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PREFACE

This memorandum is part of a RAND study of mobile air-

based ABM defenses done for the Advanced Research Projects

Agency of the Department of Defense and is concerned with

the advantages which accrue to the defender from denying

the attacker knowledge of the defense deployment. A

related memorandum published as part of the same project is

RM--5480-ARPA, A Theoretical Analysis of Mobile Terminal

Defenses Versus Fixed Defenses Against the ICBM by W. Lucas.

Other memoranda related to costs and performance of possible

system designs will be published later.
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SUMKA.RY

The memorandum discusses the "shell game" aspects of

mobile terminal ballistic missile defenses, i.e., the

advantages which accrue to the defender from being able to

deny the attacker knowledge of the defense deployment. A

two-person zero-sum game which models the mobile defense

problem is sunmmarized, and references to earlier published

solutions to the game are given. The results are interpreted

in terms of the marginal exchange ratio, or number of addi-

tional warheads the attacker must procure to offset a single

additional interceptor and maintain a constant level of

damage. The marginal exchange ratio is shown to be quite

favorable to the defender if the fraction of the target

system which he wishes to protect is small. A comparison is

made with the case of fixed defenses whose deployment is

known to the attacker. Mobile defenses provide a two-to-

one advantage if the defender wishes to save more than half

his target system; the advantage increases sharply as the

fraction saved decreases. If the defender wishes to save less

than half his target system, in fact, he need procure

only two additional interceptors per target saved for

each additional warhead per target procured by the attacker.

The protection of a strategic retaliatory force through

a combination of mobile defense and deceptive basing is also

examined. The two measures complement each other well, as

the mobile defense raises the price the attacker must pay
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to destroy a single target, while deceptive basing increases

the number of targets at which he must pay that price. The

defender who wishes to protect a fixed number of launch

vehicles may choose combinations of interceptors and false

targets in such a way that the cost of the defenses is

roughly proportional to the square root of the number of

attacking warheads. Since the cost to the attacker is

proportional to the number of warheads, attempts by the

attacker to overcome the defenses by procuring additional

warheads result in an increasingly favorable marginal

exchange ratio (for the defender) as the size of the attack

force increases.

Qualitative discussions of the applicability of the

model to the preferential use of area defenses and of the

effects of warhead and interceptor unreliability are

included, and a solution to the game used in the analysis

is given in the Appendix.
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"SHELL GAME" ASPECTS OF MOBILE TERMINAL ABM SYSTEMS

1. INTRODUCTION

This memorandum discusses the "shell game" aspects of

mobile terminal ballistic missile defense, i.e., the

advantages that accrue to the defender from being able to

deny the attacker knowledge -f the defense deplo).,,ent. The

mutually reinforcing advantages of a combination of mobile

defense and deceptive basing for protection of the strategic

retaliatory force are also considered.

The advantage to the defender of denying the attacker

knowledge of the defense deployment is found to be signifi-

cant. The damage creating potential of an attack is

dependent not only on the amount of the attack payload surviving

the defenses, but also on how that payload is targeted. The

proper use of mobile defenses results in an attack distri-

bution which overkills undefended and lightly defended targets

significantly, and at the same time fails to destroy those

targets which are more heavily defended.

The defender is assumed to possess a target system

consisting of equal value targets, which the attacker wishes

to destroy using perfect warheads each capable of destroying

a single target with certainty. The defender may defend

his target system with perfect interceptors, each capable

of destroying one warhead attacking the target to which the

interceptor is assigned. The interceptors are assumed to

be mobile (e.g., air based) so that the interceptor
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deployment may be changed in less time than the attacker's

intelligence cycle time and the attacker has no knowledge of

the defense deployment. A comparison is then made with the

case of the interceptors fixed at the targets to which they

are assigned, so that the attacker has full knowledge of the

interceptor deployment. The advantage which accrues to the

defender from denying the attacker knowledge of the inter-

ceptor deployment is illustrated in terms of the marginal

exchange ratio, i.e., the number of additional warheads

required to offset an increase in the number of interceptors

and maintain a constant level of destruction.

Translation of this into a marginal exchange ratio

in terms of systems cost would, of course, require that

the full systems be considered. That is, defense costs

include not only the interceptors but also the radars, I

means of mobility, etc., necessary to the defense system. j
These elements are not considered here as they do not enter

into the analysis.

The possible use by the defender of a combination of

mobile defense and deceptive basing (presentation of

additional false targets to the attacker) is also considered.

This combination appears to be an extremely attractive defense

option, since the two measures complement each other well.

Mobile defense raises the "price"I to the attacker of destroy-

ing a single target, while deceptive basing increases the
4

number of targets which mst be destroyed. The use of the

two measures together therefore forces the attacker to
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pay a high price at a large number of targets, many of

them false.

The model used to analyze the mobile defenses, referred

to as the mobile defense game, is not new. The gainee consists

of two synmmetric cases, referred to as the attack dominant

and defense dominant games. The defense dominant game was

solved by the author in the context of defense against

submarine-launched ballistic missiles in [41, and both cases

were solved independently by Matheson in [2]. The game is

summnarized in the text of this memorandum, and a complete

solution, together with a proof that optimal assignment

strategies exist for both players except in certain extreme

cases, is given in the Appendix. This latter question was

left open in previous work. A related analysis, illustrating

the advantages of mobile defense when the attacker desires

to achieve a fixed confidence of a fixed level of des-

truction rather than to maximize expected damage, is given

by Lucas in [(1.

