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"Errors, like straws, upon the surface flow; 

He who would search for pearls must dive below." 

Drydsn, Ali for Love, Prologue 
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ABSTRACT 

This   report  discusses  problems  encountered with control networks in highly restructurtble digital 

systems. In particular the treatmeni of implementation error* is covered with «mphasis on concurrent processing. 

The implementation of concurrent processing ; jiwotks may result in errors which will be quite complex to 

detect and systematic methods are warranted.   A model representing a particular type of computing system is 

presented, and methods for introducing concurrent control into the model discussed.  The automatic detection of 
a certain class of errors caused by improper design of these systems  is investigated.   Graph theoretic repre- 
sentation is employed in demonstrating Kevera1 error detection techniques.   The properties of these techniques 

are  compared and it is concluded that Anc technique, of those investigated is  of sufficient generality, 

thoroughness, and s uplicity in implementation to be used for automatic error analysis. 
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ANALYSIS OF IMPLEMENTATION ERRORS IN DIGITAL COMPUTING 

SYSTEMS SUPPORTING ASYNCHRONOUSLY-CONTROLLED 

CONCURRENT PROCESSES 

1. INTRODUCTION 

This report is concerned with digita! computing systems supporting asynchronously-ccntrolled concurrent 

processes. Systems of this variety present a departure from techniques of convenej.iai usage. Certain methods 
may be uied to provide explicit concurrent control in these systems. If the methods are incorrectly applied, e 

number of different enors, which are unlike those encountered in conventional systems, may result. Presented 
here is a discussion of explicit concurrent control methods and an investigation of techniques for automatic 

detection of errors introduced in using these methods. Several solutions are demonstrated and their relative 
merits evaluated. 

1.1     MOTIVATION 

The desirability for increased speed in computer systems has focused interest on t",o major areas: 

1. Digital electronics 

2. Computer organization 

In the  first  area, the goal is development of electronic switching networks, ferrite core memories, and other 
components capable of operating at extremely high speeds.'    The second, which is largely  independent of the 

first, involves efforts toward the effective usage of existing corponents.    it is this latter area which will be of 
concern here. 

1.2 ASYNCHRONOUS CONCURRENT MODE AS COMPARED WITH OTHER MODES 

1.2.1 LEVELS 

Before determining whether a particular computer falls into the asynchronous concurrent category, the 
qualification of level must be made.   Three levels will be considered: 

1. The logic level 

2. The organizational level 
3. The program level 

The logic level is that at which the elementary entities are gates, flip-flops, clocks, etc. The organiza- 
tional level has as elements registers, memories, and other unit!? constructed of logic elements. It may also 

include arithmetic units, input-output controllers, or even an entire processing unit. At the program level the 
elements are instructions written in a sequence which describes the operations to be performed by a computer. 

1.2.2 SYNCHRONOUS VERSUS ASYNCHRONOUS 

Synchronous means that operations are controlled by a clock with a fixed period. Processes at the logic 

level in most conventional computers are synchronous. The reason for this is that at the logic level, synchronous 
control is easier to use in design. 
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Contraiily, at the procram level, ptoc«sses usually operate asynchronously.    The execution timt of in- 
Kauctions in most computers varies depending on the type of operation or thr amount of data being manipulated. 

1.2.3   SERIAL VERSUS CONCURRENT 

Concurrent means that processes occur simulunsously, while serial implies one process proceeding after 

another in a particular order.    In contrast to the examples in the previous section for conventional computing 

system-:, «. f a logic level concurrent processes do occur, while at the program level sey do not. Some qualifi- 

tioa needs to be made concerning the latter statement.   Mont contemporary computers do provide for concurrency 

of input  and output operationr, with other   ypes of oprrations.    However, the program generally does not have 
absolute control of these operations.    It may be said thnt the programmer does not normally hav; the option of 

explicitly declaring costarrrjicy. 

1.3   DOMAIN OF INTEREST 

The processes to be considered in this research will be entirely at the organization or r'ogram levels. 

A model will be proposed which is adequate for the representation of processes at either level and its applica- 

bility to existrg computers demonstrated. The model is particularly suited to organization or nrogramming of the 
class of computers originally proposed by von Neumann3, in which the greater percentage of existing computers 

are included. No attempt is made to show its adequacy for various computers such as SOLOMON1, the Holland 

Machine4, and other computers which are described as highly parallel, distributed logic, etc. For & cross sectional 

description comparing various types of concurrent processors, see Mvrtha1. 

1 .S.f    HISTORICAL DEVELOPMENT 

Examination of the characteristics of computers since the first large-scale computer, the Harvard Mark I 
Calculator6 in 1944, yields an interesting picture regarding concurrent processing.   The successor to the Mark I, 

the ENIAC (Electronic Numerical Integrator and Computer)7, was capable of sustaining  concurrent processes. 

This feature v is made possiU, by the use of wired programs. 
With the introductions of EDVAC (E'ectronic DUcrete Variable Automatic Computer)2, which was the first 

stored program machine, problems with the control increased, and thus, attention was drawn away from concurrent 
processing. 

As the use of electronic computing increased, it became apparent that certaLi functions of a computer, e.g 

multiplication, division, md certain input and output operations, consumed a disproportionate amount of time in 

comparison to other operationc. Consequently, during Derations such as these, part of the component« of the 

computer remained idle. This renewed interest in applying asynchronous control and concurrency to more effective 

utilization of this idle time. Several machine then appeared which allowed multiplication and division to proceed 

simultaneously and autonomously*. Another step »as the introductic.i of an input-output overlap feature in the 

UNIVAC I. This feature, which allowed input and output operations to proceed autonomously and concurrently 
with a program, is present in most commercial and scientific computers presently manufactured. This idea was 
then extended to permit other types of instructions to be executed simultaneously by the interconnection of two 
or more computers. 

1.3.2   CURRENT RESEARCH 

Currently, many existing and planned computer systems are incorporating concurrent asynchronous control. 
Unfortunately, few of these allow explicit specification of concurrency at   '    progrcm level, and some give this 



pnviiege to a supervisory program only. 
At the organizational level, the trend towarr* more flexibility and modularity of units has offered a growing 

opportunity  for  development of new approaches for concurrent structures.     The fixed-ptus-variable computer 

proposed by Estrin9 was a major step in this direction.    Estrin „uggested that a standard computer be combined 

with a network of computer components under common control of a supervisor.  The network could be restructured 

for particular problems to yield an increase in program running speed. 

Another   significant   advancement,  consistine of a collection of  au'ionoinously operating modules, was 

proposed by Clark10.    These modules, called macromodules were to be designed in such a way as toeliminats 

the   electronic  engineering details present in conventional computers  and thus provide a means of organizing 

computing systems by considering only the functions to be performed.   This project is currently in the develop- 
ment stage. 

1.4   PROBLEMS INTRODUCED BY ALLOWING EXPLICIT CONCURRENCY 

The provision for explicit asynchronous control of concurrent processes has introduced problems not en- 
countered m computing systems of other types. Some of these problem have been discussed in the literature 
and genera.ly deal with questions of how to use this type of system most effecrvely. 

The problem of scheduling processes, deciding which processc    are handled by which units of the system 
and at v.hat tice, is considered in 11,  12,  13, 14.   The effects on tiie specification of algorithms is investigated 
in 14,  }b.  16,  17 and the effect on program-language compilers in it, 19, 20.   Discussions of interrupt handling, 

memory usage, and other problems peculiar to certain systems may be found in 21. 22, 23. 

This lepott concentrates on the proolem of detecting certain types of errors which may be introduced in 

implementing concurrent computing systems. These will be called implementation errors. A general approach 

applicable to a large class of computers is used, and examples at: presented illustrating the method as utilized 
in macromodular constructions.  Implementation errors have been previously discussed in 34, 25, 24. 



2. A MODEL OF THE TYPE OF COMPUTING SYSTEM TO BE ANALYZED 

Prior .o considering implementation errors, it is necesssry to present a Model of the computing system to 

be analyzed. The model may be used to represent certain computers at either the organizational level or the 

program level.   The basic elements of the model are the sigu. . the process, the signal path, and the memory. 

2.1    SIGNALS, PATHS, PROCESSES, AND MEMORIES 

The definitions of signal «r.d process are of a recursive nature i.e., signals are responsible, among other 
things, for initiating processes; but, processes may be said to create signals. To simplify definitions, the 

signals are classified into two types: data signals and control signals. The signal path, being a medium for 
a signal, will be introduced with the   signals.    The order of the  'lubjects in the following discus&ion will be: 

1. Data signals and memories 
2. Processes which transform data signals 
3. Control signals 
4. Processes in geneial 

2.1.1 DATA Slfi -SAI .S AND MEMORIES 

A data signai is an entity which conveys information by assuming one of a number of possible values. 

It exists in a medium known as a path. The value of the data signal may be recorded by an element known as 

a memory. After the value n( a data signal is recorded by memcry, the signal ceases to exist. The memory 

element has the property that it subsequently creates data signals having the value which the memory last 

recorded. Only one value is retained at any one time. Signals are recreated by a memory whenever they are 

requested by a process. 
The signals whose values may be recorded by a memory are restricted tc certain paths associated with 

the memory.- Similarly, signals may be created only on paths associated with the memory. A memory and 
asrociated paths if. represented schematically in Figure 1. The memory is represented by a rectangle while 

the paths are represented by arrows. The anew is directed into a memory if the memory records the value of a 

signal on the path.   The arrow is directed from the memory if the memory creates signals on that path. 

