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Mooring Motion

N.P. Fofonoff and John Garrett!
Woods Hole Oceanographic Institution

Introduction:

Mooring motion is the change in the equilibrium position of a
moored buoy in response to a change in the direction and speed of the
current flowing past the mooring. The motion has a maximum amplitude
near the surface and decreases to zero at the bottom. Currerit mea-
surements are made relative to the mooring so that mooring motion is
Present as an extraneous signal in the measurements.

The motion is particularly pronounced if the current contains
a rotary component exceeding the mean current. The mooring is swept
through an irregular orbit with the frequency of the rotary component
at speeds that may attain a significant fraction of the measured speeds.
Because the mooring tends to move with the current, the amplitude of
the rotary component can be considerably attenuated in the relative
flow past the mooring. Furthermore, the measured currents at depth
can be contaminated with spurious indications of rotary flow by the
motion. Because the displacement of a mooring is approximately pro-
portional to the horizontal drag - a nonlinear function of speed -
harmonics and intermodulation frequencies are generated in the
recorded velocities.

As the presence of mooring motion degrades the quality of the
measured currents, the magnitude of the motion has to be estimated
to determine the conditions under which it is not negligible. A
knowledge of the mechanics of the motion can also provide techniques
for minimizing its effects in the measured currents.

Although it is possible to estimate numerically the motion for
a given mooring configuration and current profile, the difficulty of
specifying the profile contiruously in time from measurements at
discrete depths and the uncertainty of drag calculations make it
desirable to obtain an independent measure of the motion to evaluate
the numerical model. It was decided to conduct mooring motion exper-
iments at sea. In November, 1963, a preliminary attempt to detect
the motion was conducted from Bermuda using twe tracking azimuth
telescopes on a three-mile baseline. The telescopes are located
about 200 feet above sea level and eight-foot toroidal surface floats
could be seen up to 17 miles away under the best conditions. The
trial indicated that the floats could be tracked easily during dark-
ness and throughout most of the dayliight hours. Tracking was diff.-
cult during daylight when the flashing beacons on the floats could

not be seen. A slight haze was sufficient to obliterate the buoy
from view at 10 miles,
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A more extensive series of measurements were carried out in May,
1964 over a period of one week (Table 1). Two surface floats were
tracked for six days. The moorings were instrumented to measure sur-
face wind, currents and cable tension. In addition, three moorings
with subsurface floats were set during the same periocd to measure spa-
tial) variation of the velocity field.

The data collected fell short of expectations because of losses
to "fishbite" and instrument malfunction so that some of the planned
vbjectives were not attained. However, sufficient measurements were
collected to describe several significant aspects of mooring motion.

A Simple Theoretical Model

In deep water, the major contribution to the horizontal drag
on a mooring occurs in the upper 10 to 20% of the water column where
currents are usually strongest. To a first approximation, the hori-
zontal drag can be represented by a lumped force acting on the mooring
float itself. Actuaily most of the drag is contributed by the upper
section of the mooring cable but the motion is not changed significantly
in character by assuming the drag force to be concentrated at the float.
The resultant simplification cf the mooring motion equations makes this
assumption extremely useful as a starting point in the analysis. The
model can be generalized without difficulty to a multi-level model
corresponding to the number of current meters suspendad on the mooring.
The advantage of the single-level model is that several explicit ana-
lytical solutions can be obtaired to develop a familiarity with the
response characteristics of the mooring.

. The drag force F acting on the cross section A of the mooring
is estimated from the empirical drag law

Av?2

F=1/2 PCh

where p is water density (1 gm/cm3), ¢ drag coefficient and v
the horizontal speed of flow past the mooring. For explicit calcula-

tions, the cross sectional area is calculated from the upper third of
the mooring.

