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ABSTRACT 

A servocontrolled gas inbleed system for a dynamic,  calibrated 
conductance type of vacuum calibration system was designed and fab- 
ricated.    The servocontrolled gas inbleed system automatically regu- 
lates the flow of gas into the test region of the calibration system by 
maintaining a constant pressure on the upstream side of a molecular 
leak.    Constant pressure on the molecular leak is established and 
maintained by a shunt control technique in which a gas inlet valve and 
a gas pumpout valve are operated in parallel.   An analog computer 
was used to aid in the design of the system.    The transient and steady- 
state response of the servocontrolled gas inbleed system is predicted 
by the computer.   Good agreement was obtained between the analog 
computer data and the experimental performance data obtained from the 
gas inbleed system.    The gas inbleed system can control the flow rate 
in the range from 10"° torr-liters/sec to 10"3 torr-liters/sec.    Other 
flow rates are obtainable by changing system components; however, 
the same design procedure is applicable. 
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NOMENCLATURE 

C Equivalent capacitance for volume between molecular 
leak, gas inlet valve, gas pumpout valve, and differ- 
ential pressure meter 

Cj Molecular leak conductance 

C2 Circular orifice conductance 

C3 Gas inlet valve conductance 

C4 Gas pumpout valve conductance 

CCW Counterclockwise 

CW Clockwise 

Kmi Gas inlet servomotor gain constant 

KJJJQ Gas pumpout servomotor gain constant 

n' Moles of gas 

P2 Vacuum chamber test region pressure 

P3 Diffusion pump pressure 

Pgg Molecular leak forepressure 

Pr Differential pressure meter reference pressure 

Pa Alphatron pressure 

Q Gas flow rate into volume V 

Ä.Q Net flow rate 

Ql Gas flow rate through molecular leak Cj 

Q2 Gas flow rate through calibrated orifice C2 

Qg Gas flow rate through gas pumpout valve 

Q4 Gas flow rate through gas inlet valve 

R0 Universal gas constant 

T Temperature of gas 

T^ Servomotor time constant 

T2 Servomotor time constant 

Tg Servomotor time constant 

V Volume between V2,  differential pressure meter,  Cj,  and V^ 

Vll 
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V^ Gas inlet valve 

V"2 Gas pumpout valve 

Vj] Error signal,  numerical difference between the reference 
signal and the differential pressure meter signal 

V"EB Differential pressure meter signal, equivalent to the actual 
test region pressure 

Vphii Gas pumpout amplifier and gas inlet amplifier signal, ■ 
limit switches not activated 

VR Reference signal, equivalent to desired test region pressure 

Vgjyj Gas inlet servomotor control voltage 

9jn Gas inlet valve shaft angle 

0out Gas pumpout valve shaft angle 

Vlll 
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SECTION I 
INTRODUCTION 

Space simulation and testing require accurate measurement of total 
and partial pressures below 10~4 torr.    Ionization gages and mass spec- 
trometers are commonly used and are basically gas density measuring 
devices whose sensitivities vary with the type of gas.    Vacuum measure- 
ment with these instruments is a complicated process involving calibra- 
tion of instrument response to absolute pressure and a careful application 
of this calibration in measurement of unknown pressures. 

To establish working standard pressures for the calibration of total 
and partial pressure instruments below 10"4 torr,  a dynamic,  calibrated 
conductance type of vacuum calibration system was designed and fabri- 
cated at the Arnold Engineering Development Center Aerospace Environ- 
mental Facility (AEF) (Ref.   1). 

Working standard partial pressures have been established with an 
accuracy of ±5 percent throughout the range from 10~8 to 10"4 torr.    A 
standard pressure was established by introducing nitrogen (N2) gas 
through a porous leak into a test region which is exhausted through an 
orifice in a thin diaphragm.    The accuracy with which the pressure in 
the test region can be established is dependent on establishing a constant, 
known flow rate through the porous leak. 