For the particular systems which will be modeled, it is required that a path support only one data signal 

rt any instant of time. For contrast, a theoretic model not having this restriction is described by Karp and 

Miller27and Reiter"'2»- 

2.1.2 PROCESSES WHICH TRANSFORM DATA SIGNALS 

There are vuious types of processes, one of which functions to transform data signals.   By transform, 

it is meant that some data signals may be created whereas others are destroyed.   When destroying a signal, 
a process  may inspect   its value, which may have an if feet on the subsequent action of the process.   Vhe 
process may create data signals, the value of which depends on data   signals previously inspected.  Thus, 

the ticnsformation spoken of is really a mapping from the set of all possible data signals into itself. 
As with a memory e'ement, a particular process may be allowed to transform only a certain set of signals. 

This set is determined by a set of paths associated with the process.   The paths may connect to memories and 

are represented by arrows, which are the same as those arrows d -cribed for memories in the preceding section. 
The arrow is directed into a process if the process requests data from a memory, inspects, and destroys the data 

signal on that path.   The arrow is directed outward from a process if a data signal may be created on that path. 

It should be mentioned that a process may transform data only intermittently.   When a process is trans- 
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fotming signals, it is said to be arrive. Otherwise, it is inactive. Processes which do tiansform contir.uousiy 

are called continuous processes while those which do not are called discrete processes. The processes tobe 

considered will be implicitly discrete unless specified otherwise. 

2.1.3 CONTROL SIGNALS 

If a process is discrete, i.e , it is active only at certain times, it is necessaiy to provide a ireans 
of rendering it active, or initiating it. This is accomplished by another type of signal, the control signal. 

In contrast to data signals, the control signal simply exists or it does not.   There is no associated value. 
The control signal, unlike the data signal, may initiate a process spontaneously. Once it has done so, it 

is destroyed. When a control signal has this effect on a process, the process is said to accept the signal. 
Also, when an existing process has completed its transformation, it ceases to be active and cteates a control 

signal indicating its completion.  This signal may then be used to initiate other processes. 
As with data signals, only certain control signals  are  associated with any process.    These exist on 

particular paths, and only one control signal may exist on a path at any given time.  The paths are represented 

by arrows which are lighter and thinner than those representing data paths.   The arrow is directed inward if a 

signal on the path initiates the process and outward if the process creates a signal on the path, as in Figure 2. 

The data paths are not always   shown if explicit reference is made to memory elements inside the figure represent- 

ing the process. 

2.1.4 GENERAL PROCESSES 

In the preceding sections, a process was described at functionir.c to transform data upon the acceptance of 
an initiation signal and to return a completion signal at the end of the Uansfo:metion.   Now that control has 
been defined, a more general definit;on of process may be given. 

A process may accept contro. signals on more than one path to it and the existence of signals on these 

paths may affect the process. Also, a process may create more than one control signal, which may initiate 
ether processes. It is not necessary that the signal which initiates the process always be on the some path. 
Control signals accepted by a process are called input control signals. That which ini.,.ites the process is the 
primary input control signal, while others are known as secondary input control signals. Similaily, a single 

control signal is created which indicates that the process no longer exists. This will be called the primary 

output control signal, while others are known as secondary output control signals. The primary output control 

signal is not generally required to be on a particular path. To simplify discussion, if there is more than one 

input control, initiation signal may be used to mean primary input control signal and if there are multiple 

output controls, completion signal may be used to mean primary output control signal. In •» similar manner, 

data signals wil! be described as input or output with respect to a process, depending on whether they are 
destroyed or created by that process. 

2.1.5 SUMMARY OF ELEMENTS IN THE MODEL AND AN EXAMPLE 

A summary of the concepts introdu.:d in sections 2.1.1 through 2.1.4 is now presented. The elements of 
the model are: 

I.  Signals - are accepted and created by processes and memories, and provide for intercommunication. 
A.   Data signals — convey values 

1. Input data signals - are requested, inspected, and destroyed by processes and their 
values are recorded by memr.ics. 

2. Output data signals -■ are creited by processes or memories. 
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B.   Control signals — control processes and have only a single value. 
1. Couirol input signals — are accepted by processes. 

a.   Primary control input or initiation signals — cause the activation of a i,iocess. 
b.   Secondary control input signals — control processes but do not initiate them. 

2. Control output signals — are created by processes. 

a. Primary control output or completion signals — indicate that a process is m 
ionger active. 

b. Secondary control output signals — are produced by a process prior to com- 
pletion. 

II.   Paths — ate media in which signals exist. 
A. Control paths — may sustain control signals only. 

B. Data paths — may sustain data signals only. 

01.    Processes — have initiation and completion signals and the ability to accept and create 

control and data signals. 

IV.  Memories — record the most current value of a certain set of data signals and recreate signals 

having this value. 

An  example of a general process is shown in Figure 3.    The timing diagram indicates the presence of 
signals on various paths.    Those which are due to the process ate indicated by solid lines, while those from 
some external source are   indicated by dashed lines.    In this example, the initiation signal will always be on 
path a and the completion signal will be on either path d or e, by asrumption.   A secondary control input may be 

on either path b or c, but not both.   T^e process may be described as follows;   After initiation by the signal on 

path a, the process waits foi a signal on b or c.   If a signal occurs on b, the data signals A and B are compared. 

If A and ß have the same value, this value is giver, to a signal created on path C and a completion signal is 

created on d.   If the values if A and B are different, a signal is created on C with a predetermined value and a 

completion signal is created on d.    If a control signal appears on c instead of b, the date signals on A and S 

are destroyed and ignored. The predetermined value is assigned tc a signal on C and the completion repotted on e. 

The  timing diagram in Figure 3 shows two example cases.    In the first, an input appears on b and the 

signals on A and B have  the same value, thus  the completion is reported on d.  In the second, an input appears 
on c, thus completion is reported one. 

2.2   PROCESS NETWORKS 

Networks of processes will now be discussed. A network of processes is a set of processes and memories 
interconnected by data and control signal paths. First, asynchronous and synchronous sequential networks 
will be compared. Sequential means that only one process is active at any one time and thus, the processes 

occur in a sequence, one aUer another. Following the discussion of sequential processes, concurrent processes 

will be investigated and iheir advantages described. In concunent process networks, more than one process 

may be active at any time. The terms synchronous and asynchronous will be applied to concurrent networks 
also, which leads to the type of network with which this report is mainly concerned, asynchronous concurrent 
process networks. 
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2.2.1   SEQUENTIAL PROCESS NETWORKS 

2.2.1.1 SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL PROCESSES 

Sequential processes occur one after another in some prescribed order.   Sequential processes may be or 

two types:    synchronous and asynchronous.   Synchronous processes are initiated at definite instances in time 

by control signals from a clock.    The completion signal cf a synchronously controlled process is of no conse- 

quence,  since  the  initiation proceeds  strictly by the   clock, regardless of whether the previous process is 

complete or not.   Consequently, the initiation signals produced by the clock must be spaced far enough apart to 

allow   the preceding process to be completed.  If the period of activity of a process is variable, then the clock 

interval must be at least as large as the maximum period.   If the variation in C.e length of activity of a process 

is great, and the length tends to be much less than the maximum a large percentage of the time, thtn there is a 
considerable length of time where the system is idle.   Asynchronous sequencing can be introduced to minimize 

this idle time. 
In asynchronous sequencing, the completion signal of one process is used to initiate ihe next process. 

The sequencing continues in a chain-like manner, and there is no idle time between completion of one process 

and  initiation of another. 

2.2.1.2 CONCEPTS ENCOUNTERED IN SEQUENTIAL ASYNCHHONOUi« NETWORKS 

Introduced now will be some terms which describe asynchronous sequential prccesses and networks. 

Any process may consist of subprocesses which, themselves are processes. The subprocesses communicate 

among themselves with the same types of signals and also accept and create signals outside of the process. 

A process is said to be separable if its only control paths are a single initiation path and a it ingle completion 

path. Thus, the effect of a separable process is strictly transformation of data. A separable process will be 

represented by a rectangle. 
A null process is a separable process which has no effect on data, A null process is identical to a 

single control path. An asynchronous sequential network may simply be a chain of separable processes which 

is also a separable pre :eii. H may also be more complex if decisions and merges are introduced as described 
below. 

2.2.1.3 DECISION AND MERGE PROCESSES 

In networks  with synchronous   control, certain values of data may cause certain processes not to be 

initiated.   Selective initiation is accomplished in asynchronous networks by a special process, the decision. 
A decision  is defined as a process with a  single  control input path but multiple control output paths. 

An output  control  signal  is produced or only one of these paths.    The path selected depends on data input 

signals.   Th-is, the decision process decides on which path the completion signal » ill be created.   A decision 
with n output paths will be termed an n-way decision. 

The decision is usually represented on a conventional flowchart as a diamond  shape with a specifica- 
tion of »he way in which a choice is made indicated inside the diamond and on the control output paths.   The 
data input paths  are  usually implicit.    In analyses where tha data is not of concern, a decision may simply be 

represented as a circle containing the letter D.    See Figure 4 for both of these represemations.   The intro- 

duction of  decisions  produces  conlroi  signals  which will  exist on only  one of a number of possible paths 
To recombine these possibilities into a signal on only one path, the merge element is required. 