.1



2. SUMMARY OF THE MOBILE DEFENSE GAME

The game may be described as follows: There are two

players: the attacker and the defender. The defender has

t targets and n interceptors with which to defend them.

The attacker ha, r- warheads with which to attack the targets.

The defender assigns interceptors to targets without know-

ledge of the attepker's assignment and the attacker assigns

warheads to targets without knowledge of the defender's

assignment. Those targets to Ahich more warheads than
interceptors are ;:ssigned are destroyed. The attacker

wishes to maximize (and the defender to minimize) the number

of targets destroyed.

Let P - m/t and V - n/t denote the mean number of

warheads and interceptors per target. There are two basic

cases, referred to z the attack dominated game and defense

dominated game. If • and V are integers, the game is

attack don..nated if P > V, and defense dominated otherwise;

the expected number of targets destroyed is greater than

or 1-ss than half the number of targets respectively. If

P ond v are not integers, this correspondence does not hold

precisely, but the attack (defense) dominated game may still

be thought of as the case in which the attacker (defender)

is stronger. (The gair... is not necessarily attack dominated

iU P > V because of the fact that the defender "takes ties,"

i.e., if the same number of warheads and interceptors are

assigned to a target, the target survives.)
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The optimal strategies for both players are determined

by Z, the largest number of interceptors which the defender

should place at a single target at any time. If the game

is attack dominated and 24 is an integer*, then t - 2-1.-.

The optimal strategy for the attacker is to assign his

warheads in such a way that the number of warheads assigned

to each target apped2 £ to have been chosen randomly between

1 and t. The optimal strategy for the defender is to

defend as many targets as possible as though he also has

chosen the number of interceptors per defended target at

random between 1 and C, and leavcw the remaining targets

undefended. Assignment procedures which achieve these

properties are discussed in the Appendix. The number of

targets defended will depend on the number of interceptors

available, and the probability of survival of an individual

target will be V/(2P-l) - V/t. The defender will therefore

save, on the average, one target with each C interceptors.

If the game ia defense dominated and 2V is an integer,

then t - 2V. The optimal strategy for the defender is to

assign interceptors in such a way that the number of inter-

ceptors assigned to each target appears to have been chosen

at random between 0 and t. The optimal strategy for the

attacker is to attack as many targets as possible in such

The assumption that 2P is an integer if the game is
attack dominated and 2V is an integer if the game is defense
dominated is made in this section for simplicity. A com-
plete analysis of the game, without this assumption, is
given in the Appendix.
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a way that the number of warheads assigned to an attacked

target appears to have been chosen at random between I and

t. The number of targets attacked will depend on the number

of warheads available, and the probability of survival of an

individual target will be 1-4/(2v + 1). The attacker will

destroy, on the average, one target with each t + 1 warheads.

Consider, for example, the case t - 1000, m - 3000,

for various n. If n - 0, the attacker is able to destroy

all targets using only 1/3 of his warheads. For 0 < n < 2500,

the game is attack dominated with t - 5. The attacker will

attack all targets, and the defender will defend only that

fraction which he can defend according to the strategy

outlined above, and will save (on the average) one target for

each 5 interceptors procured. If n > 2500, however, the

game becomes defense dominated, with t - 2v (if 2V is an

integer), and the attacker no longer attacks all targets.

In this case the attacker will be able to destroy one target

with each 2V + 1 warheads. The situation is illustrated in

Fig. 1.

For purposes of comparison, the number of targets saved

by fixed interceptors whose location is known to the attacker

is also shown. The optimal strategy for the attacker in

this case is to destroy as many targets as possible by

attacking them with enough warheads to exhaust the defense

plus one additional warhead to destroy the target, and

leaving the remaining targets unattacked. The optimal
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strategy for the defender is to deploy his interceptors

uniformly over the target system. Since the attacker has

an initial superiority of 3 to 1, no targets are saved

by fewer than 2000 interceptors. 1/4 of the targets by 3000

interceptors, etc. The advantage of mobile defenses is

seen to be greatest for small numbers of interceptors and

to decrease as the number of interceptors increases.

The step-like nature of the curve stems from the fact

that additional interceptors are of no value when the attacker

can avoid them by careful target selection. If the defender

has between 5000 and 5500 interceptors, for example, the

attacker will attack 500 targets with 6 warheads each,

choosing the 500 from among those defended with 5 inter-

ceptors. Only when the number of interceptors exceeds 5500

is it necessary for him to begin attacking some targets

with 7 warheads.

i

'I
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3. MARGINAL EXCHANGE RATIOS

One measure of the effectiveness of a defensive system

is the marginal exchange ratio, the number of additional

warheads the attacker must procure to offset each additional

interceptor procured by the defense and yet maintain a

constant level of expected damage. With this measure we

can compare a defense system which denies the attacker

information about the defense deployment with one which

does not, and thus evaluate the relative advantage to the

defender in denying deployment infcrmation by mobility

or other means.

The optimal strategies for both players and the

resulting level of destruction in the case of fixed defenses

whose deployment is known to the attacker are described

above. If v is an integer, the attacker will destroy one

target with each v + I warheads; destruction of d Largets

requires d(v + 1) warheads. If the defender procures t

additional interceptors, the attacker must procure d addi-

tional warheads to maintain the same level of damage. The

marginal exchange ratio- in this case is therefore d/t.