The purpose of this study was to design and develop a servocon- 
trolled gas inbleed system to maintain constant flow rates into the test 
region of the calibration system.   The design approach is generally 
applicable to other gas inbleed control systems. 

SECTION II 
DESIGN APPROACH 

After the study of other servotechniques, a shunt controller was 
developed by Shofner for use in the study of large signal transient re- 
sponse in dc-pumped helium-neon plasma lasers (Ref. 2).    Although" 
this was an electronic circuit involving a tetrode shunt tube in parallel 
with a laser to shunt current away from the laser, the same principle 
of operation can be applied to a gas inbleed system.    The gas inbleed 
valve can be shunted by a gas pumpout valve to shunt gas away from the 
inbleed valve.    Consequently, the overshoot transient response of the 
flow system is greatly reduced and contamination problems of the gas 
inbleed system are eliminated by purging the system through the gas 
pumpout valve. 
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The conventional approach to the design of servocontrolled systems 
is to use linear network analysis to determine system stability and 
optimization.    Techniques for the analysis of linear systems include 
Routh's stability criteria and root-locus stability criteria (Ref. 3).    To 
apply these techniques to nonlinear systems, operating points are chosen, 
and linear approximations are made around these points.   These tech- 
niques can then be utilized to determine stability and optimization. 
However, a linear analysis of nonlinear systems is only an approxima- 
tion.   A better approach than linear approximations is a nonlinear 
analysis made on an analog computer.   The insertion of the character- 
istics of various nonlinear elements such as control valves and ampli- 
fiers is readily made on an analog computer.    The transient and steady- 
state response of each element in the servoloop, as well as their combined 
effect,  can be recorded.   In addition, the computer can show the results 
in "real time" or in "fast time. "   A feature of the "fast time" selector is 
the ability to speed up the computer so that the steady-state response for 
an extended period of time can be represented during a short period. 

SECTION III 
DESCRIPTION OF THE VACUUM CALIBRATION SYSTEM 

Figure 1 (Appendix I) shows the major components of the calibration 
system.    To maintain a constant test region pressure,  P2, the forepres- 
sure PEB 

must De held constant.   Any drift in the forepressure is cor- 
rected by means of the servocontrolled valves Vi and V2.    Opening valve 
Vi, a needle valve, enables an increase in the foreline pressure, whereas 
opening valve V2J  a coarse valve,  enables a decrease in the foreline pres- 
sure.   A needle valve was chosen for the gas inlet valve so that a very 
fine control over the increase in forepressure could be obtained.   A coarse 
valve was chosen for the pumpout valve so that purging of the system could 
be accomplished in a minimum amount of time, and the overpressure 
transient response would be short.    The capacitance manometer provides 
a control signal for the gas inbleed servosystem.    The reference pressure, 
Pr, of this instrument is held constant at 2 x 10"3 torr by means of a 
mechanical pump.   The range of the instrument is from 0. 01 to 30. 0 torr. 

The flow diagram for the test region portion of the vacuum calibra- 
tion system is shown in Fig. 2.   Gas is introduced into the test region 
through a molecular leak of conductance Ci and is pumped from the test 
region through a circular orifice of conductance C2.'   The test region 
pressure,  P2,  is calculated by equating the flow through the leak to the 
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flow through the circular orifice at equilibrium.   At constant temperature, 
this leads to the following relationship 

Ci(PEB    -  P)=   C^P2   ~  P,) (1) 

By choosing a molecular leak with a small value of conductance,  P2 can 
be made much smaller than PEB»   Similarly,  P3 can be made much 
smaller than P2 by using a diffusion pumping speed much larger than 
the orifice conductance.   The above equation can then be reduced to 
(Ref.  1) 

P, = £ PEB (2) 

For the vacuum system used in this work, the conductances for N2 
were 

Cj  =  6.85 x 10"3 liters/sec 

C,  =  6.00 x 101 liters/sec 

Diffusion Pumping =  6 x 10s liters/sec 

PgQ varies from 10 ~2 to 1.0 torr 

With these values the calibrated pressure,  P2, in the test region can be 
set between the limits of 1. 14 x 10-6 to 1. 14 x 10-4 torr. 

