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PREFACE

The purpose of this paper is to show that the turbulent field in

a variable-density shear layer is equivalent to one of a constant-

density layer i, which the lateral dimension becomes a random func-

tion of time. The results of this study can be applied to the inter

pretation oi lzboratorjr and range data of compressible wakes. This

study is parze of RAND's tiork for ARPA on the basic properties of re-

entry wakes. The author is Professor of Aerospace Engineering at the

University of Southern California and a Consultant to The RAND Corpo-

ration.

J.6a



ABSTRACT

The paper is concerned with the calculation of the mean flow

field of free turbulent layers of variable density. It is shown that

if the velocity distribution in a particular constant-density flow is

known, it is possible to obtain the corresponding variable-density ve-

locity field without the introduction of a compressible turbulent

("eddy") viscosity. This is accomplished by a Dorodnitsyn-Howarth

type of transformation applied to the time-dependent rather than to

the mean equations of motion, as was done in the past. When the trans-

formed equations are averaged, using Reynolds' method, the incompres-

sible turbulent equations f3r the mean flow are obtained. These equa-

tions can then be handled by conventional methods. It is shown that

the predictions obtained by this procedure agree well with experimen-

tal results.
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LIST OF SYMBOLS

C - specific heatP

D - drag or thrust force

d - diameter (of a jet or of a body)

f(Y) = self-preserving velocity function in a variable-density field

g f.-) a self-preserving temperature function

h - enthalpy

L - characteristic length of the velocity field in a constant-

density flow

I - characteristic length of the velocity field in a variable-

density flow

iT  = characteristic length of the temperature field in a variable-

density flow

H - Mach number

p - pressure

qk a heat-flux vector

R = gas constant

T a temperature

TT = total temperature

t - time

UV,W - velocity components in constant-density flow

u,vw - velocity components in variable-density flow

X.Y,Z - coordinates in the constant-density field

xy,z - coordinates in the variable-density field
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r - mass concentration

- ratio of specific hLats

- momentum diameter

T " energy thickness
T

p = density

t2

2
tT

ij" shearing stress tensor

Subscripts

c - along axis

o - characteristic value (u U u -u
0 c

I - jet exit

* M conditions outside of shear layer

Li
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I. introduction

The mean velocity field in constant-density, free turbulent shear

layers can be quite satisfactorily predicted using a phenomenological

approach (especially if the effect of Intermittency is included). Such

an approach assumes a turbulent exchange coefficient (or turbulent vis-

cosity) that is constant across the shear layer. In a variable-density

layer, however, where the Reynolds stresses depend on the density, such

an assumption is clearly unsatisfactory. This fact constitutes one of

the main difficulties in formulating this problem. The present paper

suggests a method that overcomes this difficulty.

In the past, an appropriate transformation has been applied, with
1,2,3,4

reasonable success, to laminar, compressible shear flows, relat-

ing them to the incompressible case. This approach has also been used

for turbulent flows. In fact, there is a large body of literature in

which compressible, turbulent-flow problems are treated by the adoption

of a Dorodnitayn type of scaling -- as used in the laminar case --

and of some rather arbitrary assumptions concerning the compressible,
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turbulent-transport terms. The first of these attempts was made by

Mager.5 The only systematic attempt to find a suitable transformation

was made by Coles6 for the turbulent boundary-layer problem. Inciden-

tally, in almost all cases examined by these authors, attention was

focused on an incomplete form of the equations of the mean motion.

In formulating the problem at hand, it is appropriate to inquire

first whether in fact the application of a relatively simple kinematic

transformation of the Dorodnitsyn type is reasonable for turbulent flows.

The following observations are pertinent with regard to this point:

(1) Although reliable experiments in variable-density flows are

still few in number, there is reasonable evidence that the structure

of the turbulent vorticity field is not altered significantly in the

prepence of density or temperature fluctuations. This suggests that

interhction between the vorticity and entropy (or concentration) modes

is probably not strong, even in flows of moderate Mach numbers. Indeed,

Chu and Kovasznay have shown theoretically that i a homogeneous field

these interactions are of second order.

