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ABSTRACT

A numerical scheme of the method of characteristics, the Hartree
scheme, is developed to calculate the flow field of the expansion of
a high pressure sphere into atmosphere. The accuracy of this scheme
in solving one dimensional fluid problems is evaluated by applying it
to the blast wave problem for which the exact solution can readily be
calculated to a high degree of accuracy. It is shown that this method
is very accurate, involving errors c¢f less than 1%. In calculating
the expanding sphere, two rather challenging problems, namely, the
initial singularity and the formation of a second shock, are suc~-
cessfully solved through special techniques.

The propagation of the expanding main shock and the propagation
of the contact surface which separates the ambient fluid from the
fluid initially confined in the high pressure sphere are accurately
determined.,

The formation of an inward traveling shock, or the second shock
to distinguish it from the main shock, from the previcusly continuous
flow field is found to exist at the tail of the left traveling
rarefaction wave. Though the strength of the second shock remains
rather weak at the early stage of its development, 1t grows rapidly
to very high strength just before it implodes on the center of the
The path of the second shock in the physical plane is

sphere,

accurately defined and some interesting behavior of the second shock

is revealed.




Based on accurate detailed numerical celculations by the
Hartree scheme, it is shown that "late-stage equivalence" exists
in the expansion of high pressure spheres intv atmosphere, provided
the initial total enérgy in each of the spheres is held constant.
Late-stage equivalence is assumed to exist if the peak pressure
distribution for different expanding spheres are the same for long
times. Moreover, if the initial masses enclosed in each sphere are
also kept the same ‘in addition to constant initjal energy, late-stage
equivalence exists not only for peak pressure of the main shock, but
adlso for the positions of both the main shock and the second shock in

the physical plare.
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NOMENCLATURE

speed of sound

constant gpeed of sound outside wave zone
specific heat at constant pressure

specific heat at constant volume

parameter proportional to the total energy within the wave
initial total energy released

enthalpy per unit mass

constant

initial pressure of the high pressure sphere
pressure

constant pressure outside wave zone

entropy per unit mass

time variable

absolute temperature

particle velocity

shock wave velocity

space variable

initial radius of the high pressure sphere
specific heat ratio

density

initial density of the hign pressure sp...e
constant deasity outside wave zone

E

length expressing energy and pressure scaling (e3 = 529
1

energy reduced radial distance (%*
c,t
energy reduced time (*%-é

g = —
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I  INTRODUCTION

Ever since the discovery of explosives people have been interested
in the behavior of explosfons., Today, considerable attention is still
focused on the gas-dynamics of explosions, It is very difficult, if not
impossible, to represent the actual situation in the initial stage for a
real explosion which involves chemical reactions, detonaticn waves, coa-
bustion or nuclear reactions, However, after the initial stage, the
situation is essentially the expansion of a high pressure sphere, Even
this problem of expanding gas has no exact solution, Simplified models
as well as various numerical calculations have been used to study the
problem in the past.

The most well-known simplified model is the point source solution;
wvhile among the numerical calculations the finite-difference method and

method of characteristics are widely adopted,

1, Point Source

In the so-called point souxce model it is assumed that a finite
amount of energy in an infinitely concentrated form is being released
zuddenly into the atmosphere, The soiution of this ideal model will be
referred to as the point source solution in later discussions,

In the point source solutions of Taylor (1) and Sedov (2 ) the
properties of the flow are sasumed to be self-aimilar; the governing
partial differential equacions sre reduced to ordinary differential

equaticns,
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Taylor integrated these 2quations numerically and the results
were presented in tabular form while Sedov successfully integrated
these ordinary equations and obtained closed .orm solutions, In their
anslyses, strong shock relations were used across the outward propa-
gating shock front, Therefore, the solution is invalid for shock
pressure somewhat below 100 atm, Desides, in real explosions the
source of energy is far from being a point,

In order to extend the range o6f validity of the point source
soiztion, the exact shock equations must be used whenever the influence
6f the atmospheric counter pressure c¢an no longer be ignored,

To extend to low pressures Goldstine and Von Neumann (3 ) modified
the point source solution in the range from 100 atm, to 1,017 atm, A
finite-difference method was used in the calculation with initial data
calculated from point source sclution, Exact shock relations were used
across the shock front at iow pressures, Numerical results were given
vhick zan be used to compare with our calculation,

Brode (4) also extended the point source solution in the range of
1,600 atm, to 1,06 atm, with a finite-difference method, However, Brode
used the artificial viscosity methcd in hendling the shock discontinuity,
Since this particular method always has to spread the ghock discontinuity
across several grid zones, the shock front cannot be clearly defined,

In a different approach Sakurai (5 ) modified the point source

solution by 2 series axpansion in y, defined by c:, vhere c, is the
w2
velocity of sound of the atmosphere, and U is the shock velocity, The

geroth order solution is exactly Taylor's solution, Higher order

5.
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approximations supplement Iaylor's solution such that the exact shock

equations are satisfied.

2. Numerical Calculations

A, Finite Difference

One of the earliest numerical calculations by the finite-difference
method was by Unwin ( 6), who in 1941, calculated 2 problem starting
from the sudden release of a spherically symmetric flow in a compressibie
medium, having constant entropy everywhere, into the atmosphere, The
initial density distribution is so defined such that no shock will be
formed, Results are rot applicable to the general case where shocks are
involved,

Roberts (7) used the finite-difference method developed by P, D.
Lax to calculate the same problem treated by Unwin., Lax's finite-
difference scheme introduces & viscous effect which tends to smooth cut
discentinuities in the flow variabies when they arise, Since we expect
a second shock which will be formed in the expanding gas for our problem,
therefofe, it s reascnable tc assume this method will not yield satis-
factory results, '

The attenuation of spherical shock 2t large distance from the origin
is investigated by Whitham (8). As an approximation, the flow is
assumed to be isentropic in his snalysis, He showed that for a weak
explosion, behind the shock front #n envelope of characteristics is
formed and hence # second shock must appear,

* To handle hydrodynamic problems which involve shock diséontinuities,

Von Neumann and Richtmyer (9) developed a numerical method, In applying
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this method, an artificial viscosity is introduced, and shocks are
szeared out so that the mathematical su;faces of discontinuity are
repiaced by layers of thickness comparable to sewveral meshes. There-
fore, there is a lack of definition of the solution, Brode (4) applied’
this method to calculate the spherical wave produced by sudden release
of high pressure gas into the atmosphere to very late times, Due to the
nature of the method, which cannot handle the initial singularity at

the outer boundary, Brode's results are inaccurate even at the early
stage, One of his calculations with high initial gas density, the
overpressure vs radius curve presented in his paper is grossiy in-
accurate,

B. Method of Characteristics

Since the method of characteristics will give correct treatment of
singularities such as centered rarefactions and shock discontinuities,
it geneérally leads to better defined boundaries and more accurate
results,

Wecken {10) calculated, by the standard method of characteristics,
the spherical wave produced by an expansion of a high pressure gas
sphiere, Based on numerical grounds he predicated the existence of an
inward traveling second shock, which travels toward the inside relative
to the moving éas. It will be reflected at r = O and then travel out-
ward behind the main shock, Employing the same method, Wecken obtained
numerical solution for the explosion originated from detomation of a
spherical charge, and the results were used to compare experimental

measuremsnts obtained by Schardin (11), Although results showed overall

-

e — e a—
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agreement between experimental and numerical calculationg, Schardin
considered Wecken's calculations lack accuracy, and recommended further
calculations by digital computer,

