ist of those

arcs which nay be active at a particular instant of time, e.g., a, b, c, where a, b, and c are arcs. A transition

between states is the change of a network from one state to another. If the states of a network are represented
as nodes of a second graph, the possible transiticis may be represented as the rrcs of this graph, which will

be called the state transition graph of the network. Figure 40 indicates the state transition graphs for some

simple error-free net-', .ks.
The initial state is defined to be that state of a separable network consisting of only the input arc ot' the

network. The final state is that state consisting of only the output arc. A set of arcs, a,, aj, an, is said

to be a partial state of a state. B = b}) bj, 6^, if and only if a, < B for i« I, 2 n.
The partial stales of a state are used in determination of possible state transitions by considering each

node having the arcs of a state "s input arcs. For example, if a is a partial state of a, e,, ej, e^, ...,, and

a is the input to a branch with outputs b and c, the transition from a, c1f »j, e3,, to a stjtte i.c.ej.ej,^, .,..,

may occur. The possible transition for the branch is indicated in Figure 41. A gr&ph such as the one in
Figure 41 will be called a partial state transition graph. The partial su.te transition graphs fot the decision,

merge, and rendezvous are shown in Figure 42. Note that the decision has two possible transitions. Nate also

that the transition graph for the merge has an isolated node represen ing the state a,b. if this state is possible,

then a hazard is indicated. States or partial states which are identifiable as errors will be cMcd error states.

Error states which indicate other types of errors are now explained. A state in which the output arc

appears with other arcs is an error, because it indicates th a, completion signal is produced while some arc
may still be active within th* network. If the output arc is removed from this state and the construction of the

transition graph continued, then regeneration is indicated if the output arc eventually appears again in a state.

Otherwise, residual control is indicated. If there are stales, other than the final state, from which no transition
may occur, infinite duration is indicated in these states. An attempt to form a transition to a state having tvo

arcs which are the same is an indication oi a hazard.

Since the transition graph indicates which arcs may be arrive simultaneously, consideration of the data

in the separable processes represented by these arcs will indicate any races, if it is known exactly which
memory elements will be used, and which will be altered. Figures 43 and 44 exemplify some networks with
errors. The error-state nodes are indicated bv dashed liner..

The following algorithm presents the steps in constructing the state transition graph. The network

graph is assumed, with initial and firai states known. The state graph initially contains a single node for

the imtiai stale.

-54-

(D 0
Av (2,3)

1^ (4)

O

(4)

FIGURE 40. SOME SIMPLE ERROR-FREE NETWORKS AND TPEIR CORRESPONDING

STATE TRANSITION GRAPHS

-55-

LABELED NODE

O (a)

'-..c)

TRANSITION GRAPH

FIGURE 41. PARTIAL STATE TRANSITION GRAPH FOR A BRANCH

56-

O- b)

O (c)
FIGURE 42. PARTIAL STATE TRANSITION GRAPHS FOR DECISIONS»

MERGES, AND RENDEZVOUS

-57-

i I

INFINITE
DURATION

(INITIAL STATE
IN ERROR)

O
(i)

.' N. (2-3)

HAZARD

INFINITE DURATION

FIGURE 43. STATE TRANSITION GRAPHS POR ERROR CASES

-58-

INFINITE
DURATION (5.6)

(8.6)

INFINITE
DURATION / \ (10.6)

(I

RESIDUAL
CONTROL

FIGURE 44. STATE TRANSITION GRAPHS FOR ERROR CASES

-59-

1. If all nodes have been consideted for transitions, the state gta^h is

complete. Stop.

2. Select a state for which all aansitions have not been considered.

Call this state s.
3. Select an arc in s, and call this arc c. Remove all arcs from s

which aie input to the same node to which c is input. Call these

arcs p, a partial state.

1. Compr.re the arcs of p to the partial state diagram for possible

transitions or error states.
3 If pos-'ble transitions exist, check to see if the next state formed

is already in the state graph. If it is, cennect the next state to

state s by an arc. If it is not, add the new state to the graph and

connect it to s by an arc.

6. Repeat steps 3 through 5 until all distinct nodes connected to
arcs oi s have been considered. Then go to step 1.

Step 4 of the algorithm may be elaborated by specifying the procedure for each of the four types of nodes

considered. U other types of processes arc involved, appropriate procedures for then, must be formulated using

the state transition graphs. The procedures for branch, rendezvous, decision, ar.d merge are now given:
1. Branch — If the input arc of a branch is a partial state of F, a

possible transition is to a state with the input arc replaced by

the output arcs of the branch, and all other arcs in p unchanged

2. Rendezvous — If ail of the input arcs of a rendezvous form a

partial state of p, a possible transition is to a state wsth these

arcs replaced by the output arc of the rendezvous, and all other

arcs in p unchanged.
If some, but not all, of the input arcs of a rendezvous form

a partial state of p, and there are no other possible transitions, an
incomplete rendezvous error is indicated.

3. Decision ~ If the input arc of a decision is a partial state of p,

possible transitions are to states with the input arc of the decision

replaced by a single output arc of the decision.

4. Merge — If, at most, one of the input arcs of a merge is in any partial

state of p, a possible transition is to a state consisting of p with 'he
input arc to the merge replaced by the output arc. If more than one

input arc tc a merge is a partial state, a hazard U indicpted.

For any element, if a transition is made in such a way that the new state has the same arc twice, an
error is indicated.

4.I.* A SUMMARY OF THE TECHNIQUES OF THIS STUDY

Table 1 compares the techniques presented fes to their thoroughness in detection of various errors. It
appears at this time, that the state transition method is the most complete and also is rel' 'ively simple to

implemsnt. Seme topological reduction techniques, as described in the appendix, can be used to enhance the
power of this, or any other method.

-60-

Method

Table 1. A compprison of the error detection methods usvcEtigated

Errors Detected Commenls

Incomple.e Reentered Hazards Races
Rendezvc -3 Branches

1 Simlction
a) Trial Data S S S s Also checks for some

algorithm enors

b^ Monte Cerlo S S s N Not all combinations are
tested with equal likdihood

c) Exhaustive A A s N Testing time mey be
prohibitive

2. TopcMogical S s N Can he applied dur.ng
reduction of graph

3. Sj-mboiir S s s N Cumbersome to implement
by computer p.ogtam

4. State transition A A A s Simple to implement,
i .tt ;idable to other types
of processes then decisions
merges, branches, and
rendezvous

A- All errors of this type detected
S ~ Some errors of this type detected
N ~ No errors of this type detected

-61-

5. SUMMARY AND CONCLUSION

A modal suitable for r»oresentation of particular types of computing systems has been presented and
techniques for introducing concurrent asynchronous control into the model discut^d.

Graph theoretic terminology was introduced, and its applicability to description of the model demonstrated.

Severn! matric representations for graphs .'«te presented as a possible means for representing the model
in a computer for which automatic analysis techniques may be implemented.

The possible introduction of errors into computing systems by improper implementation of concurrf nt

asynchronous control networks was illustrated, and various types uf errors were classified. Several methods for

detection of implementation errors were investigated and compared.

It is concluded that state-transition method, in combination with topological reductions, is the most

.satisfactory method of those investigated due to several advantages: It detects all implementation errors in the

type of networks considered, it is extendable io other types ol processes, and it may be implemented by a

digital computer program.

-62-

0
ö
n

6, ACKNOWLEDGEMENT

The authors would like to acknowledge tne
suggestions and comir.ents of Robert Ellis end

MishellStucki of the CompuierSy stems Laboratory.
that proved to he of immeasurable asnstanre in
this investigation. L

-63-

APPENDIX 7.1

REDUCTION TECHNIQUES AND SOME THEOREMS CONCERNING TOPOLOGY

As mentioned in section 4.2.7, sor topological reductions ma1 be applied to reduce the complexity of the

error analysis problem, In the course 4 these reductions, some simple tests may be made to determine if the

network contains errors. These reductions and tests will be presented, and derived by considerat'on of partial

state transition diagrams, it should be noted that the reductions remove some arcs and hence, if races are to be

checked for, this should be done before applying any reductions. The following paragraphs do not apply to detection
of races.

