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ABSTRACT 

The orientation of a spacecraft when it is in a stable equilibrium 

state is  studied.     The spacecraft contains a  single momentum wheel which 

stores angular momentum.     The axis of the wheel is not necessarily parallel 

to a principal axis of the spacecraft.     For an arbitrary but fixed speed of 

the wheel relative to the spacecraft body,   it is shown that there may be one, 

two,   or three stable equilibrium points.     At each of these points,   the body 

may spin about an axis which is fixed in both spacecraft and inertial coor- 

dinates.     The orientation of this axis in spacecraft coordinates can be 

determined from expressions in this report.     A threshold can be deter- 

mined such that,   if the speed of the wheel relative to the spacecraft is 

larger than this threshold,   there is only one  stable equilibrium point.     This 

information can be used to determine the eventual orientation of the space- 

craft provided it is designed such that,   if it becomes seriously misoriented, 

the momentum wheel drive motor automatically holds the wheel  speed to a 

predetermined value. 
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STABLE EQUILIBRIUM ORIENTATION OF A SPACECRAFT 

WHICH CONTAINS A MOMENTUM WHEEL 

1.     Introduction 

The orientation of a spacecraft when it is in a stable equilibrium state 

is studied in this report.     The spacecraft is assumed to contain a single 

momentum wheel with its spin axis in an arbitrary direction and a damper for 

dissipation of energy.     Two situations are already well understood. 

(a) The wheel is  spinning at such a  speed that the magnitude of 

its angular momentum equals that of the entire spacecraft.     In its unique stable 

equilibrium state,   the spacecraft will orient itself such that the momentum 

vector of the wheel coincides with the momentum vector of the entire space- 

craft which is fixed in inertial coordinates. 

(b) The wheel has  stopped  spinning relative to the spacecraft body. 

There are two  stable equilibrium states.     In each,   the axis of maximum moment 

of inertia of the spacecraft is oriented in one of two possible directions along 

the momentum vector and the  spacecraft is spinning about this axis. 

In each of these two situations,   when the  spacecraft is not in a  stable 

equilibrium state,   the damper dissipates energy and drives the spacecraft 

toward a  stable equilibrium state. *   In this  stable equilibrium state,   the damper 

dissipates no energy since the spacecraft is either  stationary or spinning about 

a fixed axis. 

Intermediate situations between these two extreme  situations are 

analyzed in this report.     The momentum wheel  speed relative to the body is 

assumed to be held constant by a drive motor and the orientation of the  space- 

craft when it is in a stable equilibrium state is investigated.     It will be shown 

that for an arbitrary but fixed wheel speed in any stable equilibrium state the 

*   In theory,   no dissipation takes place when the spacecraft is in an unstable 
equilibrium state,   but this case is ignored in this report because in practice 
a disturbance torque will perturb the spacecraft from an unstable equilibrium 
state. 



body will rotate about some axis which orients itself along the spacecraft 

momentum vector.     The damper -dissipates no energy while the spacecraft 

spins about this axis.     This axis is not necessarily the wheel axis or a princi- 

pal axis of the spacecraft.     If the wheel speed is larger than some threshold, 

it will be  shown that there is only one  stable equilibrium state and the orienta- 

tion of the spacecraft when in this  state can be determined.     If the spacecraft 

is designed  so that when it becomes misoriented the momentum wheel is auto- 

matically driven at a predetermined  speed,   the methods of this report can be 

used to determine the equilibrium orientation of the  spacecraft. 

The precise evaluation of the expressions of this report requires a 

knowledge of  h,   the magnitude of the  spacecraft angular momentum.     For 

example,   the threshold varies linearly with   h.     However,   in many cases,   the 

direction of the axis in spacecraft coordinates about which the body spins is 

insensitive to fairly large variations in  h   as long as the wheel  speed remains 

above the threshold.     Therefore,   the results of this report are useful when  h 

is known only approximately. 

When two of the principal moments  of inertia  are equal,   the results of 

this report require some  special interpretation since some of the expressions 

become infinite.     The best way to handle this  situation is to let the moments of 

inertia differ by a  small quantity and observe what happens when this quantity 

approaches zero.     In practice,   no two moments of inertia are exactly equal, 

so the results for equal moments of inertia are not emphasized in this report. 

