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ABSTRACT

IA numerical scheme of the method of characteristics, the Hartree

scheme, is developed to calculate the flow field of the expansion of

a high pressure sphere into atmosphere. The accuracy of this scheme

in solving one dimensional fluid problems is evaluated by applying it

to the blast wave problem for which the exact solution can readily be

calculated to a high degree of accuracy. It is shown that this method

is very accurate, involving errors of less than 1%. In calculating

the expanding sphere, two rather challenging problems, namely, the

initial singularity and the formation of a second shock, are suc-

cessfully solved through special techniques.

The propagation of the expanding main shock and the propagation

of the contact surface which separates the ambient fluid from the

Ifluid initially confined in the high pressure sphere are accurately
determined.

1 The formation of an inward traveling shock, or the second shock

j to distinguish it from the main shock, from the previously continuous

flow field is found to exist at the tail of the left traveling

rarefaction wave. Though the strength of the second shock remains

rather weak at the early stage of its development, it grows rapidly

I to very high strength just before it implodes on the center of the

sphere. The path of the second shock in the physical plane is

accurately defined and some interesting behavior of the second shock

[ is revealed.

i



Based on accurate detailed numerical calculations by the

Hartree scheme, it is shown that "late-stage equivalence" exists

in the expansion of high pressure spheres into atmosphere, provided

the initial total energy in each of the spheres is held constant.

Late-stage equivalence is assumed to exist if the peak pressure

distribution for different expanding spheres are the same for long

times. Moreover, if the initial masses enclosed in each sphere are J
also kept the same In addition to constant initial energy, late-stage

equivalence exists not only for peak pressure of the main shock, but

also for the positions of both the main shock and the second shock in

the physical plane.

Ij



1 NOMENCLATURE

c = speed of sound

c = constant speed of sound outside wave zone

c = specific heat at constant pressureP

c = specific heat at constant volume

E = parameter proportional to the total energy within the wave

E = initial total energy released
0

H = enthalpy per unit mass

K = constant

P = initial pressure of the high pressure sphere

P = pressure

Pi = constant pressure outside wave zone

S = entropy per unit mass

t = time variable

T M absolute temperature

u = particle velocity

U = shock wave velocity

x = space variable

I 0 = initial radius of the high pressure sphere

Y = specific heat ratio

1 p = density

PO = initial density of the high pressure sp,--e

P1 = constant density outside wave zone
E

:C = length expressing energy and pressure scaling ( 3 2)

I = energy reduced radial distance (X

IClt
= energy reduced time (-)

C
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I INTRODUCTION

I Ever since the discovery of explosives people have been interested

I in the behavior of explosions. Today. considerable attention is still

-4 focused on the gas-dynamics of explosions. It is very difficult, if not

impossible, to represent the actual situation in the initial stage for a

real explosion which involves chemical reactions, detonaticn waves, com-

$1 bustion or nuclear reactions. However after the initial stage, the

situation is essentially the expansion of a high pressure sphere. Even

this problem of expanding gas has no exact solution. Simplified models

as well as various numerical calculations have been used to study the

problem in the past.

The most well-known simplified model is the point source solution;

I while among the numerical calculations the finite-difference method and

method of characteristics are widely adopted.

V I. Point Source

In the so-called point source model it is assumed that a finite

amount of energy in an infinitely concentrated form is being released

: suddenly into the atmosphere. The solution of this ideal model will be

referred to as the point source solution in later discussions.

In the point source solutions of Taylor (I) and Sedov (2) the

I properties of the flow are essumed to be self-similar; the governing

partial differential equations are reduced to ordinary differential

equations.

Ii
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Taylor integrated these equations numerically and the results T

were presented in tabular form while Sedov successfully integrated

these ordinary equations and obtained closed .orm solutions. In their

analyses, strong shock relations were used across the outward propa- -

gating shock front. Therefore, the solution is invalid for shock

pressure somewhat below 100 Atm. Desides, 1,2 real explosions the

source of energy is far from being a point.

In order to extend the range of validity of the point source

solution, the exact shock equations must be used whenever the influence

of the atmospheric counter pressure can no longer be ignored.

To extend to low pressures Coldstine and Von Neumann (3) modified

the point source solution in the range from 100 atm. to 1.017 atm. A .

finite-difference method was used in the calculation with initial data

calculated from point source solution. Exact shock relations were used

across the shock front at low pressures. Numerical results were given

hich can be used to compare with our calculation.

Brode (4) also extended the point source solution in the range of

10600 atm. to 1.06 atm. with a finiti-difference method. However, Brode

used the artificial viscosity method in handling the shock discontinuity.

Since this particular method always has to spread the shock discontinuity

across several grid zones, the shock front cannot be clearly defined.

In a different approach Sakurai (5) modified the point source

2
solution by a series expansion in y, defined by Co, where co is the

velocity of sound of the atmosphere, and U is the shock velocity. The

zeroth order solution is exactly Taylor's solution. Higher order
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approximations supplement Taylir's solution such that the exact shock

Iequations are satisfied.

2. Numerical Calculations

A. Finite Difference

One of the earliest numerical calculations by the finite-difference

" Imethod was by Unwin ( 6), who in 1941, calculated a problem starting

from the sudden release of a spherically symmetric flow in a compressible

medium, having constant entropy everywhere, into the atmosphere. The

initial density distribution is so defined such that no shock will be

formed. Results are not applicable to the general case where shocks are

involved.

Roberts (7) used the finite-difference method developed by P. D.

Lax to calculate the same problem treated by Unwin. Lax's finite-

difference scheme introduces a viscous effect which tends to smooth out

discontinuities in the flow variables when they arise. Since we expect

SI a second shock which will be formed in the expanding gas for our problem,

therefore, it is reasonable to assume this method will not yield satis-

factory results.

: iThe attenuation of spherical shock it large distance from the origin

is investigated by Whith&m ( 8). As an approximation, the flow is

L I assumed to be isentropic in his etnalysis. He showed that for a weak

explosion, behind the shock front an envelope of characteristics ii

SI formed and hence it second shock must appear.

To handle hydrodynamic problems which involve shock discontinuities,

Von Neumann and Richtmyer (9) developed a numerical method. In applying

jt I_ _ _ _ _ _ _
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this method, an artificial viscosity is introduced, and shocks are

smeared out so that the mathematical surfaces of discontinuity are

replaced by layers of thickness comparable to several meshes. There-

fore, there is a lack of definition of the solution. Brode (4) applied'

this method to calculate the spherical wave produced by sudden release

of high pressure gas into the atmosphere to very late times. Due to the

nature of the method, which cannot handle the initial singularity at

the outer boundary, Brode's results are inaccurate even at the early

stage. One of his calculations with high initial gas density, the

overpressure vs radius curve presented in his paper is grossly in-

accurate.

B. Method of Characteristics

Since the method of characteristics will give correct treatment of

singularities such as centered rarefactions and shock discontinuities,

it generally leads to better defined boundaries and more accurate

results.