The standard method of characteristics was also used to calculate
the problem trested by Unwin £ 6) by FPox and Ralston (12). Constant
entropy everywhere was assumed in the formulation, Therefore, their
solutions are restricted to problems where no shock discontinuities are
present,

In 1960, Zhukov (13) using the standard method of characteristics
calculated 2 problem of sudden release of a constant pressure sphere
into vacuum, Cutside the expanding sphere, a spherical envelope of
fluid exists, The primary interest of this problem is the interaction
of the main shock and the outer fluid shell, The second shock was
formed as a result of intersection of characteristics of one family
(11 Characteristics)., After its formaticen the second shock was calcu-
lated for only a short time, Details of the numerical scheme or results
were not presented,

An slternative numerical scheme of method of characteristics was
proposed by Hartree (14). He suggested integrating equations of motion
along characteristic directions but instead of using the characteristic
grid, using a given interval in one independent varisble., It may give
the results in a more desirable form, particularly if the one independent
variable happens to be time, This method has the advantage of yielding
results at & specific time, whereas if the results are obtained on a

grid of characteristics, lengthy interpolation is required to obtain
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such results, Besides, the Hartree scheme gives results along particle
paths thus making it particularly advantageous in handling problems with
contact discontinuities,

Hoskin (15) discussed Hartree's scheme in great detail, but no
specific example was preseated to demonstrate its application,

Lister (16) followed essentially Hartree's proposal and devised a
numerical scheme, geared to digital computer computation, which can be
applied only to isentropic flow,

Katshova and Chuskin {17) developed a numericsl scheme, similar to
the Hartree scheme, suitable for computer calculations of steady
axisymmetric supersonic flows of perfect gas with shock wave, Their
numerical results were in good agreement with those by standard method
of characteristics,

It seems that, up to the present, the Hartree scheme has not been
applied to unsteady flow problems involving shock waves and entropy
-change,

One of the diff. .ulties in the solution of the expansion of a high
pressure sphere is the initizl singularity at the boundsry, In general,
an outward moving shock, a contact discontinuity surface, and a centered
rarefaction wave are formed instantaneously, Unwin (6), Roberts {(7)
and Fox (12) avcid these difficulties by requiring the initial distribu-
tion of density to be a particular function of radius, and assuming
entropy to be constant everywhere,

McFadden (18) obtained a solution for short times after the release

of a uniform high pressure sphere, Flow properties u, ¢, and S (entropy)
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were developed in peowers of 7, which i5 proportional to time, Solutions
up to the first order were derived which satisfy the boundary conditions
to the fivst order without introducing a second shock. As he suggested,
we have computed the example given in his paper, and find that our
results are in good agreement with McFadden®s,

The mathematical nature of the singularity of ‘the disturbance due
to the detonation of a spherical charge initiated at the center was
iuvestigated by Berry and Holt (19). The equations of unsteady spherical
wotion axe solved in the neighborhood of the singularity at the crigin
of the air blest wave in the t-x plane, Expansions are used in series
of half-powers of r, the radial distance from origin, with coefficients 6
depending on the transverse coordinate, -

Two singular characteristics are found to start at the origin, OCme
is the left traveling characteristic in the rarefaction wave region and
the other is the contact discontinuity suxface, Near these lines the
expansions are invalid, To remove these difficuities, Berry and Holt (19)
used the Paincare-Lighthill-Kou method by introducing a new independent
varizble z and expanded the depende;xt_ variables (u, p, ¢) and the
independent variable ( ¢ and } ) in series of power of } with coef-
ficients depending on z,

This is equivalen. to a perturbation of coordinates § . The
development of the second shock was investigated and asserted to be an
effect of at least s=cond order of } .

The results from the series expansion were used as initial data to

determine the ecarly development of the growth of spherical blast from a
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particular charge, Berry et al (20) integrated the equations of motion
along characteristics, Results of the calculation are crude, They were

content with an accurecy adequate for plot only,

3. Llate-Stage Equivalence

It was suggested by many authors (Taylor, Brode, Sakurai, Courant
and Priedrichs, etc.) that real explosions, though they behave dif-
ferentiy in the early stage, gradually become equivalent if the initial
energies are equsl, Among these who suggested such a late-stage
equivalence, Sakural ( 5) made a very strong statement that the point
source model, although not adequate to represent a real explosion in the
early stage, becomes more and more accurate at th: late stages, regard-
less of the kinu of explosives or the features of the explosives, The
agsumption of late-stage equivalence intuitively seems plausible, How-
ever, it has not been verified. Brodé (4) calculated a few cases of the
relezaing of high pressure spheres into the atmosphere and tried to
indicate that the pressure behind the main shock front approaches the
corresponding point source solution %n late stages, Unfortunately due
to the limitation of the aumerical method used in his calculationm,

results were inaccurate even at the early stage,

4, Outline of the report

It iz the intention of this report first to develop & numerical
schemc which is accurate, and can be easily adapted to compucer calcu-
lations. This scheme is then used to calculate the flow field developed

from a spherically symmetric high pressure sphere suddenly released in
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the atmosphere., The existence of a late-stage equivalence will be
investigated by calculating - smparing expansion of many high
pressure spheres with different initial radii, pressures, and densities.
Late-stage equivalence is assumed to exist if the peak pressure distri-

butions for different expanding spheres are the same for long times.




I  BASIC METHOD

1. Basic Differential Equations
The governing equations for an unsteady spherically symmetric
continuous flow of polytropic gas without friction and heat transfer

are the zentinuity equation

B0 4 L 20 20U _ -
at*eﬁ+“3§*2x“ (2-1)
the momentum equation

au W
X

3% + U3 +-é-%—;=o (2-2)

the energy equation

dS .
%-% + U 5% =0 (2-3)
and the equation of state
C
S= S+ gt (%) (2-4)

vhere S, = constant

Substituting (2-4) into (2-3) yields

(5 v uds(F) =0 -5

2, Method of Characteristics and Characteristic Equations

The general theory of characteristics can be found.in many books,
such as Von Mises (21), Courant and Friedrichs (22). Here we will limit
our discussion to the current pFoblem which is a quasi-linear first order

system of hyperbolic type with two independent variables, The essense
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of the method is to search for a set of characteristic coordinates, By
using these characteristic coordinates, a new system can be obtained
from original partial differential equations, The differeatiation of
the new system will be considerably simplified, For the present case,
the differentiatione for each characteristic equation will be along a
single characteristic coordinate, Therefore, numerical integration
along & characteristic coordinate is particularly simple,

A characteristic coordinate is along the tangent of & character-
istic curve which is defined as & curve on which the derivatives of
the fluid properties are indetermirate,

Since we will have occasion to use the characteristic equation in
plane case, the derivation will be kept in a more general form, The

continuity equation becomes

Pu _
%% g-eau-i-u.—-e +(°"")"‘j""° (2-6)

vhere ¥ = 1 for plane motion, ¥ = 2 for cylindrical motion and V = 3

for spherical motion; the momentum equation remains as:

I.f+u?’“+ég_§—o @D

and from the equation of atate of a polytropic gas and the definition

of sound velocity

2 = (-5?; y_fl

equation (2-5) can be written in the form:

D.%q-u—;-c( +u__E 2-8)
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Por regions where the flow propexties u, p, and @ are continuous,
three equations for the total differentials du, dp, and d¢ may be
writter, Combining these differential relations with the governing
differential equations (2-6), (2-7) and (2-8) we obtain the following
set of differential equations 1nvolving six partial derivatives: %—% ’

