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Chapter I 

INTRODUCTION 

The low-density, high-speed flow of a viscous fluid around a blunt 

body presents a wide vaiiety of problems that have attracted considerable 

attention. One such area of interest is concerned with the effeccs of a 

rarefaction of the fluid at high altitudes. This rarefaction can lead 

to a wide range of flow conditions — from continuum flow at low altitudes 

to free-molecular flow at very high altitudes. The transition region 

between these two limits has been subdivided into various flow regimes 

depending on the degree of rarefaction of the fluid. These regimes have 

been described by Hayes and Probstein [18]*, Frobstein [27], and Cheng [2j 

These regimes are not sharply defined, and most investigations have been 

concerned with a penetration of the transition region from either the 

continuum or free-molecule end. The present investigation will be 

concerned with just such a penetration from the continuum end. 

In the basic continuum approach, valid for large Reynolds numbers, 

the flow between the detached shock and the body is divided into two 

regions: an outer region in which the viscous forces are negligible 

extends across most of the shock layer; and a narrow inner region that 

can be treated by Prandtl's boundary-layer theory contains all the 

effects of viscosity. At high altitudes where the Reynolds number is 

The numbers enclosed in brackets refer to the list of references at 
the end of the paper. 
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not large, the viscous layer thickens and the classical boundary-layer 

theory is no longer adequate. This flow regime — in which the viscous 

layer is too thick to be treated by classical boundary-layer theory 

but is still smaller than the shock-layer thickness, and in which the 

effect of a thickening of the shock is not appreciable — is the region 

treated in this paper. 

The Navier-Stokes equations, modified by appropriate slip and 

temperature-jump conditions at the boundaries, form the basis of 

such a study. The study of these equations for low-density flow has 

been the object of numerous investigations, and several methods of 

approach have been developed. Of primary interest for the present 

investigation are the second-order boundary-layer theory, the method 

of local similarity (and a generalization — the method of series 

truncation), and the thin-shock-layer analysis of H.K. Cheng [1,2,3]. 

The classical boundary-layer theory of Prandtl yields asymptotic 

solutions, valid at large Reynolds number, to the Navier-Stokes 

equations. The analysis of secondary boundary-layer effects, which 

become important at lower Reynolds numbers, has been obtained by 

application of the method of matched asymptotic expansions to the 

Navier-Stokes equations. The resulting second-order boundary-layer 

theory, which has been developed most systematically by Van Dyke [32], 

represents an extension of continuum results toward the regime of 

rarefied flow. The secondary effects which are analysed in this manner 

are the effects of the curvature of the body, the slip and temperature- 

jump conditions at the boundary, the vorticity in the outer flow, and 
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the perturbation of the outer flow by the displacement thickness of 

the first-order boundary layer.    A discussion of the development of 

second-order boundary-layer theory up to 1962 is contained in 

reference 33«    In addition,  extensive computation of the second-order 

boundary-layer effects have been carried out by Davis and Flügge-Lotz 

[12] and Fannelop and Flügge-Lotz  [13]s using an implicit finite- 

difference method. 

This second-order boundary-layer theory has yielded results of 

considerable interest,  but some practical difficulties remain in its 

application.    Its use requires the solution of a series of inter- 

related problems,  each of which is simpler in concept than the basic 

problem defined by the Navier-Stokes equations.    However,  despite the 

apparent simplicity of the inviscid,  outer flow (on which the boundary- 

layer solutions are based),  the available methods of solution for the 

inviscid flow are frequently inadequate.    The simpler,   analytical 

methods of solution often encounter convergence difficulties   [37]»  and 

even the more elaborate numerical procedures may lead to results of 

insufficient reliability  [25]-    Due to the difficulty of obtaining such 

inviscid solutions,  many investigators have used various  approximations 

to determine the second-order outer flow due to displacement  thickness, 

and this affects the accuracy of their results. 

As  an alternative,  Davis and Flügge-Lotz proposed that the flow 

be represented by a simplified form of the Navier-Stokes equations 

that would be uniformly valid throughout the shock layer.    The equations 

would contain only those terms that contribute to the first- or 
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second-order boundary-layer equations or to the first- or second-order 

outer, inviscid flow. Thus the equations are valid in the same flow 

regime as tne second-order boundary-layer theory, but they present a 

unified treatment of the entire shock layer. The feature of these 

simplified equations that makes their solutions more feasible than the 

solution of the entire Navier-Stokes equations is that all the 

characteristic surfaces of the simplified equations are real. This 

feature arises the possibility of solving the equations as an initial- 

value problem , and the purpose of the present investigation is to 

examine methods of analysis that lead to such a solution. Two general 

methods of analysis are considered. First, we obtain solutions of the 

equations that are valid in the stagnation region of the flow. Second, 

we examine the use of implicit finite-difference methods to solve the 

equations as an initial-value problem using the solutions at the axis 

as initial data. 

The method of local similarity has been widely employed in the 

study of low-density flow in the neighborhood of the axis of symmetry 

of a blunt body.  In this method, an assumed similitude is used to 

effect a separation of variables, and the equations are then integrated 

along the stagnation streamline. In addition, as a numerical convenience, 

the basic differential equations are often simplified by the introduction 

2 
The problem is more accurately described as an initial-boundary-value 
problem.    These two descriptions are used somewhat  interchangeably in 
this paper,  but this should not present any difficulty. 
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of additional approximations. The approximations which have been most 

commonly used are a constant-density flow, e.g. Probstein and Kemp 

[28], and the thin-shock-layer model, e.g. Ho and Probstein [19]- 

The assumption of local similitude is based on the existence of a 

spherical symmetry in the geometry of the flow boundaries, and the 

thin-shock-layer concept is frequently used as justification for 

this latter assumption. 

A second method that may be used to obtain solutions at the axis 

is the method of series truncations. The flow variables are expanded 

into series centered at the axis. In order to obtain solutions to the 

resulting equations, it is necessary to terminate, or truncate, the 

series after a finite number of terms. Since the one-term truncation 

is equivalent to the method of local similarity, the series-truncation 

method may be considered to be a generalization of the method of local 

similarity. Thus the two-term (and higher) truncations can be used to 

test the validity of the lccal-similitude concept. One previous appli- 

cation of series-truncation methods to the viscous blunt-body problem 

has been maae, by H.C Kao [21], and he concluded that, the local- 

similitude assumption was accurate. However, Kao required that the body 

and the shock be concentric, and thus the underlying assumption of 

spherical symmetry was left untested. The validity of local similitude 

will be re-examined when the series-truncation analysis is used to 

obtain solutions of the simplified shock-layer equations at the axis. 

It will be found that the boundary condition that is imposed on the 

wall temperature plays a critical role in this examination and, in 

general, the local-similitude analysis can lead tu substantial errors. 
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In the investigation of finite-difference methods, the thin-shock- 

layer analysis of H.K. Cheng [1,2,3]  serves as a standard reference. 

In his investigation,  the Navier-Stokes equations are reduced,  under 

the thin-shock-layer assumption,  to a system of parabolic partial 

differential equations.    These equations are then solved by an implicit 

finite-difference procedure.    The equations to be investigated in the 

subsequent chapters contain several factors which will make the finite- 

difference analysis more difficult than the thin-shock-layer analysis. 

These complications are associated with the description of the inviscid 

pressure field and of the shock location when the thin-shock-layer 

assumptions are removed.    These factors have been investigated by Davis 

and Chyu [11] for a constant-density shock layer,  and they found that 

it was necessary to retain some features of the thin-shock-layer model. 

The extension of the analysis of Davis and Chyu to flows of variable 

density will be considered here,  as well as two other methods used on 

implicit finite-difference procedures. 

In the investigation that has been outlined above, the problem is 

formulated as a direct one — that is,  the body shape is given and the 

shock shape is calculated.    The alternative method of computing the 

body shape from a known shock shape has been the basis of numerous 

studies of the blunt-body problem.    This inverse blunt-body problem 

generally leads to a considerable reduction of the computational diffi- 

culties but requires several computations if a particular body shape is 

to be obtained.     It is clearly shown in the following chapters that the 

shapes of the shock and the body,   relative to one another,   are quite 

-6- 
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dependent upon the boundary conditions that are imposed at the body 

surface for the flow of a viscous, heat-conducting fluid. This feature 

is very important to the use of the series-truncation or local-similarity 

methods — although the inverse blunt-body problem would reduce the 

computational difficulties, it would do so at the cost of leaving some 

ambiguity as to what problem has been solved. Hence, the direct blunt- 

body problem, despite the inherent computational difficulties that are 

associated with it, is considered to be more appropriate for the present 

investigation than the inverse problem is. 

In the above discussion, only those references of immediate concern 

to the analysis of the following chapters have been cited. For a more 

complete account of the work done on the blunt-body problem, the reader 

is referred to the reviews by Probstein [27], Van Dyke [}5]t  and Cheng 

[2,3]. 
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Chapter II 

FORMULATION OF THE PROBLEM 

The problem considered in this work is that of the flow about a 

blunt body, which is assumed to be everywhere convex and to have a con- 

tinuous slope. The flow may be either axisymmetrlc or plane symmetric 

although only axisymmetrlc flows are considered in the application of 

the equations to specific problems. A simplified form of the Naviex- 

Stokes equations is presented that is uniformly valid throughout the 

entire shock layer. The nature of these equations is examined, and, for 

comparison, some of the features of the equations used in several thin- 

shock- layer investigations are discussed. 

A. Coordinate System 

A blunt body lies in a flow field that has a constant free-stream 

velocity, U* , parallel to the body axis and a density and temperature 

given by p* and T* respectively. The body surface is located a dis- 
co        CO 

tance r* from the axis of symmetry and is inclined at an angle - - 9 

to the axis as shown in figure 2.1. The body has a longitudinal curv- 

ature given by K*    and a nose radius of a* . The coordinates, s* and 

n* , measure the arc length along trie surface of the body and the dis- 

tance normal to it. The velocity of the fluid is resolved into compo- 

nents, u* and v* , parallel to s* and n* respectively. A shock 

of zero thickness is located at a distance A* from the body. The angle 

between the shock and a plane normal to the axis is denoted by 0. 

-8- 
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B, Non-dimensional Variables 

Dimensionless variables are Introduced by referring all lengths to 

2 
a* , velocities to U* , ctie density to p* , pressure to p*U* , 

OD 00 00 00 

2 
temperature to U* /C*, and viscosity to u* --its value at the refer- 

2    x 

ence temperature U* /C* .  With such a choice of reference values, the 
oo   p 

variables all remain bounded in the hypersonic limit, M -»oo .  In 
00 

addition, the normal coordinate and normal velocity are stretched by a 

factor 1/e where 

p* U* a* 
r0B   OD 

1/2 

(2.1) 

Starred symbols denote dimensional quantities and unstarred sym- 
bols denote dimenslonless quantities. 
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The normal coordinate, n , and the normal velocity, v , are iden- 

tical in form to those used in boundary-layer theory. This form was 

chosen simply as a convenience for the numerical solution of the equa- 

tions. Since the viscous effects are confined to a region of order e 

near the body, the use of the stretched,boundary-layer variables guaran- 

tees that the region of large velocity gradients does not become exces- 

sively thin as e becomes small. However, tne use of this form of the 

variables is not essential to the method of solution developed here. 

C.  Shock-layer Equations 

The Navier-Stokes equations can be written in the orthogonal, 

curvilinear coordinate system described above (see, for example, ref- 

erence 32 ). The quantity € , defined by equation (2.1; and referred 

to as the viscous, hypersonic similarity parameter, appears in the momen- 

tum and energy equations when the dimensionless variables of section B 

are introduced.  In the hypersonic limit, it is the only similarity par- 

ameter that appears in the formulation of the problem.  The equation for 

the similarity parameter may be rewritten in terms of the free-stream 

Mach number and Reynolds number by using the relation 

u*2 
-2- - (Y-l) *£ T* 
C* 00   00 

p 

If a power law is used for the viscosity, p* x     T*  ,  then 

•JÜD 

In this form, it can be seen that e is a measure of the ratio of the 
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mean free path in the shock layer to the thickness of the shock layer 

[18, p.378]. Thus, e    serves as a measure of the degree of rarefaction 

of the flow in the shock layer. Further, the quantity e is the pertur- 

bation parameter used to systematically expand the Navier-Stokes equa- 

tions into the equations of boundary-layer theory [ 32 ]. Thus the 

second-order boundary-layer theory represents an extension of the con- 

tinuum flow equations toward the regime of rarified flow. Adequate 

numerical techniques for the cjlut'.on of th.» first- and second-order 

boundary-layer equations exist (e.g., Flügge-Lotz and Blottner [14], 

Davis and Flügge-Lotz [12], Clutter and Smith [5 ]), but there is 

still some difficulty associated with the application of boundary-layer 

theory.  In particular, it requires the solution of a series of inter- 

related problems, two of which (the basic inviscid flow 2nd the invis- 

cid flow due to the displacement thickness) involve solving elliptic 

partial differential equations in regions in which the locations of the 

boundaries are unknown. 

Numerous methods have been developed to solve this inviscid flow 

probleu..  Perry and Pasiuk requested solutions to a few standard prob- 

lems from various agencies which have developed numerical procedures 

based on some of these methods.  Thfs survey included solutions obtained 

from both direct and inverse methods and from integral-relation methods, 

finite-difference methods, series-truncation procedures, and a time- 

dependent method. A brief comparison of the results of this survey is 

presented in reference 25 . Several of ve solutions predicted surface 

pressures that are in excellent agreem* •  with experimental data; but, 
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in general, considerable disparity exists in the results. 

Thus it appears that accurate results to the inviscid flow problem 

can be obtained with sufficient numerical skill, but these results must 

then be used in an entirely different numerical procedure to obtain the 

first-order boundary-layer results. Then, before all the second-order 

boundary-layer effects can be computed, the inviscid flow due to the dis- 

placement thickness effect of the boundary layer must be obtained either 

by solving the inviscid flow problem again or by using some approximation 

(c.f. ref. 12 ). Thus the application of higher-order boundary-layer 

theory is complicated by the necessity of solving several different sets 

of equations which require different methods of solution. 

As an alternative, Davis and Flügge-Lotz [ 12 ] proposed representing 

the entire shock layer by one set of equations, a simplified form of the 

Navier-Stokes equations that would be uniformly valid throughout the 

shock layer and would contain all the viscous effects that are contained 

in the boundary-layer equations.  Although a solution to this set of 

equations may require the use of elaborate numerical techniques, only 

one application of the numerical methods is needed.  This paper repre- 

sents an investigation of this alternative procedure proposed by Davis 

and Flllgge-Lotz.  To obtain the desired equations, only those terms of 

the Navier-Stokes equations that contribute to ehe first- or second- 

order boundary-layer equations or contribute to the first- or second- 

order outer, inviscid flow are retained. Thus the modified equations 

are uniformly valid to order e  throughout the shock layer.  The 

shock-layer equations that are obtained in this manner are 
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Continuity 

[(r + en sin 9)J pu]    +  [(1 + K en)  (r + en sin e)j pv]    • 0 
(2.2) 

Tangential Momentum 

, u e/c      v     ps 
(r—  u + v u + -—,     u v I + -—; • u, u  + \1 + K en 8    n  1 + < en   /  1 + K  en  •* nn 

,. (un . e *n) Tn + „ (K + j^) un (2.3) 

Normal Momentum 

Energy 

/  eu K 2\ 
€PlT~r v + e w - -— u I + p s 0 M\l + K en 8     n  1 + K en  /  Fn 

r—7s T + v T  - (-r-7  n 4- v p I 1 + /c en s     n*  \ 1 + K en r§    n/ 

/ i\ (2.4) 

+ ILU (U - 2 e Ku) ^ n n (2.5) 

The subscripts 8 and n denote partial differentiation with 

respect to the s and n coordinates, respectively. The quantity j 

is equal to 0 for plane flow and equal to  1 for axisymmetric flow. 
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In equation (2.5) the Prandtl number, CT $    has been assumed to be a 

constant, but this assumption is not essential to the use of the methods 

of analysis investigated in later chapters. 

The thermodynamic state relation is taken to be as simple as possible 

in order to facilitate computations. Thus a perfect gas with constant 

specific heats is assumed. Hence, 

State 

P8^pT (2.6) 

This assumption represents a limitation on the applicability of the results 

of this work. For some flow conditions, it is necessary to consider 

the real gas effects arising from the molecular structure of the gas or 

from chemical reactions among the various components of the gas.  In 

addition, the reaction times for such molecular processes become signifi- 

cant for some problems, and in such a case it is necessary to account for 

the fact that the chemical state of the gas may not be in equilibrium. 

However, it is desired in this work to concentrate on the difficulties 

arising solely from the hydrodynamic aspects of the flow,and therefore 

all complications due to the chemical nature of the gas have been ignored. 

To the above equations must be added an equation which gives the vis- 

cosity as a function of the temperature: 

H-M.0T) (2.7) 
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Although equations (2.2)-(2.7) have been chosen simply as an attempt 

to have a somewhat simpler formulation of the problem than is afforded 

by the boundary-layer theory, there is one aspect of the flow in which 

the current formulation of the problem may be superior to that of 

boundary-layer theory. Recently Weinbaum and Garvine [40] have investi- 

gated the nature of the pressure field in compressible boundary-layer 

theory. They assert that under certain flow conditions there are three 

distinct regions requiring description in a viscous flow problem with 

large Reynolds number. Near a solid boundary, the usual boundary layer 

exists where the normal pressure gradient is negligible and the viscous 

effects predominate. Far from the boundary, there is the usual inviscid 

l 
region.  However, they state that when M K   >  1   there is an inter- 

mediate region where the effects of viscosity are considerable and where 

the normal pressure gradient cannot be neglected. Thus, they propose 

the existence of a transition region between the boundary layer and the 

inviscid flow. Under such conditions, the matching of the boundary- 

layer solution and the inviscid solution as done in the development of 

2 
higher-order boundary-layer theory may not be valid. 

It should be noted that this proposed intermediate region between 

the boundary layer and the inviscid flow would not occur in the subsonic 

portion of the flow around a blunt body. However, Davis and Flügge-Lotz 
- 

The subscript e refers to a streamline at the outer edge of the 
viscous layer. 

2 
It has also been suggested [38] that this is a "strong-interaction" 

phenomenon, which properly lies outside the scope of boundary-layer 
theory. 
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[ 12] report that in the flow around a sphere the normal velocity found 

from the second-order boundary-layer theory grows extremely rapidly (com- 

pared with the first-order normal velocity) after the inviscid sonic line 

is passed. Davis attributed this to a breakdown of boundary-layer theory 

as the boundary-layer separation point is approached. Fannelöp and 

FlUgge-Lotz [ 13 ] report a similar result for flow around a circular 
l 

cylinder. However, Fannel'dp suggests that the result is not a manifes- 

tation of the physical singularity that occurs at separation but that 

it is a singularity due to a limitation of the mathematical theory. 

Further, he suggests that the limitation is related to an inadequate 

description of the streamline curvature. 

2 
The normal pressure gradient is proportional to p K  U  in 

second-order boundary-layer theory. This represents the centrifugal 

force which occurs in a flow field whose streamlines have the same local 

curvature as the body. Fannel'dp points to this similarity to the thin- 

shock layer model and suggests  iat the difficulty could be analogous to 

the occurrence of the zero-pressure point [18, p. 82] in thin-shock-layer 

theory. This is i.ot inconsistent with the analysis of Weinbaum and Garvine 

since the interaction of the normal pressure gradient and local variations 

in the streamline curvature (represented by the terms proportional to 

u v  and v v  in the normal momentum equation) plays an essential role 
s        n 

in their analysis. The set of equations (2.2)-(2.7) possesses a complete 

description of the interaction of the pressure and the local streamline 

curvature and therefore should not encounter this difficulty. 

For non-circular bodies for which K <  1 downstream of the sonic 
line, no difficulties were reported in either reference 12 or 13. 
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Weinbaum and Garvine also adopt Che equations proposed by Davis and 

Flügge-Lotz, and they propose a method of solution. Weinbaum [39 ] has 

appl-  this method to solve for the flow in a laminar wake. The use of 

is method to solve the blunt-body problem is investigated in Chapter 

IV. 

D.  Characteristics of the Equations 

It is interesting to examine the characteristics of the set of equa- 

tions (2.2)-(2.7). The characteristics fall into two categories. Most 

l 
of the characteristics coincide and are described by 

s * constant (2.8) 

Although the classifications of hyperbolic, parabolic, and elliptic are 

not strictly applicable to such higher-order equations, these character- 

istics may be thought of as being parabolic in nature.  This set of char- 

acteristics can be traced to the tangential momentum equation and the 

energy equation.  Thus these two equations, which describe the behavior 

of u and T  (u   and T   occur only in these two equations), are 
nn      nn ' * 

still essentially parabolic just as they are in boundary-layer theory; 

but now the pressure gradient is not a known function but is determined 

together with v from the interaction of the continuity and normal 

momentum equations.  The remaining characteristics are described by 

1 + e /en ds 
dn  ev , /ITl  tv .  c 
-— a — +/•-— = — •+•   
no     ii • »  A ii    ii —  / P u yVu 

(2.9) 

The equation describing the characteristic surfaces for a set of 
nonlinear partial differential equations may be obtained from reference 
26  , page 32. 
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That is, there are two additional characteristics whose slopes differ 

from that of a streamline by an amount + y - . Thus the behavior of 

the normal momentum and continuity equations is essentially hyperbolic. 

Despite the difficulty of dealing with a system of such mixed character, 

it would appear that the equations should be well suited for an initial- 

value problem. 

Since we know that the subsonic» inviscid flow region of the shock 

layer is elliptic in character, it is necessary to inquire as to how or 

whether this "parabolic-hyperbolic" set of equations can adequately 

describe the flow in a region in which some upstream influence should 

occur. Weinbaum [40 ] has reported that these equations are stable as 

an initial-value problem when applied to laminar-wake flows.  However, 

even though the modified equations are not of an elliptic nature and thus 

may be numerically stable in an initial-value problem, one would not 

expect the inherent elliptic character of the blunt-body problem to be 

absent. The manner in which an upstream influence can occur is not read- 

ily apparent, and the answer to this must be deferred until the methods of 

solution are investigated. 