The input boundary states of a graph nor necessarily separable are those states containing only input arcs to

the graph. A similar definition applies for output boundary states. In considering the state transition graph for a
network, each input 'joundary state ultimately reaches, in the graph-theoretic nomenclature, either an output state or

an error state. Two graphs are said to be A-equivalent if they ha- the same reachability relations among their

respective error and boundary states. The state graphs of two A-e alent networks are shown in Figure 7.7.1.

Postulate- If P is a graph and Q a subgraph of P, P may be analyzed j • errors by replacing Q with any A-cquivalcnt

subgraph.

T eorem 1 - All weakly connected graphs composed of only ono type branch, decision, merge, or rendezvous of

1 ay elements are A-equivalent to a single element of the same degre: as the fonner graph.
The proof is given for merges. The others follow analogously. The method of mathematical induction is

employed. Assume that the theorem holds for a graph of 2-way merge nodes of degree n,l. This network is shown

with its transition graph in Figure 7.1.2. Since the 2-way merge network is assumed equivalent to an n-way merge,
its state graph is that of the n-way merge. A 2-way merge is then added, producing a network of degree n -f i, i.
The transition graph for this augmented network is shown in Figure 7.1.3. Figure 7.1.4 displays a second state

graph with the same rsachability among boundary and error states as that in Figure 7.1.3. The second graph is
• dentica! to a state transition graph for a merge node of degree n + I, 1.

For the case n = 2, the theorem holds trivially since a network of degree 2,i is identical to a single 2-way

merge. The truth of the theorem has been shown for a single 2-*(:y merge element and the assumption of truth for
a network of degree n,! ha? been shown to imply its truth for a network of degree n + 1, 1. Thus, by induction, the

theorem is true fir all merge networks of degree n,l where n > 2.

Theorem 2 - Any two weakly connected graphs composed of one type of node decision, merge, branch, or rendezvous

and of the sanri degree are A-equivalent.
Proof - Any such graphs are A-equivalent to a graph of 2-way nodes and f the same degree. Therefore, they are
equivalent to each other.

Theorem 3 - Any separable graph which is error-free is A-equivalent to a null process.

Proof - A separable error-free graph has no error state. There is a single input boundary state which reaches a

single output boundary state. This is equivalent to the graph of a null process.
Theorem 4 - A separable graph, the input arc of which is connected to a rendezvous, is in error.

The proof follows frcrn the fact that the initial state can make no transitions.

Theorem 5 • Any parallel crcs from a subgraph composed of decisions to a subgraph composed of merges, or from a

subgraph composed of branches to a subgraph composed of rendezvous, may be replaced wi'h a single arc with
A-equiva!ence being preserved.

-64-

a, b, c, f, g, h ARE BOUNDARY STATES

R(N) =

a
b
c
f
g
h

g h d e

0 0 0 1 0 1 1 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0
Ü 0 0 0 1 0 0 0

f g h

R(M) -

a
b
c
f
g
h

d
e
i

0 0 '■- 1 0 1 0 1 0
0 0 a 0 1 0 1 0 c
0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 c
0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 Ü 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0

FIGURE 7.1.1 TWO A-EQUIVALENT STATE GRAPHS AND THEIR

REACHABILITY MATRICES

-65-

ERROR FOR i ^ j

FIGURE 7.1.2 TWO-WAY MERGE NETWORK OF DEGREE (n.l) AND

ITS TRANSITION GRAPH ASSUMING A-EQUIVALENCE TO AN n-WAY
MERGE

-66-

a1 a2 a3 an+1

\

/
/

(a]) (32) (33)

(ai.an+1)

()(bTan+l)

FIGURE 7.1.3 THE RESULT OF CONNECTING A 2-WAY MERGE TO

THE NETWORK OF FIGURE 7.1.2

-67-

K) (a2) («3) . . . (an) (an+1) (ai.dj)

I)

ERROR FOR i /< j:
i.j a 1,2,...,n+l

FIGURE 7.1.4 STATE DIAGRAM WITH THE SAME REACHABILITY

AMONG BOUNDARY AND ERROR ^TATES AS THAT IN FIGURE 7.1.3

.68-

Proof - The two graphs are equivalent to graphs composed of only 2-way elements. The 2-way elements may be

grouped in such a way that the arcs between these elements are parallel. Parallel arcs betw ten a 2-way decision

and a 2-way merge, or between a 2-way branch and a 2-way rendezvous, are known to constitute separable erroi^free
graphs. These arcs may be replaced by a null ptoceos, i e , a sitzte arc.

Theorem 6 - Any parallel arcs from a subgraph composed of decisions to a subgraph composed of rendezvous, or
from a subgiaph composed of branches to a subgraph composed of merges, indicate an error.

Theorem 7 - A strongly connected graph consisting only of branches and rendezvous is in error.

Proof - The graph may be divided into maximal subgraphs consisting of her all branches or rendezvous.

All input arcs to the graph must be input arcs to rendezvous, since if the arcs are inputs to br nches,the graph

is cot strongly connected. At least one input vc to each of these rendezvous must not be an input arc of the

subgiaph, for if it were, the subgraph would not be strongly connected. It is never possible for any of these

rendezvous to report completion, since every one requires control from inside the graph, but this control cannot

be present, without at leat,; one rendezvous reporting completion. Therefore, the subgraph is in error.

Use of these theorems will now be illustrated in the reduction of the floating-point arithmetic unit of Figure

32. A suggested procedure for application of the theorems follows, although t.o attempt is made to show that
it is optimal:

1. Form all maximal subgraphs of a single type of elements.

2. Check for any parallel arcs among these subgraphs, if some arcs are

parallel and indicate errors, then the procedure it stopped. If ires are
parallel and may be replaced by a single arc, then replace tM-m. If no
arci are parallel, then go to step 3, otherwise go to 1.

3. Check the remainder of the graph by the state transition method.

Figures 1.1.5 through 7.1.8 illustrate the application.

-69-

THREE
MUTUALLY
EXCLUSIVE
ENTRIES

FIGURE 7.1.5 REDUCTION ALGORITHM AS APPLIED TO FIGURE 32.

STEP 1 - FORMATION OF MAXIMAL SUBGRAPHS OF EACH TYPE*NODE

(CONTINUED ON FOLLOWING PAGE)

TWO
MUTUALLY
EXCLUSIVE
RETURNS

FIGURE 7.1.5 (CONTINUED)

-71-

FIGURE 7.1.6 REDUCTION ALGORITHM AS APPLIED TO FTGURE 32.

STEP 2 - ELIMINATION OF PARALLEL ARCS (CONTINUED ON

FOLLOWING PAGE)

-72-

FIGURE 7.1.5 (CONTINUED)

»«ä^Sfg^-S-BBia&Ä:

-73-

FIGURE 7.1.7 FIGURE 7.1.6 RE-DRAWN WITH SEPARABLE SUBGRAPHS

REPLACED BV ARCS (CONTIN-JLD ON FOLLOWING PAGE)

-74-

FIGURE 7.1.7 (CONTINUED)

-75-

FIGURE 7.1.8 RESULT OF REPEATED APPLICATIONS OF THE

REDUCTION ALGORITHM TO FIGURE 7.1.7

-76-

8. REFERENCES

1, Mathis, Wiley, and Spandorfer, editors. Proceedings of u Symposium on Microelectronics and Large System.'
Spartan Bookü, 1965.

2. von Neumann, John, Collected Works, New York: Macmillan, 1961-1963.

3 Slotnick, et al., The SOLOMON Computer, Proceedings of the Fall Joint Computer Conference, 1963, 774-781.
4. Holland. J.H., A Univt sal Computer Capable of Executing An Arbitrary Number of Sub-Programs Simultaneously,

Proceed) igs of the Eastern Joint Computer Conference, 1959, 108-113.

5. Murlha, John C, Highly Parallel Information Processing Systems, Advances in Computers, Vol. 7, Academic

Press, 1966, 1-116.

6. Block, Richard M., Mark I Calculator, Proceedings of a Symposium on Large-Scale Digital Calculating Machinery;

Annals of the Computation Laboratory of Harvard University, Vol. J6, 23-30, 1948.