%% , %1%, %—%’, %, and %% which are in question for indetermination,

2u u
dX'aTx--l- cﬁ:%t‘ = du
P . j1 2P _
x5 +etat = dp
20 _
J"ax+‘1t§% = dp (2-9)
au by U
0 Sx +u§+%§ z-(\;-.)-;(L
ou o U . 1 3P _
Usx * ot T o ox =0
?LP b_P — 29.6_ 22 = 0
Wax ¥ ot W 3%
Solving these equations for 3% by Cramer's Rule, we cbtain
M _ N ' 2-10
X~ D (2-10)
where
dx dt o 0 0 0
o o dx dt o 0
be | 0 0o 0o ©° dx dt
e 0 0 0 u t
!
uw | 3 0 bz 0
o 0 U ;o ouc® ¢

g  Ef

i
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and

du dt o 0 0 o
dp o dx dt o 0
d¢ o o o dx dt
gl 0 0 o w1

o I ¥ o 0o o0

0 0 u { -uc
« (udt=dx) [0 5 Et)- (udt -dxydu + SR ]

In order that % to be indeterminate D must be O, The vanishing of D

produces the three physical characteristics:

I characteristic 3% = w+¢C (2-11)
II characteristic X=u-c¢ {2-12)
III characteristic g—?‘f = Y (2-13)

Notice that the III characteristic is a path line,

U
ax 1s

indeterminate and therefore may be discontinuous, To insure that %%

Along these physical characteristics, the derivative

is indeterminate but not infinite, the numerator, ) of equation (2-10)
must alsc vanish aleng the characteristics, Along the III character-
istics, (udt - dx) = 0, N = O identically; the vanishing of N along the
other two characteristics yilelds the following state characteristics,

(or compatibility equations)

du = 7 %’g— T (v-1) &gt o (2-34)
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where the upper sign refers to I characteristic and the lower sign
refers to II characteristic,

When equations (2-9) are solved for the other derivatives, we have:

2 = L (udt -dx) [-O-0 5 dixelt-(udu+ S (u L)dadt] (515
%§ = & (udt-dx) f[—co—:) ﬁ‘%‘—'Jt ~dp](udt-dx)+ ecZAth} (2-16)
—g =5 th—a!X){ (v-1) MJX +ud f](udt—Jx)- dpdt-pctudx{ (2-17)

The vanishing of the numerators of %% , %; and —g—% yields

results which are identical to those for %g? .

Vhen equations (2-9) are solved for %9 and %% ve have

%—; f(ud’t J/”:’)[(z(\’ ')ﬂidj c’ qudt-dx)

+ pdudt] +cal(’(dt) pdt) (2-18)
2 = 4 { (udt-dx) [ (90 Bdx + udp)(udt-dx)

- (deu]+df:dxdt‘ - uc:’alf(dt)’} (2-19)

The vanishing of the numerators of '%§ and ~§% yields, in addition

to equation (2-14), the III state characteristic
!
Ae = zrdp (2-20)

It is convenient to eliminate the density @ from the characteristic

equations by the relation czzwwku When this substitution is made, and
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the I1I state characteristic equation integrated, the following
characteristic equations, in terms of p, u, and c are obtained,

State Characteristics

du), = -}5,; (dp). - (v-1) -%E(a!t)I (2-21)

(du),

(P -

The constants ¢®* and p® must be evaluated for each III character-

spEp), + (V-D5EEL), (2-22)

o
WSS N R ¢
N

frorrd EBd B3 B el e

PERWE TR Y

PEER N

T
R e S N

e By |

istic,

In the numerical procedure of the method of characteristics, all

G Rl > SR X
- T

governing differential equations are put into finite-difference form,

"
- oo

Thus, equations (2-11) to (2-13), {(2-21) and (2-22) become

3 AN _ =+~

3 along I and II at © 4 - ¢ (2-24)
! - £(ap). 1C

g = = V- 'g'.-:-) -
. au =1 p(r ¥ -0 () at (2-25)
o

= along III AX _ (2-26)
: 8 2t = 4

wvhere A represents the difference between two adjacent points along a
characteristic and the barred values represent the average between the

two points, Notice that referring to the pivotal point (mesh point)

R e
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Kep AU= U -, is the backward difference of u; although it is

sometimes congidered as the central difference at "half-way" point
xi‘-i‘ .

3. Normal Shock Equations

The equations expressing the conservations of mass, momentum and

energy across a2 moving shock are:
QU =0 [U *#(u-uw)] (2-27)

2
p+eU =k +6[U 2 (u-u)] (2-28)

2 Ut (u,-u z
H, + U . H, + [U g:‘ 227

5 (2-29)

where U is the shock velocity relative to the medium into which it moves.
Subscripts 1 and 2 refer to the states ahead of and behind the shock
front respectively., The upper sign applied for shocks travels to the
right and the lower sign for left traveling §hocks, but U is always
taken as positire, To make these equations more suitable for later use,

the following algebraic manipulations are in order., For polytropic

gases w2 have

H

T = ?L(e) (c,-cv)(f) Z"?ﬁ(ﬁ)

2 r(-g-)c2

therefore H = -7 (2-30)

Since
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Using relation (2-30), equation (2-29) becomes
2 ¥-/
¢;-¢l = - Blou-w)[(y-w) £ 2U] (2-31)
From equation (2-27), we get

o - AU (2-32)
2 U k) (u;-ul’)

Substituting (2-32) in (2-28) we obtain

P-bh=3f0U(ut) (2-33)
Equation (2-33) can be written as

2
c;;f, - ‘aa‘fz = QU (w-4%) (2-34)

Eliminating @, from (2-34) with equation (2-32) and rearranging, we get

.. UG t yU(y-uy) 2
G- Ureeuy T T TULNTR (2-33)

Elimination of c% from (2-31) with the help of equation (2-35), we have
T <
+ 2C g_ =

w=w & (-7 (2-39)

Substituting u, from equation (2-36) into equation (2-33), writing

N e e emiy em o e e ——— e e e
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' ?%%, end then solving for U yields
[}

U= C,,/‘%! (—;";'— l) + | (2-37)

Substituting u, from equation (2-36) into equation (2-31) and solving
for ¢,y yields

Y IR N ) EN

Equations (2-36), (2-37) and (2-~38) are the ones actually used in the
calculations, For very strong shocks where .%?>> { , equation (2-37)
L}

can sometimes be approximated by

U~ of5 (E) (2-39)

It ie evident from equation (2-39) that -%g >> [ . Consequently
()

equatfons (2-36) and (2-38) can be approximated by the following simple

forms:

u3= Y, by T+ (2’40)
c _ANzy(r-1) U
2 = r+/ (2-41)

Strong shock equations, (2-39), (2-40) and (2-41) are used in the
calculations of the blast wawves where these relations are consistent

with the similarity solution of the blast wave,
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IIT SOLUTIGN OF THE PRESENT PROBLEM

oY, T

1. Choice of the Basic Numerical Technique

There are two major basic numerical techniques in the application

of the method of characteristics. One is the standard technique of

integration aleng the two main characteristics, while the other follows

ki
- o e

the Hartree scheme, which involves fixed time intervals. These techniques

were discussed and their applications were demonstrated in (23), (24) and

—t 4

(25), where it has been shown that both numerical schemes produce very

i

accurate results when applied to the blast wave problem, provided the

region with extremely high speed of sound is excluded. It is reasomnable

R G AR A Lo
LT e

to assume that either of the two methods will yield accurate results when

A

applied to the expansion of high pressure sphere.

e |

In applying the standard technique, the points of intersection of

oier T

two families of characteristics do not occur at equal intervals in either

P

the space or time coordinates. When the spatial distribution of the

(X B E M il A O S

flow variables at a later instant is required, we have to perform a

Cm AT e

two-dimensional interpolation, which is not always desirable.