For the  special case where the spacecraft body is symmetric about the 

wheel axis,   the threshold value of the wheel speed is determined in Ref.   Z 

using a  somewhat different approach. 

Z.     Formulation of the Problem 

Consider a spacecraft which is rigid except that it contains a momentum 

wheel that is free to rotate about a shaft parallel to an axis   Z   in spacecraft 

coordinates which passes through the  spacecraft center of mass.     Define the 

direction of positive   Z   such that a vector representing angular velocity of the 

wheel with respect to the rest of the spacecraft is in the direction of positive   Z. 



The momentum wheel is assumed to have  symmetry about its  spin axis.     Two 

additional coordinates X and Y are chosen so that XYZ forms a right-hand 

orthogonal coordinate system centered at the spacecraft center of mass and 

fixed to the rigid part of the spacecraft which does not include the wheel.     The 

wheel can be considered to be composed of a first part with zero inertia about 

axes X and Y and inertia C about Z and a second part with zero inertia about 

axis Z and non-zero inertia about axes X and Y.     The first part is free to 

rotate about Z relative to the rest of the spacecraft.     The second part also 

rotates with the first but for purposes  of obtaining an expression for the 

kinetic energy it is convenient to assume that the second part is rigidly attached 

to the spacecraft.     This represents no restriction since the kinetic energy is 

the same regardless of the rotational speed about Z of the second part.    All 

parts of the spacecraft other than the first part of the wheel will be referred 

to as the spacecraft body and assumed to be rigid. 

The spacecraft body has three principal axes.     Denote these axes x, 

y,   and z,   which form a right-hand orthogonal coordinate  system such that the 

positive Z axis is in the octant x s 0,   v s 0,   and z > 0,   and such that I    si r ' x       y 
and I    2 I    where 1,1,   and I    are the principal moments of inertia of the 

x       z x      y z 
spacecraft body.     See Fig.    1. 

Since   the wheel has zero inertia about X and Y its angular momentum 

is a vector GO C along Z where GO is the component of angular velocity of the 

wheel along Z.     The spacecraft has a total angular momentum h in some 

arbitrary direction.     The vector h can be broken into two components,   a 

vector Ceo along Z and a vector h — Ceo.     Let the components of Ceo along x, 

y,   and z have magnitude a    Ceo,   a     Ceo,   and a     Ceo where eo =   |eo| and  let the 

components of h have magnitude b  h,   b  h,   and b  h where h =  |h | .     Then 
2 2 2    — 2 2ZXy z 

a     +a     + a     =  1,   b     +b     +b     * 1,   and,   because of the way x,   y,   and z 
x y z x y z 

were defined,   a    2 0,   a    2 0,   and a    > 0. 
x y z 

3.       Points of Minimum Kinetic Energy 

In this section,   we consider a problem where a,   a,   a,   I,   I,   I, 
x       y       z      x      y      z 

C,   h,   and eo   are fixed and examine the minima of the function 

2T(bx. by, bz)/h2 = (bx-pax)2/lx + (b-pay)2/ly + (bz-paz)2/lz+p2/C   (1) 



where T is the kinetic energy of the  spacecraft and p= (—T—)•     Equation 1  follows 
2 

from the fact that the energy of the wheel is (uC)   /2C and the energy of the body 

is 

2 2 2 
(h b   —a    coC) (h b   —a    oo C) (h b    — a    OJC) x     x y     y .        g       g  

21 21 21 
x y z 

2 2 2 
For each point on the unit sphere,   b     + b     + b     =1,   the value of T can r x y z 

be computed using Eq.    1.     The assumption that co  is fixed implies that a motor 

drives the wheel such that the component of its angular velocity along Z is con- 

stant.    Assuming that energy is dissipated in the body by the damper,   regardless 

of the initial values of b   ,   b   ,   and b    (initial orientation of h in the spacecraft 
x       y z — 

coordinate system),   the spacecraft will eventually orient itself so that b   ,   b   , 
x       y 

and b    take on the values of the coordinates of a minimum of T.     In this stable z 
equilibrium state,   the direction of h is fixed in both inertial coordinates and in 

the spacecraft coordinates.     Therefore,   the spacecraft body is either stationary 

with respect to an inertial frame of reference or rotating about h.     In particular, 

its component of angular velocity along Z,   Qy,   is constant.     In this report the 

terms minimum and  stable equilibrium point are used interchangeably.     At a 

minimum,   the damper dissipates no energy since the body is either stationary 

or spinning about a fixed axis. 

