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PREFACE
The purpose of this paper is to show that the turbulent field in
4 variable-density shear layer is equivalent to one of a conatant-
density layer i, which the lateral dimension becomes a random func-
. tion of time. The results of this study can be applied to the inter

pretation of laboratory and range data of compressible wakes. This
study 18 par® of RAND's work for ARPA on the basic properties of re-
entry wakes. The author is Professor of Aerospace Engineering at the

University of Southern California and a Consultant tc The RAND Corpo-

ration.
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ABSTRACT

The paper is concerned with the calculation of the mean flow
field of free turbulent layers of variable density. It is shown that
1f the velocity distribution in a particular constant-density flow is
known, it is possible to obtain the corresponding variable-density ve-
locity field without the introduction of a compressible turbulent
("eddy") viscosity. This is accomplished by a Dorodnitsyn-Howarth
type of transformation applied to the time-dependent rather than to
the mean equations of motion, as was done in the past. When the trans-
formed equations are averaged, using Reynolds' method, the incompres-
sible turbulent equations for the meun flow are obtained. These equa-
tions can then be handled by conventional methods. It is shown that
the predictions obtained by this procedure agree well with experimen-

tal results.
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X,Y,2
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LIST OF SYMBOLS

apecific heat

drag or thrust force

diameter (of a jet or of a body)

self-preserving velocity function in a varigble-density field

self-preservin; temperature function

enthalpy

characteristic length of the velocity field in a constant-
densicy flow

characteristic length of the velocity field in a variable-
density flow

characteristic length of the temperature field in a variable-
density flow

Mach number

pressure

heat-flux vector

gas consgtant
temperature

total temperature

time

velocity components in constant-density flow
velcocity components in variable-density flow
coordinates in the constant-density field

coordinates in the variable-density field




[' = mags concentration
¥ = ratio of specific hcats
8 = momentum diameter

6, = energy thickness

p = density

2
o = L

J12

T
11] = ghearing stress tensor
Subscripts

¢ = along axis

o = characteristic value (u ® u - u )
o ® c

1 = jec exit

o = condftions outside of shear layer




I. lntroduction

The mean velocity field in constant-density, free turbulent shear
layers can be quite satisfactorily predicted using a phenomenological
approach (especially if the effect of intermittency is included). Such
an approach assumes a turbulent exchange coefficlient (or turbulent vis-
coslty) that ie constant across the shear layer. In a variable-density
layer, however, where the Reynolds stresses depend on the density, such
an assumption 18 clearly unsatisfactory. This fact constcitutes one of
the main difficulties in formulating this problem. The present paper
suggests a method that overcomes this difficulty.

In the past, an appropriate transformation has been applied, with

reascnable success,1'2'3’4

to laminar, compressible shear flows, relat-
ing them to the incompressible case. This approach has also been used
for turbulent flows. In fact, there is a large body of literature in
which compressible, turbulent-flow problems are treated by the adoption

of a Dorcdnitsyn type of scaling -- as used in the lam{nar case --

and of some rather arbitrary assumptions concerning the compressible,
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turbulent-transport terms. The first of these attempts was made by
Hager.5 The only systematic attempt to find a suitable transformation
was made by Colea6 for the turbulent boundary-layer problem. Inciden-
tally, in almost all cases examined by these authors, attention was
focused on an incomplete form of the equations of the mean motion.

In formulating the problem at hand, it is appropriate to inquire
first whether in fact the application of a relatively eimple kinematic
transformation of the Dorodnitsyn type is reesonable for turbulent flows.
The following observations are pertinent with regard to this point:

(1) Although reliable experiments in variable-density flows are
still few in number, there is reasonable evidence that the structure
of the turbulent vorticity field is not altered significantly in the
precence of density or temperature fluctuations. This suggests that
intersction between the vorticity and entropy (or concentration) modes
is probably not strong, even in flows of moderate Mach numbers. Indeed,
Chu and Koviaznsy7 have shown theoretically that { a homogeneous field
these interactions are of second order.

(2) The mean conservation equations indicate that the wmwomentum
and energy equations are coupled primarily through the spatial and
temporal variations of the denmsity and the transport properties of the
gao-s For the case of free shear layers, in which the direct effects
of the Reynolds and Prandtl numbers are negligible, at least for wmoder-
ate Mach numbers, the main ¢ 1pling occurs tarough the density varia-
tion only.