Wecken (10) calculated, by the standard method of characteristics,

the spherical wave produced by an expansion of a high pressure gas

sphere. Based on numerical grounds he predicated the existence of an

inward traveling second shock, which travels toward the inside relative

to the moving gas. It will be reflected at r - 0 and then travel out-

ward behind the main shock. Employing the same method, Wecken obtained

numerical solution for the explosion originated from detonation of a

spherical charge, and the results were used to compare experimental

measurements obtained by Schardin (11). Although results showed overall

iiT
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g agreement between experimental and numerical calculations, Schardin

considered Wecken's calculations lack accuracy, and recommended further

calculations by digital computer.

The standard method of characteristics was also used to calculate

the problem treated by Unwin (6) by Fox and Ralston (12). Constant

entropy everywhere was assumed in the formulation. Therefore, their

solutions are restricted to problems where no shock discontinuities are

LI present.

In 1960, Zhukov (13) using the standard method of characteristics

calculated a problem of sudden release of a constant pressure sphere

into vacuum. Outside the expanding sphere, a spherical envelope of

fluid exists. The primary interest of this problem is the interaction

I of the main shock and the outer fluid shell. The second shock was

formed as a result of intersection of characteristics of one family

I (II Characteristics). After its formation the second shock was calcu-

lated for only a short time. Details of the numerical scheme or results

were not presented.

An alternative numerical scheme of method of characteristics was

proposed by Hartree (14). He suggested integrating equations of motion

I along characteristic directions but instead of using the characteristic

Sgrid, using a given interval in one independent vari#ble, It may give

the results in a more desirable form, particularly if the one independent

I variable happens to be time. This method has the advantage of yielding

results at a specific time, whereas if the results are obtained on a

grid of characteristics, lengthy interpolation is required to obtain

!I
ii
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such results. Besides, the Hartree scheme gives results along particle I
paths thus making it particularly advantageous in handling problems with

contact discontinuities. _

Roskin (15) discussed Hartree's scheme in great detail, but no

specific example was presented to demonstrate its application.

Lister (16) followed essentially Hartree's proposal and devised a

numerical scheme, geared to digital computer computation, which can be

applied only to isentropic flow.

ratshova and Chuskin (17) developed a numerical scheme, similar to

the Hartree scheme, suitable for computer calculations of steady*

axisymartric supersonic flows of perfect gas with shock wave. Their

numerical results were in good agreement with those by standard method

of characteristics.

It seems that, up to the present, the Hartree scheme has not been

applied to unsteady flow problems involving shock waves and entropy

change.

One of the diff -.ulties in the solution of the expansion of a high

pressure sphere is the iuitial singutarity at the boundary. In general,

an outward moving shock, a contact discontinuity surface, and a centered

rarefaction wave are formed instantaneously. Unwi.n (6), Roberts () 7)

and Fox (12) avoid these difficulties by requiring the initial distribu-

tion of density to be a particular function of radius, and assuming

entropy to be constant everywhere.

McFadden (18) obtained a solution for short times after the release

of a uniform high pressure sphere. Flow properties u, c, and S (entropy)

JI



7

were developed in powers of y, which is proportional to time. Solutions

up to the first order were derived which satisfy the boundary conditions

f to the first order without introducing a second shock. As he suggested,

we have computed the example given in his paper, and find thn our

results are in good agreement with McFadden's.

The mathematical nature of the singularity of the disturbance due

to the detonation of a spherical charge initiated at the center was

investigated by Berry and Holt (19). The equations of unsteady spherical

motion are solved in the neighborhood of the singularity at the crigin

I of the air blest wave in the t-x plane. Expansions are used in series

of half-powers of r, the radial distance from origin, with coefficients e

depending on the transverse coordinate.

f To singular characteristics are found to start at the origin. One

> is the left traveling characteristic in the rarefaction wave region and

the other is the contact discontinuity surface. Near these lines the

expansions are invalid. To remove these difficulties, Berry and Holt (19)

< used the Paincare-Lighthill-Kou method by introducing a new independent

1 variable z and expanded the dependent variables (u, p, c) and the

independent variable ( and ) in series of power of I with coef-

ficients depending on z.

This is equivalen_ to a perturbation of coordinates 6 . The

7 1 development of the second shock was investigated and asserted to be an

effect of at least scond order of

The results from the series expansion were used as initial data to

1 determine the early development of the growth of spherical blast from a

! I
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particular charge. Berry et al (20) integrated the equations of motion

along characteristics. Results of the calculation are crude. They vere

content with an accuracy adequate for plot only.

3. Late-Stage Equivalence .

It was suggested by many authors (Taylor, Brode, Sakurai, Courant

and Friedrichs, etc.) that real explosions, though they behave dif-

ferently in the early stage, gradually become equivalent if the initial

energies are equal. Among these who suggested such a late-stage

equivalence, Sakurai (5) made a very strong statement that the point

source model, although not adequate to represent a real explosion in the

early stage, becomes more and more accurate at th late stages, regard-

less of the kind of explosives or the features of the explosives. The

assumption of late-stage equtvalence intuitively seems plausible. How-

ever, it has not been verified. Brode (4) calculated a few cases of the

releasing of high pressure spheres into the atmosphere and tried to

indicate that the pressure behind the main shock front approaches the

corresponding point source solution in late stages. Unfortunately due

to the limitation of the numerical method used in his calculation,

results were inaccurate even at the early stage.

4. Outline of the report

It is the intention of this report first to develop a numerical

schem which is accurate, and can be easily adapted to computer calcu-

lations. This scheme is then used to calculate the flow field developed "s

from a spherically symetric high pressure sphere suddenly released in
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the atmosphere. The existence of a late-stage equivalence will be

investigated by calculating r imparing expansion of many high

'i pressure spheres with different initial radii, pressures, and densities.

Late-stage equivalence is assumed to exist if the peak pressure distri-

butions for different expanding spheres are the same for long times.

I

I

I

<I

I

I
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II BASIC METHOD

1. Basic Differential Equations

The governing equations for an unsteady spherically symmetric

continuous flow of polytropic gas without friction and heat transfer

are the cont.nuity equation

; +- 2 M =- o (2-1)

the momentum equation

+ + 0(2-2)

the energy equation -.

S + 1A =0 (2-3)

and the equation of state

+ S - V Log (2-4)

where S0  constant

Substituting (2-4) into (2-3) yields

~~) (r)o (2-5)

2. Method of Characteristics and Characteristic Equations -"

The general theory of characteristics can be found in many books,

such as Von Mises (21), Courant and Friedrichs (22). Here we will limit

our discussion to the current problem which is a quasi-linear first order

system of hyperbolic type with two independent variables. The essense

10T
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of the method is to search for a set of characteristic coordinates. By

V I using these characteristic coordinates, a new system can be obtained

from original partial differential equations. The differentiation of

the new system wil. be considerably simplified. For the present case,

the differentiations for each characteristic equation will be along a

single characteristic coordinate. Therefore, numerical integration

along a characteristic coordinate is particularly simple.