7. Tabor, Lewis P., Brief Description and Operating Characteiistics of the ENIAC, Proceedings of a Symposium

on Large-Scale Ligital Calculating Machinery; Annals of the Computation Laboratory of Harvatd Laboratory,
Vol. 16, 31-39, 1948.

8. Curtin, William A.. Multiple Computer Systems, Advances in Computers, Vol. 4, 245-303, 1963.

9. Estrin, Gerald, Organization of Computer Systems—The Fixed Plus Variable Structure Computer, Proceedings

of the Western Joint Computer Conference, 1960, 33-401.

10. Clark, Stucki, and Ornstein, A Macromodular Approach to Computer Design, Washington University Computer
Research Laboratory, Technical Report "lo. 1, February 1966.

11. Rothkopf, Michael H., Scheduling Independent Tasks on Parallel Processors, Management Science, Vol. 12,
No. 5, 437-447, January, 1966.

12. Schwartz, Eugene S., An Automatic Sequencing Procedure witn Application to Parallel Programming, Journal

of the Association 'or Computing Machinery, Vol. t. 513-537, October 1961.
13. Hu, T. C, Parallel Sequencing and Assembly Line Problems, Journal of Operations Research, Vol. 9, 841-848,

November—December 1961.
14. Dorn, Hu, and Rivlin, Some Mathematical Aspects of Parallel Computation; lntema»ional Business Machines

Research Report, RC-647, January 1962.
15. Shedler and Lehman, Parallel Computation and the Solution of Polynomial Equations, International Business

Machines Research Report, RC-1550, February 1966.

16. Ntevergelt, ,'., Parallel Methods for Integrating Ordinary Differential Equations, Communications of the

Association for Computing Machinery, Vol. 7, No. 12, 731-733, December 1964.

17. Dorn, W. S., Generalization of Homer's Rule for Polynomial Evaluation, International Business Machines
Journal. 239-245, April 1962.

18. Altard, Wolf, and Zen.lin, Some Effects of the 6600 Computer on Language Structures, Communication^ of the

Association for Computing Machinery, Vol. 7, No. 2, 112-119, February 1964.
19. Stone, Harold S., One-Pass Compilation of Arithmetic Expressions for a Parallel Processor, Communications

of the Association for romputing Machinery, Vol. 10, No. 4, 220-223, April 1967.

20. Hellerman, H-, Parallel Processing of Algebraic Expressions, Institute of Eleciiical and Electronics Engineers.
Transactions, Vol. EC-15, No. 1, 82-?i, February 1966.

21. Roder and Rosene, M'mory Protection In Multiprocessing System*, Institute of Electrical and Electronics
Engineers, Transactions, Vol. EC-16, No. 3, 320-326.

-77-

22. Gountanis and Viss, A Method of Processor Selection for Interrupt Handling in a Multiprocessor System,

Proceedings of the Institute of Electrical and Electronics Engineers, Vol. 54, No. 12, 1S12-1819, December

1966.
23. Tomasulo, R. A., 4n Eificient Algorithm for Exploiting Multiple Arithmetic Units, International Business

Machines Journal, Vol. 11, No, 1, 25-33, January 1967.
24. Wann, Donald P., Error Analysis in Parallel Processing, Washington University Computer Systems Laboratory,

Technical Memorandum No. 13, December 1966.
25. Ellis, Robert A., Applications of Graph Theory to the Analysis of Computer Structures, Washington University

Computer Systems Laboraiory, Technical Memorandum No. 11, 1966.

26. Wann, Ellis, Stucki, and Keller, Problems Encountered in Control Networks in Highly Restructurable Digital

Sys'ems, Institute of Electrical and Electronic Engineers, Pirst Amiual Computer Conference, September 1967.

27. Karp and Miller, Properties of a Model for Parallel Computations: Determmacy, Termination, Queueing,

Society of Industrial and Applied Methematics Review Vol. 14, No. 6, '390-1411, November 1966.

28. Re er, Raymond, A Study of a Model for Parallel Computation, University of Michig i Systems Engineering
Laboratory, Technical Report ISL-65-4, 1965.

29. Reiter, Raymond, Initiation Timing in a Model for Parallel Computation, University of Michigan Systems

Engineering Laboratory, Technical Report 0690-6-T.

30. Marimonl, R. B., A New Method of Checking Consistency of Precedence Matrices, Journal of the Association

for Computing Machinery, Vol. 6, 164-171, 1959.
31. Clark, W. A., Macromodular Computer Systems, Proceedings of the Spring Joint Computer Conference, I9bl,

335-336.

32. Clark, Omstcin, and Stucki, A Functional Description o Macromodules, Proceedings of the Spring Joint

Computer Conference, 1967, 337-355.

33. Con*ay, Melvin E., A Multiprocessor System Design, Proceedings of the Fall Joint Computer Conference,
1963, 139-146.

34. Ricl.ards, P., Parallel Programming, Technical Operations Incorporated, Report No. TO-B 69-27, 1960.

35. Opler, Ascher, Procedure-Oriented Language Statements to Facilitate Parallel Processing, Communications
ot the Association for Computing Machinery, Vol. 8, No. 5, 306-307, May 1965.

36. Anderson, James P., Prograr Structures for Parallel Processing, Communications of the Association for

Cot puting Machinery. Vol. 8, No. 5 786-788, December 1965.
37. Leipold and Rekowski, A Method for the Simultaneous Processing of Several Prog'ams, Proceedings of the

International Federation of Informafon Processing Congress, Vol. 2, 320-321, 1965.

38. Gosden, J. A., Explicit Parallel Processing Description end Control in Programs for Multi- and Uni-Processot

Computers. Proceedings of the Fall Joint Computer Conference, 1966, 65/-660.

39. Dennis and Van Horn, Programming Semantics for Multiprogrammed Computations, Communications of the

Association for Computing Machinery, Vol. 9, No. 3, March 1966.
40. Wirth, Niklaus, A Note on Program Structures for Parallel Proc^ssin^, Communications of the Association for

Computing Machinery, Vol. 9, No. 5, March 1966.
41. International Business Machines Corporation Program Language - One, Language Specifications.

42. Porter, R. E., The RW-400 - A New Polymorphic Data System, Datamation, 9-14, January-February 1960.

43. Schwartz, J., Largt Parallel Computers, Journal of the Association for Computing Machinery, Vol. 13, No. 1,
25-31, January 1966.

•78-

44. Aschenbrenner, Flynn. and Robinson, Intrinsic Multiprocessing, Proceedings of the Spring Joint Computer

Conference, 1967, 81-86.

45. Berge, C, Theory cf Graphs and Its Applications, Wiley, 1962.
46. Ore, 0., Theory of Graphs, American Mathematical Society, 1964.

47. Harary, Norman, and Cartwright, Structural Models: An Introduction to the Theory of Directed Graphs, Wiley,

1965.
48. Prosser. R. T., Applications of Boolean Matrices to the Analysis of Flow Diagrams, Proceedings of the

Eastern Joint Computer Conference, 1957, 133-138.

49. Karp, R. M.. A Note on the Application of Graph Theory to Digital Computer Programming, Information and
Control, Vol. 3, 179-190, 1960.

50. Schutmann, A., The Application of Graphs to the Analysis of Distribution of Loops in a Program, Information
and Control, Vol. 7, 275-282, 1964.

51. Hain, G., Automatic Flow Chart Design, Proceedings of the Twentieth Association for Computing Machinery

Nationa! Conference, 1965, 5ii-52i.
52. Hamburger, Paul E., On an Automated Method of Symbolically Analyzing Times of Computer Programs, Proceeds

of the Association for Computing Machinery National Meeting, 1966, 321-330.

53. Marimont, Rosalind B., /4pp/(jörions of Graphs and Boolean Matrices in Computer Programming, Society of
Industrial and Applied Mathematics Review, Vol. 2, No. 4, 259-268, October 1960.

54. Martin ahd Estrin, Experiments on Models of Computations and Systems, Institute of Electrical and Electronics
Engineers, Transactions, Vol. EC-16, No. 1, 60-69, February 1967.

55. Martin and Estrin, Models of Computations and Systems—Evaluation of Vertex Probabilities in Graph Models

of Computations, Journal of the Association for Computing Machinery, Vol. 12, No. 7, 281-299, April 1967.