These remarks suggest that an attempt to z2ek a kinematic trans-
formation that would decouple the momentum and energy equations is a

reasonable approach to the problem.
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The present paper first rederives the meen momentum and energy
equations for a variable-density turbulent flow in a form most conve-
nient for comparison to the constant -density case. In this derivation
the turbulent transport terms are generated from the nor.linear conve¢-
tion terms, using & time-averaging procedure. These nonlinear terms,
furthermore, are known to be amenable to the Dorodnitsyn-Howarth type
of transformation uss. in laminar flows. It is clear that past diffi-
culties in applying such a transformation to turbulent flows arose from
the time-averaged value of these terms. This suggests an alternative
approach, in which the Dorodnitsyn-Howarth-Moore transformation is ap-
piied to the time-dependent equations of motion and the time-averaging
procedure {s subsequently carried out with the introduction of certain
approximations, & method that allows the recovery of the incompressible
Reynolds equations. This result implies that if the mean velocity field
in a constant-deusicty flow ig known, the corresponding variable-density
field can be cal:ulated without the introduction of a hypothesis con-
cerning the compressible turbulent viacosity. We invoke only the clas-

! sical analogy between the turbulent momentum and heat or mass transfer.

Using this procedure, calculations made for several shear flows indi-

cate good agreement with experimental observations.

Il. Preliminary Remarks

The conservation equations for a viscous, compressible fluid may

be written in the following form:9

P
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. P
| B4 =0 (0

)

du, 2q
aph 1 . 9P 3p ] 'k
at * ax at + uj axj + Tjk Bxk axk )

We next decompose the various flow quantities into a mean and a fluc-
tuating component, following Reynolds. We will assume that the pres-
sure-fluctuation level p’/p is small compared to that of the velocity.
Such an assumption is reasonable in flows i{n which the amplitude of
the velocity fluctuations is small compared to the velocity of sound;
; this condition is satisfied in flows of moderate Mach number. A more
l detailed discusaion of this point is given by Klstler-lo

In introducing the velocity and temperature perturbations we choose

a mass weighted average, following the suggestion of Horkovin2 and !‘avte-11

i Thus,
' u = T+, p = P+op! ()
1 where
g = EE
u 5
3 (s)

and p 18 the conventional time average. It follows that

i u =0 and P =0 (6)

e G B A ESSEER i S S 2t

D e = ik s = = = s Sl Sy
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Similarly, we write

T = T4+ 7' (7)
where
ffgﬂ (8)

Substituting Eqs. (4) and (7) into the perfect gas law
P = RpT 9)
(we restrict the problem to this case) one obtains, after averaging,
p = RPT (10)

which retains the form of the perfect gas law. Substituting the per-
turbations into the conservation relations, averaging, and using bound-

ary-layer approximations, one obtains the following equations:

U | Y

3u 4 28 0 (11)
=3, == 3% .  3puy”
Pigy v E, - - (12)
- ~-. 3T Yes e
u%+pva—.§ - . 2elv (13)

(The molecular viscosity and heat conductivity terms, as well as the
mean pressure gradients, have been neglected.)
The advantages of using mass weighted averages can be readily

seen. First, the continuity equation does not have a source term; sec-

ond, the Reynolde and energy equations retain their forms corresponding

i

sl ihina.
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to the incompressible cese. 1t is further seen that the momentum and
energy equations are coupled only through the density. Thus, a coordi-
nate transformation involving the density immediately suggests itself.
In fact, since the convective terms have the same form as those for
laminar flows, many authors have applied to the former a transformation
used for the laminar case, as discussed in the Introduction. The tur-
bulent transport terms, however (since they contain a variable density),
cause a basic difficulty in applying the transformation.

The main purpose of this paper is to devise a method to overcome
this difficulty. Our method takes advantage of the fact that the tur-
bulent transport quantities arise from the nonlinear convective terms,
vhich are amenable to the Dorodnitsyn type of coordinate transformation.
This fact immediately suggeats that the transformation should be applied
not to the time-averaged Reynolds equations, but to the nonstationary
conservation Bqs. (1) and (2). The perturbations are subsequently in-
troduced i{nto the transformed uquations end the averaging procedure is
carried out. The turbulent-transport terms generated by the averaging
prccess sre found to be indeed independent of the local density.