(2) The mean conservation equations indicate that the momentum

and energy equations are coupled primarily through the spatial and

temporal variations of the density and the transport properties of the

8
gas. For the case of free shear layers, in which the direct effects

of the Reynolds and Prandtl numbers are negligible, at least for moder-

ate Mach numbers, the main ci ipling occurs through the density varia-

tion only.

These remarks suggest that an attempt to tek a kinematic trans-

formation that would decouple the momentum and energy equations is a

reasonable approach to the problem.I



The present paper first rederives the metn momentum and energy

equations for a variable-density turbulent flow in a form most conve-

nient for comparison to the constant-density case. In this derivation

the turbulent transport terms are generated from the nor.linear conve¢-

tion terms, using a time-averaging procedure. These nonlinear terms,

furthermore, are known to be amenable to the Dorodnitsyn-Howarth type

of transformation use- in laminar flows. It is clear that past diffi-

culties in applying such a transformation to turbulent flows arose from

the time-averaged value of these terms. This suggests an alternative

approach, in which the Dorodnitsyn-Howarth-Moore transformation is ap-

plied to the time-dependent equations of motion and the time-averaging

procedure is subsequently carried out with the introduction of certain

approximations, a method that allows the recovery of the incompressible

Reynolds eqLiatiojis. This result implies that if the mean velocity field

in a constant-dettsicy flow is known, the corresponding variable-density

field can be cal,-ulated without the introduction of a hypothesis con-

cerning the compressible turbulent viscosity. We invoke only the clas-

sical analogy between the turbulent momentum and heat or mass transfer.

Using this procedure, calculations made for several shear flows indi-

cate good agreement with experimental observations.

.I. Preliminary Remarks

The conservation equations for a viscous, compressible fluid may

be written in the following form:
9
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6 Pu
P- 0(1)

+ + L k (2)

axkk

pu h apu+ q~pt + x " p +' U x .k k -- (3)

We next decompose the various flow quantities into a mean and a fluc-

tuating component, following Reynolds. We will assume that the pres-

sure-fluctuation level p'/p is small compared to that of the velocity.

Such an assumption is reasonable in flows in which the amplitude of

the velocity fluctuations is small compared to the velocity of sound;

this condition is satisfied in flows of moderate Mach number. A more
10

detailed discussion of this point is given 
by Kistler.

In introducing the velocity and temperature perturbations we choose

a mass weighted average, following the suggestion of 
Morkovin 

2 and Favre.
1 1

Thus,

u - i+u', p " +p' (4)

where

and 0 is the conventional time average. It follows that

pu -0 and p7 -0 (6)
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Similarly, we write

T - + T' (7)

where

T (8)

Substituting Eqs. (4) and (7) into the perfect gas law

p = RpT (9)

(we restrict the problem to this case) one obtains, after averaging,

p - RPT (10)

which retains the form of the perfect gas law. Substituting the per-

turbations into the conservation relations, averaging, and using bound-

ary-layer approximations, one obtains the following equations:

+ 0 (11)

-aa - __ __ TU_-

__ rx vuv B (12)

U-g- + PV .

(The molecular viscosity and heat conductivity terms, as well as the

mean pressure gradients, have been neglected.)

The advantages of using mass weighted averages can be readily

seen. First, the continuity equation does not have a source term; sec-

ond, the Reynolde and energy equation3 retain their forms corresponding



I

-8-

to the incompressible case. It is further seen that the momentum and

energy equations are coupled only through the density. Thus, a coordi-

nate transformation involving the density imnediately suggests itself.

In fact, since the convective terms have the same form as those for

laminar flows, many authors have applied to the former a transformation

used for the laminar case, as discussed in the Introduction. The tur-

bulent transport terms, however (since they contain a variable density),

cause a basic difficulty in applying the transformation.

The main purpose of this paper is to devise a method to overcome

this difficulty. Our method takes advantage of the fact that the tur-

bulent transport quantities arise from the nonlinear convective terms,

which are amenable to the Dorodnitsyn type of coordinate transformation.