E. Thin-Shock-Layer Investigations 

Numerous investigations of the viscous blunt-body problem have uti- 

lized the concept of a thin shock layet.  Such analyses have much in 

common with the analysis of this paper.  In particular, one set of equa- 

tions is used to describe the entire viscous shock layer. A few of 

these investigations are discussed below in order to point out some 

similarities and differences from the present investigation. 
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H. K. Cheng has extensively investigated this flow model in a series 

of papers [ 1, 2, 3   ]• The thin-shock-layer equations are an asymp- 

Pm 
totic description of the shock layer for small density ratio,   . 

psh 
Cheng uses the first-order equations that result from an order of mag- 

P0D 
nitude analysis for small   . These equations are parabolic in nature 

psh 
(all of the characteristics coincide) and, in fact, are identical to the 

boundary-layer equations except that the normal pressure gradient is 

2 
proportional to p /cu .  This enables Cheng to solve the equations with 

an implicit finite-difference scheme which starts at the axis of symmetry 

and marches downstream.  This property of the equations is quite desirable 

since implicit finite-difference methods have been well developed and 

lead to an accurate solution over as large a region as is desired.  Cheng 

docs not assume an infinitesimally thin shock but uses a modified set 

of the Rankine-Hugoniot conditions to account for transport effects at 

the shock.  These relations are similar to those proposed by Sedov, 

Michailova and Chernyi [29].  One important simplification in the bound- 

ary conditions results from the use of the thin-shock-layer concept.  To 

the order of the approximation considered by Cheng, there is no distinc- 

tion between the location of the shock interface and the body surface. 

This appears in most of the analyses based on the thin shock layer as an 

assumption that the body and shock are concentric  (0*6) .  This sim- 

plifies the analysis considerably but, of course, influences the accuracy 

of the results.  Despite the simple nature of this flow model, Cheng 

obtains reasonable agreement with the results of other investigations. 
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However, since several terms of 0(c)  , Including the slip and temper- 

ature jump efffccts, are missing from his formulation, there is some doubt 

as to the accuracy of the solutions at the low Reynolds numbers that 

were considered. Cheng avoids any potential difficulty due to the 

occurrence of a zero-pressure point by considering only flow around 

such bodies as paraboloids and hyperboloids. However, as discussed in 

the previous section, it would be desirable to have a more complete 

description of the pressure field. 

Other investigations have retained more terms of the equations than 

Cheng did. This provides a more accurate description of the shock layer 

at low Reynolds numbers but increases the difficulty of obtaining accurate 

solutions since the equations are no longer parabolic. The method of 

solution usually employed in such investigations is to reduce the equa- 

tions to ordinary differential equations by assuming the functional 

dependence of the variables with the s-coordinate. Examples of such 

analyses are those of Ho and Probstein [It ], Shih and Krupp [30 ], and 

L. Goldberg [17 J. 

The investigation of Ho and Probstein removed the constant density 

assumption which had characterized many prior investigations, and 

many subsequent investigations have followed the same basic approach. 

Ho and Probstein emphasize that the thin-shock-layer approximation is not 

essential to their investigation but is used only to make the numerical 

analysis simpler. This is true of most of the thin-shock-layer investi- 

1  
A function f(|) is 0(|)--of order |—if the limit of f(|)/| 

exists as  | -» 0 . 
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gations since the equations are generally not reduced to the parabolic 

system used by Cheng. Even though the use of the thin-shock-layer equa- 

tions is not essential to these investigations, the consistent assumption 

that the body and shock are concentric is very important. These investi- 

gations assume than the solution has a locally similar character in the 

stagnation region. This assumption is based on the existence of spheri- 

cal or cylindrical symmetry when the body and shock are concentric. H. C. 

Kao [21 ] has tested the validity of the local similarity concept by 

solving the Navier-Stokes equations by the method of series truncations. 

Kao concluded that the similarity solutions were quite accurate. How- 

ever, it should be noted that Kao also assumed that the body and shock 

were concentric.  Thus the underlying assumption of spherical symmetry 

was left untested.  This question is examined in Chapter III when the 

method of series truncation is considered. 

The investigation of Goldberg [ 17 ] is similar to that of Ho and 

Probstein but uses a somewhat more elaborate flow model. In particular, 

Goldberg modifies the shock conditions in a manner similar to that pro- 

posed by Sedov, et al. However, the basic assumption that the shock 

interface and the body are concentric remains. 

W. C. L. Shih and R. S. Krupp [ 30 ] have also used the thin-shock- 

laycr assumption to simplify the Navier-Stokes equations but have not 

assumed that the shock slope is known.  In addition the method of analy- 

sis is somewhat modified in order to obtain the values of the variables 

at a specified number of positions downstream of the axis of symmetry. 

Their analysis also provides for the systematic improvement of the degree 
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of approximation. In each of the above  investigations, except that of 

H. K. Cheng, the terms proportional to puv  and pvv  have been 
8 Q 

retained in the normal momentum equation. Thus a complete description 

of the inviscid pressure field is afforded. However, these investiga- 

tions retain a different set of viscous terms than has been retained in 

equations (2.2)-(2.7). In particular the term (u, v )  is retained in 
n n 

the normal momentum equation. This term has considerable influence on 

the character of the equations. Shih and Krupp state that such a system 

of equations is parabolic. Davis and FlUgge-Lotz had also suggested the 

possibility of reducing the equations to parabolic form by including the 

(u- v_)_ tenn in the normal momentum equation. However, the inclusion 

of this term results in the streamlines being characteristics,and it is 

not clear that the equations should be classified as parabolic in such a 

case. Since the streamlines become parallel to the body as n -»0, the 

body surface will be a characteristic surface for such a set of equations. 

Thus by the definition of characteristics, one cannot solve for the high- 

est-ordered derivatives normal to the body, given all other flaw quanti- 

ties on the body, unless the specified boundary conditions satisfy a com- 

patibility condition along the boundary. If the boundary conditions do 

have this special form, then there is no guarantee of the uniqueness of 

l 
the solution. This fact is very important to any method of analysis that 

reduces the problem to one of solving ordinary differential equations 

along lines normal to the body. (This point will be illustrated in 

Chapter III.) Shih and Krupp modify their equations by neglecting 

 1  
Discussions of these points may be found in reference 16 , 

especially sections 4.1, 2.1, 3.1 and 3,4. 
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viscous forces normal to streamlines In order to avoid au Instability 

which occurs near the body surface. This modification does not remove 

the (u. v )  term, but does alter its special role described above. 

Kao also reports an instability near the body surface,and he consequently 

uses a modified set of equations near the surface. Ho and Probsteln use 

a knowledge of the general properties of the variables near the wall to 

eliminate any numerical difficulty with the singularity.  It seems likely 

that such difficulties are related to the attempted use of a character- 

istic surface as a boundary surface. 

In addition, Shih and Krupp have computed an alternate solution to 

an example solved by Ho and Probstein, verifying the non-uniqueness which 

may occur from such a formulation of the problem. 

F.  Boundary Conditions at the Body Surface 

Hayes and Probsteln [18 ] state that the effects of slip and tem- 

perature jump on heat transfer and wall shear are negligible provided 

that the wall temperature is low, even if the shock layer cannot be con- 

sidered a continuum.  All the  investigations cited in the preceding 

section have used no-slip boundary conditions for this reason.  In this 

present work, however, the wall boundary conditions will take the slip 

and temperature-jump effects into consideration since they are 0(e)  in 

the boundary layer and therefore should be included to be consistent with 

the retention of terms of 0(e)  in the partial differential equations. 

Thus the examples to be calculated will not be restricted to very low 

wall temperatures. Davis and Flügge-Lotz, in their study of the second- 

order boundary-layer, have found that the effect on the stagnation-point 
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heat transfer is not negligible for moderately cold walls, 

The wall boundary conditions are 

»<••») -«dS*\/rt<^>£|B.0      <2-io> 

T(s,0) - Tb(s) + € P(s,0)  VY   
Ci,0) bn n - 0   (2.11) 

v(s,0) - 0 (2.12) 

a  and c. are dlmensionless constants which are 0(1). These condi- 

tions are seen to be those given by Van Dyke [32 ], except that a term 

proportional to r- has been omitted from equation (2.10) since it is 

2 
0(e ) in the boundary layer. For comparison with the results of the 

second-order boundary-layer investigation of Davis and Flügge-Lotz, the 

^ * A *.  1     v  /iM/2   . 15,TK1/2 values of a. and c. are taken to be («)   and «"w    respec- 

tively. Equation (2.11) may be replaced with a suitable condition on 

the heat transfer. In Chapter III, several examples will be considered 

in which an adiabatic wall is specified. In this case equation (2.11) 

is replaced with 

T (s,0) + a u(s,0) u (s,0) » 0 (2.11a) 
n n 

G.  Shock Conditions 

As stated earlier, the shock is assumed to be vanishingly thin,and 

therefore the Rankine-Hugoniot conditions may be applied. These condi- 

tions may be written in a form in which the values of the variables 
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immediately behind the shock are given explicitly: 

u(s,A) • cos(0-0) sin 0 + — sin(9-0) cos 0 
p (s ,A) 

ev(s,A) - sin 0 sin(9-0) —- cos <fi cos(9-0) 
p(s,A) 

p(8»Ä) * zn lco8 0 - ~*~—j 
2 y IC Y+l [• ] 

*4 + 
p(s,Ä)  Y+1  (Y+1) M2 cos2 

T(s,A) Hi + 2  
Y+l  (Y+l) M2 COS2 0 

2 

Y+l 

Y CQ8  0 1_ 

Y-l    2 tf 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Equations (2.15)-(2.17) are not independent, of course, but are related 

through the state equation (2.6). The factors of cos(9-0) and 

sin(9-0) in equations (2.13) and (2.14) represent a rotation of axes to 

change from velocity components tangential and normal to the shock to 

components tangential and normal to the body surface. 

The assumption of a thin shock is consistent with the rest of the 

2 
mathematical model proposed here as the shock thickness is 0(c ) 

[18 , 32] and thus need not be considered here. 

It is advantageous at times to replace one of the Rankine-Hugoniot 

conditions with an equation that expresses the overall balance of mass 

flow; 

Ä 
(r + e£ sin 9)J + * - 2j e J p u (r + en sin 0) J dn     (2.18) 

0 
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H.  Additional Relations 

There are several geometric relationships which are useful in the 

solution of the problem. The most essential equation expresses the 

relation between the shock position and its slope; 

e 3J - (1 + e K A) tan (6 - 0) (2.19) 

In addition,  the body geometry gives 

K-jJ (2.20) 

and 

£-cose (2.21) 

The shear stress and heat transfer at the body surface are useful 

for evaluating solutions of the equations. The non-dimensional shear 

stress and heat transfer are given by 

T(S,0) - € fn lr I (2.22) 

and 

«•••»"! [»(I+*u£)]n.0 
(2-23) 

I.     Summary 

Equations (2.2)-(2.7), (2.10)-(2.17) comprise the system for which 

we seek a solution. These equations are uniformly valid to 0(e) 
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throughout the entire shock layer and therefore may be used to describe 

the flow when the fluid is slightly rarified. The equations should be 

well suited for an initial-value problem and thus should avoid the 

numerical instabilities attendant to solving the Euler equations in the 

subsonic portion of the flow. Having one set of equations for the 

entire shock layer eliminates the need of solving a series of inter- 

related problems as is done in boundary-layer theory; but, of course, 

the ability to determine the individual second-order effects of longi- 

tudinal and transverse curvature, vorticity interaction, etc. is lost. 
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Chapter III 

METHOD OF SERIES TRUNCATION 

In the previous chapter it was noted that the set of equations 

describing the flow in the shock layer were of such a nature that they 

should be solvable as an initial-value problem. A necessary step in 

such a solution is to obtain an accurate set of initial values. The 

initial station for this problem is the axis of symmetry of the flow. 

Since the values of the variables on the axis are not known a priori, 

it is necessary to obtain a solution to equations (2.2)-(2.7) that is 

valid in the neighborhood of the axis. In this chapter a method is 

described by which such a solution can be found. The results of the 

computation of several examples are presented in order to evaluate the 

accuracy of the method of solution and to evaluate the range of validity 

of the basic flow model. The concept of local similarity as a method of 

analysis of blunt-body flows is reviewed. 

A. Description of Series Truncations 

The most apparent method of obtaining a solution at the axis is to 

expand each of the variables about the axis into a series in the 

8 - coordinate. The coefficients of these series are functions of the 

normal coordinate, n. When these series are substituted into equations 

(2.2)-(2.7), the problem is reduced to solving a set of ordinary differ- 

ential equations for the coefficients of the series. Determining the 

first coefficient of each of the series gives the desired solution at 
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the axis.  Determination of higher-order coefficients extends the solu- 

tion to points away from the axis. In theory, this may be continued to 

give results as accurate as are desired within the interval of conver- 

gence of the basic series. 

Such a method of analysis has been widely employed for solving non- 

linear partial differential equations in two independent variables. The 

Blasius-series solution of the boundary-layer equations is a well-known 

example of such a procedure.  In the Blasius series, the coefficient of 

the first term of the series may be calculated independently of the 

other coefficients. The coefficient of any term of the series beyond 

the first depends only on the lower-ordered terms. Thus the coefficients 

may be calculated successively, starting with the first, until the 

desired degree of accuracy is attained throughout the region of interest. 

In the present problem, however, the ordinary differential equations 

for the coefficients of the series may not be solved so simply.  Due to 

the nature of the problem, the first coefficients of the series are not 

independent of the higher-order coefficients.  As a consequence, any 

finite number of the ordinary differential equations contain more unknown 

variables than there are equations.  Thus, in order to solve the equa- 

tions, it is necessary to introduce some additional approximations for 

the higher coefficients.  The procedure used to handle this situation is 

known as the method of series truncation and is described below. 

The variables are expanded into the following series: 

u(s,n) - ux(n) sin 9 + u3(n) sin
3 9 + ...        (3.1a) 

v(s,n) - - cos 9 [v (n) + v2(n) sin
2 9 + ...J      (3.1b) 
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2 4 
p(8,n) • p (n) + P2(n) sin 9 + PA(*0 sin 6 + ...    (3.1c) 

T(s,n) *  T (n) + T0(n) sin
2 6 + ... (3.Id) 

O       e. 

p(s,n) - po(u) + p2(n) sin
2 6 + ... (3.1e) 

where the relation between 6 and s depends on the body shape. The 

particular form of the expansions is, in general, quite important for 

the ultimate success of the method of series truncation. Expansions 

quite similar to those of equations (3.1) have been used in previous 

investigations, and they are reported to have yielded favorable results 

for flow around spherical bodies [21 ]. For other body shapes, if one 

expects accurate results over a significant distance in the s-direction, 

the expansion should probably be chosen to take advantage of the indi- 

vidual characteristics of that particular problem. For example, various 

types of flows around a paraboloid of revolution have been analysed with 

excellent results by transforming to parabolic coordinates and expanding 

into a suitable series in these new coordinates [10,31,36,4 ]. Although 

no answer can be given to the question of what form of expansions pro- 

vides the best results for an arbitrary body shape, the expansions (3.1) 

should yield reasonable results at the axis of symmetty for any body. 

The use of 9 rather than s in equations (3.1) is recommended 

since the expansion of the governing equations is expected to be some- 

what simpler with the use of 9. The arc length s does not appear 

explicitly in the equations (except in "4j~» which can be written as 

K ^i-1 ). On the other hand, 6 appears in both the partial differen- 

tial equations and the shock boundary conditions. Thus an expansion 
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in powers of sin(s) would require that 8 be expanded in powers of 

sin(s). The resulting equations would then be correspondingly more 

complex (the shock conditions become particularly difficult to handle). 

In addition, the geometric description of the body is frequently simpler 

in terms of 6 » which again simplifies the expansion of the equations. 

(As an example, consider the parabola.  In terms of 9 » we have 

3 
r = tan 6 and < m cos  9.  In terms of the arc length s , we 

have only implicit relations such as s - "JirVr + 1 + log(r +Vr + 1)1.) 

This distinction disappears for a spherical body since 9*8 for the 

sphere. 

The sphere has been extensively treated in the literature despite 

certain unpleasant aspects of the flow around such bodies (flow separa- 

tion, trailing wake, etc.).  Since this choice of body shape provides 

numerous opportunities for comparison with the results of other investi- 

gations, the rest of the work in this chapter will be directed toward 

l 
the analysis of the flow around spherical bodies.  This choice is not 

essential to the method of analysis, however, since the expansions which 

follow could have been made for some other choice of body shape. 

For a spherical body, we have 

r(9) • sin 9, 

«(9) - I, 

s(9) - 9 

(3.2a) 

(3.2b) 

(3.2c) 

This also includes bodies such as spherically blunted cones 
hemisphere-cylinder bodies, etc.  The actual requirement here is that the 
curvature, Kt    be equal to unity to the order of the solution obtained. 
The results of the second-truncation problem obtained later in this 
chapter are applicable to any body for which K.    • 0 where K(S)  • 

1 + <2  sin 9 + K.  sin 9 + ... 
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and, of course, j • 1 for axisymmetrlc flow. 

Since there is no distinction between 9 and s for the sphere, 

the work which follows will be given in terms of the coordinate s. 

The shock location, A , and the shock angle, 0 , must be expanded 

in order to be applied in the shock boundary conditions. Thus 

A(s) - ^ + ^2 sin2 s + ... (3.3a) 

0(a) - 9 - (0X sin s + 03 sin
3 s + ...)       (3.3b) 

If 0." 0« • ... • 0, the shock will be a sphere, concentric to the 

body. Thus 0. , 0- , ... measure the deviation of the shock shape 

from a concentric sphere. 

Equations (3.1) and (3.2) are substituted into the governing partial 

differential equations, (2.2)-(2.7). The equations are expanded into 

powers of sin(s), and like powers of sin(s) are equated. The lowest- 

ordered terms from the expanded equations yield 

2p 

Vo *Vo *i+^(ur€Vo> a4a) 
n n 

po 
(A. evi\ .ill 
^1-Kn " voul    " 1+ en/       1+en 

„<I>   px     +2€u"|   +n'(To)To    [u      -eufl (3.4b) 
!     nn nj n I     n j 

2 
p     +€pvv      «0 (3.4c) ro o    o    o n n 
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V p  - p v T S- j   + 2e T   + 2- T *    (3.4d) 
0*0*000   a    o      o     a   o 

n        n      L nn      nl n 

p » 111 p T 
*o   Y  o o (3.4e) 

Examining these equations, we find that they involve six unknowns, 

u., v , p , p., T , and p , while there are only five equations 

available. A second set of equations can be obtained by equating the 

next higher-ordered terms of each expanded equation. This results in 

Vop2   +p2Vo   +V2",   +poV2 n n n n 

ifej [P0<2*3 - «v2) + p2(2ttl . evo)] (3.5a) 

<p2 - i^oM wsr- vo\ ~TT7Z r 

f4ulU3 e H 
7-T  -   V      U0       -   V«   U-       -   TT    (V      U-   +   U,   V0)| 1 + en        o    3 2    1         1+en      o    3        1    2'| u                             n n J 

% • P2 
1   +  €tl L   nn nj nn 

2e Uj ) T2 «f (u3    - e  u3> T      + (u      - e u^ T2 
n n n n .]* 

^•(t ) T2 T< Ul     * € Ul 
L   n 
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P2   + £    *2 Vo Vo   + e po n n 

I    €U1 
TTT <v    * 2v. |_l+en      o ) + 

o    2 2    o oo n n n ••il 1+enJ (3.5c) 

1 2p2 ul 
Vo P2„ + V2 Po    -2VoPo    " "WST   + 

n n n 

2U1 T2 1 
-v„T      -v    TÄ    + T v    T 1+en 2    o o    2        2    o    o n n n 

-  p, v    T 
2    o    o 

'^\» + 2€\) + \(v2£\] 
n*(T)r, , "I     n*(T ) 2 
-7—ft       + 2e T    ) I   + 2 T     T2   U -J-S- T2 TQ      (3.M) 

L    nn n' n      nl n 

P2 * *T (po T2 + ^2 To) 
(3.5e) 

There are now a total of ten equations,but the number of unknowns has 

become eleven as    u„   ,  v«   , T     ,  p    ,     and    p,     have been added.    This 

pattern continues as the higher-order equations are considered;  there 

is always at  least one more unk .own than there are equations.    Thus we 

have an infinite set of coupled differential equations.     In the case of 

the Blasius-series  solution cited earler,   the coupling between the equa- 

tions goes  in only one direction* i.e.,   the  lower-order terms do not 

depend on the higher-order terms, and thus the equations can be solved a 

few at a time until as many terms as are desired have been computed.     In 
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Che present case, however, Che coupling of the equations is complete, 

and it would appear to be necessary to solve all of the equations 

simultaneously, clearly an intractable situation. 

By introducing approximations for the excess unknowns, the equa- 

tions can be solved to give approximate values for the coefficients. 

The accuracy of these solutions will depend on the nature of the approx- 

imations introduced and on the nature of the problem itself.  However, 

the accuracy of these approximations can be systematically evaluated 

and improved. 

Consider equations (3.4) again.  Only one of the second-order 

coefficients, p«,  appears and it occurs in only one term.  A crude 

approximation would be to set p? • 0 .  This would hermit the solution 

of the equations and yield a first approximation for u. , v , p , 

and T .  A simultaneous solution of equations (3.4) and (3.5) could 

alio be obtained if p,  were set equal to zero.  This second approxima- 

tion would yield not only an approximate solution to the second-order 

coefficients  (u„ , v? , p_ ,  and T )  but would also yield values 

for the first-order coefficients which should be more accurate than 

those previously obtained.  The improved accuracy should result from 

the fact that the set of equations (3.4) would be solved in their entirety 

with more accurate values of p«  than were used in the first approxi- 

mation.  This would then afford an estimate of the accuracy of the first 

approximation (p? • 0) .  This process could, in theory, be continued. 

At each step, as the degree of approximation is improved  an estimate 

of the accuracy of the previous approximation is obtained. 
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The process of setting the excess unknowns equal to zero is equiv- 

alent to assuming that the variables can be described with simple 

algebraic expressions rather than with the Infinite series of equations 

(3.1). In the first approximation above, a one-term expression is used, 

and, in the second case, a two-term polynomial. The use of simple 

algebraic expressions to evaluate the flow around a blunt body has been 

widely employed and is known as the method of local similarity [19, 17, 

24, 28 )• The series-truncation method may be considered to be a 

generalization of the method of local similarity, allowing a systematic 

improvement of the degree of approximation. As such the series trunca- 

tions can be used to test the validity of the concept of local similar- 

ity. 