Due to the requirement that integer numbers of warheads
and interceptors be assigned to each target, this ratio does
not in general represent the exact number of additional
warheads required per additional interceptor. A single
additional interceptor, for example, may require no addi--
tional warheads or may require one. The marginal exchange
ratio d/t does, however, represent the approximate number
of additional warheads per additional interceptor required
for large increases in n, and the exact number when the
defender increases n by integer multiples of t. Similar
comments apply to the definition of "ratio" when interceptor
deployment is unknown to the attacker.
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When the attacker does not know the defense deployment,

the game will be defense dominated if the expected level

of damage he wishes to maintain is d < t/2, while if t > d >

t/2, the game will be attack dominated. In the defense

dominated case, if 2V is an integer, 2V + 1 warheads are

required for each target destroyed. An increase of t

interceptors therefore requires 2d additional warheads, and

the marginal exchange ratio is 2d/t. In the attack dominated

case, if 24 is an integer and d < t, each 2P - 1 inter-

ceptors will save a target, so that (t - d)(24 - 1) inter-

ceptors will achieve the required level of damage, and t

additional warheads would be required to offset 2(t - d) addi-

tional interceptors, for a marginal exchange ratio of t/2(t - d).

If d - t, the attacker must have P - n, so that t

additional warheads are required to offset each additional

interceptor, and the ratio is t.

The graphs of the marginal exchange ratio are shown

in Fig. 2 as functions d/t, the fraction of the targets

which the attacker wishes to destroy. The ratio of the

two graphs provides a measure of the penalty paid by the

attacker for lack of acknowledge of the defense deployment.

If he wishes to destroy less than half the target system

(d/t ý 1/2) the penalty is a two-to-one increase in the

number of warheads required, and as d approaches t this

penalty increases to t-to-one.

Alternatively, the marginal exchange ratio may be

viewed as the number of additional warheads which the
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attacker must procure in order to require the defender to

procure a single additional interceptor if he wishes to

maintain a constant level of expected survivors, s, where

s - t-d. This level of expected survivors, s, can be thought

of as the number of targets which the defender wishes to

save. If s > t/2, the defender must match the attacker's

procurement rate on a better than one-to--one basis, while

for s/t near zero, the ratio becomes very favorable to

the defender. Table 1 illustrates this point for a

defender with a target system consisting of 1000 targets.

Table 1

MBILE INTERCEPTOR REQUIRENNTS

TO SAVE s OUT OF 1000 ZARGETS

s - Number of targets saved 10 100 500 600 750 900

Interceptors required 10 100 500 750 1500 4500
by first 1000 warheads

Interceptors required by 20 200 1000 1250 2000 5000
each additional 1000
warheads
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4. MOBILE DEFENSE AND DECEPTIVE BASING

The marginal exchange ratio becomes increasingly

favorable to the defender as the fraction of the target

system which he wishes to protect decreases. If the

number of targets is itself subject to the control of the

defender (as is thie case, for example, with retaliatory

launch vehicles) he might wish to counter an increase in

the size of the attack force by increasing the size of the

target system rather than that of the interceptor force.

Many of the targets will then be undefended and will be des-

troyed in the attack; those that survive will be among those

which the defender chooses to defend. The undefended targets,

therefore, need not be actual retaliatory launch vehicles,

but only some facsimile thereof which the attacker is unable

to distinguish from the real thing. The further requirement

that the attacker be unable to predict the defense deployment

would suggest a deceptive-basing system consisting of a

number of launch sites with a lesser number of launch

vehicles shifted among the sites and the defended targets

chosen from among the occupied sites. The unoccupied

sites would then fill the role of facsimile targets.

If deceptive basing is used, the attacker must attack

the full system of launch sites (targets) while the

defender need only defend the launch vehicles (occupied

targets). The optimal strategies and value of the game

are thus determined in a manner analogous to that without



-14-

deceptive basing by the mean number of warheads per launch

site, m/t, and the mean number of interceptors per launch

vehicle, n/r, where r is the number of launch vehicles.

In order to i.nsure that on the average s launch vehicles

will survive an attack of m warheads, the defender may

choose among a variety of combinations of r launch vehicles,

t launch sites, and n interceptors which will achieve that 4

result. If the attacker procures more warheads in an attempt

to decrease the size of the surviving force, the defender

may offset that increase by an appropriate increase in
I

r, t, n, or some combination of them, and may proceed in a

manner which makes the marginal exchange ratio increasingly

favorable to the defender as the size of the attack force

increases.

Suppose the defender wishes to choose r, t, and n

in such a way that an expected number s of the launch vehicles

will survive an attack of m warheads. If he chooses r such

that s r ,, 2s, he must insure the survival of over half the

launch vehicles, and so must choose t and n in such a way

that the game is defense dominated. Approximately

t[(2n/r)+l]/r warheads will be required to destroy a

single launch vehicle, and the attacker is to be allowed to

destroy (r-") launch vehicles. Hence r, n, and t should be

chosen to satisfy the equation

m- (n if s. r 2s,
r
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which is equivalent to

n - -if s. r. 2 s(1

If he chooses r > 2s, he may choose n and t in such a way

that the game is attack dominated. Approximately (2m/t)-l

interceptors will be required to save a single launch

vehicle; hence r, n, and t should be chosen so that

n = s( - 1) if r > 2s. (2)

Equation (1) is exact if 2n/r is an integer, and equation

(2) is exact if 2m/t is an integer; otherwise they are

only approximate. Equation (2) is valid for n - 0 only

if r - 2s; other-'J7 n - 0 when m/t - 1 - s/r. Equation (2)

does not contain r because 'he defender will only defend 2s

targets; hence, so long as m/t > I, it is irrelevant whether

or not more than that are launch vehicles. The tradeoffs

involved in equation (2) are illustrated in Fig. 3 for the

case a - 500, r - 1000, and various values of m.

