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Chapter I ]

i

INTRODUCTION *

The low-density, high-speed flow of a viscous fluid around g blunt ?
body presents g wide vauriety of problems that have attracted considersble !
attention. One such area of interest is concerned with the effeccs of a J
rarefaction of the fluid at high altitudes. This rarefaction can lead l
to a wide range of flow conditions ~-- from continuum I{low at low altitudes
to free-molecular flow at very high altitudes. The transition region
between these two limits has been subdivided into various flow regimes
depending or the degree of rarefaction of the fluid. These regimes have
been described by Hayes and Probstein [18]1, Probstein [27], and Cheng [2].
These regimes are not sharply defined, and most investigations have been
concerned with a penetration of the transition region from either the
continuum or free-molecule end. The preseat investigation will be
concerned with just such a penetration from the continuum end.

In the basic contiruum approach, valid for large Reynolds numbers,
the flow between the detached shock and the body is divided into two
regions: an outer region in which the viscous forces are negligible
axtends acrosg most of the shock layer; and a narrow inner region that

can be treated by Prandtl's boundary-layer theory contains all the

effects of viscosity. At high altitudes where the Reynolds number is

1 The numbers enclosed in brackets refer to the list of references at
the end of the paper.
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not large, the viscous layer thickens and the classical boundary-layer
theory 1s no longer adequate. This flow regime -- in which the viscous
layer 1s too thick to be treated by classical boundary-layer theory
but is still smaller than the shock-layer thickness, and in which the
effect of a thickening of the shock 18 not appreciable -- is the reglon
treated in this paper.

The Navier-Stokes equations, modified by appropriate slip and
temperature-jump conditions at the boundaries, form the basis of
such a study. The study of these equations for low-density flow has
been the object of numercus investigations, and several methods of
approach have been developed. Of primary interest for the present
investigation are the second-order boundary-layer theory, the method
of local similarity (and a generalization -- the method of series
truncation), and the thin-shock-layer analysis of H.K. Cheng [1,2,3].

The classical boundary-layer theory of Prandtl ylelds asymptotic
solutions, valid at large Reynolds number, to the Navier-Stokes
equations. The analysis of secondary boundary-layer effects, which
become important st lower Reynolds numbers, has been obtained by
application of the method of matched asymptotic expansions to the
Navier-Stokes equaticns. The resulting second-order boundary-layer
theory, which has been developed most systematically by Van Dyke [32],
represents an extension of continuum results toward the regime of
rarefied flow. The secondary effects which are analysed in this manner
are the effects of the curvature of the body, the slip and temperature-

Jump conditions at the boundary, the vorticity in the outer flow, and




the perturbation of the outer flow by the displacement thickness of
the first-order boundary layer. A discussion of the development of
second-order boundary-layer theory up to 1962 is contained in
reference 33. 1In addition, extensive computation of the second-order
boundary-layer effects have been carried cut by Davis and Flugge-Lotz
[12] and Fanneldop and Fligge-Lotz [13], using an implicit finite-
difference method.

This second-order boundary-layer theory has yielded results of
considerable interest, but some practical difficulties remain in its
application. 1Its use requires the sclution of a series of inter-
related problems, each of which is simpler in concept than the basic
problem defined by the Navier-Stokes equations. However, despite the
apparent simplicity of the inviscid, outer flow (on which the boundary-
layer solutions are based), the available methods of solution for the
inviseid flow are frequently inadequate. The simpler, analytical
methods of solution often encounter convergence difficulties [37], and
even the more elaborate numerical procedures may lead to results of
insufficient reliability [25]. Due to the difficulty of obtaining such
invisecid solutions, many investigators have used various approximations
to determine the second-corder cuter flow due to displacement thickness,
and this affects the accuracy of their results.

As an alternative, Davis and Flugge-lotz proposed that the flow

be represented by a simplified form of the Navier-Stokes equations

that would be uniformly valid throughout the shock layer. The equations

would contain only those terms that contribute to the first- or

-5=
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second-order boundary-layer equations or to the first- or second-order
outer, inviscid flow. Thus the equations are valid in the same flow
regime as the second-order boundary-layer taeory, but they present a
unified treatment of the entire shock layer. The feature of these
simplified equations that makes their solﬁtions more fzasible than the
solution of the entire Navier-Stokes equations is that all the
characteristic surfaces of the simplified equations are real. This
feature arises the poseibility of solving the equations as an initial~
value prcblem;, and the purpose of the present investigation is to
examine methods of analysis that lead to such a solution. Two general
methods of analysis are considered. First, we obtain sclutions of the
equations that are valid in the stagnation region of the flow. Second,
we examine the use of implicit finite-difference methods te solve the
equations as an initial-value problem using the solutions at the axis
as initial data.

The method of local similarity has been widely employed in the
study of low-density flow in the neighborhood of the axis of symmetry
of a blunt body. 1In this method, an assuased simliiituvde is used to
effect a separatlion of variables, and the equations are then integrated
along the stagnation streamline. In addition, as a numerical convenience,

the basic differential equations are often simplified by the introduction

2 The problem is more accurately described as an initial-boundary-value

problem. These two descriptions are used somewhat interchangeably in
this paper, but this should not present any difficulty.

deida wunae




of additional approximations. The approximations which have been most
commonly used are a constant-density flow, e.g. Probstein and Kemp
[28], and the thin-shock-layer model, e.g. Ho and Probstein [19].

The assumption of local similitude is based on the existence of a
spherical symmetry in the geometry of the flow boundaries, and the
thin-shock-layer concept is frequently used as justificaticn for

this latter assumption.

A second method that may be used to obtain sclutions at the axis
is the method of series truncations. The flow variables are expanded
into series centered at the axis. In order to obtain solutions to the
resulting equations, it is necessary to terminate, or truncate, the
series after a finite number of terms. Since the one-term truncation
is equivalent to the method of local similarity, the series-truncation
method may be considered to be a generalization of the method of local
similarity. Thus the two-term (and higher) truncations can be used to
test the validity of the lccal-similitude concept. One previous appli-
cation of series-truncation methods to the viscous blunt-body problem
has been maue, by H.C. Kao [21], and he concluded that the local-
similitude assumption was accurate. However, Kao required that *the body
and the shock be concentric, and thus the underlying assumption of
spherical symmetry was left untested. The validity of local similitude
will be re-examined when the series-truncation analysis is used to
cbtain solutions of the simplified shock-layer egquations at the axis.
It will be found that the boundary condition that is imposed on the
wall temperature plays a critical role in this examination and, in

general, the local-similitude analysis can lead to substantial errors.

=5-
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In the investigaction of finite-difference methods, the thin-shock-
layer analysis of H.K. Cheng [1,2,3] serves as a standard reference.

In his investigation, the Navier-Stokes equations are reduced, under
the thin-shock-layer assumption, to a system of parabolic partial
differential equations. These equations are then sclved by an implicit
finite-difference procedure. The equaetions to be investigated in the
subsequent chapters contain several factors which will make the finite-
difference analysis more difficult than the thin-shock-layer analysis.
These complications are associated with the description of the inviscid
pressure field and of the shock location when the thin-shock-layer
assunptions are removed. These factors have been investigated by Davis
and Chyu: [11] for a constant-density shock layer, and they found that
it was necessary to retaln some features of the thin-shock-layer model.
The 2xtension of the aralysis of Davis and Chyu to flows of variuble
density will b= considered here, as well as two other methods used on
implicit finite-difference procedures.

In the investigation that has been outlined above, the problem is
formulated as & direct one -- that is, the body shape is given and the
shock shape is calculated. The alternative method of computing the
body shape from a known shock shape has been the basls of numerous
studies of the blunt-body problem. This inverse blurt-body problem
gererally leads to a considerable reduction of the computativcnsl diffi-
culties but requires several computations if a particular body shape is
to be obtained. It is clearly shown in the following chapters that the

shapes of the shock and the body, relative to one another, are quite

-6-
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dependent upon the boundary conditions that are imposed at the body
surface for the flow of a viscous, heat-conducting fluid. This feature
is very important to the use of the series-truncation or local-similarity
methods -- although the inverse blunt-body problem would reduce the
computational difficulties, it would do sc at the cost of leaving some
ambiguity as to what problem has been solved. Hence, the direct blunt-
body problem, despite the inherent computational difficulities that are
associated with it, is considered tc be more appropriate for the present
investigation than the inverse problem is.

In the above discussion, only those references of immediate concern
to the analysis of the following chapters have been cited. For a more
complete account of the work done on the blunt-body problem, the reader

is referred to the reviews by Probstein {27}, Van Dyke [33], and Cheng
[2,3].




Chspter 11

FORMULATION OF THE PROBLEX

The problem considered in this work is that of the flow about a
blunt body, which is assumed to be everywhere convex and to have a .‘on-
tinuous slope. The flow may be either axisymmetric or plane symmetric
slthough only axisymmetric flows are considered in the spplication of
the equatione to specific problems. A simplified form of the Navier-
Stokes equstions is presented that is uniformly valid throughout the
entire shock layer. The nsture of these equations is examined, and, for
comparison, some of the features of the equations used in several thin-

shock-layer investigations arﬁ discussged.

A. Coordinate System

A blunt body lies in a flow field that has a constant free-stream
velocity, U: s, parallel to the body axis and a density and temperature
given by p: and T: respectively. The body surface is located a dis-
tance r* from the axis of symmetry and is inclined at an angle % -8
to the axis ss shown in figure 2.1, The body has a longitudinal curv-
sture given by «* and a nose radius of a* . The coordinstes, s* and
n* , measure the arc length along the surfsce of the body snd the dis-
tance normal to it. The velocity of the fluid is resolved into compo-
nents, u* and v* , parallel to s* snd n* respectively. A shock

of zero thickness is located at a distance A* from the body. The angle

between the shock and a plane normal to the axis is denoted by g.
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1

A

B. Non-dimensional Variables

Dimensinnless variables are introduced by referring all lengtas to
2
ak , velocities to U: s uhe density to p; s pressure to p:q: .
temperature to u;zlc;, and viscosity to u: --its value at the refer-
1
ence temperature U;Z/C; . With such a choice of reference values, the
variables all remain bounded in the hypersonic limit, ﬂn —eo ., In
addition, the normal coordinate and normal velocity are stretched by a
factor l/¢ where
1/2
*
Br

¢ = | —E— (2.1)
o3 g o

1
Starred symbols denote dimensional quantities and unstarred sym-
bols denote dimensionless quantities.

-9-
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The normal coordinate, n , and the normal velocity, v , are iden-
tical in form to those used in boundary-layer theory. This form was
chosen simply as a convenience tor the numerical solution of the equa-
tions. Since the viscous effects are confined to a region of order e
near the body, the use of the stretched,boundary-layer variables guaran-
tees that the region of large velocity gradients does not become exces-
sively thin as € becomes small. However, the use cf this form of the

variables is not essential to the method of solution developed here.

C. Shock-layer Equations

The Navier-Stokes equations can be written in the orthogonal,
curvilinear coordinate system described above (see, for example, ref-
erence 32 ). The quantity € , defined by equation (2.1, and referred
to as the viscous, hypersonic similarity parameter, appears in the momen-
tum and energy equations when the dimensionless variables of section B
are introduced. 1In the hypersonic limit, it is the only similarity par-
ameter that appears in the formulation of the problem. The equation for
the simiiarity parameter may be rewritten in terms of the free-stream

Mach number and Reynolds number by using the relation

U*2 2
- (y-1) M- T*
cx o o

P

If a power law is used for the viscosity, u* « T+ s then

4

e = (y-1)?/2

Ve,

In this form, it can be seen that ¢ 18 a measure of the ratio of the

-10-
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mean free path in the shock layer to the thickness of the shock layer
[18, p.378]. Thus, ¢ aerves as a measure of the degree of rarefaction
of the flow in the shock layer. Further, the quantity ¢ is the pertur- ?

bation parameter used to systematically expand the Navier-Stokes equa-
tions into the equations of boundary-layer theory [ 32 }. Thus the
second-order boundary-layer theory represents an extension of the con-

tinuum flow equations toward ithe regime of rarified flow. Adequate

numerical technigques for the Zulut'on of the first- and second-order
boundary-layer equations exist (e.g., Fliugge-Lotz and Blottner [ 14},
Davis and Fliigge-Lotz [ 12], Clutter and Smith [ 5 }), but there is
still some difficulty associated with the application of boundary-layer
theory. In particular, it requires the solution of a series of inter-
related problems, two of which (the basic inviscid flow 2and the invis-
cid flow due to the displacement thickness} involve solving elliptic
partial differentizl equations in regions in which the locations of the
boundaries are unknown.

Numerous methods have been developed to solve this {inviscid flow
problew. Perry and Pasiuk requested solutions to a few standard prob-
lems from various agencies which have developed numerical procedures
based on some of these methods. This survey included solutions obtained
from both direct and inverse methods and from integral-relation methods,
finite-difference methods, series-truncation procedures, and a time-
dependent method., A brief comparison of the results of this survey is
presented in refcrence 25 . Several of e solutions predicted surface

pressures that are in excellent agreem'- with experimental data; but,
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in general, considerable disparity exists in the results.

Thus it appears that accurate results to the inviscid flow problem
can be obtained with sufficient numerical skill, but these results must
then be used in an entirely different numerical procedure to obtain the
first-order boundary-layer results. Then, before all the second-order
boundary-layer effects can be computed, the inviscid flow due to the dis-
placement thickness effect of the boundary layer must be obtained either
by solving the inviscid flow problem again or by using some approximation
(c.f. ref. 12 ). Thus the application of higher-order boundary-layer
theory is complicated by the neces:ity of solving several different sets
of equations which require diiferent methods of solution.

As an alternative, Davis and Fligge-Lotz [ 12 ] proposed representing
the entire shock layer by one set of equations, a simplified form of the
Navier-Stokes equations that would be uniformly valid throughout the
shock layer and would contain all the viscous effects that are contained
in the boundary-layer equations. Although a solution to this set of
equations may require the use of elaborate numerical techniques, only
one application of the numerical methods is needed, This paper repre-
sents an investigation of this alternative procedure proposed by Davis
and Flugge-Lotz. To obtain the desired equations, only those terms of
the Navier-Stokes equations that contribute to che first- or second-
order boundary-layer equations or contribute to the first- or second-
order outer, inviscid flow are retained. Thus the modified equatious
are uniformly valid to order ¢ throughout the shock layer. The

shock-layer equations that are obtained in this manner are
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Continuity

[(r + en sin e)j pu]s + [(1L + K en) (r + en sin e)j pv]n =0

(2.2)
Tangential Momentum
u eK P,
p(1 + K en Us tv ) + l+«xen = v) ¥ l+ kKken e Ynn
, 7 . Js_in_a.)
m (un € Kn) T +e (K + ;- u (2.3)
Normal Momentum
€u _ K 9
Ep(1 + Ken s e a T T+x en ) + Pn = 0
(2.5}
Energy
u ) ( u '
———— [ —— J =
p(l + K en Ts tv Tnﬁ 1+ Kenls tv pn/
-1 2 ( sin @
¢ [%Tnn + “'Tn + culk t ! r ) T;]
+ uun(un - 2 ¢ Ku) (2.5)

The subscripts 8 and n denote partial differentiation with
respect to the 8 and n coordinateg, respectively. The quantity

is equal to 0 for plane flow and equal to 1 for axisymmetric flow.
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In equation (2.5) the Prandtl number, g , has been assumed to be a
constant, but this assumption is not essential to the use of the methods
of analysis investigated in later chapters.

The thermodynamic state relation is taken to be as simple as possible

in order to facilitate computations. Thus a perfect gas with constant

specific heats is assumed. Hence,

State

p-x;—lpr | (2.6)

This assumption represents a limitation on the applicability of the results

of this work. For some flow conditions, it is necessary to consider

the real gas effects arising from the molecular structure of the gas or

from chemical reactions among the various components of the gas. 1In
addition, the reaction times for such molecular processes become signifi-
cant for some problems, and in such a case it is necessary to account for
the fact that the chemical state of the gas may not be in equilibrium.
However, it is desired in this work to concentrate on the difficulties
arising solely from the hydrodynamic aspects of the flow,and therefore
all complications due to the chemical nature of the gas have been ignored.
To the above equations must be added an equation which gives the vis-

cosity as a function of the temperature:

b= p(D 2.7
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Although equations (2.2)-(2.7) have been chosen simply as an attempt
to have a somewhat simpler formulation of the problem than is afforded
by the boundary-layer theory, there is one aspect of the flow in which
the current formulation of the problem may be supericr to that of
boundary-layer theory. Recently Weinbaum and Garvine [40) have investi-
gated the nature of the pressure field in compressible boundary-layer
theory. They assert that under certain flow conditions there are three
distinct regions requiring description in a viscous flow problem with
large Reynolds number. Near a sclid boundary, the usual boundary layer
exists where the normal pressure gradient is negligible and the viscous
effects predominate. Far from the boundary, there is the usual inviscid
region. However, they state that when Me e >1 : there 1s an inter-
mediate region where the effects of viscosity are considerable and where
the normal pressure gradiedt cannot be neglected, Thus, they propose
the existence of a transition region between the boundary layer and the
inviscid flow. Under such conditions, the matching of the boundary-
layer solution and the Inviscid solution as done in the development of

)
higher-order boundary-layer theory may not be valid.

It should be noted that this proposed intermediate region between
the boundary layer and the inviscid flow would not occur in the subsonic
portion of the flow around a blunt body. However, Davis and Flugge-Lotz

1
The subscript e refers to a streamline at the outer edge of the
viscous layer.

2
It has also been suggested (38} that this is a "strong-interaction"
phenomenon, which properly lies outside the scope of boundary-layer
theory.
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[ 12]) report that in the flow around a sphere the normal velocity found
from the second-order boundary-layer theory grows extremely rapidly (com-
pared with the first-order normal velocity) after the inviscid sonic line
is passed. Davis attributed this to a breakdown of boundary-layer theory
as the boundary-layer separation point is approached. Fanneldp and
Fliigge-Lotz [ 13 ] report a similar result for flow around a circular
cylinder{ However, Fanneldp suggests that the result is not a manifes-
tation of the physical singularity that occurs at separation but that

it is a singularitydue to a limitation of the mathematical theory.
Further, he suggests that the limitation is related to an inadequate
description of the streamline curvature.

The normal pressure gradient is proportional to p « u2 in
second-order boundary-layer theory. This represents the centrifugal
force which occurs in a flow field whose streamlines have the same local
curvature as the body. Fanneldp points to this similarity to the thin-
shock layer model and suggests 'hat the difficulty could be analogous to
the occurrence of the zero-pressure point [18, p. 82] in thin-shock-layer
theory. This is not inconsistent with the analysis of Weinbaum and Garvine
since the interaction of the normal pressure gradient and local variations
in the streamline curvature (represented by the terms proportional to
u v, and v v in the normal momentum equation) plays an esscntial role
in their analysis. The set of equations (2.2)-(2.7) possesses a complete
description of the interaction of the pressure and the local streamline

curvature and therefore should not encounter this difficulty.

1
For non-circular bodies for which Kk < 1 downstream of the sonic
line, no difficulties were reported in either reference 12 or 13.
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Weinbaum and Garvine also adopt the equatiors proposed by Davis and
Flugge-Lotz, and they propose a method of solution. Weinbaum [39 ] has
applt this method to solve for the flow in a laminar wake. The use of

.is method to solve the blunt-body problem is investigated in Chapter

1v.

D, Characteristics of the Equations

It is interesting to examine the characteristics of the set of equa-
tions (2.2)-(2.7). The characteristics fall into two categories. Most

1
of the characteristics coincide and are described by

8 = constant (2.8)

Although the classificatione of hyperbolic, parabolic, and elliptic are
not strictly applicable to such higher-order equations, these character-
istics may be thought of as being parabolic in nature. This set of char-
acteristics can be traced to the tangential momentum equation and the
energy equation. Thus these two equations, which describe the behavior
of u and T (unn and Tnn occur only in these two equations), are
still essentially parabolic just as they are in boundary-layer theory;
but now the pressure gradient is not a known function but is determined
together with v from the iInteraction of the continuity and notmal

momentum equations, The remaining characteristics are described by

€ dn _ev_  /p
1 + ¢ kn ds x

w Yo

[

=£!+ C (2o9)
u -

v Yu
—_—
The equation describing the characteristic surfaces for a set of
nonlinear partiai differential equations may be obtained from reference

26 , page 32. N
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That is, there are two additional characteristics whose slopes differ
from that of a streamline by an amount tj‘y% . Thus the behavior of
the normal momentum and continuity equations is essentially hyperbolic.
Despite the difficulty of dealing with a system of such mixed character,

it would appear that the equations should be well suited for an initial-

value problem.

