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°I ABSTRACT

[!

• A review of the literature on spall fracture and dynamic resportse of
[• materials is presented. Current theories underlying large amplitude wave prop-

agation and spa11 fracture under conditions of uniaxial strain are described in
detail. Relevant features of elastic, plastic, and shock wave phenomeap are

: reviewed, and the effects of subsidiary properties on the material responae are
cons'.dered, including strain rate, temperature, finite strain, work hardening,
and the Bauschinger effect.
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SPALL FRACTURE AND DYNAMIC RESPONSE OF MATERIALS

by

.. H. Oscarson
K. F. Graff

INTRODUC1TON

This report presents a review of the literature on spall fracture and

dynamic response of materials. Since the purpose of the review is to provide

background and direction for an experimental and analytical spall study presently

being conducted at Battelle-Columbus Laboratories (BCL), the greatest emphasis

is given to thcse topics most closely related to this study. With this con-"-T

straint, most of the subject matter will be devoted to a detailed description of

the current theories underlying large amplitude wave propagation and spall

fracture under conditions of uniaxial strain.

Fundamental to the study of spallation phenomena is ". determination

of stress history at the spall plane. However, the stress cono4 ... ou in the

interior of the material cannot be measured directly, but must be inferred from

measurements of free surface motions of the target material and solution of

the stress wave propagation problem. It is necessary, as a prelude to solution

of the stress wave problem, to know the dynamic properties of the material--

that is, the constitutive relation of the material.

The purpose of the appendices is to review the relevant features of

"elastic, plastic, and shock wave phenomena. Prime attention is directed to a

review of elastic-plastic stress wave theory tpith the intent of relating experi-

mental measurements of rear surface motion to the gross features of the interior

stress history. It will be found, however, that the detailed analysis of the

stress history is too complex for simple analysis and wust await computer

investigation.

I The effects of a number of subsidiary properties on the material

response will also be considered. These will include the effects of strain

j• rate, temperature, finite strain, work hardening, and the Bauschinger effect.

Some assesswent of these effects is necessary if the spall study data are to be

jinte-prete&1 unobscured by unknown complexities of material response.

I
I
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Unfortunately, detailed knowledge of dynamic material properties is scant, so I
that it is only pcs&ible to estimate the consequences of a number of the material

effects. It sboul. be noted that dynamic material properties is cuirently the

subject of intense research. I
The early time response of a plate subjected to lateral impulsive

loading takes the form of a compressive dilatational stress wave propagating j
through the thickness. If the induced stresses are greater than the elastic

limit of the material, the peak stress of the wave will be attair.-.d and propa-

gate behind a higher velocity elastic precursor wave. Thus, at the strain rates

of interest (106 - 10 7 /sec), the unstressed material will first experience an !

almost instantaneous rise to the stress corresponding to the elastic limit. It

will remaia at this stress for some finite time, and then experience another i
rapid rise to the peak stress. Details of the unloadit.g will depend in large

part on how the impulsive load was generated, i.e., contact explosive or flying

plate impact.

When the front of the waveform reaches the stress-free rear surface of

the plate, it reflects as a tensile wave and propagates into the compressed

material associated with that part of the wave which has yet to be reflected.

If the total duration of the incoming compressive pulse is sufficiently short,

there will be a plane at some finite distance from, and parallel to, the rear

surface, for which the net stress first becomes tensile. (Here, net stress

refers to the sum of the compressive st-ess associated with the incoming wave

and the tensile stress associated with the reflected wav'ý.) If the stress 7/
and pulse duration are sufficiently large, the material may fracture (spall) at
or near this plane. Appendices A, B, C, D, and E describe all the events

leading up to conditions sufficient for spall. -

"General Physical Features of Plastic Flow and Fractu':e" provides R

brief and very elementary review of the physics and mechanics of flow and fracture

from a primarily micromechanical point of view. It is included in this report so

that those readers unfamiliar with these concepts might acquire some background

for the topics discussed in sabsequent sections. 1

FI
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1 ] "Spell" is a detailed statement of the current knowledge regarding

spall fracture. This includes a discussion of the factors affecting spall, as

well as the means by which these factors and their effects are used to predict

T spall.

"The final section is a brief summary of conclusions drawn from the

review of literature on spall.

Appendices A, B, C, D, and E present a detailed discussion of large

amplitude wave propagation and constitutive relations of materials, the major

emphasis being given to metals.

F
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DISCUSSION

General Physical Features of Plastic
Flow and Fracture

Observations generally descriptive of material, behavior in standard

tensile or compressive tests (i.e.. quasi-static loading and uniaxial stress

states) are sufficiently numerous and well-developed to serve as a background

for understanding the physical nature of stress wave propagation and spallation

in uniaxial strain. Furthermore, the existence and operation of many of the

basic mechanisms are only quantitetl'tely modified by changes in loading condi-

tions. Thus, before proceeding to detailed discussions on material response and

spall, a brief review of the essential physical features of flow and fracture

appears to be in order.

Physics and Mechanics of Plastic Flow

Composition of Metals. Metallic elements consist of atoms in anr

ordered arrangement, called a lattice, at equilibrium under their mutual forces.

Typical crystallographic arrangements are body-centered cubic (BCC) and face-

centered cubic (FCC) as shown in Figure 1.

It-

FCC BCC WOW

FIGURE 1. BODY-CENTERED AND FACE-CENTERED LATTICE
ARRANGEMENTS ,1
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I These figures represent only a emall portion of the total possible lattice

arrangements. However, over 70 percent of metals and alloys crystallize in

the above or in a hexagonal system.

A pure and perfect metallic specimen would consist of an uninterrupted

repetition of the particular lattice arrangement of the metal. However,

* typically, as a liquid metal solidifies from a melt, a variety of defects are

formed. The simplest defect, called a vacancy, occurs when an atom is missing

trom the lattice. An extra atom wedged in the lattice between the normal

atomic sites may also occur; this is termed an interstitial atom. Impurity

atoms may replace a regular lattice atom or be accommodated within the lattice

as an interstitial impurity. Such defects, involving only one atom, are called

point defects. Line defects are the next level of lattice imperfection. The

incomplete translation of one part of the lattice relative to the other,

designated as a dislocation, is an example.

Surface defects within the crystal may also exist. Thus, across a

surface defect, the crystal structure may undergo a change of orientation. An

example would be the boundary which occurs when the crystallographic structure

forms a mirror image of itself as shown in Figure 2.

"-I As a metal solidifies from a melt, crystals grow from many nuclei on

.I cooling so that the resultant solid consists of many grains of metal, each grain

composed of the crystal lattice. Since the grains will be misoriented relative

"to one anocher, grain boundaries are formed where some compromise of lattice

J Deformed grid

I ne, ooaj Twin boundary(112)

U Unit cells [0u] (OF194)

I FIGURE 2. TWIN BOUNDARY WITHIN A CRYSTAL

I
I
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position occurs. In fact, if the relative misorientation between grains is

large, the boundary may be considered a thin transition layer of high disorder

with amorphous rather than crystalline properties. The situation is schemati-

cally illustrated in Figure 3. i

Microscopic Deformation of Metals. In the case of small loads applied

to a perfect crystal, small distortions will occur in the crystal lattice as the

atoms seek new equilibril'm positions in response to the applied forces. If the I
lattice is perfect, enormous forces are required to rupture the atomic bonds--

as shown by tests on perfect crystals. Once the loads are removed, the atoms

return to their original positions and the material thus exhibits "perfect

elasticity". The case for polycrystals is similar except the loads necessary • I
to produce some irreversible changes in the lattice structure are much smaller;

therefore, polycrystals are also capable of exhibiting perfect elasticity, but .7

to a lesser extent.

The case of permanent changes in the lattice structure caused by loads

greater than considered above will now be considered. The fundamental mechanisms

of permanent or plastic deformation within a crystal are the generation and motion

of dislocations. The two basic dislocation types are screw dislocation and

edge dislocation. In a screw dislocation, relative shifting of the crystallo-

graphic planes has occurred, but this has noC propagated through the entire

crystal and, in fact, terminates along the screw dislocation line. The edge

dislocation, which is simpler to visualize, is the result of an extra half plane

of atoms being "pushed" into the lattice.

/DsRegular lattice within grains
Grain

Distorted, high energy latticeat boundary

(OF 195) ,

FIGURE 3. GRAINS AND GRAIN BOUNDARIES IN A POLYCRYSTAL

ii
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In either type of dislocation, a plane or a portion of a plane of

atoms has glided with respect to an adjacent plane, and after the gliding
motion, the geometric pattern of the crystal has again come back into registry.

I In all types of deformation considered, the lattice undergoes some

distortion in the vicinity of the crystal fault; consequently, the lattice

possesses additional strain energy and is therefore in a higher energy state

than without the fault. Nevertheless, the essendial lattice structure is only

locally distorted by the presence of a dislocation and the identifying features

of the crystal are, in the main, retained.

Macroscopic Deformation of Metals. The microscopic deformation of

metals manifests itself macroscopically as plastic flow and deformation. That

is, microscopic dislocations translate as plastic defor-mations of the crystal

or polycrystal. Although an annealed crystal will contain a large number of

dislocations per unit volume (105 to 108 per cubic centimeter), the magnitudes

I of macroscopically observed plastic strains are not solely attributable to the

gliding of these existing dislocations. It is known that the dislocation density
increases with the start of plastic deformation. Although the description of

these multiplication mechanisms is beyond the scope of this review, both the

theoretical basis for their operation and X-ray evidence of their existence

have been established. Thus, flow takes place due to relative motion of various

dislocation glide planes. The number of operative glide planes tends to

greatly increase due to multiplication mechanisms as flow progresses, resulting

j in macroscopic plastic deformation.

I Physics and Mechanics of Fracture

I Fracture in most materials requires the contribution of two usually

distinct mechanisms; crack or void nucleation and crack growth or propagation.

I Since the operation and characteristics of both mechanisms are highly dependent

on the inelastic behavior modes of the material, the discussion to follow will

consider separately the fracture of perfectly-brittle materials, semibrittle

materials, and ductile materials.*

* Principal sources for this discussion are References 1, 2, 3, and 4, page 35.



-8- 1

Perfectly-Brittle Materials I

Under certain conditions, e.g., low temperatures, both amorphous I
materials and some metals will behave in a semibrittle or ideally brittle fashion. t
(Fracture of materials falling in the semibrittle category are discussed in a

subsequent section.) Those materials belonging to the latter category, which have

been studied most extensively, are the inorganic glasses. Materials such as

ceramics have received less attention.