The constant time technique overcomes the difficulty of uneven
distribution of grid points by choosing grid points on predetermined
constant time lines. This has the advantage that the required inter-
polation is always one dimensional.

The Hartree scheme gives results along particle paths in successive

sk eok ol SRR
B

steps, therefore it is advantageous in dealing with present problem
where an interface (contact surface) is involved. Difficulty may arise
in applying the standard technique to solve problems, where shock

formation is expected. Suppose the solution along characteristic 0A
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and to the left of it (see Fig. 1) has been obtained without the prior
knowledge of the formation of a shock at B which is the intersection of -
two characteristicsof the same family. Let BL be the subsequent shock -
path; then the solution in the region ABL is wrong, since no .account was
taken of the shock to establish it. To obtain the solution in this -
region, the data required such as solutions at points 1, 2, 3 and 4 are
generally destroyed in order to save storage space. This difficulty can
be overcome either by keeping the points, at which the shock is most likely
to occur, at greater time values than their neighboring points or by retain-
ing large amounts of data, which might be useful for corrections due to the
occurrence of the shock, in the memory. The former wmethod causes compli-
cations in programming logic and the latter needs extra memory spaces.
They are both undesirable in computer talculationmns. .-

The shortcomings of the Hartree scheme are generally believed to be

that it is less accurate and more time consuming. Nevertheless, the
results of the calculation for the plane blast wave by the standar
technique and Hartree technique showed that the same accuruacy was reached
by both methods within comparable computer time. The main reason for this
favorable result is because in applying the constant time method, the
initial data points are on the same time line, therefore quadratic inter-
polation can easily be used in determining the flow properties at points
other than the initial data points. As quadratic interpolations are
generally more accurate than linear interpolatioas, this in turn improves
the accuracy of the new point to be calculated. Consequently, in applying
the Hartree technique, we are able to start with fewer initial data points
in the beginning of calculation and still attain the same degree of accuracy.

As a result, this compensates to the same extent the time required in carrying
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out extra interpolations. It may also be attributed to the more even
distribution of data points throughout the region of calculation when the
Hartree scheme is used. By now it is evidert that the Hartree technique
is preferable for application to the present problem.

Althcugh the baszic numerical technique for the Hartree scheme of
method of characteristics has been developed in refereance (25), nevertheless,
due to the complexity of the present problem, quite a few difficult points
still need to be rasolved. In this section, the method of handling the
initial singularity, methods ¢f initiation of the second shock, and some
other problems pertaining to the solution of the present problem will be

discussed.

2. Starting Singularity

Tmmediately after the release of the high pressure sphere, an outward
traveling shock, which will be referred to later as the main shock to dis-
tinguish it from the second shock formed at a later time propagates into
the stagnant air; in addition, a contact surface which separates the gas
and the air, and a centered rarefaction wave, are initiated from the
boundary. (See Fig. 2) The existence of a second shock at the tail of
the rarefaction has been discussed by many authors, i.e., Wecken (10),
Whitham (8), Berry and Holt (19), etc. It is also known that the strength
of such a shock is zero at the beginning and remains very weak in the early
stage of the expansion. (See initiation of second shock.) Therefore, to
avold further complication cf the already very intricate starting singularity,
no second shock was introduced in the initial singularity. This introduces

practically no error at all, since the error in not comsidering the
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second shock is of third order, which is practically zero at this stage.

At t = 0+, the time increment At approaches to zero and dif-
ferences in characteristic equations between the plane and spherical
cases vanish,

For a given high pressure sphere surrounded by atmospheric con-
ditions all the flcw properties ure specified for points 1 and 2, What
has to be established are the properties at points 3 and 4, Point 3,
situated between the tail of the rarefaction wave and the conta;t sure
face represents the expanded gas on the left of thz contact surfac;,
wvhile point 4 corresponds to the air engulfed by the outward propa-
gating shock on the other side of the contact surface, Notice that
across the contact surface, the pressure and velocity are continuous,
f.e., 3= 1y and ug = U, However, the speed of sound ¢, may be
different from C4e This depends on the initial conditions of the high
pressure gas and that of the atwospheric air,

Flow properties at points 3 and &4 can be determined analytically
by the shock relationships Jetween points 1 and 4, the isentropic
expansion relation between points 2 and 3, and the boundary conditions
across the contact surface, u, - ua and p3 b pk'

For the centered rarefaction wave the flow is isentropic, and

points 2 and 3 are on a I characteristic line., ¥aen the state

characteristic equation (2-14) is simplified for the plane case ( V¥ = 1),

we have

dw; = - e @p); G-1)
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For isentropie flow of polytropic gas with ¥ = )’2 the following

relationships hold

c*=1, ‘g (3-2)

P (’-ﬁ =~ constant = K, (3-3)

With equations (3-2) and (3-3), we can write:

‘= K¢ . (3-4)
Putting equgtion (3-4) in differential form, w2 obtain

2cdc = K& (1) Hp (39
DPividing (3~5) by cz, we get

2 %—C = (%-1) %E (-6)
Differentiating (3-3) and rearranging yields

dP = Fz-g-df = Csz (3-7)

Eliminating dp from equations (3-7) and (3-5) we have the expression:

d
2¢C = <zr,-r)-e-§- (3-8)

. e e — - - e e i D e R —— e e



EE]
o\

vt

- e e s

- 24 -

Again by elimination of dp from equation (3-1) and {3-8), we finally

get

du), = - 722?{ (de), (3-9)

-2 =
Therefore vy - u, = Yo-1 (c;-C), . With u, =0

z
Ug = = =7 (% C)

This equation can be written as

u 2 ¢
3 = - 3
. A ( l Cz) (3-10)

Introducing the isentropic relation between points 3 and 2

28,
& - (ﬁ_)*‘r
f2 -
equation (3-10) becomes
&=l
Y _ 2 | - (_Pé_ 2%
¢, &l P: (3-11)

For the right.ard traveling shock with u, = 0 and ¥=)7, the cor-

responding shock equations (2-36) and (2.-37) are

_2_._(_03 _ S
Ue=T3+7\C, Ty (3-12)
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and

L+l [ P
U, = C‘A/;_J, Tt"’)*’ (3-13)

Eliminating A from equations (3-12) and (3-13), we obtain

2

- |

U,

- - 3-14
¢ Y, N/ | + GFT Fk ,;j (3-14)

I

Since Y, = uy and P, ™ Pa» equation (3-11) is equivalent to

i EALGRPREE] e

Equating the expressions for u, in equations (3-14) and (3-15) and

solving for -%— , We get:

p, . 2%

LR ! .
o R

2F,

Rere in equation (3-16), P, is the only unknown. Once the initial
conditions of the gas as well as that of the atmospheric air are
known, p, can be evaluated,

The Newton-Raphson iterative process was used in the calculation
of Py and no difficulties have been encountered, After Py is
determined, the remaining unknowns can be obtained in the foliowing

fashion: the shock velocity can be calculated from equation (3-13),
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then v, and ¢, can be evaluated from equations (3-12) and (2-38),*
respectively. Since p, = P3 and u, = ug, the only unknown left is
cy which can easily be obtained from equation (3-10). Now everything
has been determined for x = X, and t = oF .