A characteristic coordinate is along the tangent of a character-

istic curve which is defined as a curve on which the derivatives of

i ithe fluid properties are indetermirate.
Since we will have occasion to use the characteristic equation in

plane case, the derivation will be kept in a more general form. The

' I continuity equation becomes

! i + a 1 P-' + 0
ata4a (2-6)

where - 1 for plane motion, ) = 2 for cylindrical motion and ' - 3

I 'for spherical motion; the inomentum equation remains as:

and from the equation of state of a polytropic gas and the definition

of sound velocity

Iequation (2-5) can be written in the form:

+j2 +L (2-8)
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For regions where the flow properties u, p, and a are continuous,

three equations for the total differentials du, dp, snd d? may be

written. Combining these differential relations with the governing

differential equations (2-6), (2-7) and (2-8) we obtain the following

set of differential equations involving six partial derivatives: a

111 9 ' M , bP and f which are in question for indetermination.

dx' Jx++t+ (2++ -9)

tbL ++- 
- -

S + ax =o

S+i

Solving these equations for by Cramer's Rule, we cbtain

bL _ - 1 (2-10)

ax al(29

where
dl. cIt 0 o 0

o o d c dt o o
o 0 o o dx at

e 0 o5T 0 ax

ax I 0 0 0

o 0 ucI c 2
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and

J P -o &7 o 0

-? 0 0 0 dr x A

- N-0 0 0 U I

0 1 0 0 0

- 0 0 U I -a- -C 2

-(i.dt -d() [N 3 1- V(uLdt-ct<)da +

In order that U to be indeterminate D nmust be 0. The vanishing of D

produces the three physical characteristics:

I characteristic Jx + C (2-11)

[ I1 characteristic = U-C (2-12)

- III characteristic C1 x a (2-13)

Notice that the III characteristic is a path line.

1 Along these physical characteristics, the derivative ?- is

indeterminate and therefore may be discontinuous. To insure that

is indeterminate but not infinite, the numerator, 1. of equation (2-10)

must also vanish along the characteristics. Along the III character-

istics, (udt - dx) 0 0, N - 0 identically; the vanishing of N along the

i other two characteristics yields the following state characteristics,

(or compatibility equations)

C1 a+- C1) t (2-14)

1X

L I __.___
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where the upper sign refers to I characteristic and the lower sign

refers to II characteristic.

When equations (2-9) are solved for the other derivatives, we have:

UC

t-d) N- X V A c (2-16)

r IIn equations 2-)are solved for inanj w

g-1) Uldi'dxdt - (2-19)

The vanishing of the numerators of and yiel addition

equation (2-14), the III state characteristic

+J{ = dd - C CIP (2-18)

It is convenient to eliminate the density from the characteristic

equations by the relation C2= When this substitution is made, and
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the III state characteristic equation integrated, the following

characteristic equations, in terms of p, u, and c are obtained.

Stite Characteristics

.Ic(, - C, cl t),
) -x (2-21)

I (hLzy~dpIE (I~ t)~ (2-2 2)

2r (2-23)

The constants c* and p' must be evaluated for each III character-

istic.

I In the numerical procedure of the method of characteristics, all

governing differential equations are put into finite-difference form.

Thus, equations (2-11) to (2-13), (2-21) and (2-22) become

along I and II - - (2-24)

414 T 7 (2-25)IX
along III x(2-26)

I where & represents the difference between two adjacent points along a

characteristic and the bazred values represent the average between the

two poinLs. Notice that referring to the pivotal point (mesh point)

i4  I

:I
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Xi  tU t!- iLL_ is the backward difference of u; although it is ]

sometimes considered as the central difference at "half-way" point

Xi J .

3. Normal Shock Equations

The equations expressing the conservations of mass, momentum and

energy across a moving shock are:

eu =e[u (u1- 2 )] (2-27)

*-eU2  2~ P U (2-28)
P, P2=  P +2 U l- q2-.) (-

U2  _U (u,- )
H, -2 2 (2-29)

where U is the shock velocity relative to the medium into which it moves.

Subscripts 1 and 2 refer to the states ahead of and behind the shock

front respectively. The upper sign applied for shocks travels to the

right and the lower sign for left traveling shocks, but U is always

taken as positi.e. To make these equations more suitable for later use,
the following algebraic manipulations are in order. For polytropic .

gases we have

S i n c e -C 
v

therefore H (2-30)

tt
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Using relation (2-30), equation (2-29) becomes

C22 =- 2 (',-uz) (U-U) 2 U (2-31)

From equation (2-27), we get

T 8 U (2-32)

- *U .(u.-u2)

-i Substituting (2-32) in (2-28) we obtain

Sj" (2-33)

i Equation (2-33) can be written as

c~e 2 2 e 2U~ua~z)(2-34)

S1 Eliminating e2 from (2-34) with equation (2-32) and rearranging, we get

C, c - _ riJ(u,-u 2 ) (2-35)

Elimination of c2 from (2-31) with the help of equation (2-35), we have

lC
I 25rt(CL, ) (2-36)

Substituting u2 from equation (2-36) into equation (2-33), writing

tl -...
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and then solving for U yields

,= . +! (2-37)
2 i

Substituting u2 from equation (2-36) into equation (2-31) and solving

for c2 yields

Ir= C + (2-38)

Equations (2-36), (2-37) and (2-38) are the ones actually used in the

calculations. For very strong shocks where P>>I , equation (2-37)
Te

can eometimes be approximated by

U C, F"V (2-39)

-.

It is evident from equation (2-39) that -!Z . Consequently
C,

equations (2-36) and (2-38) can be approximated by the following simple

forms:

?U "
Ua  f . - (2-40)

C2 U (2-41)

Strong shock equations, (2-39), (2-40) and (2-41) are used in the

calculations of the blast waves where these relations are consistent

with the similarity solution of the blast wave.



III SOLUTION OF THE PRESENT PROBLEM

1. Choice of the Basic Numerical Technique

There are two major basic numerical techniques in the application

of the method of characteristics. One is the standard technique of

integration along the two main characteristics, while the other follows

{ Ithe Hartree scheme, which involves fixed time intervals. These techniques

were discussed and their applications were demonstrated in (23), (24) and

ii (25), where it has been shown that both numerical schemes produce very

accurate results when applied to the blast wave problem, provided the

region with extremely high speed of sound is excluded. It is reasonable

Vf to assume that either of the two methods will yield accurate results when

applied to the expansion of high pressure sphere.

In applying the standard technique, the points of intersection of

two families of characteristics do not occur at equal intervals in either

the space or time coordinates. When the spatial distribution of the

flow variables at a later instant is required, we have to perform a

two-dimensional interpolation, which is not always desirable.