Crack Nucleation. The discrepancy between the theoretical cohesive T
strength (5-10% of E*) and the experimentally determined tensile strength is

attributed to stress concentrations at the tips of randomly distributed microcracks

on the surface or in the volume of the material. For uniformly stressed material,

the most severe (longest) crack propagates through the material in a direction

perpendicular to the maximum principal normal stress, and thus causes failure at

relatively low applied stress. While these microcracks have never been micro-

scopically observed, order-of-magnitude increases in the strength of glass specimens

with a surface layer etched off have been obtained. In the case of glass, the

severe surface cracks which cause failure are attributed to mechanical damage Sb

introduced in processing or handling.

Crack Propagation. In uniaxial tension, the stress, a 0, necessary to

propagate an elliptical crack of length 2C (with major axis normal to a ) was

derived by Griffith:(I)

0 o C

where o - specific surface energy. When this equation is satisfied, the crack

begins to propagate across the plane of maximum tension. As the crack elongates,

the stress concentration at its tip increases, thereby accelerating the motion

*Young's Modulus.
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of the tip to •aximu velocities as high as the Rayleigh wave velocity. As long

as o0 is maintained on the specimen, the crack will continue to move at steady-

state velocity unless it hits an obstacle (hard region) or forks.

I Materials with crack nucleation and propagation characteristics like

those described above exhibit pronounced size effects in their tensile strengths,

I, i.e., large specimens are weaker than small. This is due to the fact that the

probability of a specimen containing a severe crack increases with size.

The simple considerations introduced above have been extended to more

"I elaborate analyses; these include biaxial and triaxial stress fields and

statistical approaches relating flaw densities and distributions to strength.

Semibrittle Materials

Some body-centered cubic metals (BCC), such as low-carbon steel and

"tungsten, and glassy materials, such as inorganic glasses and polyraers, will

deform plastically or viscously at high temperatures or low strain rates, but at
S~low temperatures or high strain rates they will fracture in a semibrittle manner.

In both crack nucleation and propagation, striking differences can be found

"between semibrittle fracture and the perfectly-brittle fracture. Another factor

which contributes to the ductil2/semibrittie fracture mode transition of these

~ materials is the presence of a high triaxial tensile stress. In the poly-

crystalline materials, the fractures are usually transcrystalline (cleavage of

I individual crystals), although some semibrittle fracture is of the intercrystalline

variety (brittle separation along grain boundaries).

Crack Nucleation. The main difference betw-en perfectly-brittle and

semibrittle fracture in the glassy materials is that, in the latter cnse, some

plastic deformation may precede or accompany failure. The mechanism for crack

SI nucleation is the same as that discussed earlier. In metals, however, cracks are

preceded and can be nucleated '.y inhomogeneous plastic deformation on a

SI microscopic scale, i.e., slip and twinning.

II
]I
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Crack nucleation by slip can be caused by an edge dislocation pile-up

at a strong obstacle such as a high or medium angle grain boundary (see Figure 4)

or a pile-up in the form of a low angle boundary (see Figure 5). In both cases,

the corcentrated stress becomes equal to the theoretical strength of the material,

and as long as the stress does not relax too rapidly, the cracks will continue to

grow. An interesting aspect of the grain boundary pile-up mechanism is that the

crack nucleation stress is grain-size dependent. This is due to the fact that

more dislocations, and hence greater stress concentrations, will occur in larger

grained materials. Pile-ups in the form of low-angle boundaries are co mon to

hexagonal metals and single crystals of ionic compounds, such as magnesium oxide.

(See Figure 5.)

A sketch of the mechanism of crack nucleation by the interaction of

deformation twins is shown in Figure 6. This mechanism, found in BCC crystals,

requires higher stresses than those needed for dislocation pile-ups. Only a few

intersections of this type will result in crack nucleation, since the stresses are

easily reliev;ed.

Crack Propagation. Once defects (cracks) have been introduced by the

flow of crystalline material, the occurrence of semibrittle or ductile fracture

will be governed by whether or not an elastic-plastic crack propagation condition

is satisfied. Such a condition was given by Orowan(I) as

2 pE (2)
0 TTC

where p - the work of plastic deformation per unit increase in crack area. This

is just the Griffith equation with p substituted for a. In general, however, p

will not be constant.

Observed from a microscopic point ot view, it is probable that a flow-

nucleated crack in a single crystal would be of sufficient length to satisfy the

Griffith brittle crack propagation criterion. In a polycrystalline material -,

however, a cleavage crack will usually be stopped by a grain boundary betheen

grains with greatly differing cleavage planes. Once. the crack is stopped, plastic

deformation at its tip serves to blunt it, thus creating the necessity for

additional crack propagation energy. For this reason, the term "p" in Orowan's

equation '_ much higher than the corresponding "&" term in Griffith's equation.
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fIGURE 4. FOF44ATION OF A CRAM BY FUSING TOGETHER OF
".1 DISLOCATIONS AT THE TIP OF A PILE-UP

Crock

S(a) (b) DFa17)

FIGURE 5. FOMIATION. OF A MICROCRACK BY SHEAR

OF PART OF A TILT BOUNDARY
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" SeCon arly ti n

SL- Primary twir,
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FIGURE 6. CRACK NUCLEATION BY THE INTERSECTIONOF IWO DEFO Y04ATION WINS
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As was the case for crack nucleation in polycrystalline materials,

grain size plays an important rele in crack propagation. The improved resistance

to semibrittle fracture of fine-grained materials is due not only to the fact that

crecks are more difficult to nucleate, but also that they are more difficult to

propagate.

Intercrystalline semibrittle fracture i1 nucleated and propagated in

the grain boundaries. it is due either to some form of grain boundary ambritte-

ment or a thin film of a brittle phase separating at the grain boundary,

Ductile Materials

Materials such as some FFC (face-centered cubic) metals do not undergo

a ductile/semibrittle fracture mode transition. In a standard tcrsion test, these

materials develop voids or ductile cracks under the influence of triaxial tension

in the center of the necked region. These voids subsequently grow in size and

number and coalesce as the load is maintained or increased. The fine structure

of the fracture surface at the center of a completely separated specimen shows

that the voids grow to such an extent that the material between them ruptures

(shear failure) rather than cleaves.

Crack Nucleation. The origif of the voids which grow to cause ductile

fracture is attributed to either stress concentrations in the grain boundaries

due to impurities or inclusions, fracture of perfectly-brittle elements (such as

pearlite ir steel), or excessive localized strain concentrations in bands of

heavy deformation.

Crack Propagation. Crack propagation, or more descriptively, void

growth, proceeds according to the manner in which the crack was nucleated. Thus,

if the cracks were initiated by failure of brittle elements, they would become

blunted and turn into holes. The growth and coalescence of the holes would depend

on the amount of further plastic strain and the magnitude of the transverse siress.

On the other hand, if the cracks were formed along grain boundaries or bands of

heavy deformation, the cavity acts as a notch to concentrate stress in planes
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oriented at 30 to 40 degrees to the tensile axis. Large amounts of plastic flow

occur in this region, forming a hesvy concentration of voids in the shear band,

and the weakened region then splits open.

-ii
This section is devoted to a detailed statement of the current know-

ledge of spall fracture. For reasons of readability and conceptual clarity, the

results of the various investigators are presented in an integrated (5) rather

than sequential (6) manner. In this format, topics such as spall models and

"degrees of spall are discussed separately. Particular emphasis is placed on

those results most closely related to spallation in uniaxial strain caused by

plate-slap impact, i.e, rectangular pulses. Furthermore, the closely related

and at least equally important problem of determining material response prior to

spall will receive only cursory attention, since this has been considered in

detail in Appendices A to E.

7• The Degreea of Spall

I "' The most general definition of spall is given in terms of its cause;

Sanamely, material failure due to the interaction of two or more rarefaction

SI waves. The failure itself may range from cracks, detectable only by microscopic

examination, to sublimation or disintegration of part of the material. The latter

type of failure is referred to as ultimate or cohesive spall; the former type

represents a lower limit to a different and less drastic failure mode called

j ductile spall. In addition, materials which exhibit a pressure-induced phase

transformation may fail in an intermediate mode known as phase transformation

spall. Since both ultimate and phase transformation spall occur at relatively

high stress levels compared to ductile spall, and since they have received onlyIi a small amount of experimental or theoretical attention, they will be mentioned

only briefly in this study. The major emphasis will be placed on the more

I practically interesting failure mechanism known as ductile spall.

I
I
I



|I
-14-

Ultimate or Cohesive Spall. This mode of spall has been observed by a

few investigators, most notably McQueen and Marsh.(7) By generating ihort dura- I
tion pulses with an explosively-driven flyer plate, and assuming hydr~dynamtc

material response, the ultimate strength of single-crystal and polycr)stalline J
copper was found to be it excess of 150 kbar. The distinguishing feattre of the

observed failure mode was that the material literally disintegrated or sublimed,

in contrast to the behavior at lower spall thresholds where flaw-related mechanisms

such as crack nucleation and propagation are prominent. It is interesting to note

the rather favorable comparison between the experimentally obtained ultimate spall

threshold and the static theoretical strength of the material derived from con- T
sideration of the interatomic forces in a crystal. Using the equation for the

theoretical, statiz cohesive of .05E - .10E, and assuming a modulus of 18 x 106 pal

for copper, the strength is found to lie between 62 and 125 kbar.

Phase-Transformation Spall. This mode of failure occurs only in materials

which exhibit a pressure-induced phase transformation. It has been observed in

Armco iron by Erkman(8) and Moss and GlassS9) Both of these investigatious used

plate-slap impact techniques to induce stresses in excess of the phase-transforma-

tion pressure (130 kbar), thereby creating a characteristic double plastic shock

wave structure. The phase-transformation spall threshold, which is the negative

of the phase-transformation pressure, does not represent a point of change in

failure mech&rism, but rather marks a point of change in the appearance of the

spall surface. This change is attributed to the phase transformation. As induced

pressures are increased through the phase-transformation pressure, the spall

plane takes on a characteristically smooth appearance, although the failure

mechanism remains one of crack nucleation and propagation. Phase-transformation

spall has also been observed in steel by Novikov and others,(I 0 ) and in iron and

steel by Ivanov and others;( 1 1 ) both studies used contact high explosives to

induce the required pressures.

Ductile Spall. Low-pressure or ductile spall involves the same basic

mechanisms, i.e., crack nucleation and propagation, that are associated with lower

strain-rate failure. Three separate levels of ductile spall have been recognized

and classified according to the severity of damage. In order of increasing damage

they are; incipient, intermediate s7d complete.
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The incipient spall threshold i defined as that combination of stress

and time (pulse duration) below which no damage to the specimen would be visible.