This fact immediately suggests that the transformation should be applied

not to the time-averaged Reynolds equations, but to the nonstationary

conservation Eqs. (1) and (2). The perturbation. are subsequently in-

troduced into the transformed uquation and the averaging procedure is

carried out. The turbulent-transport terms generated by the averaging

process are found to be indeed independent of the local density.

For subsequent calculations it is useful to introduce some well-

known integral relations of the above equations. By integrating Eq.

(11) with respect to y, one obtains the momentum integral relation

af U ) dy - 0 (14)

where U is the velocity outside of the shear layer. Integrating with

respect to x, we obtain
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." (U - )dy - conit. D D (15)

where D corresponds to the wake drag on a body for a wake flow or to

the momentum flux through an orifice for a jet flow.

A similar relation is obtained from the thermal energy equation

j (T-T) dy - const. - E (16)

where C E is the excess enthalpy flux in the wake and that at the ori-P

fice exit for a jet flow. Since a constant pressure field is assumed,

Eq. (16) can be rewritten in the following form using relation (10):

T ( 1) dy T 1) dy

and therefore

Ta b (P- P) dy - E (17)

Another useful integral relation may be obcained for the mean ki-

netic energy flux. If the momentum equation (12) is multi, 'ctd by

and integrated with respect to y, one obtains

d . ( U )2 dy - 2 (U - U) y dy (18)

II. The Formal Transformation

As discussed in the Introduction, we are seek!ng a transformation

that would eliminate the density variation in the conservation equations
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ior mass and momentim. To this end we introduce the following trans-

formed coordinatest

X i x (19)

pMY(xPy,z,t) = p(x,y,z,t) dy (20)

Z =z (21)

Next, we choose velocity components in the transformed plane (say,

the in:omprmseible. plan*) zhat ea'.sfy the zero-divergence conditions.

This moy be ;ccompl1shed by t' fllnuing relations

U'u (22)

Vp + V ay 6 (23)

W (24.)

SubstitutF.ng these expressions into the continuity eqtation (1) and

the X-ermp,-nent c the momentum equatLon. one obtains

L V 6W
rx+I Z 0. (25)

au aU v ~UV
+ + 1- + - visu.soUS ,err, (26)

New we intrudce the following perturbations;

U(X,Y,zt) - O(x.A) + U'[X'X,'ZtI (2)

FL
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V(X,YZt) * V(X,Y) + vflxy,x,tl (28)

W(XpY,zt) - w'[x,y,z,t] (29)

Y(xyzt) - Y(xy) + Y'(x,y,z,t) (30)

Here the bars denote time averages, whence by definition

-T7 * 7 - = -V 7  0 (31)

When expressions (27) to (30) are substituted irto Eqs. (25) and (26)

and averaging is carried out, terms of the form Wa/ y will arise, where

denotes a velocity component or products thereof. Since both I and

Y are random functions of time, the mean value of their derivative

shown above is difficult to determine. Lacking adequate statistical

information concernini these functions, we shall assume that

Tt Tf- W a (32)

To clarify the implication of suach an approximation, consider the

transformed form of t, say, ,o(x,y,z,t); then for the two-dimensional

case using Eq. (20),

() a L .(33)

In a single-component system, for instance, pi/P - T/TO ; hence

P yT+~ (34)Te uge Te By T

TThis procedure was suggested to the author by Dr. Y. H.o Pao.
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On the other hand,

ay a 87~ ay T,,

zy T (35)

Thus the approximation (32) implies that the correlation between the

fluctuations of the temperature and velocity gradients is neglected.

Whether this is justifiable can only be established experimentally.

Under these assumptions the time-averaged forms of Eqs. (25) and

(26) become, using a boundary-layer type of approximation,

Tx+ -6 0 (36)

8"-2 +  
-a - T U + viscous term (37)

This, of course, is the incompressible form of the mean flow equations.

It is seen, therefore, that under the assumption expressed by Eq. (32),

the compressible Reynolds equation may be transformed into the incom-

pressible form for free shear flows with a constant pressure field.

This implies that the transformation (19) to (24) provides a means of

obtaining the velocity distribution in a variable-density shear flow.