The flow diagram for the servocontrolled portion of the vacuum cali- 
bration system is shown in Fig. 3. The flow as a function of time can be 
calculated from the equation of state for an ideal gas. 

PV = n1 RT o (3) 

where n' is the number of moles in volume V at temperature T; Ro is a 
universal gas constant.   Taking the total time derivative gives 

_____ (4) 
'    dt *  dt dt  "0 ' V 

Since 

P1Y+ yiP = ia'Rj = Q 
dt dt dt      ° 

£ - 0 (5) 

Q = V£ (6) 

The net flow in the fore pressure line is given by 

AQ = Q4 - Q, - Q3 (7) 
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where' 

Q, = C, (Pa - PEB) 

Q. = C PEB 

Q, = c4pEB 

The forepressure,  PEB'  
as a function of time can then be written 

^P = v [cs(Pa - PEB) - C, PEB - C4PEB] (8) 

where V is the volume between V2, the capacitance manometer, Ci, and 
Vi in Fig. 3.   This volume was determined to be 1.235 liters.   The pres- 
sure Pa,  on the upstream side of valve Vl is measured with an Alphatron® 
gage and maintained constant by means of the vacuum regulator.   The 
forepressure,  PEB» *

S
 measured with the capacitance manometer and 

provides the control signal for the servosystem.   The molecular leak 
conductance,   Ci,  remains constant and was determined to be 6. 85 x 10-3 
liters/sec by a procedure given in Ref.   1.   The conductance C3 of the gas 
inlet valve as a function of valve shaft angle,  0jn, and Alphatron pressure, 
Pa, is given in Fig. 4.   The curves were obtained by closing the gas 
pumpout valve,  C4 = 0, and letting the system reach steady state for 
various valve shaft angles.    The conductance C3 was then calculated 
(see Appendix II) directly from Eq.  (8).    Figure 4 shows that the conduct- 
ance of the inlet valve as a function of shaft angle is nonlinear.    The fact 
that the conductance of the inlet valve is a nonlinear function of Alphatron 
pressure indicates that the valve is operating in the transition flow region. 
Molecular flow equations were used throughout this study, and the appro- 
priate curve for a particular Alphatron pressure was used.    Molecular 
flow equations assume the conductance terms to be independent of pres- 
sure.   By operating along a single Alphatron pressure curve, this require- 
ment is satisfied. 

The conductance C4 of the gas pumpout valve as a function of valve 
shaft angle,  ©out» an^ forepressure is given in Fig.  5.    The downstream 
pressure of the gas pumpout valve, 2 x 10"3 torr, is negligible when 
compared to the upstream forepressure.    These curves were obtained 
by presetting the inlet valve to give a nominal forepressure.   The gas 
pumpout valve was then opened, and the system was allowed to reach 
steady state for various valve shaft angles.   The conductance C4 was 
then calculated (see Appendix III) directly from Eq.  (8).   The above com- 
ments that were made about the curves shown in Fig. 4 are also applicable 
to Fig. 5. 
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The fact that the conductance of the pumpout valve is a function of the 
foreline pressure indicates that the valve is operating in the transition 
flow region.    To use molecular flow equations, the appropriate curve 
for a particular foreline pressure must be used so that the conduct- 
ance terms in the equations are independent of pressure. 