A process is sa'd to be an r.-way merge if it has n input signal paths and a single output signal path, 
and   has the property of creating its completion signal upon acceptance of an imlianon signal on any control 
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input. Th<: merge is represented by a circle containing an M, as in Figure 5. Merging is shown on a conventional 

flowchart as simply the junction of two paths. 

2.2.2 AN EXAMPLE OF ASYNCHRONOUS SEQUENTIAL   CONTROL 

Figure 6   shows   a separable   process  which computes n!  from a -nemory elemsnt which has recorded 
n(>n and puts  the result into a second memory element.    In Figure 7, subprocesses are b.iown which achieve 

the result using elementary processes which assign, add, and multiply the values of data signals to produce 

an output  data  signal.    The numeric value 1   is  assumed to be built into the processes requiring it.   Upon 

accepting the initiation signal, the separable process p'oceeds autonomously until the computation is complete 

at which time the result will be recorded and the completion signal produced. 

2.2.3 CONCURRENT PROCESS NETWORKS 

Introduced here is the concept of concurrent processes, in which the restriction of a strict sequence, as 

in sequential process networks is removed. The synchronous mode applies also to cencunent processes. In 

fack, the processes at the logic level in conventional computers are synchronous concurrent. However, the 
problem, at the program or organizational level in requiring that piocesses be synchronous is Uis same as for 
the sequential case; namely, that there is generally a large amount of idle time. 

In considering ways in which processes may concur, certain restrictions must be observed. First, there 

must be a definite ordering between certain pairs of processes, i.e., one must occur before the other. Second, 
certain sets of processes may not occur at the same time if the data signals of one process are required for use 

by the second process. This is due to the required use of the input signals to a second process. Examples 
of this may be found in Figure 7, the n-factorial example. 

The ordering between two processes may be expressed as a binary relation, <. If A and B are two 

processes, then A < B means A must preceed B. A relation of this sort is known as a predeceni relation.30 

If neither A < B nor B < A, then A and B may concur, which will be written AsB. 

Two processes that will be used specifically for »he  control of concunent processes are now introduced. 

These are the branch and the rendezvous.   Suppose there are three separable processes T, U, and V which must 

occur with  «He following restrictions.    T < V and U < V.    T and U may be allowed to concur, but both must 

precede V.    To do this, a process known as an n-way branch is introduced.  It involves control signals only, 
with one control input and n control outputs.   When the initiativ n signal is accepted, output control signals are 
created on a/1 n of the output cantrol paths.    Using a 'wo-way branch v.ith connections from the output control 
paths to the input control paths of T and U. en initiation sigm1 applied at the input of the bianch causes the 
concurrent activation of both T and U. 

It is  required  that  both T and U be  complete  befort initiating V and for this puipose the rendezvous 

process  is  introduced.    A process is an n-way rendezvous if it has n control inputs, a single control output, 

and no data paths.    An initiation signal may occur on any one of the input paths, but no completion signal is 
given until all signals have been accepted on all input paths.   By connecting the completion paths of T and U 
to a 2-wBy rendezvous, the rendezvous does not report completion until both T and U are complete. 

A schematic of this entire network is presented in Figure 8. The branch and rendezvous are represented 

by circles with the letters B and R, respectively. The examples demonstrated so far have been simple. Even 

with only four elements; branch, decision, rendezvous, and merge, together with separable processes, the 

networks which may be constructed can be quite complex. This will be supported in Chapter Four, whsre it is 
shown that errors may be inadvertently introduced when implementing these concurrent process networks, and 
automatic means of detecting them are  investigated. 
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INITIATION 

MEMORY FOR n 

MEMORY FOR nl 

t COMPLETION 

FIGURE 6. SEPARABLE PROCESS WHICH COMPUTES n-FACTORIAL 
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INITIrtTION 

H COMPLETION 

FIGURE 7. POSSIBLE SUBPROCESSES FOR FIGURE 6 
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CONTROL 
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B )  2-WAY BRANCH 

R )  2-WAY RENDEZVOUS 

FIGURE 8. CONCURRENT ASYNCHRONOUS CONTROL OF PROCESSES 

T, U, AND V WITH THE PRECEDENCE RELATION T< V, U< V 
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Z.3     APPLICATION   TO   COMPUTING  SYSTEMS 

ll has been stated that the model presented applies to computers at both the organizational level and the 

program level.   The validity of ;his statement will now be leTionstiated. 

2.3.1 APPLICATIC AT THE ORGANIZATIONAL LEVEL 

The  •erms branch, rendezvous, and merge are from the  description of macromodular systems by Clark, 

et al."'32,3' The model  was strongly influenced in other ways by macromodular systems, since th~se systems 

present what is probably the first major steps i.i separating the functions of processes at the organizational 

level from the engineering details of these processes. 

A macromodular syo'em has electronic units known as macr^modules.    These correspond to the processes 
in the model.    There are alt>o data cables and control cables corresponding to the sigral paths of the model. 

"oru.ol and data signals sre electrical signals on the cables. 
A few specific types of macromcdules "vill now be mentioned. Tb-; memory modules are of two forms: 

registers, constructed of flip-flops, and core memory. Associated with registers are several function units 
which perform logical, arithmetic, and shift operations. There are also gates which transfer data between 

registers.   Ali jf these processes are separable. 
Affecting control are branch, rendezvous, and merge units, the function of which is identical to the 

corresponding two-way units of the model. The decision process appears in two forms: a de'.ec'^r which 

compares signals from two registers under a mask signal from a thiro register and creates a control signal on 

one of two control output paths, depending on whether or not the comparands are equal under the mask; and a 

decoder, which decodes three bits of data signal to select one of eight possible control output paths. 

Since the control cables for any process may be wired into only one sequence, call urrts are provided. 

Call units effectively allow a process to be used as a subproccss within several different processes. 

2.3.2 APPLICATION AT THE PROGRAM LEVEL 

Several techniques have been proposed for the inclusion of explicit concurrent control into procedure 

oriented program languages.33'41 This area is usually found in the available literature classified by terms such 

as parallel programming, multiprocessing, and multiprogramming. The control of processes asynchronously at 

this level is accomplished in various ways, the discussion of which is not pertinent here. Th*^ general scheme 
may be described as two or more processing ur'ts executing instnivtions simultaneously and communicating via 
a common core memory.   Examples of ex'sting and proposed machines for this purpose may be found in 42'43«44. 

The  languages utilized are  similar to   Fortran or Algol,  with the   addition of several  statements which 

serve to sf. ;cify concurrency.    The control signals in the model correspond to the sequencing of instructions 
in these languages and the flow of data corresponds to assigning    values    to variables.   One type of instruction 

introduced is analogous to the    branch.        This  is  the FORK instruction, by which a label is  given instructing 

the computer to begin a concurrent sequence at that statement with the label.   The statement corresponding to 

the rendezvous is   written as JOIN, indicating that the   control of the sequence containing  the join statements 

referencing a particular label will meet at a statement with that label.    The corresponding machine language 
instructions to accomplish this have also been described in the referenced litcratLre.    A less flexible method, 

which is equivalent to requiring that all concurrent process existing at once be controlled by the same brancli- 

rendezvous   pair,   has  been  suggested  using  the  statements  DO TOGETHER,  AND and PARALLHL FOR. 

This   specifies   that certain  sequences  are  to  be  executed  concurrently,  e.g.,  the DO-gwup of Fortran or the 

block in Algol.    The reason these  schemes are  less flexible is   there can be no transfer out of the sequences 
or among them. 
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A third   and  mote flexible  way has   also been p.-oposed and has been inchded in the definition of a 

language which is currently being implemented/1   This technique may be described as  using certain special 

data signals  which may be called flag or semaphore quantities, or events.    Briefly, flag quantities may be 

tested for a particular value and depending on that value, the completion of the testing process may be reported 

or it  may be  delayed until  the flag does  assume 'hat pariicular valur.    This, coupled with the ability to 

terminate conuol (i.e., destroy it without creating any other control signals), may be used to function as the 

rendezvou» or in seveia! other ways which are generally unachievable with only the branch,rendezvous, decision, 

and merge elements. 
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3. GRARH THEORETIC CONCEPTS 

In discussing networks of processes, it is desirable to have a concise language cvailable  for describing 

them.     Since  an automatic analysis of networks is  sought,  it is «iso desirable to have a convenient way of 

representing such networks to a computer.    The branch cf mathematics known as g'aph-theory is well-suited to 

this purpose. 
Thorough discussions on the theoretic aspects with some applications are given in Berge    , Ore    , and 

Harary, et al.    .    Applications of graph theory to processes in digital computers may be found in     ■    •    •    • 

3.1   DEFINITIONS 

The definition of a graph, as presented here, is similar to Hatary's definition of a net.   \ graph, P, is 

a system (N, A, f, g) where 
N is a finite set of elements called nodes 

A is a finite set of elements called arcs 

f is a mapping of A .nto Nv|<^ | 

g is a mapping of A into Nv|ö ! 

<f>is a special element distinct from any element of N. 

A graph may be schematically represented by d. diagram as shown in Figure 9 which immediately suggests its 

usefulness  in describing the interconnection of processes.    The arrows represent the   arcs and the circles 
represen* the nodes.   The functions f and g are defined as follows: 

Let c be an arc, n be a node. Then 
f(c) > n if and only if the head of c connects to n. 

c is then said to be an input arc with respect to n. 

g(c) ■ n if and only if the tail of c connects to n. 
c is then said to be an output arc with respect to n. 