Suppose that the defender has chosen to procure at least

2s launch vehicles, for reasons other than simply insuring S

survivors, and he desires to procure interceptors and

additional launch sites in order to insure the desired

level of survival at minimturm cost, where cost is calculated

in terms of interceptor equivalents. Let c be the cost
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of a launch site in terms of interceptor equivalents, i.e.,

the ratio of launch site cost to interceptor cost. The cost

of defending against an attack force of m warheads with

(t - r) additional launch sites and n additional interceptors,

where n is given by equation (2), is therefore

Co(m, 0 - c(t - r) + s,2m -1). (3)

If t is treated as a continuous, rather than discrete,

variable, then equation (3) is minimized by

t(m) - m 

.

which represents the approximate number of launch sites which

will minimize defense costs for those values of m against which

a mix of additional launch sites and intercertors should

be procured.

If c is large (launch sites expensive in comparison with

interceptors), then for small values of m (Ruch that t(m) <

r + 1), the defender should not procure any additional launch
sites, but should defend only with interceptors; if c is small,

then for small m (such that t(m) > m), the game with t(m)

targets and n warheads is defense dominated. In this case the

defender's interceptor requirements are not given by equation

(2), and a different solution must be conmmted. Regardless

of the value of c, however, for m sufficiently large,
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r + 1 < t(m) K m, and the defender should use a mix of

approximately t(m) launch sites and n(m) interceptors,

where

n(m) - 2-cms - s

is obtained by substituting t(m) into equation (2).

The approximate cost to the defender of achieving the

required level of expected survivors against an attack of

m warheads will therefore be

C(m) - 2 2cms - cr - s (4)

for m sufficiently large so that r + 1 < t(m) < m. The

marginal exchange ratio in this case is the reciprocal of

the derivative of C(m), or 472Z., and is shown in Fig. 4

as a function of m for several values of c and s. The mar-

ginal exchange ratio thus becomes increasingly large as the

size of the attack force increases. It is also interesting

to note that, regardless of the relative costs of interceptors

and launch sites, the optimc.l mix for the defender against

large attacks requires that approximately equal amounts be

spent on interceptors and launch sites.

If the defender had not chosen to procure at least

2s launch vehicles for other reasons, some additional

reduction in cost would be realizable through optimization
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over the number of launch vehicles as well. For small

values of m this reduction might be significant, but as m

increases the defender would procure additional launch

vehicles until he reached r - 2s so the results for large

m would be the same.

The conclusion to be drawn from this analysis is not

that the combination of mobile defense and deceptive basing

is a good means of defending a retaliatory force against

a particular attack level. Whether or not this is true

depends upon assumptions about the relative costs of

offense and defense forces, which we have not made here,

and upon the alternatives available. The analysis does

show, however, that whatever the relative costs, if the

defender wishes to protect a fixed number of launch

vehicles against an increasing attack threat, there is

a point at which it becomes more expensive for the attacker

to attempt to overcome the defense than for the defender

to meet that attempt, and that it becomes increasingly

cheaper for the defender to counter further increases in

the attack size.

• I

I
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5. COMPARISON WITH PREFERENTIAL AREA DEFEiSE

The mobile defense model described above has much in

common with the preferential use of fixcd area defense,

i.e., fixed ground based interceptors vach capable of

defending any target in the target syrtem, with defense

decisions being made as the battle progresses. However, the

model seems less adequate as a description of a preferential

area defense system for two reasons, relating to the problems

of timing assumptions and defens, of the interceptor force.

The problem of timing assumnptiois is the less serious,

* and does not greatly detract from the usefulness of the

model in exhibiting the value of preferential defense.

With a preferential defense system the defender need not

precommit his interceptors to specific targets, but may

commit them as the battle progresses, with commitment

decisions being made on the basis of information available

at that time. The model, which assumes precommitment,

thus provides only a luwer bound on the effectiveness of

preferential defense.

The problem of defense of the interceptor force is

perhaps more serious. William Lucas has observed* that

if the preferential defense system must also provide its

own defense, then much of the advantage of its preferential

defense capability may be lost. If the system contains a

single vital point, such as a control center or central

Private communication.
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interceptor storage facility, which must be protected if

the system is to function, then the optimal strategy for the

attacker is to attack that point with enough warheads to

exhaust the interceptor force, then shift to the target

system itself. The defender has no choice but to defend

the vital point as long as it is under attack, thus

exhausting his interceptor supply before the attack on the

target system begins. The prime virtue of preferential

defense, the ability of each interceptor to effectively

neutralize more than a single warhead by forcing the

attacker to overkill those targets which are undefended or

underdefended, has thus been negated.

If the system contains no single vital point the problem

is less serious, but the attacker can still degrade the

defenses to some extent by attacking the defense system.