A truncation procedure very similar to the scheme outlined above 

has been used previously [ 31 ]. The results of reference 31 indicate 

that the first approximation (p* • 0)  of this scheme would yield very 

poor results.  In order to improve the results, it would then be neces- 

sary to retain more terms of the series than are desirable for this 

problem.  Setting p, » 0 in equation (3.4) is equivalent to requiring 

a zero streamwise pressure gradient, clearly a poor approximation for 

the flow around a blunt body. A reasonable value for the pressure 

terms is needed, and this can be accomplished in several ways. The 

"indented truncation" method introduced by H. C. Kao [21] is used here. 

This method m?kes use of equation (3.5c) to approximate the value of  p2, 

The addition of equation (3.5c) to equations (3.4) results in eight 

unknowns appearing in six equations.  The "excess" unknowns which are 

truncated to permit a solution are p~ and v«. The solution obtained 
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in this manner provides a reasonable value for p~ . Therefore this 

first approximation is far more accurate than the one described earlier. 

Equations (3.4) and equation (3.5c) (with Po * vo * ^  constitute the 

first-truncation problem. The values of the variables which are obtained 

from the first truncation are denoted by u}  . v  , p  , T    and J      1 • o   vo    '    o 

P2  . The boundary conditions for the first truncation are obtained 

from the expansion of equations (2.10)-(2.17) by use of equations (3.1)- 

(3.3). The boundary conditions which apply to the variables of the 

first truncation are given below. At the body surface the velocity- 

and temperature-jump conditions yield 

6al ^T0<°» / Y-l 
u (0) u J   — T (o) Ul (0) 

Po(0) 
(3.6a) 

€c, jiCt (0)) /Y-1 
T (o) « T    + J—a_ / _ T (0) T   (0) 

O     p (0) 
(3.6b) 

v (0) = 0 (3.6c) 

where the specified body temperature has been expanded into 

V8) =Tb +Tb sin s + ••• (3.7) 

Immediately behind the shock,the following conditions must be applied. 
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'•*['•» Wl-±\l-3\*i (3.8a) 

€ v (A) » ^li + 2_^ 
°    °        Y+l      (TrtMC 

(3.8b) 

p0<V • ~ 
L       2V" 

(3.8c) 

MV+^ p0 <v - - fr <1 - v2 
n y+l 

(3.8d) 

T  (A 
o    o ) • -^-7 [Y - 1 

(Y+l)    I 3&J"<] (3.8e) 

The following geometric relation between 0. and A~ is obtained 

by substituting equations (3.3) into equation (2.19). 

2 € *2 
1  l+€ A 

(3.9) 

The solution to this first truncation problem is discussed in sec- 

tion C where it will be found that it is also necessary to approximate 

the value of 0,  in equations (3.8a) and (3.8d). 

To assess the accuracy of the first truncation (and to simultan- 

eously improve it), equations (3.4) and (3.5) are solved simultaneously 

by making a suitable assumption for the value of p, .  As was the case 

in the first truncation, the necessary value is obtained from the normal 

-38- 

tV^-svtovw'Mnmmm«w*w*m*+k»»*'>'.**Wttm*m* c-.V-f     •. —.-.* - 



momentum equation. The third-order terms of the expanded normal momen- 

tum equation, when equated, yield 

p. + € p. v v  + e p« r4    K4 o o    K2 
n 

f"€ ul 
Ll+en (v - 2vJ + 

o   * 

(• 
e|v v- +v«v  -v v 

o l l    oM   oo n      n j-£]* 
e P. (l^T [ul<3v2 - 4V + u3(Vo - 2v2>] 

«K v4 + v2 v2 + v4 v  - v v2 - v v 
*    n      n      n      n n; 1+enj 

(3.10) 

As before, it is necessary to truncate two excess unknowns. Therefore 

we equate p, and v  to zero. Equations (3.4), (3.5) and (3.10) 

(with p, a v, • 0 ) constitute the second-truncation problem,and the 

(2)  (2) 
values obtained from its solution are denoted by u.  , v  , ..., 

*• o 
(2)  (2)  (2)  (2) 

u3  * v2 * T2 • p4    *n theory» tnis procedure could be continued 

with more equations being solved at each step. As the order of the 

truncation is increased in this manner, the problem more closely 

approximates the infinite set of coupled differential equations which 

govern the flow variables.  It is assumed that the solutions to the 

truncated equations approach the solution of the full equations. That 

is, the basic premise of the method of series truncation is that the 

(1)  (2) 
sequence of solutions for each variable, e.g. u  , u.  

converges to the desired solution of the infinite set of ordinary 
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differential equations. A brief examination of the increasing complexity 

of equations (3.4), (3.5) and (3.10) show*, that if the method is to be 

practical the convergence of the sequence of solutions must be rather 

rapid. To proceed beyond the second truncation becomes rather difficult 

for this problem. However, there is reason to believe that the conver- 

gence is rapid for this particular problem. In fact, the method of local 

similarity assumes that the flow is adequately described by expressions 

equivalent to those used in the first truncation. 

To complete the formulation of the second truncation problem, 

additional boundary conditions are obtained in the same manner that 

equations (3.6), (3.8) and (3.9) were obtained. At the wall, we have 

e a. n(T (0)) ft-\ ' f 
U3(°> "   p (0)    VT To(0) 1U3 (0) + 

ux (0) 
n 

1 T,(0)  n1 (T (0)) 
—  Z    +     °  T (Q\    _ 
2 T (0) + u(T (0))  2(U) 

P2(0) 
} (3.11a) 

T2(0) - Tfe 

6 cxn(To(0))^ /yT 
+   Po(0)      / Y 

To(0) [T2 (0) + 
n 

T (0) 
°n 

1 T2(0)  n'(To(0))  p2(0) 

2 f"7Ö7%(T (0))  ' 77ÖT o       o       o } (3.11b) 

v2(0) - 0 (3.11c) 
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After considerable algebraic manipulation the following boundary con- 

ditions at the shock are obtained. 

2 .,1 + 0i 
±u - 01)[i + 4 • (y-i - ?x-7;)]        (3a2a) 

r -l       2d - 0,) /        i N 

lw+ ^ \<Ao>J ——- ("i - 7;     <3-i2b^ 

•^2 
P4<

Ao> + 4T P0 
(A

O> 
+ P2 (Ao>] + A4 Po (Ao> • u    nn       n   •*      n 

4(1 - 0,) 

V 
~" [03 * 6 *1(01 * 3*1 + 3)] 

Z1 " *1N2 T (A. ) + A T (A ) * - 2i\ + -*Y ") 2 o    2 on o      V   j^A  + XJ 

(3.12c) 

(3.12d) 

2eAJ 
3 ~ ' 3 "1 ' 1+cA L""4  ^2 " lfeA U  - " 7 0? + r4r- UA ] (3.13) 

These boundary conditions are used together with those previously given 

in equations (3.6)-(3.9) to complete the formulation of the second 

trur.ction problem. 
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To evaluate the shear stress and heat transfer at the body surface 

from these series solutions, it is necessary to expand the expressions 

for shear stress, x , and heat transfer rate, q , by substituting 

equations (3.1) into equations (2.22). The shear stress is then given 

by 

T(S,0) » €(Tt sins + x3 sin s + ...) (3.14) 

where 

and 

Tl "MV0*1 ul <°> (3.14a) 

T3 - nlT
o<0)1 u3  <°> + M.' [To<0>] T2(0) Ul (0) (3.14b) 

n 

The heac transfer rate becomes 

q(8,0) « Hq0  + q2 sin
2s + ...) (3.15) 

where 

qo - |*[T (0>] To (0) (3.15a) 
n 

and 

q2 - HIT (0)](T2 (0) + o  u^O) ut (0)) + ^ [1Q(0))  T£(0) Tp (0) 
V n n  ' n 

(3.15b) 

It can be seen that the solution to the first truncation problem yields 

values for i. and q . From the second truncation problem, values 
1      o 

for T, , T- , q  and q2 can be computed. 

-42- 



a«MM 

The solution of the first and second truncations will he obtained 

for several blunt-body flows in section D. These solutions provide a 

measure of the range of validity of the flow model adopted in Chapter 

II and provide a test of the validity of the concept of local similarity 

as well as fulfilling their original purpose of providing initial data 

at the axis of symmetry. Before the equations are actually solved, 

however, some of the previous investigations based on series truncations 

will be discussed in section B. 

B.  Previous Applications of Series Truncations 

There is no mathematical proof of the convergence of the method 

described in the previous section and thus no assurance of its validity. 

Further, the necessity of obtaining a rapid convergence means that an 

evaluation of the effectiveness of the method must come from an analysis 

of the application of the method to specific examples. Most of the pre- 

vious applications of series truncations have been to the blunt-body 

problem [31, 6, 7, 21, 36,4]. However, other examples of its use include 

incompressible boundary-layer flow over paraboloids [10 J; viscous flow 

over a semi-infinite plate [ 8 ]; and incompressible, viscous flow around 

a circular cylinder [34 ].  These investigations, except for ref. 10 , have 

been reviewed by M. Van Dyke in reference 35. The work that is discussed 

in this reference clearly illustrates certain important aspects of the 

series-truncation method.  In particular it should be noted that the 

accuracy of the method may be quite dependent upon the form of the expan- 

sion and that the method may be expected to work best for problems in 

which the flow field is thin (one dimension much smaller than the 

other). This later aspect is anticipated in the use of the method of 
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local similarity for such problems. 

The coupling of the lowest«ordered terms to the higher-ordered 

terms is a consequence of the upstream influence which occurs in the 

flow. That is, it represents the fact that the flow at the axis depends 

upon the flow in the region away from the axis. Clearly the method will 

be most successful when this dependence is weak. This will be the case 

when the equations are »»nearly parabolic*» (or hyperbolic) and/or the 

region of interest is thin. For thin regions the solution should depend 

most strongly on the locally imposed boundary conditions. In fact, in 

the limit as the width of the region goes to zero, e.g., in boundary- 

layer theory and in thin-shock-layer theory, the governing differential 

equations become parabolic. There is then no upstream influence at all, 

and no truncations are necessary. 

It can be seen that the investigations cited above pose tests of 

varying degrees of difficulty. The boundary-layer flow over a para- 

boloid considered by R. T. Davis in reference 10 is exactly the type of 

flow for which the method is expected to work. Since the equations are 

parabolic, an expansion about the axis of symmetry would need no trun- 

cation and would lead to the Biasius-series solution.  However, Davis 

has used a variation of the method which is referred Co as the method of 

local truncations. The variables are expanded about an arbitrary down- 

stream station. The resulting problem Is then solved at various down- 

stream positions, and the results of each solution are used only locally. 

A more accurate representation of the dowastream flow can be obtained in 

this manner than could be obtained from a reasonable number of terms of 

an expansion at the axis. However, this method has two disadvantages: 

-44- 



1 

the flow symmetry is lost, thereby requiring more terms in the expansion; 

and the coupling between different-ordered terms must now describe the 

influence of the flow in regions both upstream and downstream of the 

point of expansion.  In the flow considered by Davis, there is no 

upstream influence, but a coupling does occur since the solution at the 

expansion station depends on the flow near the axis. However, for the 

boundary-layer equations, it is known that this dependence is weak since 

the influence of the initial data dies out rapidly away from the initial 

station.  Even though this flow problem is a weak test of the method, it 

is a significant test since exact numerical solutions are available from 

finite-difference methods.  Davis shows that the second truncation pro- 

duces highly accurate results over the entire paraboloid. 

The investigation of reference 8 uses local truncations to solve 

the Navier-Stokes equations for flow over a semi-infinite plate.  Since 

the equations are elliptic, this problem poses a more difficult test of 

the method.  Although no exact solution exists for comparison, the 

results obtained for this problem are remarkable and substantiate the 

value of the method. 

Van Dyke has posed a particularly severe test of the method of 

series truncation in reference 34 .  He has used both the linearized 

Oseen equations and the full Navier-Stokes equations to describe the 

flow around a circular cylinder.  The method is not expected to be 

highly accurate for such elliptic equations in a thick (infinite) region 

and, indeed, the second-truncation solution of the Oseen equations shows 

only qualitative agreement with the exact Oseen solution.  However, Van 

Dyke has shown that a knowledge of this error when combined with the 
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first-truncation solution to the Navier-Stokes equations yields very 

useful results even for this particularly severe problem. 

The analyses of the blunt-body problem based on series truncations 

are also encouraging. Swigart [ 31] solved the inviscid flow of a per- 

fect gas over spheres and paraboloids at small angles-of-attack. Three 

and four truncations produced accurate results at the axis. However, at 

the sonic line the results appeared to be considerably less accurate. 

R. J. Conti [6,7], investigating the inviscid flow of a chemically 

reacting gas, and H. C. Kao [21], investigating the viscous shock layer, 

improved the convergence of the method so that reasonable results were 

obtained near the axis with only two truncations. This is particularly 

important for the viscous shock layer since it is difficult to proceed 

beyond the second truncation due to the increasing complexity of the 

equations. Van Dyke [ 36 ] re-examined Swigart' s solution for a para- 

boloidal shock wave and showed that a modified expansion procedure would 

produce a solution of remarkable accuracy over the entire body. P. Cheng 

and W. Vincenti [ 4 ] have used this knowledge to investigate the flow of 

a radiating, inviscid gas over a paraboloid. Each of the above analyses 

was based on the inverse method in which the shock shape is given and 

the body which produced that shock shape is calculated. This simplifies 

the computational procedures but leaves some ambiguity as to what prob- 

blem has been solved, especially for the flow of a viscous, heat conduct- 

ing fluid. The investigation by Kao is of particular interest for the 

work that follows in this chapter. 

The Puccess of the method of series truncation in the analysis of 

the difficult problems described above indicates that it is a valuable 
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analytical method and justifies its use for the computation of the 

flow variables at the £*is of symmetry of a blunt body. 

C. Solution of the Equations 

The set of equations, (3.4) and (3.5c), which constitutes the first- 

truncation problem,is a seventh-order system of nonlinear ordinary dif- 

ferential equations for the six unknown functions, u , v , p , p~» T 

and p . Equation (3.4e) may be used to eliminate p  immediately. 

Together with the boundary conditions (equations (3.6), (3.8) and (3.9)), 

this system of equations comprises a two-point boundary-value problem. 

Due to the complexity of these equations, solutions must be obtained by 

numerical methods. The equations are solved numerically by reducing the 

two-point boundary-value problem to an equivalent initial-value problem. 

This is accomplished by guessing the values of the unknown variables at 

one of the boundaries. The equations may then be Integrated to the other 

boundary by using any of the standard integration procedures designed 

for use with automatic digital computers. The computations of this 

chapter were made on the Burroughs B5500 computer using the Kutta-Merson 

method. The guessed initial values must then be altered until the 

boundary conditions at the second boundary are satisfied. This iteration 

on the guessed initial values is accomplished by using the Newton-Raphson 

l 
method to calculate the necessary corrections to the Initial values. 

If the original guessed values are not sufficiently close to the correct 

 1  
A description of this method may be obtained from any standard text 

on numerical methods, e.g., Introduction to Numerical Analysis, F. B. 
Hildebrand, McGraw-Hill Book Company, Inc., 1956. 
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values, the iterations based on the Newton-Raphson method nay not con- 

verge or may converge rather slowly. However, in such cases, it has 

been found that convergence can be obtained by using only a fraction oi 

the corrections predicted by the Newton-Raphson method. The exact value 

of this fraction is selected so that the errors in the boundary condi- 

tions are minimized at the second boundary. The remainder of this 

section is a description of the details of these computations. The 

reader is referred to section D for the results of these computations. 

In Chapter II it was noted that difficulties with this computational 

method may be expected when the body surface is a characteristic sur- 

face for the governing partial differential equations. These difficul- 

ties are also illustrated in the remainder of this section. 

The application of any of the numerical techniques for integration 

requires the reduction of the set of equations to a system of first-order 

differential equations having the form 

3*-f<n,y) (3.16) 

where y and f are vector quantities. This reduction is easily 

accomplished by considering u.  and T   to be separate unknowns and 
n       n 

d(ux) d(TQ) 
introducing two additional equations, -—— * u.  and —r-— * T . 

n n 

The vector unknown, y, has seven components for this first-truncation 

problem: y - (u., u^  , v , pQ, p2, TQ, TQ ).  In order to obtain the 
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dp      dv 
first derivatives ~   and —-       explicitly, as required in (3.16), 

an       an 
it is necessary to algebraically combine the continuity (3.4a), normal 

momentum (3.4c) and state (3.4e) equations. The remaining first deriv- 

tives are obtained immediately from the appropriate equations. The 

seven components of equation (3,16) for the first-truncation problem 

l 
are 

dul 
IT Ä fi(n'y) a ui (3.17a) 

n 

du. 

dn 
s Vn'y) * UTTT - v u. 

€U-V 
1 O 

o\ 1+cn   o 1   1+en n 

1-Kn •2£Ui -WT (ui  -£ui)To n  p o     n        i 
(3.17b) 

dv 

IT a Vn'y> " 

v T 

THZ 
(U

1 " «V + ~T~ 

1   2 V    V° 

(3.17c) 

dp. 
CUT " Vn'y) * * £  "oVo f3(n'y) (3.17d) 

dp2 

ST " f5(n'y) " - ep. 

2 •) 
£Vo      . .      ,  "l 
T£T ' £ Vo f3(n>y> - r— 

1+en 
(3.17e) 

The superscript (l)t denoting the values obtained from the first 
truncation, has been dropped for simplicity. 
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a 

dT 
o 

to*• f7(a«y>" ^rj VO k<n-y) - % \ 
o n 

r   ** (v   i 2€ + 2- T To | 2c + *- Tä | (3#17g) 

Y Po where p * —7 •—• 
o 

There are nine boundary conditions available in equations (3.6), 

(3.8) and (3.9). However, there are three additional unknown quantities, 

A , A_ and 0. , which appear in these boundary conditions. Thus 

there is actually one less boundary condition available than is needed to 

define a solution to equations (3.17). The problem is made determinate 

by truncating the series that describes the shock position or shock 

angle, equation (3.3). Setting 0, = 0 (and therefore A« = 0 ) is 

equivalent to assuming that the shock and body are concentric. Thus, 

with this approximation, the first truncation problem becomes consistent 

with the analyses based on local similarity and the thin-shock-layer 

model. 

Equations (3.6 a,b,c) nrovide three relations for the seven depen- 

dent variables at the body surface. Thus,to begin the integration of 

equations (3.17) at the wall,it is necessary to guess the values of four 

of the variables. The recommended procedure is to choose values of 
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Po(0) , p2(0) , ux (0) aitf T (0). Equation (3.6c) gives v (0) - 0, 
n        °n 

and equations (3.6a) and (3.6b) must be solved to obtain the values of 

u.(0) and T (0)  that are consistent with the guessed values for 

p (0), u. (0) and T (0). The solution of equation (3.6b) for T (0) 
O      1 o o 

n n 
is not immediate since T  appears in an implicit manner. Using a 

power law for the viscosity, 

i». 

we may rewrite equation (3.6b) in the form 

Tb 
T(0) 

 To (0) 

V   Po
(0) 

U) - 

1(0) 

(3.18) 

This relation may be solved by successive substitution.  That is, sub- 

stituting an aoproximate value of T (0) ,  say T (0) * T,  ,  into 
O O D 

O 
the right-hand side yields an improved value for T (0) .  This value is 

o 

in turn substituted into the right-hand side. This process is continued 

until convergence is obtained. Note that for the special case, ou = 1/2, 

the solution is obtained Immediately since T (0) is removed from the 

right-hand side of the equation.  With T (0) available, equation (3.6a) 

can be solved for u.(0).  The functions  f(n,y),  defined by equations 

(3.17), may now be evaluated at n « 0, and the numerical integration 

of equations (3.17) can be performed in a step-wise manner until the 

-51- 



shock is located. The shocV condition on v  has been found to work 
o 

well for the determination of A . The numerical integration is con- 

tinued for increasing n until the value of v  satisfies equation 

(3.8b). This defines the value of A . There remain four shock con- 
o 

ditions which are satisfied by iterating on the four initial values 

ul *°* • To *°* • po*°* and p?*°* ' Due t0 tne nonllnear*ty of the 
n       n * 

equations, several such iterations using the Newton-Raphson method are 

generally required to obtain the correct values of the variables at the 

wall. Each iteration proceeds in the following manner. 

1) Each of the guessed initial values is varied by a small 

increment. The equations are integrated,and the effect 

of the change in the initial value on the unsatisfied 

shock conditions is evaluated. This step requires the 

numerical integration of equations (3.17) four additional 

times. 

2) With the assumption that the shock conditions depend on 

changes in the initial data in a linear manner, a correction 

to the initial data is computed. 

3) The equations are then integrated with the corrected 

initial values,and the shock conditions are evaluated again. 

This process continues until the shock conditions are satisfied to the 

desired degree of accuracy. 

The application of the temperature-jump condition, equation (3.6b) 

or (3.18), is simpler if an alternative procedure of guessing T (0) 

and computing the consistent value of T (0) is adopted. This 
n 
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procedure works quite well for low values of the Reynolds number. 

However, numerical difficulties frequently occur when e is very small 

(large Reynolds number). The computed value of T (0) (and therefore 
o 
n 

the solution to equations (3.17)) is,in thi» case,quite sensitive to 

the guessed value of T (0). Hence, in the iteration procedure 

described above, the increments added to T (0) must be kept very small. 

It occasionally becomes difficult to keep the errors that result from 

the numerical integration smaller than this increment in T (0). If 
o' 

this is not accomplished, the predicted corrections to the Initial 

conditions are meaningless, and the iterations do not converge. For this 

reason it was recommended that the value of T (0) be guessed. 
n 

Probstein and Kemp [ 28 ] considered several approximate methods 

based on local similarity and showed that some of the schemes could 

lead to an overdetermined system of differential equations. Howe.er, 

one generally encounters a system which appears to be underdetermined. 