SECTION IV 
DESCRIPTION OF THE SERVOCONTROLLED GAS INBLEED SYSTEM 

The servocontrolled gas inbleed system is shown schematically 
in Fig.  6.    A reference signal,  equivalent to the desired test region 
pressure, is compared to the differential pressure meter signal which 
is proportional to the actual test region pressure.    The resulting dc 
error signal is amplified and chopped.    This error signal is applied to 
the gas pumpout power amplifier and the gas inlet power amplifier, 
respectively.    The resulting signal from each power amplifier is applied 
to the gas pumpout servomotor and gas inlet servomotor, respectively. 
The gas inlet servomotor then drives the gas inlet valve, Vi,  open or 
closed depending on the polarity of the error signal.    Likewise, the gas 
pumpout servomotor drives the gas pumpout valve, V*2, open or closed 
depending on the polarity of the error signal.    The phase shift of the 
servomotors is such that the rotation of the gas inlet and gas pumpout 
valves is opposite for a given error signal polarity.   Full close and 
full open limit switches were installed on the valves to keep them 
from mechanically binding when they reach the end of their travel.    This 
was accomplished by substituting 1. 37 v for VE 

ar*d opposite in polarity 
to Vjr; when the full open and full closed limit switches were activated 
by stops on the valve shafts. 

Figures 7 and 8 show the characteristics of the dc amplifier as an 
integral part of the servosystem.    As indicated, the rotation of the valve 
shafts is opposite for a particular error signal polarity.   Also, a dead 
zone exists whereby the error signal must exceed +1 rav before the 
valves will start to open or close.    As indicated by the graphs, a dc level 
exists; that is,  for zero error signal,   -0. 3 v were obtained at the input 
to the power amplifiers. 

Figures 9 and 10 show the characteristics of the gas pumpout and 
gas inlet power amplifiers, respectively.    Dead zone and motor shaft 
rotation is indicated in the graphs.    To eliminate the possibility of the 
valves oscillating against each other, the gain of the inlet valve was set 
lower than the pumpout valve.    Thus,  for a certain error voltage,  the 
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inlet valve rotates at a lower speed and comes to rest before the gas 
pumpout valve. 

SECTION V 
ANALYSIS AND EVALUATION OF THE SERVOCONTROLLED GAS INBLEED 

SYSTEM USING NONLINEAR ANALOG COMPUTER TECHNIQUES 

The analog computer flow diagram for the servocontrolled gas in- 
bleed system is shown in Fig.   11.   The reference signal, VR, which 
is equivalent to the desired test region pressure,  is compared to the 
differential pressure meter signal, VEB» which is equivalent to the 
actual forepressure.    The error signal,  Vg,  which is equivalent to 
the error pressure, is amplified by a dc amplifier — depicted by the 
first two blocks.    If neither of the limit switches on the gas pumpout 
valve and on the gas inlet valve is activated, the error signal proceeds 
to both the gas pumpout and gas inlet power amplifiers.   If one or both 
of the valves are near the full open or full close position, the appro- 
priate limit switch will be activated according to valve shaft position 
to apply a constant error signal of 1. 3 7 v to keep the valve from bind- 
ing open or closed.    The error signal is applied to the servomotor 
transfer functions.   The resulting valve shaft angle positions are applied 
to the conductance function generators to give conductance values as a 
function of valve shaft angle.    The particular operating curve of the gas 
pumpout conductance function generator is chosen according to the fore- 
pressure range; the operating curve of the gas inlet conductance func- 
tion generator is chosen according to the Alphatron pressure.   The 
instantaneous value of the gas pumpout conductance C4, and the gas inlet 
conductance C3, is substituted into the differential equation, which 
describes the vacuum portion of the gas inbleed system (see Eq.   (8)). 
The forepressure line volume V, the molecular leak conductance Ci, 
and the Alphatron pressure PQ are constants.    The computer solves for 
the resulting forepressure PßB anc* plots it as a function of time. 

SECTION VI 
EXPERIMENTAL RESULTS 

Figures 12 through 17 show the analog computer solutions for various 
operating conditions.   The experimental data obtained from the physical 
system are plotted in the same graph so that a direct comparison between 
analog computer and experimental data can be made.    The forepressure, 
error signal, gas inlet valve shaft position,  and gas pumpout valve shaft 
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position are plotted as functions of time in each graph. Full close on 
each valve is represented by zero shaft degrees. The gas inlet valve 
is full open at 4590 deg; the gas pumpout valve is full open at 1710 deg. 