Again, referring to Fig, 2, at time t = t, = At (a small time
interval) the physical locations of points 8, N, 5 and 7 as well as
the flow properties between 8 and 7 are to be determined,

For a very smail time interwval, at, the flow properties in the
regions NO5 and 607 vary very little, Therefore, in changling the
differential equations into corresponding finite difference equations
and interpolating properties between points can be made without
incurring much inaccuracy, However, this is not the case for region

80N, the centered rarefaction wave region, where flow properties,

even though continuous, vary very rapidly with respect to both x and ¢,

no matter how smail At is, To overcome this difficulty, the centered
rarefaction wave region was divided into many small segments separated
by the II characteristics issuing from point O,

At point 0, the pressure difference between neighboring II
characteristics are chosen to be equal, It is known that flow proper-
ties change gradually along each II characteristic, Therefore the
variation of flow properties within each segment will be small, Hence
it is permissible to obtain the solutions for points from & to N
successively with finite difference equations along characteristic

directions,

* Replacing subscript 2 with &,
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Since the head of the rarefaction wave propagates with a
velocity u -~ ¢, where u = 0 and ¢ = ¢, = constant for the undisturbed
gas, therefoce, 08 traces a straight line with slope Gf%)n ==-Cz,
Knowing the location of point 8 and all the flow properties along
55, the solution for point 9 can be established,

Let 9' be a point on 09 near point 0, then the pressure at point
9' Py =P, +_§_;sz_, vhere ¥ is the total number of segments chosen

in the rarefaction wave region., The particle velocity u,, and speed

9.
of sound g, can be calculated from equations (2~23) and (3-9).

pa 2l
£

and

= 2
Ug' = Y2 = T (cy = C2)

where u, = 0

2

KXnowing the location of point 8, all the flow properties along
28, and the initial slope of the II characteristic line at 9', the
solution for point 9 can be established wikh the help of the six finite-
difference equations along the three characteristic directions, This
is accomplizhed by ifterative process similar to the one used for the
interior points, (see Ref. (25)) with the only exception that the
initial data are not located at a constant time line,

Essentially the same procedurc can be used to obtain solution for
points 10 to N successively, Here the distribution of flow properties

along each of the II characteristics is assuned to be linear,
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The solutions for points 5, 6 and 7 are interrelated, They have
to be solved simultaneously through a rather complicated system of
aigebraic finite-difference equations, They are (refer to Fig, 2)

finite-difference equations derived from physical characteristic

equations,
Along Ig Xs=%p _ g+l y Qa+& G-17)
at- tA b 2
xs- XO = u3 + Ll5
Along III8 px 2 (3-18)
7(7"'7(0 = L(c-H.l-, + C¢+C7
Along I, at-t, 2 2 (3-19)
X —-% +ug Cy+Cg
-Along 11, At-gs = l“KZ - —P?—' (3-20)
%o = U +Ug
Along III, at 2 (This equation is identical

with equation (3-18) because

X6™Xs, u,=u, and “6““5)

And finite-difference equations derived from state characteristic

equations:

CstCa _ (st Ua )6t Ga) -
Mong I, us-us = ~F 7T (ps=1)-—% 7% (at=14) (3-21)
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2%

E ()&

Along III, B~ \g
G +C (1% 4 )(G+ )

Along I, U, - U = —m(ﬁ'fc)— ? %, T %,
CtCp

Along II, Up~Ug = (f’;*‘ﬁs)_(?é fs) + (u;;u;g&%

Along III, & = (_._>7‘7'

The shock relatiens

4+
1]7 = Chj ;2;{ {) +-/
2¢ v, &
U; = ¥3; ('c_z"

{q = cl{-l+

(At-'tc)

(at-ts)

200, )2 ()2 ][

By the definition of velocity of the shock, we can write

dt ) shock

o U Uy,
2

- 5%

atl

(3-22)

(3~23)

(3-24)

(3-25)

{3-26)

(3-27)

{3-28)

(3-29)
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Assume that At is small enough such that within the region under
consideration, the tail of the rarefaction wave, the contact surface
and the shock front can be approximated by straight lines, And further-
more we essume that the flow properties aré linearly distributed along
these lines. Then we may write

Xn—X%, = Xa- 2,
At 'L‘A (3-30)

x"" XO Xc—xo

]

;

at -~ T i, (3-32)

and nine linear interpolation equations for flow properties at points
A, B and C, Since solutions at points 3 and 4 are known from the
previous calculations, suppose At has begn preselected (to be dis-
cussed later), then the total number of variables involved in the .
above equations are 28, mamely: X5 u; ¢ ¥s, Xe, U, C, P, X7,
Uy, Cy, Pr, Uy, %a, Ta, Uy, Ca, Pa, %p, Ty, ug, Cs, P, X, te, U, Cc and P, .
Because 5 and 6 are points on two sides of the contact surface, ug ™ ug,
P ™ Pg and Xg ™ Xg, this reduces the total number of unknowns to 25,
Equations (3-17) to (3-32) comprise 16 equations, Adding nine inter-

polation equations, we have exactly 25 equations to solve for the 25
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unknowns, The solution of the above system of equations was
accomplished by iterative processes,

The accuracy of the numerical scheme was checked by applying it
to the numerical example given by McFadden (18) and the results were
compared,

McFadden took the case of the expansion of a high pressure gas
spkere, initially at rest, into surrounding air, Both the high
pressure gas and the ambient air are assumed to be diatomic gases
with ¥ = 1,4, The initial pressure ratio of the gus to that of the
surrounding air is 12,8173 and the density rsatio is 3,9560, Com-
parable results at 2 time when the head of the rarefaction wave
traveled a distance of 5% of the initial radius of the gas sphere

are as follows,

McFadden's series Results by method of
sclution characteristics
x‘* 1,055 ¥ 1.055
Xy 1,035 t 1.035
X, 0,992 t - 0,992
& 4,33 ¥ 4,333
4 4,29 4,298
L 4,2 k 4,236

* x denotes the physical position and the subscripts s, i, and t
are used for the shock front, the contact surface and the tail
of the rarefaction wave, respectively,

t wvalues calculated according to McFadden's solutionms,
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%% values presented by McFadden,

Considering the fact that these results by method of character-
istics were obtained through a single time step, it is gratifying to
see such & good agreement with McFadden's series golution, In the
actual calculation of the high pressure sphere, smaller time steps
(approximateiy half) are employed, Therefore, the cluims for accuracy

ef this numerical procedure are warranted.