56. Martin and Estrin, Models of Computational Systems—Cyclic to Acyclic Graph Transformations, Institute of

Electrical and Electronics Engineres, Transactions, Vol. EC-16, No. I, 70-79, February 1967.
57 Ramamoorthy, C, V., Analysis of Graphs by Connectivity Considerations, Journal of the Association for

Computing Machinery, Vol. 13, No. 7, 211-222, April 1966.
58. Ramamoorthy, C. V., The Analytic Design of a Dynamic Look Ahead and Program Segmenting System for

Multiprogrammed Computers, Proceedings of the Association for Computing Machinery National Meeting, 229-239,

1966.

59. Martin, D. F., The Automatic Assignment and Sequencing of Computations on Paiallel Processor Systems,

University of California, Los Angeles, Department of Engineering. Report No. 66-4, January 1966.

60. Warshall, Stephen, A Theorem on Boolean Matrices, Journal of the Association for Computing Machinery,
Vol. 9. U-12.

61. MiCluslcey, E. J., An Introduction to the Theory of Switching Circuits, McGraw-Hill, 1966.

62. Littlefield, Warren M., Inlerlocken, Washington University Computer Systems Laboratory. Technical Memorandum
No. 26, June, 1967.

63. Iverson, Kenneth E., A Programming Language, Wiley, 1962.
64. Wann, D. F., Macromodular Implementation of a Floating Point Arithmetic Unit, Washington University Computer

Systems Laboratory, Technical Memorandum No. 5. August 1966,

65. Ellis, Robert A., Personal communication, Washington Universit) Computer Systems Laboratory, July 1967.

66. Stucki, Mishell J., Personal communication, Washington University Computer Systems Laboratory, July 1967.

-79-

9. BIBLIOGRAPHY

Akushsky, I. Y., "Methods of Speeding Uo the Operation of Digital Compu'tfrs", Proceedings of the International

Conference on Information Processing, Unesco, Paris, June 1959.

Aüard, R.W., K.A. Wolf, and R.A. Zemlin, "Some Effects of the 6600 Computer on Language Structures",
Communications Association for Computing Machinery, Vol. 7, No. 2, February 1964. 112'I19.

Amdahl, Gene M., "New Concepts in Computing System Design, Proceedings of the Institute of Radio Engineers,
May 1962, 1073-1077.

Amdahl, Gene M., "Multi-Computers Applied to On-Line Systems Symposium on On-Line Computing Systems",
UCLA 1965, American Data Processing Incorporated, 38-42.

Anderson, James P., "Program Structurei for Parallel Processing", CommMmcarions of the Association for

Computing Machinery, Vol. 8. No. 12, December 1965, 786-788.

Anderson, Hoffman, Shifman, and Williams, "^825 - A Multiple-Computer System for Command and Control".
Proceedings of the Fall Joint Computer Conference, 1962, 56-96.

Anderson, Sparacio, and Tomasulo, "System/360 Model 91 Machine Philosophy and Instrucüon Handling".
IBM Journal of Research and Development, Vol. 11, No. 1, January 1967, 8-24.

Anderson, Goldschmidt, Earle, and Powers, "System/360 Model 91 Floating-Point Execution Unit", IBM Journal
of Research and Development, Vol. 11, No. 1, January 1967, i4-5i.

Aoki and Estrin, "The Fixed-Plus-Variabie Computer System in Dynamic Formulation of Control System
Optimization Problems", UCLA Department of Engineering, No. 60-66, 1961.

Aoki, Estrin and Msndell, "Analysis of Computing-Load Assignment in a Multi-Processor Computer", Proceedings
of the Pall. Joint Computer Conference, 1963, I47-I&0.

Aoki, Estrin, and Tang, "Parallelism in Computer Organization, Random-Number Generation in the Fixed-Plus-
Variabic Computer System", Proceedings of the Western Joint Computer Conference, 1961. 157-172,

Aschenbrenner, Richard A., Michael J. Flynn, and George A. Robinson, "Intrinsic Multiprocessing", Proceedings
of the Spring Joint Computer Conference, 1967, 81-86.

Aschenbrenner, R.A., and R. Mueller, Intrinsic Multiprocessing — Analysis of Execution Efficiency, Argonne

National Laboratory Applied Mathematics Division Technical Memorandum No. 135, May 1967.
Auerbach Corporation, Editors. Standard EDP Reports, BNA Incorporated.

Baldwin, Gibson, and Poland, "A Multiprocessing Approach to a Large Computer Syslem", IBM Systems
Journal, Vol. 1, September 1962, 64.

Ball, J.R., R.C. Bellinger. T.A. Jeeves, R.C. McReynolds, and D.H. Shaffer, "On the Use of the Solomon

Parallel-Processing Computfr", Proceedings of the Füll Joint Computer Conference, Vol. 22, 1962, 137-146.

Bauer, Walter F., "Why Multi-Computers?", Daramahon, September 1962, 57-55.

Bckisev, G.A., "On the Disparallelization of Computer Algorithms", Vychisl Systemy, No. 5, 1962, Russian,
22-JO.

Bernstein, A.J., "Analysis of Programs for Parallel Programming", Institute of Electncal and Electronics
Engineers, Vol. EC-15, No. 5 October 1966, 757-763.

Bingham, H., D. Fisher, and W. Semon, Detection of Implicit Computational Parallelism from Inptu-Output
Sets, U. S Army Electronics Command Technical Report, ECOM-02463-1, ASTIA AD645120.

Bingham, H., D. Fisher, and W. Semon, Detection of Essential Ordering in Compiler Language Programs,

U. S. Army Electronics Command Technical Report, ECOM-02463-2

-80-

Blaauw, G. A,, "The Structure of System/360 - Multisystem Organization, IBM Systems Journal, Vol. 3, No. 2,

1964. iSi

Blaauw. Gerrit A., "IBM System/360 Multisystem Organization",'-is'iteJ« of Electrical and Electronics Engineers,

1965 International Convention Record, Part 3, 226-235.

Bloch, Erich, "The Ensineeting Design of the Stretch Computer", Proceedings of the Eastern Joint Computer

Conference of IRE., 48-58.

Blosk, R, T., "The Instruction Unit of the Stretch Computer", Proceedings of the Eastern Joint Computer

Conference of IRE, 1V60, 299-324.

Bolttid, Granito, Matcotte, Messina, and Smith, "Systcm/360 Model 91 Storage System", International Business

Machines Corp. Journal of Research and Development, Vol. 11, No. 1, January 1967, 54-68.

Bosset, J., "Sur Certains Aspects dc la Conception Logique du Gamma 60", Proceedings of the International

Conference on Information Processing, Unesco,, Paris, 1959, 348-353.

Boyeil, R.L., "Analysis of Time-Sharing in Digital Computers", Journal of the Society of Industrial and Applied

Mathematics, March 1960, Vol. 8S 102-124.

Bright, Herbert S., "A Phi'co Multiprocessing System", Proceedings of the Spring Joint Computer Conference,

1964. 97-i4i,

Brown, G. W., A New Concept in Programming Management and the Computer of the Figure, M. Greenbergcr.

Editor, Wiley 1962.

Buchholz, W., Editor, Planning aComputer System, McGraw-Hill, 1962.

Busselt, B., Properties of a Variable Structure Computer System in the Solution of Parabolic Partial Differential

Equations, PhD Dissertation, UCLA, August 1962.

Bussell and Estrin, "An Evaluation of the Effectiveness of Parallel Processing". Proceedings of the Pacific

Conference, May 1963, 201-220.

Cantor, Estrin, and Turn, "Logarithmic and Exponential Function Evaluation in a Variable Structure Computer",

Institute of ,,jdio Engineers, April 1962, 155-164.

Cantor, Estrin, Fraenkel, and Turn, "A Very High Speed Digital Number Sieve Mathematics of Computation",

April 1962, Vol. 16, 141-154.

Carroll, A.E. and R.T. Wetherßld, "Application of Paiallel Processing to Numerical Weather Prediction",

Journal of the Association for Computing Machinery, Vol. 14, No. J3, July 1967, 591;614.

Carroll, Gregory, Leonard, and Slotnick, "The Solomon H Computing System", Proceedings of the International

Federation of Information Processing, Congress 65, Vol. 2.