For a mooring of length L and cable tension T , the restoring
force for small displacements r is given by

Tr/L. for r<<L

In equilibrium, the restoring force must equal the drag force so that

Tr/L = 1/2 pcpAv?
o"\
- % pCpAL
r = i_pTL_ v2 = ](vz
where K = 1/2 pCDAL/T is a measure of mooring compliance. The
-2~
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displacement is in the direction of the current.

In a changing current, the drag is a function of the relative
speed between the mooring and the water, so that: the displacement is
in the direction of the relative current. It is assumed that the
inertia of the mooring is negligible so that equilibrium between the
drag and restering forces holds at all times.

If the float position with respect to a horizontal coordinate
system is given by x , y and the current comporents by u , Vv ,
the relative velocity components are

- ax sy -
Up = B = 3T » Vp TV 3%

The displacement r is equal to (x2 + yz);5 and the displacement
components are

= 2 2%
x r ur/(ur + v, )
- 2 2%
y =0 Vr/(ur * v, )
where
r = K (ur2 + vrz) .

Hence, by substitution

- ! - 3 dx
X = (Kr) ur = (KI") (u - E’E
- 3 _ 3 day
y (Xr) v, = (Kr)* (v - dt)

These equations yield the mooring response equations

%% = u - x/(l(r)si
3{- = v - y/(K)k

where u , Vv are assumed to be kxnown functions of time.

The mooring response equations can be solved explicitly in
three important cases. These correspond to a step increase in speed,
and a uniformly rctating velocity vector of constant magnitude.

Case 1

Assume x =y = 0, u = U, » V= 0 at t =0

This case corresponds to a step increase in speed at t = 0 .

-3-
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The solution, in implicit form, is
— [ - 2y%q _ 2 ¥1
T = -2Kug {.ln[l (x/l(uo %] (x/Ku0 ) J
The asymptotic behavior is

x + Ku02 as t +» o .

Case II

Assume X = Kuoz , y=0, u=v=0att=0

L]

This case corresponds to a step decrease in speed at t = 0. The
appropriate equation is

dx _ . ]
a‘ = -(K/K)

The solution is

S
"

t 2
Ku 2 (1 ﬁm;) » 0 st < 2Ku

=0 s t > 2Kuo

In both cases, the displacement scale (characteristic disrlacement)
is Ku ? , and the time scale is 2Ku_ . Thus, the compliance constant
K is © useful in estimating both the~ time constant and displacement
f a mooring to describe its performance. Sample calculations for K
are given in Table 2. The compliance constant provides an extremely

simple comparative description of the response of different mooring
configurations.

(o]

CasesI and II are combined in Figure 1 to show the respnnse to a
current in the form of a step function. The mooring displacement, speed
and relative current are shown to illustrate the effects of the motion.

Case III1
Assume u = u, cos wt , v = u, sin wt
This case corresponds to a uniformly rotating current of magnitude ug -

T




The rotation period is 2n/w .

The mooring is assumed to move through a circular orbit of
radius r such that

x Y ¢cos 8

y = r sin @
where 6 is the displacement angle measured from the x axis.

Substitution into the response equations yields

(r*/l();E cos 8

- re sin 8 = 1, cos wt

(1‘*/1();5 sin @

ré cos 6 = u, sin wt

Rearranging terms

= (L% re _. -
cos wt = (KE_T) cos 8 - = sin 0 = cos(6+r)
(e} o
. T . ; .
sin ot = ( 2)% sin 8 + Z2 cos 6 = sin(e+A)
Kuo u,

These equations require

- 2-22: 2-22
r K(uo r49<) K(uo repl)
6= w
tan A = a\Kr .

The radius of the displacement circle is
r = [(4K2u_2u2 + 1)% - 11/2Ko?