If either f(c) - r or g(c) - n, then c is said to be 
incident with n. 

The functions f and g for the graph in Figure 9 are defined below the graph. 
If n ana m are two nodes and c is an ire   such that n =■ g(c) and m > f(c), then n is said to conned to m 

while ro  is  said to connect from n.    In either case, n  and  m are said to beconnected.  The arc, c, may be 

represented by an ordered pair of nodes (m,n). 

The out-degree of a node, n, is   the number of arcs, c, for which f(c) - n.   The in-degree of a n is the 
number of arcs, d, for which g(d) - n. 

If b and c are nodes, there is said to exist a semipath between b and c if one of the following holds: 

1.   b and c are connected 
or   2.   b is connected with a node d and there is a 

semipath between d and c. 
If b luid c are nodes, then thee is sa.d to exist a path from b ro c if one of »he following holds: 

1.   b connects to c 

or    2.   b is connected to a node d and there is a 
path from d to c. 

In this case c is said to be reachable from b, or b reaches c. 

Path should not be confused with signal path from Chapter 2. 
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N = (1, 2, 3, 4) 

A = (a, b, c, d, e, f, g, h, i) 

g{b) = g(c) = g(d) =   1 

g(f) = g{i) = 2 

g(g) = 3 

g(e) = g(h) = 4 

g(a) = 0.   THE : SPEC IAL ELEMENT 

f(a) -- 1 

f(b) = f(i)  = 2 

f(d) = f(e)  = 3 

f(c) = f(f)  = 4 

f(g) = f(n)  =■■ 0 

FIGURE 3. EXAMPLE OF A GRAPH 
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A graph is said to be weakly connected if between any two nodes there exists a semipat'n. The graph of 
Figure 9 ig weakly nnect^d Similarly, a graph is said to be strongly conrecJed if between any two nodes 
there exists a path. Thus, a strongly connected graph is weakly connected but the converse does .lot necessarily 
held.  In cases where the converse does not hold, the graph is said to be strictly weakly connected. 

A subgraph of a graph P - (N, A, f, g) is a graph, ^ - (N', A', i", gO, where N'IS a subset of N and A' 

it the set of arcs incidcit with the nodes N'. Thus f and g'are restrictions of the mapping f to A" where 

c t A" if and only ir f(c) t N' and g to A'" where A ( A'" if and only if g(d) < N'. 
An arc of a subgraph is said to be input with respect to that subgraph if it is input to some node in that 

subgraph but is not output to any node in that subgraph.   An arc of a subgraph is said to output with respect to 

that subgraph if it output to some node in that subgraph but is not input to any node in the subgraph. 

A subgraph is defined ia be separable if it has only one input arc and one output arc. 

A subgraph is said to be minimal of a property L if the removal of any connected node results in a subgraph 

which docs not have p/operty L. A subgraph is said to be maximal of a i,roperty L   if the addition of any connected 

node results in a subgraph which does not have property L.   Thus a maximal strongly connected subgraph is one 
in which the property of strong-connectedness is lost when any node connected to the subgraph is added. 

A node is said to be self-connected if it connects to itself. 

A set of arcs (a    a.-a ) are said to be narallel if f(a,) - f(a,) - •■— f(a ) and g(a,) - g(a,) - ••- g(a ). 
\      2        n 1 2 i» "     1 "    2 "n 

Examples ar^ shown in Figures 10 through 13. 

3.2   MATRIC REPRESENTATION 

Maine notation has been shown to be a convenient representation for graphs, especially if the matrices 

are to be manipulated by computer. 

The mappings f and g may be represented by allowing each ccl     1 of a matrix to correspond to a node and 

and each  row to an arc, and letting the (i,j)th entry assume the val' e i if the arc   corresponding to row i 
maps ipto the node which corresponds to column j.   Denote by F and G the matrices for the mappings f and g. 
F  and  G will  be respectively  called the input and output matrices.    The mitiices F and G for f and g of 

Figure 9 ire shown in Figure 14. 

Other useful matrices may be derived from the input and output matrices. The first, known as the 
arc-node matrix. A, can be used to represent both F and G provided that there is no arc wnich is self-connected. 
By definition A « F — G. If no nodes are self connected, there will He no entries in F and G which are both 1, 

but if there are nodes which are self connected, there will be such entries. Identical entries result in the 
cortespording entry of A being 0 which is indistinguishable from no connections at all to that particular node. 
If such entries do not occur, F and G can be obtained from A. Figure 15 shows the arc-node matrix for the 
graph in Figure 9.   Notice the (i,2) entry. 

An interesting algorithm is presented by Wann      using the arc-node matrix. A, in testing a subgraph for 

separability.    It may be stated as follows:    A subgraph consisting of a particular set of nodes is ceparable if 
and only if the  sum of the  corresponding columns of the arc-node matrix contains a single +! and a single -1 
entry. 

Two other matiices which may a JO be computed from F and G are as follows: 

The node-node or connection matrix, C -  GF (where t indicates transpose of) 

defined by C      - the number of arcs input to node j and output from node i. 

The arc-arc matrix, D - F^G, defined by D|   - 1 if arc i is input to a node 

from which arc j is output, and 0 otherwise. 



-21- 

FIGURE 10. A STRONGLY 
CONNECTED GRAPH FIGURE n. A SEPARABLE 

SUBGRAPH OF THE GRAPH 
IN FIGURE 10 

FIGURE 12. THE MAXIMAL 
STRONGLY CONNECTED SUBGRAPH 
OF THE GRAPH OF FIGURE 11 

FIGURE 13.  A 
MINIMAL STRONGLY 
CONNECTED SUBGRAPH 
OF THE GRAPH OF 
FIGURE 12 
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1 2 3 4 

a 'l 0 0 0 

b 0 1 0 0 

c Q 0 0 1 

d 0 0 1 0 

F = e 0 0 1 0 

f 0 0 0 1 

9 0 0 0 0 

h 0 0 0 0 

i 0 1 0 0 

a 

1 

0 

2 

0 

3 

0 

4 

0 

b 1 0 0 0 

c 1 0 0 0 

d 1 0 0 0 

G = e 0 0 0 1 

f 0 1 0 0 

g 0 0 1 0 

h 0 0 0 1 

1 0 1 0 0__ 

Figure 14. Input and output matrices for the graph of Figure 9. 
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2 3 4 

a 0 0 0 

b -1 1 0 0 

c -] 0 0 1 

d -1 0 1 0 

A = e 0 0 1 -1 

f 0 -1 0 1 

9 0 0 -1 0 

h ü 0 0 -1 

i 0 0 0 0 

Figure 15. Arc-node matrix for the graph of Figure 9. 
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Anothet matrix, the reachability matrix, R is defined as R    - 1   if there is a  lath from node i to node j, 
and 0 otherwise.   The reachability matrix may be computed from the connection matrix as follows: 

C , the first power of C, gives, for any two nodes, the number of paths ?  >m one to 
the other of length I.  (The length of a path between two nodes being the number of 
arcs traversed in tracing from one node to the other.)   It can be shown that Cn, the 
nth po'^er cf C, ^ives for any two nodes, the number of paths dorn one to the other 
of length n.   Define a function, W. as W(x) - 0 otherwise.   Then (W(CB)   . 1  if 
there is any path from i to j of length n, and 0 otherwise. 

ThusWH'C) V W(C >, where V is the Boolean sum, gives all paths of length 1 or 2, 

Similarly, V   W<C ) gives paths of length 1, or 2, or . ., or n.  For any finite 

graph, all paths which are greater than a certain length, say p, necessarily 

include a loop, tnus the Boolean sum V   wtC*) will be identical to V    WCC1) 

for any nip.  The point here being that to determine the reachability matrix, 

only a finite number of matrices need be summed. 
An equivalent method for computing the reachability matrix, which is computationally more efficient, is given 

in Other useful algorithms, such as   one for the determination of strongly-connected subgraphs from the 

reachability matrix, are given  by Ramamoorthy.        The   connection matrix for the graph of Figure 9, and the 

construction of the reachability matrix are exhibited in Figure 16. 

In succeeding sections, process networks will be represented by graphs, and graph-theoretic terminology 

will be employed in their descriptions.    The analysis will be concerned mainly w th control.   Co    equently, 

data paths will not be shown.  The nodfs of graphs will represent non-sej arable processc?,particularly branches, 
merges, decisions, and rendezvous.   The arcs will represent control signal paths.   Arcs will also be used to 
represent separable processes, since a separable process has only one input and one output control path.  The 
terms graph and network will be used interchangeably.   The description of an arc as being active medns that a 
signal exists on the corresponding control path. 
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C = 

C2 = 

Cn = 

R = 

Ü 1 1 0 

0 1 0 1 

0 0 0 0 

0 0 1 0 

0 1 1 1 

0 1 1 1 

0 0 0 0 

0 G Ü 0 

~0 1 1 1 

0 1 1 1 

Q 0 0 0 

0 0 0 0 

C V c2 = 

~0 1 1 1 

0 1 ] 1 

0 0 0 0 

0 0 1 0 

"I 

= W(C2) 

J 

WCC1) n^2 

Figure 16. The connection and reachability matrices for the graph 

of Figure 9. 
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4. ERRORS IN NETWORKS OF CONCURRENT 

PROCESSES WITH ASYNCHRONOUS CONTROL      ^ 

4.1 GFNEBAL TYPES OF ERRORS 

Proceäs networks which are employed in the solutions of computational problems are gencraüy separable. 