3. Second Shock

After the release of a high pressure sphere, in addition to the
rain shock propagating into the atmosphere, there exists another shock
wave, which is usually referred to as the second shock, formed at the
tail of the rarefaction wave traveling into the expanding gas. The
existence of the egecond shock was first predicted by Wecken (10) on the
basis of extensive numerical calculations of a spherical blast from
certain explosions, Berry and Holt (19) analyzed the initial disturbance
of the spherical blast from certain explosions by series expansions
and showed that the singular characteristic initially in the direction
of the tail of the rarefaction wave developed into a shock wave, The
same phenomenon £s found to occur for the expansion of a uniform high
pressurz sphere as a result of the formation of a compression wave
behind the tail of the rarefaction wave. If a very small left traveling
iscontinuity is introduced, it grows steadily into a finite shock,

The second shock, though growing with time, remains very weak

until the time when the head of the rarefaction wave reaches the center
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of the sphere, then it starts to grow in strength rapidly, The strength
of a sheck is defined as the ratio of the difference in pressurec across
the shock to the pressure in front of the shock., Since there is no
second shock at t = 0, and the initial rate of growth is slow, there~
fore exactly where or how large an initial shock discontinuity to be
introduced in the beginning is of little influence in the general
results, as long as it i{s inserted before the head of the rarefaction
wave reaches the center and the magnitude of the discontinuity is vexy
small, This fact can be observed in Fig, 3 and Fig, 4, where curves
showing position and the strength of second shock vs time are plotted
for shocks initiated at different times and with different initial
discontinuities, These curves also can serve the purpose of showing
the general behavior of the second shock, It is called a left traveling
shock because it propagates toward the left with respect to the gas
particles in front of it, Depending on the values of the particle
velocity u and the shock velocity [, the absolute velocity of the
shock front may move toward either left or right, However, as the
shock grows in strength, it will eventually acquire an absolute
velocity toward the center of the sphere,

The general procedure in the initiation of the second shock is
described as follows:

Suppose a second shock is to be initiated at the time t = t, (see
Fig, 5), then the calculation in the rarefaction wave region will end
at point 8, which {s on the II characteristic immediately adjacent to

the left of the tall of the rarefaction wave,
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The shock at point 7 is {nitiated by inserting a siiock
discontinuity of negligible strength at peint 2 on the initial time

line, Let ji;l§=e << 1, then uz, €y and UB can be calculated from
2

the shock relations

c2[r+l l)+l
= o 1+ 5B (LY ()" (5-1)]

26 U 4
U.;-"—'uz" azfi (CZ- 3)

U, =

I

Now everything is known for points &, 1, 2, 3, 4 and 5, Write the

finite-difference equation for physical and state characteristic

equations,
Along Ilecharacteristic
- Xa o Uaru, Ca+Ce
t,-Ta 2 2 (3-33)
Co+ €A (ug+u
- = - (3 "l(cﬁ" ca) +
Ue - ta 3}(&*&)(?" ) - (% +%a) (t:-%) (3-34)
Along IIIl-characteristic
Xe=Xp _ Uy +u,
.tz_t’ 2 (3"35)
24
.té = (f_‘..) %=1
¥ 3 (3-36)

By Sored  Geewd  fswed Ml e Bl

o

~m

-~

-

L2 ]

X

A |



Save ~

B T e i

sy

i e e —d

TRE RS el

Along IIl—charac‘ceriscic
X=X _ Ugru, _ CatGp
at ~ 2 z

= Cot+Cs (n_&),,_ﬁ“b“’a)(_fﬂcb)

%, (Perta) (%e+ X8)
Along IX, -characteristic

_’i@—xt = u7+ut. — C7+C¢
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u7_uc <7+CC (r7-fc>+ (u7+u6)(c7*Q) A't
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Across the shock we can write:

S
"

Cfa;-:-/ ?’7
éN 2%,
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I

¢

ol 1o 2R (L) (5

From the definition of shock veloeity

X=Xz _ U-TUy+u-U
at 2

- e e e ey e~ e e e o md e S s e i R

" (6 )]

3-37)

(3-38)

(2-39)

(3-40)

(3-41)

(3-42)

(3-43)

(3-44)
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Assuming the 251 charactaristic 18 is a straight line, then two more

equations can be written:

st - t,~-t4
?(8-?(, Xa”xﬂ (3'45)
at_ &b (3-46)

Xg Xy %g~%p

By asguming the flow properties are linear along 18 and 12 ylelds
nine equations for linear interpolation of properties at A, D and B.
Since the flow properties varyiag rapidly between points 3, 4 and S,
three quadratic interpoiation formulas were used in determining s cc,
and Pge Adding the 12 equations from interpolating the flow properties
to the 14 equations (3-33) to (3~46), makes a total of 26 equations,

There are exactly 26 unknowns, namely: xg, Ug, Cgs Pgs U7, Uy, Cy, Py,

Xpo tAo Ups Cas Ppyr Xp» tD’ Ups €ps Pps Xg» Ugs Cpy Pps Xp» Yoo Cor and
Pce The approximate solution of this system of equations c¢an ve arrived
at through an iterative process without difficulty,

4, Contact Surface

One of the advantages of applying the Hartree scheme in the calcu-
lation of the present problem can be appreciated from the easiness in
treating the contact surface, Sipce the contact suréace is formed by
particle paths, essentially the same numerical scheme as for the fnterior

points can be used with the only difference being that the isentropic
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relations along particle paths yield two equations rather than one
equation in the case of an interior point, Thias is because across a
contact surface pressure and particle velocity are continucus but the
speeds of sound usually are different, Finite-difference equations
along characteristic directions are similar to those of the interior
points which are shown in reference {25). In the solution of these
equations slmost the same fterative procedure for the interior points

can be employed,

5. Choice of Time Step

The choice of the magnitude of the first time step at, is
arbitrary except for reascns of accuracy and computational effort,
This time step is usually kept in a range that in such a time interval
t he head of the rarefaction travels a distance approximately equal to
3% of the initial radius of the high pressure sphere,

In the subsequent calculations, the Courant condition Aat< %..E,
which was discussed in reference (25), 1s observed, However, before the
head of the rarefaction reaches the center, the cholce of time steps

are further limited to be not greater than At,, the very first time

1’
interval seiected, Within the domain of these limitations we have
always chosen the largest time steps allowable,

In determining the time step for a new time line, it is necessary
to‘scan through ali the neighboring daca points on tﬁe initial constant
time line and select the largest time interval permissible, A data

point distribution, along a constant time line, which makes every local
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maximum allowable At the same would be most desirable for the sake of
computing effort, However, generally this is not possible, Neverthe-
less, with this in mind, we occasionally rearranged the distribution

of initial data points in the course of the computer calculation,
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IV RESULTS

Due to the complex nature of the flow field, the calculation is
divided into three stages, as shown schematically in Fig, 6, The
first stage of calculation starts from t = 0 and ends at the tipe
when the head of the rarefaction reaches the center of the sphere,

The second stage of calculation terminates just before the inward
shock reaches the center of the sphere, The third stage includes a
triangular region bounded by the constant time line IE, the shock
front BD, and a line AD, Point A is placed some distance away from
the center, The slope of AD is chosen to be smaller than that of the
local I characteristic, (because the condition 4t <~%§) thus the
reflected second shock does not affect the regicn to the right of
1ine AD,

In order to make the results more gencral, the dependent variables
u, ¢, p and the independent variables x and t were ron-dimensionalized
with appropriate parameters of the atmospheric air and the initial
total energy released in the expanding sphere, The non-dimensional

variables include:

ressure = —
w

particle velocity @ E e

- 39-.




speed of sound g = -2—
'
e
density M= 'F'
!
X
radius A=F

1. General Peatures
The general behavior of the expansion of a high pressure sphere
can best be ghown by a numerical example, Results of the expansion of

a high pressure sphere initialiy with pressure ratio T, = 100, density

ratio "l,w 1,16, and ¥, = 1,4 as calculated by the Hartree scheme, are
shown in Fig, 7 to Fig. 12.