Since we know that the subsonic, inviscid £low region of the shock
layer is elliptic in character, it is necessary to inquire as to how or
whether this "parabolic-hyperbolic® set of equations can adequately
describe the flow in a region in which some upstream influence should
occur. Weinbaum [40 ) has reported that these equations are stable as
an initial-value problem when applied to laminar-wake flows. However,
even though the modified equations are not of an elliptic nature and thus
may be numerically stable in an initial-value problem, one would not
expect the inherent elliptic character of the blunt-body problem to be
absent. The manner in which an upstream influence can occur is not read-
ily apparent, and the answer to this must be deferred until the methods of

solution are investigated,

E. Thin-Shock-Layer Investigations

Numerous investigations of the viscous blunt-body problem have uti-
lized the concept of a thin shock layer. Such analyses have much in
common with the analysis of this paper. In particular, one set of equa-
tions is used to describe the entire viscous shock layer. A few of
these investigations are discussed below in order to point out some

similarities and differences from the present investigation.
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H. K. Cheng has extensively investigated this flow model in a series

of papers (1, 2, 3 ]J. The thin-shock-layer equations are an asymp-
totic description of the shock layer for small density ratio, EE— .
Cheng uses the first-order equations that result from an order :2 mag-
nitude analysis for small éf; + These equations are parabolic in nature
(all of the characteriatics coincide) and, in fact, are identical to the
boundary-layer equations except that the normal pressure gradient is
proporticnal to »p Ku2 « This enables Cheng to solve the eguations with
an implicit finite-difference scheme which starts at the axis of symmetry
and marches downstream. This property of the equations is quite desirable
since implicit finite-difference methods have been well developed and
lead tc an accurate solution over as large a regleon as is desired. Cheng
decs not assume an infinitesimally thin shock but uses a modified set

of the Rankine-Hugoniot conditions to account for transport effects at
the shock. These relations are similar to thcse proposed by Sedov,
Michailova and Chernyi [ 29 ]. One important simplification in the bourd-
ary conditions results from the use of the thin-shock-layer ceoncept., To
the order of the approximation considered by Cheng, there is no distinc-
tion between the location of the shock interface and the body surface.
This appears in most of the analyses bhased on the thin shock laysr as an
assumption that the body and shock are concentric (g = @) . This sim-
plifies the analysis considerably but, of course, influences the accuracy

of the results, Despite the simple nature of this flow model, Cheng

obtains reasonable agreement with the results of other investigations.
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However, since several terms of 0(e) 1, including the slip and temper-
ature jump effects, are missing from his formulation, there is some doubt
as to the accuracy of the solutions at the low Reynolds numbers that
were considered. Cheng avoids any potential difficulty due to the
occurrence of a zero-pressure point by considering only flow around

such bodies as paraboloids and hyperboloids., However, as discussed in
the previous szection, it would be desirable to have a more complete
description of the pressure field.

Other investigations have retained more terms of the equations than
Cheng di&. This provides a more accurate description of the shock layer
at low Reynolds numbers but increasea the difficulty of obtaining accurate
solutions since the equations z2ive no longer parabolic. The methed of
solution usually employed in such investigations is to reduce the equa-
tions to ordinary differential equations by assuming the functional
dependsnce of the variables with the s-coordinate. Examples of such
analyses are those of Ho and Probstein [19 ), Shih and Krupp [30 ]}, and
L. Goldberg [17 }.

The investigation of Ho and Probstein removed the constant density
assumption which had characterized many prior investigations, and
many subsequent investigations have followed the same basic approach.

Ho and Probstein emphasize that the thin-shock-layer approximation is not
essential to their investigation but is used only to make the numerical

analysis simpler. . This is true of most of the thin-shock-layer investi-

T .
A function £(t) 1s O0(t)--of order E--if the limit of £(&}/¢
exists as [ -0,
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gations since the equations are generally not reduced to the parabolic
system used by Cheng. Even though the use of the thin-shock-layer equa-
tions is not essential to these investigations, the consistent assumption
that the body and shock are concentric is very important. These investi-
gations assume that the solution has a locally similar character in the
stagnation region. This assumption is based on the existence of spheri-
cal or cylindrical symmetry when the body and shock are concentric. H. C.
Kao [21 ] has tested the validity of the local similarity concept by
solving the Navier-Stokes equations by the method of series truncations.
Kao concluded that the similarity scolutions were quite accurate. How-
ever, it should be noted that Kao also assumed that the body and shock
were concentric, Thus the underlying assumption of spherical symmetry
was left untested, This question 15 examined in Chapter III when the
method of series truncation is considered.

The investigetion of Goldberg [17 ] is similar to that of Ho and
Probstein but uses a somewhat more elaborate flow model. In particular,
Goldberg modifies the shock conditions in 2 manner similar to that pro-
posed by Sedov, et al. However, the basic assumption that the shock
interface and the body are concentric remains.

W, C. L. Shih and R. S. Krupp [37 ] have also used the thin-shock-
laycr assumption to simplify the Navier-Stokes equations but have not
assumed that the shock slope is known. In addition the method of analy-
sis 15 somewhat nodified in order to obtair the values of the variables
at a specified number of positions downstream of the axis of symmetry.

Their analysis also provides for the systcmatic improvement of the degrec
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of approximation. In each of the above investigations, except that of

H. K. Cheng, the terms proportiomal to puv, and puv, have been
retained in the normal momentum equation. Thus a complete description
of the inviscid pressure field is afforded. However, these investiga-
tions retain a different set of viscous terms than has been retained in
equations (2.2)-(2.7). In particular the term (u vn)n is retained in
the normal momentum equation. This term has considerable influence on
the character of the equations. Shih and Krupp state that such a system
of equations is parabolic. Davis and Fliigge-Lotz had also suggested the
possibility of reducing the equations to parabolic form by including the
(p vn)n term in the normal momentum equation. However, the inclusion
of this term results in the streamlines being characteristics,and it is
not clear that the equations should be classified as parabolic in such a
case. Since the streamlines become parallel to the body as n — 0, the
body surface will be a characteristic surface for such a set of equations.
Thus by the definition of characteristics, one cannot solve for the high-
est-ordered derivatives normal to the body, given all other fluw quanti-
ties on the body, unless the specified boundary conditions satisfy a com-
patibility condition along the boundary. If the boundary conditions do
have this special form, then there is no guarantee of the uniqueness of
the salution.l This fact is very important to any method of analysis that
reduces the problem to one of solving ordinary differential equations
along lines normal to the body. (This point will be illustrated in
Chapter III.) Shih and Krupp modify their equations by neglecting
—_—

Discussions of these points may be found in reference 16 ,
especially sections 4,1, 2,1, 3.1 and 3.4,
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viscous forces normal to streamlines in order to avoid au instability.
which occurs near the body surface. This modification does not remove
the (p vn)n term, but does alter its special role described above.
Kao also reports an instability near the body surface,and he consequently
uses a modified set of equations near the surface. Ho and Probstein use
a knowledge of the general properties of the variables near the wall to
eliminate any numerical difficulty with the singularity. It seems likely
that such difficulties are reiated to the attempted use of a character-
istir surface as a boundary surface.

In addition, Shih and Krupp have computed an alternate solution to
an example solved by Ho and Probstein, verifying the non-uniqueness which

may occur from such a formulation of the problem.

F. Boundary Conditions at the Body Surface

Hayea and Probstein [18 ] state that the effects of slip and tem-
perature jump on heat transfer and wall shear are negligible provided
that the wall temperature is low, even Lf the shock layer caanot be con-
sidered a continuum., All the investigations cited in the preceding
section have used no-slip boundary conditions for this rzason. In this
present work, however, the wall boundary conditions will take the slip
and temperature-jump cffects into consideration since they are O(e) in
the boundary layer and therefore should be included to be consistent with
the retention of terms of O(e¢) 1in the partial differential equations.
Thus the examples to be calculated will not be restricted to very low
wall temperatures., Davis and Fliigge-Lotz, in their study of the second-

order boundary-layer, have found that the effect on the stagnation-point
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heat transfer is not negligible for moderately cold walls,

The wall boundary conditions are

o . &[I(s,0)] ¥-1 ... u
u(8,0) = ¢ ~(s.0) “1 /,‘f T(s,0) % |n oo (2.10)

o MT(S,O“ _,]‘/I-I——‘@
T(s,0) '.l‘b(s) + e 2(s,0)  “1/% T(s,0) on |u =0 (2.11)

v(s,0) = 0 (2.12)
a, and c, are dimensionless constants which are O0(l), These condi-
tions are seen to be those given by Van Dyke [32 ], except that a term
proportional to g% has been omitted from equation (2.10) since it is
0(62) in the boundary layer. For comparison with the results of the
second-order boundary-layer investigation of Deavis and Fliigge-Lotz, the

2
1/2 and 'éé(%)” respec-

va;ues of a and ¢, are taken to be (g)
tively. Equétion (2.11) may be replaced with a suitable condition on
the heat transfer. In Chapter III, several examples will be considered
in which an adisbatic wall is specified. In this case equation (2.11)

is replaced with
Tn(s,O) + g u{s,0) un(s,O) =0 (2.1la)

G. Shock Conditions

As stated earlier, the shock is assumed to be vanishingly thin, and
therefore the Rankine-Hugoniot conditions may be applied. These condi-

tions may be written in a form in which the values of the variables
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flow:

u(s,n) =

ev(s,Zb =

P

immediately behind the shock are given explicitly:

cos(0-g) sin g + sin(@-p) cos g

p(s,4)

sia ¢ sin{8-g)- 1__ cos8 ¢ cos(@-p)
p(s,d)

(S,Z) = -—2-— [COSZ @ - ..J-..l_]

1 y-1 2

p

— -2l
(s,0) Y1 (y+1) ﬁi cos’ g

2
(s,d) = x=1 . 2 2] ycos g

v+l

through the state equation (2.6).

-
(y+l) qi cos2 gl v+l ¥-1 2 qi

=

components tangential and normal to the body surface.

The factors of cos(8-g) and

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Equations (2.15)-(2.17) are not independent, of course, but are related

sin{8-g) 1in equations (2,13) and (2.14) represent a rotation of axes to

change from velocity components tangential and normal to the shock to

The assumption of a thin shock is consistent with the rest of the

mathematical model proposed here as the shock thickness 1is 0(62)

[18 , 32] and thus need not be considered here.

It is advantageous at times to replace one of the Rankine-Hugoniot

conditions with an equation that

(r + €A sin 8

A

ZJ € I pu (r+ensin G)j dn
0

)j +1 _
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H. Additional Relations

There are several geometric relationships which are useful in the
2olution of the problem. The most essential equation expresses the
relation between the shock position and its slope;

€ 3s (L+¢c kA) tan (8 - ) (2.19)

In addition, the body geometry gives

.9
K s (2.20)

and

dr
3s = €08 8 (2,21)

The shear stress and heat transfer at the body surface are useful
for evaluaticg solutions of the equations. The non-dimensional shear

stress and heat transfer are given by

1(8,0) = ¢ ﬂ %} (2.22)
L n=0 .
and
- & T Qu}
q(s,0) = = [u(an'*cuﬁ):lnso (2.23)
I. Summary

Equations (2.2)-(2.7), (2.10)-(2.17) comprise the system for which
we seek a solution. These equations are uniformly valid to O0(¢)
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throughout the entire shock layer and therefore may be used to describe
the flow when the fluid is slightly rarified. The equations should be
well suited for an initial-value problem and thus should avoid the
numerical instabilities attendant to solving the Euler equations in the
subsonic portion of the flow. Having one set of equations for the
entire shock layer eliminates the need of solving a series of inter-
related problems as is done in boundary-layer theory; but, of course,
the ability to determine the individual second-order effects of longi-

tudinal and transverse curvature, vorticity interaction, etc. is lost.
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Chapter IIIL

METHOD OF SERIES TRUNCATION

In the previous chapter it was noted that the set of equations
describing the flow in the shock layer were of such a nature that they
should be solvable as an initfial-value problem. A necessary step in
such a solution 18 to obtain an accurate set of initial values. The
initial station for this problem is the axis of symmetry of the flow.
Since the values of the variables on the axis are not #nown a priori,
it is necessary to obtain a solution to equations (2.2)-(2.7) that is
valid in the neighborhord of the axis. In this chapter a method is
described by which such a solution can be found, The results of the
computation of several examples are presented in order to evaluate the
accuracy of the method ~f solution and to evaluate the range of validity
of the basic flow model. The concept of local similarity as a wethod of

analysis of blunt-body flows 1is reviewed.

A. Description of Series Truncations

The most apparent method of obtaining a solution at the axis is to
expand each of the varifables about the axis into a series in the
8 - coordinate. The coefficients of these series are functions of the
normal coordinate, n. When these series are substituted into equations
(2.2)-(2.7), the problem is reduced to solving a set of ordinary differ-
ential equations for the coefficients of the series. Determining the

first coefficient of each of the series gives the desired solution et
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the axis. Determination of higher-order coefficients extends the solu- !

tion to points away from the axis. In theory, this may be continued to

give results as accurate as are desired within the interval of conver-

gence of the basic series. i
Such a method of analysis has been widely employed for solving non- |

linear partial differential equations in two independent variables. The l

Blasius-series solution of the boundary-layer equations is a well-known

example of such a procedure. In the Blasius series, the coefficient of

the first term of the series may be calculated independently of the

other coefficients. The coefficient of any term of the series beyond

the first depends only on the lower-ordered terms. Thus the coefficients

may be calculated successively, stacting with the first, until the

desired degree of accuracy is attained throughout the region of interest.
In the present problem, however, the ordinsry differential equations

for the coefficients of the series may not be solved so simply. Due to

the nature of the problem, the first coefficients of the series are not

independent of the higher-order coefficients. As a consequence, any

finite number of the ordinary differential equations contain more unknown

variables than there are equations. Thus, in order to solve the equa-

tions, it is necessary to introduce some additional approximations for

the higher coefficients. The procedure used to handle this situation is

known as the method of series truncation and is described below.

The variables are expanded into the following series:

u(s,n) = u(n) sin 8 + uy(n) sin> 0 + ... (3.1a)

v(s,n) = - cos @ vo(n) + vz(n) sin2 o + ...] (3.1b)
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p(s,;n) = po(n) + py(n) sln2 9 + g,(n) ain4 8+ ... (3.1¢)

T(s,n) = T_(n) + T,(n) 8in® 8 + ... (3.14)

p(s,n) = po(n) + pz(n) ain2 6 ... {(3.1le)

where the relation between 8 and 8 depends on the body shape. The
particular form of the expansions is, in general, quite important for
the ultimate success of the method of series truncation. Expansions
quite similar to those of equations (3.1) have been usgd in previous
investigations, and they are reported to have yielded favorable results
for flow around spherical bodies [21 ]. For other body shapes, if one
expects accurate results over a significant distance in the s-direction,
the expansion should probably be chosen to take advantage of the indi-
vidual characteristics of that particular problem. For example, various

types of flows around a paraboloid of revolutlon have been analysed with

excellent results by transforming to parabolic coordinates and expanding
into a suitable serles in these new coordinates [10,31,36,4 ). Although
1 no answer can be given to the question of what form of expansions pro-
vides the best results for an arbitrary body shape, the expansiocns (3.1)
should yleld reasonable results at the axis of symmet:y for any body.
The use of @ rather than s 1in equations (3.1) 1s recommended
since the expansion of the governing equations is expected to be some-
what simpler with the use of 6. The arc length 8 does not appear
explicitly in the equations (except in é%;l, which can be written as

K ééal ). On the other hand, 6 appears in both the partial differen-

tial equations and the shock boundary conditions. Thus an expansion
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in powers of sin(s) would require that © be expanded in powers of
sin(s). The resulting equations would then be correspondingly more
complex (the shock conditions become particularly difficuit to handle).
In addition, the geometric description of the body is frequently simpler
in terms of & , which again simplifies the expansion of the equations,
(As an example, consider the parabola. In terms of § , we have
r=tan 9 and « = cos3 8. In terms of the arc length s , we

have only implicit relations such as s = %E‘Vr + 1 + log(r +Vr* + 1)].)

This distinction disappears for a spherical body since & = s for the

sphere.

The sphere has been extensively treated in the literature despite
certain unpleasant aspects of the flow around such bodies (flow separa-

tion, trailing wake, etc.). Since this choice of body shape provides

numerous opportunities for comparison with the results of other investi-
gations, the rest of the work in this chapter will be directed toward

1
the analysis of the flow around spherical bodies. This choice is not

essential to the method of analysis, however, since the expansions which
follow could have been made for some other choice of body shape.

For a spherical body, we have

r(®) = sin 8, (3. 2a)
k(8) =1, (3.2b)
s(8) = ¢ (3.2¢)

—
This also includes bodies such as spherically blunted cones

hemisphere-cylinder bodies, etc. The actual requirement here is that the
curvature, K, be equal to unity to the order of the solution obtained.
The results of the second-truncation problem obtained later in this
chapter are applicable to any body for which Ky = 0 where «(s) =

1+ K2 sin 9 + Ka sin ¢ + ...
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and, of course, j = 1 for axisymmetric flow.
Since there is no distinction between 9§ and & for the sphere,
the work which follows will be given in terms of the coordinate s.

The shock location, & , and the ghock angle, ¢ , must be expanded

in order to be applied in the shock boundary conditions. Thus
A(8) = By + B, o1’ s + ... (3.3a)
#(s) =9 - (¢1 gin s + 2, sin3 8+ ...) (3.3b)

If ¢1 i 0, the shock will be a sphere, concentric to the

body. Thus ¢1 » #3 » -+, mWeasure the deviation of the shock shape

from a concentric sphere,
Equations (3.1) and (3.2) are substituted into the governing partial
differential equations, (2.2)-(2.7). The equations are expanded into
powers of sin(s), and like powers of sin(s) are equated. The lowest-
ordered terms from the expanded equations yield
vp +pv 200

=
o o 00 l4+cn
n n

(ul-evo) (3.4a)

2 EV_u 2
! -vu, -2 L) 2 =
po l+en o ln 1+ en l4en

w(T,) Ell + 2 eul] +u' (T) T, Exl - eul] (3.4b)
an n n| "n

2
p +e¢“p v v =0 (3.4c)
oy °o o o
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(3.4e)

Examining these equations, we find that they involve six unknowns,
Ups Vos Pgr Py To’ and P * while there are only five equations

svailsble. A second set of equations can be obtained by equating the

next higher-ordered terms of each expanded equstion, This results in

v p, *tp, v +vVvV.p +p Vv, =
o Zn 2 o, 2 o, 0 2n

2

im (o2 - 9 + o - v G5

!+u1u3 €
. " "’2"'1n'M‘"a“3+u1"2)+

4P4 = pz '
-1—;—'6—“— - p,(To) E.la + 2¢ u3 ] + (TO) [(ul +
nn n nn

2 u) )Ty +(uy -eul) T+ (u -cu) Tz]*
n n n n n

W) T, T, [ul - ul] (3.5b)
n n

-33-

ok i e




T

/

et . B

e

-

uf
+ - -
e(vo w V2 Y Yo Yo ) Tven | 0 (3.5¢)
n n n
2p, u
1 2 1
v p + v P 4 +
o 2n 2 o, 2 o o, l+en
2u, T
1 "2 1
Po| 1+en V2T "Vl *3Y% T, |- P L5 -
n n n o

w' (1) W (T,) 2
= (Tonn + 2¢ T°n) T, +2 Ton Tzn +—=T, T (3.5d)

- X1

There are now a total of ten equations,but the number of unknowns has
become eleven as Ug s ¥y T2 s Py s and P, have been added. This
pattern continues as the higher-order equations are considered; there

is always at least one more unk.own than there are equations, Thus we
have an infinite set of coupled differential equations. In the case of
the Blasius-series solution cited earler, the coupling between the equa-
tions goes in only one direction; i.e., the lower-order terms do not
depend on the higher-order terms, and thus the equations can be solved a

few at s time until as many terms as are desired have been computed. 1In
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the present case, however, the coupling of the equations is complete,
and it would appear to be necessary to solve all of the equations
simultaneously, clearly an intractable situation.

By introducing approximations for the excess unknowns, the equa-
tions can be solved to give approximate values for the coefficients.

The accuracy of these solutions will depend on the nature of the approx-
imations introduced and on the nature of the problem itself. However,
the sccuracy of these approximations can be systematically evaluated

and improved.

Consider equations (3.4) again. Only one of the second-order
coefficients, P,» appears and it occurs in only one term. A crude
epproximation would be to set Py = 0 . This would ~ermit the solution
of the equations and yield a first approximation for Uy s Ve Py s
and T0 . A simultaneous solution of equations (3.4) and (3.5) could
sli3o be obtained if P, Were set equal to zero. This second approxima-
tion would yield not only an approximate solution to the second-order
coefficients (u3 sy Vo » Py oo and TZ) but would also yield values
for the first-order coefficients which should be more accurate than
those previously obtained. The improved accuracy should result from
the fact that the set of equations (3.4) would be solved in their entirety
with more accurate values of Py than were used in the first approxi-
mation. This would then afford an estimate of the accuracy of the first
spproximation (p2 = 0) . This process could, in theory, be continued.
At each step, as the degree of approximation is improved an estimate

of the accuracy of the previous approximation is obtsined.
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The process of setting the excess unknowns equal to zero is equiv-

alent to assuming that the variables can be described with simple

L ik

algebraic expressions rather than with the infinite series of equations

(3.1). In the first approximation above, a one-term expression is used,
and, in the second case, a two-ter; polyanomial. The use of simple
algebraic expressions to evaluate the flow around a blunt body has been
widely employed and is known as the method of local similarity [16, 17,
24, 28 ). The series-truncation method may be considered to be a
generalization of the method of local similarity, allowing a systematic
improvement of the degree of approximation. As such the series trunca-
tions can be used to test the validity of the concept of local similar-
ley.