Figure 12 shows the transient and steady-state response of the 
system for an Alphatron pressure of 3. 1 torr and a voltage step of +10 mv 
at the reference input.   The capacitance manometer output at a steady- 
state forepressure of 1 x 10-2 torr is +10 mv when the manometer range 
is set at 30 x 10~3 torr full scale.    The response time of the physical sys- 
tem is better than that predicted by the analog computer.    The pumpout 
valve oscillation which occurred in the computer solution is not under- 
stood.   The experimental and computer data show the system to be stable 
for at least 150 sec.    Since experimental data were not obtained beyond 
150 sec, the oscillation cannot be verified or denied by experimental data. 
The computer data show the system to be stable for at least 450 sec.    It 
is believed, however, that the system is capable of holding a steady fore- 
pressure of 1 x 10_2 torr indefinitely. 

Figure 13 shows the transient and steady-state response of the sys- 
tem for an Alphatron pressure of 3. 1 torr,  a voltage step input of +10 mv, 
and a capacitance manometer range of 1 x 10"* torr full scale.   These 
settings establish a steady-state forepressure of 3. 3 x 10-2 torr.    The 
data obtained in Fig.   13 are similar to the data obtained in Fig.  12.    The 
oscillation of the pumpout valve is verified by experimental data.   Even 
so, the system is capable of holding a steady forepressure of 3.3 x 10"2 
torr. 

Figure 14 shows the transient and steady-state response of the sys- 
tem for an Alphatron pressure of 25. 0 torr, a voltage step input of +10 mv, 
and a capacitance manometer range of 0. 30 torr full scale.    The same 
characteristics that were made evident by Figs.  12 and 13 are shown in 
Fig.  14.    Again the system is capable of holding a steady forepressure of 
1 x 10-1 torr for the above conditions. 

Figure 15 shows the system to be stable for an Alphatron pressure 
of 28. 0 torr, a voltage step input of +10 mv, and a capacitance manometer 
range of 1.0  torr full scale; however, oscillation of the pumpout valve 
is of such magnitude as to keep the error signal from reaching zero and 
the forepressure from stabilizing.    The pressure snubber effect of the 
molecular leak Cj (see Fig.  2) was sufficient to keep the test region 
pressure constant; thus a constant test region pressure of 3. 7 x 10-5 
torr,  which is equivalent to a forepressure of 3. 3 x 10"* torr,  can be 
obtained. 
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Figures 16 and 17 show the system to be stable and capable of 
holding a steady forepressure of 1. 0 torr for an Alphatron pressure of 
29. 5 and 82.0 torr,  respectively.    The effect of the upstream pressure 
of the inlet valve on system response is evident from Figs.   16 and 17. 
The greater the Alphatron pressure,  the faster the system responds,  as 
would be expected. 

To summarize, Figs.   12 through 17 show that the gas inbleed sys- 
tem is capable of holding a constant pressure in the test region between 
the limits of 1.14 x 10-6 torr to 1.14 x 10~4 torr. 

SECTION VII 
CONCLUSIONS 

The feasibility of a shunt servocontrolled gas inbleed system for a 
high vacuum calibration chamber has been demonstrated.    By shunting 
the gas inlet valve with a gas pumpout valve,  the overshoot and time 
response of the inbleed system can be improved over using only a gas 
inbleed valve.    The many advantages of using an analog computer for 
a nonlinear system analysis were demonstrated during the design and 
evaluation of the system. 
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APPENDIX II 

SAMPLE CALCULATION FOR THE NUMERICAL VALUES OF C3 

The conductance C3 of the gas inlet valve as a function of valve 
shaft angle, d^, and the Alphatron pressure, Ptt, is given in Fig. 4. 
The curves were obtained by closing the gas pumpout valve,  C4 = 0, 
and letting the system reach steady state for various valve shaft 
angles.    The conductance C3 was then calculated from Eq. (8) which1' 
is given below. 