In the case of the first-truncation problem described above, this was 

resolved by requiring the body and shock to be concentric.  In the thin- 

shock-layer investigations based on local similarity, e.g. ref.  19 , 

the systems of ordinary differential equations usually appear to be 

underdetermined even though such investigations assume that the body and 

shock are concentric. This is a result cf the fact that the (av ) n n 

term has been retained in the equations. The order of the system is 

then one greater than the system defined by equations (3.17). Hence, 

one additional boundary condition or constraint is required to determine 

the value of v (0).  It was also noted in Chapter II that keeping 
n 
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(u,v )  in the normal momentum equation could lead to difficulties in 
n n ^ 

the formulation of the problem.  Thus it is of interest to examine the 

form that equations (3.17) would take if the (uv )  term were included, r  n n 

In this case, the vector unknown, y , would have eight components 

since v  would have to be considered as a separate variable.  Several 

of the equations in (3.17) would change since the normal momentum equa- 

tion is of the form 

2 x 

p      +epvv      =* - u(T ) v ro Ko o o *    o      o n n nn 

dv dp. 
In particular,  the expressions for    -—    and    j—   given in (3.17c) and 

(3.17d) would be replaced with 

dv 

dn f3(n,y) = \ 

and 
««p. p°\   p° 

0 o 

2(u.   - ev ) 
i o 

1+en - v 
n_ 

The eighth equation would be 

dv o 

"dn " ' W»> " " jfo   W*»> + *' »o VoJ o     L 

The right-hand side of this equation is not complete, but in this 
form the equation has the same essential features as the more complete 

eauation. 
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When there is no nass transfer <\t  the wall (v (0) * 0) . the value of 
o 

dp dv 

jjp (and therefore -J~) ** Infinite at n • 0 unless 

1 + en 
- v * 0 . 

This is consistent with the analysis in Chapter II based on the char- 

acteristic surfaces of the governing partial differential equations 

(page 22 ). There it was noted that the inclusion of the (uv )  term r n n 

meant that streamlines «ere characteristics. Thus, for no mass transfer, 

the body surface is characteristic, and one cannot determine the highest- 

ordered derivatives normal to the body unless the specified initial 

data satisfy a compatabillty equation.  It is now seen that the compat- 

ibility equation requires 

2u.(0) - v (0) - 0 . 
1     °n 

In the case of no slip at the boundary, this simplifies to a requirement 

th*at v (0) * 0. This compatabillty condition is the additional con- 
n 

straint or boundary condition which is used in numerous investigations 

[  19, 21, 24, 28 ] to make the system of equations determinate. 

However, it was noted in Chapter II that all difficulties are not 

removed by this step as there is no guarantee that the solution is 

unique when the initial data satisfy this compatabillty relation.  Shih 

and Krupp [30 ] have computed an alternative solution to one of the 
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examples considered by Ho and Probsteln [ 19], thus verifying the non- 

uniqueness of such a formulation of the problem. 

In an investigation similar to that of Ho and Probstein, L. Goldberg 

[ 17] has considered examples in which there is mass transfer at the 

wall. In such a case there is no compatability relation at the wall, and 

the system of differential equations again appears to be underdetermined. 

Goldberg uses the integral form of the mass-conservation equation (c.f. 

equation (2.18)) as the necessary additional constraint. However, in 

g3neral, this is not an independent condition. If the continuity equa- 

tion Is satisfied throughout the shock layer and all the boundary 

conditions are properly enforced, the overall mass conservation is 

assured. An examination of Goldberg* s equations shows that in the con- 

tinuity equation a factor of the form 1+en has been approximated by 

unity. This is consistent with the thin-shock-layer model, but a simi- 

lar approximation in the integral equation has not been made. Thus the 

relation is independent due to the approximate nature of the continuity 

equation that is used. The problem is then determinate, and the shock 

stand-off distance can be computed (a concentric shock Interface and 

body surface had already been assumed). 

As noted in Chapter II, Shih and Krupp modify their governing 

equations in such a way that the special role of the (jivn)  
term *• 

altered.  In this manner the difficulties associated with obtaining 

v (0) are apparently avoided (although this point is not clear). How- 
°n 

ever, they have not assumed a concentric shock and body, thus raising by 

one the number of boundary conditions needed. This additional relation 
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is again taken Co be the integral form of mass conservation. It is 

not clear why this equation should give an independent constraint for 

their analysis, and this point is not discussed by the authors. However, 

it is probably related to the fact that the shock conditions are applied 

only at a specified number of stations downstream of the axis of symmetry, 

It is quite obvious that in any analysis of the type considered in 

this chapter the question of the determinacy of the system of differ- 

ential equations may be rather complicated. For the present analysis it 

appears to be necessary to make some assumption about the shock slope. 

Hence 0.   was taken to be zero in the first-truncation problem 

described above. The use of the integral form of mass conservation 

gains nothing. If equation (2.18) is expanded, it becomes, for the first- 

truncation problem for flow around a sphere, 

(1+eA )2 = 2 f p u.(l+en) dn . (3.19) 

If th£ continuity equation (3.4a) is rewritten in the form 

((1+6I.)2 P0
Vo)„ "  P0

U1<1+«) 

and substituted into equatiou (3.19), equation (3.19) immediately reduces 

to p (A )v (A ) • 1. This result, however, has already been assured by 

the application of the Rankine-Hugoniot shock conditions. 

The computation of the second-truncation problem proceeds in the 

same manner as did the first-truncation problem. The vector unknown, 
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y , of equation (3.16) now has thirteen cor^onents: y * (u , u , v , 
1  ln  o 

P0, P2» 
T » T0 » u3» u3 » v2» P4» x2» T2 *' E<Iuatl0*8 <3-*)» (3.5) and 0   n      n n 

(3.10) are reduced to a system of thirteen first-order differential 

equations. Of the first seven of these equations, all except 

j— • fc(n,y) are identical to the corresponding equations of the first 
dp2 

truncation problem. -7—  must now be obtained from an algebraic com- 

bination of equations (3.5a), (3.5c) and (3.5e). Thus the explicit 

formulation of the second-truncation problem consists of equations 
1 

(3.17a)-(3.17d), (3.17f), (3.17g) plus the following equations. 

dp, / € p v   t        ? 
5^ * f5(n,y) »  1 + 2ö2—2 ßx(n) - eWn)   (3.20) 

where 
epoulr  .  ..     o   2 

and 
Y v 

M^--?(^ott-V^)-Po\) 

2voTo        \     /*4<n">   To 

H« Lpo(2u3 " €V2> + P2(2ul * 'VD 

 1  
The superscript (2), denoting the values obtained from the second 

truncation,have been dropped for simplicity. It should be remembered, 
however, that these variables are a second approximation t the correct 
values of the flow variables.  In particular it should be noted that the 
function f,.(n,y) which appears in equations (3.21c) and (3.21f) is 

(2} 
the function fl '    defined in equation (3.20) and not the function 

f^ ' defined previously in equation (3.17e). 
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! 

du 
5^-- f8(n,y) -u3 (3.21a) 

n 

ST" Vn,y)" ^y ((p2   2 p0) [ük (ui • «V * Vi J 

po [nk (Ul(4u3 - ev2> " «Vs) • V3n * Vll 

}' 2£\ w[T^(n'y) + 2e\)+ % - P2 
1+en 

(3.21b) 

dv2 Mn>      v« 
dir - fio(n'y> "  *r - £ f

5
(n'y) <3-21c> 

o o 

dp4 £po 

£p2ul 

{^"l + £<2v2 - Vo>] - 3eV2j 

ütr Cui+ £ <2v2 - V3 - £'(v2 - V to fio(n'y>+ 

2 
P2 f3(nsy)]   - t    [P2v

o
f10(n,y)   " poV2f3(n,y)J (3.21d) 

dT 
dir" f12(n,y) -T2 (3.21e) 

n 
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dT " f13(n'y) " ^T)  [vof5(n'y) + (V2 " 2 Vo) f4(n'y) 

l^(p0
To-p2)- *o(V2 -Ivo)To -Vo( -*JPA 

+p2Toj]- o\*V2 

2eT2 + aux 
L  n 

,y) + 

where 

r T2 To 
o'     n 

(3.21f) 

-TIT   and 
Y-l T 

Y 

Y7! 

P2 
To " Po T2 

Despite the complexity of these expressions, they are in a form 

which is easily evaluated numerically on a computer, given a value of 

n and the corresponding values of the dependent variables. There 

are seventeen boundary conditions available from equations (3.6), (3.8), 

(3.9), (3.11)-(3.13). The conditions at the shock contain an additional 

five unknowns, A , A«, A,, 0. and 0-, which describe the shock 

shape. Thus the problem is again underdetermined, and some suitable 

assumption regarding the shock shape must be made. Unlike the first- 

truncation problem, setting A, * 0 does not imply that 03 * 0. 

Hence we can truncate either the shock-position series or the shock- 

angle series with equation (3.13) supplying the coefficient of the 
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other series.  Since there is no clear choice here, it also seems 

reasonable to truncate both series, in which case the geometric relation 

given by equation (3.13) is not satisfied. These various possibilities 

are considered in the next section.  It should be not?d that 0. and 

A« are computed in this second-truncation problem. Therefore a check 

is provided on the accuracy of the assumption that 0.* A« * 0 in 

the first-truncation problem. 

Now it is necessary to guess seven unknown values at the body 

surface: uL (0), pQ(0), p2(0), TQ (0), u3<0), p4(0) and T2 (0). The 
n n ? n 

boundary conditions (3.6a-c) and (3.11a-c) provide the remaining six 

values. The equations are then integrated numerically until the value 

of v  satisfies equation (3.8b).  This defines the value of A .  The 
o o 

value of 0,  can be obtained by solving equation (3.12b). Since this 

equation is quadratic in 0. , two values are obtained. However, it 

har been found in all of the examples considered thus far that the 

larger value of 0. corresponds to a shock of negative curvature 

( -p < 0) and thus is unacceptable. The requirement for a positive 

shock curvature is found by differentiating equation (3.3b). At the 

axis, a positive curvature requires that 0. < 1 . After A  and 0. 

are determined, there are seven boundary conditions--equations (3.8a), 

(3.8c)-(3.8e), (3.12a), (3.12c), (3.12d)--which can be used to determine 

the correct values of the seven guessed initial conditions.  The itera- 

tion procedure by the Newton-Raphson method now requires the solution 

of the second-truncation equations an additional seven times for each 

iteration. Clearly, if many iterations are required to obtain the 

-61- 



  

correct solution, this procedure will be quite time consuming and hence 

expensive. Thus it is important to have an accurate guess for the seven 

initial values in order to reduce the number of iterations that are 

necessary. The solution to the first-truncation problem provides 

reasonable values for u., v , p , p_ and T .  In order to obtain a 
10   0«        o 

first approximation to u (0), P4(0) and T, (0), it is advantageous 
n n 

to solve equations (3.21) using the first-truncation solution to provide 

values for u., v , p , p«, and T . Except for several terms in the l       o  o  z        o 
dP4 

equation for -r— , these equations are linear in u~, p,, and T . 

If these nonlinear terms are omitted and if the shock parameters A , 

Lx y  0.  are kept at the first-truncation values, one iteration on 

equations (3.21) converges due to the linearity of the problem. This 

preliminary solution provides an approximation for u_ (0), p,(0) and 
n 

T2(0) whose accuracy depends on the accuracy of the first truncation. 

If the first-truncation solution is accurate, this preliminary step 

described above can result in a considerable reduction in computation 

time.  It will be seen in the next section that the accuracy of the 

first truncation solution for a common class of problems can be greatly 

improved by using a more realistic approximation for ?. than 0. « 0. 

The time required to solve these equations numerically depends very 

strongly on the individual problem. Problems for large values of the 

Reynolds number require more time than those for moderate values of Re. 

The accuracy of the initial guess for the unknown boundary conditions 

is also quite important. Typical computation times for the first-trun- 

2 
cation solution range from 15 seconds per iteration at Re • 10   to 
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4 
50 seconds per iteration at Re "10 . For the second-truncation problem 

o 
these times are 30 seconds per iteration at Re • 10  and 200 seconds 

4 
per iteration at Re. • 10 . The number of iterations that are necessary is 

usually small (two or three) unless the guessed values for the initial 

data are very poor. The large computation times at large values of 

Re  are a consequence of having to maintain a small step size in the s 

integration procedure while integrating across the "inviseid" region of 

the shock layer, despite the fact that the unknowns do not vary rapidly 

in that region. This feature appears to be a consequence of solving 

for the second derivatives u   and T    as principle terms. In the nn      nn    r    r 

outer, "inviscid" region, u  and T   must be considerably smaller than °      '      nn     nn * 

the other terms  (in boundary-layer theory, they go to zero exponentially 

as the edge of the boundary layer is approached).  If a large number of 

computations are to be made at large values of Re , it may he worth- 
8 

while to devise a scheme that will reduce the equations (3.4) and (3.5) 

to first order in the outer flow. 

A possible reduction in computation time may be achieved by origi- 

nating the integration of the differential equations at the shock instead 

of at the body surface.  For the first-truncation problem it would then 

be necessary to guess only three initial conditions:  ,_> , u. (A )  and o   io n 
T (A ) .  Thus an iteration based on this alternate procedure requires 

n 
one less solution of the differential equations than does the procedure 

described earlier.  A similar reduction would occur in the second-trunca- 

tion problem since it i>.aM be necessary to guess only six values at the 

shock in order to initiate the integration. 
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D.  Results 

Several examples are considered In this section in order to evaluate 

the accuracy of the method of solution and the accuracy of the basic flow 

model. In addition, a comparison of the first- and second-truncation 

results provides a test of the validity of local similarity. 

1. A Comparison to Second-Order Boundary-Layer Theory. 

The flow around a sphere at M * 10, v * l*k*    a = 0.7 and 
00 

1/2 u =s T is used to test the accuracy of the series-truncation method. 

For this example,  the body temperature is constant at    0.6    of the 

inviscid stagnation temperature;  i.e., 

b    = 0.6    and   b2 = 0 

where   b = 
'stag. 

= b    + b.sin s + o        2 (3-22) 

The results of a boundary-layer analysis by Davis and Flügge-Lotz 

[12] are used as a standard of comparison for the series-truncation 

results.    These boundary-layer computations were made for both the 

first- and second-order boundary-Layer equations by use of an implicit 

finite-difference scheme.    A numerical scheme of this nature has been 

shown to provide accurate solutions to the boundary-layer equations. 

The inviscid pressure distribution on which the boundary-layer computa- 

tions were based was provided by R.  Lomax of the Ames Research Center 

of NASA.    The method of solution for the inviscid flow is described in 

reference 20 and has been shown to be quite accurate  [25]'    Thus the 

solution of the first- and second-order boundary-layer equations 
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computed by Davis and Flugge-Lotz nay be considered to be exact and to 

provide a standard against which the series-truncation method may be 

measured. 

The results for the shear stress, T/C (see equations (2.22) 

and (3.1*0), are compared in figure J.l. In order to have a significant 

difference between the first- and second-order boundary-layer results, 

the rather low value of 100 was chosen for the shock Reynolds number, 

p*U*a* 
Re • —5  . Note that the second-order boundary-layer effects 

^sh 

decrease the wall shear slightly for this example«    Since the truncation 

results are in the form of a power series centered at the axis,    s = 0, 

the results can be expected to agree only near   s = 0.    However, from 

figure 5*1 it can be seen that the first truncation gives a poor result 

even at the axis:     the curve that represents the first-truncation result 

has an incorrect slope at    s = 0.    The second-truncation result appears 

to have the correct slope at    s • 0,    but the agreement does not extend 

over any significant distance.    The second truncation does,  however, 

give a far more accurate solution than does the first truncation. 

The shear-stress results can be more precisely evaluated if they 

are compared to a series solution of the boundary-layer equations rather 

than to the finite-difference solution shown in figure J.l.    The 

expression 

T(S,0)/€ = 1.2 sin s  - 0.6 sin^s (3-23) 

agrees to 0(s ) with the two-term series solution of the first-order 

boundary-layer equations presented by Davis and Flugge-Lotz.  The 
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Ä ORDER BOUNDARY LAYER 

2°^ ORDER BOUNDARY LAYER 

0.2        0.3        0.4        0.5        0.6 
s,    DISTANCE FROM AXIS 

0.8 

Figure 3.1 

Shear stress on a sphere at   Y  
s 1«^J M   = 10, Re"* = 100, 

b = 0.6,  0" = 0.7*  and o> • j/2 (« • 0.118); comparison of 

truncation results with the boundary-layer results of Davis 

and Flügge-Lotz  [12]. 
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second-order boundary-layer effects would decrease the coefficients of 

this expression slightly. However, in figure 3»i these effects appear to 

be smaller than the computational errors associated with the truncation 

method and are ignored for the moment. The present investigation yields 

and 

T'^/C = 1.50 sin s 

r876 = 1.29 sin s - 0.51 sin3« 

(3.24a) 

(3.2'rt>) 

for the first and second truncations respectively. Thus despite the 

pronounced improvement of the results shown by the second truncation, 

there is still an inaccuracy in the value of T... However, it should 

be noted that these errors are somewhat less than is indicated in 

figure 3*1: the curve representing the series solution to the boundary- 

layer equations (equation 3*23) lies above the finite-difference curve 

shown in figure 3«1 just as the series truncations do. 

In contrast to the wall-shear results, the results shown in 

figure 3*2, for the heat-transfer rate, q/e (see equations (2.23) 

and (3.15))t  agree with the boundary-layer values remarkably well. 

The first-truncation value is about five percent too high at s =0. 

The fact that the first-truncation result for q is a constant is a 

consequence of having expanded the temperature into T(s,r) * 
0 

T (n) + T9(n)sin s +... . If an expansion such as T(s,n) = 
2 2 

T (n)coB s + T (n)sin s+... had been used, the first-truncation 

problem would remain the same but would yield q ' = - q 'ccs s. 

This function would then agree reasonably well with the boundary- 

layer values over a more significant range of values of s. 
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This amall inaccuracy In    a      is corrected by the second-truncation 

computation.    In addition, the second-truncation heat-transfer rate, 

(2)        (2)      2 
a        + ql    sin s,  agrees extremely well with the second-order boundary- 

layer result over the entire s-interval for which the boundary-layer 

result is available. 

The relative inaccuracy of the shear-stress values seems to be 

strongly related to the description of the shock shape.    An examination 

of equations (3-8) shows that a change in the shock anglep     0   ,   affects 

the value of    u      at the shock,   i.e.,    u.(A ), but not the values of 

T (A ) and    p (A ).    The first-truncation solution of this problem is 

based on an assumed value of zero for     0-,    and it leads to a computed 

value of    1.085    for the shock standoff distance     A .    The st   md- 
o 

truncation solution yields calculated values for both 0 , and A : 
* 1 o 

A   = 1.232    and    0 - = 0.1236 

The effect of these changes in the shock shape can be evaluated from 

figure 3*3 where the first- and second-truncation values of the flow 

variables    u,,  p ,  and   T      are shown.    It can be seen that the changes 

in     0 n and   A     influence the value of    u,    across the entire shock 1 o 1 

layer, but near the body surface the temperature and pressure profiles 

are affected only slightly by the change in value of A , For a very 

cold wall, it may be expected to have a slightly larger effect on the 

temperature than is shown in figure 3-3. However, from this example, 

it is evident that the major errors of the first truncation should be 

expected to occur in the tangential-velocity profile and hence in the 
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1.4 

s 

— FIRST TRUNCATION 

— SECOND TRUNCATION 

1.0 

Figure 5-5 

Flow variables near the stagnation streamline of a 

sphere at  y = l.k, M^ = 10, Re8 = 100, b = 0.6, 

a = 0.7, and   to = l/2. 
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wall shear. Further, these errors appear to be primarily a result of 

truncating the series that describes the shock angle  0. 

This last assertion requires further verification, however, since 

the truncation of the "excess" variables from the normal momentum equa- 

tion is also a source of error. As a check, the first-truncation equations 

have been re-solved for this example. However, instead of setting 

0. = 0, the value found from the second-truncation solution is used; 

i.e., a value of 0 = 0.1236 is specified. The resulting tangential- 

velocity profile is shown in figure 3*3 for comparison. This profile 

corresponds to a value of 1.22 for T* '. The temperature profile and 

the heat-transfer rate do not differ appreciably from the values pre- 

viously given. It can be concluded that the major error in the first 

truncation originates from the approximation for 0,; the influence of 

the truncation of p_ and v? from the normal momentum equation, 

(3«5c), though not negligible, is considerably smaller. 

The influence of the shock shape on the second-truncation problem 

is somewhat more complex. As noted in section C, the second-truncation 

problem can be made determinate in several ways. The second-truncation 

results that were presented in figures 3.1-3ö and in equation (3.24b) 

were based on an assumption that 0  = A. ~ 0. In figure 3 »4 tue 

effect of assuming only the value of A>  and computing the consistent 

(2) value of 0 , from equation (3-13) is shown. Values of   0 , T* ', 

(2) 
and T   are plotted as functions of A. . For comparison, the value 

(2)      (2) 
of T*   and x^ ' given in equation (3.24b) for A. = 0  = 0 are 

also shown. As expected, the value of T  is strongly influenced by 

the choice of AL since u,(A ) is a function of 0, and tnus a 
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Influence of tbe shock shape on the second-truncation 

problem; Y = 1.4, M = 10, Re * 100, b = 0.6, 

<J = 0.7, and o> = \J2, 
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function of A.  (see equation (3.11a)). More surprising is the noticable 

influence of A.     on T . However, values of A.  greater than 0.0^ 

begin to have a noticable effect on the heat-transfer results. Hence 

if the outstanding heat-transfer results were not simply fortuitous, the 

shock errors alone do not account for all the difference between the 

boundary-layer results and the second-truncation solution. 

It should be noted that at low Reynolds numbers the present formula- 

tion of the problem cannot be expected to yield results that are identical 

to those of the second-order boundary-layer theory. Although the equa- 

tions of Chapter II are uniformly valid to 0(c) throughout the shock 

layer and thur contain all second-order boundary-layer effects, the 

current formulation does not isolate these effects and analyze each one 

separately as is done in boundary-layer theory. Consequently, the 

present formulation contains some higher-order effects that are not 

contained in the second-order boundary-layer results. These differences 

in the two formulations of the problem are 0(e ) and can be expected 

to diminish EJS  the Reynolds number is increased. 

The variation with Reynolds number of the ratio of the wall shear 

to the first-order boundary-layer wall shear is shown in figure 3-5- 

It can be seen that the second-truncation results do indeed approach the 

boundary-layer results as the Reynolds number is increased, but somewhat 

slowly. At a Reynolds number of 10 , e - 0.037 and the difference 

-5 \ 2 
between the two formulations should be 0(10 ). At Re • 10 , the 

s 

difference should be    0(10    ).    Yet,   in both cases,  the actual differences 

in the shear-stress values are about an order of magnitude larger than 
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expected. Note, however, that the difference is only a few percent at 

the larger values of Re  and is within the variation due to the un- 
s 

certainty about the shock shape. 

Accepting the accuracy of the results of Davis and Flügge-Lotz, we 

arrive at the following conclusions. 

a. The first truncation results are considerably less accurate 

than those of the second truncation, even at the axis of 

symmetry. 

b. The heat-transfer rate is determined quite accurately, but 

significant errors occur in the values of shear stress. 

c. The error in the shear-stress values is primarily due to the 

sensitivity of the tangential velocity to approximations for 

the shock shape. 

d. The errors due to the truncations increase as the Reynolds 

number is decreased. 