A truncation procedure very similar to the scheme outlined above

has been used previously [ 31]. The results of reference 31 indicate

—‘*—ﬁ,..mmjmmz..m- g

that the first approximation (pz = 0) of this scheme would yield very
poor results. In order to improve the results, it would then be neces-
sary to retain more terms of the series than are desirable for this
problem. Setting P, = 0 1in equation (3.4) is equivalent to requiring
a zero Btreamwise pressure gradient, clearly a poor approximation for
the flow around a blunt body. A reasonable value for the pressure
terms is needed, and this caac be sccomplished in several ways. The
"indented truncation' method introduced by H. C. Kao. [21] is used here.
This method m>kes use of equation (3.5c) to approximate the value of Pye
The addition of equation (3.5c) to equations (3.4) results in eight
‘ unknowns appearing in six equations., The "excess" unknowns which are

truncated to permit a solution are Py and A% The solution obtained
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in this manner provides a reasonable value for Py - Therefore this
first approximation is far more accurate than the one described earlier.
Equations (3.4) and equation (3.5¢c) (with Py =V, = 0) constitute the
first-truncation problem, The values of the variables which are obtained
from the first truncation are denoted by u{l), vgl), pgl), Tgl) and
pgl) . The boundary conditions for the first truncation are obtained
from the expansion of equations (2.10)-(2.17) by use of equations (3.1)-
(3.3). The boundary conditions which apply to the variables of the

first truncation are given below. At the body surface the velocity-

and temperature-jump conditions yield

ca, u(To(O)) y-1
u1(0) = TO(O) uy (1)) (3.6a)
po(O) Y n

€cy u(To(O)) y-1
T (0) = Tb + TO(O) To (0) (3.6b)
2 o P,(0) Y n

vo(O) =0 (3.6¢)

where the specified body temperature has been expanded into

T(s) =T + T si.n2 s+ ... (3.7)
b bo b2

Immediately behind the shock,the following conditions must be applied.
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a(a) =1- i [1 - IF:I;zsl (3.8a)

ev)=XLy 2 (3.8b)
° 0y
2 y-1
p(B8) = - (3.8¢c)
oo y-l-ll: 2y Hi:l
p,(8) + 2,0 (8) = -2 (1 -g) (3.84)
0 v+l
- 1 2 1j2y 1
T (A) = Y-1+=% - = (3.8¢)
ST = ]

The following geometric relation between ¢, and Aﬁ is obtained

by substituting equations (3.3) into equation (2.19).

Z¢ 02

% *T¥e o
o]

(3.9)

The solution to this first truncation problem is discussed in sec-
tion C where it will be found that Lt is also necessary to approximate
the value of ¢1 in equations (3.8a) and (3.8d).

To assess the accuracy of the first truncation (and to simultan-
eously improve it), equations (3.4) and (3.5) are solved simultaneously
by making a suitable assumption for the value of Py, - As was the case

in the £irst truncation, the necessary value is obtained from the normal
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momentum equation. The third-order terms of the expanded normal momen-

tum equation, when equated, yield

2 € u
+ + -
PpTe BV von € P2| T+en (vo 2v2) +

21}
Y1

+ - -

€ (Vo Vzn Vz Vo Vo Von) THen +

E -
€ P, {1+en 111(3\:2 - 4\14) + u3(v° - 2v2)] +

( ZuIU:}
elv. v, +v, v, +v, v -v. v -V, v )- a(
o 4n 2 Zn 4 o, o 2n 2 o, l+en

(3.10)

As before, it is necessary to truncate two excess unknowns. Therefore

we equate P, and v4 to zero. Equations (3.4), (3.5) and (3.10)

(with p4 =V, = ) constitute the second-truncation problem,and the
V(Z)’ .
o

values obtained from its solution are denoted by uiz)
(2) (2) 2 (2)
w5 v 1P, ey

. In theory, this procedure could be continued
with more equations being solved at each step. As the order of the
truncation is increased in this manner, the problem more closely
approximates the infinite set of coupled differential equations which
govern the flow variables. It is assumed that the sclutions to the
truncated equations approach the sclution of the full equations. That
is, the basic premise of the method of series truncation is that the
sequence of solutions for each variable, e.g. u(l) u(z) (n)

1 1] 1 3 swe ul 3 ree
converges to the desired solution of the infinite set of ordinary
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differential equations. A brief examination of the increasing complexity
of equations (3.4), (3.5) and (3.10) shows that if the method is to be
practical the coavergence of the sequence of solutions must be rather
rapid. To proceed beyond the second truncation becomes rather difficult
for this problem. However, there is reason to believe that the conver-
gence is rapid for this particular problem., In fact,the method of local
similarity assumes that the flow is adequately described by expressicns
equivalent to those used in the first truncation.

To complete the formulation of the second truncation problem,
additional boundary conditions are obtained in the seme manner that

equations (3.6), (3.8) and (3.9) were obtained. At the wall, we have

€ a w(T (0) [y °

4O * — 5 — T,(0) {u3n(0) +
( )[1 O WO e ) 110
u, (O] = + - — .1lla
1 2 TO(O) p(To(O)) 2 po(O)
e LAY R T (0) {T., (0) +
T,(0) = sz + X0 7 Tol® { 2n( )
11,000 &' (T (0) p,y(0)
2 o 2
T, Q1 ZIT® TR e - po(o>]} S
vz(O) =0 {(3.11c)
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After considerable algebraic manipulation the following boundary con-

ditions at the shock are obtained.

1\

2/ 1 3
uz(8,) + 4, “1n(‘°o) - \l- 2ZA%3 T8 ) -

v+l

%(1 - ¢1)[1 + ¢f + (v -1 - ?)(1 ’ ¢1\)]

y+1

2(1 - ¢.) 1
r 1 __\
GLVZ(AO) + AZ von(Ao)] = - —Y————( M: )

P8 + Az[?— ponn(Ao) + pzn(Ao)] +4, p (B) =

n

41 - gl 1
[¢3 ¢1(¢1 - 3p, F+ 3)

y +1
1 ,1 - ¢1 2
10 + 8, T, 0) = - v+—) )
2
2662
1 3. _ e [, . _...._]
3739 Y TR | 48, - & Tred,

(3.12a)

(3.12b)

{3.12¢)

(3.12d)

(3.13)

These boundary conditions are used together with those previously given

in equations {3.6)-(5.9) to complete the formulation of the second

trurction problem.

41-




SN

ot e i

To evaluate the shear stress and heat transfer at the body surface
from these series solutions, it 1s necessary to expand the expressions
for shear stress, 1T , and heat transfer rate, q , by substituting

equations (3.1) into equatione (2.22). The shear stress is then given

by
1(8,0) = e(r; oins + 1, atnds + ...) (3.14)
where
7, =BT (0)] u; (0) | (3. 14a)
and .
N XOY usn(O) + ' [T,(0)] T,(0) uln(O) (3.14b)

The heat transfer rate becomes

q(s,0) = é(qo +q, slnzs +...) (3.15)
where
q, = T (0)] T  (0) (3.15a)

n
and

\
= N ] '
@ = BITOT, ©) + 05,0 uy ©)f +4' L,O)] O 1,
(3.15b)
it can be seen that the solution to the first truncation problem yields

values for T and q, - From the second truncaticn problem, values

for Ty s T30 9, and q, can be computed.
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The solution of the first and second truncations will »e obtained
for several blunt-body flows in section D. These solutions provide a
measure of the range of validity of the flow model adopted in Chapter
I1 and provide a test of the validity of the cuncept of local similarity
as well as fulfilling their original purpose of providing initial data
at the axis of symmetry. Before the equations are actually solved,
however, some of the previous investigations based on series truncations

will be discussed in section B,

B. Previous Applications of Series Truncations

There is no mathematical proof of the convergence of the method
described in the previous section and thus no assurance of its validity.
Further, the necessity of obtaining a rapid convergence means that an
evaluation of the effectiveness of the method must come from an analysis
of the application of the method to specific examples., Most of the pre-
vious applications of series truncations have been to the blunt-body
problem (31, 6, 7, 21, 36,4} However, other examples of its use include
incompressible bgundary-layer flow over paraboloids [ 10 ]); viscous flow
over a semi-infinite plate [ 8 ]; and incompressible, viscous flow around
a circular cylinder [ 34 ]. These investigations, except for ref, 10, have
been reviewed by M. Van Dyke in reference 35. The work that is discussed
in this reference clearly illustrates certain lmportant aspects of the
series-truncation method. In particular it should be noted that the
accuracy of the method may be quite dependent upon the form of the expan-
8ion and that the method may be expected to work best for problems in
which the flow field is thin {one dimension much emaller than the

other). This later aspect is anticipated in the use of the method of
-43.
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local similarity for such problems.

The coupling of the lowest-ordered terms to the higher-ordered
terms is a consequence of the upstream influence which occurs in the
flow. That is, it represents the fact that the flow at the axis depends
upon the flow in the region away from the axis, Clearly the method will
be most successful when this dependence is weak. This will be the case
when the equations are "nearly parabolic* (or hyperbolic) and/or the
region of interest is thin. For thin regions the solution should depend
most strongly on the locally imposed boundary conditions. In fact, in
the limit as the width of the region goes to zero, e.g., in boundary-
layer theory and in thin-shock-layer theory, the governing differential
equations become parabolic. There is then no upstream influence at all,
and no truncations are necessary,

It can be seen that the investigations cited above pose tests of
varying degrees of difficulty. The bouadary-layer flow over a para-
boloid considered by R. T. Davis in reference 10 Is exactly the type of
flow for which the method is expected to work. Since the equations are
parsbolic, an expansion about the axis of symmetry would need no trun-
cation snd would lead to the Blasius-series solution. However, Davis
has used a variation of the method which i{s referred to as the method of
local truncations. The varisbles are expanded about sn arbitrary down-
stream station. The resulting problem is then solved st various down-
stream positions, and the results of each solution sre used only locally.
A more accurste representstion of the dowastream flow can be obtained in
this manner than could be obtained from s ressonable number of terms of

an expsnsion at the sxis. However, this method has two disadvantsges:
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the flow symmetry is lost, thereby requiring more terms in the expansion;
and the coupling between different-ordered terms must now describe the
influence of the flow in regions both upstream and downstream of the
point of expansion. In the flow considered by Davis, there is no

upstream influence, but a coupling does occur since the solution at the

expansion station depends on the flow near the axis. However, for the

boundary-layer equations, it is known that this dependence is weak since

the influence of the initial data dies out rapidly away from the initial
station. Even though this flow problem 1s a weak test of the method, it
is a significant test since exact numerical solutions are available froem
finite-difference methuds. Davis shows that the second truncation pro-
duces highly accurate results over the entire paraboloid.

The investigation of reference 8 uses local truncations to sclve
the Navier-Stokes equations for flow over a semi-infinite plate, Since
the equations are elliptic, this problem poses a more difficult test of
the method. Although no exact solution exists for comparison, the
results obtained for this problem are remarkable and substantiate the
value of the method.

Van Dyke has posed a particularly severe test of the method of

series truncation in reference 34 . He has used both the linearized

Oseen equations and the full Navier-Stokes equations to describe the
flow around a circular cylinder. The method is not expected to be b
highly accurate for such elliptic equations in a thick (infinite} region
and, indeed, the second-truncation solution of the Oseen equations shows
only qualitative agreement with the exact Oseen solution. However, Van

Dyke has shown that a knowledge of this error when combined with the
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first-truncation solution to the Navier-Stokes equations yields very
useful results'even for this particularly severe problem.

The analyzes of the blunt-body problem based on series truncations
are also encouraging. Swigart [ 31) solved the inviscid flow of a per-
fect gas over spheres and paraboloids at small angles-of-attack. Three
and four truncations produced accurate results at the axis. However, at
the sonic line the results appeared to be considerably less accurate.

R, J. Conti [6,7], investigating the inviscid flow of a chemically
reacting gas, and H, C. Kao [ 21 ], investigating the viscous shock layer,
improved the convergence of the method so that reasonable results were
obtained near the axis with only two truncations. This is particularly
important for the viscous shock layer since it is difficult to proceed
beyond the second truncation due to the increasing complexity of the
equations. Van Dyke [36 ) re-examined Swigart's solution for a para-
boloidal shock wave and showed that a modified expansion procedure would
produce a solution of remarkable accuracy over the entire body. P. Cheng
and W. Vincenti [ 4 ] have used this knowledge to investigate the flow of
a radiating, inviscid gas over a paraboloid., Each of the above analyses
was based on the inverse method in which the shock shape is given and

the body which produced that shock shape is calculated. This simplifies
the computational procedures but leaves some ambiguity as to what prob-
blem has been solved, eapecially for the flow of a viscous, heat conduct-
ing fluid. The investigation by Kao is of particular interest for the
work that follows in this chapter.

The success of the method of series truncation in the aralysis of

the difficult problems described above indicates that it is a valuable
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analytical method and justifies its use for the computation of the

flow variables at the uszis of symmetry of a blunt body.

C. Solution of the Equations

The set of equations, (3.4) and (3.5c), which constitutes the first-
truncation problem,is a seventh-order system of nonlinear ordinary dif-
ferential equations for the six unknown functions, Uys Vor Py Poo To
and Pge Equation (3.4e) may be used to eliminate Py immediately.
Together with the boundary conditions (equations (3.6), (3.8) and (3.9)),
this system of equations comprises a two-point boundary-value problem.

Due to the corplexity of these equations, solutions must be obtained by
numerical methods. The equations are solved numerically by reducing the
two-point boundary-value problem to an equivalent initial-value problem.
This is accomplished by guessing the values of the unknown variables at
one of the boundarfies. The equations may then be integrated to the other
boundary by using any of the standsrd integration procedures designed

for use with automatic digital computers. The computations of this
chapter were made on the Burroughs B5500 computer using the Kutta-Merson
method. The guessed initfal values must then be altered until the
boundary conditions at the second boundary are satisfied. This iteration
on the guessed initial values is accomplished by using the Newton-Raphson
method1 to calculate the necessary corrections to the initial values.

If the original guessed values are not sufficiently close to the correct

A description of this method may be obtained from any standard text
on numerical methods, e.g., Introduction to Numerical Analysis, F. B.
Hildebrand, McGraw-Hill Book Company, Inc., 1956,
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values, the iterations based on the Newton-Raphson method may not con-
verge or may converge rather slowly. However, in such cases, it has
been found that convergence can be obtained by using only a fraction oi
the corrections predictedby the Newton-Raphson method. The exact value
of this fraction is selected so that the errors in the boundary condi-
tions are minimized at the second houndary. The remainder of this
section i8 a description of the details of these computations. The
reader is referred to section D for the results of these computatioms.
In Chapter 1l it was noted that difflculties with this computational
method may be expected when the body surface is a characteristic sur-
face for the governing partial differential equations. These difficul-
ties are also illustrated in the remainder of this section.

The application of any of the numerical techniques for integration
requires the reduction of the set of equations to a system of first-order

differential equations having the form
d
-5-‘1’; = f(n,y) (3.16)

where y and f are vector quantities. This reduction is easily

accomplished by considering u, and To to be separate unknowns and

n n
d(u,) a(T )
introducing two additional equations, i u1n and e Ton.

The vector unknown, y, has seven components for this first-truncation

problem: y = (ul, U 5 Vs Pys Pyr To’ To ). In order to obtain the
n

n

[+
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dp dv
first derivatives 532 and EEE explicitly, as required in (3.16),

it is necessary to algebraically combine the continuity (3.4a), normal
momentum (3.4c) and state (3.4e) equations. The remaining first deriv-
tives are obtained immediately from the appropriate equations. The

seven components of equation (3.16) for the first-truncation problem
1

are
du
1
m fl(n,y) = u1n {(3.17a)
duln 1 ui €u1v°
dn fZ(n’Y) = u(To) Pol T4en ~ vouln " 1+en
2p2 u'(To) ) 1
Tten | - 2 euln - ;TTZT- (u1n - eul) Ton J.17)
v T
2 ° °,
dv_ Tren (V1 ° €Y + D
i t3(n,y) - : vz (3.17¢)
1l - €2 1 T_o \
Y )
o, £,(n,y) = - €2 v_ £.(n,y) (3.17d)
dn 4\Y oo 3! A
dp2 €U v, u2
I = f5(n.y) = - ep T*en "€ Yo £,(n,y) - —
(3.17¢)
—

The superscript (1), denoting the values obtained from the fivst
truncation, has been dropped for simplicity.
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dTo
&5 - f6(n,y) = ‘1‘Da (3.175)

dT
On e
dn = f?(a!Y) = .‘L_('E;T VO [f[‘(nQY) = .00 Ton] -

R w' (T )
T 2 + T (3.17g)
n u(To) %
Y pO
where po = -Y.—]_ E-;.

There are nine boundary conditions available in equations (3.6),
(3.8) and (3.9). However, there are three additional unknown quantities,
Ab . 62 and 1 » which appear in these boundary conditions. Thus
there is actually one less boundary condition available than is needed to
define a solution to equations (3.17). The problem is made determinate
by truncating the series that describes the shock position or shock
angle, equation (3.3). Setting ¢1 = 0 (and therefore 62 =0 ) is
equivalent to assuming that the shock and body are concentric. Thue,
with this approximation, the first truncation problem becomes consistent
with the analyses based on local similarity and the thin-shock-layer
model,

Equations (3.6 a,b,c) nrovide three relations for the seven depen-
dent variables at the body surface. Thus,to begin the integration of

equations (3,17) at the wall,it is necessary to guess the values of four

of the variables, The recommended procedure is to choose values of
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po(O) , p2(0) . uln(O) ard To (0). Equation (3.6c) gives vo(O) = Q,
and equations (3.6a) and (3.6b) mﬁst be solved to obtain the values of
ul(O) and TO(O) that are consistent with the guessed values for
po(O), uln(O) and Ton(O). The solution of equation (3.6b) for TO(O)
is not immediate since '1‘° appears in an Implicit manner. Using a

power law for the viscosity,
(Tl ™,

we may rewrite equation (3.6b) in the form

0
TO(O) = (3.18)

This relation may be solved by successive substitution. That is, sub-

stituting an approximate value of TO(O) » 8ay TO(O) = T into

b ]
]
the right-hand side yields an improved value for TO(O) . This value is

in turn substituted into the right-hand side. This process is continued
until convergence is obtained. Note that for the special csse, w = 1/2,
the solution is obtained immediately since TO(O) is removed from the
right-hand side of the equation. With TO(O) available, equation (3.6a)
can be solved for ul(O). The functions f(n,y), defined by equations
£3.17), may now be evaluated at n = 0,6 and the numerical integration

of equations (3.17) can be performed in a step-wise manner until the
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shock 18 located. The shock condition on Vo has been found to work
well for the determinatiun of Ab' The numerical integration is con-
tinued for increasing n until the value of VA satisfies equation
(3.8b). This defines the value of ab. There remain four shock con-
ditions which are satisfied by iterating on the four f{nitial values

uy ) , To (Q) . po(O) and pz(O) . Due to the nonlinearity of the
eq:ations, u:veral such iterations using the Newton-Raphson method are
generally required to obtain the correct values of the variables at the
wall. Each iteration proceeds in the following manner.

1) Each of the guessed initial values is varied by a small
increment. The equations are integrated,and the effect
of the change in the initial value on the unsatisfied
shock conditions is evaluated. This step requires the
numerical integra.ion of equations (3.17) four additional
times.

2) With the assumption that the shock conditions depend on
changes in the initial data in a linear manner, a correction
to the initial data is computed.

3) The equations are then integrated with the corrected
initial values,and the shock conditions are evaluated again.

This process continues until tlie shock conditions are satisfled to the
desired degree of accuracy.

The application of the temperature-jump condition, equation (3.6b)

or (3.18), is simpler if an alternative procedure of guessing TO(O)

and computing the consistent value of To (0) is adopted. This
n
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procedure works quite well for low values of the Reynolds number.
However, numerical difficulties frequently occur when ¢ {8 very small
(large Reynolds number). The computed value of To (0) (and therefore
the solution to equations (3.17)) is,i{n thi: caae,qzite sensitive to
the guessed value of TO(O). Hence, in the iteration procedure
described above, the increments added to TO(O) must be kept very small,
It occasionally becomes difficult to keep the errors that result from
the numerical integration smaller than this increment in TO(O). If
this is not accomplished, the predicted corrections to the initial
conditions are meaningless, and the iterations do not converge. For this
reason it was recommended that the value of To (0) be guessed.
Probst2in and Kemp [ 28 ] consideced severag approximate m:thods
based on local similarity and showed that some of the schemes could
lead to an overdetermined system of differential equations. Howe.er,
one generally encounters a system which appears to be underdetermined.
In the case of the first-truncation problem described above, this was
resolved by requiring the body and shock to be concentric. In the thin-
shock-layer investigations based on local similarity, e.g. ref. 19 ,
the systems of ordinary differential equations usually appear to be
underdetermined even though such investigations assume that the body and
shock are concentric. This is a result cf the fact that the (“vn)n
term has been retained in the equations. The order of the system is
then one greater than the system defined by equations (3.17). Hence,

one additional boundary condition or constraint is required to determine

the value of vn(O). It was also noted in Chapter 1I that keeping
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(p.vn)n in the normal momentum equation could lead to difficulties in
the formulation of the problem. Thus it is of interest to examine the
form that equotions (3.17) would take if the (wv ), term were included.
In this case, the vector unknown, y , would have eight components
since v would have to be considered as a separate variable. Several
of the equations in (3.17) would change since the normal momentum equa-

tion is of the form

2
L o - w(T) e

n n nn
dvo dpo
In particular, the expressions for T and F given in (3.17¢) and

{3.17d) would be replaced with

dv°
dy = fmedamy,

+1

and dp P, ro Po Z(u1 - evo)
2 = £, (n,y) = 2 | —— - v
dn 43 T v l+en [
[} (o] n

The eighth equation would be

dv
o
n 1 2
dn fs(n,y) ) u(to) [}A(H'y) te p, vovon]

1
The right-hand side of this equation is not complete, but in this

form the equation has the same essential features as the more complete
eguation.
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When there is no mass transfer 4t the wall (vo(O) = 0) , the value of

dp dvo
5;9 (and therefore dnn) is infinite at n = 0 unless

This is consistent with the analysis in Chapter II based on the chzr-
acteristic surfaces of the governing partial differential equations

(page 22 ), There it was noted that the inclusion of the (“vh)n term
meant that streamlines were characteristics., Thus, for no mass transfer,
the body surface is characteristic, and one cannot determine the highest-
ordered derivatives normal to the body unless the specified initial

data satisfy a compatability equation. It is now seen that the compat-

ibility equation requires

2u1(0) - v, (0) =0,
n

In the case of no slip at the boundary, this simplifies to a requirement
that v (0) = 0. This compatability condition is the additional con-
atraint :r boundary condition which is used in numerous investigations

[ 19, 21, 24, 28 ) to make the system of equations determinate.
However, it was noted in Chapter II that all difficulties are not
removed by this step as there is no guarantee that the solution is
unique when the initial data satisfy this compatability relation. Shih

and Krupp {30 ) have computed an alternative solution to one of the
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examples considered by Ho and Probstein [ 19], thus verifying the non-
uniqueness of such a formulation of the prcblem.