The solution begins with the introduction of an initiatioti signal to the separable proc :ss.   The data, initiaüy 

ip memory elements, is  inspected by the process and data produced indicating the results.   At the completion 

of the solution steps, a single completion signal is produced. 

Several typ«s -»f errors may occur in such a separable process network.   The genera! characteristic of an 
error is that the desired result is not produced 

Errors may be clastified into the vays in which they ."e produced: 
1. A process physically malfunctions 
2. The solution steps of an algorithm arc incorrectly specified 
3. Concurrent control is incorrectly specified 

The first of theee is  of sio concern here.    "'Tie second will be called an algorithm error, but detection of this 
t^'pe of error will not be considered because of its general infea^ibility.   The third will be called an implemen- 

tation error because  i! is  introducer! by implementation of an algorithm as a concurrent process network. 

The  following properties are postulated as being desirable /or separable processes, the lack of them 

being an error: 
1. P'.nite duration — After initiation, a separable process 

must complete within a finite period of time. 

2. Non-regeneration — Once initiated, a separable process 
<«ill create only one output control signal. 

3. Determinacy - A separable rrjccss, for any activatior, 
will always produce the same output data if the input 
data is the ""«se. 

Sequential networks are always nun-t.generative and detrnninate, but may not be of unite duration if the 

control of iteration is specified iocc.:jcUy. In networks of concurrent processes, all of these puperties may be 
lacking due to improper specification of concurrent control. As a claritving point, it might be mentioned thit 
such errors are dynamic. For some data, the network may function normal'v while for ether data it may malfunction 
in different ways. A network will be said to have certain typet of errors if it is possibl? for 'he n.^work to 

malfunction in certein ways. The m*.ans by which each of these etrors are introdi' id :nto iif ..vorks is now 
investigated. 

4.1.1    INFINITE DURAT!ON 

The name   given  t^ the error in process     networks   which do not complete  in a finite length   of time 

is infinite duration.    It was mentioned that infinite duration may be due  t.   .o error in an algorithm for graphs 

such as in Figure .'V. It is te-emphasized that strongly connected subgraphs, as in ^ig ce 18, do not necessarily 

imply an  enor,  hat that data must be con^idei-H before determining  if the   network  is in error.   Again it is 
mentioned that such algorithm errors are infeariule to detect. 

Infinite duiation caused by intro'.uclion of concurrent control is generally the result of processes internal 

to the network which arc not able to report completion.   This is the case in a network in which only one input 
to a it. dezvous eve-- becomes active, as in Figure 19. 



-27- 

-H  M 

X f  0 

X = 0 

i —^ X 

X f 0 

X = 0 

FIGURE 17. A NETWORK WITH AN INFINITE DURATION DUE TO AN ALGORITHM 

L ibURE 18. NETWORKS WHICH MAY HAVE INFINITE DURATION 

ERRORS BECAUSE OF INCORRECT ALGORITHM 



-28- 

FI6URE 19. NETWORKS HAVING INHNITE DURATION BECAUSE OF 

INCORRECT USE OF CONCURRENT-CONTRQL ELEMENTS 

FIGURE 20. REGENERATION CAUSED BY A BRANCH WITHIN A 

STRONGLY CONNECTED SUBGRAPH 
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4.1,2   REGENERATION 

Netwo/ks which arc regenerative may produce multiple output control signals after being initiated only 

once.   Thi-, may be caused in two ways.   The first is by allowing a branch to produce an output from a strongly 

connected  subgraph.    This   is show.i in Figure 20.    It should be mentioned that not every strongly connected 

subgraph with a branch implies an error. 

Regeneration  is  also produced by what will be called a hazard, due to  its  similarity to the hazard in 

switching networks (cf. McCluskey.    )    The hazard is found by consideration of the merge process.   Suppose 

there is a 2-way merge with input arcs, a and b, and output arc c.   The arc t is the output arc of a separable 

process, P,  as   shown  .n Figure  21.    Suppose  it  is  possible that a and D may have signals sinv'taneously. 

Because of this possibility, one   of two phenomena may occur     (1) If a and b have signals whici. overlap in 

time, the merge receives two initiation signals and the result is unpredictable, since, by definition, a merge is 

initiated  by a signal on only one of its  input arcs.    (2) If a and h do not overlap, the process P may rtport 

completion twice. 

in summary, the possibility of more than one input signal to a merge may cause either of these problems, 

and will be identified as a hazard. The hazard is also responsible for producing indeterminacy, as wilt be 

seen in the following section. 

4.1.3   INDETERMINACY 

A r.ttwork is said to be indeterminate if different output data are produced in two or more different activa- 

tions of the  network for the same input data.   Three ways in which a network may be indeterminate are'   (1) by 

the failure to observe constraints on processes,    (2) by the process reporting completio1- with some residual 

control signals stil! present within the  network, and (3) by the failure to observe precedence requirements in 

designing the   control. 

Failure to observe constraints on processes occurs when, as in the previous discussion of hazards, a 

process is initiated twice. Similarly, two consecutive signals to the same input of a rendezvous is a violation 

of the  constraints for this process. 

It is possible for a process to report completion only once but, for some control to remain active within 

the network. This occurs when a rendezvous has accepted a single control input and the network iuntaining 

the rendezvous has reported completion. When the separable process i« activated a second time, a control 

signal to the other input will cause the rendezvous to report completion. Thus, even though the data may be 

the same, the results could be different for two successive activations. Networks which may report completion 

while rendezvous remain active are said to possess residual control. Examples of residual control are showi 

in Figure 22. 

Failure to observe precedence relations, as mentioned in section 2.2.3, may cause erroneous output data, 

even though the errors in control previously iiscussed are not piesent. Since no assumptions are made aSnut 

relative times of processes in asynchronous control networks, a possible vtiation in time of processes which 

are active concurrently may cause varying results for identical data. For example, consider two processes, 

/4 and 6', where .4<ß is a requirement. If the network is implementeii as in Figure 23, where C and D represent 

other processes unrelated to A oi B, an assumption that C will last longer than A may not be supported, and the 

outpu; data from A which is required for input to B may not have been set when B requires it. Thus, B may 

reference the data which was previously in memory e.   nents, and erroneous results produced. 

The error exemplified •n the preceding paragraph may be detected by observing the possibility of A and S 

concuning   whereas   it is required that A precede S.    A rorrect implemen;ation appears in Figure 24.   An error 
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FIGURE 21. POSSIBLE REGENERATION CAUSED BY A HAZARD 
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FIGURE 22.    NETWORKS WITH RESIDUAL  CONTROL 
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FIGURE 23. INCORRECT IMPLEMENfATION FOR A < B 
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FICURE 24. CORRECTION OF THE ERROR IN FIGURE 23 
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of this kind will be called a race because the time duration of the processes affect ths results. The insertion 

of processes to eliminate races is called interlocking. This example has presented a very simple case of 

interlocking. More complex interlock schemes may be devised to allow more freedom and still meet precedence 

requirements.  These are discussed by Littlefield. 

4.1.4  SUMMARY OF IMPLEMENTATION ERRORS 

1. Infinite duration — The process does not complete within a finite time after 

initiation.  Infinite duration is produced by the impossibility of completion 

of an active rendezvous. 
2. Regeneration —  The process produces multiple output control signals after 

a single initiation.  Regeneration iz caused by: 
a) Certain strongly connected networks with branches connecting to 

output arcs 

b) Hazards 

3. /ndeterminacy — The process produces enatic results.   Indeterminacy is 
produced by; 

a) Hazards 
b) Residual control 
c) Races 

In considering detection of errors in networks, it is helpful to regroup the sources of errors into those 

categories which are similar. The regrouping is shown below with short names provided for simplicity of 

discussion. 
1. Incomplete rendezvous — the only source of infinite duration, and the source 

of residual control producing indeterminacy 

2. Reentered branch - the branch in certain strongly connected subgraphs which 

produces regeneration 
3. Hazard — the source of some regeneration and indetemiinate cases 
4. Races — the source of indeterminacy by violation of precedence requirements 

For comparison, additional exciiiples of error and error-free cases are shown in Figures 25 and 26. It 

should be noted that these errors display the imcomnlete rendezvous, reentered branch, and haz.'id only. The 

race may appear in any network with concurrent processes. It should also be noted that no assumption is made 
about the dependency of various decision elements upon data. 

4.2   DETECTION OF IMPLEMENTATION ERRORS 

One method for detecting errors is to construct the network and perform a number of trial activations. 

Construct implies connecting the electronic units and making the necessary connections   if the organizational 
level is being considered.   Depending upon the flexibility of components, this task may be quite time consuming. 
At  the  program   level, construe» means writing the program and putting it into fom for input io tho computer 
system.     The trial  implementation has   the advantage that algorithm errors as well as impletnentation errors 

may be checked.   '' has the following disadvantages: 
1. Construction of the network is usually a lengthy task at the organizational 

level. 

2. It is difficult, if not impossible, to devise trial data which tests the 

network with sufficient thoroughness. 
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FIGURE 25. ERROR-FREE GRAPHS 
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FIGURE 26. EXAMPLES OF GRAPHS WITH ERRORS 
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3. Errrirs due to races may not occur at a!i during a lest but may occur during 

some subsequent use of the network. 