& Uoys  for w >> ¥ Kug

2
A Kuo for w << % Kuo

For rapid rotation, the mooring tends to be advected by the flow

(rw = u_ ) so that the relative current is small. For slow rotation,
the mooring is near the equilibrium position for a steady current
and its motion does not affect the relative current appreciably. The
ratio of magnitudes of the relative current to the absolute current is

A bozialh it
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(1 - <m/mo>2>’5 for we<ug = 1/Ku

Ky

) b
(mo/w) for w>>w

For subsurface moorings of the type used at WHOI, the time constant
Kui, is about 16 minutes in a 1 knot current. The period, corresponding
t¢ wy, , is 27Kugy ~ 1 hour. The attenuation of rotary currents of
tidal or inertial period (>12 hours) is less than 2%. Because the
mooring motion is nearly at right angles to the current at low frequencies,
the contribution to the speed is a small second-order effect.

The relative direction of flow differs from the true direction at
low frequencies,

tan A ~ w/uo A~ 0.1 for tidal period

so that
A~ 5°

The relative current direction lags behind the absolute current direc-
tion.

Launching Transient

Subsurficce float moorings are Jaunched buoy first and anchor last.
As the anchor drops, the mooring is gradually pulled under toward a
vertical position. The anchor reaches bottom while the mooring is still
inclined as much as 15° from the vertical. Because of the tilt, the
subsurface float exceeds its equilibrium depth. The subsequent recovery
toward the vertical is governed by a balance of drag and restoring forces
similar to the transient considered in Case II. The transient can be
followed by measuring the pressure at the subsurface float. A pressure
record from mooring 161 set near Bermuda is shown in Figure 2 . The
overshoot of the float is relatively small (15.6 m).

In the absence of strong currents, the mooring response is simi-
lar to the example considered in Case II. To the same approximation

used in the response equations, the pressure increase, due to the ini-
tial dip of the subsurface float, is given by

AP = P - P eq. = %pg r2/L

where P eq 1is the final equilibrium pressure and g is gravity.

Assuming negligible current, the change of pressure with time,
found by substituting the transient solution for r , is

-6-




ey TN Y

R02 t ¢ 3
Yog N (1 - 7KU—~) E
‘0

AP

t 4
APO (1 - mo-)

SRR )

2
where APo = Lpg Ro“/L  is the maximum value of the pressure overshoot.

t " . . . .
The ratio (AP/AP_)® 1is a linear function of time and its slope ]
is related to the time constant Ku_ . The variation of this ratio :

with time and the horizontal displacement r from equilibrium are shown
in Figure 3.
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The slope corresponds to a time constant

A Tt ek el

BN

3 To = Kuo A~ 600 sec (10 minutes) .

The initial displacement correspending to APO is 253 m. Thus, the
compliance constant is

3 K = T 2/R = 6002/25,300 ~ 14.2 sec?/cm

Z For comparison, the compliance constant estimated in Table 2 from the

mooring cross section is K = 11.4 sec?/cm. The agreement is satis-
factory.

An independent comparison can be made using speeds measured by
a current meter under the subsurface float. Assuming negligible
current, the mooring speed is

dx _ -
a—'t- = -(U.o - t/LK)‘

et

The slope of the speed response curve depends only on the com-
pliance constant. The comparison for mooring 161 is made in Figure 4.
The sloping line in the figure is the rate of decrease of speed expected
from the compliance constant evaluated from the pressure overshoot. The
agreement is reasonable. The measured speed was considerably higher
than calculated from the simple response equation during the first 5
minutes after the anchor reached bottom. A residual speed of 6 cm/sec
produces a deviation from the final portion of the transient. The
results obtained indicate that a good estimate of the response cliarac-
teristics can be made from in situ measurements of the launching
transient. The response characteristies, in turn, can be used to
evaluate the quality of the recorded velocities.