(9) TP =   v[C'(Pa-pEB)  -  C^EB  -  C
«
P

EB] 

Applying the above conditions, Eq.  (8) can be reduced to 

C3(Pa-PEB>   -   CiPEB   =  ° <10> 

C'   =   r?&- (ID a    rEB * 

Cj = 6. 85 x 10"3 liters/sec.   The experimental data used to calcu- 
late C3 are given in Table I (Appendix IV). 
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APPENDIX III 

SAMPLE CALCULATION FOR THE NUMERICAL VALUES OF C4 

The conductance C4 of the gas pumpout valve as a function of valve 
shaft angle,  ©out*  anc* forepressure,  PEB»  ^

S
 given in Fig.  5.    The 

pressure downstream of the gas pumpout valve, 2 x 10^ torr, is neg- 
ligible compared to the upstream pressure, that is, the forepressure. 
These curves were obtained by presetting the inlet valve to give a 
nominal forepressure.   The gas pumpout valve was then opened and 
the system was allowed to reach steady state for various valve shaft 
angles.   The conductance C4 was then calculated directly from Eq.  (8) 
which is given below. 

dPEB =   v- [C>(Pa ~ PEB>  -  C, PEB -  C4 PEB] (12) dT 
1 

Applying the above conditions, Eq. (8) can be reduced to 
r 

C3(P-PEB) - C.PEB - C4P.EB = 0 (13) 

C4 = C'^-PEB'-  C'PEB (14) 
P 

Ci = 6. 85 x 10-3 liters/sec.   The experimental data used to calcu- 
late C4 are given in Table II (Appendix IV). 
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TABLE I 

EXPERIMENTAL DATA USED TO CALCULATE C, 

Gas Pumpout Gas Inlet Valve FEB. Pö» c3, 
Valve Stem Position, deg torr torr liters/sec 

Closed Closed, 0 0 32 0 
180 0.38 32 6.91 x 10-5 
360 0.40 32 8. 68 
540 0.44 33 9.31       | 
720 0.49 33 1.03 x 10-4 
900 0.53 34 1.08 

1080 0.59 34 1.21 
.   1260 0.68 34 1.39 

1440 0.74 34 1.52 
1620 0.78 34 1.61 
1800 0.84 34 1.74 
1980 0.93 34 1.93 
2160 0.97 34 2.01 
2520 1.05 34 2. 18 
2880 1.13 33 2.42 
3240 1.20 33 2.59 
3600 1.30 32 2.90 
3960 1.45 32 3.26 
4320 1.65 31 3.86 
4680 2.00 29.5 4.99 
5040 ' 2.45 27.0 6.83 

1 1 5085 2.70 26.0 7.93 
1 
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TABLE II 

EXPERIMENTAL DATA USED TO CALCULATE C4 

00 

Gas Pumpout Gas Inlet Valve Stem PEB- PQ" C3, c4. 
Valve,  deg Position,  deg CCW torr torr liters/seci liters/sec 

Closed 1800 14.0 105.0 1.05 x IQ"3 0 
180 1800 14.0 105.0 1.05 0 
360 1800 14.0 105.0 1.05 . 0 
540 1800 14.0 105.0 1.05   .- 0 
720 1800 14.0 105.0 1.05 0 
900 1800 14.0 105.0 1.05 0 

1080 1800 13.8 105.0 1.05 1.01 x 10-4 
1260 1800 13.6 105.0 1.05 1.98 
1440 1800 12.8 105.0 1.05 6.41       | 1 

1620 1800 12.0 105.0 1.05 1. 14 x 10-3 
1800 1800 9.3 105.0 1.05 3.46 
1980 1800 6.0 105.0 1.05 9. 13 
2025 1800 4.0 105.0 1.05 

1 
1.71 x IQ"2 

o 
n 
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