For subsequent calculations it {s useful to introduce some well-
known integral relations of the above equations. By integrating Eq.

{11) with respect to y, one obtains the momentum integrsl relation

%; r Pi(i - U) dy = 0 (14)

vhere U_ 1is the velocity outside of the shear layer. Integrating with

respect to x, we obtain
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[ BG(UQ -u)dy = const. & D (15)

where D corresponds to the wake drag on & body for a wake flow or to
the momentum flux through an orifice for a jet flow.

A similar relation {8 obtained from the thermal energy equation

I pu(T - T ) dy = const. = E (16)
-
where CPE is the excess enthalpy flux in the wake and that at the ori-

fice exit for a jet flow. Since a constant pressure ficld is assumed,

Eq. (16) can be rewritten in the following form using relation (10):
an . T @ o pm
T, I pu (T- - 1) dy = T_ J fu (3— - 1) dy
- o -

and therefore

-]

T, | (e, - by ey =k (17)
Another useful integral relation may be obcalned for the mean ki-
netic energy flux. If the momentum equation (12) is multi .'od by U

and i{ntegrated with respect to y, one obtains

® S ® - e d
L -‘.-., pIG - Ul dy = 2 J-,, (w, - O B gy (18)

I11. The Formul Transformation

As discussed in the Introduction, we are seek!ng a transformation

that would eliminate the density variation iu the conservation equations
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for mass and momentum. To this end we introduce the following trans-

formed coordinates:

X = x (19)

y
P I(%,y,2,t) = r p(x,y,2,¢) dy (20)
Z = z (21)

Mext, we choose velocity components in the transformed plane (say,
the intompreseible plane) that satlsfy the zero-divergence conditions.
This may be accomplished by *"2 folimuing relations

A

U = u (22)
% = 'ﬂ ‘é,‘_f a_a_Y, ;
H o= w (25)

Substituting these expresslong into the continuity egration (1) and

the X-caponent cf the wmomentun eguation, cnhe obtains

¥ A1
HrEeE - (29)

au , av® | auv , aw - 26
S Yy T + 52 vigLous cetn? (26}

New we introduce the following parturbations:

U, Y,z,e) = Bx.D) 4 UK, 2000 (27}
SR T s ST dm e nTrmeen s s s ches IR ety - eematiece . L

SR A LA T S o oy = i imem s L _
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V(X,Y,Z,t) = V(X,Y) + V[X,Y,X,t] (28)
w(x,Y,z,t) = w'x,v,z,t] (29)
Y(x,y,z,¢) = Y(X,)’) + Y'(x,y,z,t) (30)

Here the bars denote time averages, whence by definition
U = Vo= W o= Y = o0 (31)

When expressions (27) to (30) are substituted irnto Eqs. (25) and (26)
and averaging is carried out, terms of the form 3¢/3Y will arise, where
¢ denotes a velocity component or products thereof. Since both ¢ and
Y are random functions of time, the mean value of their derivative
shown above ig difffcult to determine. Lacking adequate statistical

information concerning these functions, we shall assume that

(32)

=12
2

=als)
]

=1 4

1
To clarify the ifmplication of such an approximation, consider the
transformed form of ¢, say, =(x,v,z,t}; then for the two-dimensional

case using Eq. (20),

v — P
(3—3) = (2—‘3%% - %—‘ﬁp—“ (33)

In a single-component system, for instance, p /P = T/Tm; hence

(avl 3y T, " % T (34)

Thie procedure was suggested to the author by Dr. Y. H. Pao.




On the other hand,

¥, Wy . XHI
oY 3y af dy T,
- -
oy T (35)

JEPEICR SR

Thus the approximation (32) implies that the correlation between the

Lo 2

fluctuations of the temperature and velocity gradients i{s neglected.
Whether this is justifiable can only be established experimentally.
Under these assumptions the time-averaged forms of Eqs. (25) and

(26) become, using a boundary-layer type of approximation,

ggef g; -0 (36)
aﬁz + _B_W_ 2 T +
i IR 7] viscous terus 7

This, of course, is the incompressible form of the mean flow equations.