The constant time technique overcomes the difficulty of uneven

distribution of grid points by choosing grid poinL on predetermined

constant time lines. This has the advantage that the required inter-

polation is always one dimensional.

The Hartree scheme gives results along particle paths in successive

SI steps, therefore it is advantageous in dealing uith present problem

where an interface (contact surface) is involved. Difficulty may arise

; in applying the standard technique to solve problems, where shock

formation is expected. Suppose the solution along characteristic OA

1 -19-
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and to the left of it (see Fig. 1) has been obtained without the prior

knowledge of the formation of a shock at B which is the intersection of

two characteristics'of the same family. Let BL be the subsequent shock

path; then the solution in the region ABL is wrong, since no account was

taken of the shock to establish it. To obtain the solution in this

region, the data required such as solutions at points 1, 2, 3 and 4 are

generally destroyed in order to save storage space. This difficulty can

be overcome either by keeping the points, at which the shock is most likely

to occur, at greater time values than their neighboring points or by retain-

ing large amounts of data, which might be useful for corrections due to the

occurrence of the shock, in the memory. The former method causes compli-

cations in programming logic and the latter needs extra memory spaces.

They are both undesirable in computer calculations.

The shortcomings of the Hartree scheme are generally believed to be

that it is less accurate and more time consuming. Nevertheless, the

results of the calculation for the plane blast wave by the standard

technique and Hartree technique showed that the same accuracy was reached

by both methods within comparable computer time. The main reason for this

favorable result is because in applying the constant time method, the

initial data points are on the same time line, therefore quadratic inter-

polation can easily be used in determining the flow properties at points

other than the initial data points. As quadratic interpolations are

generally more accurate than linear interpolations, this in turn improves

the accuracy of the new point to be calculated. Consequently, in applying

the Hartree technique, we are able to start with fewer initial data points

in the beginning of calculation and still attain the same degree of accuracy.

As a result, this compensates to the same extent the time required in carrying
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out extra interpolations. It may also be attributed to the more even

distribution of data points throughout the region of calculation when the

Hartree scheme is used. By now it is evident that the Hartree technique

is preferable for application to the present problem.

Although the basic numerical technique for the Hartree scheme of

method of characteristics has been developed in reference (25), nevertheless,

due to the complexity of the present problem, quite a few difficult pointsIstill need to be resolved. In this section, the method of handling the

initial singularity, methods of initiation of the second shock, and some

other problems pertaining to the solution of the present problem will be

discussed.

T2. Starting Singularity

Immediately after the release of the high pressure sphere, an outward

traveling shock, which will be referred to later as the main shock to dis-

tinguish it from the second shock formed at a later time propagates into

the stagnant air; in addition, a contact surface which separates the gas

and the air, and a centered rarefaction wave, are initiated from the

boundary. (See Fig. 2) The existence of a second shock at the tail of

the rarefaction has been discussed by many authors, i.e., Wecken (10),

Whitham (8), Berry and Holt (19), etc. It is also known that the strength

I of such a shock is zero at the beginning and remains very weak in the early

stage of the expansion. (See initiation of second shock.) Therefore, to

avoid further complication of the already very intricate starting singularity,

no second shock was introduced in the initial singularity. This introduces

practically no error at all, since the error in not considering the
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second shock is of third order, which is practically zero at this stage. I

At t - 0, the time increment At approaches to zero and dif- I
ferences in characteristic equations between the plane and spherical -

cases vanish.

For a given high pressure sphere surrounded by atmospheric con-

ditions all the flow properties isre specified for points 1 and 2. What

has to be established ar the properties at points 3 and 4. Point 3,

situated between the tail of the rarefaction wave and the contact sur- -

face represents the expanded gas on the left of the contact surface,

while point 4 corresponds to the air engulfed by the outward propa-

gating shock on the other side of the contact surface. Notice that

across the contact surface, the pr essue and velocity are continuous, .

i.e., p3 - p4 and u3  However, the speed of sound c3 may be

different from c4 . This depends on the initial conditions of the high

pressure gas and that of the atmospheric air.

Flow properties at points 3 and 4 can be determined analytically

by the shock relationships ')etween points 1 and 4, the isentropic

expansion relation between points 2 and 3, and the boundary conditions -.

across the contact surface, u3 - u4 and P3 ' p4 "

For the centered rarefaction wave the flow is isentropic, and

points 2 and 3 are on a I characteristic line. When the state

characteristic equation (2-14) is simplified for the plane case ( 1 1),

we have

= - (3-1)

€C
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For isentropic flow of polytropic gas with Y 2 the following

relationships hold

C 2 2  (3-2)

K'z
rer L- constant ( N, (3-3)

With equations (3-2) and (3-3), we can write:

C 2 (34)

Putting equation (3-4) in differential form, wa obtain

~~ C 2CcC K,(~;Q ~(3-5)

Dividing (3-5) by c2 , we get

I c/C(3-6)

Differentiating (3-3) and rearranging yields

I1 C, (3-7)

Eliminating de from equations (3-7) and (3-5) we have the expression:

2 C1
Sc = - (3-8)

K'
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Again by elimination of dp from equation (3-1) and (3-8), we finally I
get

O= .- 1  (3-9)

Therefore u3 - u2 2-i 3C2 )  With u2 0

2

This equation can be written as

U3  2 -C-3

__ 6=-C (3-10)

Introducing the isentropic relation between points 3 and 2

equation (3-10) becomes

C2  2 ) i(3-11)

For the right.,ard traveling shock with u. = 0 and Ir= r, the cor-

responding shock equations (2-36) and (2.-37) are

2 (U 4  _C,
U - I c, -- I (3-12)
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and

U4 p C 2, (3-13)

I Eliminating U4 from equations (3-12) and (3-13), we obtain

I Since u4  - u3 and p4  - P3, equation (3-11) is equivalent to

3 'L -J (.F 2 , -15)

Equating the expressions for u in equations (3-14) and (3-15) and

solving for , we get:r r2
* r -1I2 (3-16)p4  S' C d ' ~;(# ') 1'°

?2- 26I ()3 I , J€7i 2 "#7,

Here in equation (3-16), p4 is the only unknown. Once the initial

conditions of the gas as well as that of the atmospheric air are

known, p4 can be evaluated.

The Newtoni-Raphson iterative process was used in the calculation

" I of P4 and no difficulties have been encountered. After P4 is

determined, the remaining unknowns can be obtained in the following

S1 fashion: the shock velocity can be calculated from equation (3-13),

L:1

-?~~- - -- -- _
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then u4 and c4 can be evaluated from equations (3-12) and (2-38),*

respectively. Since P4 = P3 and u4 = u3, the only unknown left is -

c3 which can easily be obtained from equation (3-10). Now everything .

has been determined for x - x and t - 0+ .#

Again, referring to Fig. 2, at time t - t2 0 At (a small time

interval) the physical locations of points 8, N, 5 and 7 as well as

the flow properties between 8 and 7 are to 5e determined.