In the above formulation it is assumed that CJ ,   the component along Z of 

the angular velocity of the wheel relative to inertial coordinates,   is constant. 

In practice the determination of stable equilibrium points when the speed of the 

wheel relative to the body,   OJ     = to — Cl   ,   is constant is of most interest.     However, 
S Z-i 

the solutions to the two problems are the same as long as the variables are 

interpreted properly.     This is true because at equilibrium Q    is constant as 

stated in the preceding paragraph.     In many practical cases Q    is small compared 

to u>   so that oo     ;« OJ . s 
There are several situations in which knowledge of the components of h, 

or equivalently the direction of the axis about which the body spins,   in spacecraft 

coordinates is valuable.     Two situations are: 

(a)    The spacecraft loses power for a while (e. g. ,   while in the 

earth's shadow) so that the momentum wheel stops spinning relative to the body. 



Power is regained and the momentum wheel is automatically accelerated to a 

predetermined speed GO   relative to the body.     In many practical cases,   the 

magnitude of the angular momentum,   h,   will be much larger than the magnitude 

of angular momentum changes caused by disturbance torques during the power 

outage so that the direction and magnitude of h remain approximately fixed in 

inertial space.     Knowledge of the components of h in the spacecraft coordinate 

system would be extremely helpful in bringing about complete recovery of the 

spacecraft from misorientation suffered while the momentum wheel was without 

power. 

(b)    Due to faulty ejection of the spacecraft from the launch vehicle 

or large disturbance torques caused by failure of gas jets in the open position, 

the magnitude and orientation of h in inertial coordinates is unknown but the 

wheel is automatically held by the motor to a predetermined speed OJ   relative to 

the body.     Knowledge of the orientation of h in spacecraft coordinates would be 

helpful as a first step in determining the orientation of h in inertial space and 

eventual spacecraft recovery. 

It is shown in the appendix that the function   T (b   , b   , b   ) always has 
x     y     z ' 

one and only one minimum in the region  b    2 0,   b    2 0,   b    2 0.     T   may have 
' b x y z ' 

zero,   one,   or two minima in the region  b    < 0,   b    2 0,   b    & 0   and there are 
° x y z 

no minima in any other regions.     Two  sufficient conditions that   T   have a 

unique minimum are 

7 r 7 (I   -I  )2 
Z    _    .coC.Z x      y ,,. 

0       =    (-XT'      >   ~P ; " T=~Z \Z> h 
(a   I  )Z/3 + (a   I  )2/3] 3 

x y y x        j 

and 

? r •> (I   -I   )2 
Z .coC.Z    _ x      z 

p- • <T> 
(a  I  )   '     +   a   I  ) 

[_   x z z x 

(3) 

If either Eq.  2 or 3 is satisfied,   T  will have one and only one minimum.     Let 

t = C/h  times the positive square root of the smaller of the two expressions on 

the right-hand  side of Eqs.  2 and  3.    The coordinates of this minimum satisfy the 

relation given in Table  1 for various ranges of the parameters a   ,a   , and   a   . 
x     y z 



Table 1 

Conditions on  a   ,   a   ,   a x       y       z 
Coordinates of Unique Minimum Satisfy 

a    = 1, a    = a    =0* x y        z 

a    =  1, a    = a    =0* y x        z 

a    =  1, a    = a    =0* 
z x         y 

a    = 0, a    > 0,   a    > 0* x y               z 

a    =0,   a    > 0,   a    >0 y x z 

b     =  1,   b     = b     =0 x y z 

b     =  1,   b     = b     =0 
y x z 

b    = 1,   b    = b    =0 
z x y 

b    = 0,   b    = pa   I  b   /[oa  I  +(I   -I  )b   ] , x y y   z   z' z y       z     y'   z1 

b     = +  ,'l-b   2 

y       <v        z 

b    = 0,   b    = pa   I b  /[pa  I  + (I   -I  )b  ] , y z      w  z   x  x' L     x z       x    z'   xJ 