Tasale, CT.,"Planning the 3600", Proceedings of the Eastern Joint Computer Conference, 1962, Vol. 22, 7i-*5.

Cheatham, T.E. Jr. and G.F. Leonard, "An Introduction to the CL-II Programming System", Computer Associates

Incorporated, CA-6311-0111, November 1963.

Chen, Tien Chi, "The Overlap Design of the IBM System/360 Model 92 Central Processing Unit", Proceedings

of the Spring Joint Computer Conference, 1964, 73-80.

Clark, Wesley A., "The Lincoln TX-2 Computer Development"' Proceedings of the Western Joint Computer

Conference, 1957, 143-145.

Clark, Stucki, and Ornstein, .4 Macromodular Approach to Computer Design, Washington University Computer

Research Laboratory Technical Report, No. 1, February 1966.

Codd,E.F., "Multiprogram Scheduling". Communirancns of the Association for Computing Machinery, Vol.3. I960.

Codd. E.P., "Multiprogramming". Advances in Computers. Vol. 3. Academic Press. 1962. 78-155.

-81-

Coffir n, E.G., Stochastic Models of Multiple and Time-Shared Computer Operations, UCLA Department of

Engineering Report No. 66-38, June 1966.

Comfort, W.T., "A Modified Holland Machine", Proceedings of the Fall Joint Computer Conference, Vol. 24,

1963, «k -495.

Comfort, W.T., "Highly Parallel Machines", Proceedings of the 1962 Workshop on Computer Organization,

Spartan, 1963, 126-155.

Comfort, W.T., "A Computing System Design for User Service", Proceedings of the Fall Joint Computer

Conference, 1965, 619-626.

Conway, Melvin E., "A Multiprocessor SysJem Design", Proceedings of the Fall Joint Computer Conference,

Vol. 24, 1963, 139-146.

Corbato, F.J. and V.A. Vyssotsky, "Introduction and Overview of the Multics System"' Proceedings of the Fall

Joint Computer Conference, 1965, 185-196.

Cotton, L.W., "Circuit Implementation of High-Speed Pipeline Systems", Proceedings cf the Fall Joint Computer

Conference, 1965, 489.

Crane, B.A., 'Economics of theDDLM,A Batch-Fabricated Parallel Processor, Proceedings of the Institute of

Electrical and Electronics Engineers, Symposjum on Batch Fabrication, 1965, 144-149.

Critchlow, A.J., "Generalized Multiprocessing and Multiprogramming Systems"' Proceedings of the Fall Jcut

Computer Conference, Vol. 23, 107-126.

Curtin, William A., "Multiple Computer Systems ', Advances in Computers, Vol. 4, 1963, 245-303.

Dahm, D.M., F.H.Gerbstadt,and M.M.Pacelli, "A System Organization for Resource Allocation", Communications

of the Association for Computing Machinery, Vol. 10, No. 12, December 1967, 772-779.

DeBruijn, N.G., "Additional Comments on a Problem in Concurrent Programming Control". Communications of the

Association for Computing Machinery, Vol. 10, No. 3, March 1967, 137-138.

Dennis, Jack B.., "Segmentation and the Design of Multiprogrammed Computer Systems", Institute of Electrical

and Electronics Engineers, 1965 International Convention Record, Part 3, 214-225.

Dennis, Jack B. and Earl C. Vanhorn, "Programming Semantics for Multiprogrammed Computations", Communi-

cations of the Association for Computing Machinery, Vol. 9, No. 3, March 1966, 143-155.

Dennis and Glaser, "The Structure of On-Line Information Processing Systems", Second Congress on Information

Systems Sciences, Spartan, 1965, 5-/4.

Dijkstra, E.W., "Solution of a Problem in Concurrent Programming Control", Communications of the Association

for Computing Machinery, Vol. 8, September 1^65, 569.

Dijkstra, E.W,, Cooperating Sequential Processes, Mathematical Dept., Technological University, Eindhoven,

Netherlands, September 1965.

Dobbie, J. and D. Zatyko, "A Mass Memory System Designed for the Multi-Program Multi-Processors Users",

Proceedings of the Association for Computing Machinery, 20th National Conference; 1965, 487-500.

Dorn, W.S., " Generalizationof Homer's Rule for Polynomial Evaluation", International Business Machines

Corp. Journal, April 1962, 239-245.

Dorn, Hsu, and Rivlin, Some Mathematical Aspects of Parallel Computation, International Business Machines

Research Report, RC-647.

Dreyfus, P., "Programming on a Concurrem Digital Computer", Frontier Research on Digital Computers, Vol. I,

Univers;ty of North Carolina Summer Institute 1959.

Dreyfus, P., "France's Gamma 60", Datamation, Vol. 4, May-June 1958, 34-35.

-82-

Dreyfus, P., "System Design of the Gamma 60", Proceedings of the Western Joint Computer Conference of the

Institute of Radio Engineers, 1958. 130-133.

Eckert, J.P., J.C. Chu, A.B. Tonik, and W.F. Smith. "Design of Univac-Larc System 1", Proceedings of the

Eastern Joint Compu'er Conference of the Institute of Radio Engineers.

Epstein, Samuel D., A General Approach to Parallel Operation in a Multiprocessor Environment, Rome Air

Development Corporation Technical Ri-pori No. RADC-TR-(S7-83, March 1967, ASTIA AS812274.

Estrin,Gerald, "Organization of Computer Systems — The Fixed Plus Variable Structure Computer", Proceedings

of the Western Joint Computer Conference of the Institute of Radio Engineers, 1960, 33-40.

Estrin,Gerald, Microelements in Processor Networks Microelectronics and Large Systems, Spartan,196S, 157-170.

Esuin, Bussell, Turn, nnd Bibb, "Parallel Processing in a Restructurable Cori' niter System", Institute of
Electrical and Electronics Engineer/ Transactions on Electronic Computers, December 1963, 747-755.

Estrin and Turn. "Automatic Assignmei.t of Computations in a Variable Structuit Computer System", Institute of
Electrical and Electronics engineers. Vol. EC-12, December 1963, 755-773.

Estrin and Viswantathan, "Organization of a Fixed-Plus-Variable Structure Computer for Computation of

Eigenvalues and Eigsnvectors of Real Symmetric Matrices", Journal of the Association for Computing
Machinery, Vol. 9, January 1962, 41-60.

Fisher, David A., Program Analysis for Multiprocessing, Burroughs Corporation, May 1967.

Flores, I., "Derivation of a Waiting-Time Factor for a Multiple Bank Memory", Journal of the Association for

Comouting Machinery, Vol. 11. July 1964, 265-282.

Flynn, Michael J., "Very High-Speed Computing Systems", Pioceedings of the Institute of Electrical and

Electronics Engineers, Vol. 54, No, 2,D«ccmber 1966, 1901-1909.

Flynn, M.J.. and G.M. Amdahl, "Engineering Aspects of Large High Speed Computer Design", Microelectronics

and Large Systems, Spartan 1965, 77-96.

Forgie, James W., "The Lincoln TX-2 Input-Output System", Proceedings of the Western Joint Computer
Conference, 1957, i56-i60.

Frankovich, J.M. and J,H. Petersen, "A Functional Description of ihe Lincoln TX-2 Computer", Proceedings of
the Western Joint Computer Conference, 1957, 146-155.

Fuller, R.H. and R.M. Bird, "An Associative Parallel Processor with Application to Picture Processing",
Proceedings of the Fall Joint Computer Conference, 1965, 105-116.

Fuller, R.H., "As ociat<ve Parallel Processing", Proceedings of the Spring Joint Computer Conference,

Vol. 30, 1967, 471-475.

Garner, H.L., A Study of Iterative Circuit Computers, University of Michigan Information Systems Laboratory

Report No. TDR-64-24, 1964.

Gill, S., "Parallel Programming", Computer Journal, Vol. 1, April 1958, 2-10.

Gill, S., "Introduction to Time-Sharing", Introduction to System Programming, Wegner, Ed., Acadeiric Press,
1964. 214-226.

Goodman, Edith H.. Ed., "Computer Yearbook and Directory", American Data Processing Incorporated.