In order to determine the visibility of failure, it is necessary to section,

polish, and etch the apecimen and perform a metallographic examination at about

100 x magnification. The large number of parameters influencing the spall thresh-

old precludes a general description of the appearance of the fractured region,
'a

although it can be stated that several usually transgranular microcracks or voids

with dimensions on the order of a grain diameter would be evident. Also, the

cracks would be generally parallel and would lie in a fairly narrow ýand parallel

to the free surface of the specimen. Photomicrographs illustrating the appearance

of incipient spall in 6061-T6 aluminum and copper are given in References 12 and

13, respectively.

If the tensile stress and/or pulse duration is greater than that required

for incipient spall, the degree of damage is correspondingly greater; i.e., the

cracks are more numerous and larger, and some are joined together. A criterion

for quantitative determination of the degree of damage has been suggested by

* 1 Herrmann of Sandia, who proposed that the damaged specimens, including the spall

• - plane, be cut into tensile members and pulled apart in a tension testing
(13)

machine. In this way, a quantitative measure of the degree of damage is pro-

vided by the residual strength of the tensile member. As the tensile stress

"and/or pulse duration is increased beyond the incipient spall threshold values,

the degree of damage to the specimen increases and, hence, its residual strength

decreases. At some point, however, the residual strength of the specimens ceases

- to decrease with increase in the severity of loading. The tensile stress and

pulse duration corresponding to this point are said to define the intermediate

t spall threshold.

It a specimen is subjected to a tensile pulse of sufficient magnitude

and/or duration in excess of the intermediate spall threshold values, the damage

will be so great that a fairly intact piece of material will separate or be

detached from the specimen. The combination of stress and pulse duratiL, at which

this occurs is known as the complete spall threshold. This thresholA is of greater

practical importance thar the others and has, historically, been the object of

zhe greatest study, e.g., Hopkinson, Kolsky, Rinehart. Obviously, the residual

iI
!I
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strength of the material above this threshold is zero, and a complete charac-

terization of the three ductile spall thresholds in terms of residual strength

would appear as shown in Figure 7. -

20,000SI

15,000

"0 I

O r 10 , 0 0 0 -'

@1I

S15,000l•
Vl

'0,000 -- %.,

5000

S8 iO 12 14 16 t8 20 22 24 26

Inlitio•l ;.,,lCt Pressure. kilobors Mr 1q41

FIGURE 7. RESIDUAL STRENGTH OF TARGETS USING 1.5 Ps SQUARE PULSES

* The 24-kbar data were obtained with a grooved target.

Edge effects prevented complete separation at 22 kbar.

Photomicrographs illustrating the appearance of the fracture zone in copper at

the three ductile spall thresholds are given i'i Reference 13.

Some of the more recent investigators of the complete spall threshold

have used specimen coniigurations specifically designed to eliminate the influence

of edge effects and shear failure, which necessarily enter into the complete spall

of a standard plate specimen. By using tapered plugs fitted into plates of

similar material, Smith (i3) obtained complete spall thresholds for copper which

were lower than those obtained with standard specimens. When a scheme such as

this is employed, however, care must be taken to ensure that uniaxial strain

conditions are maintained while the material is in tension. If this is not done,

the diffecent stress states occurring in compression and tension must be accounted

for in thc solution of the wave propagation equations. Glass and others,( 14 )
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I experimenting with single crystals of copper, used cylindrical snecimens of L/D > I

embedded in copper plates. They observed rather severe necking in the region of

the specimen adjacent to the spall zone, indicating a stress state similar to that

prevailing in a standard tensile test, i.e., uniaxial stress.

-jParameters Influencing Ductile Spall Thresholds

-, A sufticient amount of experimental and theoretical evidence has now been

A gathered to support the assertion that the "critical normal fracture stress"

criterion for spall must be at leas, extended, if not totally revised. This

- criterion, vhich states that a material will spall instantaneously and completely

I-[ when a unique critical value of normal tensile stress is attained, has yielded

erroneous and even contradictory predictions of spall in several instances. Indica-

-r tions are that a realistic spall criterion must include at least one, if not several

more parameters to accoant for the anomalies in experimentally observed spall

behavior. In this section, those parameters which have been found to affect spall
behavior will be enumerated and discussed, with reference to specific experiments.

Time-Related Parameters. One of the first indications that a critical

- normal fracture stress did not constitute an adequate spall criterion was the
disparity, both in numbers and sizes, between predicted and measured scabs in

multiple-spall experiments. In his experiments with several metals and glass
S subjected to explosively induced pressures, Broberg (15) attributed these discrepancies

to the noninstantaneous fracture behavior of ductile materials. If a material which

is subjected to a triangular compressive pulse does not spall instantaneously when

the net reflected tension reaches a critical value, then the magnitude of the pulse

available to cause additional spalling upon reflection from the first spalled

surface is reduced.

SI In a later article,( 1 6 ) reporting on experiments done with granite and

lucite, Broberg explained the spall delay time in terms of the mechanisms associated

I with fracture at lower strain rates, i.e., crack nucleation and propagation. Thus,

the stress-dependent fracture delay time decreases with increasing stress, noLj only because more cracks are nucleated, but also because the acceleration of the

crack tips increases. Similarly, ductile materials require more time to fracture

L
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thav brittle materials because stresses are relieved not only by fracture, but

also by flow. Ductility limits the magnitude of stress concentrations and causes

the tips of cracks to become blunt, thereby retarding both the velocity and the

acceleration of crack propagation.

Results of plate-slap tests provide additional evidence for the necessity

of including a time-related parameter in the spall criterion. Butcher and others (17)

point out that, for the same material, the difference between the spall threshold

stress generated by contact explosives (triangular pulses) and the spall threshold

stress obtained by plate-slap impact (rectangular pulses) indicates a time dependence

for spall failure. In the cases where a strict comparison was possible, the

explosively induced spall threshold stress was always greater than the plate-slap

spall threshold.

In plate-slap experiments on 6061-T6 aluminum, Blincow and Keller( 1 8 ,

observed that the flyer velocity required to cause incipient spall decreased with

increasing flyer thickness in an approximately linear manner. Since impact

velocity can be directly related to stress, and flyer thickness can be similarly

related to pulse duration, a definite time dependence of spall is implied. Another

interesting observation made by these investigators was that the 6hickness or extent

of the spalled region increased with decreasing impact velocity (above the incipient

spall threshold), This phenomenon can also be attributed to a time-dependent spall

mechanism by recognizing that for a given pulse width, if the stress is greater

than that required for spall, the material will fail more quickly than it would at

the threshold value of stress. Due to this more rapid spall at higher stress levels,

the remainder of the tension wave reflects sooner from the spalled surface as a

compressive wave to prevent additional fracturing near the original spall. Also,

since the width of the pulse that is transmitted across the spall plane prior to

spall is less than that at lower stress levels, the material between the impact

surface and the spall plane is less likely to experience subsequent fracture

(multiple spall).

Other investigators have found evidence for time-dependent spall in

experiments with copper. In his plate-slap experiments, Smith( 1 3 ) found that the

required tensile stress decreased with increasing pulse duration for all ductile

spall thresholds. Of additional interest in this reference are several photo-

micrographs illustrating spall damage for different combinations of stress and pulse



13
3 -19-

duration. These pictures show increasing damage, i.e., larger cracks and voids,

for the case when stress is held constant and pulse duration increased and the

case when pulse duration is kept constant and stress is increased.

"I Glass and others (14) used contact explosives to study the fracture of..1

copper single-crystals. These authors point to the presence of a necked-down

region adjacent to the spall zone as definite proof that the material does not

fracture instantaneously.

Not all investigators explicitly introduce time as a parameter with

which to augment a spall criterion. Al'Tshuler and others( 1 9 ) attribute the

-*1difference between explosive and plate-slap spall threshold stresses to the

different tensile strain rates corresponding to these loadings. It is interesting

to note that, contrary to the results of the comparison made by Butcher,(1 7 ) they

found the spall threshold stress for copper obtained by plate-slap impact to be

more than twice the explosively induced threshold stress. They estimate the strain
5 -i -I

rates as 10 sec for explosive loading and 10 sec for plate slap.

Whiteman( 2 0 ) has introduced tensile-stress unloading rate to account for

* the nonunique spall threshold stresses which he measured in aluminum, mild steel,

brass, and copper by plate-slap impact techniques. Plausibility of the results is

indicated to the extent that curves of spall stress versus this stress rate

generally show spall stress approaching the theoretical strength at the highest

stress rates. In addition, the trends of the curves appear to be consistent with

theoretical considerations. If it is assumed that cracks are nucleated by dis-

"I ,ocation pile-ups at grain boundaries, then the stress necessary to initiate

fracture must increase with increasing stress rate (and, 'jence, shorter load-

application times) to give the dislocations sufficient velocity to reach the

boundary. More discussion of the stress-rate dependent spall criterion will be

given in the section devoted exclusively to spall models (pages 23-32).

SOther Parameters. In contrast to time-related effects, evidence per-

taining to the influence of other parameters on ductile spall thresholds is

I comparatively meager. Furthermore, some of this evidence is not only rather

tenuous, but contradictory as well. For the sake of completeness, however, results

pertaining to the influence of all parameters (other than time, of course) will be

presented here.I
I.
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The previously discussed discrepancies observed in multiple-spall

experiments evoked an explanation other than that of a time-dependent spall

mechanism. Rinehart (21) felt that the discrepancies could be explained by the

fact that not all spall planes experienced the same peak compressive stress before

going into tension. In other words, the critical normal fracture streas of a

material depends on the transient compressive stress iimnediately preceding

tension. To the extent that explosively generated pulses can be controlled, and

their shapes accurately described, Rinehart's suspicions are borne out by the

experiments of Buchanan and James (22) with mild steel. Varying the magnitude of

the precompression pulse by using specimens of different thicknesses, they found

that the critical normal fracture stress increased in an approximately linear

manner with increasing precompression. In particular, the tensile stress required

to cause spall increased by about 50 percent when the magnitude (peak stress) of

the preceding compressive pulse was tripled. However, n these experiments, the

rate of stress application also increased with increasing peak stress so that the

precompression explanation of the observed effect is not unique.

More work should be done to determine what effects the compression phase

of the stress-time history has on the spall bLhavior of materials, if for no other

reason than the fact that crack nucleation, which is dependent on shear stresses

rather than normal stresses, can occur in the compressive as well as the tensile

phase. In both phases, the stress states are nonhydrostatic. Note that the trend

of the results described above, i.e., increasing strength with increasing pre-

compression, runs contrary to what would be expected if increased precompression

implied a greater amount of crack nucleation.