According to Eq. (22) the axial component of the velocity profile is

in fact identical to that of the corresponding constant-density flow,

provided that the lateral coordinates are appropriately stretched in

accordance with Eq. (20). To carry out the coordinate trAnsformtion,

on the other hand, we need to know the density (or temperature) distri-

- ~ -- ---- --- ---~~- -.-. - -
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button. The latter may be obtained by assuming the classical analogy

betc;een momentum and mass (or heat) transfer, thereby introducing a

turbulent Prandtl number or a ratio between the characteristic length

scales of the two processes. The only undetermined constant in the

foregoing method is connected with the virtual origin of the shear flow.

Conditions preceding the development of turbulent shear flows are gener-

ally complicated, especially if a laminar-to-turbulent transition is in-

volved. However, this problem is beyond the scope of the present paper.

Since many applications involve an axisymtmetric geometry, the fore-

going analysis has been carried out for this case also. Although the

general conclusions are the same, several additional points should be

noted.

The coordinate transformation appropriate to an axisy inetric geom-

etry is

X x (19')

1 p~2(x y,
PY (XYwt) - (xy, ,t)y dy (ZO')

(21')

where y and * are the radial and azimuthal coordinates, respectively.

The velocity components in the transformed plane will have the follow-

ing form:

U - u (22')

tVY 7+ (23')

w -w (24')
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Substituting these expressions into the appropriate forms of the non-

stationary compressible-continuity and axial-momentum equations, and

following the same steps and assumptions described above, one recovers

the incompressible form of the conservation equations.

IV. Applications

In Section III it was shown that by use of the transformations

(19) to (24) the flow field in a variable-density turbulent shear flow

can be calculated, provided the velocity distribution in the constant-

density case is known and an assumption is made concerning the turbu-

lent transport of heat or mass. This assumption can take the form

either of an empirical value of the turbulent Prandtl (or Schmidt)

number, or of a ratio of two length scales, I and LTv corresponding

to the characteristic scales for the momentum and heat (or mass) trans-

fer, respectively. These conclusions will now be applied to two types

of shear flows, the axisymmetric jet and the wake, and the results

compared with experimental evidence.

It is well known that for incompressible shear flows, simple inte-

gral techniques can predict (except for an undetermined constant) the

spreading rate of the turbulent zone and the streamwise variation of

the velocity field without the introduction of any phenomenological

turbulence theories. This approach will be used here.

The Circular Jet

Experiments indicate that both the mean velocity and mean temper-

ature in a variable-density jet are self-premerving except near the

jet exit (see Ref. 20, p. 170). Thus, one may write
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f 4) (38)

T T + Tog (39)
T

Here u is tghe characteristic (or center) velocity and T 0 T - T
0 C "

(che dif(erence between the temperature at the jet's center and the

referenc.e temperature just outside of the turbulent zone). The char-

acteristic length t is defined by the following integral:

1f 1y (40)#
0

The reltion between I and IT will be discussed later.

The momentum integral coriesponding to (15) ior a circular jet

has the following form:

2n S Pu y dy - 2 IA - (41)

0

* The subscript 1 corresponds to the known conditions at the jet exit,

and A is the jet ares. Applying the transfc .ation (20) and (22), Eq.

(41) becomes

U22 2 1-YV - 2
2nP UL 2  F y'j r dr P V A (42)

CDC

or

o-2

U2 ~ 2  2

2 2 -L (3)
U1
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where

2 . fd 2

e 8

Note that the momentum diameter e is the proper reference length of the

problem, as pointed out by Kleinstein. 12 In Eq. (42) we used the self-

preserving condition

c P OL(D (45)

where L is the characteristic length of the constant-density Jet and,

again,

Ii a F ~ ~ 1 (46)1~ IL'E Y (6

0

Similarly,

12 F [L-- (47)
0

The transformed kinetic-energy integral (18) becomes, for a ciz-

cular Jet,

<U I 2 b - (48)

o 0

Assuming now that the Reynolds gtresses &lso follow a self-preserving

distribution, so that

-V I (49)