In an investigation similar to that of Ho and Probsteinm, L. Goldberg
[ 17] has considered examples in which there is mass transfer at the
wall. In such a case there is no compatability relation at the wall, and
the system of differential equations again appeara to be underdetermined.
Goldberg uses the integral form of the mass-conservation equation (ec.f.
equation (2.18)) as the necessary additional constraint, However, in

gzneral, thih is not an independent condition. If the continuity equa-

tion is satisfied throughout the shock layer and all the boundary

conditions are properly eniorced, the overall mass conservation is

assured. An examination of Goldberg's equations shows that in the con-

tinuity equation a factor of the form l+en has been approximated by v
unity. This is consistent with the thin-shock-layer model, but a simi-

lar approximation in the integral equation has not been made. Thus the

relation is independent due to the approximate nature of the continuity

equation that 1is used. The problem is thea determir.te, and the shock

stand-off distance can be computed {(a concentric shock interface and

body surface had already been assumed).

As noted in Chapter II, Shih and Krupp modify their governing
equations in such a way that the special role of the (-',,vn)n term is
altered. In this manner the difficulties associated with obtaining
v, (0) are apparently avoided (although this point is not clear). How-

n

ever, they have not ussumed a concentric shock and body, thus raising by

one the number of boundary conditions needed, This additional relation .
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is again taken tn be the integral form of mass conservation. It is
not clear why this equation should give an independent constraint for
their analysis,and this point 18 not discussed by the authors. However,
it is probably related to the fact that the shock conditions are applied
only at a specified number of stations downstream of the axis of symmetry,

It is quite obvious that in any analysis of the type considered in
this chapter the question of the determinacy of the system of differ-
ential equations may be rather complicated. For the present analysis it
appears to be necessary to make some assumption about the shock slope.
Hence ¢1 was taken to be zerc in the first-truncation problem
described above. The use of the Iintegral form of mass conservation
gains nothing, If equation (2.18) is expanded, it becomes, for the first-
truncaiion problem for flow around a sphere,

B

(1+eAb)2 =2 j by, (+en) dn . (3.19)

o

if the continuity equation (3.4a) 18 rewritten in the form
(en)2 o v ) = o u, (l+en)
oo/n ol

and substituted into equatiou (3.19), equation (3.19) ifmmediately reduces

to p (A& v

0% o(A.o) = 1., This result, however, has already been assured by

the application of the Rankine-Hugoniot shock conditions,.
The computation of the second-truncation problem proceeds in the

same manner as did the first-cruncation problem, The vector unknown,
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y » of equation (3.16) now has thirteen corponents: y = (ul’ U s Vo,

Py Ppo To, Ton, s, u3n, Vos Bys T2, Tzn). Equations {3.4), (3.5) and
(3.10) are reduced to a system of thirteen first-order differential

equations. Of the first seven of these equations, all except
dp

;T fs(n,y) are identical to the corresponding equations of the first
dp
truncation problem. 333 must now be obtained from an algebraic com-

bination of equations (3.5a), (3.5¢) and (3.5e). Thus the explicit
formulation of the second-truncation problem consists of equations

1
(3.17a)-(3.17d), (3.17f), (3.17g) plus the following equations.

dp2 ezpov: 2
:‘In_ = fs(n,y) = 1+ "—'ﬁ 51(n) - E-Voﬁz(n) (3.20)
o~ € Po'

where "
Epo 1

8™ = TFen [“1 +e(2v, - vo)] - [po(vz - Vo) F vy ] £5(0u)

and
Y Vo
By(n) = - ——2( P, T, =T f(my) -p, T, )+
y-1T n n
o
2v° '1‘on fa(n,y) Ton
oo T B} AT T |t
[¢] o o
L ‘p (2u, - ev,) + p,(2u, - ev i]
1+en P03 27 T PV 0
—

The superscript (2), denoting the values obtained from the second
truncation,have been dropped for simplicity., It should be remembered,

however, that these variables are a second approximation t- the correct
values of the flow variables. In particular it should be noted that the
function fs(n,y) which appears in equations (3.2lc¢) and (3.21f) is

the function f(z) defined in equation (3.20) and not the function

5
fgl) defined previously in equation (3.1l7e).
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e "“"'l ."'V H"."h
= - Wy~ . —" - ' % ?'.
f
&
i
du3

n
du., 1 ul
== = fo(n,y) = —=— (p .2 )—(u -ev) -vu |+
dn 1 u,('l.'o) 2 " 2PoJ11+en M1 o o 1tl
—]-'—u(ltu - €V,) -€vu, }-vu, = v,u +
Po{T+en | 173 2 03 03 T 21

M - 2¢u _Eﬂmf(n).‘pzeu +
T+en 3, w(@) 2\t T R

(1, o) o, (1, =) 5, ) S o, - o
u -eu, | T +{u -eu, }T - w——— T fu - €u
3n 3 °n 11_1 1 Zn H(To) 2 1n 1) °,

(3.21b)

dv B,(n) v

2
@ " fee) - i £5(n,y) (3.21¢)

dpa €0, h
—_— 5 —— 2 - -
I fu(n,y) Tien ua[,ul + e(2v, vo):l 3euyv, } +

td

€p2u1 2
Tren I:u1 te (2v, - vo)] - € (v2 - vo) [po £0(y) +

2 -

pz fa(n:Y)] - € [Dzvoflo(n:Y) - povzfa(nIY)J (3'21(1)
de
_dn = flz(n’y) = Tz (3.212)

n
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d'I‘2 c 1
e RS ) ["ofs,‘“ﬂ’ *(Vz -l "o) By (my) +

N =

2u
_1 T - - V. =
l+en (po o~ P2 ) po( 2

vo)To - vo(poTZ + poT, )] -
n n n

[2 T, + 2 b 5 (
€ ou u, - 2cu - —— 1T f.(n,y) +
2n 1n ( ln 1)] p(To) [2 7

2( T b {Ty) A
€+ T ) - T, T (3.216)
21'1 On] u,(To) 2 On
Y P y {pp, T -p T
- — 2 - -2 o o "2
where Po y-1 To and Py = ¥-1 '1'2
. o

Despite the complexity of these expressions, they are in a form
which is easily evaluated numerically on a romputer, given a value of
n and the corresponding values of the dependent variableas., There
are seventeen boundary conditions available from equations (3.6), (3.8),
(3.9), (3.11)~(3.13). The conditions at the shock contain an additional
five unknowns, Ao' Az, A&’ ¢1 and ¢3, which describe the shock
shape. Thus the problem is again underdetermined, and some suitable
assumption regsrding the shock shape must be made, Unlike the first-
truncation problem, setting Aﬁ = 0 does not imply that gy = 0.
Hence we can truncate either the shock-position series or the shock-

angle series with equation (3,13) supplying the coefficient of the
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other series. Since there is no clear choice here, it also seems
reasonable to truncate both series, in which case the geometric relation
given by equation (3.13) is not satisfied. These various possibilities
are conéidered in the next section. It should be noted that 2 and
A2 are computed in this second-truncation problem. Therefore a check
is provided on the accuracy of the assumption that g - 02 =0 in

the first-truncation problem.

Now it 18 necessary to guess seven unknown values at the body
surface: uln(O), po(O), P20, Ton(O), u3(0), pa(O) and Tzn(O). The
boundary conditions (3.6a-c) and (3.1lla-c) provide the remaining six
values. The equations are then integrated numerically until the value
of vy satisfies equation (3.8b). This defines the value of Ab. The
value of ¢1 can be obtained by solving equation (3.12b). Since this
equaction 18 quadratic in ¢1 , two values are obtained, However, it
hac been found fn all of the examples considered thus far that the
larger value of % corresponds tc a shock of negative curvature
( %§-< 0) and thus is unacceptable. The requirement for a positive
shock curvature is found by differentiating equation (3.3b). At the
axis, a positive curvature requires that ¢1 <1l . After Ab and %
are determined, there are seven boundary conditions--equations (3.8a)},
(3.8¢)-(3.8e), (3.12a), (3.12c), (3.12d)--which can be used to determine
the correct values of the seven guessed initial conditions. The itera-
tion procedure by the Newton-Raphson method now requires the solution
of the second-truncation equations an additional seven times for each

iteration, Clearly, if many iterations are required to obtain the
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correct solution, this procedure will be quite time consuming and hence

expensive, Thus it is important to have an accurate guess for the seven

initial values in order to reduce the number of iterations that are

necessary. The solution to the first-truncation problem provides

reasonable values for Ups Vs P Py and To' In order to obtain a

first approximation to uy (0), pa(O) and T2 (0), it is advantageous
n n

to solve equations (3.21) using the first-truncation solution to provide

values for Ups Vor Pgs Pps and To . Except for several terms in the

dp
equation for = , these equations are linear in Uss Pus and T

dn 2"

If these nonlinear terms are omitted and if the shock parameters Ab,
éy, ¢1 are kept at the first-truncation values, one iteration on
equations (3.21) converges due to the linearity of the problem. This
preliminary solution provides an approximation for uy (0), p4(0) and
TZ(O) whose accuracy depends on the accuracy of the fzrst truncation.
1f the first-truncation solution is accurate, this preliminary step
described above can result in a considerable reduction in computation
time. It will be seen in the next section that the accuracy of the
first truncation solution for a common class of problems can be greatly
improved by using a more realistic approximetion for 21 than ¢1 = (.

The time required to solve these equations numerically depends very
strongly on the individual problem. Problems for large values of the
Reynolds numbe: require more time than those for moderzte values of Re.
The accuracy of the initial guess for the unknown boundary conditions

ts also quite important. Typical computation times for the first-trun-

cation solution range from 15 seconds per iteration at Res = 102 to
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50 seconds per {teration at Res'loﬁ For the second-truncation problem

2

these times are 30 seconds per iteratior &t Res = 10° and 200 seconds

per iteration at Re, = 104. The number of iterations that are necessary is
usually small (two or three) unless the guessed values for the initial
data are very poor. The large computation times at large values of

Res are a consequence of having to maintain a small step size in the
integration procedure while integrating across the "inviscid® region of
the shock layer, despite the fact that the unknowns do not vary rapidly

in that region. This feature appears to be a consequence of solving

for the second derivatives U and Tnn as principle terms. In the
outer, "inviscid® region, L. and Tnn must be considerably smaller than
the other terms (in boundary-layer theory, they go to zero exponentially
as the edge of the boundary layer is approached). If a large number of
computations are to be made at large values of Res » 1t may he worth-
while to devise a scheme that will reduce the equations (3.4) and (3.5)

to first order in the outer flow.

A possible reduction in computation time may be achieved by origi-
nating the integration of the d'ffurential equations at the shock instead
of at the body surface. For the first-truncation problem it would then
be necessary to guess only three initial conditicns: oy W (Ab) and
To (Ab) . Thus an iteration based on this alternate procedutz requires
ong less solution of the differential equations than does the procedurc
described earlier. A similar reduction would occur in the second-trunca-

tion problem since it w.alii be necessary to guess only six values at the

shock in order to initiate the integration.
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D. Results

Several examples are considered in this section in order to evaluate
the accuracy of the method of solution and the accuracy of the basic flow
model. In addition, a comparison of the first- and second-truncation

results provides a test of the validity of local similarity.
1. A Comparison to Second-Order Boundary-Layer Theory.

Tne flow around a sphere at M =10, y = 1.4, o=0.7 and

1/2

p="T is used to test the accuracy of the series-truncation method.

For this example, the body temperature is constant at 0.6 of the

inviscid stagnation temperature; 1.e.,

' bo = 0.6 and b2 =0
Ty 2
where b= ————=b + b _8in B +:.- (3.22)
o] 2
Btag.
! The results of a boundary-layer analysis by Davis and Flugge-Lotz

(12]) are used as a standard of comparison for the series-truncation
results. These boundary-layer computations were made for both the
first- und second-order boundary-iayer equations by use of an implicit
finite-difference scheme. A numerical scheme of this nature has been
shown to provide accurate solutions to the boundary-layer eguations.
The inviscid pressure distribution on which the boundary-layer computa-
tions were based was provided by H. Lomax of the Ames Research Center
of NASA. The methcd of solution for the inviscid flow is described in
reference 20 and has been shown to be quite accurate [25]. Thus the

solution of the first- and second~order boundary-layer equations

o4




computed by Davis and Flugge-Lotz may be considered to be exact and to
provide a standard against which the series-truncation method may be
measured.

The results for the shear stress, 7t/¢ (see equations {2.22)
and (3.14)), are compared in figure 3.1. In order to have a significant
difference between the first- and second-order boundary-layer results,

the rather low value of 100 was chosen for the shock Reynolds number,
prikaw
W o
Hon

decrease the wall shear slightly for this example. Since the truncation

Re8 = + Note that the second-order boundary-layer effects

results are in the form of a power serles centered at the axis, 8 = Q,
the results can be expected to agree only near 8 = 0. However, from
figure 3.1 it can be seen that the first truncation gives a poor result
even at the axis: the curve that represents the first-truncation result
has an incorrect slope at 8 = 0. The seccnd-truncation result appear:
to have the correct slope at 8 = 0, but the sgreement does not extend
over any significant distance. The second truncation does, however,
give a far more accurate solution than does the first truncation.

The shear-stress results can be more precisely evaluated if they
are compared to a series solution of the boundary-layer equations rather
than tv the finite-difference soclution shown in figure 5.1. The

expression

t(8,0)/e = 1.2 8in & - 0.6 sinjs (3.23)

agrees to 0(83) with the two-term series solution of the first-order

boundary-layer equations presented by Davis and Flugge-Iotz. The
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Figure 3.1

Shear stress on a sphere at y = 1l.bL, M = 10, Re> = 100,
b=10.6, 0=0.7, and ® = /2 (€ = 0.118); comparison of
truncation results with the boundary-layer results of Davis
and FlUgge-Lotz [12].
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second-order boundary-layer effe.ts would decrease the coefficients of
this expression slightly. However, in figure 3.1 these effects appear to
be smaller than the computational errors associated with the truncation

method and are ignored for the moment. The present investigation yields

1(1)/6 = 1.50 sin s (3.24a)
and

1(2)/6 = 1.29 8in s - Q.51 sinjs (3.24)

for the first and second truncstions respectively. Thus despite the
pronounced improvement of the results shown by the second truncation,

there is s8till an inaccuracy in the value of +t.. However, it should

1
be noted th.t thece errors are somewhat less than is indicated in
figure 3.1: the curve representing the series soluticn to the boundary-
layer equations (equation 3.23) lies above the finite-difference curve
shown in figure 3.1 Just as the series truncations do.

In contrast to the wall-shear results, the results shown in
figure 3.2, for the heat-transfer rate, q/e (see equations (2.23)
and (3.15)), agree with the boundary-layer values remarkably well.

The first-truncation value is about five percent toc high at & = 0.1

1 The fact that the first~truncation result fur q is a constant is a
consequence of having expandcd the temperature into T(s,r) =

To(n) + Ta(n)sinas +evs » If an expansion such as T(s,n) =

2
To(n)cosas + Tz(n)sin 8+.++ had heen used, the first-truncation
problem would remain the same but would yield q(l) = % qg*)ccsas.

This funétion would then agree reasonsbly well with the boundary-

layer values over a more significant range of values of s.
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This small inaccuracy in q, is corrected by the second-truncation
computation. In addition, the second-truncation heat-transfer rate,
qia) + qéa)sinas, agrees extremely well with the second-order boundary-
layer result over the entire s-interval for vhich the boundary-layer
result is available.

The relative inaccuracy of the shear-stress values seems to be
strongly relsted to the description of the shock shape. An examination

of equations (3.8) shows that a change in the shock angle, @ affects

1)
the value of u1 at the shock, i.e., ul(ab), but not the values of
Tb(ab) and po(Ab). The first-truncation solution of this problem is
bascd on an assumed value of zero for ¢1, and it leads to a computed

value of 1.085 for the shock standoff distancs &+ The se ond-

truncaticn solution yields calculated values for both # 1 and ab:

A =1 0252 and @

. 1= 0.12%6

The effect of these changes in the shock shape can be evaluated from
figurc 3.5 vwnere the first- and second-truncation values of the flow
variables ul, po, and 'I'o are shown. It can be seen that the changes
in ¢l and Ab influence the value of u across the entire shock
layer, but near the body surface the temperature and pressure profiles
are affected only slightly by the change in value of Ab. For & very
cold wall, it may be expected to have a slightly larger effect on the
temperature than is shown in figure %5.3. However, from this example,
it is evident that the major errors of the first truncstion should be

expected to ocecur in the tangential-velocity profile and hence in the

69




14

1.2

1.0
>
S

§ 08
TS
2

£ 06
o]
P

04

0.2

0

l I | |
— — — FIRST TRUNCATION
——— SECOND TRUNCATION

Figure 3.3

Flow varisbles near the stagnation streamiine of a
sphere at v = 1.4, M_ =10, Re_ = 100, b = 0.6,

0 =0.7, and = 1/2.
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wall shear. Further, these errors appear to be primarily a result of
truncating the series that describes the shock angle ¢.

This last assertion requires further verification, however, since
the truncation of the "excess" varisbles from the normal momentum equa-
tion i8 also a source of error. As a check, the first-truncation equations
have been re-solved for this example. However, instead of setting
ﬂl = 0, the value found from the second-truncation solution 18 used;
i.e., a value of ¢l = 0.1236 4s specified. The resulting tangential-
velocity profile is shown in figure 3.5 for ccmparison. This profile
corresponds to a value of 1.22 for Tgl). The temperature profile and
the heat-transfer rate do not djiffer appreciably from the values pre-
viously given. It can be concluded that the major error in the first
truncation originates from the approximation for ¢1} the influence of
the truncation of 92 and v2 from the normal momentum equation,
(3.5c), though not negligible, is considerably smaller.

The influence of the shock shape on the second-truncation problem
is somewhat more complex. As noted in section ¢, the second-truncation
problem can be made determinate in several ways. The second-truncation
results that were presented in figures 3.1-3.7 and in equation (3.24b)
were based on an assumption that ¢5 =&, =0. In figure 3.4 che
effect of assuming only the value of A‘h and computing the conzistent
value of ¢5 from equation (3.13) is shown. Values of ¢5, Tg.a),
and $§2) are plotted as functions of Ah' For comparison, the value
of Tga) and T§2) given in equation (3.24b} for &y, =%, =0 are

3

also shown. As expected, the value of 15 is strongly influenced by

the choice of &, since uj(ab) is a function of @, and thus &

5
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Figure 3.4

Influence of the shock shape on the second-truncation
pmblem; Y = 1lh, Mm = 10’ Res = 100, b= 0-6’
o= 0.7, and w = 1/2.
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function of 4 (see equation (3.11a)). More surprising is the noticable
influence of Ah on T,. However, values of All greater thaun 0.04
begin to have a noticable effect on the heat-transfer results. Hence

if the outstanding heat-trensfer results were not simply fortuitous, the
shock errors alone do not account for all the difference between the
boundary-layer results and the second-truncation solution.

It should be noted that at low Reyrolds numbers the present formula-
tion of the problem cannot be expected to yield results that are identical
to those of the second-order boundary-layer theory. Although the equa-
tions of Chapter II are uniformly valid to 0O{e) throughout the shock
layer and thur contaln all second-order boundary-layer effects, the
current formulation does not isolate these effects and analyze each one
separately as is done in boundary-layer theory. Consequently, the
present formulation contains some higher-order effects that are not
contained in the second-order boundary-layer results. These differences
in the two formulations of the problem are 0(62) and can be expected
to dimirish &3 the Reynolds number is increascd.

The variation with Reynolds number of the ratio of the wall shear
to the first-order boundary-layer wall shear is shown in figure 3.5.

It can be seen that the second-truncation results do indeed approach the
boundary-layer results as the Reynolds number is increased, but somewhat
slowly. At a Reynolds nurber of 103, € = 0.037 and the difference
between the two formulations should be 0(10-3). At ReS = 102, the
difference should be 0(10-2). Yet, in both caees, the actual differences

in the shear-stress values are about an order of magnitude larger than
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expected. Note, however, that the difference is only a few percent at
the larger values of ReB and is within the variation due to the un-
certainty about the shock shape.

Accepting the accuracy of the results of Davis and Flﬁgge-Lotz, we

arrive at tke following conclusions.

a. The first truncation resultes are considerably less accurate
than those of the second truncation, even at the axis of
symmetry.

b. The heat-transfer rate is determined quite accurately, but
significant errors occur in the values of shear stress.

¢. The error in the shear-stress values is primarily due to the
sensitivity of the tangential velocity to approximations for
the shock shape.

d. The errors due to the truncations increase as the Reynolds

number is decreased.

2. Iocal Similarity

The results of the first example, particularly those shown in
figure 3.5, are of interest for an evaluation of the results of local-
similarity analyses, e.g. Ho and Probstein (19], Probstein snd Kemp
[28], and Goldberg [17). In each of these investigations, comparisons
to boundary-layer results much like those in figure 3.5 are presented.