b     = +  /l-b   2 

a    = 0,   a    > 0,   a    >0 
z x y 

a    > 0,   a    > 0,   a    >0 x y z 

b    = 0,   b    = pa   I b  /[pa   I  +(I   -I   )b   1 , 
z y y   x   x x y       x     y    x 

b     = +./l-b   Z 'xW 
b    = pa   I b  /[pa   I  + (I   -I  )b  1 

z zxxxzxzx 

b    = pa   I b  /[pa  I  + (I   -I   )b   ] y yxxxy       x    y    x 

b     = + IT- b c-b 

*   For these four cases,   a necessary condition for   T   to have a unique minimum 
is that either Eq.   2 or 3 with  >  replaced by  >  be satisfied. 



Given the values of the spacecraft parameters,   a threshold  t  of wheel 

speed can be determined from Eqs.   2 and 3 such that if w > t  the vector  h 

has only one  stable equilibrium point in the  spacecraft coordinate system.     In 

this equilibrium position,   the components of  h   can be determined from the 

relations of Table   1.     If to < t,   there may be as many as three equilibrium 

positions.     In each equilibrium position,   the spacecraft body may rotate about 

h.     These positions may be studied using the expressions of the appendix.     It 

is desirable that the spacecraft be designed to keep  oo > t   so that the additional 

equilibrium positions will not exist. 

4.     Example:    Wheel Axis Along a Principal Axis 

Consider a spacecraft composed of two rigid bodies.     See Fig.   2.     The 

first body contains a momentum wheel with its  spin axis parallel to   Z.     The 

second body rotates very slowly (e. g. ,   once per day for  spacecraft in synchro- 

nous equatorial orbit) about   Z   with respect to the first and   Z   is a principal 

axis of both bodies.     This  slow rotation is caused by a drive which for long 

periods of time (e. g. ,   twenty-four hours) does not require any sensor input 

from outside the spacecraft so that during any particular short time interval 

of interest the spacecraft can be considered to be a rigid body with one prin- 

cipal axis along axis   Z.     Assume that the moments of inertia normalized by 

dividing by the constant   I„  are 

Ix/lz    =   5. 330 + 0. 038 cos 28, 

Iv/l„    =   5. 160 - 0. 038 cos 26, 

and 
Ixy/lz    =    0. 38 sin 26 

where   6  is the angle of body  1  relative to body 2. 



Consider the satellite position   9=0.     In this case,   the   X,   Y,   and   Z 

axes are the principal axes, 

and 

I  /I      =5. 368, x     z 

I  /I      =5. 122. 
y   z 

The case described here is   a     =  1,   a     = a     =0.     Equations 2 and  3 imply that, 
r- z x y 

if  P =  (-T—-) >   1 —(I   /I   )  = 0. 814,   a unique minimum occurs at   b     =   1,   b     = n z     X z y 
b    =0.     Therefore,   if the speed of the wheel is always kept high enough so 

that 81. 4$ of the angular momentum of the  spacecraft is due to the wheel 

spinning,   only one stable equilibrium position exists.     In this position,   the 

body may be spinning around the Z axis. 

If   0 < 0. 814,   the results of the  appendix show that there may be two 

equilibrium positions at 

b     = 0, 
y 

b    = DI  /(I   -I  ) = p/0. 814, 
Z XX z ' 

and   
bx = ±   1_(p/0. 814)2. 

Consider the  satellite position   6 = TT/2.     Equations 2 and 3 imply that, 
/-* 

if  P = (-1—) > 0. 811,   a unique minimum occurs at  b     =  1,   b    = b     =0.     At this w      v h ^ z y x 
stable equilibrium position the body may spin about the   Z   axis. 