Fig, 7 shows the propagation of the main shock fellowed by the
contact surfuce; both travel outward with decreasing speeds, A second
shock appears at a later time, even though it travels to the left
relative to the gas, for a moment it is moving with an absolute velocity
toward the right, However, as the second shock gains strength with

time, it soon acquires an inward movirg speed and then races toward

3

the center at an accelerated pace,

The decay of the peak pressure, T = -g- , where P, is the pressure -
[

{mmedi ately behind the main shock, 1s shown in Fig, 8, The rate of

decay decreases as the main shock moving to a larger radius, Pressure

profiles are shown in Pig. 9 and Fig, 10. The first curve (T=0) in

Fig, 9 is the initial pressure distribution, and the second cuvve -
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(t = 0.0026) shows the pressure profile shortly afté} the release. The
rarefaction wave moves toward the centexr of the sphere and reaches there
at t = 3.023, By that time the second shock is already formed. Notice
the lowest pressure occurs at the tail of the rarefaction wave., To its
right pressure increases with A, the non-dimensional radius, and reaches
a peak at the shock front. At the contact surface, which is marked by

a bar, pressure is continuous, but its derivative with respect to A is
not. For clarity, curves shown in Fig. 10 are drawn with a different
scale from that used in Fig. 9. If this is unnoticed the general
appearance may be deceiving. At t = 0.030 the second shock already
gained considerable strength, and attained its extreme right position.
This rapid increase in shock strength is primarily due to the diminishing
of pressure in front of the second shock. After the main shock propagates
quite a distance, the pressure gradient behind it gradually decreases.
This can be seen by comparing the three curves on the eﬁtreme right.

Fig. 11 shows the profiles of the particle velocity at various time
instants. Particles, gaining speed through the expansion wave, reach
their peak velocity at the tail of the rarefaction wave. It is interest-
ing to see that at t = 0.045 the particle velocity behind the second
shock becomes negative, which means gas particles are pushed back toward
the center. This negative velocicy reaches very high value just before
the second shock implodes on the center of the sphere.

The profiles of the speed of sound 8 = %— , are presented in Fig.

1
12, Since for a polytropic gas, temperatures is proportional to square of
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the velocity of sound, therefore these curves can be intexpreted as
the temperature profile with square root of temperature ratio, -%% ’
as ordinate, Initially the high pressure gas iz at a much higher
temperature than that of the outside air, Immediately after the
release, gas temperature reduces through expansion and in the mean-
time air tcdperature rises after experiencing a shock, However, the
cifference in temperature remains quite large across the contact
surface which separates them, It is shown thatthere is a big jump in
epeed of sound from the right to the left across the contact surface,
The speed of sound at the center becomes progressively lower as a
result of expansion, but the implosion of the second shock will raise
it again,

In an attempt to investigate whether the distribution of the flow
properties of the expanding high pressure sphere at late times approaches
that of Sedov's blast wave solution, the distribution of the three flow
properties were once again plotted in a somewhat different fashion,

Fig. 13 shows the ratio of local pressure to the corresponding peak
pressure against the ratio of local radius to the corresponding radius
of the main shock front, for several late times, The solid curve
labeled as Sedov's blast wave solution was based on the numerical

values given by Sedov (2). Similar curves for particle velocity and
speed of sound were presented in Figures 14 and 15. 1t is seen that the
pressure distribution adjacent to the main shock front for the expanding

sphere approaches that of the Sedov's blast wave solution as time
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elapses, However this conclusion camnnot be applied to the other two
flow properties, particle velocity and speed of sound., In fact as a
whole the flow field resuited from the expansion of a high pressure
sphere is quite different from that of Sedov's blast wave solution,
Nevertheless the destructive effect of a blast wave usually is deter-
mined by tﬁe peak pressure of the blast, As will be shown later in

the section on late~-stage equivalence, the peak pressure of an
expanding high pressure sphere can be approximated by the corresponding
Sedov's solution with equal total initial energy in a region when the
main shock has propagated some distance, and the peak pressure still
above 10 atm, Therefore, for a rough estimation of the damaging effect
resulting from the shock pressure of the expansion of a high pressure
gphure, the corresponding Sedov's blast wave solution, equal energy, can
be used.

Some numerical results of the expansion of high pressure spheres
were reported previously by Brode (26). Those results were presented in
rather sketchy curves with ill-defined boundaries, Therefore, it is
impogsible to make a precise assessment of thelr accuracy., However,
judging from our calculations of one of Brode's examples, his results
are in considerable error, even in the region corresponding to our first
stage of calculation, The error in peak pressure is estimated to be of
the order of 10%. Even larger errors, more than 2oi, in pressure
occurred in the rarefaction wave region, Moreover, the oressure profile

3rode identified as second shock was so widely spread that it could

hardiy be called a shock. MNevertheless, despite all tnese discrepancies,

B SN,




- b4 -

qualitatively Brode's resuits are in general agreement with our

calculations,

2, Late-Stage Equivalence

A. Late-stage equivalence in hypervelocity impact,

Before we discuss the principle of late-stage equivalence in
expanding high pressure spheres it seems appropriate to review some
related background about the general concept of late-stage equivalence.
The principle of late-stage equivalence was first proposed by Walsh
et ai (27) in studying effects of hypervelocity impact, It stipulates
that projectiles of different mass and velocity striking a target will
give rise to target flows very nearly identical at late times, pro-
vided the product of mass and the velocity raised to the & power (h%““)
is the sam2 for all projectiles, This principle is assumed to be
applicable within the hydrodynamic phase of the hypervelocity impact
vhere the interaction is governed by equations of fluid dynamics prior
to the onset of material strength effects, If two impact flows during
the hydrodynamic phase of the interaction are equivalent, then the
strength-dependent phase of the motions will also be equivalent, There-
fore, the property of late-stage equivalence enables one to extrapolate

the existing experimental results from impacts at comparatively low
velocities attained in controlled experiments to the'meteoric velocity
which is not accessible to laboratory experiments,

Por one-dimensional impacts of materials with ideal gas equation

of state, Walsh et al (27) showed that by assuming impacts are late-
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stage equivalent on the basis of M,,V.“ rather than dependent on Mo and
v, individually led to the results that the flow is of self-similar
type., The analytical similarity solution and a solution by finite-
difference calculaticn (SPUTTER code) of an ideal-gas impact, with

¥ = 1,4 were found to be in good agreement at late times on the basis
of equal ﬁovol‘s. Recent work by Chou and Burns (28) reported
extensive calculations for the same problem employing the method of
characteristics demonstrated also that the shock fronts produced by
different one-dimensional impacts approach each other in position and

5

in strength at late times provided Movol’ is constant,

In the case of axisymmetric impact of ideal-gas the problem is
fully characterized by given values of ¥, the initial density f,, the
characveristic length of the projectile L, and the impact velocity v..