Gosden, John A., "The Operations Control Center Multi-Computer Operating System", Proceedings of the
Association for Computing Machinery, National Conference.

Gosden, J.A., "Explicit Parallel Processing Description and Control in Programs for Muiti- and Uni-Processor
Computers", Proceedings of the Fall Joint Computer Conference, Vol. 29, 1966, 65i-660.

Gotlieb, C.C.. "Programnjng a Duplex Computer System", Communications of the Association for Computing
Machinery, Vol. 4, November 1961, 507-513.

-83-

Gcantanis, R.J. and N.L. Viss, "A Method of Processor Selection for Interrupt Handling in a Multiprocessor

System", Proceedings of the Institute of Electrical and Electronics Engineers, Vol. 54nl2, December 1966,

1812-1819.

GrasciL, A.. "Control Units for Sequencing Complex Asynchronous Operations". Institute of Radio Engineers,

Vol. EC-11, No. 4, 1962.

Gregory. J. and R. McReynolds, "The Solomon Compute«", IEEE Transactions on Electronic Computers,

December 1963, 774-7«/.

Harper, S.D., "Automatic Parallel Processing", Proceedings of the Computing and Data Processing Society of

Canada, Second Conf'-'ence,June 1960, 321-331.

Hawkins, J.K. and C.J. Munsey, "A Parallel Computer Organization and Mechanizations", IEEE Transactions

on Electronic Computers, June 1963, 251-262.

Hawkins, Joseph K., A Highly Parallel Computing System, IEEE Computer Group Repository R-67-122.

Heller, J.. "Sequencing Aspects of Multiprogramming", Journal of the Association for Computing Machinery,

Vol. 8, No. 3, July 1961.

Hellerman, H., On the Organization of a Mulnprogramming-Multiprocessing System, IBM Research Report,

RC-522, September 1961.

Hellerman, H., Parallel Processing of Algebraic Expressions, FHEE, Vol. EC-15, No. 1, February 1966.

Hobbs.L.C, "Effects of Large Arrays on Machine Organization and Hardware/Software Tradeoffs", Proceedings

of the Fall Joint Computer Conference, 1966, «9-96.

Holland, John, "A Universal Computer Capable of Executing an Arhitrarv Number of Sub-Programs Simultaneously"'

Proceedings of the Eastern Joint Computer Conference, 1959, 108-113.

Hollander, Gerhard L., "Architecture for Large Computer Systems", Proceedings of the Spring Joint Computer

Conference. Vol. 30, 1967, •, M66,

Hoover, *,R., A. Arcand, and T.B. Miller, "A Real Time Multi-Comr.ter System for Lunar and Planetary Space

Flight Data Processing", Proceedings of the Spring Joint Compute) Conference, 1963, 127-140.

Hosaka,Mamoru and Takahiko Tani,"A Real Time Multicomputer System for Train Seat Reservation",Proceedings

of the International Federation of Information Processing, Congress 55.

Hu, T.C. "Parallel Sequencing and Assembly Line Problems", Journal of Operations Research, Vol. 9,

November 1961, 841-848.

International Businsss Machines Corporation, PL/I Language Specifications, IBM Form C28-6.''71.

International Business Machines Corporation, Introduction to Central Purpose Systems Simulator 111, IBM

Form B20-0001.

Karp, Richard M. and Raymond E. Miller, "Properties of a 'Viodel for Parallel Computations - Deteiminacy,

Teminations, and Qucueing", Society nf Industrial and Applied Mathematics, Vol. 14, No 6, November 1966,

1391-1411.

Kat:. Jesse H., "Simulation of a Multiprocessor Computer System", Proceedings of the Spring Joint Computer

Conference, 1966 127-139.

Keit, H.A., "Polymorphic Principle in Data processing". Institute of Radio Engineers, Wesccn ConvsjnUon

Record, i960, Pt. 4, 24-28.

Knapo,Morris A., Parallel Processing Computer Systems, Rome Air Development Center, Report R 'iDC-TR-66-567,

November 1966, ASTIA AD803485.

Knuth, Donald E., "Additional Comments on a Problem sn Concurrent Programming Control", Communications of

Ihe Association for Computing Machinery, Vol. 9, No. 5, May 1966, 321-322.

-84-

Knuth and McNeley, "SOL - A Symbolic Language for len^Tal Purpose Systems Simulation", Institute of

Electrical and Electronics Engineers, Vol. EC-i3, August 1964, 401-408.

Knuth and McNeley, "Formal Definition of SOL", Institute of Electrical and Electronics Engineers, Vol.EC-13,

August 1964, 409-414.

Kolsky, H,G., "C mputet Organization - A Survey o." Cuncnt Trends ard Problems", Proceedings of tie IEEE,

6th Region Annual Convention 1966, 420-428.

Lampson. B.W., W.W. Lichtenberger and M.W. Piitle, "A User Machine in a Timc-Shsnng System", Proceei'ngs

of the IEEE, Vol. 54, No. 12, December 19o6, 1/66-1774.

Lawless, W.J., Developments in Computer Logicial Organization Advances in Electronics and Electron Physics,

Vol. 100, 1959.

Leeds and Weinberg, Computer Programming Fundamentals, McGra-'-Hill 1966.

Lehman, M., "Serial Mode Operation and High-Speed Parallel Processing", Proceedings of the International

Federation of Information Processing, 1965, Pt. 2, 631-633.

Lehman, M., "A Survey of Problems and Preliminary Results Concerning Parallel Processing and Parallel

Processors' . Proceedings of the 'ZEE, Vol. 54, No. 12, Decemb-n 1966, 1889-1901.

Leiner, A.L.,W.A. Not£, J.L. Smith, and A. Weinberger, "Organizing a Network of Computers to Meet Deadline. ',

Proceedings of the Eastern Joint Computer Conference, Oecember 1957, 115-128.

Leiner, A.K., J.L. Smith, W.A. Notz, and A. Weinberger, ' Pilot, The NBS Mluticomputer System", Proceedings

of the Eastern Joint Computer Conference 1958, 7i-75,

Leiner, Noiz, Smith, and Marimont, "Concurrently Operating Computer Systems", Information Processing, iV;9,

I'nesco, Pans, 353-361.

LemM, Notz, Smith, and Weinberget, "PILOT - A New Multiple Computer System", Journal of th* Association

for C-inputing Machinery, Vol. 6, July i959, 313-335.

Loipold, K. and W. Rckowski, "A Method for th' Simultaneous Processing of Several Programs", Proceedings of

the International Federation of Information Proc.^si. , Congress 65.

Leonard, G.F. and J.R. Goodroe, "An Environment for an Operating System", Proceedings of the Association

for Computing Machinery, 1964.

Levy, W., Congestion in a Multi-Modular Computer Systert, Pennsylvania Research Associates. April 1965.

Lewis and Meilen, "Stretching LARC's Capability by '■•''(A New Multiprocessor System", Symposium on

Microelectronics and Large Systems, Spartan 196-».

Littiefield, Warren M., Inte'locken, Washington University Computer Systems Laboratory Technical Memorandum

Number 26, June 1967.

Lock. Kenneth, ' Stfcu- mg Programs for Multiprogram Timc-Shan.ig On-Line Applications", Proceedings of the

Fall Joint Computer Conference, 1965, 457-472.

Lombardi, LA., "MJU. Vccess and Multi-Computer Systems", JotaSystems Design, Vol. 1, No. 8, 1964, !6-24.

Lourie, N.,H.Schrimpf, R.Reach, and W.Kahn, "Arithmetic and Control Techniques in a Multiprogram Computer",

Proceedings of the Eastern Joint Computer Conference, 1959, 75-81.

Mayer, R.J., "Problems of Storage Allocation in a Multiprocessor Muhi-Programmed System", Commumco/ions of

the Association for Computing Machinery, Vol. 4, Ociober 1961.

Markowilz, Häuser, and Karr, Simscnpt - A Simulation Programming Language, Prenlice-Hall 1963.

Martin and Estrin, "Experiments on Models of Computations and Systems", Institute of Electrical and Electronics

Engineers, Vol. Fr-16, No. I, February 1967, 59-69.