The influen...e of ambient temperature on spall thresholds is another area

warranting further investigation. For the rather extensive range of temperatures

they considered, O'Brien and Davis (2)found no change in the fracture stress of

high-purity polycrj italline aluminum subjected to explosive loads. In contrast to

this are the results obtained by Penning and others (12 ) from plate-slap tests on

lucite. With a very limited number of tests, covering only a small temperature

range, they found that the fracture stress increased with increasing temperature.

It appears that neither of the above-mentioned investigators accounted

for the influence of temperature on the equation-of-state, and consequently, on

- - ---- --
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the wave propagation. Obviously, this type of effort must accompany, if not pre-

I cede, any investigation into the effect of ambient temperature on spall thresholds.

The results of a study done by Piacesi and Watt( 2 4 ) show that yield

Sstrength can play a double role in the spallation phenomenon. In addition to

affecting the shape of the stress pulse and, therefore, the stress-time history

at the spall plane, the yield strength of a material influences the amount of

bulge at the rear surface of a specimen that has not completely spalled. Thus,

with specimens not designed to be free of edge effects and shear failure, such as

described previously, yield strength would influence both the intermediate and
.T complete spall thresholds.

In this study, the effect of yield strength on rear surface bulge was

demonstrated experimentally by impacting 7075-T6 aluminum targets at various

-. temperatures (and, consequently, different yield strengths) with 1/4-inch-diameter

S.. aluminum spheres. The bulge distance versus impact velocity curves for 7075-T6

aluminum at 5000 F and 7075-0 aluminum at 720 F, which have equal yield strengths,

were approximately identical. This result indicated that temperature did not

affect spall, in agreement with the conclusions of O'Brien(23) discussed previously.

4 -Thus, the results obtained in tests at lower temperatures, i.e., smaller bulge

"distances for all impact velocities, could justifiably be attributed to the

influence of yield strength alone.

The necessity for investigating the influence on spallation of micro-
f

scopic material properties, such as structure and composition, has been recognized,

and some work has been done. In the study previously mentioned,( 2 3 ) O'Brien and

Davis found that the fracture stress remained constant for aluminum single crystals

at various orientations, zone-refined polycrystalline aluminum, polycrystalline

aluminum rods that had been cold worked to varicus textures, and 2024 aluminum-

copper alloy in the hardened and solution-treated condition. Although the ap-

pearance of the spall was influenced by the ductility of the specimens, the

I conclusion reached was that the structural defect causing failure was present in

an as-grown crystal or was caused by the precompression shock.

I In their experiments with lead, aluminum, and copper, subjected to

explosive loads, Vitman and others(25) found spall threshold stresses to be

insensitive to alloying.

I
I
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The structural parameter that nas been found to have the greatest * i

influence on spallation is the material form (i.e., bar or plate). Using plate-
slap techniques to study spallation in copper, Plauson and others (26) found that

the spall stresses for annealed bar s7 .'!iens (grains aligned ncrmal to the speci-

men faces) were more than twice the stresoes for plate specimens (grains aligned

parallel to the specimen faces). In addition, the spall stresses of the plate

specimens were Lound to be relatively insensitive to material condition (i.e.,

annealed, 1/4 hard, or hard).

The individual cracks constituting the entire spall zone were observed

to be of a transgranular nature irn both the bar and plate specimens, but the gross

appearance of the spall differed greatly. In the plate material, the individual

fractures were cleavage fractures which showed little attendant grain deformation,

while in the bar material, shear fractures and large amounts of grain deformation

were observed. In both bars and plates, the gross spall formed on a plane per-

pendicular to the direction of impact. However, the individual cracks were oriented

in the direction of grain alignment.

Similar, but less quantitative results on the effect of grain alignment

in copper have been obtained by Smith.(13) This reference contains excellent

photomicrographs which illustrate the marked differences in the appearance of the

spall zones in bar and plate specimens.

In a series of plate-slap experiments on 6061-T6 aluminum plate stock,

Butcher( 27 ) found that the critical values of stress and pulse duration required

for crack nucleation were insensitive to the angle between the impact velocity

vector and the plane of grain elongation and impurity stratification. Crack

propagation, on the other hand, was found to be extremely sensitive to this

orientation. Cracks usually propagated in the plane of weakness, i.e., grain

elongation and impurity stratification, regardless of the plane's orientation.

Thus, when this plane was parallel to the direction of impact, little propagation

was noticed because the tension normal to this plane is neither uniform nor of

maximum magnitude. In this crientation, evidence of massive plastic flow was

found in the area of the spali zone.

-I
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It appears that the increased spall strength of specimens in which

Sgrain elongation is parallel to the direction of impact is due to the fact that

cracks nucleated in these specimens are not aligned perpendicular to the direction

of maximum tension and, thus, do not propagate as readily nor coalesce as easily

as cracks aligned parallel to the spall plane. Since incipient spall involves

t -ack propagation, the insensitivity of this threshold to grain align-

ment. ied by Butcher, is not surprising. Blinccw and Keller (18) also

repoi a incipient spall threshold of 6061-T6 aluminum is the same for

both pl and bar specimens, but certainly more data is needed.

These observations, and the remarks made previously in connection with

"the effect of precompression, indicate that significant progress toward under-

j .j standing the spallation phenomenon must necessarily involve a deeper under-

standing of the roles played by the basic fracture mechanisms.
.1

Spell Models

Except for very simple pulse shapes, analytical predictions of spall

(i.e., thickness and number) are handled most efficiently by a computer in

conjunction with wave propagation calculations. The critical normal fracture

stress spall criterion, being the simplest and requiring the least data, is

presently being used in several codes and requires no further discussion. The

more sophisticated models, incorporating such parameters as time, rate, tempera-

ture, and thus requiring more experimental data, are at various stages of develop-

ment. Some have had successful, if limfted, application and verification, while

others remain at the purely conceptual stage. With one exception, which will be

discussed separately, all of these spall models are phenomenological in nature;

e.g., spall stress is related to time, rate, etc., by experimencally determined

constants which characterize the spall behavior of the material. The explanatory

model, based on the principle of bond rupture, represents an attempt to predict

spall behavior from consideration of the physical mechanisms actually involved,

I Phenomenological Spall Models. Aside from being a numerical application

of a particular spall criterion, a spall model should also have the capability to

predict the spall behavior of a material subjected to a pulse of arbitrary shape.

Thus, if an experimentally determined relationship between fracture delay time

I
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I
and constant applied tensile stress is known, the spall model must contain some

statement as to how this information is tn be used when the material is subjected

to a variable stress. Penning and others(12) suggest that the spall delay time

of a material under variable tensile stress is cumulative, i.e., the material will

spall at that time, T, given by

Sat. ;(3)
J t
0 s

where t = t (a) is the delay time versus constant
5 5 -,

tensile stress relatiorship.

To see this more clearly, consider the sketch of the stress-time history, ar a (t),

shown in Figure 8.
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It can be seen that spaLl does not iccur until the percent of damage associated

with the indiidual approximating pulses (0',, At,) accumulates to 100 percent.

The obvious shortcoming of this scheme is that the effect of previous

stressing is not included in the t versus a relationship. For each time incre-
s

ment, At,, the corresponding delay time, t8 (a,), is based on a, being appli'd

instantaneously, with no previous stress present. From these considerations, it

would appear that the T obtained by this method would be too large.

Butcher and others( 1 7 ) have utilized the cumulative method to obtain

closed form expressions ,.r T. By considering only triangular pulses, and as-

suming a definite functional relationship between t and a, they were able to

integrate Equation 3 and solve for T in terms G a material spatial coordinate,
the shock velosity, and parameters characterizing the pulse shape and the t

5

versus a relationship.

Tuler and Butcher(28) incorporated the cumulative spall model into an

elastic-plastic-- ave propagation code. They used a t versus a relationship ofs

the form
ts - k(a-a) (5)

where k and X are positive constants and

a represents the minimum tensile stress

required for failure, regardless of time

duration.

"Predictions made with this model were compared to spall data for U100 aluminum

which had been subjected to explosively induced pulses.

More fundamental difficulties are encountered when the spall delay time

versus applied tensile stress relationship is examined. Two of the more common

"forms of this relationship are given by

t - Xe"-p (References 29 and 30), (6)

St -W (Reference 31); (7)

where X, lp, C, and 0 are constants.

Equation 6 represents not only the experimentally observed behavior of

Ia wide variety of materials when t is relatively large (milliseconds and above),

a ievret fmtrilIhnt
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I
but has been derived by Waldorf(30) from theoretical considerations and shown

to hold for al' values of t . In this theory, which will be discussed sub-s

sequently in more detail (see page 28), the constants X and 0 are identified

with such physical parameters as sublimation energy, Boltzmann's constant,

absolute temperature inside the shock, and the lattice vibrational frequency.

Equation 7 merely re.resents a fit to data gathered for several

materials, most of which were ablators and plastics.

Regardless of the form of the delay time versus constant applied-stress

relationship, the difficult:, of applying the relationship to the prediction of

spall when a materiil is subjected to unsteady tensile stress is one of logical con-

tradiction. When the stress causing spall is not large compared to the dynamic

yield stress, the hydrodynamic interpretation of material response is not

justified. Elastic-plastic wave-propagation calculations show that the stress-

time history at the spall plane is very unsteady due to the complicated

interaction of the unloading compressive wave and the elastic-plastic rare- ""

faction from the free surface. Thus, data describing a spall threshold in term. -

of Etress and pulse duration necessarily imply that the fine structure of the

actual sLress-time history at the spall plane is unimportant, and that spael o

be characterized in terms of an equivalent rectangular pulse. This equivalen:

rectangular pulse can be obtained in various ways. In his experiments with -*

copper, Smith( 1 3 ) completely neglected the effect of the elastic precursor.

Others (12) have performed sophisticated calculacions of the stress-time history

at the spall plane, and then they appear to have "eyeballed" an equivalent

rectangular pulse with which to describe the spall threchold.