2. Local Similarity 

The results of the first example, particularly those shown in 

figure 3*5, are of interest for an evaluation of the results of local- 

Bimilarity analyses, e.g. Ho and Probstein [19], Probstein and Kemp 

[28], and Goldberg [17].  In each of these investigations, comparisons 

to boundary-layer results much like those in figure t> «5 are presented. 

In each case the low-Reynolds-number results are qualitatively very 

similar to those presented above; that is, the shear~stress values are 

found to be considerably larger than predicted by first-order boundary- 
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leerer theory.    Further,  the method of analysis that is used in these 

investigations is very similar to the first-truncation analysis.    The 

variables have been assumed to be "locally similar"  in the region of 

the axis and hence are assumed to be adequately described by expressions 

12 2 12 
such as    u = s ux(n), T » (l - | S ) v

Q(n), p = (l-s  ) pQ(n) - ^ s    p2(n), 

etc. The similarity to the expressions used in the first truncation is 

evident. In addition, these investigations have assumed that the body 

and shock are concentric (0, = 0), a fact that has been shown to be of 

considerable importance. The results of the first example of this 

section imply that a portion of the divergence from boundary-layer theory 

found in these investigations is a consequence of the method of analysis 

and not a property of the low-Reynolds-number flow. That is, the use of 

the method of local similarity leads to errors which exaggerate the 

differences with the results of boundary-layer theory. 

A verification of the above conclusions by a direct comparison of 

the results of a series-truncation analysis to those of the local- 

similarity analyses is somewhat difficult. The series-truncation 

analysis has been applied to the problem defined by Ho and Probstein, 

i.e., v =~,M =«,  <J= 0.71, b = 0.05, b_ = 0.0,  u = T^2,  and 
y 00 o d. 

no-slip boundary conditions at the body surface.    However,  Goldberg 

gives only a range of values cf flight velocities,   altitudes,  and body 

temperatures at which his computations were made.    Thus there is some 

uncertainty about what values of Mach number,  Prandtl number,  and body 

temperature should De used in the series-truncation analysis for 

comparison with his results.    However,  Goldberg does present a result 
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«A« 

1.11 /Re sin s +••• 

for -— = 0.10, which corresponds to the choice of Y = -=• above, 
Psh y 

and he specifies no-slip boundary conditions. Further, for large values 

of the Mach number, the precise value of M  should have only a minor 

effect; and the normalization of the results with respect to first- 

order boundary-layer values, as was done by Goldberg, should minimize 

the influence of the unknown parameters. Hence a comparison of the 

shear-stress results of Goldberg, Ho and Probstein, and the series- 

truncation method is given in figure 3*6. The results of Ho and 

Probstein and of the series truncation have been normalized by T    = 
U. Li* 

This function was obtained from reference 19 

and is based on an inviscid pressure gradient that was obtained from a 

thin-shock-layer analysis. Interpretation of these results is complicated 

by the general lack of agreement among the several results. 

Goldberg's results illustrate two effects not contained in the 
P 

other results. First, as the shock density ratio, -— , becomes 
Psh 

smaller (requiring y   ->l), there is a greater deviation from the 
P» 3 

first-order boundary-layer values (note that the choice of (-—) Re^ 
sh 

as the abscissa in figure 3.6 reduces the appearance of this effect). 

This is to be expected since the shock layer becomes thinner and the 

second-order displacement-thickness effect becomes more pronounced than 

it was in the first example of this section. Second, Goldberg's results 

show a decrease in the shear stress at very low Reynolds numbers. This 

decrease is a consequence of having used a modified set of shock condi- 

tions which account for the thickening of the shock. The truncation 

results and those of Ho and Probstein are based on the Rankine-Hugoniot 
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shock relations and thus do not exhibit this effect. 

The agreement between the first truncation and Goldberg's result 

for —- =0.10 is actually fairly good considering the uncertainty 
Psh k 

about some of the flow conditions.    At    Re   = 10 ,    Goldberg's results 
s 

(when 8lightly extapolated) predict a shear stress which is about 25 

percent higher than the boundary-layer value, and the first-truncation 

solution is ubout 17 percent higher. In addition, computations have 

shown that approximating factors of l+€n by unity, as done by Goldberg, 

reduces the difference between these two results by about one fourth. 

The second-truncation results are qualitatively the same as they 

were in the first example. The decrease in wall shear below the first- 

truncation values is somewhat less than it was before, but is still 

k 
substantial.    In fact,  at    Re    = 10 ,  the second-truncation result is 

s 

only six percent higher than the boundary-layer value (compared to 

25 and 17 percent cited above). Since the displacement-thickness effect 

is larger for this example than it was for the first example of this 

section, the total second-order boundary-layer effect can be expected 

to be positive, unlike the result shown in figure 3.5« As anticipated, 

the second-truncation results provide a much better agreement with the 

boundary-layer values than the results of a local-similarity analysis do. 

A comparison to the results of He and Probstein, however, is not 

conclusive since the results of the first truncation and whose of Ho 

and Probstein are not in agreement. The reasons for this difference 

are not fully understood. Approximately one third of the difference 

(at Re = 100) is the result of the omission of the viscous terms 
s 
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etfu'u T  and eu(* • j  )u  from the tangential -momentum equation 

(see equation (2.3)) by Ho and Prebstein.  On the other hand,, they 

retain several viscous terms in the normal momentum and energy equations 

which are not included in equations (2.4) or (2.5)« The influence of all 

these terms except those that are proportional to (uv )  has been 

investigated and has been found to change the results by less than one 

percent. The effect of (uv )  was not checked since the computational 

difficulties described earlier in this chapter would require extensive 

modification of the computational procedures. Thus the major part of 

the difference is unexplained. 

However, it should be noted that the pressure distribution across 

the shock layer computed by Ho and Probstein differs radically from the 

truncation result for pressure. In all the examples hat have been 

computed, the inviscid pressure mechanisms which are included in equation 

(2.4) yield pressure distributions like that shown in figure (3-3); i.e., 

the pressure increases monotonically from the shock to the body surface. 

In contrast, the computations of Ho and Probstein yield a pressure 

distribution that has a rather steep drop immediately behind the shock 

before increasing to the surface value (for an example, see figure 3.7)« 

As pointed out by Shih and Krupp [30], this decrease in pressure, which 

is apparently a result of viscous effects, is suspect because one does 

not expect the viscous forces to be larger immediately behind the shock 

than near the body surface. The investigation by Kao [21] has yielded 

The term -j*- {<  + j sin 0/r)T  is also omitted from the energy 

equation. This term has a significant influence only on the heat 

transfer, however. 
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a similar pressure distribution, but Levinsky and Yoshihara [2^] and 

Goldberg have obtained pressure distributions that do not show this 

effect despite their use of equations that are quite similar to those 

used by Ho and Probstein. 

It may be possible, of course, that the method of local similarity 

yields a more accurate solution to the equations of reference 19 than 

it does to those of Ci. ipter II. However, it seems more likely that a 

series-truncation analyuxs < "  the equations used by Ho and Probstein 

would yield results like those exhibited in the two examples considered 

in this section; i.e., the local similarity, or first truncation, 

results would be significantly improved at the axis by the more complete 

analysis of the second truncation. This conclusion is further sub- 

stantiated by the following discussion of the analysis by Kao: Kao's 

results are similar to those of Ho and Probstein, and it will be shown 

that, in general, his analysis should yield substantial differences 

between the first- and second-truncation results. 

3« Influence of the Body Temperature 

The results that have been described above appear to be in contradic- 

tion to the results of an investigation by H.C« Kao [21]. He solved 

the Navier-Stokes equations by use of the method of series truncation 

and f".und very little difference between the results of the first and 

second truncations. Hence he concluded that the method of local similarity 

was valid (in the sense that it y  .us correct values for the first 

term of a more complete series so] .ion). The contradiction, however, 
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is more apparent than real and can be resolved by a comparison of the 

computational procedure of Kao to that used in this chapter. 

The truncation procedure used in this chapter has been adapted 

from Kao's analysis, and hence the two formulations of the problem 

are quite similar. However, since Kao solved the inverse blunt-body 

problem, the location of the body surface appears as an unknown quantity 

instead of the shock location. In the integration of the equations 

inward from the 3hock, the location of the body can be determined from 

one of the wall boundary conditions. However, Kao adopted an alterna- 

tive procedure of specifying the body location in which case the surface 

temperature cannot be imposed as a boundary condition but must be 

considered to be a result, much like the shear stress and heat transfer. 

More specifically, if both T,  (see equation (3*7)) and the body 

location away from the axis of symmetry are specified in the second- 

truncation problem, the equations are over-determined. Hence, Kao 

specifies that the body and shock be concentric and obtains, as part 

of his solution, the temperature distribution of the body surface. Thus 

Kao's conclusion about local similarity is valid only if the tempera- 

ture of the body is such that the body and the shock are concentric. 

The temperature distribution which produces this spherical symmetry 

is one in which the body is strongly cooled downstream of the axis of 

symmetry. Kao solved the problem defined by  Y = -» t  M = 10, 
7 oo 

Re    = 10,  <J = 0.7,    b   = 0.0^8,    and no-slip boundary conditions.    The s o 

resulting temperature distribution is given by   b? = -O.516.    When the 

present series-truncation analysis is applied to this problem (with   b? 
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Comparison with the flow variables computed by Kao  [21]; 

Y = ll/9> M   = 10,  Ite    = 10, \>n = 0.048, bn = -O.516, 
00 s o d 

O - 0.7* Ü) = l/2,  and no-slip boundary conditions (€ = O.369). 
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specified as -O.516), it is found that the equations of Chapter II 

yield a nearly spherically symmetric problem for this temperature dis- 

tribution (more specifically, we obtain -TT-T = 1.003 and 0 l| ' = O.OO36) 

o 
Despite this agreement with the results of Kao, the flow variables ob- 

tained from these two solutions do not agree well, as seen in figure 

3.7. The choice of Reg = 10 is undoubtedly outside the range of 

validity of the basic flow model of this investigation (note that the 

viscous effects extend across the entire shock layer ). Further, the 

radically different pressure distributions that were discussed with 

regard to the previous example are also encountered here and preclude 

the possibility of making more than a brief comparison. 

The influence of the downstream temperature distribution has also 

been investigated for the flow problem defined in the first example; 

i.e.,  Y = l.k,    M = 10, Re = 100, cr = 0-7, and b = 0.6. In 
00        s o 

figure 3.8a, the variation of T  and q_ with bp is shown. As is 

to be expected, the values of T and q^ are strongly dependent upon 

the value of bp. In addition, however, the results of these computa- 

tions clearly show the presence of an upstream influence in the flow 

since T-, qQ, and AQ are significantly influenced by the downstream 

wall temperature. These quantities are shown in figure 3.8b where they 

have been normalized by their respective values computed in the first 

truncation. Also shown is the value of 0.. In the first-truncation 

computation, the value of b? is of no concern. If no coupling occurred 

between different-ordered coefficients of the series expansions 

(equations (3.1)), the first-truncation results would be valid for all 

Qk 



-5.0 

Figure 3»8a 

Influence of the downstream body temperature (at Y = 1.4, 

Mm = 10, ReQ = 100, a = 0.7, and o> = l/2) on the second 00 B 

coefficients of the expansions for the shear stress and 

heat-transfer rate. 
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values of b?. Hence the deviation of these normalized quantities from 

a value of 1 represents an error in the first truncation due to an 

upstream influence in the flow. It can be seen that the magnitude of 

this error depends on the value of the downstream temperature, i.e., 

on Dp. For the case of b ~ -3*8, the body and shock are essentially 

concentric since 0. ~ 0. For this case, our computation is equivalent 

to the computational method used by Kao. It can be seen that the changes 

in shear stress, heat transfer, and shock standoff distance are con- 

siderably smaller than they are for the constant wall-temperature case. 

The smallest changes occur at slightly larger values for b  and 0 , 

but it is obvious that the overall agreement between the first- and 

second-truncation results is considerably improved by requiring the 

shock and body to be concentric. Hence, as before, we find that there 

is a temperature distribution that yields a spherically symmetric flow, 

and for this case, the local-similarity analysis is fairly accurate. 

However, the required temperature distribution differs quite markedly 

from the constant wall temperature which is commonly used as a boundary 

condition. 

It has also been found that-the specification of an adiabatic wall 

condition leads to results much like those obtained from a constant wall 

temperature. Specifying adiacstic conditions with the flow parameters 

of the above example leads to a temperature distribution of b = O.989 - 

2 
0.100 sin s. The magnitude of the changes between the first and second 

A(2) T(2) 

truncations are described by    -rr-y = 1.138,     A = 0.128,    and   -rr-r = O.851 
A' 

8? 



In simmary, we conclude that the results of the method of local 

similarity are accurate if the geometry of the flow boundaries has a 

spherical symmetry. However, the most commonly used boundary conditions 

on the temperature, an adiabatic wall and a constant wall temperature, 

do not correspond to flows having such symmetry. 

k.    Influence of the Shock Thickness 

The simplification of the Navier-Stokes equations made in Chapter 

II and the use of the Rdnkine-Hugoniot shock relations restrict the 

accuracy of the flow model at very low Reynolds numbers. A comparison 

to the results of Levinsky and Yoshihara [2k]  provides some insight 

into the range of validity of the flow model used in this investigation. 

The equations that are used in reference 2k  are also a simplified form 

of the Navier-Stokes equations, similar to those used in references 19 

and 28. Since these equations omit several terms of 0{e)    (see page 6o), 

they cannot be expected to test the validity of the omission of terms of 

2 
0(€ ) from equations (2.2)-(2.7). However, more important is the fact 

that no discontinuous shock is used in the formulation of the flow 

model by Levinsky and Yoshihara. Instead, the differential equations 

are applied from the body to the free stream, and the effect of a 

thickening shock at low Reynolds numbers is obtained. Although we 

have noted that the method of solution which is used -- the method of 

local similarity -- may not be particularly accurate, we have seen that 

it is equivalent to the first-truncation analysis, and therefore 

meaningful comparisons can be made. In addition, an inability to 
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adequately describe the shock shape has been shown to be responsible for 

much of the inaccuracy of the first truncation. Hence, it is of interest 

to investigate whether similar inaccuracies occur when the flow model 

docs not contain a discontinuous shock. 

The problem considered by Levinsky and Yeshihara is defined by 

5 1/2 
Y - Tt  M = 10, <J -  0.75, u • T  , and no-slip boundary conditions. 

j     * 

Both cold walls and adiabatic walls were considered. Three values of the 

free-stream Reynolds numbers were used:  13,652; 1,362; and 152. These 

values correspond to a shock Reynolds number of 2409, 244, and 26.8, 

respectively. The first-truncation analysis of this chapter has been 

applied to the adiabatic wall case, and the results are shown in figures 

3*9 a-c. The functions shown in these figures were defined by Levinsky 

and Yoshihara and are given in terms of the truncation variables by 

_ P0  _  P0 
+
 P2 

where   p        is the stagnation-point density for adiabatic wall condi- 
AW 

tions. The last relation above is a consequence of the pressure being 

represented by an expression of the form p(s,n) = 

—    2   —     2 
p [p(n)cos s + Pp(n)sin s]  in reference 24 (compare to equation 

(J.lc)). 

At the largest value of Reynolds number considered,  Re = 2409, 
s 

the results of Levinsky and Yoshihara exhibit a very thin shock- 

transition region and a distinct separation of a narrow, viscous boundary 

layer from the main region of inviscid flow (figure 3-9a). The first- 

truncation results agree reasonably well except for the location of 
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the shock. This discrepancy has been found to be a result of an approx- 

imation, 1 + en ~ 1, which was used in the equations of reference 24. 

When this approximation is made in the first-truncation problem, the 

shock position corresponds to the outer edge of the shock-transition 

region ob-ained by Levinsky and Yoshihara. This has been illustrated 

in figure 3«9a by the results for the pressure. Hence, as is to be 

expected, the agreement is quite good at large Reynolds numbers since 

the shock thickness is quite small. Unless otherwise noted, the series- 

truncation computations that follow do not use the approximation 

1 + en ~ 1. 

At Re = ?44, the shock has thickened considerably, and the 
s 

"boundary-layer" is a substantial portion of the shock layer, as shown 

in figure 3«9b. The variables still match rather well, however, except 

for the details of the shock-transition region; the effects of the 

thickening of the shock do not appreciably alter the flow in the viscous 

layer. The results cited earlier in this section have shown that the 

assumption of 0=0 in the first truncation is quite influential. 

The good agreement shown in figure 3«9b indicates that an analogous 

assunption must be inherent to the analysis by Levinsky and Yoshihara 

despite the fact that there is no discontinuous shock in their flow 

model. The second-truncation solution is again significantly different 

from the first-truncation solution, as is shown in figure 3»9b by the 

result for the tangential velocity. 

At Re - 26.8, the shock-transition region and the "boundary layer" 
s 

have merged, as shown in figure 3«9c.; and, of course, the mod^l defined 
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in Chapter II cannot describe this. The agreement with the truncation 

results now deteriorates, and the influence of the thickened "shock" 

causes a considerable reduction in the shear stress at the wall. (This 

effect was previously noted in a comparison with the results of Goldberg 

[IT]«) Hence at such low values of Re , it is necessary to either 
s 

modify the shock conditions (e.g., references 29« 2, and IT) or 

integrate the differential equations through the shock-transition region. 

In addition, it can be seen that the omission of terms of 0(e ) from 

equations (2.3)-(2.5) leads to a noticable error for such a low Reynolds 

number. With no viscous terms in the normal momentum equation, (2.5), 
dpQ 

the pressure gradient —r-   is zero at the wall, as in boundary-layer 

theory. With the addition of the terms 

|u . + cotsu\1   (uu ) +u(cots)u ") 2 {lH-N^)i/"v-;r*i 
to the normal momentum equation (as in references IT, 19« 21, 2k),  the 

normal pressure gradient at the wall becomes 

2° 
dn n=o = -2e n(To(0))Ul (0) . 

n 

It can be seen from figure 3-9c that this pressure gradient becomes 

quite important at this low Reynolds number. Hence, it appears that 

for values of the shock Reynolds number of the order of 100 or lower 

These terms are based on an assumption of zero bulk viscosity. 
2 
This equation is valid only for no-slip boundary conditions at the wall. 
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the formulation of the problem as done in Chapter II can lead to sig- 

nificant errors. For these cases, the problem should be formulated to 

o 
be valid to 0(e ), including the effect of a shock of finite thickness 

In passing, it should be noted that the results of Levinsky and 

Yoshihara do not exhibit the type of pressure distribution across the 

shock layer that was obtained in references 19 and 21 (and that was 

illustrated in figure 3.7) although the equations which are solved are 

nearly identical to those of reference 19» 

E. Summary 

In this chapter, the method of series truncation has been used to 

obtain solutions to the equations of Chapter II for flow around shperical 

bodies. Due tr  the complexity of the equations, it was not possible to 

compute a large number of terms and to thus extend the validity of the 

solutions beyond the immediate neighborhood of the axis- However, the 

purpose of this investigation has been to provide accurate data at 

the axis to serve as initial data for a separate computational scheme 

(which is discussed in the next chapter). In addition, the solutions 

have yielded considerable information about the validity of the basic 

flow model that was adopted in Chapter II and about the accuracy of 

the method of local similarity — a method that has been used in 

numerous investigations of the blunt-body problem. The main results 

are summarized below. 

1. The basic flow model that was adopted in Chapter TL  appears to 

be accurate for values of the shock Reynolds number down to tne order 

y5 
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2 
of 100. Below that point, terms of 0(e) that have been omitted from 

the differential equations and the effect of a thickening shock become 

increasingly important. 

2. The first-truncation results are not, in general, accurate even 

near the axis of symmetry. The first truncation consistently yields 

values of the wall shear stress that are substantially too large and 

values of the shock standoff distance that are substantially too small. 

The heat-transfer rate is overestimated, but the error in this quantity 

is moderate. 

The second-truncation results are considerably more accurate but 

still contain noticeable errors at the axis. These errors, however, 

are generally small for Reynolds numbers within the range of validity 

of the basic flow model. The main error occurs in the shear stress 

while the heat-transfer results are quite accurate. The sensitivity 

of the tangential velocity component to changes in the shock slope 

and an inability to adequately determine the shock shape are the primary 

sources of this error. 

}. The large errors of the first truncation indicate that the 

method of local similarity may also result in quite large errors since 

the method of local similarity is equivalent to the first approximation 

of the series-truncation analysis. 

k.    The magnitude of the errors of the first truncation are depen- 

dent on the wall-temperature distribution. For a body that is highly 

cooled downstream of the axis, the body and shock are concentric, and 

the first truncation is very accurate. However, the most commonly used 
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boundary conditions -- a constant wall temperature and an adiabatic 

wall — do not correspond to a flow that has this spherical symmetry 
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Chapter IV 

FINITE DIFFERENCE METHODS 

The investigation of the preceding chapter has provided solutions 

of reasonable accuracy to the equations of Chapter II but only in the 

vicinity of the axis of symmetry. To obtain solutions that are valid 

over a larger region of the shock layer, it is necessary to turn to 

other methods. In Chapter II it was noted that the characteristic 

surfaces of the governing partial differential equations are real, and 

hence, since the equations do not have an elliptic character, they may 

be suitable for solution as an initial-value problem. The solutions of 

Chapter III would appear to contradict this since they have shown an 

upstream influence in the flow, and such an influence is generally 

associated with an elliptic character in the flow equations. However, 

for the present, it is assumed that a solution can be obtained by using 

the axis of symmetry as the initial line and the solutions of Chapter III 

as the initial data. A method that is ideally suited to the purpose of 

finding such a solution is one that is bas^d on the use of an implicit 

finite-difference scheme. Implicit finite-difference schemes have been 

used to provide accurate solutions to parabolic partial differential 

equations (such as the boundary-layer equations). In addition, investi- 

gations have shown that the method works quite well on simple hyperbolic 

equations. Hence, it appears feasible to apply such a method to the 

equations of Chapter II. 
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A. Background 

Two previous applications of implicit finite-difference methods to 

the viscous blunt-body problem have been made (other than boundary-layer 

analyses). The first of these was by H.K. Cheng [2] to obtain solutions 

to the thin-shock-layer equations. The second application was by 

R. T. Davis and W. J. Chyu [11] to the equations of Chapter II but for 

the case of constant density throughout the shock layer. 