At the other extreme, for example, suppose that each inter-

ceptor is sited separately in such a way that one warhead

can destroy a single undefended interceptor, and the inter-

ceptors can defend each other. If the attacker sends a

single warhead against each interceptor site, then the

defender can protect at best half the tnterceptor force by

using the other half to defend the half being protected

and allowing Lhe attacker to destroy the empty sites of

the interceptors used in that defense. The attacker can

therefore negate half the interceptor force at a two-for-

one warhead-interceptor exchange ratio, which may be much



-23-

better than he could do by attacking the targets themselves.

The situation is quite different in the case uf mobile

defenses, however. If the mobile defenses are capable of

self-defense, then no advantage accrues to the attacker from

attempting to attack the defenses rather than the targets

themselves. Because of his uncertainty concerning inter-

ceptor location, it is impossible for the attacker to

exhaust the interceptor force more quickly by attacking

the defenses than by attacking the targets directly.
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6. THE ASSUMPTION OF PERFECT RELIABILITY

The real world, of course, contains neither perfect

warheads nor perfect interceptors, and for that reason

quantitative conclusions drawn from analysis of a model

which assumes perfection are approximations at best. In

circumstances in which qualitative assumptions hold which

approximate the quantitative assumptions made in the model,

however, they may be reasonable approximations, and

qualitative conclusions drawn from the model should be

valid.

The qualitative assumptions corresponding to the

assumptions of perfect warhead and interceptor reliability

are that the warheads are sufficiently reliable to achieve

a high confidence of single shot kill; and that the combina-

tion of interceptor reliability and attack level is such

that the primary kill mechanism at defended targets is

exhaustion of the defenses rather than leakage through then.

The qualitative conclusions which follow from theme assump-

tions are that ABM defense systems which deny the attacker

knowledge of their deployment can effectively negate mounts

of attacking payload far out of proportion to their actual

strength, especially when the defender wishes to protect

only a smll portion of his target system against an

attacker who has significant overkill capability against

the undefended target system. This occurs because the

defense system raises the price of destruction signifi-

cantly at those targets which the defender chooses to
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defend, and the attacker, because of his lack of knowledge of

the defense deployment, is forced to pay the higher price

even at undefended targets. The cost of the defense system

is therefore proportional to the number of targets which the

defender wishes tc defend, while the cost to the attacker of

overcoming the defenses is proportional to the size of the

total target system. As a result, the combination of mobile

defense and deceptive basing, which acts to raise both the

price of destroying a single target and number of targets,

appears to provide an attractive method of protecting targets

such as retaliatory launch vehicles.

If the single shot kill probability of an attacking

warhead against a defended target is low, the advantages of

mobile defense, especially in small deployments, should

be even greater. With perfect warheads, a single warhead

per target is sufficient to destroy undefended targets, and

the attacker may target all remaining warheads in a manner

which best overcomes the defenses at defended targets. All

undefended targets are still destroyed, so that this

targeting policy does not penalize the attacker at undefended

targets. As warhead reliability decreases, however, the

value of assigning uultiple warheads to undefended targets

increases, and changes in targeting to overcome defenses at

defended targets result in a decreased probability of

destruction of undefended targets.

On the other hand, as the interceptor reliability de-

creases, or the attack level increases, exhaustion is
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gradually replaced by leakage through the defenses as the

primary kill mechansim. As this happe-s, the value of the

defenses in forcing the attacker to attempt exhaustion at

large numbers of undefended targets decreases. Even if the

interceptors have a reliability of 95 percent, for example,

the probability that at least one warhead will penetrate

the defenses at a target attacked with 15 warheads and

defended with at least 15 interceptors is 55 percent. Fewer

additional warheads are therefore required to offset addi-

tional interceptors, and the a.;arginal exchange ratio decreases

as the force levels increase. This is in contrast to the

situation described in Section 3, in which the marginal

exchange ratio was independent of force size.

At least two types of warhead reliability and two

types of interceptor reliability should be considered in

the analysis of battles with unreliable forces. These two

types of unreliability may be referred to as launch

reliability and terminal reliability, although the precise

meanirg of the terms is somewhat different for warheads

than for interceptors. Warhead iaunch reliability refers

to the probability that a warhead aseigtied to a specific

target reaches the target and appears to the defender as

an attacking warhead, while terminal reliability refers to

the probability that such a warhead actually destroys the

target if it is not destroyed by the defenses. The distinc-

tion is import&nt because warheads that reach the target may

engage an intercoptor even though they would not have destroyea

I
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the target had they not been intercepted, while warheads which

fail to reach the target do not. A force of m warheads of

launch reliability p and terminal reliability one is, there-

fore, equivalent at best to a force of pm perfect warheads,

while a force of m warheads of launch reliability one and

terminal reliability p may be better.

Launch reliability is a function of booster reliability,

guidance reliability against gross errors, and defense

impact prediction capability, while terminal reliability is

a function of guidance reliability given no gross error

occurs, warhead detonation reliability, amd defense impact

prediction capability. The role played by defense impact

prediction capability is an important one, since it allows

the defender to shift some of the overall warhead unrelia-

bility from terminal unreliability (which forces the use of

interceptors) to launch unreliability (which does not).

Impact prediction capability therefore has a definite

quantifiable value in terms of interceptors saved, and

this appears a promising area for further study. One addi-

tional factor to be considered tn assessing warhead

reliability is the density of the target systen. In a

densely packed target system such as a missile field,

warheads which fail to attack their assigned targets owkng

to guidance errors may in fact attack other rearby targets

I instead.