From these consiQtoaLions, it must be concluded that the only con-

sistent way •o predict the siall behavior of a material subjected to an arbitrary

finely-structured pulse, from this type of data, is to idealize the actual pulse

in a manner identical to that which was used to obtain the data. From a physical

standpoint, a more desirable approach would be to introduce additional parameters

to characterize the actual shape of the spall-threshold pulse. Again, since

fracture may be considered basically a mechanism of energy transfer, it may be

Q1
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more realistic to describe spall in terms of total mechanical energy introduced

to the spall plane. A spall criterion based on this concept would have the form

k 0 favdt ;(8)I 0
S! where

-e k - an empirically determined constant in units of energy per

unit area,

T time at which spell occurs,

a - instantaneous net tensile stress at the spall plane,

v - instantaneous net particle velocity at the spall plane,
t - the length of time for which the spall plane has been

.1 in rension.
If only rectangular pulses are considered, and if linear elastic material approxi-

mations are made, i.e., a - pcv, then this equation can be integrated to yield

"T = t kpcO" 2  (9)

Note the formal similarity to Equation 7 which represents a fit to experimental

data. Equation 7 also involves a negative exponent, although it is of different

magnitude.

A spell model based on the criterion of stress-rate-dependent spall

stress has been used successfully by Breed and others( 3 2 ) at Loa Alamos ScientificI Laboratories (LASL). These investigators found that Whiteman'( data, relati(g

spall stress to the tensile stress unloading rate for aluminum and copper, could

abe put in the computarionally convenient form of

1/2

1h 
e 

- spall stress,

.a instantaneous net tensile-stress unloading gradient at spell plane,

A,B - experimentally determined constants.

Using this model in the LASL hydrodynamic SIN code, the damage done to

Sa 2.5 cm thick aluminum block, subjected to ýhe contacc explosion of a 10 cm

I:
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block of ccmposition B-3, was predicted to be 10 spalls in 23 11s. A radiograph

of an actual test specimen taken at 25 ts showed 11 7 1 spalled layers. Close

agr--ment between predictions of the code and experimental vesults was also

found for the case of a copper-aluminum-copper samdwich subjected to plate-slap

impact.

These results illustrate how successful a phenomenological spall model

can be, provided that consistency is maintained between the analysis of test data

and ranalytical predictions of material behavior based on this data. Since it is 4.

now generally accepted that the hydrodynamic material approximation yields

erroneous results, except at extremely high pressures, a more physically satis-

fying approach would be to incorporate this spall model into a code for elastic-

plastic stress wave calculations.

Explanatory Spall Model. The spall model developed by Waldorf (30) is

based on the fundamental physical criterion that atomic bonds must be broken in

order for fracture to occur. By using this criterion in conjunction with several

material idealizations, Waldorf was able to derive a relationship between spall

delay time, t., and applied tensile stress, a 0 for homogeneous materials, i.e.,

single crystals. This relationship is then extended and modified to describe the

fracture of materials in which crack propagation plays an important role, i.e.,

polycrystalline materiais. The essential features involved in the development

of these relationships are outlined in this section.

For a microscopically homogeneous, isotropic, and flawless material

loaded in uniaxial strain with the bonds parallel to the applied stress carrying

the entire load, the rate at which bonds are broken can be written as

dn.p ; (11)
dt

where

n - the oumber of unbroken bonds per unit area perpendicular to

the stress,

Pb. the probability of an atomic bond rupturing per unit time.

(This is a function of the applied stress and temperature./
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Now assuming that the atoms move about their equilibrium positions in the lattice

4 •with a Maxwellian velocity distribution in the direction of the applied stress,

and defining bond rupture as occurring when an atom has traveled a distance equal

Sto the equilibrium spacing, 6o, the rupture probability, Pb' is derived as

SE/kt (12)

where

W - the vibrational frequency of the lattice,

I "k - Boltzmann's constant,

T - absolute temperature,

E - the energy per bond with which the atoms are bound into

the lattice.

In the unstressed state, the binding energy, E, is equal to E0 , which is approxi-

mately the sublimation energy.

The dependence of E on applied stress, a, is found by assuming that E

varies linearly with lattice spacing, 6, and by using an average value of bulk

modulus to relate 00 to 6. By further assuming that fracture occurs at a time

equal to the mean lifetime of the bonds and that, during this time, the number of

unbroken bonds may be averaged to a constant value, the E versus ao relationship

becomes

6
6owo

E E-E0  n (13)

where
"of@ = e

n - number of bonds per unit area in the unstressed state.

Now Equation 11 can be integrated to yield
"•I (t)1

In R wW exp L n jdr. (14)
n o KT

SSince fracture occurs when n - o, the delay time, ts, versus applied stress,%,

relationship becomes 6 0 1
ts Eo'-B-'Go(t)

I K f exp 0 dt. (15)
0 KT
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When ao is constant, this reduces to

IE n

t exp L (16)

A less approximate approach would be to relate E and 6 by the Morse

potential function, i.e.,

F-2a(60 -6)_ -a(6-60 1) .

E = E -e 2e (17)
40

where a is a constant such that E - o when 6 - 260, i.e., the atoms become unbound

when forced apart by an amount 60. Then, using an average value of effective

modulus in -iniaxial strain, E, it can be written that

66 m a (1 8 ',

and

Q..

"E E"2a6o°o/E_2 e- a6o•o/i (19)

This expression could then be used in place of Equation 13 in the solution to the

bond breaking equation, i.e., the t versus C relationship.

The fracture of polycrystalline materials involves plastic flow and

crack propagation, so that the relationships previously derived must be modified

to account for nonhomogeneous rates of bond rupture. Waldorf's material model

assumes a distribution of microcracks which grow until they join to form a con-

tinuous fracture suriace. The lengths and spacing of the cracks, which are assumed

to be nucleated by the usual mechanisms, are assumed to be about the same as the

grain diameter, so that each crack must roughly double its length for fracture to

occur. It is assumed further that crack widths are about equal to the thicKness

of the grain boundaries, i.e., 10 atoms.

The time required for neighboring cracks to coalesce, and hence the delay

time for fracture, ts, is given by
b

t -- (20)s v

where

v the crack propagation vilocity (this is a function of the

applied stress),
b = one-half the mean tip-to-tip spacing of the cracks. -
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In order to find the relationship between crack-propagation velocity and

fl applied stress, it is assumed that the variation of tensile stress with distance

from the crack tip is described by a step function. Thus, for a distance d from0

I the crack tip, the stress is conetant and equal to the maximum value of concen-

trated stress at the crack tip. At distances f-cm the crack tip greater than dop

the stress is constant and equal to the applied stress, co.

Now, by assuming that the stress level in the region d of streos con-

centration is Ro large that fracture will occur across the width do0 ! a time very

small compared to fracture anywhere else, and considering the grains to be perfect

I .homogeneous crystals, it may be concluded that the crack tip moves across the dis-

. tance d in the time t' required for a homogeneous material to fracture under the
0 a

concentrated stress. As the crack propagates, this process repeats, so that the

propagation velocity may be written asii d
7v - -; (21)I I. ts

where t' is the delay time for fracture in homogeneous materials subjected to

constant applied stress.

Expressing d0 and b in terms of the grain diameter, Y, anS the grain

boundary thickness,c, and making a correction for plastic flow, the equations for

-• propagation velocity and, hence, fracture-delay time may be obtained in terms of

the applied stress and atomic characteristics of the material. For a constant

-• value of applied stress, the deiay time versus stress relationship becomec

r -1 1 \e\Bio-)

I~C a 0 )-Bo1e 1]e s; (22)

where

"52 A uwe"E°/Kt,

K Bo

S "! noKT '

1

I Y - grain diameter,

c - grain boundary thickness.

I
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Since the crack-propagation velocity cannot exceed the velocity of sound

in the material, cS, the minimum value of delay time, occurring at high stress
S~levels, would be given by

t- b (23)

As a partial experimental verification of his theory, Waldorf cites the

agreement between his predictions and stress-fracture delay-time data obtained by

other investigators for homogeneous plastics and metals at relatively low values

of applied stress and long time durations, i.e., quasi-static strengths.

Louie and others(33) attempted to test the validity of Waldorf's theory

by conducting crack-propagation experiments with plastics and polycrystalline

aluminum. By applying quasi-static tensile forces perpendicular to the line of

small surface cracks, they found that the cracks widened prior to a sudden increase

in length. This circumstance made it difficult to measure the crack velocities

accurately and correlate them with the applied tensile stresses. Nevertheless,

their results showed no indication that crack velocity is an exponential function

of applied stress, as predicted by Waldorf's theory. In addition, photographs

showed that the propagation was accompanied by considerable plastic flow at the

crack tips. From these observations, it was concluded that omission of plastic

flow effects in the Waldorf equation is a serious omission, since this flow can

appreciably alter the effective stress at the crack tips under suitable conditions.

This phenomenon will also modify the temperature dependence of the strength of

the material on the a priori determined parameters of the theory.

From these considerations, it would appear that the Waldorf model in

its present form is applicable only to very brittle materials. It shouid be noted,

however, that stress wave propagation in uniaxial strain inhibits plastic flow

due to the triaxiaiity of the stress state and the haigh strain rates. Thus, the

results of the crack-propagation study done by Louie and others do not prove con-

clusively that the Waldorf model is unsuited to the prediction of spail in ductile

materials. Experimental verification of the Waldorf theory for the stress levels

and pulse durations associated with plate-slap impact spallation has yet to be

provided. I

!
1
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SUNMARYI
"Three major categories of spall fracture in materials have been identi-

.1
fied. In the order of decreasing associated stress levels, they are; ultimate or

cohesive spall, phase transformation spall, and ductile or low-pressure spall.

"Low-pressure spall has been further subdivided into complete spall, intermediate

spall, and incipient spall. These low-pressure spall thresholds mentioned here

are also listed in order of decreasing associated stress level. Damage done to

materials at the low-pressure spall thresholds varies from separation of large

parts of the material at the complete spall threshold to microcrack formation at

the incipient spall threshold.

Several investigators have found that other parameters, in addition to

a unique value of tensile stress at the spall plane, are necessary to the formu-

lation of an adequate spall criterion. Parameters that have been found experi-

mentally or offered in the way of conjecture as influencing the spall behavior

of materials are; tensile pulse duration at the spall plane, strain and stress

rates as the spall plane is loaded in tension, spatial stress gradients repre-

senting the unloading of the spall plane from a maximum value of tension, pre-

compression of the material at the spall plane, ambient temperature, yield strength,

and metallurgical characteristics such as grain orientation.

Spall models which would appear to have some feasibility for the

"prediction of spali at intermediate stress levels are neither abundant nor

verified. Four basically different types of models exist: the Cumulative model,

the Energy model, the Stress-Rate model, and the Bond-Breaking model. The first

three of these models are of a phenomenological or empirical nature, while the
"last represents an attempt to describe time-dependent fracture in terms of

processes taking place at the atomic level of activity.