4. The amount of time required to perform a sufl -lent number of tests may be 

prohibitive. 

Some  c mment may be made as to what a sufficient number of tests implies.   Regardless of how many 

trial  activations   are  performed with consistent results,  there  is   always  a possibility of a race.   Thus, a 

sufficient number impiier that races are not being considered. 

The term combination is u^ed to indicate a particular set of arcs on which control signals appear during 

the activation of a separable network.    It may be observed that, in  an error-free network, there may be several 

unique combinations, the number of which depends upon the number of decisions and their degree.   The maximum 

number of rombmations is    n    where d,   is the out-degree of the ilh decision and n is the number of decisions. 

For instance, a graph is shown in Figure 27 with two 2-way decisions.    Four combinations are shown in the 

accompany-ng diagrams. Figure 28 depicts a graph with two decisions and less than the maximum number of 

combinations.    A lower bound on the number of combinations for a g'ven number of decisions depends on the 

manner in which the nodes are connected.    The configuration yielding the fewest combinations is the tree- 

structure,  as  shown  in  Figure 29.    The number of combinations  for such a tree is a complex function of the 

number of decisions and their out-degr^s,  cf.  Iverson. For a graph composed of n 2-way decisions, the 

bounds are n+ 1 and ^n. 

Another point that might be mentioned concerning combinations is that in graphs with strongly connected 

subgraphs, a fixed result for each decision does not always produce an output control, but if an alternate is 

provided for the second encounter of a decision, it may be possible to praduce an output control,   in this case, 

combinations  are indicated ^s in Figure 30, where the number at the output arcs of the decision indicatf 'he 

order in which the outputs are used.   A second example of this is shown in Figure 31. 

The point demonstrated by the above is that for networks of considerable complexity, the number of 

combinations may be very large. A practical example is the control network for a floating-point arithmetic unit 

as shown in Figure 32. 

In view of the disadvantage of trial impiemen.lation of networks, a method i^ desired which will test a 

network and which eliminates these disadvantages. A method which is suitable for implementation on a computer 

is also desirable.   Four areas of approach have been investigated in this research, 

1. Simulation 

a. Trial data test 

b. Monte Carlo test 

c. Exhaustive test 

2. Topological analysis 

3. Symbolic analysis using algebraic expressions 

4. State transitions 

These methods are described in the following sections. 

4.2.1    SIMULATION 

It is possible to simulate concurrent process networks on sequential digital computers anvl detect certain 

errors.     The  simulation of sequential  processes  is   simple  to  accomplish  since  all  that need be done is to 

implement a program to perform the desired data operations.   The flow of cntrol is the same as the execution 

of program steps.    While decisions and merges are found in conventional programs for sequential computers. 
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FIGURE L9. A 3-DECISION GRAPH WITH FOUR CO FOUR COMBINATIONS 
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ihc branch and rendezvous are not. To simulatt branch and rendezvous, certain records must be kept, n bits 

are associated with each n-wgy branch or rendezvous. Each bit corresponds to a particular output arc for a 

branch or input arc for a rendezvous. All bits are initially zero. When a branch unit is encountered during 

simulation, one arc is selected on which simulated control is to proceed. The bus corresponding to the other 

arcs of the branch are set to !. When a particular input to a rendezvous is encountered, the bit conesponding 

to lha input is set to 1. Next, ail of the other bits of the same rendezvous are compared. If all are 1, then 

all inputs to the rendezvous have been accepted and the bits are reset to zero, the control proceeding to the 

output of the rendezvous. If all bits ate not 1, then control cannot proceed to ihe output. Instead, the bits of 

branches are checked until one is found which is a 1F indicating that control may proceed on the corresponding 
arc.   The bit is then reset to a 0. 

When a simulated signal is present on the input to a merge, the control simpi^ proceeds to the output. 
Similarly, after the output arc is selected by a decision, control proceeds to that arc. 

Error checking in simulation will now be described. Some races may be delected by varying »he order in 

which output arcs are chosen at a branch, but a test of all of these ways for every combination is infeasible. 

All hazards are not checked, because this too would require stepping the control through the ".etwork in 

every possible way for each combiiiation.   Reentered branches may be found by examining the bits corresponding 

to  the   branch  or  rendezvous when  encountered by control  and  this may indicate  a hazard or regeneration 

Hazards  cannot be  located by checking for reentered merges or decisions because this reentry is perfectly 

legitimate,as in  strongly connected subgraphs.   Thus, some hazards will escape detection. 

Two types of errors may be checked when simulated control proceeds to the output arc of the graph in 

question At this time, all branch bits may be checked, and if any are 1, active control arcs are implied. This 

could ultimately produce fegsrr.eration or other errors The existence of incomplete rendezvous is determined 
by examining the bits of each rendezvous for the value 1. 

Three methods were investigated in the a« *( simulation: the trial data test, the Monte Carlo test and 
and the exhaustive test.   The distinction between these is presented in sections 4.2.1.1 through 4.2.2.3. 

4.2.1.1 SIMULATION WITH TRIAL DATA 

This method attempts to provide data which would be typical for usage by the physical network for problem 

solution.     The method has the   advantage  that it  also provides  checking for errors  in algorithms, but it is 

generally unlikely that all possible combinations will be tested, especially with a large number of decisions 
in the graph. 

4.2.1.2 MONTE CARLO SIMULATION 

Application of this technique, suggested by Ellis,     simulates :ontrol only.   A random number is generated 

each time a decision is   encountered to determine which output au is to be followed in the simulation.  The 

Monte Carlo technique has the disadvantage that there is always a finite probability that some combination 
will not be tested.   Also, not all combinations are equally likely to be tested. 

4.2.1.3 EXHAUSTIVE SIMULATION 

The exhaustive technique also simulates control only.   A'l combinations of • network a.e tested.   This is 

done by keeping a record in the simulation of the output arc selected for each decision, and simulating control 
for each possible combination of decisions.   Exhaustive simulation generally re.ults in more simulations thsr, 

necessary, since the numbfr of distinct combination' is  usually somewhat less than the upper bound, i.e , the 
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product of the out-degree of ail decision nodes.    However, since it is not possible to tell a ptiori whether a 
combination  has   been  tested,  the  exhaustive  test necessarily   simulites  the upper bound of combinations. 

Examples of the exhaustive test are presented In Figures 33 through 35.   Two-way elements are assumed. 

Branches and rendezvous each have two bits associated with them, as previously explained.   Three bits are 

associated with the decision,    ''"wo of these bits indicate on which arc the decision is to produce a control 

output.   The other bit is 0 if conirol has not previously entetec» ihe decision, and 1 otherwise.  The purpose of 

thiG bit is to provide a means for control to leave a strongly connected subgraph, rather than proceed in a loop 

indefinitely.   Figure 33 is an error-free cas^ and Figure 34 is not.   Figure 35 g»ves a case with a hazard which 

is not detected by exhaustive testing. 

4.2.2 TOPOLOGICAL ANALYSIS 

Some errors may be detected by a topologicel analysis of the network. Topologies analysis involves 

examining the interconnection of nodes in the network. Certain rules have been found which govern proper 

network construction, but no techniques using topology alone have been able to locale all errors. Several of 

theje rules may be slated here.  These will bo justified in the appendix. 

1. Parallel arcs from a branch to t merge are in error. 

2. Parallel arcs from a decision to a rendezvous are in error. 

3. Separable graphs composed entirely of decisions and merges are error free. 

4. Strongly connected graphs composed entirely of branches and rendeivous ate 

in enot. 

The main problem with topological analysis is that, generally, no inspection of subgraphs of any given 

number of nodes always yields a definite conclusion as to errors.   Some topological reductions aid in simplifying 

the problem, however.   An example of such a reduction is the technique explained in Chapter 3 for determining 

separable subgraphs. 

4.2.3 SYMBOLIC ANALYSIS USING ALGEBRAIC EXPRESSIONS 

The following method, whu;h w^s derived from suggestions by Stucki, indicates some errors. The 

method is heuristic and is suggested by observing that the outputs of the -jndezvous and merge are functions of 

their inputs in a manner which is similar to the Boolean functions of getes at the logic level. Specifically, the 

merge is an exciusive-or in the serse that it produces an output if either but not both inputs are present. 

Likewise, the rendezvous is an and :n the sense that both inputs are required to produce an output. Expressions 

are synthesized, for each arc, which indicate the possibility of a control appearing on that arc as a function of 

the results of decision«. 

Assume, for simplicity in illustration, that a graph is constructed only of two-way nodes. Two sets of 

symbols, a^ aj, 83, .... and x,, X2, Xj, .... are used. The a's represent expressions on arcs, x, and T, 

represent the two possible completion arcs of tht ith dec sion. 
Expressions are foiraed for the output of arcs given their input arc expression by the following tu'.es; 

1-   H a^ is the input to the ith decision, the outpufcare labelled a^x, 

ia^joUowed by x,) and a^x, (a,, followed by "not" x,). 

,.   If a|( is the input to a branch, the outputs ate both labeled a^ 

3-   If a   and a± are inputs to a rendezvous, then one of the following 
is applied: 

a)  If &i and ak are identical, then the output arc is labeled a|. 
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b) If a   end aj, ere known to be mutually exclusive, then an incomplete 

render  ous is indicated. 

c) If it is not known at the time whether a. and a^ are identical or 

exclusive, then the output is labeled *,* a^ (a, and a^). 