For a very small time interval, at, the flow properties in the

regions N05 and 607 vary very little. Therefore, in changing the

differential equations into corresponding finite difference equations

and interpolating properties between points can be made without

incurring much inaccuracy. However, this is not the case for region

80N, the centered rarefaction wave region, where flow properties,

even though continuous, vary very rapidly with respect to both x and t,

no matter how small At is. To overcome this difficulty, the centered

rarefaction wave region was divided into many small segments separated

by the II characteristics issuing from point 0.

At point 0, the pressure difference between neighboring II

characteristics are chosen to be equal. It is known that flow proper-

ties change gradually along each II characteristic. Therefore the

variation of flow properties within each segment will be small. Hence

it is permissible to obtain the solutions for points from 8 to N

successively with finite difference equations along characteristic

directions.

* Replacing subscript 2 with 4.
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i Since the head of the rarefaction wave propagates with a

velocity u - c, where u - 0 and c - c2 - constant for the undisturbed

gas, therefore, 08 traces a straight line with slope - "

Knowing the location of point 8 and all the flow properties along

28, the solution for point 9 can be established.

Let 9' be a point on 0-9 near point 0, then the pressure at point

9' = 2 + P- A, where M is the total number of segments chosenM

i in the rarefaction wave region. The particle velocity u and speed

of sound c9, can be calculated from equations (2-23) and (3-9).

j ,IC, =Ca

and

I where u2 -0

I Knowing the location of point 8, all the flow properties along

282 and the initial slope of the II characteristic line at 9', the

I solution for point 9 can be established with the help of the six finite-

difference equations along the three characteristic directions. This

is accomplished by Iterative process similar to the one used for the

I interior points, (see Ref. (25)) with the only exception that the

initial data are not located at a constant time line.

I Essentially the same procedurv can be used to obtain solution for

u points 10 to N successively. Here the distribution of flow properties

along each of the II characteristics is assuned to be linear.

I _ __
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The solutiona tor points 5, 6 and 7 are interrelated. They have t

to be solved simultaneously through a rather complicated system of

algebraic finite-difference equations. They are (refer to Fig. 2) 1
finite-difference equations derived from physical characteristic

equations,

Along ig %S- A U L.+ -CA + + (3-17)

Along 2 (3-18)

X7-__ U U7  _- Cc _C 7

Along Ia d t-c 2 (3-19) -.

.Along IIa X(. -rs (3-20)a t- S 2 Z

Along IIa dt 2 (This equation is identical

with equation (3-18) because

x6l-x5, U4 u3 and u 6 u,)

And finite-difference equations derived from state characteristic

equations:

Along Ig ts-LA=-(-- (ts-X -t -tA) (3-21)

g 4A -..S. - ----
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Along 11g 6 Vj2 (3-22)

I Along Ia U-t c = 7 -- (3-23)

,i ~~~o AogI a  l- - C +> - t ' - 7 + x t k-- ls) (-4

:, 2r, C

)Along "a 
A (3-25)

The shock relations

J 1 U7 
= C, 2I) 

(3-26)

F4 f' =(3-27)

ii1 ~ ,,, [,j ., )/

I By the definition of velocity of the shock, 
we can write

I (dx\ ~d~ shock '=(3-29)

1+( 2
QI
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Assume that At is small enough such that within the region under

consideration, the tail of the rarefaction wave, the contact surface

and the shock front can be approximated by straight lines. And further-

more we assume that the flow properties are linearly distributed along

these lines. Then we may write

tA (3-30)

K& 0 = C-X

At TC (3-31)

at t's (3-32)

and nine linear interpolation equations for flow properties at points

AS B and C. Since solutions at points 3 and 4 are known from the

previous calculations, suppose at has been preselected (to be dis-

cussed later), then the total number of variables involved in the

above equations are 28, namely: Cs, uS, CS) P, xG U, C , )(,

V-7,; C7, r7 U7 , XA I tA I, CA.4, PA, X, ta3 ,L, CS, ra, Xc, tc, u. C. and PC.

Because 5 and 6 are points on two sides of the contact surface, u5 m u6,

P5 " P6 and x5 = x6, this reduces the total number of unknowns to 25.

Equations (3-17) to (3-32) comprise 16 equations. Adding nine inter-

polation equations, we have exactly 25 equations to solve for the 25
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I unknowns. The solution of the above system of equations was

accomplished by iterative processes.

The accuracy of the numerical scheme was checked by applying it

to the numerical example given by McFadden (18) and the results were

compared.

McFadden took the case of the expansion of a high pressure gas

sphere, initially at rest, into surrounding air. Both the high

pressure gas and the ambient air are assumed to be diatomic gases

with - 1.4. The initial pressure ratio of the gas to that of the

surrounding air is 12.8173 and the density ratio is 3.9560. Com-

parable results at a time when the head of the rarefaction wave

traveled a distance of 5% of the initial radius of the gas sphere

are as follows.

I McFadden's series Results by method of

solution characteristics

I x * 1.055 t 1.055

i Xi 1.035 t 1.035

x 0.992 t 0.992

:1 - ~ 4.33 **4.333

" 4.29 ** 4.298

'I 4.24 **4.236

* x denotes the physical position and the subscripts a, i, and t

are used for the shock front, the contact surface and the tail

Iof the rarefaction wave, respectively.

t values calculated according to McFadden's solutions.

_ _ _ _
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** values presented by McFadden.

Considering the fact that these results by method of character-
T

istics were obtained through a single time step, it is gratifying to

see sucti a good agreement with McFadden's series solution. In the

actual calculation of the high pressure sphere, smaller time steps

(approximately half) are employed. Therefore, the claims for accuracy

of this numerical procedure are warranted.

3. Second Shock

After the release of a high pressure sphere, in addition to the

main shock propagating into the atmosphere, there exists another shock

wave, which is usually referred to as the second shock, formed at the

tail of the rarefaction wave traveling into the expanding gas. The

existence of the second shock vas first predicted by Wecken (10) on the

basis of extensive numerical calculations of a spherical blast from

certain explosions. Berry and Holt (19) analyzed the initial disturbance

of the spherical blast from certain explosions by series expansions

and showed that the singular characteristic initially in the direction ""

of the tail of the rarefaction wave developed into a shock wave. The

same phenomenon is found to occur for the expansion of a uniform high

pressure sphere as a result of the formation of a compression wave

behind the tail of the rarefaction wave. If a very small left traveling

discontinuity is introduced, it grows steadily into a finite shock.