J The cumulative model purports to predict the spall due to an arbitrarily

shaped pulse by combining previously obtained rectangular pulse data in a cumula-

tive manner. Thus, if the relationship between spall delay time and constant

applied tensile stress is known for all values of stress, the arbitrary pulse in

I question can be apprcximated by a series of rectangular pulses whose cime dura-

tions can be compared with the data. The ratio of the duration of the approximating1
!
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pulse to the spall delay time corresponding to that stress level is calculated I
for each approxir~ating pulse consecutively and added to the sum of those

calculated previously. Spall occurs when the accumulated sum of these ratios

is equal to unity.

The Energy model conceived at Battelle is based on the criterion that

the mechanical energy supplied to the spall plane up to the time of fracture is

invariant. Thus, spall would be predicted to occur at the time. T, when the

following equation is satisfied:

K _ J osVsdt ; (24) --

where

s -Mas(t) - net tensile stress at the spall plane,

Vs M Vs(t) - net particle velocity at the spall plane,

K - tL• invariant spall energy in units of energy per unit area.

"The Stress-Rate model uses the criterion that the tensile ;trength of

a material is dependent on its tensile unloading characteristics, L.e., stress

rate or stress gradient. For a given material, a locus of tensile stress versus

corresponding stress-rate (or gr-adient) points, dividing spall and "no spall",

can be determined empirically. To predict spall due to an arbitrary pulse,

tensile stresses and stress rates are calculated and compared with the critical

values lying on the locus.

The Bond-Breaking model represents an attempt to predict spall from

physical, rather than phenomenological considerations. For a microscopically

homogeneous material, i.e., a single crystal, the relationship between time re-

quired for fracture and applied tensile stress is found by integrating an equation

expressing the rate at which atomic bonds are broken as a function of stress.

Using this relationship to determine an expression for crack-propagation velocity

in terms of stress, and assuming a typical size and distribution of microcracks, -•

a delay time versus applied stress relationship is found for polycrystalline p

materials. Since the delay time versus applied stress relations are derived from

physical considerations, the constants in the equations represent physical p

characteristics of the material rather than the empirical "black boxes" of the a

preceding models. Some of the material constants that are required are the

vibrational frequency of the lattice, the sublimation energy, and grain size.
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APPL'iDIX A

BASIC PRINCIPLES OF CONTINUUM THEORY

The fundamental principles of continuum theory are restated briefly in

this Appendix. Although it is possible to present these principles in their

general tensorial form, this would only tend to obscure the fundamental simplic-

ity of the postulates, These are

CONSERVATION OF MASS,

4 -CONSERVATION OF MOMENTUM,

i "CONSERVATION OF MaMENT-OF-MCMENTUM,

"". CONSERVATION OF ENERGY.

S If thermodynamic effects are inciudd in a continuum formulation, to the above

must be added the

PRINCIPLE OF ENTRIPY.

In addition, the basic concepts of

"- STRESS, STRAIN

must be included.

-- Th above postulates pertain to All media and do not contain the

di3tinguishing characteristics of a pdrticular material. There must be

included, therefore, a material cbaracterizing relation in tie form ot a

CONSTITL TIVE EQUATION

that relatca the basic state variables (e.g., stress, internal energy, and

tempetature).

It is to tnis basic equation, descriptive of a material and its

-. relation to the stress wa,'e propagation problem, that attention is directed in

the following appendices. The various postulates are given mathemiatical

-" formulations convenient to ie applications at hand.

KI
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APPENDIX B

ELASTIC WArES

When t.e propagation of plane compressional waves in an infinite,

isotropic, elastic mxedium is considered, the previously stated postulates

"j yield the equation of motion:

(X + 2.P) i- M p -u (B-1)ax 2 bt 2

j where u is displacement in the x direction, ard X, p are matt-rial moduli (the

Lame constants). The constitutive equation is Hooke's Law, given as

"a ij = kk 6ij + 2pe ij (B-2)

I-1
where ij is the stress, eij the strain, and 6ij the Kronecker delta, and the

summation convention for repeated subscripts is utilized. The strain and

displacements are relak-• by the infinitesimal strain expression,

1 + .(B-3)

-• j (ui,j + uji)

The stated case of propagation represents motion under conditions of

one-dimensional strain. Thus, by replacing index notation with coordinate

subscripts, one has

Smu =0

xx ax 'yy zz

i a w (X•+ 2tt)e ,O m = =Xc•(B4
a xx xx yy zz xx (B4)

The governing equation of motion (Equation B-i) is the wave equation, having
the general solution
t 

"e = f(x + clt) + g(x - clt) , 
(B-5)

1 -1
where c •[(X + 2p)/p]2 is the dilatation velocity. The solution indicates that

a given wave shape propagates undistorted with distance and at a constant

velocity, cl, as shown in Figure B-1.

L
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FIGURE B-I. UNDISTORTED STRESS-PULSE PROPAGATION

The reflection of an elastic wave from a free boundary results in

tension waves reflecting as compressive waves, and incoming compressive waves

reflecting as tension waves. This latter phenomenon is the basic mechanism -

of spall fracture, both in the elastic and inelastic regimes.

Although the character of elastic waves is altered by interaction

with boundaries, the waves do not interact with themselves. That is, leftward-

and rightward-propagating elastic stress waves may encounter and pass through

one another without consequent alteration cf their wave shapes or propagation

directions. During the duration of fTheir encounter, the r'esulting stress and

displacement fields will merely be the superposition of the individual fields.

It will be found that the simple reflection and interaction behavior reviewed "

here for elastic waves does not hold for elastoplastic waves.

Finally, it is useful to review propagation of elastic waves in thin,

straight rods, since many studies of dynamic material properties use this

geometry. The bar geometry, which is the simplest case, is assumed to

represent a one-dimensional stress situatioa and has the governing equation
a2u 2

E -- = -V (B-6)
ax2 at

where E is Young's modulus and is related to the previously given Lamg constant

by X - Ev/(l + v)(l - 2v). Oply the a stress is nonzero, with all otherxx

stresses assumed zero; then

0 =Ec e, = aju/i • (B-7)
Xx xx x 

(x



B-3

There are nonzero lateral strains, but since the inertia associated with the

i resultant motions is neglected, the remaining strain expressions are not required.

The governing equation is also the wave equation predicting constancy

of wave shape. The propagation velocity is given as cB = [7T, and is somewhat

less than the one-dimensional strain-wave velocity. For example, in steel,

-c = 22.4 x 104 in/sec and cB = 20 x 104 in/sec. This decreased velocity for

the bar case may be interpreted as a result of relaxation of lateral constraints.

For elastic-plastic waves, the plastic wave velocities are drastically different

between one-dimensional atress and strain cases, whereas the velocities given

1 above show only a slight di. rence for the elastic case.

I

I
I
I

'I

I
I

Ii
II



I
El

I

[

I.
11
I.

I:
r APPENDIX C

SHOCK WAVES

:1:

11
U
U

K
I

B



Ii"

SHOCK WAVES

"T 1he preceding discussion of elastic waves represents wave propagation

" at very low stress regimes (of the order 104 psi). Under conditions of extremely

high impulsive stress (pressures of the order 10 6psi), shock waves develop and

"propagate in a material in a manner similar to the fluid dynamics situation.

Thus, there is a propagating single wave front across which the material

"variables, such as density, stress, velocity, and energy, undergo large changes

"in short distances. Also, it becomes reasonable to consider the solid as

bethaving like a compressible fluid, described by an 6quation,-of-state in the

"form P - P(v), where v is the specific volume. Consequently, shock wave

propagation, as in the case of elastic waves, has inherent simplifying features

(simplified equation-of-state versus linear elastic behavior) permitting ready

I •solution to the stress wave problem, at least for the one-dimensional strain

case.

The theory of shock wave propagation, again in contrast to the elastic-

.I Jplastic case, has been reviewed extensively. (See, for example, References

C-1 and C-2.) As a result, only one or two major aspects of the theory, useful

for later comparisons with the elastic-plastic case, will be reviewed here.

Consider a shock wave propagating, as shown in Figure C-1.

U - shock velocity

"" IPl, Pl POa PO

-. ul, E1  E

FIGURE C-1. PROPAGATING SHOC( FRONT

The conservation of mass, mcmentum, and energy-equations applied across the

' shock front are, respectively:

P 1.U pl(U - u1 ), (a)

I Pl " o P0 Uul' (b)

ii
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p Uu 
2

0u - 1- + PU(E E)" (c) (C-1)Pl-l 2 a 1 0

According to these equations, velocities, densities, pressures, and energies are

discontinuous across the shock front, but they are relaced as given above. There

is a total of eigiht narameters in the three equations above (po0 Pit Pot Pi, U,

UI, Eo0, E1 ). If it is assumed that Eo, PO, and p are known, three equations

in five unknowns remain. By eliminating U and u1 6etween Cwo of the equations,

the equation can be reduced to

.-1/2 L) (p, + po) • (C-2)
0 PO P-

This establishes the states (E1 , Pis Pi) that can be reached by a shock transition

from an initial state (Eo, POO PO). By elimination of the particle velocity, uI,

from the mass and momentum equations above, an equation for the shock velocity

becomes

1
U (p - Po) p (v - vI) ] 2 (C-3)

PO0

where v° 1/pl and v1  1/p 1 are the specific volumes.
0 1

When a plane shock wave arrives at a free surface, the shock pressure,

pr is reduced to zero by a rarefaction wave from the free surface. Both the

arriving compression and reflected rarefAction waves impart particle velocities

to the free surface. The total free surface motion, uf. is given by -

f M u +u ; (C-4)

where u and u r are the compression and rarefaction particle velocities,

recpectively. Experiments have shown that u c u r. Hence, from Equation C-4,c r

it is concluded that the particle velocity, u, is equal to one-half the free

surface velocity,

I
u f. (C-5)

2 .,f
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C-3

Experimental measurements enable one to obtain the shock velocity and

free surface velocity. These results, coupled with the conservation equations,

are sufficient to determine the equation-of-state for the material. As an

example, consider the results obtained from an experiment on Armco iron.(C-3)

Measurements indicated that

Po = 7.87 g/cc,

SU =6.06 x 105 cm/sec,

uf 2.786 x 10 cm/sec,

p0  1 x 109 dynes/cm 2 (C-6)

From Equation C-5,

I u =1.393 x 105 cm/sec. (C-7)

By substituting in Equation C-1 (b) and solving for pI, ore obtains

Pl p 665 x 109 dynes/cm2 = 665 kbar . (C-8)

To obtain the specific volume vl, the above data is substituted in Equation

C-3 and solved by v,, giving

vI = 0.09787 gramn/cm . (C-9)

1Consequently, vl/v° = 0.77, Indicating that the iron was compressed to 77% of its

original volume.

j The results of a series of experiments at differing shock pressures

constitute a Hugoniot equation-of-state curve which relates pressure to specific

volume. A typical result for copper is shown in Figure C-2.