5.     Example:    Wheel Axis Which may not be Along a Principal Axis 

Consider a spacecraft composed of two rigid bodies.     See Fig.   3.     The 

first body contains a momentum wheel with its  spin axis parallel to   Z.     The 

second body rotates with respect to the first very slowly about   Y  and   Y  is a 

principal axis of both bodies.     With respect to this rotation,   the situation is 

the same as that of the previous example so that for stability analysis the 

spacecraft can be considered to be a  single rigid body which contains, a 



momentum wheel.     Assume that the moments of inertia,   normalized by 

dividing by the constant  Iv>   are 

Ix/ly    =   7. 4 + 0. 089 cos 26, 

and 

Iz/ly   =   6. 89 - 0. 089 cos 29, 

Ixz/l       =   0. 089 sin 26 

where   9  is the angle between the two bodies which is considered to be a con- 

stant at any particular time.     The  coordinates   x,   y,   and   z   are chosen so that 

z  is along  Y   and x  is in the  XZ   plane displaced an angle  cp from  X.     The 

condition  I       =0  determines   m.     By substituting coordinate transformations xy ' ° 
into the definition for the moments of inertia,   we obtain the relations 

y'-yiz+v + Vz-^z2) = °> 

and 

' i _ i 
x y 

which can be solved for   I   A   ,   I  /i  ,   and   cp. 
y    z      x    z 

Consider the case   6 = TT/4.     Then 

I  /I      =6. 875 
y   z 

I  /I      =7. 415 x    z 
and 

cp   =   9. 6°. 

Therefore,   a    = 0,   a    =0. 167,   a    =0. 985.     Equations 2 and 3 imply that,   if 
c z x y ^ r ' 

p   = (-T—) > 0. 05,   there is only one point of minimum energy.     At this point, 

b     =0   and   b     and   b      satisfy x y x 7 

b      =   6. 35 pb  /(p + 0. 47b  ) (4) y w   x'   M x' ' 
and 

Ul'hvZ- (5) 
X 



This follows from Table  1.     Therefore,   if the wheel speed is kept high enough 

so that more than 5<£ of the angular momentum of the spacecraft is due to the 

wheel spinning,   the momentum vector has only one stable equilibrium point in 

spacecraft coordinates.     In this equilibrium position,   the vector h is not parallel 

to the wheel axis.     The body may spin about an axis along h. 

If  0 < 0- 051,   there may be one,   two,   or three equilibrium points 

depending upon whether Eqs.   4 and 5 have one,   two,   or three solutions in 

the region  b    = 0,   1 > b    > 0,   1 > b    5-1.     This follows from the appendix. ° z y x 

Consider the case   9 = 0.     Then 

I  /I      =7. 489, x    z 

I /I      =6. 801, 
y   z 

and  cp = 0     so that  a    = 1   and  a     = a    =0.     If p > 0. 09Z,   there is only one 
y x z M ' 

point of minimum energy located at   b    =  1,   b     = b     =0.     In this  stable equi- •r OJ y x z 1 

librium state,   the body may spin about the   Z   axis. 

If p < 0. 092,   there are two stable equilibrium points at  b    = 0,   b    =   ^ z y 
p/0. 092,   and  b     = ±   'l - (p/o. 092)2. 

Consider the case   9 = TT/2.     Then 

I  /I      =    7. 311, x     z 

I /I     =6. 979, y     z ' 

and   CD = 0      so that  a     =  1   and  a     = a     =0.     If  p > 0. 0454,   there is only one y x z ' 
point of minimum energy located at  b     =  1,   b     = b     =0.     In this  stable equi- °' y x z ^ 
librium state,   the body may spin about the   Z   axis.     If  p < 0. 0454,   there are 

two stable equilibrium points at  b    = 0,   b    = p/0. 0454 and  b    = ± /l — (p/o.0454)' 

6.     Conclusions 

For   t < w < h/C   where   t  is  some threshold,   w   is the momentum wheel 

speed,   C   is the wheel inertia,   and   h  is the magnitude of the spacecraft angu- 

lar momentum,   there is only one equilibrium state of the spacecraft.     If the 

momentum wheel axis is not parallel to a principal axis of the spacecraft,   in 

10 



the equilibrium state the spacecraft body spins about an axis which is not 

parallel to either the wheel axis or a principal axis when  t < to < h/C.     If the 

wheel axis is parallel to a principal axis,   in the equilibrium state the body 

spins about an axis which is parallel to the wheel axis when  t < w < h/C.     The 

value of  t   and the orientation of the spin axis of the  spacecraft body in the 

equilibrium state can be determined using the expressions derived in this 

report. 