It is seen, therefore, that under the assumption expressed by Eq. (32),
the compressible Reynolds equation may be transformed into the incowm-
preassible form for free shear flows with a constant pressure field.
This implies that the transformation (19) to (24) provides a weans of
obteining the velocity distribution in a varisble-density shear flow.
According to Eq- (22) the axisl component of the velocity profile is
in fact identical to that of the corresponding constant-density flow,
provided that the lateral coordinates are appropriately stretched in
accordance with Eq- (20). To carry out the cocrdinate transformation,

on the other hand, we need to know the density (or temperature) distri-
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bution. The latter way be obtained by assuming the classical analogy
betv.een momentum and mass (or heat) transfer, thereby introducing a
turbulent Prandtl number or & ratio between the characteristic length
scales of the two processes. The only undetermined constant in the
foregoing method 18 connected with the virtual origin of the shear flow.
Conditions preceding the development of turbulent ahear flows are gener-
ally complicated, especially if a laminar-to-turbulent transition is in-
volved. However, this problem 1s beyond the scope of the present paper.

Since many applications involve an axisymmetric geometry, the fore-
going analysis has been carried out for this case also. Although the
general conclusions are the sawe, several additional points should be
noted.

The coordinate transformation appropriate to an axisymmetric geom-

etry is

X = «x (197)
1,2 _ d :
5 PX (x,y,9,8) = | o(x,y,v,t)y dy (20°)
Y = - 219

where y and ¢ are the radial and azimuthal coordinates, respectively.
The velocity components in the transformed plane will have the follow-

ing form:

U = u (22)
] 2,y 24, ¥ 3Y) :
o VY pvy + o Y (a: tUSS YT N (237)

W on % w (24"
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Substituting these expressions into the appropriate forms of the non-
stationary compressible-continuity and axial-momentum equations, &nd
following the same steps and assumptions described above, one recovers

the incompressible form of the conservation equations.

IV. Applications

In Section III it was shown that by use of the transformations
(19) to (24) the flow field in a variable-density turbulent shear flow %
can be calculated, provided the velocity distribution in the constant- |
density case is known and an assumption is made concerning the turbu-
lent transport of heat or mass. This assumption can take the form
either of an empirical value of the turbulent Prandtl (or Schmidt)

number, or of a ratio of two length scales, { and £_,, corresponding

T
to the characteristic scales for the momentum and heat (or mass) trans-
fer, respectively. These conclusions will now be applied to two types

of shear flows, the axisymmetric jet and the wake, and the results

compared with experimental evidence.

It is well known that for incompressible shear flows, simple inte-

T

gral techniques can predict (except for an undetermined constant) the

apreading rate of the turbulent zone and the streamwise variation of
the velocity field without the introduction of any phenomenclogical

turbulence theories. This approach will be used here.

The Circular Jet

Experiments indicate that both the mean velocity and mean temper-
ature in & varisble-density jet are self-preserving except near the

4 jet exit (see Ref. 20, p. 170). Thus, one may write
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T - T&*'Tog (AL')
T

Here u, is tiue characteristic: (or center} velocity and To = TC - T

(38)

(39)

Ladl

(the difference between the temperature at the jet's center and the

reference temperature just outside of tiue turbulent zone). The char-

acteristic length ¢ is defined by the following integral:

e De@ie -

(40;

The reistion betweer £ and £, will be discussed latex.

T

The momentum integral corresponding to (15) for a circular jet

has the following form:

o

2n J Sﬁzy dy = pluiA = congt.
)

The subscript 1 corres»onds tn the known cenditions

and A 18 the jet arez. Applying the transfc aation

{41) becomes
w32 (7 F & - ot
or
Ei.l W G G
Uf 2 P, 8 L2 12

(41)

at the jet exic,

(20) and (22), Eq.

(42)

(63)

oo L
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where

e2

mln.