Because of permanent deformations and heat generation that occurs

during the shock transition, the Higoniot is neither an adiabatic nor an

isothermal curve. It is, instead, a dynamic compressibility curve representing

an irreversible process; that is, S1 - S > 0. However, more detailed thermo-

dynamic considerations shoe that dS is small, and that it is a reasonable

'I
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approximation to consider the process as isentropic (i.e., constant entropy).

This approximation, which is useful at shock pressure, will also be used in

the elastic-.plastic wave process.

t

1800

160e0 Copper

1400 --

1200
01

I000

LD Hugoniot
800"

a 60+ 200 C--, ~600 ",

400-

200-

0.5 0.6 C7 0.8 0.9 1.0

Volume at Pressure/Original Volume OF 203

FC

FIGURE C-2. HUGONIOT CURVE FOR COPPER(C' 3 )
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-,APPENDIX DLi
ELASTIC-PLASTIC WAVE PROPAGATION

"-r The past sections have reviewed briefly the basic principles of con-

tinuum theory and some of the major features of elastic and shock wave propaga-

tion. The cases of wave propagation considered represented extremes in terms of

stress levels, with elastic waves corresponding to wave propagation at low stress

levels and shock waves corresponding to extremely high stress levels. It was

roted that at either extreme, various assumptions tending to simplify the propa-

I gation problem became reasonable. The present case of elastic-plastic waves

represents the intermediate case of stress level.

At intermediate stress levels, the inherent ability of solid materials

to support significant shear stresses makes the assumption of ideal fluid

behavior used in shock analysis a less accurate one. Thus, neglecting material

rigidity, which represents a realistic assumption at extremely high stresses,

becomes less plausible at intermediate stress levels and must be replaced by

a more accurate model of the material.

In this section, the theory of plasticity will be applied to the
derivation of the governing equations for stress wave propagation under con-

"ditions of one-dimensional strain. A number of complicating subsidiary effects,

known to exist in some materials, will be neglected in this preliminary review

of theory, but will be considered in later sections. Attention will, instead,

"be focused on the major features of wave propagation and the governing equations.

I iThe Longitudinal Stress-Strain Relationship

"In this section, the essential features of stress-strain curves

resulting frron quasi-static, uniaxial-stress test conditions will be reviewed,

as well as the idealized forms used for mathematical analysis. The construction
S~of the elastic-plastic stress-strain relations corresponding to conditions of

Suniaxial strain will then be given.

I
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Stress-Strain Relations Under Uniaxial Stress -4

Representative results of stress-strain curves obtained for various --

materials under quasi-static, isothermal, uniaxial tensile-Etress conditions -,

are shown in Figure D-I.

-- E DF 20 4

FIGURE D-1. TYPICAL STRESS-STRAIN CURVES FOR VARIOUS MATERIALS

The curves are not meant to represent any specific material, but, instead, to

illustrate a number of properties. Thus, material (a) is a linear elastic

material until the proportional limit, a., is reached. Beyond ap, the material

deforms plastically. The increasing stress with strain, however, indicates that

work-hardening is occurring. Material (b) possesses a definite yield point,

1, . In some cases, a lower yield point exists, as indicated by the dotted line.

Material (c) has no well-defined, proportional limit. Of course, such material

behavior represents the macroscopic response of the material and is a consequence

of the microscopic deformation processes reviewed eazlier i'. chis report. .

The behavior described above ic a result of a continually increasing

load. If the specimen is unloaded, reverse loaded, or load cycled during a test,

responses as depicted in Figure D-2 are possible.

I (b) s

I i2oy
2 ,

(C)

FIGURE D-2. TYPICAL LOAD CYCLING AND REVERSE LOADING CURVE
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Thus, the material has been loaded beyone its yield point, and then unloaded (a).

"Upon reloading, a small hysteresis loop is formed. Both unloading and loading are

elastic until, in the latter case, the load reaches the original unloading value,

i (b), at which yielding again occurs. If, at a later stage, unloading and then

reverse loading occurs, reverse yielding takes place approximately at (c), which

is the magnitude of the maximum stress attained less twice the yield stress, aY'

However, reverse yielding may occur at a somewhat leeser value, (d), in which

case the material is said to exhibit the Bauschinger effect.

A detailed mathematical representation of the actual stress-strain

curve is generally too complicated for use in analysis. Hence, simplifications

are often adopted %hich, although approximating the actual stress-strain rela-

ticns, greatly reduce the complexity of the mathematical representation. Figure

D-3 shows a number of idealized curves.

-•(b)

r c)

(e)

Y DF 206

(d)

FIGURE D-3. MATHEMATICAL IDEALIZATIONS OF STRESS-STRAIN CURVES

In Figure D-3, (a) is a bilinear representation of an elastic-plastic

"material with work hardening; (b) is an elastic, perfectly-plastic material.

The lower curve is an idealization of several aspects of unloading and reverse

I loading. Thus, the small hysteresis loop which occurs during load cycling has

been neglected, (c). Reverse yielding is sh.wn at (d), and a representation of

the Bauschinger effect is indicated by (e).

I
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The stress-strain relations, discussed in the foregoinE, have been

based on engineering stress and strain defined as

L- L
0 (D-l)

A L 0
0

However, these definitions are often replaced by true stress and true strain .

definitions, given as

- C - in (D-2)
0 0

where A represents the instantaneous cross-sectional area, and L is the current

length. The relationships between the true stresses and strains and the engineer-

ing counterparts* are given by

o l ln(l + c) (D-3)

Stress-Strain Relations for Uniaxial Strain

The governing equations of elastic-plastic wave propagation for con- -

ditions of one-dimensional strain require the appropriate stress-strain ..

relations. These will be derived in this section using plasticity theory and the

quasi-static, stress-strain relations from uniaxial stress conditions. The basic

concepts of plasticity theory will be reviewed briefly before developing the

stress-strain relations using the Fowles procedure.(D-I)

Plasticity Theory. When a material is loaded, permanent deformation

occurs as stresses exceed certain limits characteristic of the material, including

its past loading history. Unloading allows a degree of elastic recovery. In

plasticity theory, a basic assumption is made that there exists a scalar

function, f(aij, ei, is), called a yield function, which depends on the state

of stress and strain and the history of loading. This function characterizes

* In the work that follows, the engineering definition is used.
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the yielding of the material under any possible combination of stresses. Here,

I is the stress state, e is the plastic strain, and x is a parameter

representing the previous loading history. The equation, f - 0, represents a

Sclosed surface in the stress space. No change in plastic deformation occurs

when f < 0. Plastic deformation only occurs for f - 0. No meaning is associated
with f > 0, provided the material properties are independent of strain rate.

.• Yield functions of complete generality, containing the parameters

I indicated above and successfully describing all aspects of plastic deformation

-. of materials, have not been developed, However, many materials may be

adequately described by simplified forms of the yield function. Thus, if the

plastic deformation characteristics of a material are isotropic and work-

hardening effects are neglected, it is reasonable to assume that plastic yielding

- can depend only on the magnitudes of the three principal applied stresses, 0i,

.F 02, 03, and not on their directions. Hence, a yield function of the form(D- 2 )

f(J 1 ,J2,J 3 )l 0 (D-4)

"" may be assumed, where J is the invariant in each of the first three stress

tensors given by

"" J1 01 + 02 + 03' J 2  ( 1( G 2 + 02a3 + 0301)1

"" J 3  a 102a3 (D-5)

however, experimental observations have indicated that plastic yielding is quite

"1 insensitive to hydrostatic stress. By introducing the deviatoric principal
stresses, a,' 0 , 0o, defined as

1 0 1
1 13( 1 2 3

(72 1 3 3'w 3 -301+ 2+03)

and noting that J 1 al + 0' + 03 - 0, the general form of the plastic yield

criteria may be reduced to

J f(J, J3) 0 . (D-7)

I
!I
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Many specific fort.s of yield criteria have been suggested over the 40

years, However, most of these have attributed some influence to hydrostatic

strest, and, thui, have not been in accord with experimental observations. The 4.

two simplest criteria not having this fault were those suggested by Tresca

(1864) --d von M2Ces (1913). The Tresca criterion states that yielding occurs

when the maximum shear stress reaches a certain value; thus,

T1 - a3 a constant (D-8)

where I > a >3. The above may be expressed in terms of J', J' but the

results are somewhat cumbersome.(D>3 )

The von Mises criterion does not involve the function J, but statest3

that yielding occurs when J2 reaches a critical value, given as

, 2 2 + , 2.(D9

c1 J lJ~ u °, + 2 + 32 constant; (D9)

where the deviatoric stress tensor, o0j, is defizied in terms of oij by

iI6i (D-10)

Both models describe elastic, perfectly-plastic behavior. For most metals, it

is found that the von Mises criterion fits experimental lata more closely, although

the Tresca condition is simpler to uce in theoretical applicatiors. This diffi-

culty ts sometimes resolved by uaing the Tresca condition with an empirical

adjustment factor intended to minimize the differences between Ure two results.

Fortunately, in the one-dimensional situations to be considered, both criteria

reduce to the same result.

The two major mathematical formulations of plasticity are identified.

as plastic deformation theory (also known as total strain theory) and plastic

flow theory (also known as incremental theory). Although the deformation theory

finds application in some problems involving continuous loading, it yields

anomalous predictions under conditions of cyclic or reverse loading. The p-astic

flow theory, which rc. 'tea increments of strain to increments of stress at any -

given state of strets and strain, has generally found the widest %cceptance and

application and is utilized in the present review,
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' In the elastic region, the relation between stress and strain is

given by Hooke's Law. In incremental tensor form, this is

eId? d +c 2 Eijd; (D-If)

dee -xn,+ da~Ž
2p E ij

where do' is the deviatoric stress increment defined asii

do' do - do) (D-12)ii ij

and do - doii /3 is the hydrostatic component. Compressive stresses and strains

arE taken as positive.

When the material is strained beyond the yield point, the total

strain increment, deij,at a given state of strain is comprised of an elastic

and a plastic portion given as

*de.i de ej + de i (D-131

Hence, at a given stress-strain state, the increment of plastic work, dWp, will

be given as

dW o de.) (D-14)

p ij ij

The von Mises yield criterion has the form

"" Y(p) =kT/z(oljo•.•2 ,(!)-15)

where Y is the yield stress in simple tension. Since Y may change as a result
"of work hardening (i.e., plastic work, W ), this is accounted for by the

pA functional form Y (W p), and is illustrated in 5vigure D-4.