4.   If a. and ak are inputs to a merge then one of the following is applied. 

a) If a. and ik are mutually exclusive then a combination i» made 

according to the usual rule for Boolean expressions'a.x, + aiX, = a 

where + means exclusive or). 

b) if a. and a^ are known not to be mutually exclusive, a hazard is 

indicated. 

c) If it is not known at the time whether a. and a^ are esclusive, the 

output is labeled a. *• ai,  (a, or a^). 

Figures 36 and 57 indicate the steps involved in performing symbolic analysis.   The input arc to the separable 

graph is   labeled ao.     Whenever all  inputs  to  an node  are  labeled,  the output arcs may be labeled.   This  is 

continued until it is   impossiole to proceed further due to an error, or until the output of the graph is labeled. 

This label specifies which decision combinations produce the output control signal. 

In strongly connected graphs, there are one or Tore stages at which the labeling is not complete, but can 

proceed no further because no nodes remain with all inputs Inbeied. At this stage, a decision or branch is 

selected, and its input is assigned a unique label a.. The labeling then continues, new labels being assigned 

as needed. Because of the introduction of these labels, there will be instances in which the input of a branch 

or decision would be labeled, but has already been assigned a ^bel ak. Let L represent the label which would 

be assigned if the arc were not previously labeled a^.   One of the following is then applied 

1. If L is the input to a branch, then. 

a) If L is in terms of ak, a reentered branch error is indicated; 

b) If L is not in terms of a^, all occurrence of a,, in all expressions 

are replaced by L , 

2. If L is the input to a decision, then: 

a) If L is in terms of a|i> an iteration is indicated.   The situation is 

similar to a recursive definition, a^ = L where L « a^x, -t- a., i. e., 

ak = a, or a^ followed by %.,.   All occurrencs of a^ are then replaced 

by a   u x. meaning a. followed by any nu^hei of xt. 

b) If L is not in terms of ak, all occurrences of ak in all expressions 

are replaced by L. 

The analysis continues until an error is encountered, making continuation impossible, or until arcs are in 

terms of ao and x'r- only. In the latter case, the network is not necessarily error-free, but any errors present 

remain undetected.   Figures 38 and 39 show examples with strongly connected graphs. 

The symbolic analysis technique has the disadvantage that it is cumbersome to .mplerrient on a computer, 

in addition to not being able to detect all errors. It does have the advantage of providing an expression indicating 

the condition for the cistence of a signal on any arc as a function of the outcomes of decisions. 

It is not implied  ihat W symbolic analysis is   useful or is   able   to detect all errors.   Possibly some more 

thorough  technique may be found.    The   symbolic analysis presented here is representative of several which 
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weie invesiigaled in this study.   A problem which is likely to be conunon to many symbolic approaches is the 
difficulty in computer implemen'&tion. 

4.2.4   THE STATE TRANSITION METHOD 

The final technique to be presented will be called the state Uanaiticn method, due to a similarity to the 

representation of a sequential switching network as   a graph displaying transitions between states.        It i« 

suitable for digital computer implementation and can detect all of the implementation errors discussed, including 

somr ^accs.   h hlso appears tc be extendable to other types of control processes, such as the flag described in 

2.3.*    The state of a network will be defined, followed by an explanation of error indication by the consideration 

of possible states, and possib'e transitions between them. 
A label is assigned to each arc of the graph in consideration.   A state of the network is a !ist of those 

arcs which nay be active at a particular instant of time, e.g., a, b, c, where a, b, and c are arcs.   A transition 

between states is the change of a network from one state to another.   If the states of a network are represented 
as nodes of a second graph, the possible transiticis may be represented as the rrcs of this graph, which will 

be called the state transition graph of the network.    Figure 40 indicates the state transition graphs for some 

simple error-free net-', .ks. 
The initial state is defined to be that state of a separable network consisting of only the input arc ot' the 

network.   The final state is that state consisting of only the output arc.   A set of arcs, a,, aj, .... an, is said 

to be a partial state of a state. B = b}) bj, .... 6^, if and only if a, < B for i« I, 2 n. 
The partial stales of a state are used  in determination of possible state transitions by considering each 

node having the  arcs of a state   "s input arcs.    For example, if a is a partial state of a, e,, ej, e^, ...,, and 

a is the input to a branch with outputs b and c, the transition from a, c1f »j, e3, ...., to a stjtte i.c.ej.ej,^, .,.., 

may occur.    The possible transition for the branch is  indicated in Figure 41.   A gr&ph such as the one in 
Figure 41 will be called a partial state transition graph.   The partial su.te transition graphs fot the decision, 

merge, and rendezvous are shown in Figure 42.   Note that the decision has two possible transitions.   Nate also 

that the transition graph for the merge has an isolated node represen ing the state a,b.   if this state is possible, 

then a hazard is indicated.   States or partial states which are identifiable as errors will be cMcd error states. 

Error states which indicate other types of errors are now explained. A state in which the output arc 

appears with other arcs is an error, because it indicates th a, completion signal is produced while some arc 
may still be active within th* network. If the output arc is removed from this state and the construction of the 

transition graph continued, then regeneration is indicated if the output arc eventually appears again in a state. 

Otherwise, residual control is indicated. If there are stales, other than the final state, from which no transition 
may occur, infinite duration is indicated in these states. An attempt to form a transition to a state having tvo 

arcs which are the same is an indication oi a hazard. 

Since the transition graph indicates which arcs may be arrive simultaneously, consideration of the data 

in the separable processes represented by these arcs will indicate any races, if it is known exactly which 
memory elements will be used, and which will be altered. Figures 43 and 44 exemplify some networks with 
errors.   The error-state nodes are indicated bv dashed liner.. 

The   following algorithm presents the  steps  in constructing the   state transition  graph.    The network 

graph  is   assumed, with initial and  firai  states known.    The state graph initially contains a single node for 

the imtiai stale. 
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1. If all nodes have been consideted for transitions, the state gta^h is 

complete.  Stop. 

2. Select a state for which all aansitions have not been considered. 

Call this state s. 
3. Select an arc in s, and call this arc c.  Remove all arcs from s 

which aie input to the same node to which c is input.   Call these 

arcs p, a partial state. 

1.  Compr.re the arcs of p to the partial state diagram for possible 

transitions or error states. 
3    If pos-'ble transitions exist, check to see if the next state formed 

is already in the state graph.  If it is, cennect the next state to 

state s by an arc.  If it is not, add the new state to the graph and 

connect it to s by an arc. 

6.  Repeat steps 3   through 5   until all distinct nodes connected to 
arcs oi s have been considered.  Then go to step 1. 

Step 4  of the algorithm may be elaborated by specifying the procedure for each of the four types of nodes 

considered.   U other types of processes arc involved, appropriate procedures for then, must be formulated using 

the state transition graphs.   The procedures for branch, rendezvous, decision, ar.d merge are now given: 
1. Branch — If the input arc of a branch is a partial state of F, a 

possible transition is to a state with the input arc replaced by 

the output arcs of the branch, and all other arcs in p unchanged 

2. Rendezvous — If ail of the input arcs of a rendezvous form a 

partial state of p, a possible transition is to a state wsth these 

arcs replaced by the output arc of the rendezvous, and all other 

arcs in p unchanged. 
If some, but not all, of the input arcs of a rendezvous form 

a partial state of p, and there are no other possible transitions, an 
incomplete rendezvous error is indicated. 

3. Decision ~ If the input arc of a decision is a partial state of p, 

possible transitions are to states with the input arc of the decision 

replaced by a single output arc of the decision. 

4. Merge — If, at most, one of the input arcs of a merge is in any partial 

state of p, a possible transition is to a state consisting of p with 'he 
input arc to the merge replaced by the output arc.  If more than one 

input arc tc a merge is a partial state, a hazard U indicpted. 

For any element, if a transition is made  in  such a way that the new state has the same arc twice, an 
error is indicated. 

4.I.*   A SUMMARY OF THE TECHNIQUES OF THIS STUDY 

Table  1    compares the techniques presented fes to their thoroughness in detection of various   errors.   It 
appears  at  this  time, that the  state  transition method  is  the most complete and also is rel' 'ively simple to 

implemsnt.   Seme topological reduction techniques, as described in the appendix, can be used to enhance the 
power of this, or any other method. 
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Method 

Table 1.   A compprison of the error detection methods usvcEtigated 

Errors Detected Commenls 

Incomple.e     Reentered     Hazards     Races 
Rendezvc -3      Branches 

1 Simlction 
a)  Trial Data S S S s Also checks for some 

algorithm enors 

b^  Monte Cerlo S S s N Not all combinations are 
tested with equal likdihood 

c)  Exhaustive A A s N Testing time mey be 
prohibitive 

2. TopcMogical S s N Can he applied dur.ng 
reduction of graph 

3. Sj-mboiir S s s N Cumbersome to implement 
by computer p.ogtam 

4. State transition A A A s Simple to implement, 
i .tt ;idable to other types 
of processes then decisions 
merges, branches, and 
rendezvous 

A- All errors of this type detected 
S ~ Some errors of this type detected 
N ~ No errors of this type detected 
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5.  SUMMARY AND CONCLUSION 

A modal  suitable for r»oresentation of particular types of computing systems has been presented and 
techniques for introducing concurrent asynchronous control into the model discut^d. 

Graph theoretic terminology was introduced, and its applicability to description of the model demonstrated. 