. In each case the low-Reynolds-number results are gqualitatively very
similar to those presented above; that is, the shear-stress values are

found to be considerably larger than predicted by first-order boundary-

[P




layer theory. Further, the method of analysis that is used in these
investigations i8 very similar to the first-truncatiqn analysis. The
variables have been aseumed to be "locally similar" in the region of

the axis and hence are assumed to be adequately described by expressions
such a8 u = 8 ul(n), v={1l- % 32) vo(n), D= (1-82) po(n) - %»32 p2(n),
ete. The similarity to the expressions used in the first truncation is
evident. In addition, these investigations have assumed that the body
and shock are concentric (¢1 = 0), a fact that has been shown to be of
conslderable importance. The results of the first example of this
section imply that a portion of the divergence from boundary-layer theory
found in these investigations 1s a consequence of the method of analysis
and not a property of the low-Reynolds-number flow. That is, the use of
the method of local similarity leads to errors which exaggerate the
differences with the results of boundary-layer theory.

A verification of the above conclusions by a direct comparison of
the results of a series-truncation analysis to those of the local-
similarity analyses is somewhat difficult. The series-truncation
analysis has been applied to the problem defined by Ho and Prcobstein,
1.0, ¥ = -% » M ==, ©0=0.71, b =0.05, b, = 0.0, p= Tl/a, and
no-slip boundary conditions at the body surface. However, Goldberg
gives only a range of values cf flight velocities, altitudes, and body
temperatures at which his computations were made. Thnus there is some
uncertainty about what values of Mach number, Prandtl number, and tody

temperature should oe used in thec series-truncation analysis for

comparison with his results. However, Goldberg does present a result
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for 3;; = 0.10, which corresponds to the choice of Y = l% above,
and he specifies no-slip boundary conditions. Further, for large values
of the Mach number, the precise value of %» should have only a minor
effect; and the normalization of the results with respect to first-
order boundary-layer values, as was done by Goldberg, should minimize
the influence of the unknown parameters. Hence a comparison of the
shear-stress results of Goldberg, Ho and Probstein, and the series-
truncation method is given in figure 3.6. The results of Ho and
Probstein and of the series truncation have been normalized by TB.L- =
1.11 Res sin 8 +-+¢« . This function was obtained from reference 19
and is based on an inviscid pressure gradient that was obtained from a
thin-shock~layer analysis. Interpretation of these results is complicated
by the general lack of agreement among the several results.

Goldberg's results illustratc two effects not contained in the

o
other results. First, as the shock density ratio, 52- , becomes

smaller (requiring y -»1), there is a greater devia:?on from the
first-order boundary-layer values (note that the choice of (;‘3—)3 Re,
a8 the abscissa in figure 3.6 reduces the appearance of this e??ect).
This 1s to be expected since the shock layer becomes thinner and the
second-order displacement-thickness effect becomes more pronounced than
it was in the first example of this section. Second, Goldberg's results
show a decrease in the shear stress at very low Reynolds numbers. This
decrease 1s a consequence of having used a modified set of shock condi-

tions which account for the thickening of the shock. The truncation

results and those of Ho and Probstein are based on the Rankine-Hugonio%
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shock relations and thus do rot exhibit this effect.

The agreement between the first truncation and Goldberg's result
4]

for 52— = 0.10 1is actually fairly good considering the uncertainty
sh

4
about some of the flow conditions. At ReB 10, Goldberg's results

(when slightly extapolated) predict a shear stress which is about 25
percent higher than the boundary-layer valie, snd the first-truncation
golution is ubout 17 percent higher. In addition, computatiorns have
shown that approximating factors of 1+€n by unity, as done by Goldberg,
reduces the difference between these two results by about one fourth.
The second-truncation results are qualitatively the same as they
were in the first example. The decrease in wall shear below the first-
tiuncation values 18 somewhat less than it was before, but is still
substantial. In fact, at Res = 10“, the second~-truncation result is
only six percent higher than the boundary-layer value (compared to
25 and 17 percent cited above). Since the displacement-thickness effect
is lareer for this example than it was for the first example of this
section, the total second-order boundary-layer effect can be expected
to be positive, unlike the result shown in figure 3.5. As anticipated,
the second-truncation results provide a much better agreement with the
boundary-layer values than the results of a local-similarity analysis do.
A comparicson to the results of Ho and Probstein, however, is not
conclusive since the results of the first truncation and chose of Ho
and Probstein are not in agreement. The reasons for this difference
are not fully understood. Approximately one third of the difference

(at Re_ = 100) 1is the result of the omission of the viscous terms
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(see equation (2.3)) by Ho and Prebstein.® On the other hand, they
retain several visccus terms in the normal momentum and energy equations
which are not included in equations (2.4) or (2.5). The influence of all
these terms except those that are proportionsl to (uvn)n has been
investigated and has been found to change the results by less than one
percent. The effect of (pvn)n was not checked since the computational
difficulties described earlier in this chapter would require extensive
modification of the computational procedures. Thus the major part of
the difference is unexplained.

However, it should be noted that the pressure distribution acrcss
the shock layer computed by Ho and Probstein differs radically from the
truncation result for pressure. In all the examples -hat have been
computed, the inviscid pressure mechanisms which are included in equation
(2.4) yield pressure daistributions like that shown in figure (3.3); i.e.,
the pressure increases monotonically from the shock to the body surface.
In contrast, the computations of Ho and Probstein yield a pressure
distribution that has a rather steep drop immediately behind the shock
before increasing to the surface value (for an example, see figure 3.7).
As pointed out by Shih and Krupp (30}, this decrease in pressure, which
is apparently a result of viscous effects, is suspect because one does
not expect the viscous forces to be larger inmediately behind the shock

than near the body surface. The investigation by Kao (21] has yielded

1
The term %# (k + j sin G/r)Tn is also omitted from the energy

equation. This term has a significant influence only on the heat

transfer, however.
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a similar pressure distribution, but Levinsky and Yoshihara [24] and
Goldberg have obtained pressure distributions that do not show this
effect despite thelr use of equations that are quite similar to those
uged by Ho and Probstein.

It may be possible, of course, that the method of local similarity
ylelds a more accurate solution to the equations of reference 19 than
it does to those of Cl..pter JI. However, it seems more likely that a
series-truncation analywis ¢ ® the equations used by Ho and Probstein
would yield results like thuse exhibited in the two examples considered
in this section; 1i.e., the loecal similarity, or first truncation,
results would be significantly improved at the axis by the more complete
anaiysis of the second truncation. This conclusion is further sub-
stantiated by the following discussion of the analysis by Kao: Kao's
results are similar to those of Ho and Probstein, and it will be shown
that, in general, his analysis should yield substantial differences

between the first- and second-truncation results.

3. Influernce of the Body Temperature

The results that have been described above appear to be in contradic-
tion to the results of an investigation by H.C. Kao [21]. He solved
the Navier-Stokes equaticns by use of the method of series truncation
and f~und very little difference between the results of the first and
second truncations. Hence he concluded that the method of local similarity
was valid (in the sense that it y .as correct values for the first

term of a more complete series sol .ion). The contradiction, however,
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is more apparent than real and can be resolved by a comparison of the
computational procedure of Kao to that used in this chapter.

The truncation procedure used in this chapter has been adapted
from Kao's analysis, and hence the two formulations of the problem
are quite similar. However, since Kao solved the inverse blunt-body
problem, the location of the body surface appears as an unknown quantity
instead of the shock loca%ion. 1In the integration of the equations
inward from the shock, the location of the body can be determined from
one of the wall boundary conditions. However, Kao adopted an alterna-
tive procedure of specifying the body location in which case the surface
temperature cannot be imposed as a boundary condition but must be
considered to be a result, much like the shear stress and heat transfer.
More specifically, if both T

bp

location away from the axis of symmetry are specified in the second-

(see equation (3.7)) and the body

truncation problem, the equations are over-determined. Hence, Kao
specifies that the body and shock be concentric and obtains, as part

of his solution, the temperature distribution of the body surface. Thus
Kao's conclusion about local similarity is valid only if the tempera-
ture of the body 1s such that the body and the shock are concentrie.

The temperature aistribution which produces this spherical symmetry
is one in which the body is strongly coocled downstream of the axis of
symmetry. Kao solved the problem defined by Y = l% f M” = 10,

Re_ = 10, 0 = 0.7, b = 0.048, and nc-slip boundary conditions. The

resulting temperature distribution is given by b, = -0.516. When the

2

present series-truncation analysis is applied to this problem (with b2
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Figure 3.7

Comparison with the flow variables computed by Kao [21};
Y= 119, M_ = 10, Re, = 10, b = 0.048, b, = -0.516,
o= 0.7, @ = /2, and no-slip boundary conditions (e = 0.369).
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specified as -0.516), it is found that the equations of Chapter II

yield a nearly spherically symme tric problem for this temperature dis-
A(2)
0 (2}
tribution (more specifically, we obtain - 1.003 and ¢ 1 F 0.0036).
Ja

0
Despite this agreement with the results of Kao, the flow variables ob-

tained from these two solutions do not agree well, as seen in figure
3.7. The choice of Res = 10 1s undoubtedly outside the range of
validity of the basic flow model of this investigation (note that the
viscous effects extend across the entire shock layer ). Further, the
radically different pressure distributions that were discussed with
regard to the previous example are also encountered here and preclude
the possibility of making more than a brief comparison.

The influence of the downstream temperature distribution has also
been investigated for the flow problem defined in the first example;
i.e., Y = 1.h, M_ = 10, Re = 100, ©=0.7, and b & 0.6. In
figure 3.8a, the variation of T3 and g, with b, 1s shown. As is
to be expected, the values of 15 and q, are strongly dependent upon
the value of b2- In addition, however, the results of these computa-
tions clearly show the presence of an upstream influence in the flow
since Tl’ qo, and Ab are significantly influenced by the downstream
wall temperature. These quantities are shown in figure 3.8b where they
have been normalized by their respective values computed in the first
truncation. Also shown is the value of ¢1. In the first-truncation
computation, the value of b2 is of no cencern. If no coupling occurred

between different-ordered coefficients of the series expansions

(equations (3.1))}, the fivst-truncation results would be valid for all
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Figure 3.8a

Influence of the downstream body temperature {at Y = 1.4,
M = 10, Re, = 200, 0 = 0.7, and w = 1/2) on the second
coefficlents of the expansions for the shear stress and

hegt ~transfer rate.
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Figure 3.5b

Influence of the downstream body temperature (at Y = l.4,
M, = 10, Re, = 100, 0 = 0.7, and w = 1/2) on the shock shape,
and the first coefficients of the expansions for the shear .

stress and heat-transfer rate.




values of b2- Hence the deviation of these normalized quantities from
a value of 1 represents an error in the first truncation due to an
upstream influence in the flow. It can be seen that the magnitude of
this error depends oﬂ the value of the downstream temperature, i.es,

on b,. For the case of b2 ~ -3.8, the body and shock are essentially
concentric since ¢]_~ 0. For this case, our computation is equivalent
to the computational method used by Kao. Tt can be seen that the changes
in shear stress, heat transfer, and shock standoff distance are con-
siderably smaller than they are for the constant wall-temperature case.

The smallest changes occur at slightly larger values for b,, and ¢1,

2
but it is obvious that the overall agreement between the first- and
second-truncation results is considerably improved by requiring the
shock and body to be concentric. Hence, as before, we find that there
is a temperature distribution that yields a spherically symmetric flow,
and for this case, the local-similarity analysis is fairly accurate.
However, the required temperature distribution differs quite markedly
from the constant wall temperature which is commonly used as a boundary
condition.

It has also been found that-the specification of an adiabatic wall
condition leads to results mueh like those obtained from a constant wall
temperature. Specifying adiacatic conditions with the flow parameters

of the above example leads to a temperature distribution of b = 0.989 -

0.100 sin®s. The magnitude of the changes between the first and second

A(2) (2)
[o] 1
truncations are described by = 1.138, = 0.128, and = 0.851.
Aotli 2 T1(15
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In summary, we conclude that the results of the method of local
similarity are accurate if the geometry of the flow boundaries has a
spherical symmetry. However, the most commonly used boundary conditions
on the temperature, an adiasbatic wall and a constant wall temperature,

do not correspond to flows having such symmetry.

4. 1Influence of the Shock Thickness

The simplification of the Navier-Stokes equations made in Chapter
IT and the use of the Rankine-Hugoniot shock relations restrict the
accuracy of the flow model at very low Reynolds numbers. A comparison
to the results of levinsky and Yoshihara [24] provides some insight
into the range of validity of the flow model used in this investigation.
The equations that are used in reference 24 are also a simplified form
of the Navier-Stokes equations, similar to those used in references 19
and 28. Since these equations omit several terms of O(e) (see page 80),
they cannot be expected to test the validity of the omission of terme of
0(52) from equations (2.2)-(2.7). However, more important is the fact
that no discontinuous shock is used in the formulation of the flow
model by levinsky and Yoshihara. Instead, the differential equations
are applied from the body to the free stream, and the effect of a
thickening shock at low Reynolds numbers is obtained. Although we
have noted that the method of solution which is used -- the method of
local similarity -- may not be particularly uccurate, we have seen that
it 1s equivalent to the first-truncation analysis, and therefore

meaningful comparisons can be made. In addition, an inability to
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adequately describe the shock shape has been shown to be responsible for
much of the inaccuracy of the first truncation. Hence, it i3 of interest
to investigate whether similar Inaccuracies occur when the fiow model
docs not contain a discontinuous shock.

The problem considered by lLevinsky and Ycshihara is defined by

Al

Y = 5 Moo= 10, o=0.75, p= Tl/2, and no~-slip boundary conditions.
Both cold walls and adiabatic walls were considered. Three values of the
free-stream Reynolds numbers were used: 13,652; 1,382; and 152. These
values correspond to a shock Reynolde number of 2409, 24k, and 26.8,
respectively. The first-truncation analysis of this chapter has been
applied to the adiabatic wall case, and the results are shown in figures
3.9 a-c. The functions shown in these figures were defined by Levinsky

and Yoshihara and are given in terms of the truncation variables by

+
Seu, Teev , Bet, B, =
o 2 - 2 = 2 =
1 o DAW 2 DAW
where RAW is the stagnation-point density for adiabatic wall condi-

tions. The last relation sbove is a consequence of the pressure being
represented by an expression of the form p(s,n) =
DAW[E(n)coszs + Eé(n)sines] in reference 24 {compare to equation
(3.1c)).

At the largest value of Reynolds number considered, Res = 2409,
the results of Levinsky and Yoshihara exhibit a very thin shock-

transition region and a distinct separation of a narrcw, viscous boundary

layer from the main region of inviscid flow (figure %.9a). The first-

truncation results agree reasonably well except for the location of
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Comparison with the results of Levinsky and Yoshihara [24]
et v =5/3, M = 10, ¢ = 0.75, w = 1/2, adiabatic wall,
no-slip boundary conditions, and Re = 2hog (e = 0.024),
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the shock. This discrepancy has been found to be & result of an approx-
imation, 1 + en ~ 1, which was used in the equations of reference 2i.
When this approximation is made in the first-truncation problem, the
ghock position corresponds to the outer edge of the shock-transition
region obzained by levinsky and Yoshihara. This has been illustrated

in figure 3.9a by the results for the pressure. Hence, as ig to be
expected, the sgreement is quite good at large Reynolds numbers since
the shock thickness is quite small. Unless otherwise noted, the series-
truncation computations that follow do not use the approximation
1l+en~ 1.

At Re, = 24k, the shock has thickened considerably, and the
"boundary-layer" is a substantial portion of the shock layer, as shown
in figure 3.9b. The variables still match rather well, hcwever, except
for the details of the shock-transition region; the effects of the
thickening of the shock do not appreciably alter the flow in the viscous
layer. The results cited earlier in this section have shown that the
assumption of ¢1_= 0 in the first truncation is quite influential.
The good agreement shown in figure 3.9b indicates that an analicgous
assumption must be inherent to the analysis by Levinsky and Yoshihara
despite the fact that there is no discontinucus shock in their flow
model. The second-truncation sclution is again significantly different
from the first-truncation solution, as is shown in figure 3.9b by the
resuit for the tangential velocity.

At Re_ = 26.8, the shock-transition region znd the "boundary layer"

have merged, as shown in figure 3.9¢; and, of course. the mod~l defined

91




o8 -

06 [~

02

W

LEVINSKY and YOSHIHARA
«=«——— FIRST TRUNCATION

————— — SECOND TRUNCATION

T | | 1 |
025 0.20 0.5 010 0.05 0

en , DISTANCE ACROSS SHOCK LAYER

3P,

Figure 3.9b

Compariscn with the results of Levinsky and Yoshihara [24)
at y=5/3, M =10, 0= 0.75, » = 1/2, adisbatic wall,
no-slip boundary conditions, and Re, = 24 (e = 0.077).
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Comparison with the results of Levinsky and Yoshihara [24]
at v =75/3, M =10, 0= C.75, w = 1/2, adisbatic wall,
no-slip boundary conditions, and Re_ = 26.8 (e = 0.232).
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in Chapter II cannct describe this. The agreement with the truncation
results now deteriorates, and the influence of the thickened "shock"
causes a considerable reduction in the shear stress at the wall. (This
effect was previously ncted in a comparison with the results of Goldberg
[17)) Hence at such low values of Re_, 1t 1s necessary to either
modify the shock conditions (e.g., references 29, 2, and 17) or
integrate the differential egua.ions through the shock-transition region.
In addition, it can be seen that the omission of terms of 0(62) from
equations (2.3)-(2.5) leads to a noticable error for such a low Reynolds
number. With no viscous terms in the normal momentum egquation, (2.5),

dp

the pressure gradient __Eo is zero at the wall, as in boundary-layer

theory. With the addition of the terms

2 [ |un 2u u.tcotsu X (uun)s +ulcot s)un 1
€ 5vn11' 3 l+en n l+en

to the normal momentum eguation (as in references 17, 19, 21, 24), the

normal pressure gradient at the wall becomes

dpo 2
e —— = - \ []
; n=o 2¢ u(TO(O))uln(o

2

Tt can be seen from figure >.9c that this pressure gradient b.comes
guite important at this low Reynolds number. Hence, it appears that

for values of the shock Reynolds number of the order of 100 or lower

1 These terms are based on an assumption of zerd bulk viscosity.
2 This eguatinn is valid only for no-slip boundary conditions at the wall.
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the formulation of the problem as done in Chapter II can lead to sig-
nificant errors. For these cases, the problem should be formulated to
be valid to 0(62), including the effect of a shock of finite thickness.
In passing, it should be noted that the results of Levinsky and
Yoshihara do not exhibit the type of pressure distribution across the
shock layer that was obtained in references 19 and 21 (and that was
1llustrated in figure 3.7) although the equations which are solved are

nearly identical “o those cf reference 19.

E. Sumary

In this chaptes, the methcd of series truncation has been used to
obtain solutions to the equations of Chapter II for flow around shperical
bodies. Due tc the complexity of the equations, it was not possible to
compute a large number of terms and to thus extend the validity of the
solutions beyond the immediate neighborhocod of the axis. However, the
purpose of this investigation has been to provide accurate data at
the axis to serve as initial data for a separate computational scheme
(which is discussed in the next chapter). In addition, the solutions
have yielded considerable information about the validity of the basic
flow model that was adopted in Chapter II and about the accuracy of
the method of local similarity -- a method that has been used in
numerous investigations of the blunt-body problem. The main results

are sumnarized below.

1. The basic flow model that was adopted in Chapter Il appears to

be accurate for values of the shock Reynolds number down to the order
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2
of 100. Below that point, terms of O(e” ) that have been omitted from
the differential equations and the effect of a thickening shock become

increasingly important.

2. The first-truncation results are not, in general, accurate even
near the axis of symmetry. The first truncation consistently ylelds
values of the wall shear stress that are substantially toonla{ge and
values of the shock standoff distance that are substantially too smail.
The heat-transfer ratc is overestimated, but the error in this quantity
is moderate.

The second-truncation results are considerably more accurate but
8till contain noticeable errors at the axis. These errcrs, however,
are generally small for Reynolds numbers within the range of validity
of the basic flow model. The main error occurs in the shear stress
while the heat-transfer results are quite accurate. The sensitivity
of the tangential veloclty component to changes in the shock slope
and an inability to adequately determine the shuck shape are the primary
sources of this error.

3. The large errors of the first truncation indicate that the
method of local similarity may alsc result in quite large errors since
the method of local similarity is equivalent t¢ the first approximation
of the serles-truncation analysis.

4. The magnitude of the errors of the first truncation are depen-
dent on the wall-temperature distribution. For a body that 13 highly
cooled downstream of the axis, the body and shock are concentric, and

the first truncation is very accurate. However, the most commonly used
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boundary conditions -- a constant wall temperature and an adiasbatic

wall -- do not correspond to s flow that hae this spherical symmetry.

Ty
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Chapter IV

FINITE DIFFERENCE METHODS

The investigation of the preceding chapter has provided solutions
of reasovnable accuracy to the equations of Chapter II but only in the
vicinity of the axis of symmetry. To obtain solutions that are valid
over a larger region of the shock layer, it 1s necessary to turn to
other methods. 1In Chapter II it was noted that the characteristic
surfaces of the governing partial differential equations are real, and
hence, since the equations do not have an elliptic character, they may
be suitable for solution as an initial-value problem. The solutions of
Chapter ITT would appear to contradict this since they have shown an
upstream influence in the flow, and such an influence is generally
associated with an elliptic character in the flow equations. However,
for the present, it 1s assumed that a solution can be obtained by using
the axis of symmetry as the initial line and the solutions of Chapter III
as the initial data. A method that is ideally suited to the purpose of
finding such a solution is one that is bas<d on the use of an implicit
finite-difference scheme. Implicit finite-difference schemes have been
used to provide accurate solutions to parasbolic partial differential
equations (such as the boundary-layer equations). In addition, investi-
gations have shown that the method works quite well on simple hyperholice
equations. Hence, 1t appears feasible to aprly such a method to the

equations of Chapter II.
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A. Background

Two previous applications of implicit finite-difference methods to
the viscous blunt-body problem have been made (other than boundary-layer
analyses). The first of these was by H.K. Cheng [2] to obtain solutions
to the thin-shock-layer equations. The second application was by

R. T. Davis and W. J. Chyu [11] to the equations of Chapter II but for

the case of constant density throughout the shock layer.