The second shock, though growing with time, remains very weak

until the time when the head of the rarefaction wave reaches the center

A

5-
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of the sphere, then it starts to grow in strength rapidly. The strength

of a shock is defined as the ratio of the difference in pressure across

the shock to the pressure in front of the shock. Since there is no

second shock at t = 0, and the initial rate of growth is slow, there-

fore exactly where or how large an initial shock discontinuity to be

introduced in the beginning is of little influence in the general

results, as long as it is inserted before the head of the rarefaction

wave reaches the center and the magnitude of the discontinuity is very

small. This fact can be observed in Fig. 3 and Fig. 4, where curves

showing position and the strength of second shock vs time are plotted

for shocks initiated at different times and with different initial

discontinuities. These curves also can serve the purpose of showing

the general behavior of the second shock. It is called a left traveling

shock because it propagates toward the left with respect to the gas

:particles in front of it. Depending on the values of the particle

I velocity u and the shock velocity U, the absolute velocity of the

shock front may move toward either left or right. However, as the

S shock grows in strength, it will eventually acquire an absolute

velocity toward the center of the sphere.

The general procedure in the initiation of the second shock is

I described as follows:

Suppose a second shock is to be initiated at the time t - t2 (see

i I Fig. 5), then the calculation in the rarefaction wave region will end

at point 8, which is on the II characteristic immediately adjacent to

Ithe left of the tail of the rarefaction wave.

I,
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The shock at point 7 is initiated by irserting a skiock I

discontinuity of negligible strength at point 2 on the initial time

line, Let I" -ff<c then u3 , c3 and U3 can be calculated from

the shock relations

)2 2 )
21___,

U3 Z 777 c

Now everything is known for points 8, 1 2, 3, 4 and 5. Write the

finite-difference equation for physical and state characteristic

equations.

Along Ii-characteristic

X6- A UA+Ut, + CA C
t2 2 (3-33) -.

C&+ CA -C,LL,-,A - ___,.,_ __,-___-_____"+c) t,
(U1, A ta) + A) (3-34) --

Along III-characteristic

____ - u t~p•u 4
=(3-35)

G""C, (3-36) -
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! I Along IIl-characteristic

x .- 5 . c(3-37)

Ur-s C& + Cis (,. 911) (C, 4- .) 0-36)

Along 11 ,-characteristic

U7 + £ 7 C 139)

If C7  + U7
)1 + CC*~(C;c P7 (3-40)

Across the shock we can write:

I

+ (3-41)

+ -- ) ' (3.42)

I
I From the definition of shock velocity

X-U._ ?- +U , V,-7  (3-44)

tA
j|
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Assuming the II, characteristic 18 is a straight line, then two more

equations can be written:

'X-Xl,- Xs (3-45)

t ttp (346)

By assuming the flow properties are linear along 18 and 12 yields

nine equations for linear interpolation of properties at A, D and B.

Since the flow properties varying rapidly between points 3, 4 and 5,

three quadratic interpolation formulas were used in determining uct C

and PC Ading the 12 equatinns from interpolating the flow properties

to the 14 equations (3-33) to (3-46), makes a total of 26 equations.

There are exactly 26 unknowns, namely: x6, u6, c6, P6, U7, u7, c7, P7 .

jxA, tA* uA. cA, PA' XD# tD UD, CD, PD' XB9 uB, cB' PB' XC, uC, CC' and

PC* The approximate solution of this system of equations can be arrived

at through an iterative process without difficulty.

4. Contact Surface

One of the advantages of applying the Hartree scheme in the calcu-

lation of the present problem can be appieeciated from the easiness in

treating the contact surface. Since the contact surface in formed by --

particle paths, essentially the same numerical scheme as for the Interior

points can be used with the only difference being that the isentropic

Sw
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1relations along particle paths yield two equations rather than one
equation in the case of an interior point. This is because across a

±contact surface pressure and particle velocity are continuous but the
speeds of sound usually are different. Finite-difference equations

along characteristic directions are similar to those of the interior

points which are shown in reference (25). In the solution of these

equations almost the same iterative procedure for the interior points

can be employed.

1,L 5. Choice of Time Step

The choice of the magnitude of the first time step At1 is

arbitrary except for reasons of accuracy and computational effort.

This time step is usually kept in a range that in such a time interval

the head of the rarefaction travels a distance approximately equal to

I 3% of the initial radius of the high pressure sphere.

In the subsequent calculations, the Courant condition At <

which was discussed in reference (25), is observed. However, before the

head of the rarefaction reaches the center, the choice of time steps

are further limited to be not greater than Atl, the very first time

interval selected. Within the domain of these limitations we have

always chosen the largest time steps allowable.

UIn determining the time step for a new time line, it is necessary

to scan through all the neighboring daua points on the initial constant

time line and select the largest time interval permissible. A data

j j point distribution, along a constant time line, which makes every localK'__
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maximm allowable &t the same would be most desirable for the sake of

computing effort. However, generally this is not possible. Neverthe-

less, with this in mind, we occasionally rearranged the distribution j
of initial data points in the course of the computer calculation. I

I
I
I
I
I
I

I
I
I
I
I.S- ---- !



IV RESULTS

*Due to the complex nature of the ftow field, the calculation is

divided into three stages, as shown schematically in Fig. 6. The

first stage of calculation starts from t - 0 and ends at the time

when the head of the rarefaction reaches the center of the sphere.

- . The second stage of calculation terminates Just before the inward

shock reaches the center of the sphere. The third stage includes a

triangular region bounded by the constant time line AB, the shock

front BD, and a line AD. Point A is placed some distance away from

* the center. The slope of AD is chosen to be smaller than that of the

-- local I characteristic, (because the condition At < ) thus the

reflected second shock does not affect the region to the right of

line AD.

In order to make the results more general, the dependent v~riables

u, c, p and the in'dpendent variables x and t were non-dimensionalized

with appropriate parameters of the atmospheric air and the initial

j total energy released in the expanding sphere. The non-dimensional

variables include:

pressure Tr -

I
II

particle velocity

1 -39-



140
- 40- J

speed of sound 
=

lI
density

I
radius

can1. General Featuresw

The general behavior of the expansion of a high pressure sphere
]can best be shown by a numerical example. Results of the expausion ofI

a high pressure sphere initially with pressure ratio Ir I00, density

ratio low 1.16, and r2 1.4 as calculated by the Hartree scheie, are

shown in Fig. 7 to Fig. 12. I
Fig. 7 shows the propagation of the main shock followed by the

contact surface; both travel outward with decreasing speeds. A second

chock appears at a later rime, even though it travels to the left I
relative to the gas, for a moment it is moving with an absolute velocity

toward the right. However, as the second shock gains strength with

time, it soon acquires an inward moving speed and then races toward

the center at an accelerated pace. I
The decay of the peak pressure, 7r - , where p5 is the pressure

Immediately behind the main shock, is shown in Fig. 8, The rate of

decay decreases as the main shock moving to a larger radius. Pressure

* profiles are shown in Fig. 9 and Fig. 10. The first curve ('- 0) in

Fig. 9 is the initial pressure distribution, and the second curve

l f"lp * 4.. . -
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(T = 0.0026) shows the pressure profile shortly after the release. The

rarefaction wave moves toward the center of the sphere and reaches there

at T - 0.023. By that time the second shock is already formed. Notice

the lowest pressure occurs at the tail of the rarefaction wave. To its

right pressure increases with X, the non-dimensional radius, and reaches

a peak at the shock front. At the contact surface, which is marked by

a bar, pressure is continuous, but its derivative with respect to X is

not. For clarity, curves shown in Fig. 10 are drawn with a different

scale from that used in Fig. 9. If this is unnoticed the general

appearance may be deceiving. At T = 0.030 the second shock already

gained considerable strength, and attained its extreme right position.