Interceptor launch reliability refers to the probability

that an interceptor does not fail early enough for anotherI
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to be launched at the same warhead, and terminal reliability

to the probability that it then destroys that warhead. In

the former case, if tte interceptor fails, another shot

at the warhead is possible if there are more interceptors

available; in the latter case the warhead penetrates to

'"rike the target, A force of n interceptors of launch

reliability p and terminal reliability one is thus at best

equal to a force of pn perfect interceptors, and may

actually be as good in some cases. A force of n inter-

ceptors of launch reliability one and terminal reliability p,

on the other hand, is definitely inferior to a force of pn

perfect interceptors.

We have not attempted a quantitative analysis of the

battle with imperfect forces, but have included these

qualitative observations in an attempt to provide some insight

into the factors involved. The mobile defense game for war-

heads and interceptors both with launch reliability one

and terminal reliabilities less than one has been solved

by Matheson in [3].

!-I
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Appendix

THE MOBILE DEFENSE GAME

The game may be described as follows: There are two

players, the attacker and the defender. The defender has

t targets and n interceptors with which to defend them.

The attacker has m warheads with which to attack the targets.

!he defender assigns interceptors to targets without

knowledge of the attacker's assignment and the attacker

assigns warheads to targets Wi.lioal- knowiedge of the

defender's assignment. Targets to which more warheads

than interceptors are assigned are destroyed. The attacker

wishes to maximize (and the defender to minimize) the number

of targets destroyed.

Since the targets are of equal value, the payoff depends

only on the number of targets destroyed, and not on which

targets are actually destroyed. From this fact it is

clear that once each player has decided how many targets

should be assigned 0, 1, 2, ... , etc. units, the actual

targets to which these units are assigned should be picked

randomly from a uniform distribution over all possible

target assignments. Each target will have the same a priori

probability of destruction, and the expected number of targets

destroyed will be the number of targets (t) multiplied by

this probability of destruction. The actual number of units

assigned by each side to each target will be a random

variable whose distribution wiLL onp'.d , the strategy
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chosen by that side. Under the optimal strategies for

each side, the random variables corresponding to different

targets will be identically distributed, though not inde-

pendent.

An "approximating game" is first solved in which each

player may choose probability distributions corresponding

to desired assignment strategies, subject only to the con-

straint that these distributions have the proper means*.

It is then shown that except in certain extreme cases these

distributions are realizable through actual assignment

strategies; hence except in these cases the solution of the

game is given by the solution of the approximating game.

A.l. THE APPROXIMATING GAME

In the approximating game, a strategy for the attacker

is a vector x - (xo, x1 , ... , xm) such that xi > 0 for
m m

0 < i < m, E xi - 1 and E ix i - 4, ,4hele 4 - m/t is the
i=O i=O

mean number of warheads per target. A strategy for

the defender is a vector y - (y0 ' yI, "0" Yn) such that
n n

yj > 0 for 0 < j L n, y. = 1 and Z jyj v v, where
j=o0 jMo

= -n/t is the mean number of interceptors per target.

We think of xi as the probability with which i war-

heads are assigned to each target and yj as the probability

with which j interceptors are assigned to each target.

It will not generally be possible to assign units to targets

in the original game so as to realize every such distribution.

It is this game which is solved in [2] and [4].
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The payoff to the attacker (ex-ected number of targets

destroyed) in the approximating game is given by

m i-i n m

M(x, y) t xiYj = t xiyj"

i-l j-0 j-0 i-j+l

That is, the expected number of targets destroyed is t times

the probability that the nuinber of warheads exceeds the

number of interceptors.

To avoid the trivial cases when all targets may be

destroyed or saved, it will be assumed henceforth that

S< n, V m, and t > 2.

Let us define

10 = min (ip[2V + t -- I], m),

tI = min (ip[2" - 1], n),

S- max (t0' Y1)

where ip indicates the integer part. The number t is the

largest number of defending units the defender will ever

wish to put at a single target. If = 0', the game is

said to be defense dominated, and if 4 =i, the game is

said to be attack dominated. (The cases I = m or t = a are

special situations in which one side is so weak in absolute

number of units that he cannot mount an attack or defense
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as large as he would like at a single target simply because

he does not have enough units.)

If the game is defense dominated (t -t), let

Xo -1--•

x* - 1KL (2)
* +

xl 2P <(÷i i < • l

xi 0 W- < i < m,

and let

Y 2"i•,+i 0 < j < t,
* 2 (1-V)

T- (- (2)

yj 0 < J < n.

If the game is attack dominated (t - li), let

* • 2
xi (K iK t,

* 2Pxt* - - 1, (3)

xi i-0 and t + I < i < m,
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and let

i ~Y0" r-rr-T

S* 2v
Y I < 1 <J t, (4)

Syj =0 •< <n.

Theorem 1. x and y are optimal. The value of the
approximating game is

V M 2 if t t

and

v - t(1 2 + -f t t

The calculations which show that x and y are
strategies are omitted as routine.

Case 1. t - Z 0" If j > t, then t - j 0 0, hence for

any y

n mM(x, y) x

Jio i-j+1

2t (
(t t+ I) yj (t j)

J-O
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n

2t P

-V. l Yj •-J

j=O

2 t t 2 (t V

If .in ) >_. i, hence for any x,

m i-iM(x, y = t 2 x

i-i j-0

y2i (tt vw
t xi~ 3 + m

m2t (t - V),

2t P(-t V

- V.