)
1
E 3: (44)

Note that the momentum diameter 6 is the proper reference length of the
problem, as pointed out by Kleinutein-lz In Bq. (42) we ueed the self-

preserving condition
u Uc? (L (45)

where L is the characteristic length of the constant-density jet and,

again,

-
=)
n
8
~
=<}
\!/
i<
!"Ti-(l
| ]
—

(46)

Similarly,

(47)

()
~
"
—
g
~N
fad ko]
o

The traneformed kinetic-energy integral (18) bacomes, for a ciz-

cular jet,

d (M= = TSV Y o
Ex'foﬁ“ -zjou T o (48)

Assuming now that the Reynolds wvtresses algo follow a self-preserving

distribution, so that

TV - uﬁc @) (49)
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Equation (48) simplifies to

d =32 -
& 0Ly - -2 T (30)
where
o - - - .
- 1Y ¥ . (i \' X
I, = [O" L% and I, = .[0 t¢) % (51)

%zax—"z T3 (52) ]

ul - 2 Ievr; X - xo (53)
1A I, 9

- 0-052* (55)

L 1

This value corresponds to one given by Hinze, 3 based on the exper-
imente of Ven der Hegge 21jnen,1“ if the fact that pllpo = .91 for these

sxperiments {s taken into account. 1t is also consistent with Corrsin

and Uberoi's measurements, where Dllp_ = 95,15
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The value of Xo depends on the flow conditions at the nozzle exit, as

discussed in Section IIL1. In low-speed flows, however, this value is

small compared to the value of X at which self-preservation begins, and
can generally be neglected. A good approximation to the values of the
definite integrals 12 and 13 may be obtained by assuming a Gaussian
distribution for F(Y/L); then 12 = 1/2 and I3 = 1/3. Such an agsump-
tion is of course unnecessary if one solves the equations of motion di-

rectly using a phenomenological approach. Thus, the solution for the

incompressible problem has the form

U1 X - xo
ﬁ- = 0'052._6—_ (56)
[
3
i L X - X,
g = 0.073 —— (57

for values of X sufficiently large that self-preservation holds. Using

now the transformation (19) and (22), we can rewrite Eq. (56) for a var-

iable-density jet as

Ul x - xo
:: - O-OSZ-T— (58)

The characteristic length £ is related to L through the coordinate
stretching given by Eq. (20). This, in turn, depends on the density

variation. To obtafin the density (or temperature) distribution, we

need some knowledge of the turbulent heat-transfer mechanism. I1f we
assume that the mechanism £s the same as that of the momsntum transfer,

then the governing Eqs. (12) and (13) have the same form and g(y/t) =
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f(y/L) for similar boundary conditions. Experiments with conventional

averaging methods show, however, that the charscteristic length f.z

the normalized temperature distribution is larger than that for the

velocity. Thus, letting o = Lzlti,

g (%ﬁ) =t (f) (59)

Assuming a Gaussian distribution, this becomes

@) - )

From the energy integral (16) applied to the axisymmetric case we ob-

tain
2n I BPA(T - T )y dy = p,U(T - T)A = const. (61)
[+]

or, using Eqs. (38}, (39), and (60),

~ ~ 2

P Ul T, - o T o, 8 e2
ei_ T, - T,
3 = T (63)
e -

where 9% is the "energy thickness" of the jet. Applying the transfor-

mation (24) to the integral in BEq. (62), we obtain

2
] ] Lp
- o+l = 12 I gtl Y Y ®
Io pE y dy L Py . ) 4 df e (64)

[

b e bt




I TR

-20-
Therefore Eq. (62) becomes
= 2
T 8- 21U
2= 35L e+ (65)
© 9 L uc
or, using Eqe. (57) and (58),
fc - To To 6; 8
T | 3 i‘- s §,7 (q+1)-e-2-;-:--x- (66)
@® @ [+]

A similar expression can be obtained for the total temperature decay
and concentration decay, since both are governed by an integral equa-

tion similar to Eq. (17). Thus

TTC ) TT«: 9.7 (o + 1) TTI ) TTO [:] (67)
- . i
TT@ TTQ X - xo
and for the mass concentration at the jet's center, ve have
I = 9.7 (@+1) T, s (68)
c 1X - xo

where Fl is the mass concentration at the orifice exit (the concentra-
tion is taken as zero in the ambient field).

Finally, in order to obtain the spreading rate of the jet, we use
the alternate form of the energy integral [Eq. (17)] spplied to the

axisymaetrical case:

2nT_ _f i, - P)y dy = £ U (T, - TOA (69)
o

ke bt

R s it s . e i i
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or
2 % Im 4 (S S QR 70
‘E;ofz‘%'l‘ul,[oyx.di T (70)

2
1'2 e,r 92 Ul
-1 =~ 55= (71)
L 8¢ L® Y.