-85-

Martin wid Estrin, ''Models of Computations and Systems — Evaluation of Vertex Prohsbililie« in Graph Models of

Computctions", Journal oj the Association for Computing Machhnery,\o\. 14, No. 2, April 1967, 281-299.

Martin and Estrin, "Models of Computational Systems — Cyclic Jo Acyclic Graph Transformations"; Institute of

Electrical and Electronics Engineers, Vol. EC-16, No. 1, February 1967, 70-79.

Martin, D.F., The Automatic Assignment and Sequencing of Computations on Parallel Processor Systems,

UCLA Dcpt. of Engineering, Report 66-4, January 1966.

Mathis, Samuel J. Jr., and Richard E.wiley, Eds., Symposium on Microelectronics and Laroe Systems, Spartan,1965.

Maynard, B.A. Ed., Manual of Computer Systems, Gecrge and Company Ltd.

Metz, Joachim, Dimensionierung von Reckenanlagen, Technischen Universität Dresden.

Miller, W.F., and R. Aschenbrenner, "The GUS Multicomputer System", /E£E Transactions on Electronic

Computers, December W63, 71-676.

Mills, M.R., "Operational Experience of Time Sharing and Parallel Processing", Journal Computer.

Miranker and Linigei, "Parall«! Methods for the Numerical Integratio.t of Ordinary Differential Equations",

Math.,Journa/ Computer.

Murtha, John C, "Highly Parallel Information Processing System?,", Advances in Computers, Vol. 7, 1966.

McCullough, Spierman, and Zürcher, "A Design for a Multiple User Multiprocessing System", Proceedings of the

Hall Joint Computer Conference, 1965, 611-617.

McKenney, James Lanimore, Simultaneous Multiprogramming of Electronic Computers, University of California,

Los Angeles, Management Sciences Research Project, Research Report No. 69, February 1961.

Nelrora, M.R., "Comment on a i apet on Parallel Processing", Communications of tn.' Association for Computing

Machinery, Vol. 4. No. 2, Febp<ary 1961.

Nelson, J.C., "On the Limitation of Processor-Memory Recycle Rate in a Mutiiprocessing System", Abstract only,

IEEE 1965, International Convention Record, Pt. 3, 281.

Nievergelt, J., "Paraüel Methods for Integrating Ordinary Differential Equations ', Communications of the

Association for Competing Machinery, Vol. 7, No. 12, December 1964, 731-733.

Opler, Ascher, "Procedure-Oriented Language StatemciVs to Facilitate Parallel Processing", Communications

of the Association for Comptuing Machineiy, Vol. 8, May 1965, 366-307.

Opler, Ascher, "Requirements for Real-Time Languages". Communications of the Association for Computing

Machinery, Vol. 9, No. 3, March 1966, 196-199.

Ornsiein, Severe M., Mishell J. Stucki, and Wesley A. Clark, "A Functional Descnption cf Macromodules",

Proceedings of the Spring Joint Computer Conference, Vol. 30, 1967, ii7-i55.

Ossana, Mikus, and Dursten, "Communication and Input-Output Switching in a Multiple Computing System",

Proceedings oi the Fall Joint Computer Conference, 1965, 231-241.

Pariser, J.J., "Multipiocesa.p.g with Floating Executive CwXioV,IEEE International Convention Record,

Pt. 3, 1965, 266-275.

Parkrill, D.F., The Challengt of the Computer Utility, Addison-Wesley 1966.

Parnas, D.L., Sequential Equivalents of Parallel Processes Carnegie Institute of Technology. February 1967.

Pamas, David L.. "-^ Fa'-ilitating Parallel and Multiprocessi,1/, in ALGOL", Communications of the Association

for Computing Machinery, Vol. 9, No. 4, April 1966, 257.

Pease, Marshal! C, "Matrix Inversion Using Parallel Processing". Journal of the Association for Comi^utinq

Machinery, Vol. 14. No. 4, October 1967, 757-764.

Perkins, R., and W. McGee. "Programmed Control of Multi-Computer Systems", Proceedings of the International

Federation of Information Processing, Congress 62.

-86-

Pickering. Mulschler. and Enckson, "MuUicompuler Programming for a Large Scale Real-Time Data Processing

Sys* in". Proceedings of the Spring Join! Computer Conference, 1964, 445-461

Pomeren, J.H., "An Approach to Parallel Processing", Procf-edings of the International Federation of Information

Processing, Congress 65.

Porter, R.E., "The RV,-400 - A New Polymorphic Data System", Datamation, January-February I960, 8-14.

Porter, R.E., "Programming in a Polymorphic System", Conference on Parallel Programming, May 196).

Proctor, Automatic Detection of Computattoral Parallelism, Burroughs Corporation, May 1964.

Pyke, Thomas N, "Time-Shared Computer Systems",/Ituances in Computers,\o\. 8,1967, Academic Press, 1-45.

Ramamoorthy, C.V., "The Analytic Design of a Dynamic Look Ahead and Program Segmenting System for

MultiprogramniL-o Computers, Proceedings of the ACM National meeting. 1966, 229-239.

Reiter. Raymond, A Study of a l.-idel fcr Parallel Computati-n, University of Michigan, Systems Engineering

Laboratory, Technical Report ISL-65-4. July 1965.

Rp;ter, Raymond, Initiation Timing in a Model for Parullel Computation, University of Michigan, Systems

Engineering Laboratory, Technical Report SEL-66-3, March 1966.

Reiter, Raymond, A Study of a Model for Parallel Computations, University of Michigan, Systems Engineering

Laboratory, Technical Report SEL-67-15, Jane 1967.

Richard.,. P., Parallel Programming, Technical Operations Incorporated, Report No. TO-B 60-27, 1960.

Rode: and Rosene, "Memory Protection in Multiprocessing Systems". /£E£ Transactions, Vol. EC-16, No. 3,

320-326.

Rodriguez, Analysis and Transformation of Computational Processes, MIT MSGM 22, MAC-M-301, March 1966.

Rosene, A.F., "Memory Allocation for Multiprocessors", Transactions of the IEEE, Vol. EC-16, No. 5,

October 1957, 659-665.

Rothkopf, Michael H., "Scheduling Independent Tasks on Parallel Processors". Management Science, Vol. 12,

No. 5, January 1966, 437-447.

Russell, E.C., Automatic Assignment of Computational Tasks in a Variable Structure Computer, UCLA D-tpt. of

Engineering 63-45,1963.

Ryle, B.L., "Multiple Programming Data Processing", Communications of the AC.', Vol. 3, June 1960.

Sable, et al.. Proposal for Investigation of Implicit Computational Parallelism, AUERBACH Corp. P-6104-066,

April 1966.

Savidge, David V., "An example of Multi-Processor Organization Symposium on On-Line Computing Systems",

American Data Processing Inc., UCLA 1965.

Schmitt, W.T. and A.B. Tonik, "Sympathetically Programmed Computers", Proceedings of the International

Conference on htformation Processing, Unesco, Paris, 1959.

Schwartz, Eugene,S., "An Automatic Sequencing Procedure with Application to Parallel Processing", Journal oj

the ACM, Vol. 8, October 1961, 5yi-5i7.

Schwartz, J., "Large Parallel Computers'", Journal of the ACM, Vol. 13, No. 1, January 1966, 25-32.

Schwartz, "A Heuristic Procedure for Parallel Sequencing with Choice of Machines", Mancgement Science,

Vol. 10, No. 4. July 1964.

Seeber, R.R. and A B. Lindquist, "Associative Logic for Hi^lily Parallel Systems", Proceedings oj the hall

Joint Computer Conference, Vol. 24, 19f 3, 489-493.

Senzig, D.N. and R.V. Smith, "Computer Organization for Array Processing", Proceedings of the hall Joint

Computer Conference, 1965, 117-128.

-87-

Shedler, G.S. and M.M. Lehmen, Parallel Computation and the Solution of Polynomial Equations", IBM Research

R-port RC-1550, February 1966.

Shooman, William, "Parallel Computing with Vcitical Data", Proceedings of the Eastern Joint Computer

Conference, 1960. 111-115.

Slotnick, Borch, and McReynulds, "The Solomon Co-npuser - A Preliminary Report". 1962 Workshop on Computer

Organization, Spartan 1963.