The equations that were used by Cheng were parabolic in character, 

and thus were ideally suited for solution by the finite-difference scheme. 

However, several terms of 0(e)   have been omitted from the equations 

of that investigation. Hence, the equations of Chapter II should provide 

a more accurate representation of the flow at moderately low Reynolds 

numbers than is provided by the equations of reference 2.  The addition 

of these terms to the equations (and the addition of slip and temperature 

jump conditions at the wall) does not change the parabolic nature of the 

equations and thus should not appreciably add to the difficulty of 

obtaining solutions. However, two additional terms that do not appear 

in the thin-shock-layer equations have been retained in equation (2-U), 

the normal momentum equation, and these terms do have an effect on the 
puv 

basic nature of the problem.      These terms,    pw      and   r—S— 
n     1+Ken 

, are of 

order unity in the inviscid region of the flow field and thus are essential 

to an adequate description of the inviscid flow field (of course, this 

conclusion is reached without regard to the fact that the shock layer 

is thin). A discusßion of the significance of these terms for the 

description of the flow in the shock layer was contained in Chapter IX. 
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The addition of these two terms to the equations results in the appearance 

of two "non-parabolic" characteristic surfaces that are described by 

equation (2.9)» Hence the equations are no longer of a purely parabolic 

type, and the implications of this fact with regard to the use of a 

finite-difference scheme are unknown. 

In addition, the thin-shock-layer concept simplifies the description 

of the shock shape and the determination of the shock position. The 

location of the shock can be determined by a balance of the mass flow 

in the shock layer with the mass flow that enters the shock layer from 

the free stream. Equation (2.18) is a forraal representation of this 

balance. The mass flow that crosses the shock from the free stream 

into the shock layer is proportional to (r + eA sin 0)J . In general, 

since this expression Iß a function of A, the value of the expression 

depends upon the solution of the flow variables in the shock layer. 

However, to the first approximation of the thin-shock-layer theory, 

the body and shock coincide, i.e. Ä -» 0, and the mass flow in the 

shock layer is proportional to r^    •    Thus, in the thin-shock-layer 

approach, the locations of the flow boundaries are known prior to solving 

for the flow in the shock layer. In addition, the shock angle is the 

same as the local body angle (0 * 0), and the values of u, v, T, and 

p at the shock are also known independently of the solution within the 

shock layer. Thus, in the more general case considered in this chapter, 

the computation of the boundary position and shape represents a complica- 

tion which was not encountered by Cheng:  it will be necessary to compute 

the location of the shock position and slope at each step since the 
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amount of mass flow along the shock layer is not known a priori as it 

is under the thin-shock-.layer assumption. It has already been seen in 

Chapter II that such a computation can lead to difficulties. 

Both of these complications were encountered by Davis and Chyu 

when they solved the constant-density case using equations that were 

equivalent to those in Chapter II. It was found that valid results 

could be obtained but that two additional approximations were needed 

to successfully use the method. First, it was found that the computa- 

tion of the shock position and slope led to instabilities in the 

solution, and hence an approximation was introduced for the shock 

slope. Second, the inclusion of the terms puv  and Pw  led to s       n 

instabilities in the computation near the axis of symmetry. These terms 

entered into the computation of the pressure, and the pressure influenced 

the ether variables through the 3J term of the tangential momentum 

equation. To remove the instability, Davis and Chyu omitted the 

contributions of puv  and Pw  to the tangential pressure gradient, 
s       n N v v OP 

?*• That is, TJ was approximated by a function r—  where p  is 

obtained from a simplified form of the normal momentum equation: 

Sn~ 
ePKu 

1 + € Kn = 0 (*.l) 

The function    p      is identical to the pressure which is computed in 

the thin-shock-layer theory.    Hence, with these two approximations-- 

on the shock angle and on the pressure gradient--the problem becomes 

similar to the thin-shock-layer problem. 

The specific procedure used by Davis and Chyu is outlined below. 
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1) The tangential momentum equation is programmed into the 

implicit finite-difference scheme, and under suitable assumptions about 

the shock slope and pressure gradient, the tangential velocity, u, 

is computed from the scheme. 

2) The continuity equation is integrated term by term, and the 

normal velocity, v, is then determined by a simple numerical evaluation 

of an integral. 

3) The pressure, p, is obtained by a similar integration of the 

normal momentum equation. 

The first two steps of this procedure are identical to the procedure 

which has been successfully used for solving the boundary-layer 

equations [lh,   12, 13] (for a variable density, the temperature, T, 

is computed along with u in the first step). In boundary-layer theory, 

of course, the pressure is a known function. Hence the addition of the 

third step is the most obvious means of extending the method to the 

shock-layer computations. The further extension of this method of 

solution to flows of variable density is considered in section C and 

is referred to as method I. 

It was noted in Chapter II that Weinbaum and Garvine, in an 

investigation of the flow in a laminar wake, have solved a set of 

equations that are identical to equations (2.2)-(2.7)» The method of 

solution that was proposed in reference ko and considered further in 

reference 39 is discussed with regard to its application to blunt-body 

flows in section D (method II). This method makes use of the charac- 

teristic surfaces of the equations to evaluate the pressure and normal 

velocity. 
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One additional variation of the basic method of implicit finite- 

differences is considered in section E. In this method, all four 

variables, u, v, T, and p (or p), are programmed into the implicit 

finite-difference scheme (method III). 

In the forms that are considered in the following sections, none 

of these methods has been found to be entirely satisfactory. The use 

of the first and third methods led to instabilities in the computations, 

while the second can be seen to be somewhat inconvenient for the blunt- 

body problem. It should be emphasized., however, that only the first of 

these methods has bee* explored in detail, and the lack of success in 

applying these methods cannot be interpreted as conclusive evidence 

that such methods are not feasible. Hence the methods are described 

below in order to indicate the type of problems that are encountered 

and, wherever possible, to indicate the causes and possible corrections 

for instabilities and errors. Several suggestions have been made for 

the incorporation of certain features of the first two methods into the 

method which is described in section E. 

B.  Basic Equations of the Implicit Finite-Difference Method 

Since the basils of each of the methods outlined above is an implicit 

finite-diffe-ence scheme, we first describe the basic principles of such 

a scheme. All necessary equations have been given, but seme details of 

the method have not been included. For a more detailed discussion of 

the method and for discussions of the merits of various numerical schemes, 

the reader is referred to the investigations of Flügge-Lotz ana 
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Blottner [lk], Davis and Flugge-Lotz [22],  and Fannelöp and 

Flugge-Lotz [15]. 

The region between the shock and the body is replaced with a grid, 

which is depicted in figure U.i«    The values of the flow variables are 

to be-evaluated only at the mesh points, which are denoted by the sub- 

scripts    m   and   N.    If the grid spacing is constant (this is not 

essential but is assumed in this chapter), the coordinates are given 

by   s = mAs    and   n = NAn.    It is further assumed that the values of 

the flow variables are known at all mesh points for   s < mAs    and that 

we wish to solve for the values at all mesh points on the line 

8 = (m+l)As. 

m+1 

Figure k.l.    Finite-difference grid, 
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If the partial derivatives of equations (2.2)-(2.5) are replaced with 

difference quotients, the nonlinear partial differential equations, 

(2.2)-(2.5),  for the functions    u(s,n),  v(s,n),  etc    are replaced with 

algebraic difference equations for the values of the functions evaluated 

at the mesh points.    The unknown quantities in this case are denoted by 

u ., „»    v  .,  ..,    etc. for   N = 0,1, ...,N .    N     denotes the grid point m+l,N       m+i,j) ss 

immediately inside the shock and therefore is the greatest integer which 

E 
is less than or equal to    r- • 

The difference quotients that are used for this reduction are given 

& m ^aatg '***,* + Fm-1,N + 0(Ai2} (^.2a) 

g- W+l" W-l + 0(*i2) (4.2b) 

O m   m+l,N+l        rm+l,N       m+l,N-l + Q/^\ 

dr; An' 
(^?c) 

and 

[3n] (Snj   " ^2  llGin,N+l " Gm,N-l)(Fm+1,N+1 " Fm+l,N-l) 

+ |F -F"-l)IW* C 
N+l        m, N N+l       m+l,N-l 

|Fm,N+l " Fm,N-l|lGm,N+l " Gm,N-lU 

+ 0(As2)  + 0(An2) (*.2d) 
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where each of the derivatives has been evaluated at the point (m+l,N). 

Thus, the s-derivative is replaced with a "backward" difference quotient, 

and the n-derivatives are replaced with "central" difference quotients. 

The order of magnitude of the errors associated with the use of such 

difference quotients has been shown in the equations. The form of 

equation (k.2d) was chosen so that the unknown variables at m+1 appear 

in a linear manner. 

The partial differential equations are evaluated at the grid points 

(m+l,N), N = 1,2,...,N, by use of the difference quotients (4.2). s 

This leads to a system of simultaneous algebraic equations for the 

unknown variables. This coupling of the equations is a result of 

having used a "backward" difference formula in equation (4.2a) and is 

the feature which gives the method its "implicit" character. Due to 

du 
the presence of such terms as u r—, the algebraic equations will be 

nonlinear. To facilitate the solution of the equations, they are 

generally linearized by the use of extrapolation formulas such as 

Ka.t  M = 2F • * ** i • + 0(As2) (4.2e) m+l,N    m,N   m-l,N      ' x   ' 

The solution that is obtained from the linear difference equations 

may itself be used to linearize the equations for a computation of 

an improved solution if the errors from the original linearization 

prove to be excessive. Such an iteration procedure can be continued 

until the difference between successive solutions is as small as 

desired. Hence, the solution may be considered to be an iterative 

solution of nonlinear algebraic equations even though the emphasis in 

106 



_________ 

mimmnm 

this chapter is on linear equations. It is generally desirable to avoid 

such iterations since they can lead to excessive computation times. In 

previous applications of the method [I**, 12, 13]/ it has been found 

that such iterations are not necessary. However, E« Krause [22] has 

considered several examples where iteration was either necessary or 

was more convenient than alternatives. 

The nonlinear partial differential equations may now be considered 

to have been reduced to a system of coupled, linear algebraic equations. 

For the method considered in section C, the tangential momentum equation 

and the energy equation are reduced in this manner and lead to difference 

equations of the form 

Al_. u h Vl,N+l + B1N Vl,N + °h Um+1,N-1 + D1N Tm+1,N+1 

+ El., T h Tm+1,N + F1N Tm+1,N-1 * G1N 0*-3a) 

and 

A2u +B2u +C2u +D2T 
N m+l,N+x    N m+l,N    N m+l,N-l    N m+l,N+l 

+ E2M 
T _.i M + F2M T _, „ n = G2M N m+l,N    N m+l,N-l    N 

(^Ob) 

where N = 1,2,...,N- The coefficients Al, Bl,...,G2 are functions 
s 

only of the known values of the flow variables at s = mAs and (m-l)As 

and of the extrapolated values (or values obtained from the preceding 

iteration) at s = (m+l)As. Kence, they can be assigned numerical 

values. This system of 2N  simultaneous equations has a special 
s 

"tridiagonal" form [ih]  and consequently can be solved without recourse 
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to the usual matrix-inversion procedures (which would be inefficient for 

the fairly large values of   N     that are used). 
s 

For this case of two variables, u and T, the solution can be 

written out in terms of the coefficients Al, Bl,•••,02  fairly 

easily. However, for the case of four variables, which is considered 

in section E, the equations become unwieldy unless written in matrix 

notation. Hence, a matrix notation is adopted at this point in order 

to handle both cases at once. The function w(N) is defined as a 

column vector of the dependent variables. In sections C and D, it has 

two components, 

w(N) = 

u 
m+l,N 

m+l,N 

and in section E, it has four components, 

w(N) = 

m+l,N 

m+l,N 

m+l,N 

m+l/N 

Let the number of components be denoted by i. A complete solution of 

the difference equations has been obtained when W(N) has been 

evaluated at N = 0,1,...,N +1. 
s 

The linear algebraic equations that replace the partial differential 

equations now have the form 

A(N) w(N-l) + B(. ) w(N) + C(N) w(N+l) = D(N) (W) 

108 



* 

• 

for N = 1,2, ...,N • For each value of N, the coefficients ACH), 
8 

B(N), and C(N) are ixi matrices, and the coefficient D(N) is 

a column vector with i elements. It is emphasized again that they 

are functions that can be evaluated from known data, from extrapolated 

data, or from data obtained in the preceding iteration. For future 

reference, it is noted that, in the case of i = 2, one component of 

D(N) is a function of the tangential pressure gradient, 5* , evaluated 

at (s,n) = ((i+l)A s, NAaj. Equation (k.k)  is a linear, second-order 

difference equation and represents N  equations for the N +2 unknowns, 
s s 

w(Q),...,w(N +1). Two additional equations are obtained from boundary 
s 

conditions. These boundary conditions may take the form of first-order 

difference equations without altering the tridiagonal form of the 

equat ions. Henc e, 

B(C) w(0) + C(0) w(l) = D(0) (*.5a) 

and 

A(N8+1) w(Ns) + B(Ng+l) w(NB+l) = D(Ng+l) (*.5b) 

are the acceptable forms of the boundary conditions. In practice, the 

requirement that the boundary conditions take this form does not pose 

a restriction. As an example, consider a boundary condition of the 

dTl 
form -v-    = 0. The derivative must be replaced with a difference 

dnln=0 

quotient. If a two-point form is used,  T(l) -T(0) = 0, the boundary 

The notation that was adopted to describe the vector w is also 
frequently used for the other variables.  In this notation, the sub- 
script m+1 is dropped, and it is understood that the function is 
evaluated at s = (m+i)As.  In addition, th~ variable is considered to 
be a function of the index, N, and this functional dependence is written 
explicitly- 
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condition has the form of equation (4.5a).    Unfortunately,  the two-point 

form generally does not result in a sufficiently accurate description 

of this bounda.y condition.    Use of a three-point difference quotient, 

ÖTf 3T(O) - 4r(l) + T(2) 
T— * •      r. A        ^"^ - 0,      is more accurate but results in a dn|n=0 2An 

boundary condition of the form 

B(0) w(0) + C(0) w(l) + v{2) = D(0)  , 

which does not conform to the desired tridiagonal form. However, we 

know from the theory of linear algebra that we can add to any equation 

a linear combination of the other equations without altering the solu- 

tion. Hence, we combine the "non-conforming" boundary condition with 

equation (4.4) evaluated at N = 1 in such a way that w(2) is 

eliminated. Thus 

[A(l) + C(l) B(0)] w(0) + [B(l) + C(l) C(0)] w(l) 

= D(l) + C(l) D(0) 

would contain the desired information that 3T(0) -4T(1)+T(2) = 0 

and would still conform to the necessary tridiagonal form. 

The solution to the second-order difference equations, (b.k)  and 

(4.5), is given by a first-order difference equation 

w(N) = H(N) + K(N) W(N+1) , N = 0,1,...,N        (4.6) 
s 

(for proof of this statement, see reference 14). The coefficients, H 

(a column vector) and K (an ixi matrix), are evaluated from 
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recursion formulas, which are obtai: d as follows. Replace N with 

N-l in equation (4.6) to obtain 

w(N-l) = H(N-l) + K(N-l) w(N) ,  N = 1,2,...,N +1 

This equation can be us?d to eliminate w(N-l) from (4.4): 

[B(N) + A(N) K(N-l)] w(N) + C(N) w(N+l) = Den) - A(N) H(N-1) 

Solving this equation for W(N) and comparing the result to equation 

(4.6), we obtain 

-1 
H(N) = [B(N) + A(N) K(N-l)]   [D(N) - A(N) H(N-1)] 

and 

-1 
K(N) = -[B(N) + A(N) K(N-I)]  C(N) 

(Ma) 

(4.7b) 

The values of H and K at. the surface of the body can be obtained by 

inspection when the equation w(0) = H(0) + K(0) w(l) is compared to 

the boundary condition (4.5a), i.e., 

-1 

and 

H(0) = B(0)  D(0) 

K(0) = -B(O)"1 C(0) 

(4.8) 

Recursive application of equations (4.7) for   N = 1,2,...,N      yields 
s 

the values of H and K at all grid points across the shock layer. 

Algebraic combination of the equation w(N ) = H(N ) + K(N ) w(N +l) s s s s 

with the boundary condition  (4.5b) yields the value of    w(N +l).    Then 
s 

a recursive application of equation (4.6) for N = N , N -1, ...,1,0 
s  s 

yields the desired solution to the system of equations.  It should be 
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noted that a straightforward solution to equations (k.k)  and (4.5) by 

standard matrix inversion techniques would require, at each 8-step, 

the inversion of a square matrix of dimensions (N +l)i X (N+l)i. 
8 S 

This would require prohibitive computation times if N  is large. 
s 

The solution given by equations (4.6) and (4.7)> on the other hand, 

requires, at each s-step, N  inversions of an i X i matrix. Since 
s 

i is never greater than four for the shock layer equations, these 

operations can be efficiently carried out for large values of N . 
s 

The use of matrix notation has resulted in a rather concise 

description of the solution in equations (4.6) and (4.7). The matrix 

formulas can be used intact in a computer program if one makes use of 

arrays (or subscripted variables) in the machine. However, this 

generally results in inefficient operation of the program due to an 

increase in access time to the stored data. It should be noted that 

it is necessary to store the values of W(N), ECK), and K(N) at each 

grid point across the shock layer (A(N), B(N), C(N), and D(N) are 

needed only once and hence need not be stored). This would result in 

the function K(N) being a three-dimensional array in the machine-- 

with N +1 elements in one dimension and i elements in the other two. 
s 

The access time to data that is stored in such higher-dimensional arrays 

is usually significantly larger than that for one-dimensional arrays. 

For the case when only u and T are programmed into the implicit 

finite-difference scheme,  i = 2, and the solutions given by equations 

(4.6) and (4.7) can easily be written out explicitly in terras of the 

coefficients of equation (4.2) and the individual elements of H and K. 
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These expressions, though less concise than those given above, are more 

efficient for the actual computation of the solution. The reader is 

referred to reference Ik,   12,  or 13 for these expressions. To a certain 

extent, this can be done for the case when i = h,    but the expressions 

are lengthy, and unless the computation time is a critical factor, the 

extra effort needed to obtain the expressions may not be considered 

worthwhile. 

Using these basic expressions for the solution of the implicit 

finite-difference equations, we can now consider specific methods. 

C  Method I 

The computation procedure that has been most thoroughly examined 

is one that is similar to the method used by Davis and Chyu in their 

study of the constant-density shock layer. In this method, only the 

tangential momentum equation and the energy equation have been reduced 

to linear difference equations of the form (k.}).    The specific expres- 

sions for A1,B1,...,G2 have been listed in Appendix A. 

The boundary conditions which complete the set of equations are 

obtained from the slip and temperature-jump conditions at the wall, 

equations (2.10) and (2.11), and from the Rankine-Hugoniot conditions 

for u and T,  equations (2.13) and (2.17).  In both (2.10) and (2.11), 

+  
öul       3u(0) -Ml) ±  u(g)    T* 1    1   A    V we set "T-l   = •—•*—OA^ ' *—*• •  It nas already b°en on|n=o 2An 

explained how the resulting three-point boundary condition can be 
i 

reduced to the necessary two-point form. The function 

~fgT^  A^ T(0) , which appears in both (2.10) and (2.1l), must 
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be evaluated by extrapolation (equation (4.2e))or from a previous 

iteration in order to have a linear boundary condition. The shock 

conditions are somewhat more difficult to impose since the shock loca- 

tion will not, in general, coincide with a grid point. Hence, it is 

necessary to use interpolation formulas in order to apply the Rankine- 

Hugoniot conditions. Remembering that N  is the largest integer 
s 

which is less than or equal to   g— ,    we define the shock location as 

Ä =  (N    + Q  )An (4.9) s        s 

Hence, 0 < Oc   < 1. The values of the dependent variables behind the 

shock, which we denote by  WA(^)> are given as functions of 0 by 

equations (2.15) and (2.17). Suitable interpolation formulas that can 

be used as boundary conditions in the difference scheme are 

Two-point or linear interpolation 

w(Ns)(l-Qg) + w(Ns+l)Qg = wA(0 (4.10a) 

and 

Three-point or quadratic  interpolation 

Q 

W(N8+I) Y (l+aj +w(N8)(l-ar) 

a 
- W(N8-I) Y (i-a8) - wA(0)       (4.iob) 

The latter formula requires a reduction to the proper two-point form. 

This can lead to some rather unpleasant algebra, and therefore, in one 

case to be considered later, the simpler equation (4.10a) was used. 
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For the application of these boundary conditions and thus for the 

computation of u and T from the difference equations, it is 

necessary to know the values of A and 0 . This can he handled in 

several ways. For the moment, we treat A and 0 in the same manner 

that the flow variables are handled. That is, we extrapolate their 

values from previous data, and using this extrapolated data, we can 

compute new values of A and 0 at a later point in the procedure. 

Actually, only one of the variables, A or 0 , needs to be extrapolated* 

the remaining quantity can be obtained from a difference representation 

of equation (2.19).  It will later be shown that it is possible to 

compute A simultaneously with the computation of u and T without 

using this extrapolation. However, for the moment, we consider u and 

T to be computed from equations that make use of approximate values 

of A and 0 

The normal velocity, v, is obtained from the continuity equation 

after the computation of u and T has been accomplished. An integra- 

tion of the terms of equation (2.2) yields 

1 fn 
>(s,n)v(s,n) =  -     I    [(r + ensin 0)JPu]    dn 

(r+ensin 0)J(l + /cen)   A) s 

(^.11) 

In order to evaluate v from this equation, it is necessary to u&e an 

extrapolated value for p. This is, however, consistent with the 

linearization of the difference equations for u and T. The boundary 

condition (2.12) has already been incorporated into (4.11). The 
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numerical evaluation of the integral in equation (4.11) is carried 

out by the use of a formula similar to Simpson's rule : 

rNAn 
I        P dn = =f [5F(N-1) +8F(N) -F(N+1)] (4.12) 
J(N-l)An       12 

This formula is derived by replacing F(n) with a quadratic curve 

which passes through the three points, Ff!!-!), F(N), and F(N+l). 

At this point in the computation, an improved value for the shock 

position, A, may be obtained simply by observing where the integrated 

value of v reaches the Rankine-Hugoniot value given by equation (2.1*0. 

One may, of course, now repeat the computation of u and T using 

the new value of A (and hence 0 ) until the value of A is as 

accurate as desired. Alternatively, one can proceed to the computation 

of the pressure and then iterate on all of the approximated variables 

simultaneously. 