2 T
2 - 1 o
I S & (72)
L @
2
2]
T &
-9'7;2-)(-)( (73)
°
or, using Bq. {57),
12 3x-xc’z zeix-xo
;— = 5.3 x 10 —6—-) + 5.2 x 10 ;3—-5——- (74)

It is seen in Eq. (74) that a varicble-density jet does not spread lin-
early. However, unless the "energy thickness" is large, the nonlinear
term is negligible in the self-preserving region of the flow.

Bquations (58), (66), and (72) completely determine the fiow fiuld.
The only "sdjustable" constant 1is Xy which could be estimated by con-
sidering the mixing zone and the potential cone near the nozzle exic.
1nstead, however, we shall choose the value of L using Eq. (72), that

gives the bast agresment with experimental resulca. Equations (58) and

TR
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(66) can then be unambiguously compared to measurements. Ln all cal-
culations we use o = 0.64, the value obtained from the measurements of
Corrsin and U'beroi.l5

In Fig. 1 the measurements of several investigators are shown.

The supersonic jet experimente of Egser516 and Johannescn17 extend
well beyond the self-preserving region of the jet, and the virtual
crigin was easily determined. Only two sets of Harren'l18 data are
reproduced; his other subgonic measurements show similar trends, where-
a8 his supersonic ones do not extend far enough in the self-preserving
region to be usable. The selected values of xole are indicated on the
figure; the origin of the abscissa was shifted for clarity.

Figure 2 shows the center velocity decay. The solid line corre-
sponds to Eq. (61). It is seen that the agreement with the experi.
ments is quite satisfactory.

In Fig. 3 the center-temperature defect is plotted against the
axial-distance parameter 92x - xo/eie. The solid line corresponds to
Eqe. (66), (67), and (68); in all cases o = 0.64. Also shown are the
static temperature measurements of Corrsin and U‘oerol,15 the total
temperature data of Harren18 and the results of Keagy and weller19
obtained in & helium jet. (Eggers and Johannesen did not take tem-
perature data.) Although these experiments are comparatively crude
(the ratio of probe to jet width is large), they are of interest be-

cause of the large density ratio pa/pl- The agreement between the

analysis and the measurements is again satisfaccory.
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The Axisymmetric Wake

It is well known that for wake-like flows, self-preservation oc-
curs only 1f the characteristic velocity Go (the centerline velocity

defect) is small compared to the free-stream velocity. Thus,

T

u
5 e u -G z) 2
u u, uof (‘ for 5 << 1 75)

Under this assumption the temperature distribution is also self-

; similar, having the form given by Eq. (39).

In the constant-density case, Townsend has already shovnzo that
} the velocity defect and wake szreading are given by the following
equations, neglecting terms of the order (BO/UQ)Z:
v AN 2/3 X - X 2/3
B o chip o 76)
7 T 3 ¢
o 2
i
a1 1/3 X - X 1/3
&.(G)(é°) 7
e 1112
Here the reference length € i{s defined as
2 CDd2
8 E 6 (78)

CD being the wake drag coefficient of the body. The integrals 11. 12.

and I_ are given by Eqs. (40), (47), and (51).

G

, There are very few experimental results avallable for the incom-

pressible, axisymmetric wake. It 18 thus difficult to obtain a reliable
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value for the constants in Eqs. (76) and (77). One observation, how-
ever, should be made using the results. According to Reichardc,21
thease constants differ with the shape of the body counsidered. For in-
stance, the spreading rate of a sphere 1s higher than that of a cylin-
drical body (with its axis in the flow direction). One should there-
fore be careful in comparing constant- and variable-density wake flows.