The equations that were used by Cheng were parabolic 1n character,
and thus were ideally sulted for solutionm by the finite-difference scheme.
However, several terms of O0(€) have been omitted from the equations
of that 1nvestigation. Hence, the equations of Chapter II should provide
a moré accurate representation of the flow at moderately low Reynolds
numbers than is provided by the equations of reference 2. The addition
of these terms to the equations (and the addition of slip and temperature
jump conditions at the wall) does not change the parabolic nature of the
equations and thus should not appreciably add to the difficulty of
obtalning solutions. However, two additional terms that do not appear
in the thin-shock-layer equations have been retained in equation (2.4),
the normal momentum equation, and these terms do have an effect on the

puv

basic nature of the problem. These terms, pvvn and Tieen’

order unity in the inviscid region of the flow field and thus are essential

are of

to an adequate description of the inviscid flow field (of course, this
conclusion is reached without regard to the fact that the shock layer
18 thin). A discussion of the significance of these terms for the

description of the flow in the shock layer was contained in Chapter 1I.
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The addition of these two terms to the equations results in the appearance
of two "non-parabolic”" characteristic surfaces that are described by
equetion {2.9). Hence the equations are no longer of a purely parabolic
type, and the implications of this fact with regard to the use of a
finite-difference scheme are unknown.

In addition, the thin-shock-layer concept simplifies the description
of the shock shape and the determination of the shock position. The
jocation of the shock can be determinred by a balance of the mass flow
in the shock layer with the mass flow that enters the shock layer from
the free stream. Equation (2.18) is a formal representation of this
balance. The mass flow that crosses the shock from the free stream
into the shock layer is proportional to (r + €A sin 9)J+l. In general,
gince this expression is a function of 3, the value of the expression
depends upon the solution of the flow variables in the shock layer.
However, to the first approximation of the thin-shock-layer theory,
the body and shock coincide, i.e. & -0, and the mass flow in the
shock layer is proporticnal to rj+1- Thus, in the thin-shock-layer
approach, the locations of the flow boundaries are known prior to solving
for the flow in the shock layer. 1In addition, the shock angle is the
same a8 the local body angle (@ =60), and the values of u, v, T, and
p at the shock are alsc known independently of the solution within the
shock layer. Thus, in the more general case considered in this chapter,
the computation of the boundary position and shape represents a complica-
tion which was not encointered by Cheng: 1t will be necessary to compute

the location of the shock position and slope at each step since the
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amount of mass flow along the shock layer ie not known a priori as it
is under the thin-shock-layer assumption. It haes already been seen in
Chapter II that such a computation can lead to difficulties.

Both of these complications were encountered by Davis and Chyu
vhen they solved the constant-density case using equations that were
equivalent to those in Chapter II. It was found that valid results
could be obtained but that two additional approximations were needed
to successfully use the method. First, it was found that the computa-
tion of the shock position and slope led to instabilities in the
solution, and hence an approximation was introduced for the shock
slope. Second, the inclusion of the terms puvs and pvvn led to
instabilities in the computacion near the axis of symmetry. These terms
entered into the computation of the pressure, and the pressure influerced
the cther variables through the %E term of the tangential momentum
equation. To remove the instability, Davis and Chyu omitted the
contributions of puvB and van to the tangential pressure gradient,
gﬂ. That 1s, B was approximsted by a function Py where 1

8 os F 3 Pp 18

cbtained from a simplified form of the normal momentum equation:

T
dn 1+c¢€kn

=0 (4.1)

The function 1s i1dentical to the pressure which is computed in

P
the thin-shock-layer theory. Hence, with these two spproximations--
on the shock angle and on the pressure gradient--the problem becomes
gimilar to the thin-shock-layer problem.

The specific procedure used by Davis and Chyu is outlined belcw.

101




1) The tangential momentum equation is programmed into the
implicit finite-difference scheme, and under sultable assumptions about
the shock slope and pressure gradient, the tangentiasl velocity, u,
is computed from the scheme.

2) The continulty equation is integrated term by term, and the
normal veloclty, v, 18 then determined by a simple numerical evaluation
of an Integral.

3) The pressure, D, is obtained by a simllar integration of the

normal momentum equation.

The first two gteps of this procedure are identical to the procedure
which has been successfully used for solving the boundary-layer
equetions [14, 12, 13] ({for a variable density, the temperature, T,

is computed along with u in the first step). In boundary-layer theory,
of course, the pressure 1s z known function. Hence the addition of the
third step 1s the most obvious means of extending the method to the
shock-layer computations. The further extension of this method of
solution to flows of variable density is considered in section C and

is referred to as method T.

It was noted in Chapter II that Weinbaum and Garvine, in an
investigation of the flow in a lamlnar wake, have solved & set of
equaticns that are identical to equations (2.2)-(2.7). The method of
soluticn that was proposed in reference 40 and considered further in
reference 39 1s discussed with regard to its application to blunt-body
flows in section D (method II). This method makes use of the charac-
teristic surfaces of the equations to evaluate the pressure and normal
veloclity.
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One additional variation of the basic method of implicit finite-
differerces 18 considered in section E. In this method, all four
variables, u, v, T, and p (or p), are programmed into the implicit
finite-difference scheme (method III).

In the forms that are conasidered in the following sections, none
of these methods hes been found to be entirely satisfactory. The use
of the first and third methods led to instabilities in the computaticns,
while the second can be seen to be somewhat inconvenient for the blunt-
body problem. It should be emphessized. however, that only the first of
these methods has beer explored in detail, and the lack of success in
gpplying these methods cannot bte interpreted as conclusive evidence
that such methods are not feasible. Hence the methods are described
below in order to indicace the type of problems that are entountered
and, wherever possible, to indicatc the causes and possible corrections
for instabilities and errors. Several suggestions have been made for
the incorporation of certain features of the first two methods intoc the

method which is described in section E.

B. Bssic Equaticns of the Implicit Finite-Differsnce Method

Since the besis of each of the methods outlined above is an implicit
finite-diffe ence scheme, we first describe the basic principles of such
a scheme. All necessary equations have been given, tut scme details of
the method have not been included. For a more detalled discussion of
the method and for discussions of the merits of various numerical schemes,

the reader is referred to the invastigations of Flugge-Lotz and
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Blottner [14], Davis and Flugge-Iotz [12], and Fanneldp and
Flugge-Lotz [13].

The region between the shock and tke body is replaced with a grid,
which is depicted in figure 4.1. The values of the flow variables are
to be-evaluated only at the mesh pointe, which are dencted by the sub-
scripts m and N. If the grid spacing is constant (this is not
essential but is assumed in this chapter), the coordinatee are given
by s=mAs and n = NAn. It ie further assumed that the values of
the flow variables are known at all mesh point_s for 8 <mAs and that

we wish to solve for the values at all mesh points on the line

8 = (m¥l)As.

Figure 4.1. Finite-difference grid.

104




If the partial derivatives of equations (2.2)-(2.5) are replaced with \
difference quotients, the nonlinear partiasl differential equations,

(2.2)-{2.5), for the functions u(s,n), v(s,n), etc. are replaced with

algebraic difference equations for the values of the functions evaluated

at the mesh points. The unknown quantities in this cese are denocted by

“m+1,N’ vm+1,N’ etc. for N = 0,1,...,NB. Ns denotes the grid point

immediately inside the skeock and therefore is the greatest integer which

A
is less than or equal to A

The difference quotients that are used for this reduction are given

by
3F - 4F + F
o =
g.; _ 2imHLN 2m:n,l*l m-LN . o0as?) (4.2a)
OF Pty w1~ Foel,n-1 2 N
-~ 241 # olan”) (-20)
o F - 2F +F
TF . LI wLE wtLBel, gia) (4-2¢)
or. An
and

aFaG=--l—[[G o =6 )P -F
3; E lH}nE Wy N+l m, N-l) ( m+l, N+l m+l, N'l]
+ - -
lFm,N+l Fo, N-l) |Gm+l, w1 " Cme, N-li
- lFm,N+1 - Fm,N-lHGm,N+l ) Gm,N-l”

+ 0(082) + 0(an°) (4,2d)
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where each of the derivatives has been evaluated at the point (m+1,N).
Thus, the s-derivative is replaced with a "backward" difference quotient,
and the n-derivatives are replaced with "central" difference quotients.
The order of magnitude of the errors associated with the use of such
difference quotients has been shown in the equations. The form of
equation {4.2d) was chosen so that the unknown variables at m+l appear
in a linear manner.

The partial differential equations are evaluated at the grid points
{m+1,N), N = 1,2,-.-,N, Dby use of the difference quotients (4.2).
This leads to a system of simultaneous algebraic equations for the

unknown variables. This coupling of the equations is a result of

having used a "backward" difference formula in equation {%.2a) and is
the feature which gives the method its "implicit" character. Due to
the presence of such terms as u-%%, the algebraic equations will be

nonlinear. To facilitate the sclution of the equations, they are

generally linearized by the use of extrapolation formuias such as

. _ ) 2
Fm+1’N = 2Fm’N Fm-l,N + 0(As“) (4.2¢)

The solution that is obtained from the linear difference equations
may iltself be used to linearize the equaticons for a computation of
an improved solution if the errors from the original linearization
prove to be excessive. BSuch an iteration procedure can be continued
until the difference between successive sclutions is as small as
desired. Hence, the soluticn may be considered to be an iterative

solution of nonlinear algebraic equations even though the emphasis in
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this chapter 18 on linear equetions. It 1s generally desirable to avoid
such iterations since they can lead to excessive computation times. In
previous applications of the method [1%, 12, 13], it has been found

that such iterations are not necessary. However, E. Krause [22] has
considered several examples where iteration was either necessary or

was more convenlent than alternatives.

The nonlinear partial differential equations may now be considered
t0 have been reduced to a system of coupled, linear algebraic equations.
For the method considered in section C, the tangential momentum equation
and thne energy equation are reduced in this manner and lead to difference

equations of the form

) Ay wora,wer ¥ By Yner,n Oy Ve, n-1 * Dy Toed, el
* By Tnea,n T Fly Toea,ne1 = Gy (k.3a)
and
A2y Uner, el * By Uner,n t C% Yner,n-1 t PPy Ty, e
- + = |
PR T n PRy T ey = 62y (4.30)

where N = 1’2""’Ns' The coefficients Al, Bl,...,G2 are functions
only of the known values of the flow variables at s = mAs and (m-1)As
and of the extrapolated values (or values obtained from the preceding
iteration) at 8 = (m+1)})As. RKence, they can be assigned numerical
values. This system of ENS simultaneous equations has a special

“tridiagonal” form [1%] and consequently can be solved without recourse
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to the usual matrix-inversion procedures (which would be inefficient for
the fairly large values of NB that are used).

For this case of two variables, u and T, the sclution can be
written out in terms of the coefficients Al, Bl,...,G2 fairly
easily. However, for the case of four variables, which is considered
in section E, the equations become unwieldy unless written in matrix
notation. Hence, a matrix notation is adopted at this point in order
to handle both cases at once. The function w(N) is defined as a
column vector of the dependent variables. 1In sections C and D, it has

two components,
um+l,N
W(N) = j)
Tm+l,N

and in secticn E, it has four components,

um+l,N

T .
W(N) - m+1’N .

vm+l,N

pm"’l) N

Let the number of components be dencted by i. A complete solution of
the difference equations has been obtained when w(N) has been
evaluated at N = 0’1""’N5+1'

The linear algebraic equations that replace the partial differential

equations now have the form
A(N) w(N-1) + B(. > w(N) + C(N) w(N+1) = D(N) (4.4)
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for N = 1’2""’Ns' For each value of N, the coefficients A(N),
B(N), and C(N) are i X i matrices, and the coefficient D(N) is

a colum vector with 1 elements. It is emphasized again that they

are functions that can be evaluated from known data, from extrapolated
data, or from data obtained in the preceding iteration. For future
reference, it is noted that, in the case of i = 2, one component of
D(N) 1is a function of the tangential pressure gradient, %5 , evaluated
at {s,n) = ((m+1)A s, NAu}. Equation (4.4) is a linear, second-order
difference equation ard represents Ns equat ions for the Ns+2 unknowns,
w(O),-..,w(NS+l)- Two additional equations are obtained from bourdary
conditions. These boundary conditions may take the form of first-order
difference equations without altering the tridiagonal form of the

equations. Hence,
B(c) w(0) + ¢c(0) w(1) = p(0) (4.5a)

and

A(N_*1) w(n ) + B(N *1) w(N_+1) = D(N_+1) (4.5p)

are the acceptable forms of the boundary conditions. In practice, the
requirement that the boundary conditions take this form does not pose
a restriction. As an example, consider a boundary condition of the
form g% ~ = 0. The derivative must be replaced with a difference

quotient. If a two-point form is Jsed,l T(1) - T(0) = 0, the boundary

1 The notation that was adopted to describe the vector w 1is also
frequently used for the other variables. In this notation, the sub-
seript mtl 1is dropped, and it is understood that the function is
evaluated at s = (m+1)As. In addition, th= variable is considered to
be a function of the index, N, and this functional Jependence is written
explicitly.
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condition has the form of equation (4.5a). Unfortunately, the two-point
form generally does not result in a sufficiently accurate description
of this bounda.y condition. Use of a three-point difference quotient,

or ~ - 22(0) -br(1) +1(2) 0, 18 more accurate but results in a
nfp=¢ 24 n

boundary condition of the form
B(0) w(0)} + c(0) w(1) + w(2) = D(O) ,

which doee not conform to the desired tridiagonal form. However, we
know from the theory of linear algebra that we can add to any equation
a linear combination of the other equations without altering the solu-
tion. Hence, we combine the "non-conforming" boundary condition with
equation (4.4) evaluated at N = 1 in such a way that w(2) is

eliminated. Thus
[A(1) +c(1) B(0)}] w(0) + [B(1) + c(1) c(0)] w(1)
= D(1) + c(1) D(0)

would contain the desired information that 3T(0)-4T(1}+T(2) =0
and would still conform to the necessary tridiagonal form.
The sclution to the second-order difference equations, (4.4) and

(k.5), is given by a first-order difference equation
w(N) = H(N) + K(N) w(N+1) , N =0,1,..0,N (4.6)

(for proof of this statement, see reference 14). The coefficients, H

(a column vector) and XK (an 1 X 1 matrix), are evaluated from
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recursion formulas, which are obtai: -d as follows. Replace N with

N-1 in equation (4.6) to obtain
w(N-1) = H(N-1) + K(N-1) w(N) , N = 1,2,...,N +1
This equation can be us~4 to eliminate w(N-1) from (4.4):
[B(N) + A(N) K(N-1)] w(N) + C(N) w(N+1) = D(N) - A(N) H{N-1)

Solving this equation for w(N) and comparing the result to equation

(4.6), we obtain

g(N) = [B(N) + A(N) K(8-1)]1" (D(n) - A(N) H(E-1)] (4.7a)

and

K(N) = -[B(N) + A(N) K(N-1)]7T c(n) (4.7b)

The values of H and K at. the surface of the body can be obtained by
inspection when the equation w(0) = H(0) + X(0) w(1l) is compared to

the boundary condition (4.5a), i.e.,

2(0) = B(0)™! p(0)
and (4.8)
x(0) = -B(0)™* c(o)

Recursive application of equations (4.7) for N = 1,2,..4,N, ylelds
the values of H and K at all grid points across the shock layer.
Algebraic combination of the equation w(NS) = H(NS) + K(Ns) w(NS+1)
with the boundary condition (4.5b) yields the value of w(Ns+1)- Then
a recursive application of equation (4.6) for N = N N-1,...,1,0

ylelds the desired soluticn to the system cf equations. It should be
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noted that a straightforward solution to equations (4.4) and (4.5) by
standard matrix inversion techniques would require, at each s-step,
the inversion of a square matrix of dimensions (Ns+1)i X (NB+1)1.
This would require prohibitive computation tlmes if Ns is large.
The solution given by equations (4.0) and (4.7), on the other hand,
requires, at each s-step, Ns inversions of an 1 X 1 matrix. 3Since
i 1is never greater than four for the shock layer equations, these
operations can be efficiently carried out for large values of Ns'

The use of matrix notation has resulted in a rather concise
description of the solution in equations (4.6) and (4.7). The matrix
formulas can be used intact in a computer program if one makes use of
arrays (or subscripted variables) in the machine. However, this
generally results in inefficient operation of the program due to an
increase in access time to the stored data. It should be notea that
it is necessary to store the values of w(N), H(N), and K(N) at each
grid point across the shock layer (A(N), B(N), C(N), and D(N) are
needed only once and hence need not be stored). This would result in
the function K(N) being a three-dimensional array in the machine--
with N5+1 elements in one dimension and 1 elements in the o*her two.
The access time to data that is stored in such higher-dimensional arrays
ie usually significantly larger than that for one-dimensional arrays.
For the case when only u and T are programmed into the implicit
finite-difference scheme, 1 = 2, and the solutions given by equations
(4.6) and (4.7) can easily be written out explicitly in terms of the

coefficients of equation (4.2) and the individual elements of H and K.
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These expressions, though less concise than those given above, are more
efficient for the actual computation of the solution. The reader is

referred to reference 1k, 12, or 13 for these expressions. To a certain

extent, this can be done for the case when i = 4, but the expressions

are lengthy, and unless the computation time is a critical factor, the

extra effort needed to obtain the expressions way not be considered g
worthwhile.
Using these basic expressions for the solution of the implicit -é

finite-difference equations, we can now consider specific methods.

C. Method I

The computation procedure that has been most thorcughly examined !
is one that is similar to the method used by Davis and Chyu in their
study of the constant-density shock layer. In this method, only the
tangential mome.tum equation and the =nergy equation have been reduced
to linear difference equations of the form (4.3). The specific expres-
sions for Al,Bl,...,G2 have been listed in Appendix A.
The boundary conditions which complete the set of equations are
obtained from the 81ip and temperature-jump conditions at the wall,
equations (2.10) and (2.11), and from the Rankine-Hugoniot conditions
for u and T, equations (2.13) and (2.17). In both (2.10) and (2.11),

we set g%|n=o = = 5u(0)-—22£3) i u(g),' It nhas already be=en

explained how the resulting three-point boundary condition can be

reduced to the necessary two-point form. The function

pTOO Fﬂv 7(0) , which appears in both (2.10) and (2.11), must
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be evaluated by extrapolation (equation (4.2e))or from a previous
iteration in order to have a linear boundary condition. The shock
conditions are somewhat more difficult to impose since the shock loca-
tion will not, in general, coincide with a grid point. Hence, it is
necessary to use interpolation formulas in order to apply the Rankine-
Hugorniot conditions. Remembering that NB is the largest integer
which is less than or equal to é% » we define the shock location as
A= (1\1s + as)An (4.9)
Hence, © S@, < 1. The values of the dependent variables behind the
shock, which we denote by yaﬂﬁ), are given as functions of # by
equations (2.13) and (2.17). Suitable interpolation formulas that can

be used as boundary conditions in the difference scheme are
Two-peint or linear interpolation
w(N ) (1-a ) + w(F +l)e = w,(c) (%.20a)
and
Three-point or quadratic interpolation
as 2
w(N +1) o (1) + w(N )(1-0)

(o]
- w(N_-1) -2£ (1-0) = w.(9) (4.10b)

The latter formula requires a reduction to the proper two-point form.
This can lead to some rather unpleasant algebra, and therefore, in one

case to be considered later, the simpler equation (l4.10a) was used.

11%

T S




For the application of these boundary conditions and thus for the
computation of u and T from the difference equations, it is
necessary to know the values of A and %  This can be handled in
several ways. For the moment, we treat A and ¢ 1in the same manner
that the flow variables are handled. That is, we extrapclate their
values from previous data, and using this extrapolated data, we can

compute new values of A and ¢ at a later point in the procedure.

Actually, only one of the variables, A or ¢ , needs to be extrapolated;
the remaining quantity can be obtained from a difference representation
of equation (2.19). It will later be shown that it is possible to
compute A simultaneously with the computation of u and T without
ueing this extrapoclation. However, for the moment, we consider u and
T to be computed from equations that make use of approximate values
of A and # .

The normal velocity, v, is obtained from the continuity equation
after the computation of u and T has been accomplished. An integra-

ticn of the terms of equation (2.2) yields

1
(r+ensin G)J(1+K6n)

n
p(e,n)v(s,n) = I {(r+ensin 6)‘jpu]B dn
0]

(4.11)

In order to evaluate v from this equation, it is necessary to uce an
extrapolated value for p. This is, however, consistent with thes
linearization of the difference eguations for u and T. The boundary

condition (2.12) has already been incorporated into (4.11). The
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numerical evaluation of the integral in equation (4.11) is carried

out by the use of a formula similar to Simpscn's rulelz

BIE

NAn
I Fdn = [5F(N=1) + 8F(N) -~ F{K+1)] (%.12)
(¥-1)An

This formula is derived by replacing F(n) with a quadrasic curve

vhich passes through the three points, F{N-1), F(N), and F(N+l).

At this point in the computation, an improved value for the shock
position, A, may be obtained simply by observing where the integrated
value of v reaches the Rankine-Hugoniot value given by equation (2.1h).

One may, of course, now repeat the computation of u and T using

the new value of A (and hence g )} until the value of A is &s
accurate as desired. Alternatively, one can proceed to the computation
of the pressure and then iterate on all of the approximsted variables
simultaneously.