Buoy Tracking Experiments

- Two surface buoys (Table 1) were tracked with azimuth telescopes 3
from two locations ‘in Bermuda as shown in Figure 5. The angles recorded 3
X were true bearings of the buoys from the observation sites. These

bearings m and 8., » together with backsights 8,, and 8,7 » as

shown in Figure 5, define the buoy location with respect to a rectangular

-7-
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coordinate system with origin at (1) through the equations

L sin (921-92m) sin elm

X = v
sin (e2m'elﬁ)
;- L sin (921-62m) cos elm
: _ ’
sin (e2m elm)

where L is the distance between the twc observation points (3.0 nau-
tical miles).

Readings were made every five minutes when the buoys were visible.
A sample of the bearings recorded at .he two stations is shown in
Figure 6. The readings were converted to rectangular coordinates for
plotting. Hourly positions of moorings 158 and 160 are given in Tables
3 and 4 respectively. The origin of the tabulated positions is chosen
relative to the Paynters Hill tracking site. The north and east coor-
dinates of the two moorings are plotted against time in Figures 7 and 8.
The positions of floats are replotted in Figures 9 and 10 to show
excursions of the moorings. The speed of the floats was quite low.
The largest hourly iisplacement was abcut 77 meters corresponding to
a mean speed of 2.1 cm/sec. The maximum excursions were less than
1 kilometer for both surface moorings.

Tension and current speed were measured nea. the surface on
mooring 160. Some correlaticn between speed arnd tension was found
(Figure 11) although the scatter was high. Current metors were placed
at deeper levels, but the lower portion of the mooring was not recovered.
The nylon mooring cable parted as a result of "fish bite" on May 15th
and the float was recovered adrift.

More detailed comparisons of mooring motion and measuved currents
could not be made. Little correlation was found between current
records obtained near mcoring 160. The velocity field was probably
complicated by the presence of the islané of Bermuda. The experiment,
however, showed that mooring moticn was not a major problem for measure-
ment of currents of the type observed near Bermuda.
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Response of a mooring to a step function current. The
displacement unit is Kupg? and the time unit Kup. The dis-
placement (a) is shown for a current applied at t = 0 and
removed at t = 10 units. The mooring speed (b) scaled by
u_ is subtracted from the current to yield the relative

speed (c) that would be sensed by a current meter on
the mooring.

A pressure record from mooring 161 showing the overshoot
during the launching transient.

The pressure ratio and horizontal displacement of the
mooring during the launching transient.

Speed record from a current meter located 150 m below the
subsurface float. The straight line shows the speed
calculated for a launching transient in still water for
K = 14.2 cm?/sec.

Location of tracking stations and surface float moorings
158 and 160 used for the tracking experiments.

Examples of bearings recorded at 5-minute intervals at the
two tracking stations. Some short period fluctuations can
be seen. These are not explained.

North and east components of mooring 158 plotted against
time. The moorings were not visible from sunrise to noon
because of adverse sun angle.

North and east components of mooring 160 plotted against
time.

Excursions of mooring 158 during tracking.
Excursions of mooring 160 during tracking.
Tension versus speed for mooring 160. Measurements were
taken at 60 m depth below the surface float. The circles

indicate readings after the mooring went adrift.

Tension calibration curves before and after exposure.
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TABLE 2. Calculation of Mooring Compliance Conscant

Compliance Constant for Mooring #161

K = %pCDAL/T

p ~ 1.0 gm/cm3, density of sea water

Cp v 1.0 » drag coefficient

A = 5,44 m? » drag cross section of mooring
L = 2054 m » length of mooring cable

T = 500 kg » cable tension

Drag Cross Section of Upper 500 meters

Cable 500 m
Float 181 m (equivalent cable length)
3 Current meters 144 m " " "
825 m

Cable diameter = 0.66 cm
Cross section A = 0.66 X 825 X 102 = 54,400 cm?
Compliance Constant

5 4 5
K= % 5.44% X 10% X 2.054 X 10

= 11.4 sec?2/cn
.981 X 103 X 5.0 X 105

For a current of 50 cm/sec (~ 1 kt)

=
"

Z
N
!

= 285 m

-3
"
b
<
"

570 sec (9% min)
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