From dimensional considerations, the solution must be functions of three

: Yy z tV,
nori-dimensional wvariables, Lo 5 and T:’ where r and z are
cylindrical coordinates with origin at the center of the initial sur-

face of impact, 71ne assumption of late-stage equivalence on the basis

of M.V," or LOV% is to require that the solution not contain Los Vo
es individual parameters, The solution must approach at late time a

flow expressible in the form:

o'+ | z“l“
e =0 81(14' ’ 1™ 7’)




Ve Y 2 r_ o
- =10 - = =
wvhere T L, R T, Zz T and & = 3-, This represents a
similarity solution; i,e,, the number of independent variables is
reduced to two instead of the origiral three, The similarity solution
spparently still cannot be solved analytically without additional

Kd
approximations, However, it is possible from the form of the solution

to determine the relation which must exist between the shock decay rate

and o’, shock pressure decays as z* , and between the rate of
increase of total positive axial and total positive radial momenta and
(%ac'-Q
+
&’. These integrated momenta increase as t ! . This is because

ul
the distances increase an t‘”’l, mass engulfed therefors increases as
«’ -l
‘;'T ol't|
t “*", and velocities decrease as T » 50 that the momentum

341
within corresponding elements of volume varies as T +« These

results can be compared with the computed solution determined without
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a3suming late-stage equivalence, Walsh (27) calculated a problem of
right circular cylinder of unit aspect ratio impacting a semi-infinite
target using the Eulerian code, and found that the calculated solution
agrees at late times with the similarity solution, The value of o’
determined from the shock decay rate and the increase of momenta is
2 = +59 which corresponds to & = 1,77, These results are for ¥ = 1,5,
Por solid-solid impact, Riney (29) proposed a visco-plastic model
which bridges the transition from the early hydrodynamic phase to the
later stages when strain-rate and strength effects become important,
Calculations for a cylindrical projectile impacting a thick target of
like material at various velocities were carried out to the point where
atrain-rate and strength effects can no longer be neglected., Upon come-
paring the flow field resulting from impacts of different velocities

Riney found that the fiow fields are essentially equivaient except for

the initial stage of the cratering process if the geometrically similar

2

projectiles are chosen to have the same kinetic emergy, M V. “, at impact,

In short, the concept of late-stage equivalence of hypervelocity
impact on the basis of N%\Q“is established on numerical evidence rather
than on theoretical grounds, However, the most important general con-
clusion from one-dimensional impact, the axisymmetric ideal gas impact
and solid-solid impacts 1s Lhat impacts are equivalent on a basis inter-

mediate between equal projectile momentum and equal prdéjectile energy,
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B, Latee-stage equivalence in expanding high pressure spheres

In view of the evidence of the late-stage equivalence in hyper-
veldcity impact, it leads us to the investigation of similar equivslence
in expansion of high pressure spheres, Based on the numerical results
of the present calculation, late-stage equivalence is found to exist for

the expansion of high pressure spheres with various initial conditions,

provided the initial energy released, F, = 3-'3—'”(’;:,"“);(,3, in each of the

spheres i3 hela constant, Late-stage equivalence is assumed to exist
if the peak pressure distribution for different expanding spheres are
the same at late times, This is demonstrated by Fig, 16 where peak
pressure vs, radius curves of expanding spheres with equal initial
energy E0 but different initial radius, pressure and density are shown
in logarithmic scales., The purpose of choosing lugarithmic scales is
to cover the extremely wide range of peak pressures, from T, = 2000 to
T, = 2, in a single plot, Accompanying these curves the corresponding
point source solution is also included in the plot, The point source
solution represents the extreme case of a high pressure sphere of zero
radius,

In the high pressure region, the peak pressure distribution of the

point source solution can be derived from equations given by Sedov (2).
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where P, is the pesk pressure, x6 is the position of the shock front
and ® {5 2 conatand proportional te E,, Uie total energy released
initially, According to tha point ¢.cyze formlation the total energy

of the disturbed gas remains constant, Therefore, we have

X

E = };s * xidx +f—ﬁ‘m"%‘

]

The first term is the kinetic energy and the second term is the

internal energy, Introducing non-dimensicnal quantities, we can write
(' wr2.2 '47r‘/h?3}fﬁJA
- +..—_
E = {ZKJORVAJ)\ 1 J, E
wvhere

4 u
V = 5@F0R U

T
P = 25(r+) A ¥

- X
A S X,

It can be shown that the sum of the integrals in the square bracket is

a function of ¥ only and for ¥ = 1,4, E = 1,175E,, Since £ is defined

3
/ E,
s B let As be the non-dimensionel radius of the shock front-;k ’

then the relation between peak pressure and position can be reduced to
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the simple form,

T, = % = 0.1567 ?\;3
This is shown by the straight line portion of the modified point source
solution in Fig, 13. It is called 'modified point source" because
when the peak pressure ratio is less than 100, numerically calculated
results are continued from the point source solution,

For peak pressure T belcw 100, the point sovurce solution is
modified by taking into consideration the ambient pressure Py. This is
accomplished by carrying out a computation similar to the calculation
of similarity solution of blast wave by standard methodegf character-
istics, except this time exact shock relations, equations (2-36) to
(2-38), instead of the strong shock approximations, equations (2-39)
to (2-41), are utilized in the calculation, Numerical results obtained
are found to be in extremely good agreement with those of Goldstein's
(3). The graphical representation of the modified peak pressure dis-
tribution appears in Fig., 16 as a curved line with a positive radius of
curvature,

To keep the initial energy released constant, spheres with higher
initial pressure are associated with smaller radii, It is seen that
the peak pressure curve of a sphere with higher initial pressure decays
faster and coalesces with those started at lower initial pressure and
they all finally approach the modified point source solution, Notice
in every case, immediately after the release, the peak pressure is much

lower than the corresponding peak pressure of the point source solution,

I
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but it decays at a slower rate and exceeds the modified point source
sclution before they finally cozalesce,

If in addition we require the initial energy released to be

constant, the total mass, ﬁgifgxz, is also kept censtant, the lateeo
stage equivalence exists not only for peak pressure of the main shock,
but also for the positions for both the main shock and the second shock
in the physical plane (A-Tplane), This is revealed in Fig, 17 where
the main shock froat, contact surface and the second shock are pre-
sented for high pressure spheres with initial pressure ranging from

T, = S0 to T, = 500, The late-stage equivalence in peak pressure can

be seen in Fig, 18, This time, peak pressure curves are plotted in

" 1inear scales, Perhaps a presentation like this can be better

appreciated, Once again, the four cuxves, for T, = 500, T, = 200,
M, = 100 and T, = 50 converge together and approach the modified point

source solution at late times,




v CONCLUSION

The Hartree scheme was successfully applied to the solution of
the flow field of the expansion of high pressure spheres. A special
technique designed to handle the starting singularity was found to be
accurate, Results obtained by this method for the initial behavior
of the spherical expansion agree very well with those calculated by
McFadden's analytical solution,

The formation of a second shock from the previously continuous
flow field was found to exist at the tail of the left traveling rare-
faction wave., The strength of the second shock remains rather small
before the head of the rarefaction wave reaches the center of the
sphere, then it grows rapidly to very high strength, The path of the
gecond ghock in the physical plane is accurately defined and some
interesting features are revealed,

The numerical results of a typical example of the expansion of a
high pressure sphere were presented in graphs showing the propagation
of the main shock, the development of the.second shock and the propaga-
tion of the contact surface which separates the two fluids, The
boundaries of these discontinuity surfaces were accurately revealed,
Profiles of pressure, particle velocity and speed of'sound at different
times after the release were alsc depicted,

Based on numerous calculations, it is shown that "late-stage
equivalence" exists in the expansion of high pressure spheres into the

atmosphere, provided the initial total emergy in each of the spheres is

.52.-
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kept constant, If the initial condition is further limited to equal
masses, then the late-stage equivalence exists not only for peak
pressure of the main shock but also for the position of both the main
and the sccond shock in the x-t plane,

The method developed in this report can be extended to solve
problems for perfect fluids with equations of state other than that
of the polytropic gas, It may &lsc be extended to radially symmetric

problems with non-uniform initial properties and non~zero initial

particle velocities,
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