Once the values of u, T, and v have been cbtained at each grid
point, the pressure can be evaluated from an integration of the normal
momentum equation. If the extrapolated vaiue of © 1is used, the

pressure can be evaluated from

n euvS Ku?
p(s;n) = p(0) - ¢ j; PlTacen * €V ™ Taeen | (4.13a)

Although this 1s consistent with the linearization of the finite-difference

1 Simpson's rule is not used because it computes the integral from
(N-1)An to (N+1)An &nd therefore would provide the value of the
integral only at alternate grid points across the shock layer.

116




At = T ey B el Y. S e s g e

scheme, the approximate value of P need not be used since the state
equation can be used to eliminate p from equation (2.-). This lcads

to

p(s,n) = p(0) exp[-fn P(n) dn] (¥.13b)
0

where

' e 2
oY &l E - G
B(n) Yy-1 T [1+Ken MY lﬁKen]

Since all the variables that appear in the expression for P have

been computed, equation (h.ljb) can be evaluated without use of th=
extrapolated date. In both (4.13a) and (4.13b), the value of p(0)

is chosen sc that the pressure satisfies the Rankine-Hugoniot condition,
equation (2.15).

Several possible variations in the details of the computaticn
proccdure have already veen noted. There are other variations that
have been investigated but are not described here. In general, when
both the shock shape and the tangential pressure gradient, g& ) Were
computed at each s-step, the computed values become meaningless within
a few steps. 1In other cases, the procedure did not exhibit such strong
instabilities but yielded incorrect results nevertheless. As noted
above, such difficulties were not entirely unexpected and can be
attributed to the determination of the shock shape and to the occurrence
of uva and vvn in the normal momentum equation. Qualltatively, the
difficulty with the normal momentum egquation is as follows. Eguations

guch as (¥.2a) or (¥.2b) are used to numerically evaluate certain
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derivatives. When an error exists in th: value of the function F. the
use of the diffsrence quotients resalts in a magnification of the error
in the derivative of F (due to the small value of As or An that

is used in the denominator). In the basic implicit finite-difference
scheme, this does not occur since equations (%.2) are only used formally
but are not numerically evaluated. However, in the procedure described
above, gs is evaluated from (4.24) and is used in the determination

of u and T. The resulting value of u is used in (4.2a) to

evaluate %% , which is in turn used in equation (4.11) to evaluate

v. From v, we determine both %% and <§§ » and these values are

used in equation {4.13) to determine p. This value of p then goes
back into the finite-difference scheme as gg’ At each step the evalua-
tion of the derivatives results in a magnification cf the errors, and

i these errors are eventually fed back into the scheme. In the applica-
tion to boundary-layer flows, such a "feedback” does not occur since

the pressure is a known, specified function. Even in the thin-shock=-
layer flow,where the pressure is computed, the feedback does not occur
since uvs and vvn do not appear in the normal momentum equation.

We thus consider modifying the equations in the manner of Davis
and Chyu [11]. This modification can be considered to be a first step
to the more general analysis; the numerical scheme must be able to
handle the simpler equations before they can be extended to the general
cage. Thus the shock angle, ¢ , is specified as a known function for
the evaluation of the Rankine-Hugoniot ronditions. During the course
of the computation, the shock position, 3, is calculated. The

geometric relation between A and # , equation {2.19), cannot now

118




-
it o e gt i

A A el it S 0

be applied but can only be used a posteriori to determine whether the
results are consistent with the assumptions. In reference ll, for the
constant-density flow, g was specified as being equal to 8, and
the resulting value of A was found to be consistent with this assump-
tion (i.e. A~ const). For a varisble density, the modification of
the normal momentum equation can be done in two ways. First, the

terms proportional to uv, and vv, may be eliminated entirely from
the problem, and the pressure p 1is approximated by the thin-shock-
layer pressure pT. The problem 18 then reduced to one that represents
a Blight extension of the investigation of H.K. Cheng. The additional
terms of O{¢) that are included in equations (2.3)-{2.5) should not
cause any major difficulty in the couputation. Despite the fact that
the shock angle is now assumed to be known {and therefore the boundary
values at the shock are known), the treatment of the shock positiun

is still somewhat more general than that used by Cheng since the mass

flow in the shock layer 1s still not s specified quantity. The omission

of the terms pu.vB and pvvn results in a substantlai reductiorn of
the pressure, and therefore of the density, near the body surface.
This reduction in the density aliers the flow field considerably and,
in an extreme case, can lead to the occurrerce of the zerv-pressure
point which 18 common in thin-shock-layer theory. Hence, a second
possibility that i1s analogous to the analysis made by Davis and Chyu
is also considered. The zomplete pressure is used in the computation

of the density, and the pressure gradient %E is approximated by
BpT
3z » ¥here pp is the thin-shock-layer pressure of equation (4.1).
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This should result in a more realistic description of the density field,
but the influence of puvs and pvvh, which is fed back into the
finite-difference scheme through the density, may be large enough to
cause instabilities.

The first of these possibilities is now considered. The computa-
tions proceed as follows. The solution of u, T, and v 1is based
on extrapolated data as described earlier. The shock location is
determined by a requirement that the integrated value of v be equal
to the Rankine-Bugoniot value. Since ¢ has teen taken to be a known

value, this step is now particularly simple; and since eguation (2.19)

no longer acts as a constraint, the computed value of A may undergo
L rather rapid changes in value. Using the newly computed values of u,
v, T, and A, the pressure is obtained from equation (4.13b) (with
the terms proportional to uys and vvn cmitted, of course). As
many iterations as desired may be obtained at each step.

This procedure has been applied to the flow problem that was
considered in Chapter IIT, section D.1, i.e., Y = 1.4, M = 10,

1/2

Res =100, ©¢=0.7, b=0.6, and p="T + These computations were

i started from initial data (at s = 0.0 and s = 0.02) that were obtained
; from the first truncation prob.m of Chapter III (the second truncation
problem had not been solved when threse computations were mad:). Thus

the shock angle ¢ was set equal to the body angle 6. Tt has

been found that the computed shock description is a sensitive indicator
of the stability of the computations. Thus, the computed value of A&

is shown in figure 4.2, The discontinuous Jump in value that occurs
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at the first computation step is of particular interest. It was found
after these computations were made that the initial data were incorrect.
The correct first-truncation value of & has also been shown in figure
k.2. It can be seen that the finite-difference scheme yields the correct
value of & even when started from an incorrect value. As & increases,
the number of iterations that are required to obtain "convergence" of

the pressure incrcases. In addition, the computed values of A become

il

less congsistent with the assumption that g 8, at s = 0.34, the

application of equation (2.19) yields 8-% = 11°. Thus there is little

]

point in continuing the calculations to larger values of 8. This
inconsistency in the computation would no doubt be removed by the
specification of the mass flow in the shock layer (as is done in the
thin-shock-layer computation). If thie were done, the resulting
problem would represent an extension of the results of H.K. Cheng
to a more uniform treatment of the second-order boundary-lgyer effects.
It should be noted that if the shock angle is allowed to vary in
the shock conditions and if equation (2.19) is used to relate & and g
in the abov: calculations, the computed value of A very slowly decreases.
A similar result had been obtained earlier when considering the complete
normal momentum equation. This is typical of the difficulties associated
with attempting to compute the shock shape.
We now conslder the second treatment of the normal momentum
equation. The calculations include the effect of the terms uv and
vvn in the computation of the density in order to improve the descrip-

tion of the density field. In acddition, these computations use an
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improved means of calculating the shock position. Instead of using
the iterative method described earlier, the shock position is obtained
simultaneously with the solution of the finite-difference equations for
u and T as described (n the followinp paragraph.

Earlier in this chapter, it was stated that the calculstion of
w(NB+1) was achieved by combining the equation w(Ns) = H(Ns )+K(Ns )H(NB+1)
with the boundary condition (4.5b). Iater, it was observed that inter-
polation formulas (equations (4.10)) were used to obtain the boundary
condition (4.5b). This led to the appearance of & and g in the
coefficients of equation (4.5b). This was previously handled by using
extrapolated data for the shock parameters. However, if one additional
equation could be obtained that related w‘(Ns}, w(NB ¥1), and A, +then
A could be computed simultaneously with w(Ns+l), ard the neceusity
of iterating on the shock position would be eliminated. Such an
equation can be obtained from the integral form of mass conservaticn,

equation (2.13). Let

I}

NAD 3
I{N} = 2% j pu(rte nsin 6)” dn (b.1ka)
0
It is shown in Appendix B,for the case of { = 2, that
I(N) = Af(N) + BI(N)u(N) + c(N)p(N) (b.14v)

where AI(N), BI(N), and CI(N) are scalar quantities that can be
numerically evaluated along with H(N) and K(N); i.=., AI(N), BI(N),
and CI(N) can be evaluated from recursive relaticns starting at

N = 0. Thus equation (2.18) can be written as
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(r+ean(N_+a )sin g)d*L - (1-a ) (A (N,) +
BI(NS) w(n)) + as(AI(NBﬂ) + BI(NB+1) w(N_+1)) (4.15)

where the linear interpolation tormula (equation {4.10a)) has been used
to evaluate the integral at the shock. Equation (4.15) is the additional
equation that permits the solution of A. The three equations are non-
linear and thus must be solved by some gppropriate numerical technique.
Once the values of A, w(NB), and w(N_ +1) have been cbtained, the
solution proceeds as described before.

With the computation of A handled in this manner, the Rankine-
Hugoniot condition on the normal velocity, v, should become superfluocus.
As noted in the preceding chapter, equation (2.18) is not an independent
condition; it can be used only to replace one of the boundary conditions
which desczribe the mass flux across the boundar, Hence the integrated
value of v (equation (4%.11)) should now automatically satisfy the
Rankine-Hugoniot condition. In practice, of 2ourse, the linearization
of the finite-difference equations and the use of an extrapolated value
of P 1n equations (4.11) and (4.14a) prevent this from being exact --
there will always be a small difference between the integrated and
tlhe Rankine-Hugoniot values of v.

After the pressure is determined from equation (L.13b), iterations
on the values of all the variables can be cbtained. It was found that
for these calculations, the iterations did not significantly alter the

results, but did tend to smooth the results somewhat near the axis.
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The computed value of A is again used as an indication of the
stability of the scheme. However, 1t 18 convenient to make use of
equation (2.19) and to present the results in the form of the shock
angle. It should be noted that a small oscillation in the value of
A results in a rather substantial oscillation in the value of .
Figure 4.3 illustrates the results for a variety of assumptions.

1) First, consider the cases for which the computations were
started from initial data obtained from the first-truncatlon results.
As before, it was found that tpe computation of the shock angle lead
to instabilities. Hence, the results shown in figure 4.3 are based
on an assumed value of ¢ = 6 (the solution of the equations provides a
computed value of g which is the valueashown-in figure 4.3).

a) Wuen the pressure gradient 322 iB.computed at each step,
instabilities appear 1mmediately: This‘is illustrated by one
curve in figure 4.3. Thus the procedure is less stable than it
was when the irfluence of the terms uv, and vvn was
eliminated entirely. This must be a consequence of the inclu-
sion of the influence of uvs and vvn in the computaticn of
the density.

b) The strength of this influence is evaluated by considering
the pressure gradient to be a specified function {equal to the
series~truncation results). Hence the only source of instability
due to the terms uv, and vvn is in the computation of the
density. The calculations now preoceed to about s = 0.2 tbefore

iustabilities cause the computailion to break down (see figure

L.3).
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¢) The onset of these instabilities can be delayed by averaging

the computed and the extrapolated values of the pressure:

= (1- + .16)
p= (1-h) pextrapol&.ted b Pealculated (.16)

At 8 =0, h 1is taken to be unity. The computations proceed
for increasing s until they become unstable. The value of h
is then decreased, and the calculations are started at a point
Just before the onset of the instability. By repeating this
process whenever necessary, the calculations have been carried
to s = 0.50, and this result is also shown ir. figure 4.3. The
final value of h is 0.10. The instabilities which appear at
intervals along the curve are not shown but ire quite similar

- to the one that has been shown at s = 0.2 in the figure.

It would seem that at best these numerical computations could only
reproduce the truncation results since & large number of constraints
have been placed on the numerical procedure. However, the computed
values of g closely match the second-truncation result for ¢ even
though the computed values are based on initial dats and a pressure
gradient that are obtained from the first truncation and the first-
truncation assumption that ¢ = 0 has been used in the evaluation
of the sheck conditions. Hence, in this one respect, the finite-

difference scheme is ylelding "new"information.

2) Also shown in figure 4.3 are the results of using the second-

truncation computations for initial data, for the pressure gradient,
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and for the shock angle. These computations have been carried out to

s = 0.62 by averaging the pressure as described in paragraph (Jc)

above. Again, the value of h was gradually reduced to a final value

of 0.10. No attempt has been made to determine how far the calcula-
tions can be carried in this manner. At the largest value of s, most
of the "inviscid", outer flow has become supersonic. This is illustrated
in figure 4.4 where the shock and the sonic line have been depicted.
Shown for comparison is the sonic point on the body as computed from an
inviscid theory (this value was obtained frem reference 12 and is the
result of an analysis by H. Lomax of NASA)}. Due to the presence of the

viscous layer, the sonic line will turn and roughly parallel the body as

s 1Increases further. The extent of the viscous layer has been illus-
u trated by showing the tangential velocity profile at & = O.k.

Returning to a consideration of figure 4.3, we can see that the
computed value of ¢ deviates only slightly frem the assumed, Second-
truncation value. It was previously noted that the finite-difference
result for ¢ was obviously more accurate than the first-truncation
value or which the computations were based. Whether this is true of
the present results can be determined in the following manner.

In Chapter III, it was seen that an inability to adequately deter-
mine the shock shape was the major cause of inaccuracy in the series-
truncation analysis. We now use the finite-difference result found
here to determine the value of ¢3, which in Chapter III was arbitrarily

set to zero. That is, we determine %, such that ¢lsin 3+ sinjs

3 3
(see equation (3.3b)) provides a least-squares fit to the finite-difference
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Figure L.4

The shock and the sonic line computed from method I;
Y = 1.4, M, =10, Re_ = 100, b = 0.6, ¢ = 0.7, and

w = 1/2.,
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result for 0-%. We are not free to choose the value of g, as it is
entirely dictated by the solution of the second-truncation problem as
described in Chapter III. Further, the wvalues of ¢1 and ¢5 are
mutually dependent: ¢l 8in s increases above the value shown in

figure 4.3 as the value of ¢5 is increased. Hence the least-squares

fit of ¢l sins + ¢ sinjs is not as accurate as might be expected:

5
8-¢ = 0.152 sin s + 0.112 sinjs, and the root-mean-square error 1is
approximately 0.006 compared with 8-¢ =.0.111 at s = 0.6. However, the

shear stress result is. now

T/e = 1.23 sin s - O.Th sin’s p

which is considerably better than the previous second-truncation result
given by equation (3.24b) and illustrated in figure 3.1. It is certainly
not recommended that the finite-difference solutions be used to improve
the series truncation solutions in this manner; but the above result

does show that the finlte-difference solution for ¢ 1s more accurate
than the second-truncation result on which the finite-difference computa-
tions were based.

Despite this -ne positive result, it is quite clear that the com-
pressible-flow computations are far more unstable than were the
constant-density computations of refeience 11. In fact, it appears that
tnls method of couwputaiion is not suitable for the computation of the
flow in the shock layer; & better means of handling the computation of

the normal velocity and the pressure is needed.
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M. Method II

One such possible method for an improved calculation of the pressure
and normal velocity makes use of the method of characteristics. This
method has several advantages over the one described previcusly. It
was developed by Weinbaum and Garvine [40] for use in the laminar wake
flow. Its application to the blunt-body problem is now considered.

In Chapter II it was noted that there are two "non-parabolic"
characteristic surfaces of the partial differential equations (2.2)-(2.5).

These surfaces are described by equation (2.9):

dn _v 2 1.
& -ut Jo @M, (4.17)

These two characteristics can be traced to the continuity equation and
the normal momentum equation, and they are the characteristics which are
associated with the determination of the derivatives of pressure and
normal velocity. Hence we now consider equations (2.3) and (2.5).

First, introduce two new coordinates £ = £(s,n) and 17 = n(s,n).

In general,
3 3% d .9 d
®°% X ‘3% 5
and

3 ot 9 o o
5 S tom &

These relations need to be substituted into equations (2.3) and (2.5)

only for the derivatives of p and v since the other variables are
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not associated with the two characteristic surfaces described by equation
(4.17). We now Bpecify that the curves £ = consi. be tangent to one
family of characteristic surfaces and that the curves 1 = const. be
tangent to the other. Hence, the slopes of the curves § = const. and

7 = const. are given by X, and \,, vespectively. Therefore, on

1 2
¢ = const.
gs dn
g ¥ - i 11(1+exn) (%.18a)
and on 1 = const.
k—-E—-k(1+exn) (k.18v)
'qn- ds 2 )

If the two equations are applied along the curve € = const. and equation
(%.18a) ie introduced, they can be combined sc that only nf-derivatives

of v and v appear:

Py + € \/EF-"VTI = Ik /ppu - % ((%u-)s + v(%)n)]%] on..t = const.

where a(s,n) = (r+cnsin 6)‘jl and P(n) = 1+ exn. This equation

can be re-written in the form

pn+e,/ﬁ'vn= -c%(%l)n"' {x Joo' u +
(%.19a)

g% [7\-1B(c%1 | - v(%)n]) %% on £ = const.

vhich is the form given in reference 40. Similarly, if the equations
are applied along the curve 17 = const. and equation (4.18b) is used,

they can be combined to form
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Py eVm v = - B ¢ [k /pou s
(k.19b)

Znps®), - vE 1N FE on n= const.

The value of the method of characteristice (and of equations (4.19))
is that the equations are reduced to ordinary differential equations
along the characteristic curves (in equations (4.19) this is achieved
only with the derivatives of p and v -- the variables u and T
remain as partial derivatives). The characteristic curves themselves
are functions of the variables, however, and must be determined as part
of the solution. The standard means of handling this is by iterative
methods: an approximation to the characteristics yields a solution to
the varigbles that can be used to obtain a better description of the
characteristics, etc.

We now consider the manner in which equations (4.19) can be incor-
porated into the basic finite-difference scheme. Consider an arbitrary
mesh point, (m+l,N), of the grid that was depicted in figure 4.1,
and denote it with the subscript 3. The two characteristic curves,
£ = const. and 1n = const., which pass through this point 3 iulersect
the line 8 = mA 8 at points that are denoted by the subscripts 1
and 2, respectively (sce figure 4.5). The data which are used to
linearize the finite-diiference equations can be usec to determinn
the locations of points 1 and 2 (if desired, subsequent iterations
can be used to improve these values). Points 1 and 2, of course, will

generaily not be grid peints, and evaluation of the variables therc




will require the use of interpolation formulas.

o |
m m+l
N+l
{An 2 3 ¢ = const.
: N
iﬁn n = const.
‘N-1
P4
As
a—  —

-
5
Figure 4.5, Finite-difference grid for the characteristic curves.

If we replace the derivatives with respect to & and 1 with the

difference quotients

OF _ Fs ~Fp

BE N = const. At
and

oF _5-h

6—‘] ¢ = const. an

28 » etec. with suitable

and if we replace the functions pp , &

avereges over the intervals 3-1 and 3-2, then equations (4.19)

can be used to obtain relations of the form

= + +
Poe1,N = Ao ¥ Bp Yner,n * Pp Toey,n

(4.20a)




I s e - RSt T

= y,
Vme1,n = A Y By Y,y TPy Tpea,n (4.20b)

The coefficlents of these equations are functions of the variables at
points 1 and 2 and/or functions of average values over the arcs 3-1

and 35-2. Hence, they can be assigned numerical values which are consis-
tent with the linearization of the finite-difference scheme. Note also
that the values of At and A7 need not be known; only A4s remains

in the equations.

When the tangential momentum equation and the energy equation
were raplaced with the difference equatlons (4.3), the variable pm+1,N
entered into the coefficlents of the equations through the term
gs + In method I, an extrapolated value of p was used, and it was
seen that this was one of the contributing factors to the occurrence

of instabilities. Now, however, equation (4.20a) can be used to eliminate

P In favor of u end T

m+1, N m+1, N o+l N° this will, of course, redefine
J) I ’

the values of the coefficlents of equations (4.3). Once u and T
are obtained from the finite-difference solution, p and v are
available from equations (4.20). However, by making use of the
characteristic coordinates for p and v, the soluticon of all the
variables is simultaneous, whereas In method I there was a sequential
ordering toc the sclutlon cf the various variables.

Unfortunately, for the blunt-body problem the reduction of the
differential equations (4.19) to the algebraic equations (4.20) cannot
be accomplished as easily as lndicated above. Since the slope of the

characteristies 1s proportlconal to %, the slopes are rather large
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neayr the axis of symmetry of tie flow and near the body surface.

Figure 4.6 1llustrates the situation by depicting the two characteristics

which pass through the point (s,n} = (0.10, 0.60)} for flow around a

100, b = 0.6, etc. The computation

sphere with Y = 1.k, ¥_= 10, ReS
of the location of the characteristics is based on the second-truncation
results. Also shown in figure 4.6 are the characterist;cs whizch intersect
the boundaries at s = 0.10. If the reduction of equations (4.19) as
described above is to be valid, the length of the arcs 3-1 and 3-2
must be small. It can be seen that this will require an extremely
small step size in the s-direction, even if the truncations were
accurate enough that the finite-difference scheme could be started at
8 = 0.10. A step size of 4&s = 0.001 could probably be. used but would
result in rather large computation times. If a more reasonable value
of As is to be used, a more elaborate means of integrating equations
(t.19) along the characteristics must be used. This would tend to
destroy the simplicity of the method and lead to rather complicated
computational procedures. Hence, the scheme has not been further
investigated although it 1s at least theoretically feasible.