11 
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APPENDIX 

1.     All minima of   T(b   , b   ,b   )   satisfy the following expressions.     If 

pa    = 0, 
x 

b 
X 

~* 0 

b 
y 

= 
pa   I 

y  x 
(I   -I   ) x      y 

If pa    = 0, 
y 

b 
y 

= 0 

b 
y 

= 0 

pa   I 
y > 

i -i 
x      y 

0 < b    <  rXJL (A-l) 
y    i -i 

- 1 < b    < 1. (A-2) x 

0 < b    < 1 (A-3) 

-pa   I 

x       y 

If pa    > 0  and  pa    > 0, r x y 

pa   I   b 
y x   x 0 < b    ^ 1 (A-5) 

y pa   I    + (I   -I  )b x ' x  y x      y    x 

pa   I   b /a   I    \l/3 
b      = /  "    T   ., _l<b    <-bU/ 

y    oaxIy 
+ (Ix-Iy,bx x     AV*/ 

-pa    I 
and  b    < *  y   . (A-6) 

x      y 

These expressions denote  surfaces in  b   , b   , b      space.     On the   b   ,b     plane r xyzr xy 
they denote curves which are  shown in Figs.   A-l,   A-Z,   A-3,   and A-4.     To 

derive these expressions,   let 

T(b   ,b   )    =    T/h2 + T7/h
2 

x     y 1 Z 
where 

T.    =   (b   -pa   )2/l    + (b   -pa  )2/l 
l x   M x' ' x        y       y       y 

14 



and  

Tz    =    (±Jl-bx
2-by

2.  -   paz)Z/lz + P2/C 

Define   r   and   9   such that  b     = r cos 8   and   b     = r sin 6,   and consider x y 
circles of constant   r   on the   b   , b     plane.     A necessary condition for a point x     y ' r 

at radius   r   to be a minimum of   T(b   , b   )   is that on a circle of constant   r x      y 
this point be a minimum of T(6), a function of a single variable 0. Since T 

is independent of 9, a point is a minimum of T(9) if and only if it is a mini- 

mum of   T   (0).     The conditions 

.   dT. b   (b   -pa   ) b   (b   -pa   ) 
1 1 xyy Yx        x_n 

2 ~d9~ I ~ I 
y x 

and 

.   d2T. -b   (b   -pa   ) + (b   )2 b   (b   -pa   )-(b  )2 

I I y   y      y        x      _    x   x      x       y     >  0 

d0 y x 

which must be  satisfied by all minima for   r > 0 yield the desired expressions. 

The point   r = 0   must be checked  separately. 

2.     All minima of   T(b   ,b   ,b   )   satisfy the following expressions.     If 
x     y     z 

pa   I 
0,bz,r^ (A-7) 

x      z 

pa    = 0, K   X 

b 
X 

= 0 

b 
z 

= 
pa   I 

Z    X 

(I   -I   ) X        z 

If  pa    =0, z 
b z 

— 0 

b 
z 

= 0 

- 1 < b    <  1 (A-8) 
x 

0 < b    <  1 (A-9) x 

-pa   I 
l,bx,T-^ (A-10) 

x       z 

If  pa    > 0   and   pa    > 0, r x z 

15 



pa   I   b 

b      =   T
Z

X
X
/T

X
   T   \u °^b    * ] (A-ll) z pa   I    + (I   —I  )b x ' 

X    Z X        Z       X 

pa   I   b 
h - Z    X     X 

z     :  ~&TT    + (I   -I   )b 
X     Z X Z       X 

-pa    I 
and b    <   T    

x_z   . (A-12) 
x        I   — I 

X        z 

These expressions are identical to those of Section 1  except that  y  is replaced 

by   z.     They are derived in the  same way as the expression of Section  1. 

3.     Combining the results of Sections   1 and Z yields curves in three- 

dimensional  space on which all minima of  T   must lie.     These curves are 

intersections of the surfaces of Sections   1 and Z and are  shown in Figs.   A-5 

through A-10 for six cases that occur.    A seventh case,   a     = 0,   a    > 0,   and 

a    > 0   which is  shown in Fig.   A-ll  requires further  study.     The results of 

Sections   1 and Z imply that any minimum of   T   must be either on the straight 

line 

o pa    I                                            pa    I 
ni2.                       , Myx ,            rzx 
0 < b      <  1,                   b =       y        , b     = = =- . 

x                                  y I   — I                                z      I   — I 1 x      y                                        x      z 
or the rectangle 

pa   I pa   I 
b    =0, 0<b    <  _  y T

x , 0<b    < T   
z   * . 

x y       I   —I z       I   — 1 
' x      y x      z 

Differentiating the expression for   T   on this rectangle yields further results 

that all minimum points on the rectangle  satisfy 

oa   I   b pa   I 
b =      T     \   /T    2   T    \K 0^b       ^T-^T*-    • (A-13) y pa   I    + (I   — I  )b z      I   — I 
'zyzyz xy 

This curve is also shown in Fig.   A-ll. 