For the case of a cylindrical body, Hall and Hislop22 obtained

experimentally the velue20

)

i—ﬁ - 14.1 (79)

G 1

Unfortunately, since their measurements have been carried out only to
about seventeen diemeters downstream of the body, where self-preserva-
tion i8 not yet completely achlieved, the above value might be scmewhat

high. Using the value in Eq. (79) and with Il E 1, Eqs. (76) and (77)

£ becowe
td

| U¢ X - xo 2/3
‘ -U'- = .36 (‘—6-—- (80)
‘ )
!
L X - xo 1/3
g - .60 (*T—- (81)

For the variable-density wake, Eq. (80) retains its form, and tie
decay of the characteristic temperature can again be calculated from

the energy integral. Accordingly,

;m [FaE - 1)y ay = B = 2melout, (82)
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By using arguments similar to those for the jet problem, we may write

- T, u_ - i
-z ( = ) (83)
so that Eq. (82) becomes

~2r" oY Y _ .2
5 T L ! w_ - Uor)r T 97 glu T (84)

Towo

This simplifics to

2
To eT 92 1
£ om0y — (85)
o 8" L 1 g__o
"o+l u_

where again a Gaussian distribution has been assumed for the velocity

profile.

To express the "energy diameter” in terms of free-stream condi-
tions, one assumes that all the kinetic energy loss in the wake, zs
indicated by the momentum defect, is transformed into hest. Thus,

using Eqs. (15), (78), and (32), we obtain

by = E (86)

or
2 2
2"%”’:9 = 2mpUC T 6y (87)

This gives
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=< = (v - M (88) Z
8 ?

Substituting this expression into Eq. (85) and using Eqs. (80)

and (81), one obtains

-2/3

2(* " % 1 89
- 2.8a(y - m@( = L "o)'m (89)

I'H(‘T"

'Hio'-ll

8
+
From the uxisymmetric form of Eq. (17) we again obtain the width

of the jet:

0 -3
ZHTQUw Io (pan - p)y dy - 2nT°pmu° Io fy dy

soms | thydy = amedpuct (%0)
.o.o T'®e o
But since
T
b - P = 6;‘3{"‘ (91)
o«

 § u u
l "o ,2 o ,2 o .2 2
- e 1% L e A b e L - e (92)
* ¢ r- ua u. T

2 T
L - Lt__0
7 ! g+1T (93)
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With Eqs. (80), (8l), and (85) this finally becomes

2 x - x12/3
£ o g 2 1
X x .36 ( ) + (v - 1M (94)
e2 6 o+ 1 | 2.80 (¥ %o -2/3
"o+ 1

23 {n

These results are compared to the measurements of Demetriades
Fig. 4. Since Demetriades presents his data in terms of x - X Eqs.
(80), (89), and (93) can be directly related to the measurements.

Ageln o = 0.64 was used for the computations. The agreement between

the present analysis and the experiments is acceptable.
V. Conclusicn

The analysis carried out in this paper indicates that with the
use of & sulitable transformstion it is possible to predict with rea-
sonable accuracy the mean velocity and density (or temperature) field
in a variable-density shear layer, once the velocity distribution in

the corresponding constant density layer is known.

Two explicit results follow from the transformation:

(1) The characteristic velocity of a self-similar shear layer
18 a function of the nondimensional coordinate x/8 only, irrespective
of the density variation in the flow. Here 6 is a reference length
defined Ly the momentum integral equation.

(2) The ratio of the width of a variable-density layer to that
of the corresponding constant-density layer can be expressed explicit.
1y in terms of the local maximum temperature (or concentration) differ-

ence. For axially symmetric geometriee, this has the form




———

S e i e S !
1=
-31-
1
f
0.7
Q= 'fo/Tm
06 o O =3°/UQ ’{_:
5 o s£/8
05 |
04 |-
~3 :
x:"':a 03 - '
. :
#h® oL
o1 |
0 1 | 1 | | |
o 50 100 150 200 250 300 350
X-xo/8
Fig. 4—Axisymmetric wake, Comparison with measurements
of Demetriades, (Mg = 3,0)




-32-

-l-z.- = 1 + 1 ?—2
LZ a+ 17T

There are several obvious limitations of the method:

‘1) A constant pressure field is assumed. This assumption might
be relaxed -- at least for certain types of pressure gradients -- {f
a more sophisticated transformation were used.

(2) The early stages of the shear-layer development cannot be
treated, especially Lf a laminar-to-turbulent transition occurs. One
is then forced to assume a "virtual origin" for the shear layer.

On the other hand, the proposed method opens new possibilities

for the analysis of compressible, turbulent boundary layers.
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