~ - -
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Equation (48) simplifies to

d U&L 2, 2 -2U (50
Cd cL3 c G(50)

where

13 -= Y dYL and 1G --- G 4 (51)

0 0

With Eq. (43), Eq. (50) further simplifies to

dU1
1 C V (52)

2dX3 1
C

which becomes, after integration,

r - 2 -i- -i- (53)U

Substituting Eq. (53) into Eq. (43), we obtain

L I G X o °S 23 r- (54)

From measurements of constant-density Jets, one finds that

2 -GV - 0.052 (55)
13

This value corresponds to one given by Hlinze, 1 3 based on the exper-
14

imtnce of Van der Hegge Zijnen, if the fact that p /p .91 for these

experiments is taken into account. It is also consistent with Corrain

and Ubero's measurements, where P1/ 95.15
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The value of X depends on the flow conditions at the nozzle exit, aso0

discussed in Section III. In low-speed flows, however, this value is

small compared to the value of X at which self-preservation begins, and

can generally be neglected. A good approximation to the values of the

definite integrals 12 and 13 may be obtained by assuming a Gaussian

distribution for F(Y/L); then 12 = 1/2 and 13 a 1/3. Such an assump-

tion is of course unnecessary if one solves the equations of motion di-

rectly using a phenomenological approach. Thus, the solution for the

incompressible problem has the form

U X -X0
- 0.052 (56)

c

L oL = 0.073 0 (57)

for values of X sufficiently large that self-preservation holds. Using

now the transformation (19) and (22), we can rewrite Eq. (56) for a var-

iable-density Jet as

U1  x - x°
Wu a 0.052 - (58)
u

The characteristic length 2 is related to L through the coordinate

stretching given by Eq. (20). This, in turn, depends on the density

variation. To obtain the density (or temperature) distribution, we

need some knowledge of the turbulent heat-transfer mechanism. If we

assume that the mechanism is the same as that of the momentum trinsfer,

then the governing Eqs. (12) and (13) have the same form and S(y/L)/k
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f(y/L) for similar boundary conditions. Experiments with conventional

averaging methods show, however, that the characteristic length Li

the noralized temperature distribution is larger than that for the

velocity. Thus, letting a a L /T2

g(zG) - ( (59)I

Assuming a Gaussian distribution, this becomes

-19 f (60)

From the energy integral (16) applied to the axisymmetric case we ob-

tain

2f JPZ(T - TM)y dy - pIUI(T - T)A - const. (61)
0

or, using Eqs. (38), (39), and (60),

1 T.oo (f)l ty dy n Eq ( 6 2)2 (62)P. U1 Pa 8o 2

82 T1  T
e.. 1 --- (63)

2Pf o'ly dy = L2 Pw f ~+ 1 Y  Y (64

0 d < + 1(64)0 o
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Therefore Eq. (62) becomes

T (a + 1) (65)

or, using Eq.. (57) and (58),

Te 2€TT 6 T e
c 9.7 (o + 1) T- x (66)

A similar expression can be obtained for the total temperature decay

and concentration decay, since both are governed by an integral equa-

tion similar to Eq. (17). Thus

T TT Ta (
- 9.7 (a + 1) (67)

TT T x - x°

and for the mass concentration at the jet's center, we have

e

r - 9.7 (a + 1) r' - (68)co
0

where f is the mass concentration at the orifice exit (the concentra-

tion is taken as zero in the ambient field).

Finally, in order to obtain the spreading rate of the jet, we use

the alternate form of the energy integral [Eq. (17)] applied to the

axisymmetrical case:

2rTa f (pa, - )y dy - P1 U1 (Tz - TO)A (69)
0
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or

---.

1 cJfZd L~ F P (70)

But the value of the Lntegrals is unity by definition; therefore

2i

-- 1 2 2 U1
2 T2 U (71)L2  9 2 L2 c

Comparing Eq. (71) to Eq. (65), we obtain

2 T
L ~ ~(72)L 2  a +- I T

2

T 0

or, using Eq. (57),

(2X1)_ 2 02 x -x o

A2  3 x x .2 2 TXS-5.3 10 + 5.2 X 10 (74)
e2  X

It is seen in Sq. (74) that a variable-density jet does not spread lin-

early. However, unless the "energy thickness" is large, the nonlinear

tern is negligible in the self-preserving region of the flow.