Slotnick, Daniel L., W. Carl Borch, and Robert C. McReynolds, "The SOLOMON Computer", Proceedings of the

Fall Joint Computer Confererre, Vol. 22, 1962, 97-707.

Slotnick, Daniel L., "Unconventional Systems", Proceedings of the Spring Joint Computer Conference, 1967,

Vol. 30, 477-481.

Smith, Arthur Anshel, Input/Output in Time-Shared, Segmented, Multiprocessor System, MIT Project MAC,

MAC-TR-23, June 1966, ASTIA AD63"'215.

»quire and Poiais, "Programming and Design Considerations of a Highly Parallel Computer", Proceedings of the

Spring Joint Computer Conference, 1963, 39i-400.

Stanga, D.C., "Univac 1108 Multiprocessor System ', Proceedings of the Spring Joint Computer Conference,

1967, 67-74.

Stone, Harold S., "One-Pass "ompilation of Arithmetic Expressions for a Parallel Processor", Communicatiors

of the ACM, Vol. 10, No. 4, April 1967, 220-223.

Strachey, C, "Time Sharing in Large Fast Computers", Computers and Automation, August 1959, 14.

Stucki, Mishell J., Scvcro M. Ornstein, and Wesley A. «.lark "Logical Design of Macromodules", Proceedings

of the Spring Joint Computer Conference, 1967, Vol. 30, i57-i6i.

Tasini and Winograd, "Multiple Input-Output Links in Computer Systems", IBM Journal of Research and

Development, Vol. 6, No. 3. July 1962.

Thompson, Rankin N. and John A. Wilkinson, "The D825 Automatic Operating and Scheduling Program",

Proceedings of the Spring Joint Computer Conference, 1963, 41-49.

Thorlin, J.F., "Code Generation for PIE Parallel Instruction Execution Computers" Proceedings of the Spring

Joint Computer Conference, Vol. 30, 1967, 641;643.

Thornton, James E., "Parallel Operation in the Contr« I Data 6600", Proceedings of the Spring Joini Computer

Conference, 1964,63-40.

Tomasulo, R.M., "An Eff -ient Algoiithm for Exploiting Multiple Arithmetic Units", IBM Journal of Research

and Development, Vol. 11, No. 1, January 1967. 25-ij.

Turn, R., Assignment of Inventory of a Variable Structure Lumpu' r, UCLA Department of Engineering Report

63-5, January 1963.

Unger, S.H., "A Computer Oriented Toward Spatial Problems", Proceedings of the Institute for Radio Engineer.

October 195P, 17-44.

Van Horn, Earl C. Jr., Computer Design for Asynchronously Reproducible Multiprocessing, MIT Project MAC,

PAC-TR-34, ASTIA AD650407.

Vyssotsky, Corbato, and Graham. "Structure of ihc Multics Supervisor", Proceedings of :he Fait Joint Computer

Conference, 1965, 203-212.

Wald, Bruce, Utilization of a Multiprocessor in Command and Control", Proceedings of the Institute of

Electrical and Electronics Engineers, Vol. 54, No. 12, December 1966, '.885-188R.

Wallace, Fife, and Rosin,-4 Study of Information F/OM in Multiple Computer and Multiple Console Data Processing

Systems, Rom«,Air Development Center, Report RAD(:-TDR-64-427, December 1964.

-88-

Wann, D.F., Error Analysis in Parallel Processing, Washington University, Computer Research Laboratory,

Technical Memorandum No. 15, Decemb^ 1966.
Wann, D.F., Macromodular Implementation of a Floating Point Arithmr Unit, Washington University, Computer

Research Laboratory, Technical Memoranduir. No. 5, August 1966.

Warm, Ellis, Siucki, and Keller, "Problems Encountered with Control Networks in Highly Restructurable Digital
Systems' , Institute of Electrical and Electronics Engineers, First Amual Computer Conference, Sept. 1967.

Ward, James A., "The Need for Faster Computers", Proceedings of thi Pacific Computer Conference, 1-4.
Watshall, Stephen, Some Remarks on the Design of Multi-Proeessor Computer Systems, Computer Associates, Inc.

CA-6304-0111. Auril 1963.

Welch, P.D., "On the Reliability of Polymorphic Systems", IBM Systems Journal, Vol. 4, No. 1, 1965, 43-52.

West, G.P., "Advantages of a System Utilizing Selectable Banks of Memory Over Multiplexing Computer Accesses
to a Single Large Memory", Institute of Electrical and Electronics Engineers, l^S International Convention
Record, Pt. 3, 276-2*0.

West, George P., "The Best Approach to a Large Computing Capability", Proceedings of the Spring Joint

Computer Conference, Vol. 30, 1967, 467-469.

Wirth, Niklaus, "A Note on Program Structures for Parallel Processing", Communications of the Association for

Computing Machinery, Vol. 9, No. 5. May 1966, 320-321.

Witt, B.I., "The Functional Structure of OS/360, Part II Job and Task Management", IBM Systems Journal,

Vol. 5, No. 1, 1966, 12-29.

Yarbrough, Lynn D., "Some Thoughts on Parallel Processing", Communications of the Association for Computing
Machinery, Vol. 3, No. 10, October 1960, 559.

Yevreinov, E.Z. and Y.G. Kosarev, "High Efficiency Computing Systems", Engineering Cybernetics, Vol. 1,
No. 4, 1963.

Unclassified
Sacuiity Clmiiflcatton

DOCUMENT Ca.TROL DATA .R&D
(Stiurily ctmttlllealleo »111119, hady ol aätmei mat «nd«»iiif «mwcrtan mu*t b» tnlmnd whmi >:>« orerelt fvpotl It rlmttllfäj

i. o«iciK*Tir(G ACTIVITY (Cofponl» uuthct)

Computer Systems Laboratory
Washington University
St. Louis, Missouri

«». ««■»O» T ■KCUftlTV CLAItirtCATION

Unclassified
t*. enou»

I ntpomr TiTL«

Analysis of Implementation Errors in Digital Computing Systems

4. OKicniPTiva Norct (-Typ« o'npcrl and fncliMli* dmH»)
Interim

»• *UTHO«W (fKSl nrnrn», rIMI» inlllal, /••(naaw; "~~~

Robert M. Keller and Donald F. Wann

t noonT OATC

March 1968
•a. COMTBACT OH CHANT NO.

(1) DOD(ARPA) Contract SD-302
. »-,. «^^NIH(DRFR) Grant No. FR-00218

(1) ARPA Project Code No. 5880
Order No. 655

7«. TOTAL MO. OF »A«C»

89
7*. MO. or mmr»

66
M. ©»»IOIN^TO«-' RCI>ORT Nuinncnist

Technical Report No. 6

•6. OTHKH mm^omr MOtd (Any cOw mmitmn Mal awr bu a« •.'#■•<<

10. OICTKinuTIOM »TATCHCMT

Distribution of this document is unlimited

II. tU^LKMINTAItV NOTES

It. ABSTRACT

ta. *»QN*oniN« MICITAHV ACTIVITY
ARPA - Information Processing Techniques,
Washington, DC. N.I.H., Div. of Rescarcii

This report discusses problems encountered with control networks in highly restruc'urable digital

systems. In particular the treatment of implementation errors is covered with, emphasis on concurrent

processing. The implementation of concurrent processing networks may result in errors which will

be quite complex to detect and systematic methods are warranted. A model representing a particular

type of computing system is presented, and methods for introducing concurrent control into the model

discussed. The automatic detection of a certain class of errors caused by improper design of these

systems is investigated. Graph theoretic representation is employed in demonstrating several error

detection techniques. The properties of these techniques are compared and it is concluded that one

technique, of those investigated, is of sufticient generality, thoroughness, and simplicity in

implementation to be used for automatic error analysis.

DD .1473 ■ CPLACa« Of» POMM l«T>. I JAM M. «MICH I«
OMOkCTB POm AMMV UOR. Unclassified

■•curitr {hanaincation

i««uTity CUaslflcL'lon

14.
K«V momo»

Concurrent
Paralleiism
Errors in concurrent processes
Parallel implemenution errors

neua NOl.K WT «<3U* WT

tecwit} Classincation