Case 2. t - If 4 + 1 , j n, then

I 2J( + I -- 0) 0, hence for any y, I-- (k + 1) -

n m

*,x Y) -t XEY I jJ-0 i-j+l
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t E YJ l LTp.FL)
jj-O

n-. > t yj i 12(-t + 1 -•
t - j (1 +-

J-0

t 1.

If t K i nm, then t + 1-i . 0, hence for any y

mi-SM(x, y*) - t*i~

x yi-I j-0

mm

S+

t~~2 ( t 2+ 1+)::i =t (-- +•t t

- V.

A.2. ASSIGNMENT STRATEGIES

In the approximating game, strategies for the players

are probability distributions on the nonnegative integersN
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subject to constraints on their means and ranges determined

by the number of targets and forces available to the attacker

and the defender. Actually, however, the attacker and

defender are not free to choose any probability distribution

on the nonnegative integers, but must choose from among

those distributions which can be realized by an assignment

of m warheads or n interceptors to t targets. The solutions

given in the previous section are optimal only when they

can actually be achieved. If, for example, t - 3, n - 5,

and m - 2, the game is defense dominated with t - 2. The

strategies given by equations (1) and (2) are x - (5/9, 2/9,

2/9) and y - (1/9, 1/9, 7/9, 0, 0, 0); the value of the

approximating game is M(x , y*) - 2/9. The only method of

assigning 5 interceptors to 3 targets with no more than 2 inter-

ceptors per target, however, is to assign 2 interceptors to

each of 2 targets and one interceptor to the remaining

targets. The attacker's optimal strategy against this

defense assignment is always to assign both of his warheads

to a single target chosen at random; his expected payoff is

then 1/3.

In the above example, t was determined by the size of

the attacking force rather than by the mean number of inter-

ceptors per target. This represents a special situation

in which the maximum attack size is limited by the actual

number of missiles availalble; this number is less than

the optimal maximum attack size for the means P and v.
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According to the next theorem, except in th 4 s situation

and the corresponding situation when the maximum defense is

limited by the total number of interceptors available, the
* y*

optimal distributions x and y are obtainable.

Theorem 2. In the attack (defense) dominated game,

the distribution y (x) is always attainable by the defender

(attacker) and the distribution x (y) is attainable by the

attacker (defender) unless t - n(t - m).

The distributions x and y given by equations (1) -

(4) are determined by the mean P or v, the integer t, and

the requirement that the distribution place equal probability

on the integers 1 through t (or 0 through t - I) and the

remaining probability on 0 (or on t or on 1 + 1). Rather

than attempting the more tedious task of calculating the

actual values given by equations (I) - (4), we shall prove

the theorem by describing methods of assigning warheads

(or interceptors) to targets in such a manner that the number

of warheads or interceptors assigned to a target picked at

random will meet these requirements. (The choice of a target

at random reflects the fact that the attacker (or defender),

once he decides how many warheads (or interceptors) to assign

to each of t targets, should make the actual assignmient at

random.) We describe, rather than explicitly construct, the

assignment procedure because of the extreme notational

difficulties which arise in a general construction. We
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shall prove the theorem only for the attacker, since the distri-

bution x in the defense dominated game is the same as y

in the attack dominated g-w.e, while the distribution y in

the defense dominated Same can be obtained from x in the

attack dominated game by considering the random variable

Y - + 1 -X.

The Attack Dominated Game

In describing the procedure to achieve x in the

attack dominated game with '- ip[2p - 11, we mst consider

several cases. The case t - 3 consists of three, su-cia-,.',

m - (3' + 3)/2, m - (3ý + 4)/2, and m- (31ý + 5)/2, which

correspond to the three possible fractionqi parts 2" - I:

0, 1/3, and 2/3. The simplest of these i m - (34 + 3)12M

In this case, I is odd. We choose integer . from a uniform

distribution on fl, 2, ... , 0, ar," assign j, (t - j + 2)12,

and (2 - j + 1)/2 warheads to the three targets respectively

if j is odd; or j, (21 - j + 2)/2, and (I -- j + 1)/2 if j

is even. Routine calculations show that thij assignment

procedure achieves the dist-•ibution x

Next consider the case n-. (31 + 4)/2. Using the

procedure given above, we can assign i + 1 warheads to 3

targets with equal probability that each target receives

1, 2, ... , ' + 1 missiles, sin#:e m + I - (3(0 + 1) + 3)/2.

If the as'ignment resulting frcn the procedure is

(a,, a 2, a 3 ). with aI + '2 + a 3 - m+ I, then use the

assignment (aj a a;), such that ai I and
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a' - a, for i + J, i - 1, 2, 3, with probability

3 3
(ai - l)/(m - 2). Since E (ai - i) - m - 2, and L a -m,

i-i i-i
we have in fact described a procedure for assigning m

warheads to 3 targets. Let X be the number of warheads

assigned to a randmly chosen targt-. We must show that

P(X - 0) - 0, P(X - J) - c for some constant z and 1 < j

and P(X > t + 1) - 0. Let Z be the number of warheads

assigned by the first stage of the procedure (the asstgnment

of m + 1 missiles). Then P(Z - j) - 1i/(t + 1) if

I < j _ t + 1, P(Z - J) - 0 if j - 0 orj > + 1, and

P(X J[Z - j + 1) - J/(m- 2) and P(X - JiZ - j) -

(m - j - l)/(m 2) for 1 < j t. Therefore

P(X - 0) = P(Z - 0) + P(Z -t)P(X - Ojz - 1) - 0,

and for 1. J ,

P(X - J) - P(Z - J)PkX - j1z - j)