Equations (58). (66), and (72) completely determine the flow fidId.

The only "adjustable" constant is xo , which could be estimated by con-

sidering the mixing zone and the potential cone near the nozzle exit.

Instead, however, we shall choose the value of xo, using Eq. (72), that

gives the best agreement with experimental results. Equations (58) and
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(66) can then be unambiguously compared to measurements. In all cal-

culations we use c - 0.64, the value obtained from the measurements of

Corrain and Uberoi.
15

In Fig. I the measurements of several investigators are shown.
16 17

The supersonic jet experiments of Eggers and Johannesen extend

well beyond the self-preserving region of the jet, and the virtual
18

origin was easily determined. Only two sets of Warren's data are

reproduced; his other suboonic measurements show similar trends, where-

as his supersonic ones do not extend far enough in the self-preserving

region to be usable. The selected values of x /e are indicated on the0

figure; the origin of the abscissa was shifted for clarity.

Figure 2 shows the center velocity decay. The solid line corre-

sponds to Eq. (61). It is seen that the agreement with the experi-

ments is quite satisfactory.

In Fig. 3 the center-temperature defect is plotted against the

axial-iistance parameter e2x - x o/e9. The solid line corresponds to
0oT

EqP. (66), (67), and (68); in all cases a = 0.64. Also shown are the
15

static temperature measurements of Corrsin and Uberoi, the total
18 1

temperature data of Warren and the results of Keagy and Weller
19

obtained in a helium jet. (Eggers and Johannesan did not take tem-

perature data.) Although these experiments are comparatively crude

(the ratio of probe to jet width is large), they are of interest be-

cause of the large density ratio p/p 1 . The agreement between the

analysis and the measurements is again satisfacLory.
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16 -1/_ C xo/8

14 * EGGERS 2.22 1.98 19 0
o JOHANNESEN 1.4 1.45 5
* WARREN 0.97 1.19 7

12 WARN 0.69 1.1o 4 o
x CORRSIN & UBEROI 0 0.1%. -2

10 - Eq(74)

6 x

4

0 0 0 0 0 20 40 60 so 100 120 140
0 _ I I

0 20 40 60 80 lOO 120 w8 160 ISO 200 220

x-xo/e

Fig. 1-Jet width



-24-

14

M, Plm xa/

12- * EGGERS 2.22 1.98 19

o JOHANNESEN 1.4 1.45 5

10 L WARREN 0.97 1.19 7
o WARREN 0.69 1.10 4

8 - x CORlRSIN &U13EROI 0 0.5 -2 , '

4

2

0
0 20 40 60 80 100 120 140 1 1 200

x - X0/8

Fig. 2-Center velocity In the circular jet
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The Axisymetric Wake

It is well known that for wake-like flows, self-preservation oc-

curs only if the characteristic velocity Uo (the centerline velocity

defect) is small compared to the free-stream velocity. Thus,

u - ) U (75)

Under this assumption the temperature distribution is also self-

similar, having the form given by Eq. (39).
In the constant-density case, Townsend has already shown2 0 that

the velocity defect and wake spreading are given by the following

- 2equations, neglecting terms of the order ( 0/U ):

U 1.( 2/3 X- 0)2/3 (76)

L . ( 3Gc ) 1 /3 (X Xo / 3  (7

9 i 1 1 3

Here the reference length 0 is defined as

02 CDd2  (78)

CD being the wake drag coefficient of the body. The integrals I1, 121 1
and IC are given by Eqs. (40), (47), and (51).

There are very few experimental results available for the incom-

pressible, axisymmetric wake. It is thus difficult to obtain a reliable

----- ~ ---- ~- --. I
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value for the constants in Eqs. (76) and (77). One observation, how-

ever, should be made using the results. According to Reichardt,2 1

these constants differ with the shape of the body considered. For in-

stance, the spreading rate of a sphere is higher than that of a cylin-

drical body (with its axis in the flow direction). One should there-

fore be careful in comparing constant- and variable-density wake flows.