Once the values of u, T, and v have been obtained at each grid 

point, the pressure can be evaluated from an integration of the normal 

momentum equation. If the extrapolated value of p is used, the 

pressure can be evaluated from 

Jf-n feuv 2 1 

Although this is consistent with the linearization of the finite-difference 

Simpson's rule is not used because it computes the integral from 
(N-l)An to (N+l)An and therefore would provide the value of the 
integral only at alternate grid points across the shock layer. 
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scheme, the approximate value of   p    need not be used since the state 

equation can be used to eliminate    P    from equation (2.^;.    This leads 

to 

p(s,n) = p(0) exp f-fp(n) -] (4.13b) 

where 

P(n) = 
r €uv 

€W     - 
jcl] 
1+KenJ Y-l   T 1I4tf«& n      1+K€.n 

Since all the variables that appear in the expression for   P   have 

been computed, equation (4.13b) can be evaluated without use of th* 

extrapolated data.    In both (4.13a) and (4.13b),  the value of    p(0) 

is chosen so that the pressure satisfies the Rankine-Hugoniot condition, 

equation (2.15). 

Several possible variations in the details of the computation 

procedure have already been noted. There are other variations that 

have been investigated but are not described here. In general, when 

both the shock shape and the tangential pressure gradient, §j , were 

computed at each s-step, the computed values become meaningless within 

a few steps. In other cases, the procedure did not exhibit such strong 

instabilities but yielded incorrect results nevertheless. As noted 

above, such difficulties were not entirely unexpected and can be 

attributed to the determination of the shock shape and to the occurrence 

of uv  and w  in the normal momentum equation. Qualitatively, the 
s       n 

difficulty with the normal momentum equation is as follows. Equations 

such as (4.2a) or (4.2b) are used to numerically evaluate certain 
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derivatives. When an erro** exists in thv. value of the function F. the 

use of the difference quotients results in a magnification of the error 

in the derivative of P (due to the small value of As or An that 

is used in the denominator). In the basic implicit finite-difference 

scheme, this does not occur since equations (4.2) are only used formally 

but are not numerically evaluated. However, in the procedure described 

above, -^-   is evaluated from (4.2a) and is used in the determination 

of u and T. The resulting value of u is used in (4.2a) to 

evaluate T- >  which is in turn used in equation (4.11) to evaluate 

ov     ov 
v. From v, we determine both rrr   and ^- , and these values are 

used in equation (4.13) to determine p. This value of p then goes 

back into the finite-difference scheme as «J». At each step the evalua- 

tion of the derivatives results in a magnification cf the errors, and 

these errors are eventually fed back into the scheme« In the applica- 

tion to boundary-layer flows, such a "feedback" does not occur since 

the pressure is a known, specified function. Even in the thin-shock- 

layer flow, where the pressure is computed, the feedback does not occur 

since uve and w  do not appear in the normal momentum equation. 
s       n 

We thus consider modifying the equations in the manner of Davis 

and Chyu [JLl]. This modification can be considered to be a first step 

to the more general analysis; the numerical scheme must be able to 

handle the simpler equations before they can be extended to the general 

case. Thus the shock angle, 0 , is specified as a known function for 

the evaluation of the Rankine-Hugoniot conditions. During the course 

of the computation, the shock position, A, is calculated. The 

geometric relation between A and 0 , equation (2.19), cannot now 
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be applied but can only be used a posteriori to determine whether the 

results are consistent with the assumptions. In reference 11, for the 

constant-density flow,  0 was specified as being equal to 9,    and 

the resulting value of A was found to be consistent with this assump- 

tion (i.e. A ~ const). For a variable density, the modification of 

the normal momentum equation can be done in two ways. First, the 

terms proportional to uv  and w  may be eliminated entirely from 
s      n 

the problem, and the pressure p is approximated by the thin-shock- 

layer pressure pT» The problem is then reduced to one that represents 

a slight extension of the investigation of H.K. Cheng. The additional 

terms of 0(e)    that are included in equations (2o)-(2.5) should not 

cause any major difficulty in the computation. Despite the fact that 

the shock angle is now assumed to be known (and therefore the boundary 

values at the shock are known), the treatment of the shock position 

is still somewhat more general than that used by Cheng since the mass 

flow in the shock layer is still not a specified quantity. The omission 

of the terms puv  and pw  rc-sults in a substantial reduction of 
s        n 

the pressure, and therefore of the density, near the body surface. 

This reduction in the density alters the flow field considerably and, 

in an extreme case, can lead to the occurrence of the zero-pressure 

point which is common in thin-shock-layer theory. Hence, a second 

possibility that is analogous to the analysis made by Davis and Chyu 

is also considered. The complete pressure is used in the computation 

of the density, and the pressure gradient T*- is approximated by 

a—- , where p_ is the thin-shock-layer pressure of equation (^.l). 
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This should result in a more realistic description of the density field, 

but the influence of puvs and pw, which is fed back into the 

finite-difference scheme through the density, may be large enough to 

cause instabilities. 

The first of these possibilities is now considered. The computa- 

tions proceed as follows. The solution of u, T, and v is based 

on extrapolated data as described earlier. The shock location is 

determined by a requirement that the integrated value of v be eaual 

to the Rankine-Hugoniot value. Since 0 has teen taken to be a known 

value, this step is now particularly simple; and since equation (2.19) 

no longer acts as a constraint, the computed value of A may undergo 

rather rapid changes in value. Using the newly computed values of u, 

v, T, and Ä, the pressure is obtained from equation (4.13b) (with 

the terms proportional to uvg and wp omitted, of course). As 

many iterations as desired may be obtained at each step. 

This procedure has been applied to the flow problem that was 

considered in Chapter III, section D.l, i.e., Y = 1.4, M =10, 

Reg = 100, (T = 0.7, b = 0.6, and  u = 'S1'2.    These computations were 

started from initial data (at s = 0.0 and s = 0.02) that were obtained 

from the first truncation problem of Chapter III (the second truncation 

problem had not been solved when these computations were mad-). Thus 

the shock angle 0 was set equ^l to the body angle 0. It has 

been found that the computed shock description is a sensitive indicator 

of the stability of the computations. Thus, the computed value of  Ä 

is shown in figure k.2.    The discontinuous jump in value that occurs 

120 



: 

</> 

N0I1VD01 XOOHS '2 

OJ 
u 
3 
00 

u o 
a 
(3    II 

a» £ 
>s 
co     •« 
^ <* 

g. .e 
OB    >• 
I 
c 
^1  .. 
.c   >* 

OJ 

T3 
O 
j= 

E 
E 
o 

TP 
<U 
J-t 

a 
E 
O 
o 

01 
CJ 
c 
CO 
4J 
cfl 
•-( 
-a 

•v 
c 
CO 

C CM 
<n — 

n 
CO   II 
U 
DO   3 

01 

3 d 
0)   ca 
CA 
(1) 
u    - 

IH d 
CO 
•^   II 
4J 
c o 
oi 
60     • 
e v£> 
CO     . 
*J O 

<-i   a   ii 

O 
T3 
C 
CO 

i_- jD 

U - 
o o 

u-i o 

c 
O II 

CO    Q> 
E BS 

121 



at the first computation step is of particular interest. It was found 

after these computations were made that the initial data were incorrect. 

The correct first-truncation value of A has also been shown in figure 

k.?.    It can be seen that the finite-difference scheme yields the correct 

value of A even when started from an incorrect value. As s increases, 

the number of iterations that are required to obtain "convergence" of 

the pressure increases. In addition, the computed values of A become 

less consistent with the assumption that 0=9;    at s = O.^h,  the 

application of equation (2.19) yields 9-0 =  11°. Thus there is little 

point in continuing the calculations to larger values of s. This 

inconsistency in the computation would no doubt be removed by the 

specification of the mass flow in the shock layer (as is done in the 

thin-shock-layer computation). If this were done, the resulting 

problem would represent an extension of the results of H.K. Cheng 

to a more uniform treatment of the second-order boundary-layer effects. 

It should be noted that if the shock angle is allowed to vary in 

the shock conditions and if equation (2.19) is used to relate Ä and 0 

in the abovs calculations, the computed value of A very slowly decreases 

A similar result had been obtained earlier when considering the complete 

normal momentum equation. This is typical of the difficulties associated 

with attempting to compute the shock shape. 

We now consider the second treatment of the normal momentum 

equation. The calculations include the effect of the terms uv  and 

vv  in the computation of the density in order to improve the descrip- 

tion of the density field. In addition, these computations use an 
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improved means of calculating the shock position. Instead of using 

the iterative method described earlier, the shock position is obtained 

simultaneously with the solution of the finite-difference equations for 

u and T as described Ln the following paragraph. 

Earlier in this chapter, it was stated that the calculation of 

w(N +1) was achieved by combining the equation w(N ) = fl(N )+K(N )W(N +l) 
s s     s    s   s 

with the boundary condition (4.5b). Later, it was observed that inter- 

polation formulas (equations (4.10)) were used to obtain the boundary 

condition (4.5b). This led to the appearance of A and 0 in the 

coefficients of equation (4.5b). This was previously handled by using 

extrapolated data for the shock parameters. However, if one additional 

equation could be obtained that related w(N ), w(N H), and A, then 
s    s 

A could be computed simultaneously with w(N +l), ard the necessity s 

of iterating on the shock position would be eliminated.    Such an 

equation can be obtained from the integral form of mass conservation, 

equation (2.l3).    Let 

rNAn 
l(N) = 2°€    I Pu(r+«nsin 6)J on (4.l4a) 

Jo 

It is shown in Appendix B, for the case of i = 2,  that 

I(N) = AI(N) + Ex(N)u(N) + CX(N)T(N) (4.l4b) 

where   AT(N),  B (N),  and CT(N)    are scalar quantities that can be 

numerically evaluated along with   H(N)    and   K(N);   i.e.,    A (N),  BT(N), 

and C-(N)    can be evaluated from recursive relations starting at 

N = 0.    Thus equation (2.l8) can be written as 
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(r + €An(N  +a )sin 0)J+1 = (l-a )(AT(N ) + s     s sis 

W w(V} + QS(AI(NS+1) + BI(NS+1) W(Ns+l)) (lf-l5) 

where the linear interpolation formula (equation (4.10a)) has been used 

to evaluate the integral at the shock« Equation (4.15) is the additional 

equation that permits the solution of A. The three equations are non- 

v linear and thus must be solved by some appropriate numerical technique. 

Once the values of A, w(N ), and w(N +1) have been obtained, the s s 

solution proceeds as described before. 

With the computation of A handled in this manner, the Rankine- 

Hugoniot condition on the normal velocity, v, should become superfluous 

As noted in the preceding chapter, equation (2.18) is not an independent 

condition; it can be used only to replace one of the boundary conditions 

which describe the mass flux across the boundary  Hence the integrated 

value of v (equation (4.11)) should now automatically satisfy the 

Rankine-Hugoniot condition. In practice, of jourse, the linearization 

of the finite-difference equations and the use of an extrapolated value 

of p in equations (4.11) and (4.l4a) prevent this from being exact — 

there will always be a small difference between the integrated and 

tlie Rankine-Hugoniot values of v. 

After the pressure is determined from equation (4.13b), iterations 

on the values of all the variables can be obtained. It was found that 

for these calculations, the iterations did not significantly alter the 

results, but did tend to smooth the results somewhat near the axis. 
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The computed value of A is again used as an indication of the 

stability of the scheme. However, it is convenient to make use of 

equation (2.19) and to present the results in the form of the shock 

angle. It should be noted that a small oscillation in the value of 

A results in a rather substantial oscillation in the value of 0. 

Figure k*3  illustrates the results for a variety of assumptions. 

l) First, consider the cases for which the computations were 

started from initial data obtained from the first-truncation results. 

As before, it was found that the computation of the shock angle lead 

to instabilities. Hence, the results shown in figure 4.3 are based 

on an assumed value of 0 • 9  (the solution of the equations provides a 

computed value of 0 which is the value shown in figure 4.3). 

a) When the pressure gradient *r—- is computed at each step, 

instabilities appear immediately. This is illustrated by one 

curve in figure k.}.    Thus the procedure is less stable than it 

was when the influence of the terms uv„ and vv  was 
s       n 

eliminated entirely. This must be a consequence of the inclu- 

sion of the influence of uv  and w  in the computation of 
s       n 

the density. 

b) The strength of this influence is evaluated by considering 

the pressure gradient to be a specified function (equal to the 

series-truncation results). Hence tne only source of instability 

due to the terms uv  and w  is in the computation of the 
s       n 

density. The calculations now proceed to about s • 0.2 before 

instabilities cause the computation to break down (see figure 

4.3). 
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c)   The onset of these instabilities can be delayed by averaging 

the computed and the extrapolated values of the pressure: 

p = (1-h) Pextrapolated 
+ h Calculated (*-l6) 

At s a o, h is taken to be unity. The computations proceed 

for increasing s until they become unstable. The value of h 

is then decreased, and the calculations are started at a point 

just before the onset of the instability. By repeating this 

process whenever necessary, the calculations have been carried 

to s = 0.50, and this result is also shown in figure 4.3. The 

final value of h is 0.10. The instabilities which appear at 

intervals along the curve are not shown but ire quite similar 

to the one that has been shown at s = 0.2 in the figure. 

It would seem that at best these numerical computations could only 

reproduce the truncation results since a large number of constraints 

have been placed on the numerical procedure. However, the computed 

values of 0  closely match the second-truncation result for 0 even 

though the computed values are based on initial data and a pressure 

gradient that are obtained from the first truncation and the first- 

truncation assumption that  0=0 has been used in the evaluation 

of the shock conditions. Hence, in this one respect, the finite- 

difference scheme is yielding "new"information. 

2) Also shown in figure 4.3 are the results of using the second- 

truncation computations for initial data, for the pressure gradient. 
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and for the shock angle. These computations have been carried out to 

s = 0.62 by averaging the pressure as described in paragraph (ic) 

above. Again, the value of h was gradually reduced to a final value 

of 0.10. No attempt has been made to determine how far the calcula- 

tions can be carried in this manner. At the largest value of s, most 

of the "inviscid", outer flow has become supersonic. This is illustrated 

in figure h.k where the shock and the sonic line have been depicted. 

Shown for comparison is the sonic point on the body as computed from an 

inviscid theory (this value was obtained from reference 12 and is the 

result of an analysis by H« Lomax of NASA). Due to the presence of the 

viscous layer, the sonic line will turn and roughly parallel the body as 

s increases further« The extent of the viscous layer has been illus- 

trated by showing the tangential velocity profile at s = oA. 

Returning to a consideration of figure k.J,  we can see that the 

computed value of 0 deviates only slightly from the assumed, second- 

truncation value. It was previously noted that the finite-difference 

result for 0 was obviously more accurate than the first-truncation 

value or. which the computations were based. Whether this is true of 

the present results can be determined in the following manner. 

In Chapter III, it was seen that an inability to adequately deter- 

mine the shock shape was the major cause of inaccuracy in the series- 

truncation analysis. We now use the finite-difference result found 

here to determine the value of 0-, which in Chapter III was arbitrarily 

set to zero. That is, we determine 0, such that  0,sin 3+0, sin s 

(see equation (30b)) provides a least-squares fit to the finite-difference 

128 



  •IIBIIII   
I    '"<  — •»'•        "I 

O FIRST-ORDER INVISCID 
THEORY 
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0.2 

The shock and the sonic line computed from method I; 

Y  = l.k, Mn * 10,  Re    = 100, b = 0.6,  a = 0.7,  and 
CD =  1/2. 
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result for    0- 0 .    We are not free to choose the value of   0..    as it is 

entirely dictated by the solution of the second-truncation problem as 

described in Chapter III.    Further, the values of   01    and   0,    are 

mutually dependent:      0.,  sin s increases above the value shown in 

figure 4.3 as the value of   0,    is increased.    Hence the least-squares 

fit of   0,  sin s + 0    sin s    is not as accurate as might be expected: 

0-0= 0.152    sin s + 0.112    sin s,  and the root-me an-square error is 

approximately 0.006 compared with 0-0 = 0.111 at s = 0.6.    However, the 

shear stress result is. now 

x/e = 1.23 sin s - 0.7k sin*s , 

which is considerably better than the previous second-truncation result 

given by equation (3.24b) and illustrated in figure 3.1.    It is certainly 

not recommended that the finite-difference solutions be used to improve 

the series truncation solutions in this manner* but the above result 

does show that the finite-difference solution for   0    is more accurate 

than the second-truncation result on which the finite-difference computa- 

tions were based. 

Despite this  -sne positive result,  it is quite clear that the com- 

pressible-flow computations are far more unstable than were the 

constant-density computations of reference  11.    In fact,  it appears that 

this method of computation is not suitable for the computation of the 

flow in the shock layer;  a better means of handling the computation of 

the normal velocity and the pressure is needed. 
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0. Method II 

One such possible method for an improved calculation of the pressure 

and normal velocity makes use of the method of characteristics. This 

method has several advantages over the one described previously. It 

was developed by Weinbaum and Garvine [ko]  for use in the laminar wake 

flow. Its application to the blunt-body problem is now considered. 

In Chapter II it was noted that there are two "non-parabolic" 

characteristic surfaces of the partial differential equations (2.2)-(2.5) 

These surfaces are described by equation (2.9): 

1+6/cn ds  u - ^p eu   1,2 

These two characteristics can be traced to the continuity equation and 

the normal momentum equation, and they are the characteristics which are 

associated with the determination of the derivatives of pressure and 

normal velocity. Hence we now consider equations (2.3) and (2.5). 

First, introduce two new coordinates £ =  £(s,n) and r\  = Tj(s,n). 

In general, 

a m ag   a  + an   a 
5B   S S     as  o^rj 

anc1 

a _ at   a   + dt|  a 
Si     on   S OT    olj 

These relations need to be substituted into equations (2.3) and (2.5) 

only for the derivatives of p and v since the other variables are 
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not associated with the two characteristic surfaces described by equation 

(h.YJ).    We now specify that the curves I  = const, be tangent to one 

family of characteristic surfaces and that the curves T\ -  const, be 

tangent to the other. Hence, the slopes of the curves § = const, and 

T) = const, are given by X... and X-, respectively. Therefore, on 

t  = const. 

^--§=-4(1 + ««) (U.loa) 
n 

and on TJ - const. 

*n 

If the two equations are applied along the curve § =  const, and equation 

(^.l8a) is introduced, they can be combined so that only ^-derivatives 

of p and v appear: 

P, • « m \ - b /i? » - g <(£). - v(f)B)Jj on..« = const. 

where a(p,n) = (r + cnsinö)^ and ß(n) = 1+€<n. This equation 

can be re-written in the form 

(4.19a) 

& [^(f>. - V(f y) Ä on I . const. 

which is the form given in reference ho . Similarly, if the equations 

are applied along the curve TJ = const, and equation (4.l8b) is used, 

they can be combined to form 
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Ä (uA) - v(£) ]} £ on „ = const. Ojy  2^* T n   VT n  d£     • 

(4.19b) 

The value of the method of characteristics (and of equations (4.19)) 

is that the equations are reduced to ordinary differential equations 

along the characteristic curves (in equations (4.19) this is achieved 

only with the derivatives of p and v — the variables u and T 

remain as partial derivatives). The characteristic curves themselves 

are functions of the variables, however, and must be determined as part 

of the solution. The standard means of handling this is by iterative 

methods: an approximation to the characteristics yields a solution to 

the variables that can be used to obtain a better description of the 

characteristics, etc. 

We now consider the manner in which equations (4.19) can be incor- 

porated into the basic finite-difference scheme. Consider an arbitrary 

mesh point, (m+l,N), of the grid that was depicted in figure 4.1, 

and denote it with the subscript 3» The two characteristic curves, 

I  = const« and TJ = const., which pass through this point 3 intersect 

the line s = mA s at points that are denoted by the subscripts 1 

and 2, respectively (see figure 4.^)' The data which are used to 

linearize the finite-difference equations can be usec to determine 

the locations of points 1 and 2 (if desired, subsequent iterations 

can be used to improve these values). Points 1 and 2, of course, will 

generally not be grid points, and evaluation of the variables there 
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will require the use of interpolation formulas 
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Figure 4.5. Finite-difference grid for the characteristic curves 

If we replace the derivatives with respect to £ and TJ with the 

difference quotients 

ÖFI F    - F 
*3     *2 

<• s const. 
A£ 

and 

OF 
Sn £ = const. 

F - F 12 11 
AT] 

and if we replace the functions /p? , g- , etc. with suitable 

averages over the intervals 3-1 and 3-2, then equations (4.19) 

can be used to obtain relations of the forr* 

Pm+1,N " Ap + Bp Vl,N + Dp Tm+1,N (4.20a) 

and 
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v = A    + B    u +DT 
m+l,N       v       v   m+l,N     "v   m+l,N 

(4.20b) 

The coefficients of these equations are functions of the variables at 

points 1 and 2 and/or functions of average values over the arcs 3-1 

and 3-2. Hence, they can he assigned numerical values which are consis- 

tent with the linearization of the finite-difference scheme. Note also 

that the values of A£ and AT) need not be known; only As remains 

in the equations. 

When the tangential momentum equation and the energy equation 

were replaced with the difference equations (4.3), the variable p 

entered into the coefficients of the equations through the term 

T^ . In method I, an extrapolated value of p was used, and it was 
os 

seen that this was one of the contributing factors to the occurrence 

of instabilities. Now, however, equation (4.20a) can be used to eliminate 

p ., „ in favor of u ,, „ and T .- ,.: this will, of course, redefine 
^m+l,N m+l,N      m+l,N* 

the values of the coefficients of equations (4.3). Once u and T 

are obtained from the finite-difference solution, p and v are 

available from equations (4.20). However, by making use or the 

characteristic coordinates for p and v, the solution of all the 

variables is simultaneous, whereas in method I there was a sequential 

ordering to the solution of the various variables. 

Unfortunately, for the blunt-body problem the reduction of tne 

differential equations (4.19) to the algebraic equations (4.20) cannot 

be accomplished as easily as indicated above. Since the slope of the 

characteristics is proportional to -,  the slopes are rather large 
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near the axis of symmetry of the flow and near the body surface. 