This rapid increase in shock strength is primarily due to the diminishing

of pressure in front of the second shock. After the main shock propagates

quite a distance, the pressure gradient behind it gradually decreases.

This can be seen by comparing the three curves on the extreme right.

_r Fig. 11 shows the profiles of the particle velocity at various time

instants. Particles, gaining speed through the expansion wave, reach

their peak velocity at the tail of the rarefaction wave. It is interest-

ing to see that at T = 0.045 the particle velocity behind the second

shock becomes negative, which means gas particles are pushed back toward

the center. This negative velocity reaches very high value just before

the second shock implodes on the center of the sphere.

* The profiles of the speed of sound _ are presented in Fig.c!

12. Since for a polytropic gas, temperatures is proportional to square of

* 11
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the velocity of sound, therefore these curves can be interpreted as j
T'the temperature profile with square root of temperature ratio, T ~

as ordinate. Initially the high pressure gas is at a much higher

temperature than that of the outside air. Immediately after the

release, gas temperature reduces through expansion and in the mean- I
time air temperature rises after experiencing a shock. However, the

difference in temperature remains quite large across the contact

surface which separates them. It is shown thatthere is a big jump in

speed of sound from the right to the left across the contact surface.

The speed of sound at the center becomes progressively lower as a I
result of expansion, but the implosion of the second shock will raise

it again.
In an attempt to investigate whether the distribution of the flow

properties of the expanding high pressure sphere at late times approaches

that of Sedov's blast wave solution, the distribution of the three flow I
properties were once again plotted in a somewhat different fashion.

Fig. 13 shows the ratio of local pressure to the corresponding peak

pressure against the ratio of local radius to the corresponding radius

of the main shock front, for several late times. The solid curve

labeled as Sedov's blast wave solution was based on the numerical I
values given by Sedov (2). Similar curves for particle velocity and

speed of sound were presented in Figures 14 and 15. It is seen that the

pressure distribution adjacent to the main shock front for the expanding I
sphere approaches that of the Sedov's blast wave solution as time I:

Ii
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J elapses. However this conclusion cannot be applied to the otber two

flow properties, particle velocity and speed of sound. In fact as a

whole the flow field resulted from the expansion of a high pressure

3~'sphere is quite different from that of Sedov's blast wave solution.
Nevertheless the destructive effect of a blast wave usually is deter-

3' mined by the peak pressure of the blast. As will be shown later in

the section on late-stage equivalence, the peak pressure of an

expanding high pressure sphere can be approximated by the corresponding

3' Sedov's solution with equal total initial energy in a region when the

main shock has propagated some distance, and the peak pressure still

above 10 atm. Therefore, for a rough estimation of the damaging effect

resulting from the shock pressure of the expansion of a high pressure

ephore, the corresponding Sedov's blast wave solution, equal energy, can

be used.

Some numerical results of the expansion of high pressure spheres

K were reported previously by Brode (26). Those results were presented in

rather sketchy curves with ill-defined boundaries. Therefore, it is

I impossible to make a precise assessment of their accuracy. However,

I judging from our calculations of one of Brode's examples, his results

are in considerable error, even in the region corresponding to our first

I stage of calculation. The error in peak pressure is estimated to be of

the order of 10%. Even larger errors, more than 20%, in pressure

occurred in the rarefaction wave region. Moreover, the pressure profile

I Brode identified as second shock was so widely spread that it could

hardly be called a shock. Nevertheless, despite all f-nese discrepancies,

'1
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qualitatively Brode's results are in general agreement with our

calculations,

2. Late-Stage Equivalence I
A. Late-stage equivalence in hypervelocity impact.

-Before we discuss the principle of late-atage equivalence in

expanding high pressure spheres it seems appropriate to review some I

related background about the general concept of late-stage equivalence.

The principle of late-stage equivalence was first proposed by Walsh I

et a1 (27) an ptudyng effects of hypervelocity impact. It stipulates

that projectiles of different mass and velocity striking a target will

give rise to target flows very nearly identical at late times, pro-

vided the product of mass and the velocity raised to the a power (MV,)

is the sam3e for all projectiles. This principle is assumed to be I

applicable within the hydrodynamic phase of the hypervelocity impact T
where the interaction is governed by equations of fluid dynamics prior

to the onset of material strength effects. If two impact flows during

the hydrodynamic phase of the interaction are equivalent, then the

strength-dependent phase of the motions will also be equivalent. There- I
fore, the property of late-stage equivalence enables one to extrapolate

the existing experimental results from impacts at comparatively low

velocities attained in controlled experiments to the meteoric velocity T
A

which is not accessible to laboratory experiments.

For one-dimensional impacts of materials with ideal gas equation

of state, Walsh et al (27) showed that by assuming impacts are late-



I -45-

Aj I stage equivalent on the basis of MoV* rather than dependent on M° and

V. individually led to the results that the flow is of self-similar

I. type. The analytical similarity solution and a solution by finite-

difference calculation (SPUTTER code) of an ideal-gas impact, with

I =1.4 were found to be in good agreement at late times on the basis

I f equalo1.5 Recent work by Chou and Burns (28) reported

extensive calculations for the same problem employing the method of

' I characteristics demonstrated also that the shock fronts produced by

different one-dimensional impacts approach each other in position and

in strength at late times provided 1oVo1"5 is constant.

In the case of axisymmetric impact of ideal-gas the problem is

fully characterized by given values of Y, the initial density p., the

1 ) characteristic length of the projectile LO, and the impact velocity vo .

From dimensional considerations, the solution must be functions of three
tt z whe-eand td

non-dimensional variables, L ad f, wherer and z are

cylindrical coordinates with origin at the center of tie initial sur-

i~ face of impact. 'le assumption of late-stage equivalence on the basis

o'f M V, A or LoV I s to require that the solution not contain Lo, Vo

as individual parameters. The solution must approach at late time a

flow expressible in the form:

|Z

T.t
I 'f Z '

I/
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tk~ z z

V Z '

,here T = =- Z and c4' N-. This represents aLo TO TOo

similarity solution; i.e., the number of independent variables is I
reduced to two instead of the original three. The similarity solution

apparently still cannot be solved analytically without additional

approximations. However, it is popsible from thi form of the nolution I
to determine the relation which must exist between the shock decay rate

j pressure decays as Z A and between the rate of

increase of total positive axial and total positive radial momenta and I

o '. These integrated mmenta increase as t This is because

he distances increase at t mass engulfed therefor increases as

T , and velocities decrease as t , so that the momentum

within corresponding elements of volume varies as These

results can be compared with .the computed solution determined without

.I.
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a3suming late-stage equivalence. Walsh (27) calculated a problem of

I right circular cylinder of unit aspect ratio impacting a semi-infinite

I target using the Eulerian code, and found that the calculated solution

agrees at late times with the similarity solution. The value of at'

I determined from the shock decay rate and the increase of momenra is

- .59 which corresponds to 1.77. These results are for r = 1.5.