Z        z        z 
The constraint   b      + b      + b      =1   implies that only values of  T   defined 

x y z r ' 
for points on the  sphere of unit radius centered at the origin are of interest. 

In particular,   all minimum points of   T   are on this unit sphere so that for each 
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case of Figs.   A-4 to A-11 a minimum of   T   can only occur where a curve 

intersects the unit sphere.     Therefore,   there can be at most two or three 

minima of   T   depending on the case.     There is always one minimum in the 

region  b    > 0,   b    > 0,   b    > 0   and there can be zero,   one,   or two minima in 6 x y z 
the region  b    < 0,   b    > 0,   b    > 0.     Equations A-l  through A-13 may be used 

to determine the coordinates of all minima of  T.     The next section investigates 

sufficient conditions for there to be only one minimum or equivalently there to 

be no minima in the region  b    < 0,   b    > 0,   b    > 0. 6 x y z 

4.     From Eqs.   A-l through A-6 or Figs.   A-l  through A-4,   it is evi- 

dent that sufficient conditions that no minima occur in the region  b    < 0, 
° x 

b    > 0,   b    > 0  are as follows. 

If Day = 0, 

-oVy 
I   -I 
x      y 

If pa    = 0, 
X 

pa   I 
y  x 

I   -I 
x      y 

If  pa    > 0,   pa    > 0, 
x y 

(d    .   )      >    1 min 

•where   d     .      is the minimum value of 
mm 

d    = 
pa   I   b y  x   x 

bx   +l pa   I    -\ x   y 

1/2 

the distance from the origin to a point on the surface on which all minima must 
2 

occur in the region  b    < 0,   b    ^ 0,   b    > 0.     Differentiation of  d     with respect 
° x y z 

to   b     yields 
x 

(d     .   )' min 

(a   I  )2/3 + (a   I  )2/3 

.   x Y y x 

(I   -I  ) x      y 
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In all three cases,   the  sufficient condition for no minima in the region   b    < 0, 
x 

b    > 0,   b    > 0. which implies that there is only one minimum of   T,   is 
y z ' 

? (I   -I   )2 
2 xy 

D        > 

L   I  )2/3 + (a   I  )2/3!3 
|_  x   y y  x        J 

An analogous  sufficient condition for there to be only one minimum of   T   can 

be derived from Eqs.   A-7 through A-1Z.     It is 

, (I   -I  )2 
Z x      z 

P      > 

f7a   I  )2/3 + (a   I  >2/3T 
X    Z Z    X 
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Fig. A-l 

f>ay = 0 

Ix-Iy 

Fig. A-2 

3-66-7184 

19 



3-66-7185 

Ix'Iy 
/>ox>0, poy>0,p> 

(o.IJ /3 (auI„) /5 
x'y' y-x' 

Fig. A-3 

3-66-7186 

Fig. A-4 
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ax = 1, a = a2 = 0 

MINIMUM   OCCURS 
HERE ONLY   IF S<1 

s = MAX{^T/i^} 
Fig. A-5 

3-66-7188 

ay = 1, ax= az = 0 

Fig. A-6 
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3-66-7189 

ar = 1, ax= ay = 0 

Fig. A-7 

3-66-7190 

ay = 0,ax>0,az>0 

/>azIx/(Ix-Ir) 

KX—pa.I./d.-I poxlz/(lt-l2) 

Fig. A-8 
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/>ayIx/(Ix-Iy) 

az = 0, ax>0, az>0 

Fig. A-9 
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ox>0, a  >0, az>0 

Fig. A-10 
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ax = 0,ay>0, a2>0 

Fig. A-ll 
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