+ P(Z - j + 1)P(X j'z - j + 1)

"i"hich is what was to be shown.
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If m W (3• + 5)/2, then m - I - (3+ ± 3)/2, and we can

assign m - I of the warheads by the procedure outlined

above for the case m - (34 + 3)/2. if the assignment

resulting from this procedure for m - 1 warheads is

(al, a2, a3), then we use the assignment (al, a2, aj) such

that al - ai + I and a! - a. for j + i; i - i, 20 3, with
11 3

probability ai/(m - 1). The proof that the resulting
*

distribution of warheads at a randomly chosen target is x

is similar to the proof in the case m - (3t + 4)/2, and is

omitted.

The procedure for arbitrary t is as follows. Using

the fact that t - ip[24 - 1], we see that

ttm = 2(t + ) + b, b < . (6)

Since m is an integer, if t is even b is also an integer.

We divide the t targets into t/2 target pairs, and assign

t + 2 warheads to each of b pairs and t + 1 warheads to

each of the remaining (t/2) - b pairs. Within each pair

we assign j warheads to one target and the remaining

warheads to the other target, where j is chosen from a

uniform distribution on (1, 2, ... , 0] if t + 1 missiles

are assigned to the target pair, and from a uniform

distribution on Ll, 2,..., t + 1) if t + 2 missiles are

assigned. The routine calculations similar to those above

show that this assignment procedure does achieve x
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If t is odd and greater than 3, we can rewrite equation

(6) as

m'ml+ m2,

where m, - (3t+3)/2 and m2 - [(t-3)(L + 1)]/2 if 1, is odd

and b - 0; mI - (3t + 5)/2 and m2 - [(t-3)(t + 1)/2 + (b-1)]

if t is odd and b > 0; and. mI - (3t + 4)/2 and m2

[(t-3)(.t + 1)/2 + (b - 1/2)] if t is even. Since m is an

integer, b is an integer if t is odd and an odd multiple

of 1/2 if t is even. Therefore both m, and m2 are integers,

and the distribution x can be achieved by assigning mI war-

heads to 3 of the targets and m2 warheads to the remaining

t - 3 targets using the procedures outlined for t = 3

and t even above.

The Defense Dominated Game

To achieve x in the defense dominated game we must

assign warheads to targets in such a way that the number of

warheads assigned to a randomly chosen target is 1, 2,

... , or t with equal probability and zero with the remaining

probability necessary to achieve the proper mean. The

choice of t insures that t K m < (t + l)t/2, so that

both the range and the mean of the required distribution

are compatible with the number of warheads and targets

available.
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If either t or t + I is even, and m - (t + l)t/2 (the

maximum number possible), the warheads can be assigned

precisely as in the attack dominated game. If both t and

t + 1 are odd, and m - [(t + l)t - 1]/2, assignment can

be made in a similar manner, although slight modifications

are necessary to place the excess probability on zero rather

than on t + I warheads. Consider 3 targets and (3t + 2/2

warheads. The targets may be thought of as each having

t + 1 spaces to which warheads may be assigned, a total of

3t + 3. When the warheads are assigned, (3t + 4)/2 empty

spaces will remain; the number of empty spaces at a

randomly chosen target should be 1, 2, ... , or t with

equal probability and t + 1 with the remaining probability.

The empty spaces can therefore be assigned by the procedure

given for warhead assignment in the attack dominated game,

and the warheads assigned to the remaining spaces. The

remaining (t + l)(t - 3)/2 warheads can be assigned to the

remaining (t - 3) targets as before.

We have thus shown that the maximum number of warheads

possible for a given value of t can be assigned to achieve

x* in the defense dominated game. To complete the proof,

we need only show that for m > t the assignment procedure

for m warheads can be derived from the assignment procedure

for m + 1. To assign m warheads given an assignment

procedure for m + 1, we simply assign m + 1 according to

that procedure. We then select one of the targets to which

warheads have been assigned, and remove one warhead,
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selecting a target to which j(i J _ t) warheads have been

assigned with probability (t + I - j)/[H(H + 1) - m],

where H is the number of targets to which at least one

warhead has been assigned. Calculation of the resulting

distribution of warheads is similar to that given in

equation (5), but is complicated slightly by the fact that

H is itself a random variable. As before, let Z be the

number of warheads assigned to a randomly chosen target by

the procedure for m + 1 warheads, and X the resulting

number assigned after the removal of one warhead. Recall

that we assume P(Z j) p for some p and 1 .K j I t.

Thus, for IK j <

P(X-j) P(X-jIZ-j)P(Z-j) + P(X-jIZ-j+I)P(Z-j+I)

=p[P(X=jlZ'j) + P(X-jlZ-j+l)]

t

Sp EP(H-h)[P(X-j Z=j,H-h) + P (X-j lZ gj+l,H=h)]

h-i
t

- p [(I -dh(4il-m" + Žt• )]P(H - h)

p 41 -h) )IPH h
h-1

S(h(4+1) - m-1~

" (H - h)
h-1

A similar equation holds for P(X - t). Note that the

actual distribution of H was not needed for the calculation.
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