For solid-solid impact, Riney (29) proposed a vi3co-plastic model

S which bridges the transition from the early hydrodynamic phase to the

later stages when strain-rate and strength effects become important.

2" Calculations for a cylindrical projectile impacting a thick target of

like material at various velocities were carried out to the point where

strain-rate and strength effects can no longer be neglected. Upon com-

Kparing the flow fiell resulting from impacts of different velocities

Riaey found that the flow fields are essentially equivalent except for

I the initial stage of the cratering process if the geometrically similar

projectiles are chosen to have the same kinetic energy, M 2V2 , at impact.

In short, the concept of late-stage equivalence of hypervelocity

impact on the basis of MV, (Ais established on numerical evidence rather
than on theoretical grounds. However, the most important general con-

clusion from one-dimensional impact, the axisymmetric ideal gas impact

I and solid-solid impacts is hat impacts are equivalent on a basis inter-

mediate between equal projectile momentum and equal pr6jectile energy.

!

I ...1.. ..:.................
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B. Late-stage equivalence in expanding high pressure spheres

In view of the evidence of the late-stage equivalence in hyper-

velocity impact, it leads us to tho investigation of similar equivalence

in expansion of high pressure spheres. Based on the numerical results

of the present calculation, late-stage equivalence is found to exist for

the expansion of high pressure spheres with various initial conditions,

provided the initial energy released, E. "I-( X0 o, in each of the

spheres is held constant. Late-stage equivalence is assumed to exist

if the peak pressure distribution for different expanding spheres are

the same at late times. This is demonstrated by Fig. 16 where peak

pressure vs. radius curves of expanding spheres with equal initial

energy Eo but different initial radius, pressure and density are shown

in logarithmic scales. The purpose of choosing logarithmic scales is

to cover the extremely wide range of peak pressures, from Tr= 2000 to 7

Tr, = 2, in a single plot. Accompanying these curves the corresponding

point source solution is also included in the plot. The point source

solution represents the extreme case of a high pressure sphere of zero

radius.

In the high pressure region, the peak pressure distribution of the

point source solution can be derived from equations given by Sedov (2).

r BE 2 - __ _ I

____ _
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where ps is the peak pressure, x is the po.ition of -he shock front

and s -R cortar- proportional to E., tile tota, energy released

initiLally. According to the point v _4=c formulation the total energy

of the disturbed gas remains constant. Therefore, we have

The first term is the kinetic energy and the second term is the

internal energy. Introducing non-dimw.nsional quantities, we can writeIX
I2 jfE2AX

I where C

V = scft,)A U

' _ _ _ P

2S (r+/) A2

HI

It can be shown that the sum of the integrals in the square bracket is

I a function of r only and for X 1.4, E 1.175E0. Since f is defined

- let A be the non-dimensional radius of the shock front

I then the relation between peak pressure and position can be reduced to

U'
B __
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the simple form,

P -

This is shown by the straight line portion of the modified point source

solution in Fig. 13. It is called "modified point source" because

when the peak pressure ratio is less than 100, numerically calculated

results are continued from the point source solution.

For peak pressure lr belcw 100, the point source solution is

modified by taking into consideration the ambient pressure pl. This is

accomplished by carrying out a computation similar to the calculation

of similarity solution of blast wave by standard method of character-

, istics, except this time exact shock relations, equations (2-36) to

* (2-38), instead of the strong shock approximations, equations (2-39)

to (2-41), are utilized in the calculation. Numerical results obtained
2I

are found to'be in extremely good agreement with those of Goldstein's

(3). The graphical representation of the modified peak pressure dis-

tribution appears in Fig. 16 as a curved line with a positive radius of

curvature.

To keep the initial energy released constant, spheres with higher

initial pressure are associated with smaller radii. It is seen that

the peak pressure curve of a sphere with higher initial pressure decays

faster and coalesces with those started at lower initial pressure and

they all finally approach the modified point source solution. Notice

in every case, immediately after the release, the peak pressure is much

lower than the corresponding peak pressure of the point source solution,
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but it decays at a slower rate and exceeds the modified point source

solution before they finally coalesce.

If in addition ve require the initial energy released to be

I constant the total mass 3 : eo 3 is also kept constant the late-

stage equivalence exists not only for peak pressure of the main shock,

I but also for the positions for both the main shock and the second shock

in the physical plane ( A-T plane). This is revealed in Fig. 17 where

the main shock front, contact surface and the second shock are pre-

I sentcd for high pressure spheres with initial pressure ranging from

Ir. - 50 to TIo - 500. The late-stage equivalence in peak pressure can

I be seen in Fig. 18. This time, peak pressure curves are plotted in

linear scales. Perhaps a presentation like this can be better

appreciated. Once again, the four curves, for 1m 500, ITO. 200,

I Ir - 100 and , - 50 converge together and approach the modified point

source solution at late times.

<I

I

I
-4



V CONCLUSION

The Hartree scheme was successfully applied to the solution of

the flow field of the expansion of high pressure spheres. A special

technique designed to handle the starting singularity was found to be

accurate. Results obtained by this method for the initial behavior

of the spherical expansion agree very well with those calculated by

McFadden's analytical solution.

The formation of a second shock from the previously continuous

flow field was found to exist at the tail of the left traveling rare-

faction wave. The strength of the second shock remains rather small

before the head of the rarefaction wave reaches the center of the

sphere, then it grows rapidly to very high strength. The path of the

second shock in the physical plane is accurately defined and some

interesting features are revealed.

The numerical results of a typical example of the expansion of a

high pressure sphere were presented in graphs showing the propagation

of the main shock, the development of the second shock and the propaga-

tion of the contact surface which separates the two fluids. The

boundaries of these discontinuity surfaces were accurately revealed.

Profiles of pressure, particle velocity and speed of sound at different

time3 after the release were also depicted.

Based on numerous calculations, it is shown that "late-stage

equivalence" exists in the expansion of high pressure spheres into the

atmosphere, provided the initial total energy in each of the spheres is

-52-
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I kept constant. If the initial condition is further limited to equal

masses, then the late-stage equivalence exists not only for peak

pressure of the main shock but also for the position of both the main

and the second shock in the x-t plane.

The method developed in this report can be extended to solve

problems for perfect fluids with equations of state other than that

of the polytropic gas. It may also be extended to radially symmetric

problems with non-uniform initial properties nnd non-zero initial

jparticle velocities.

I
I

II,
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