For the case of a cylindrical body, Hall and Hislop 22 obtained

experimentally the value
20

12

- 14.1 (79)

G 1

Unfortunately, since their measurements have been carried out only to

about seventeen diameters downstream of the body, where self-preserva-

tion is not yet completely achieved, the above value might be scmewhat

high. Using the value in Eq. (79) and with I 1 , Eqs. (76) and (77)

become

o

iiIij
L .60 (8 )

For the variable-density wake, Eq. (80) retains its form, and taie

decay of the characteristic temperature can again be calculated from

the energy integral. Acccrdingly,

2n .P(i- T.)y dy - E U 2me@'pmU un (82)
T 'm(2



By using arguments similar to those for the jet problem, we may write

Tc -m U)( 
3

so that Eq. (82) becomes

ToLr2 (U - oF)F Y 2 (84)
0

This simplifies to

22

-o.- (85)TeD 2  L 2  a Uo
a + Ia U.

I-
a+lu

where again a Gaussian distribution has been assumed for the velocity

profile.

To express the "energy diameter" in terms of free-stream condi-

tiona, one assumes that all the kinetic energy loss in the wake, as

indicated by the momentum defect, is transformed into heat. Thus,

using Eqs. (15), (78), and (82), we obtain

DU - E (86)

or

22
2npUr2  - 2,PUCpT 0 (87)

This gives
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2 2
(y-

2-- COy- t (88)

Substituting this expression into Eq. (85) and using Eqs. (80)

and (81), one obtains

-2/3
0 1)2( x)2.8a(y- 1 0 2 -2/3 (89)

1 +

From the axisyumetric form of Eq. (17) we again obtain the width

of the jet:

2rTT4bU jfO (P. - )y dy -2TT.P~a 0 fy dy
0 0

+ 2rn °T a f ydy - 2Tre 2 p UT (90)

0 I m

But since

P.-p f (91)

Eqastlon (90) becomes

I To L2  Uo 02 uo L2  2 (2
L2eTL T (92)

or, using Eq. (85), one recovers Eq. (72) for the jet; that is,

_- I a 1 0 
(93

L 2 a + 1 T0 93
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With Eqs. (80), (81), and (85) this finally becomes

-2 .36 x x0 + - a. ( - _ 2 1 (94)
2ea+ I ca L- x) -2/3 (4

2.23
a + - (--I-

These results are compared to the measurements of Demetriades in

Fig. 4. Since Demetriades presents his data in terms of x - xo, Eqs.

(80), (89), and (93) can be directly related to the measuremenLa.

Again a - 0.64 was used for the computations. The agreement between

the present analysis and the experiments is acceptable.

V. Conclusion

The analysis carried out in this paper indicates that with the

use of a suitable transformation it is possible to predict with rea-

sonable accuracy the mean velocity and density (or temperature) field

in a variable-density shear layer, once the velocity distribution in

the corresponding constant density layer is known.

Two explicit results follow from the transformation:

(1) The characteristic velocity of a self-similar shear layer

is a function of the nondimensional coordinate x/8 only, irrespective

of the density variation in the flow. Here 0 is a reference length

defined by the momentum integral equation.

(2) The ratio of the width of a variable-density layer to that

of the corresponding constant-density layer can be expressed explicit-

ly in terms of the local maximum temperature (or concentration) differ-

ence. For axially symmetric geometries, this has the form

r __Z . .. . ...
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Fig. 4-Axisymmetric wake. Comparison with measurements
of Demetriades. (Me, 3. 0)
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2 + T
+1

There are several obvious limitations of the method:

1t) A constant pressure field is assumed. This assumption might

be relaxed -- at least for certain types of pressure gradients -- if

a more sophisticated transformation were used.

(2) The early stages of the shear-layer development cannot be

treated, especially if a laminar-to-turbulent transition occurs. One

is then forced to assume a "virtual origin" for the shear layer.

On the other hand, the proposed method opens new possibilities

for the analysis of compressible, turbulent boundary layers.

/
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