However, the fact that the pressure and the normal velocity can
be treated by the method of characteristics 1s quite important in itself,
irrespective of whether the method is practical. The existence of the
characteristic relations for p and v 1s verification of the
feasibility of solving the shock-layer equations, (2.2)-(2.7}, as an
initial-boundary=-value problem with the axis of symmetry for the initial

station. In addition, the characteristics may be usefuli for the
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Flgure 4.6
Typical characteristic curves originating at s = 0.10
on a sphere at Y = l.b, M, = 10, Re_ = 100, b = C.6,
o= 0.7, and w = 1/2.
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applicatior of the boundary conditions. 1In section C, it was seen that
the application of the shock conditions led to complications. The shock
conditions provide values of each of the four variables at n = A as
functions of the shock angle @ . This angle is, of course, an unknown,
and it might appear that the problem is underdetermined. However,

there is one characteristic curve that originates in the "known" flow
field (i.e., & < (m*l)As -nd 0<n < &) and that intersects the
shock at & = (m+1)As . The differential equation that applies along
‘this characteristic provides an additional constraint on the values

of the variables and permits the determination of g . At the body
surface there are boundary conditions on u (equation (2.10)), T
(equation (2.11)), and v (equation (2.12)), but none on the pressure
(or density). The fact that one of the characteristic curves that
vriginates in the "known” flow field intersects the wall and provides
an additional constraint indicates that no boundary condition is needed.l
Tt has, of course, been tacitly assumed throughout this investigation
that the physical boundary conditions were mathematically adequate for
a solution of the type that has been sought. Cne can interprcte the
above discussion as an indication that the boundary conditions are of

sufficient number to yield a well posed initlial-boundary-value proklem.

1 A discussion of the use of characteristics to determine the numbter of
boundary conditions and initial conditions for partial differential
equations of various types is contained in reference 23.

138




In addition, the use of the characteristic curves that intersect the
boundaries may be a practical means of evaluating some of the boundary

values although this point has not been investigated-

E. Method III

Since it is somewhat inconvenient to make explicit use of the
characteristic equations, we now consider whether the basic finite-
difference scheme itself is capable of handling the characteristics
implicitly. The use of explicit finite-difference schemes to solve
simple partial differential equations of the hyperbolic type is
discussed in most texts on numerical methods. The well-known result
is that the domain of dependence of the numerical sct -me mist contain
the domain of dependence of the differential equations. Thus, for
explicit fini.e-difference methods, a strict requirement is placed

%% s if the computations are to be

on the ratio of the step sizes,
stable. However, for implicit finite-difference schemes, no such
requirement on %%- is needed since the numerical domain of dzpendence
extends across the entire flow field. This does rot mean that an
implicit finite-difference method will necessarily work, but it does
mean thet the scheme at least meets the minimum requirements for
stability. Hence we now consider a computational method in which all
the flow variables are programmed into the implicit finite-difference
scheme.

This method was briefly examined at an early stage of the present

investigation, and a rather peculiar typ=s of instability was encountered.




e,

Although thie method was then dropped in favor of methed I, the analysis
of the previous sections has indicated that this method may offer the
best chance of success. Hence, the method is deseribed in this section
in order to determine the nature of the instability that was previously
encountered. It will be found that the instabllity is not related to
the instabilities encountered in section C and that it can be eliminated
in a simple manner. This method is in many respects the simplest and
most straightforward of the three methods considered in:this chapter
since the entire solution is given by the difference relations (4.6)-
(4.8). However, there are certain features of the computation that
require close examination, and these details are explained below.

The partial differential equations (2.2)-(2.5) are reduced to
the difference equations (4.4) by introducing the difference quotients
given in equations (4.2). Either the density or the pressure may be
considered to be the fourth dependent variable in addition to u, v
and T. The coefficients (A, B, C, and D) of the difference equation
(4.4) now contain a total of fifty-two components.

The determination of the boundary conditions (4.5) requires some
explanation. Equation {4.5a) contains boundary conditions on all the
variablee, and, of course, these congtraints are required by the
numerical method. Two of these constraints are provided by the slip
and temperature-jump conditions, (2.10) and (2.11), and a third is
obtained quite simply from the boundary condition on the nermal velocity,
equation (2.12). Although required by the numerical methcd, there is

no physical boundary condition on the density (cr pressure) at the wall.
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Further, it was seen in the preceding section that the differential
equations do not mathematically need such a constraint. Hernce, the
necessary numerical condition must be cbtained from the differential
equations themselves. It was noted in the preceding section that this
could be obtained from the differential equation that applies along

the characteristic intersecting the wall. A simpler means is to

evaluate the continuity equation (2.2) at n = O (note that the differen-
tial equations had been previously reduced to difference equations only

at N = 1,2,...,NS -- hence this condition will be an independent
equation). The central-difference formulas of equation (4.2) cannot

be used for this purpose, but a forward-difference relation such as

E ) IR | o)

BE m+1)N

must be used. The resulting three-point equation is reduced to the
required two-point form as described in section C.

A similar situation arises at the shock. Although the Rankine-
Hugoniot conditions supply all the necessary conditions in equation
(4.5b), it does so in terms of an additional unknown, &A. Hence, an
additional condition, which must be supplied by the equations themselves,
is needed. The use of the characteristic curve that intersects the shock
was described in section D as one possibility. The use of the integral
form of mass conservation as described in sectlon C is another possibility
although it 1s not known whether this will result in a numerically

independent condition. Or one of the differential equations can be
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evaluated in such a way that a numerically independent condition is
obtained, as was done at the wall.

As noted earlier, some rough calculations based on this method
led to a rather strange instability. At the first computational step,
the valueg of the variebles at the even-numbered grid points appeared
to become uncoupled from the values at the odd-numbered grid points.
Thiz is illustrated in figure 4.7 by a plot of the tangential velocity,
u, at s = 0.006. Other variables show a similar effect. Unlike the
case of methed I, this instability does not become progressively worse
as 8 increases but 1ls inherent to the scolution at each step. It
should be emphasized that these results are accurate solutions of
the difference equations (4.4), and thus the source of this problem
should be sought in the formulation of the difference equations (and
not in the boundary conditions or the method of solution).

It has now been recognized that the probable source of this
difficulty is in the use of the central difference quotient (4.2b)
for the normal derivatives of p and v. This equation does not
contain the central point (m+1,N), and this will obviously have &
tendency to uncouple the variables at adjacent grid points. When
considering the variasbles u and T, this is no problem since the
principle terms invelving u and T are second derivatives and
equation (4.2c) contains the variables evaluated at N-1, N, and N+1.
However, for o and v, the first derivatives are the principle terms,
and the central difference of equation (4.2b) is not appropriate.

It should be noted that, due to the influence of other terms, the
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Example of the instability encountered with method III.
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coefficients of P(N) and v{N) in the difference equations are not
zero; nevertheless, the use of the central-difference quotient for the
principle terms, g% and %% , 1s the probable source of the
instability illustrated in figure 4.7.

This conclusion is reinforced by a consideration of the order of
the differential equations and the order of the difference equations.
The use of the central difference quotients, (4.2b) and (4.2c), results
in the difference equations (4.%4) being second-order difference equations.
We have seen that this worked well for the tangential momentum equation
and the energy equation, which are second-order differential equations;
but when the continuity and normal momentum equations, which are first
order, are included, the instability of figure 4.7 occurred. 1In
reference 15, it is pointed out that the use of difference equations
to approximate differential equations can lead to what the authors
call “computational instabilities” if the difference equations are
of higher order than the differential equations. Taese "computational”
instabilities are of a different nature than the more common instabilities
that usually resgult in the catastrophic breakdown of the computational
procedure.

Fortunately, in the present case, it would appear to be a simple

matter to remove this instablility by using

oF 1, el - T,

N
= + 0(An)
& m+l, N an

for the normal derivatives of p and v, although this point has

not been checked. It is clear, however, that a successful application
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of this method must consider the type of difference quotients that are

to be used.

F. Summary aad Concluding Remarks

In their present state of development, the computational procedures
that have been presented in this chapter are ¢learly not capable of
yielding accurate solutions to the blunt-body problem. However, several
of the results of this investigation did indicate that the methods might
be adequate if properly formulated. The major difficulties were traced
to tvo factors: the determination of the shock location and the handling
of the terms 0uvs and van, which appear in the normal momentum
equation. In reference 11,two approximations were introduced for the
constant-density flow in order to overcome these difficulties. In the
present investigation (method I}, it was found that these approximations
were less satisfactory for the variable~density case:

1. The assumption of a ~oncentri~ shock and body was one of
the approximations that permitted the solution of the constant-
density flow. The shock location was then found to be consis-
tent with the assumption. However, it is known from the series-
truncation analysis that such an assumption is not generally
valid for a fiow of variable density. Hence, to specify the
shock angle in the present investigation, it was necessary to
rely on the truncation results despite the fact that the des-
cription of the shock angle appears to be amcig the least

reliable of the results of the series-truncation analysis.
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Near the axis, the finite-diffzerence computations did lead to
results that were consistent with the assumed shock angle, but
this could not be expected to be true over an extended range

in s. Purthermore, the fact that the results are ccnsistent
with the assumption does not in inself prove that the assumption
is correct. The ability to compute the shock position and angle
as a part of the finite-difference solution is a critical factor,

and conslderable attention must be glven this point in any

further analysis of the type that was considered in this chapter.1

It was noted that this difficulty can be circumvented by the use
of the thin-shock-layer model, btut this must necessarily

influence the accuracy of the results.

2. The second approximation that was used to obtaln tne solution
of the constant-density equations was to make use »f the thin-
shock-layer pressure to evaluate the tangential pressure gradient,
%E. That 1s, the influence of the terms Puv_ and pvvn wac
omitted. Since these two terms could influence the flow
variables, other than r, only through the gg term of the

tangentlal momentum cquatlion, this approximation was equivalent

1 It has recently been suggested by Davis [ 9] that the problem should
be formulated in variables which are defined by T = n/& , U = wu(E),
etc. With these variables, the shock location and the values of the
variables at the shock all become unity. The unknown quantities such
as &8 and u(B8), etc. now appear only in the differential equations.
According to Davis, the difficulties assoclatecd with the computation
of the shock positivn, &, can be removed in this manner.
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to the thin-shock-layer approximation, in which these termg are
omitted entirely. The resulting equations are parabolic in
nature and hence are ¢ *ily treated by finite-difference methods.
For the variable-density case, the complete omission of the
terms puv_ and pvvn leads to somewhat unrealistic values
of density and pressure across the shock layer for certain hody
shapes (including spheres). Hence, a second approximation,
vhich was analogous to the approximation used in reference 11
but which would not encounter the density distributions of
thin-shock-liayer theory, was considersd. It was found that the
influence of the terms puv and pvV, through the density
was sufficiently large to cause instabilities.

These two terms are the source of the two characteristics of
equations (2.2)-(2.5) that are of the hyperbolic type. Hence,
a method was examined that used the method of characteristics
to handle the computation of the pressure and the ncrmal
velocity (method II). It was found that the method of charac-
teristics was somewhat inconvenient to apply due to large slopes
of the characteristic curves. Finally, a method in which all
the variables were programmed into the finite-difference scheme
was considered (method ITI). 1t was found that with this method
care must be taken to choose difference gquotients that are
compatible with the differentjal equations. Neither of these
last two methods was investigated in detail. The last method

in particular appears to be worthy of further investigation.
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Despite the general lack of success with these methods, there
were several results that indicated that ths methods might yield valid
results if they were properly formulated. In particular, method I was
able to compute values of A and @ that were considerably more accurate
that the assumptions and data that formed the basis of the computations,
and the anaglysis of method 1T indicates that the formulation of the
blunt-body problem as an initial-boundary-value problem is justified.

There is, however, one importan* problem concerning this last
point that has not yet been discussed in detail: it is not clear what
effect an upstream influence has on the finite-difference procedure.
The series-truncation analysis has clearly shown that there is an up-

stream influence in the flow despite the 'parabolic-hyperbolic" nature
of the equations. This was exhibited by the strong influence of tne
downstream wall temperatur: ¢n the flow variables at the axis. (For

non-gpherical bodies, the coefficient « of an expansion

2
k{0) = 1 +x §1n6 +-++ would have a similar, though less pronounced,

2
effect). Thus, as a result of the upstream influence, the initial data
will be, to some extent, incompatible with some of the downstream
boundary parameters, especially the wall temperature. We have seen
that this incompatibility may be fairly large if the first-truncation
results are used as initial data; with higher truncaticns, the initial
data will more closely approximate the data which are correct for the
desired wall temperature. Due to this incompatibility, it is necessary

to inguire wiether the problem can be formulated with a specified

wall temperature. If this formulation is to be valid, the
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finite-difference results must be able to guickly adjust to the imposed
conditions irrespective of the possibly erroneous initial data. This
is true of boundary-layer computations -- the influence of the initial
dats diminishes repidly as the computations proceed away from the
initial station -~ but is less likely to be true of the shock-layer
equations because the equations have some hyperbolic characteristices.
That is, it is likely that the effect of the "erroneous” initial data
will be propagated downstream. Since the initial data may not be valid
for the particular temperature that is desired, it is possible that a
solution cannct be found from the finite-differenc: procedure unless
the downstream wall temperature is adjusted to be compatible with the
initial data. The manner in which the compat!ble wall temperature
would be determined, as well as the manner by which the incompatibility
would be manifested, is unknown since this discussion is somewhat
speculative.

An example of how it might be determined can be seen in an examina-
tion of method I. It was there ncted that the use of the integral
equation expressing the overall mass conservation should automatically
insure that the Rankine-Hugoniot ccondition on the rormal velority is
satisfied. TIn practice, it was found that this was not always the case.
Normally, the error was less than one percent, but as instabilities
developed, the error grew, becoming 5-10 percent just before the

computational procedure had to terminate. This error possibly could
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have heen removed by adjusting the value of the wall temperature at
each s-step:

The effectiveness of any such computation procedure can be evaluated
by using the first truncation results as initial data. The wall
temperature that would be calculated by the finite-difference scheme
should then agree to O(sinas) with the second-truncation temperature
distribution that produced a concentric shock and body (Chapter III,
section D.3). Alternatively, if a constant wall temperature is specified
together with the first-truncation initial data, the results must muke
some rather obvious and abrupt adjustments (in A ard T, for
example) if they are to be meaningful. If either of these two cases
can be realized, an evaluation of the reliability of the r: 3sults of a
computation scheme of the type that was considered in this chapter

will not be difficult.
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Chapter V

SUMMARY

A simplified form of the Navier-Stokes equations has been used to
describe the flow in the shock layer of a blunt body. These equations
are uniformly valid to O(e) throughout the entire shock layer and
thus are valid in the same flcw Te ime as the second-order boundary-
layer theory.

The nature of these shock-layer equations has led to the treatment
of the problem as an initial-boundary-value problem ~- with the axis
of symmetry as the initial station. Solutions at the axis of symmetry
have been obtained for a wide range of flow conditions by use of the
method of series truncation. The second-truncation solutions have been
found to yield excellent results for the heat transfer at the wall and
results for wall shear that contain only moderate errors. The first-
and second-truncation results have been compared to the results of
several previous investigations of the flow in the stagnation regicn.
These comparisons have shown

1) that the basic flow model is adequate for values of the shuck
Reynolds number down to the order of 102 and

2) that, contrary to the conclusior of a previous investigation,
the method of local similarity may lead t. substantial errors at the

axis.

With regard to this second result, the ie of the wall temperature iu
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determining the relative geometry of the body and shock has been clearly
pointed out.

Several methods based on the use of finite-differences have been
examined as means of extending the sclutions beyond the stagnation
region. A method that was previously used to sclve the constant-
density shock layer was found to be less adequate {or the variable-
density case. Although several interesting resuits werce obtained, the
method encountered serious instabilities. Two additional methods,
which should avoid these instabilities, have been described. Exploratory
computations h:ve illustrated the features o: each that require further
attention. Finally, the results of this ipvestigation indicated that
the formulation of the problem as an in tial-boundary-value problem is
valid but that special attenticn must be given to a possible incompati-
bility between the initial data snd the wall temperature downstream of

the axis of symmetry.
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APPENDIX A

Coefficients of the finite-difference equations {method I)

Eguations (b4.3a) and (4.3%) are the difference equations that are
used in method I (section B, Chapter IV). The coefficients of these
equations are determined by substituting the difference quotients given
by equations (4.2) into the differential equations (2.3) and {2.5).

We introduce the following notation. A subscript e indicates that a
quantity is evaluated at the point (s,n) = ((m+1)As, NAn) but is
obtained either from the extrapoiation formula (%.2e) or from a previous
iteration. Multiplying the two equations by 4An and letting L = %Qﬂ.

As .
we obtain the following relations.

T -T
Al = '2[€u(1< + ) &2—9) - (pv)e] B “'( mimli-l) (A-1)

An An

By - Treeaen (e * Toeeony OV * o (a-2)
Cly = -ALy - % (A-3)
DlN _— um,N+%;;um;N-l _ ECKue (A-h)
El, = 0 (A-5)
FL, = -Dly (A-D)
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Lieu), ‘
N

o Me . bAn 9
Gly = T¥xeton h 1“m-l,N) " 1+keMAn (Eg)e

okl . - =
An {Tm,Nﬂ Tm,N-l) (um,N+l “m,N-l) (A-7)
and
u =1
== o m’N+l m,N-l - - _8
A2N = Ep( e - 2cxue) (A-8)
\
B'2N - 1+KCNAn Bs)e (A-9)
]
‘l% c2, = -A2 (A-10)
_ =2u' . _ _n BB gin 0
D2N = obdn rl‘m,l\l+l lIlm,l\l--l) 2 a 'K *Jd = ’
T -
+ 2(pv)e 5 (A-11)
_ 3L 8 -
EEN T 1+ keNAn (pu)e * gln (a-12)
_ Su_ (A-13)
Foy = D2y - 9on

_ e . 3)
2y = Trxevan |* To,n Tm-l,N) +bon (" e

2

2
Un, N+l " “m,m-l) (A-14)

-
An

SR ]
cdn (Tm,IHl rl'm,N-l

The quantities r, K, and € are evaluated at s = (m+1)As. The yuanti-
ties p and u' are functions of the temperature, T, and must be
evaluated elther from an extrapclated value of T or from a value of

T from a previous iteration.
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' APPENDIX B

Derivation of the difference equations for the mass-flow integral

We wish to show that the integral given by equatior [4.1ka),

NAn 3
I(N) = 2%] pu(r+en sin 6)dn , ) (B-1)
o]
can be evgluated from the simple algebraic egquation
I(N) = A(N) + By (N)u(N) + c (N)T(N) (8-2)

where the coefficients AI’ B_, and CI can be computed along with

I
H{N) and K(N) (i.e., they can be obtained from recursive relations
starting at N = O, prior to the calculation of u and T). We consider
only the case of 1 = 2 here, but the more general case of 1 =4 can
be handled in an analogous manner.

For i =2, the difference equation (4.6) may be written out

explicitly as

u(N) = Hl(N) + Kll(N)u(Nﬂ) + KlE(N)T(N-i-l) {(B-3a)
and

T(N) = Hy(N) + K, (N)u(W+1) + K, (N)(N+1) {B-3b)

“ %
wkere H), Hys K,.» Kip» K, 5 K, are the components of H(N) and K(Nj.
The integral I 1is evalvated by using the trapezoidal integration

formula:
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.

1(w1) - (W) = 297 ane {p(N+1)u(N+1) [+ con (N+.)sin6)?

+ p(N)u(N) [r+etn N ein 6]7} (B-4)

Let R(N) = 23*1an ¢ p(N)(r+eAn N sin G)J. If p is evaluated by
extrapolation, which is consistent with the linearization of the differ-
ence equations, then R(N) can immediately be evaluated at each value

of N. Equation (B-4) can be written as
I(N+1) = I(N) + R(N+1)u(w+1) + R(N)u(N) {B-5)

At the wall, I(0) = 0. Note that by recureive application of equation
(B-5) for N = 1,2,... and by using equations (B-3) to eliminate the
undesired values of u and T, the integral I(N+1) can be expressed
as a linear function of u(N+l) and T(N+1), equation (B-2). The
coefficients of (B-2) are evalusted as follows.

Substitute (B-2) into (. -5):

I(N+1) = AI(N) + R(N+1)u(N+1) + [BI(N)+R(N)]u(N)

+ CI(N)T(N)
Use equations (B-3) to elimingte u(N) and T(N):

I(N+1) = AL(N) + [BL(N)+ R(N)]H,(N) + C(N)E,(N) +{R(n+1)
+ [B(N)+ RIN)IK , (N) + C(N)K,, (N)}u(N+1)

+ {[B(N) + R(N)JK ,(§) + CL(N)K, (W)} T(N+1)

This result now gives
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A (N+1) < AL(N) + [B(N)+ R(N)] H,(N) + CL{N)H,(N) (B-6a)

B(N+1) = R(N+1) + (B (N) + R(N)] K, (W) + CL{N)K,, (N) (B-6b)
and

Cp(n+1) = [B (W) + R(N)IK,,(N) + C (N)K,,(N) (B-6e)

Since AI(O) s BI(O) = cI(o) = 0, the coefficients A, By, and C,

can be evaluated at each value of N by recursive application of

equations (B-6)} for N = 0,1,2, ¢+ ¢,N_
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13 ARSTHALCT

A simplified form of the Navier-Stokes equations has been used to describe the
flow in the shock layer of a blunt body. The equations are scolved near the
axis of the tody by using the method of series truncation. The main method of
solution is a finite difference method, which in prinicple allows.to handle
sxlsymmetric bodies of arbitrary shape. The body shape is assumed to be given
and the bow shock shspe is determined step by step.
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