Figure k.6  illustrates the situation by depicting the two characteristics 

which pass through the point (s,n) = (0.10, 0.6o) for flow around a 

sphere with Y = 1.4j M = 10, Re = 100, b = 0.6, etc The computation 
00        s 

of the location of the characteristics is based on the second-truncation 

results. Also shown in figure h.G  are the characteristics which intersect 

the boundaries at s = 0.10. If the reduction of equations (^.19) as 

described above is to be valid, the length of the arcs 3-1 and 3-2 

must be small. It can be seen that this will require an extremely 

small step size in the s-direction, even if the truncations were 

accurate enough that the finite-difference scheme could be started at 

s = 0.10. A step size of As = 0.001 could probably be used but would 

result in rather large computation times. If a more reasonable value 

of As  is to be used, a more elaborate means of integrating equations 

(If.19) along the characteristics must be used. This would tend to 

destroy the simplicity of the method and lead to rather complicated 

computational procedures. Hence, the scheme has not been further 

investigated although it is at least theoretically feasible. 

However, the fact that the pressure and the normal velocity can 

be treated by the method of characteristics is quite important in itself, 

irrespective of whether the method is practical. The existence of the 

characteristic relations for p and v is verification of the 

feasibility of solving the shock-layer equations, (2.2)-(2.7)> as an 

initial-boundary-value problem with the axis of symmetry for the initial 

station.  In addition, the characteristics may be useful for the 
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application of the boundary conditions. In section C, it was seen that 

the application of the shock conditions led to complications. The shock 

conditions provide values of each of the four variables at n = A as 

functions of the shock angle 0 • This angle is, of course, an unknown., 

and it might appear that the problem is underdetermined. However, 

there is one characteristic curve that originates in the "known" flow 

field (i-e., s < (m+l)As -nd 0 < n < Ä) and that intersects the 

shock at s = (m+l)As . The differential equation that applies along 

this characteristic provides an additional constraint on the values 

of the variables and permits the determination of 0  . At the body 

surface there are boundary conditions on u (equation (2.10)), T 

(equation (2.1l)), and v (equation (2.12)), but none on the pressure 

(or density). The fact that one of the characteristic curves that 

originates in the "known" flow field intersects the wall and provides 

an additional constraint indicates that no boundary condition is needed." 

7t has, of course, been tacitly assumed throughout this investigation 

that the physical boundary conditions were mathematically adequate for 

a solution of the type that has been sought. One can interprete the 

above discussion as an indication that the boundary conditions are of 

sufficient number to yield a well posed initial-boundary-value problem. 

A discussion of the use of characteristics to determine the number of 
boundary conditions and initial conditions for partial differential 
equations of various types is contained in reference 23« 
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In addition, the use of the characteristic curves that intersect the 

boundaries may be a practical means of evaluating some of the boundary 

values although this point has not been investigated^ 

E.  Method III 

Since it is somewhat inconvenient to make explicit use of the 

characteristic equations, we now consider whether the basic finite- 

difference scheme itself is capable of handling the characteristics 

implicitly. The use of explicit finite-difference schemes to solve 

simple partial differential equations of the hyperbolic type is 

discussed in most texts on numerical methods. The well-known result 

is that the domain of dependence of the numerical sch ^me must contain 

the domain of dependence of the differential equations. Thus, for 

explicit finite-difference methods, a strict requirement is placed 

As 
on the ratio of the step sizes, r—• ,  if the computations are to be 

stable. However, for implicit finite-difference schemes, no such 

As 
requirement on r— is needed since the numerical domain of dependence 

extends across the entire flow field. This does not mean +hat an 

implicit finite-difference method will necessarily work, but it does 

mean thtt the scheme at least meets the minimum requirements for 

stability. Hence we now consider a computational method in which ali 

the flow variables are programmed into the implicit finite-difference 

scheme. 

ThxS method was briefly examined at an early stage of the present 

investigation,   and a rather peculiar type of  instabiiit.y was encountered. 
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Although this method was then dropped in favor of method I, the analysis 

of the previous sections has indicated that this method may offer the 

best chance of success. Hence, the method is described in this section 

in order to determine the nature of the instability that was previously 

encountered. It will be found that the instability is not related to 

the instabilities encountered in section C and that it can be eliminated 

in a simple manner. This method is in many respects the simplest and 

most straightforward of the three methods considered in. this chapter 

since the entire solution is given by the difference relations (k.6)- 

(4.8). However, there are certain features of the computation that 

require close examination, and these details are explained below. 

The partial differential equations (2.2)-(2.5) are reduced to 

the difference equations (h.k)  by introducing the difference quotients 

given in equations (4.2). Either the density or the pressure may be 

considered to be the fourth dependent variable in addition to u, v 

and T. The coefficients  (A, B, C, and D) of the difference equation 

{h.k)  now contain a total of fifty-two components. 

The determination of the boundary conditions (4.5) requires some 

explanation. Equation (4.5a) contains boundary conditions on all the 

variables, and, of course, these constraints are required by the 

numerical method. Two of these constraints are provided by the slip 

and temperature-jump conditions, (2.10) and (2.1l), and a third is 

obtained quite simply from the boundary condition on the normal velocity, 

equation (2.12). Although required by the numerical method, there is 

no physical boundary condition on the density (or pressure) at the wall. 
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Further, it was seen in the preceding section that the differential 

equations do not mathematically need such a constraint. Hence, the 

necessary numerical condition must be obtained from the differential 

equations themselves. It was noted in the preceding section that this 

could be obtained from the differential equation that applies along 

the characteristic intersecting the wall. A simpler means is to 

evaluate the continuity equation (2.2) at n = 0 (note that the differen- 

tial equations had been previously reduced to difference equations only 

at N - 1,2,...,N — hence this condition will be an independent s 

equation). The central-difference formulas of equation (4.2) cannot 

be used for this purpose, but a forward-difference relation such as 

oF 
3n" m+l,N 

= . ^(0)^(1)+F(2) + 0(An2} 

must be used. The resulting three-point equation is reduced to the 

required two-point form as described in section C. 

A similar situation arises at the shock. Although the Rankine- 

Hugoniot conditions supply all the necessary conditions in equation 

(4.5b), it does so in terms of an additional unknown, A. Hence, an 

additional condition, which must be supplied by the equations themselves, 

is needed. The use of the characteristic curve that intersects the shock 

was described in section D as one possibility. The use of the integral 

form of mass conservation as described in section C is another possibility 

although it is not known whether this will result in a numerically 

independent condition. Or one of the differential equations can be 
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evaluated in such a way that a numerically independent condition is 

obtained, as was done at the wall. 

As noted earlier, some rough calculations based on this method 

led to a rather strange instability. At the first computational step, 

the values of the variables at the even-numbered grid points appeared 

to become uncoupled from the values at the odd-numbered grid points. 

This is illustrated in figure 4.7 by a plot of the tangential velocity, 

u, at s = 0.006. Other variables show a similar effect. Unlike the 

case of method I, this instability does not become progressively worse 

as s increases but is inherent to the solution at each step. It 

should be emphasized that these results are accurate solutions of 

the difference equations (4.4), and thus the source of this problem 

should be sought in the formulation of the difference equations (and 

not in the boundary conditions or the method of solution). 

It has now been recognized that the probable source of this 

difficulty is in the use of the central difference quotient (4.2b) 

for the normal derivatives of p and v. This equation does not 

contain the central point (m+l,N), and this will obviously have a 

tendency to uncouple the variables at adjacent grid points. When 

considering the variables u and T, this is no problem since the 

principle terms involving u and T are second derivatives and 

equation (4.2c) contains the variables evaluated at N-l, N, and N+l. 

However, for p and v, the first derivatives are the principle terms, 

and the central difference of equation (4.2b) is not appropriate. 

It should be noted that, due to the influence of other terms, the 
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Example of the instability encountered with method III. 
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coefficients of P(N) and V(N) in the difference equations are not 

zero} nevertheless, the use of the central-difference quotient for the 

principle terms, jP and *r- , is the probable source of the 

instability illustrated in figure k.J. 

This conclusion is reinforced by a consideration of the order of 

the differential equations and the order of the difference equations. 

The use of the central difference quotients, (4.2b) and (4.2c), results 

in the difference equations [h*k)  being second-order difference equations. 

We have seen that this worked well for the tangential momentum equation 

and the energy equation, which are second-order differential equations) 

but when the continuity and normal momentum equations, which are first 

order, are included, the instability of figure 4.7 occurred. In 

reference 15> it is pointed out that the use of difference equations 

to approximate differential equations can lead to what the authors 

call "computational instabilities" if the difference equations are 

of higher order than the differential equations. These "computational" 

instabilities are of a different nature than the more common instabilities 

that usually result in the catastrophic breakdown of the computational 

procedure. 

Fortunately, in the present case, it would appear to be a simple 

matter to remove this instability by using 

OF 
Sn" 

= Ssaiia : W + o(An) 
m+l,N *» 

for the normal derivatives of p and v,  although this point has 

not been checked.  It is clear, however, that a successful application 
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of this method must consider the type of difference quotients that are 

to be used. 

F.  Summary and Concluding Remarks 

In their present state of development, the computational procedures 

that have been presented in this chapter are clearly not capable of 

yielding accurate solutions to the blunt-body problem. However, several 

of the results of this investigation did indicate that the methods might 

be adequate if properly formulated. The major difficulties were traced 

to tvo factors: the determination of the shock location and the handling 

of the terms Puv and pw , which appear in the normal momentum 
s      n 

equation. In reference 11,two approximations were introduced for the 

constant-density flow in order to overcome these difficulties. In the 

present investigation (method i), it was found that these approximations 

were less satisfactory for the variable-density case: 

1. The assumption of a concentric shock and body was one of 

the approximations that permitted the solution of the constant - 

density flow. The shock location was then found to be consis- 

tent with the assumption. However, it is known from the series- 

truncation analysis that such an assumption is not generally 

valid for a flow of variable density. Hence, to specify the 

shock angle in the present investigation, it was necessary to 

rely on the truncation results despite the fact that the des- 

cription of the shock angle appears to be among the least 

reliable of the results of the series-truncation analysis. 
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Near the axis, the finite-difference computations did lead to 

results that were consistent with the assumed shock angle, but 

this could not be expected to be true over an extended range 

in s. Furthermore, the fact that the results are consistent 

with the assumption does not in inself prove that the assumption 

is correct. The ability to compute the shock position and angle 

as a part of the finite-difference solution is a critical factor, 

and considerable attention must be given this point in any 

further analysis of the type that was considered in this chapter. 

It was noted that this difficulty can be circumvented by the use 

of the thin-shock-layer model, but this must necessarily 

influence the accuracy of the results. 

2. The second approximation that was used to obtain the solution 

of the constant-density equations was to make use of the thin- 

shock-layer pressure to evaluate the tangential pressure gradient, 

•s{*. That is, the influence of the terms puv and Pw  war 
os s       n 

omitted. Since these two terras could influence the flow 

variables, other than n, only through the T* term of the 

omitted. Since these two terras could influence the flow 

tangential momentum equation, this approximation was equivalent 

It has recently been suggested by Davis [ 9] that the problem should 
be formulated in variables which are defined by n = n/S , u = u/u(2), 
etc. With these variables, the shock location and the values of the 
variables at the shock all become unity. The unknown quantities such 
as 2 and u(5), etc. now appear only in the differential equations. 
According to Davis, the difficulties associated with the computation 
of the shock position, S,  can be removed in this ir.anner. 
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to the thin-shock-layer approximation,  in which these terms are 

omitted entirely.    The resulting equations are parabolic in 

nature and hence are r   -ily treated by finite-difference methods. 

For the variable-density case,  the complete omission of the 

terms    puv      and   Pw      leads to somewhat unrealistic values s n 

of density and pressure across the shock layer for certain body 

shapes  (including spheres).    Hence,  a second approximation, 

which was analogous to the approximation used in reference 11 

but which would not encounter the density distributions of 

thin-shock-layer theory, was considered.    It was found that the 

influence of the terms    puv      and   pw      through the density 
s        n 

was sufficiently large to cause instabilities. 

These two terms are the source of the two characteristics of 

equations (2.2)-(2.5) that are of the hyperbolic type. Hence, 

a method was examined that used the method of characteristics 

to handle the computation of the pressure and the normal 

velocity (method II).  It was found that the method of charac- 

teristics was somewhat inconvenient to apply due to large slopes 

of the characteristic curves. Finally, a method in which all 

the variables were programmed into the finite-difference scheme 

was considered (method III),  it. was found that with this method 

care must be taken to choose difference quotients that are 

compatible with the differential equations. Neither of these 

last two methods was investigated in detail  The last method 

in particular appears to be worthy of further investigation. 

1*7 



- •-—»--• —•-•— 

Despite the general lack of success with these methods, there 

were several results that indicated that the methods might yield valid 

results if they were properly formulated. In particular, method I was 

able to compute values of A and 0 that were considerably more accurate 

that the assumptions and data that formed the basis of the computations, 

and the analysis of method II indicates that the formulation of the 

blunt-body problem as an initial-boundary-value problem is justified. 

There is, however, one importan* problem concerning this last 

point that has not yet been discussed in detail: it is not clear what 

effect an upstream influence has on the finite-difference procedure. 

The series-truncation analysis has clearly shown that there is an up- 

stream influence in the flow despite the "parabolic-hyperbolic" nature 

of the equations. This was exhibited by the strong influence of the 

downstream wall temperature on the flow variables at the axis. (For 

non-spherical bodies, the coefficient Kp of an expansion 

2 
K{0)  = I + KpSin Ö +••• would have a similar, though less pronounced, 

effect). Thus, as a result of the upstream influence, the initial data 

will be, to some extent, incompatible with some of the downstream 

boundary parameters, especially the wall temperature. We have seen 

that this incompatibility may be fairly large if the first-truncation 

results are used as initial data; with higher truncations, the initial 

data will more closely approximate the data which are correct for the 

desired wall temperature. Due to this incompatibility, it is necessary 

to inquire whether the problem can be formulated with a specified 

wall temperature.  If this formulation is to be valid, the 
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finite-difference results must be able to quickly adjust to the imposed 

conditions irrespective of the possibly erroneous initial data. This 

is true of boundary-layer computations — the influence of the initial 

data diminisnes rapidly as the computations proceed away from the 

initial station — but is less likely to be true of the shock-layer 

equations because the equations have some hyperbolic characteristics. 

That is, it is likely that the effect of the "erroneous" initial data 

will be propagated downstream. Since the initial data may not be valid 

for the particular temperature that is desired, it is possible that a 

solution cannot be found from the finite-differenc =? procedure unless 

the downstream wall temperature is adjusted to be compatible with the 

initial data. The manner in which the compatible wall temperature 

would be determined, as well as the manner by which the incompatibility 

would be manifested, is unknown since this discussion is somewhat 

speculative. 

An example of how it might be determined can be seen in an examina- 

tion of method I. It was there noted that the use of the integral 

equation expressing the overall mass conservation should automatically 

insure that the Rankine-Hugoniot condition on the normal velocity is 

satisfied. In practice, it was found that this was not always the case, 

Normally j the error was less than one percent, but as instabilities 

developed, the error grew, becoming 5-10 percent just before the 

computational procedure had to terminate. This error possibly could 
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have been removed by adjusting the value of the wall temperature at 

each s-step. 

The effectiveness of any such computation procedure can be evaluated 

by using the first truncation results as initial data. The wall 

temperature that would be calculated by the finite-difference scheme 

2 
should then agree to 0(sin s) with the second-truncation temperature 

distribution that produced a concentric shock and body (Chapter III, 

section D.3)< Alternatively, if a constant wall temperature is specified 

together with the first-truncation initial data, the results must mske 

some rather obvious and abrupt adjustments (in A ar.d T,  for 

example) if they are to be meaningful. If either of these two cases 

can be realized, an evaluation of the reliability of the r» suits of a 

computation scheme of the type that was considered in this chapter 

will not be difficult. 
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Chapter V 

SUMMARY 

A simplified form of the Navier-Stokes equations has been used to 

describe the flow in the shock layer of a blunt body. These equations 

are uniformly valid to 0(e) throughout the entire shock layer and 

thus are valid in the same flow re ime as the second-order boundary- 

layer theory. 

The nature of these shock-layer equations has led to the treatment 

of the problem as an initial-boundary-value problem -- with the axis 

of symmetry as the initial station. Solutions at the axis of symmetry 

have been obtained for a wide range of flow conditions by use of the 

method of series truncation. The second-truncation solutions have been 

found to yield excellent results for the heat transfer at the wall and 

results for wall shear that contain only moderate errors. The first- 

and second-truncation results have been compared to the results of 

several previous investigations of the flow in the stagnation region. 

These comparisons have shown 

1) that the basic flow model is adequate for values of the shock 

2 
Reynolds number down to the order of 10  and 

2) thati contrary to the conclusion of a previous investigation, 

the method of local similarity may lead t substantial errors at the 

axis. 

With regard to this second result, the  le of the wall temperature in 
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determining the relative geometry of the body and shock has been clearly 

pointed out. 

Several methods based on the use of finite-differences have been 

examined as means of extending the solutions beyond the stagnation 

region. A method that was previously used to solve the constant- 

density shock layer was found to be less adequate for the variable- 

density case. Although several interesting results were obtained, the 

method encountered serious instabilities. Two additional methods, 

which should avoid these instabilities, have been described. Exploratory 

computations have illustrated the features of each that require further 

attention. Finally, the results of this investigation indicated that 

the formulation of the problem as an in:tial-boundary-value problem is 

valid but that special attention must be given to a possible incompati- 

bility between the initial data and the wall temperature downstream of 

the axis of symmetry. 
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APPENDIX A 

Coefficients of the finite-difference equations (method I) 

Equations (4.3a) and (4.3b) are the difference equations that are 

used in method I (section B, Chapter IV"). The coefficients of these 

equations are determined by substituting the difference quotients given 

by equations (4.2) into the differential equations (2.3) and (2.5)- 

We introduce the following notation. A subscript e indicates that a 

quantity is evaluated at the point (s,n) = ((m+l)As, M^n) but is 

obtained either from the extrapolation formula (4.2e) or from a previous 

iteration. Multiplying the two equations by k&n    and letting L = T—.. 

we obtain the following relations. 

AL. = -2 
**' 

[**(* • j && - (Pv)j - u.|%N+r%N-ij. jg    (A.1} 

B h 
3L 4eKAn 

l+<e AnN 
8u ^h+Tm^^h+% (A-2) 

<h=-^-8£ (A-3) 

,fUm,N+l "Um,N-l      n Dl„ =  -Ml—l ä * 2G/CU 
N An (A -h 

El., = 0 :1N (A-5) 

\ = -D: (A-6) 
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L(pu)e      I | 1^ , dp, 

°Tf      1 + KeNAn I Um,H " Um-1,N|  " l + Kel&n ^dau 

and 

An  lTm,N+l ' Tin,N-l        Um,N+l " Um,N-l| ^A"7^ 

A2N = «ffaj^dbL - 2e<uJ (A-8) 

*N • - T^ET  *. (A-9) 

C2N =  -A2M (A-10) 

«> . AL |T T     \ . 2 SE I* + j sial) 
N      cxAn     I m,N+l        m,N-ll a   I r      I 

• 2(pv)e - ^ (A-ll) 

8u (A-13) 
F2N =  "D2N      aAn 

L(pu) 
G2„ = "N      1 + KeNAn U T   „ - T    . „I + 4An (v |£ J      m,N       m-l,Nj \    dm 

"aAn   lTm,N+l"Tm,N-l|     "An    (Um,N+l *Um,N-l| (A-l*) 

The quantities    r,  K,   and Q    are evaluated at    s =  (ra+l)As.    The quanti- 

ties    M-    and   u'    are functions of the temperature,  T,  and must be 

evaluated either from an extrapolated value of   T   or from a value of 

T    from a previous  iteration. 
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APPENDIX B 

Derivation of the difference equations for the mass-flow Integral 

We wish to show that the integral given by equation  ^,l4a), 

.      fNAn 
l(N) = 2J€   I pu(r+en sin 9)Jdn , (B-l) 

Jo 

can be evaluated from the simple algebraic equation 

I(N) = AX(N) + BX(N)U(N) + (^(NMN) (B-2) 

where the coefficients A > BT, and C_ can be computed along with 

H(N) and K(N) (i.e., they can be obtained from recursive relations 

starting at N = 0, prior to the calculation of u and T). We consider 

only the case of i = 2 here, but the more general case of i = k    can 

be handled in an analogous manner. 

For i = 2, the difference equation (^.6) may be written out 

explicitly as 

and 

u(N) = HjU) + Kn(N)u(N+l) + K (N)T(N+1)       (B-3a) 

T(N) = Hg(N) + yi)u(W) + K22(N)T(N+1)       (B-Jb) 

where H^ Hg, K^,  K^, Y^ , Y^      are the components of H(N) and K(N) 

The integral I is evaluated by using the trapezoidal integration 

formula: 
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I(N+1)- I(N) = 2J-1An€ {p(N+l)u(N+l)[r + eAn (N+..)sin0]^ 

+ p(N)u(N)[r+€AnNsin 0]J} (B-4) 

Let    R(N) = 2,3~1An e p(N)(r+€An N sin 9)J.    If    p    is evaluated by 

extrapolation, which is consistent with the linearization of the differ- 

ence equations, then   R(N)    can immediately be evaluated at each value 

of    N.    Equation (B-^) can be written as 

I(N+1) = I(N) + R(N+l)u(N+l) + R(N)u(N) (B-5) 

At the wall, l(0) = 0. Note that by recursive application of equation 

(B-5) for N = 1,2,... and by using equations (B-3) to eliminate the 

undesired values of u and T, the integral l(N+l) can be expressed 

as a linear function of u(N+l) and T(N+l), equation (B-2). The 

coefficients of (B-2) are evaluated as follows. 

Substitute (B-2) into ( -5): 

I(N+1) = AT(N) + R(N+l)u(N+l) + [BT(N) + R(N)]u(N) 

+ c^dOTdO 

Use equations (B-3) to eliminate u(N) and T(N): 

I(N+I) = A._(N) + [BI(N) + R(N)]H1(N) + CI(N)H2(N)+{R(N+I) 

+ [BX(N)+ R(N)jKn(N) + CI(N)K21(N)}u(N+l) 

+ {[BI(N) + R(N)]K12(N) + CI(N)K22(N)}T(N+I) 

This result now gives 
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AX(N+1) = AI(N) + [BI(N)+ R(N)] H^N) + CJCNJH^N)      (B-6a) 

BI(N+1) = R(N+1)+[BX(N) + R(N)] KU(N) + CJCNJK^N)     (B-6b) 

and 

CX(N+1) = [BX(N) + R(N)]K12(N) + C^N^M (B-6c) 

Since A (0) = B_(0) = C (O) = 0, the coefficients A , B , and C 

can be evaluated at each value of N by recursive application of 

equations (B-6) for N » 0,1,2,...,N . s 
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