Severn! matric representations for graphs .'«te presented as a possible means for representing the model 
in a computer for which automatic analysis techniques may be implemented. 

The   possible   introduction of errors  into  computing  systems  by  improper implementation of concurrf nt 

asynchronous control networks was illustrated, and various types uf errors were classified. Several methods for 

detection of implementation errors were investigated and compared. 

It is concluded that state-transition method, in combination with topological reductions, is the most 

.satisfactory method of those investigated due to several advantages: It detects all implementation errors in the 

type of networks considered, it is extendable io other types ol processes, and it may be implemented by a 

digital computer program. 
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APPENDIX 7.1 

REDUCTION TECHNIQUES AND SOME THEOREMS CONCERNING TOPOLOGY 

As mentioned in section 4.2.7, sor topological reductions ma1 be applied to reduce the complexity of the 

error analysis problem, In the course 4 these reductions, some simple tests may be made to determine if the 

network contains errors. These reductions and tests will be presented, and derived by considerat'on of partial 

state transition diagrams, it should be noted that the reductions remove some arcs and hence, if races are to be 

checked for, this should be done before applying any reductions. The following paragraphs do not apply to detection 
of races. 

The input boundary states of a graph nor necessarily separable are those states containing only input arcs to 

the graph. A similar definition applies for output boundary states. In considering the state transition graph for a 
network, each input 'joundary state ultimately reaches, in the graph-theoretic nomenclature, either an output state or 

an error state. Two graphs are said to be A-equivalent if they ha- the same reachability relations among their 

respective error and boundary states. The state graphs of two A-e alent networks are shown in Figure 7.7.1. 

Postulate- If P is a graph and Q a subgraph of P, P may be analyzed j • errors by replacing Q with any A-cquivalcnt 

subgraph. 

T eorem 1  - All  weakly connected graphs  composed of only ono type branch, decision, merge, or rendezvous of 

1    ay elements are A-equivalent to a single element of the same degre: as the fonner graph. 
The proof is given for merges. The others follow analogously. The method of mathematical induction is 

employed. Assume that the theorem holds for a graph of 2-way merge nodes of degree n,l. This network is shown 

with its transition graph in Figure 7.1.2. Since the 2-way merge network is assumed equivalent to an n-way merge, 
its state graph is that of the n-way merge. A 2-way merge is then added, producing a network of degree n -f i, i. 
The transition graph for this augmented network is shown in Figure 7.1.3. Figure 7.1.4 displays a second state 

graph with the same rsachability among boundary and error states as that in Figure 7.1.3. The second graph is 
• dentica! to a state transition graph for a merge node of degree n + I, 1. 

For the case n = 2, the  theorem holds trivially since a network of degree 2,i is identical to a single 2-way 

merge.    The  truth of the theorem has been shown for a single 2-*(:y merge element and the assumption of truth for 
a network of degree n,! ha? been shown to imply its truth for a network of degree n + 1, 1.   Thus, by induction, the 

theorem is true fir all merge networks of degree n,l where n > 2. 

Theorem 2 - Any two weakly connected graphs composed of one type of node decision, merge, branch, or rendezvous 

and of  the   sanri  degree  are A-equivalent. 
Proof - Any such graphs are A-equivalent to a graph of 2-way nodes and    f the same degree.   Therefore, they are 
equivalent   to   each  other. 

Theorem 3 - Any separable graph which is error-free is A-equivalent to a null process. 

Proof - A separable error-free graph has   no error state.    There is a single input boundary state which reaches a 

single output boundary state.   This is equivalent to the graph of a null process. 
Theorem 4 - A separable graph, the input arc of which is connected to a rendezvous, is in error. 

The proof follows frcrn the fact that the initial state can make no transitions. 

Theorem 5 • Any parallel crcs from a subgraph composed of decisions  to a subgraph composed of merges, or from a 

subgraph  composed of branches  to a  subgraph composed of rendezvous, may be replaced wi'h  a single arc with 
A-equiva!ence    being   preserved. 
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a, b, c, f, g, h ARE BOUNDARY STATES 

R(N) = 

a 
b 
c 
f 
g 
h 

g h d e 

0 0 0 1 0 1 1 0 
0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 
Ü 0 0 0 1 0 0 0 

f g h 

R(M) - 

a 
b 
c 
f 
g 
h 

d 
e 
i 

0 0 '■- 1 0 1 0 1 0 
0 0 a 0 1 0 1 0 c 
0 0 0 0 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 c 
0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 
0 Ü 0 1 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 

FIGURE 7.1.1 TWO A-EQUIVALENT STATE GRAPHS AND THEIR 

REACHABILITY MATRICES 
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ERROR FOR i ^ j 

FIGURE 7.1.2 TWO-WAY MERGE NETWORK OF DEGREE (n.l) AND 

ITS TRANSITION GRAPH ASSUMING A-EQUIVALENCE TO AN n-WAY 
MERGE 
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a1  a2 a3 an+1 

\ 

/ 
/ 

(a])   (32)   (33) 

(ai.an+1) 

( )(bTan+l) 

FIGURE 7.1.3 THE RESULT OF CONNECTING A 2-WAY MERGE TO 

THE NETWORK OF FIGURE 7.1.2 
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K)   (a2)   («3) . . .  (an)   (an+1) (ai.dj) 

I    ) 

ERROR FOR i /< j: 
i.j a 1,2,...,n+l 

FIGURE 7.1.4 STATE DIAGRAM WITH THE SAME REACHABILITY 

AMONG BOUNDARY AND ERROR ^TATES AS THAT IN FIGURE 7.1.3 
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Proof - The  two graphs  are equivalent to graphs   composed of only 2-way elements.   The 2-way elements may be 

grouped in such a way that the arcs between these elements are parallel.    Parallel arcs betw ten a 2-way decision 

and a 2-way merge, or between a 2-way branch and a 2-way rendezvous, are known to constitute separable erroi^free 
graphs.   These arcs may be replaced by a null ptoceos, i e , a sitzte arc. 

Theorem 6 - Any parallel arcs from a subgraph composed of decisions   to a subgraph composed of rendezvous, or 
from a subgiaph composed of branches to a subgraph composed of merges, indicate an error. 

Theorem 7 -   A strongly connected graph consisting only of branches and rendezvous is in error. 

Proof - The  graph may be divided into maximal  subgraphs  consisting of      her all branches or rendezvous. 

All input arcs to the graph must be input arcs to rendezvous, since if the arcs are inputs to br nches,the graph 

is cot strongly connected.   At least one input vc to each of these rendezvous must not be an input arc of the 

subgiaph, for  if it were,  the  subgraph would   not be  strongly connected.    It is never possible for any of these 

rendezvous to report completion, since every one requires control from inside the graph, but this control cannot 

be present, without at leat,; one rendezvous reporting completion.   Therefore, the subgraph is in error. 

Use of these theorems will now be illustrated in the reduction of the floating-point arithmetic unit of Figure 

32. A suggested procedure for application of the theorems follows, although t.o attempt is made to show that 
it  is optimal: 

1. Form all maximal subgraphs of a single type of elements. 

2. Check for any parallel arcs among these subgraphs,   if some arcs are 

parallel and indicate errors, then the procedure it stopped.  If ires are 
parallel and may be replaced by a single arc, then replace tM-m.  If no 
arci are parallel, then go to step 3, otherwise go to 1. 

3. Check the remainder of the graph by the state transition method. 

Figures 1.1.5 through 7.1.8 illustrate the application. 
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THREE 
MUTUALLY 
EXCLUSIVE 
ENTRIES 

FIGURE 7.1.5 REDUCTION ALGORITHM AS APPLIED TO FIGURE 32. 

STEP 1 - FORMATION OF MAXIMAL SUBGRAPHS OF EACH TYPE*NODE 

(CONTINUED ON FOLLOWING PAGE) 



TWO 
MUTUALLY 
EXCLUSIVE 
RETURNS 

FIGURE 7.1.5 (CONTINUED) 
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FIGURE 7.1.6 REDUCTION ALGORITHM AS APPLIED TO FTGURE 32. 

STEP 2 - ELIMINATION OF PARALLEL ARCS (CONTINUED ON 

FOLLOWING PAGE) 
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FIGURE 7.1.5 (CONTINUED) 
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FIGURE 7.1.7    FIGURE 7.1.6 RE-DRAWN WITH SEPARABLE SUBGRAPHS 

REPLACED BV ARCS (CONTIN-JLD ON FOLLOWING PAGE) 
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FIGURE 7.1.7 (CONTINUED) 
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FIGURE 7.1.8 RESULT OF REPEATED APPLICATIONS OF THE 

REDUCTION ALGORITHM TO FIGURE 7.1.7 
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This report discusses problems encountered with control networks in highly restruc'urable digital 

systems.   In particular the treatment of implementation errors is covered with, emphasis on concurrent 

processing.   The implementation of concurrent processing networks may result in errors which will 

be quite complex to detect and systematic methods are warranted.   A model representing a particular 

type of computing system is presented, and methods for introducing concurrent control into the model 

discussed.   The automatic detection of a certain class of errors caused by improper design of these 

systems is investigated.   Graph theoretic representation is employed in demonstrating several error 

detection techniques.   The properties of these techniques are compared and it is concluded that one 

technique, of those investigated, is of sufticient generality, thoroughness, and simplicity in 

implementation to be used for automatic error analysis. 
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