1p

I
!
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FIGURE D-4. CHANGE OF YIELD POINt AS A RESULT OF PLASTIC WORK

YI . initial yield point T

Y - increasing value of yield point
as a result of plastic work. T

Finally, it was previously pointed out that plastic deformation was

observed to be insensitive to hydrostatic ?ressure. This observation is stated

mathematically by requiring no permanent volumetric change due to plastic

deformation; it is given as

de P= (D-16) .ii

The fundamental relations of elastic-plastic tleory, mentioned above, will now

be specialized to one-dimensional stress and one-dimensional strain situations.
A

One-Dimensional Stress. The cne-dimensional stress situation corre- T
sponding to uniaxial tension and compression test conditions is approximately

achieved during longitudinal wave propagation in rods. This pher.menon will be T
developed briefly here. To distinguish between later one-dimensional strain

results, the direction of stress will be taken here as the s direction. Then,

the incremental elastic stress-strain relations, Equation D-11, become

doa' da
s 2-p 3E E " (D-17)

The von Mises yield criterion (Equation D-35) reduces to a - Y(Wp)o

The expression for the increment of plastic work, dW , raduces to

dW - Y dcp (D-18) T
p
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where dep - de - dee. If there is no work hardening, Y - constant, and dY = 0

I -for the added strain increment. Consequently, de 0. For the more general case

I - of work hardening (i.e., dY ý 0), de' - dY/E so that Eq,,ation D-18 becomes

dW - Y[ds - da /El - Y[des - dY/E]. (D-19)
p a

The overall relationship of total work, plastic work, and increments of total

work and plastic work ia illustrated in Figure D-5. A diagram that helps clarify

the remarks on the effects of work hardening on plastic strain and that led to

Equation D-19 is given in Figure D-6.

-------------- ,

We d
WWP

pE e Cd eg cd

(0) (b) oF 208

FIGURE D-5. WORK DONE DURING PLASTIC DEFORMATION

(a) W P plastic work, W e elastic work, and W + W = total work at stress level U.

(b) For added strain de at stress C, dW - total added work, dW odep
* irrecoverable plastic work, P

a's

SdY "Work-4,' ening

, "'Non work-hardening

dc~e
* y

A- 74. - 209

FIGURE D-6. EFFECTS OF WORK HARDENING ON THE RELATIONSHIP
FrBETWEEN TOTAL ELASTIC AND PLASTIC STRAIN

For work hardening, de = dP 1 1 dCe - dY/E.

If work hardening is absent, dY 0 0, dee = 0, de= deP2= dc.Sp2

II
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One-Dimensional Strain. The x direction will be designated as the

strain direction. The elastic relations, Equation D-ll, then become

del= (d.J - 2"d da dee .d~e (1 - V)do - Vdu ; (D-20)X X y z y x

where the equality da - daz, due to symmetry, has been utilized in the above.Y
The plastic incompressibility relacion, Equation D-16, becomes

dep + 2dep - 0 . (D-21)
x y

The von Mises critericn (Equation D-15) reduces to

a X- a Y(W ) (D-22)

It should be recalled that the von Mises and Tresca yield criteria are identical

under the conditions of uniaxial stress and uniax'al strain, as above.

Finally, the general relation for plastic work must be specialized to

* the present case. Thus, Equation D-14 reduces to

dW - a dep + 2a dep . (D-23)
p x x y y

However, dep -de /2 from Equation D-21, so that the above becomes
Y o.

SdWp = (Cx - ay)der (D-24) -

Using the yield condition, Equation D-22 thus becomes

dW - Y(W )de, (D-25)
p p x'

which is the same as the case for one-dimensional stress.

In order to express the incremental plastic work in terms of total

strain increment and work-hardening characteristics ia a manner analogous to

Equation D-19 for one-dimensional stress, the following relation is utilized:

de6 Pu de- d.e (D-26)
x x x
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SRecall that, for the one-dimensional stress situation, the case of no work
hardening yielded dee . 0; whereas for work hardening,de e . dY/E was obtained.I s
In the present case, from Equation D-11,

de 2x +o E-'- do (D-27)

"1 ~ so that

dep Wi de x (-2V do * (D-28)
- x x 21L E

Expressions may be developed for do' , do that make it possible to put the abovei x
in the desired form. Thus it is observed that

de ddJ + de 4M de (D-29)

"by virtue of Equation D-16. However, de - de , since dey dez 0. Then,

"" since dee de - dep, Equation D-28 may be written asx x

dei = e - + do (D-30)

ii ii 211 E

j• Noting that do' do' (= do') are increments of the deviatoric principal stresses,x y

and recalling that in an earlier observation J, = ! + a' +

.• that doi 0. Consequently,
oii

de - de 3(1- do (D-31)

x E d

It is further noted that

do'I = dox - dO do " (x + 2d i(do,-do) . (D-32)

I From the yield criterion, Equation D-22, do - do dY so that do' dY
x y x 3

Substituting these results, and substituting Equation D-31 in Equation D-28, one

obtains dep = 2 dex - Y (D-33)
x 24L "

SI

'I
!I
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This permits expression of Equation D-25 in the desired form:

dW 2 dY (D-34)

p 3 x 24,

The next objective is to relate explicitly the stress increment, dOx,

to the total strain increment, dex. Now, dex - deex + depx The conditions of

uniaxial strain require that de M de 0, so that dep de . Using this
y yand Equation D-21, dep " 2dep a 2 dCy , so that the total strain increment,x y Y

de , is given by
e Ie

de fde + 2de . (D-35)

Using Hooke's Law, Equation D-11, for de , de , one obtains

dex E (dox + 2dc) (D-36)

Now, the yield criterion may be put in the form

dOx + 2doy - 3dox - 2dY. (D-37)

Hence, Equation D-36 becomes I
de = 3(-2v ax - 2 (D-38)

x E 3dY).

From the relationships between the elastic moduli, the bulk modulus, K, is given

by K - E/3(1-2v) so that

do - K de +ZdY 2 (D-39)3

x x 3

which is the desired :remental stress-strain relation. The mean stress, do, I
is given by do - Kde Kde . Hence, Equation D-39 becomes do - do- dY.

This integrates to

2.Y" (D-40)

1i
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Thus, beyond the material yield limit, the difference between tne one-dimensional

strains and hydrostatic stress-strain curves is only a function of the material

yield stress as a function of strain. If the material does not strain harden,

dY - 0, Y - Yo - constant, and ax - a - -2 Yo.
x °3

Some of the features of the resulting stress-strain relations for

one-dimensional strain are reviewed in Figure D-7.

S(b)

Yo

DF 210

"FIGURE D-7. STRESS-STRAIN RELATION FOR

ONE-DIMENSIONAL STRAIN

"(a) Material hydrostat; d x /dex K = slope.

(b) Perfectly-plastic material; paraliel to-- hydrostat but removed a distance 4S Yo.

-(c) Work-hardenng material; doa Kde + - dY.I 3

It

Ii
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ic is also of interest to review the loading, unloading cycle for tile one-

dimensional strain case. This is shown in Figure D-8.

0-X

C -

B
E--

A

OF 211

GH F X

FIGURE D-8. LOADING-UNLOADING CYCLE FOR
ONE-DIMENSIONAL STRAIN

G0

In cycle OABG, plastic yielding has occurred, but unloading has been purely -

elastic, BG. Cycle OACEF illustrates the reverse yielding that can occur under

one-dimensional strain conditions at sufficiently high loads. Unloading from

the maximum streas, C, is initially elastic, CE. At E, reverse yielding sets

in, since the yield criterion is again satisfied. Further unloading, EF, is

plastic and leaves a residual strain. Cycle OACDH illustrates reverse yielding

with a Bauschinger effect.

The reverse yielding phenomenon during unloading represents one of

the major differences between one-dimensional strain and one-dimensional stress 1

loadings. A second major difference is the relative slopes of the stress-strain

curves under the two conditions. The initial elastic portions of the two cases

are given by

dO ids " E(I - v)_
dc /de one-dimensional strainx x (l-2V) (1 + v)

and
do /de = E one-dimensional stress ,

I!
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ii and they are nearly the same for most materials. However, beyond the yield

point, the slopes differ radically. Thus, for a non-work-hardening material,

. the slope of the one-dimensional strain case is do x/dex M K, whereas,

"dor s/des - 0. This factor will be of significance when wave-propagation

velocities are considered.

The preceding development has served to delineate the major features

of the stress-strain curve, such as the slopes of the curve (before arid after

yielding) and the relation to the hydrostat. It is evident that the parameters

necessary for the construction of the curve are the elastic constants and the

yield stress obtained from uniaxial stress experiments. In fact, if the stress-

-J strain curve for uniaxial strain is to be approximated by straight line segments

with an abrupt break at the yield stress, the preceding is sufficient. However,

if a more detailed picture of the transition region between elastic and plastic

behavior is desired, further considerations are necessary.

It is possible to obtain the desired information from uniaxial stress

data, provided the comparison is made at corresponding values of strain for
which the plastic work is the same. Equating increments of work, dWp, for the

two cases, as given by Equations D-19 and D-34, gives

2 ydy ~s "•]Y- -d Y -Y[de - (D-41)

3 xLt 2P ~ s E

This simplifies to

"de -1de - " (D-42)
x 2 s 6K

If any variation in K with strain is neglected, the above may be integrated to

give

0 3 o (Y-yo)
C" I (C - K ) (D-43)x x s 6K

I where the "o" superscript refers to initial yield values. However,

C 0 l+v Y0, o yO

x E s E , (D-44)

I
I
I
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so that Equation D-43 reduces to

3 YCx 2 ' s "6-K "(D-45)

Thus, the procedure is to calculate cx from uniaxial stress data,

using Equation D-45, and to obtain ax, using Equation D-40 and the fact that

a Ke x. Figure D-9 illustrates the procedure.

Tx

(E0-)=Kex

/
ex Y)

OF 212
Ex

FIGURE D-9. RELATION OF UNIAXIAL STRAIN
AND STRESS CURVES

A slightly modified procedure, described by Barker, et !, (D-4) calculates the

strain offsets relative to the elastic slopes in order to establish the com-

parison.

At this stage, a constitutive relation between stress and strain for

uniaxial strain conditions has been derived. The uniaxial stress, isothermal,
quasi-static stress-strain curve has been utilized in the development. Varia-

-ions in the elastic constants due to finite strain effects have been neglected.
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I nThe applicability of the resulting quasi-static relation to the dynamic situation

of elastic-plastic wave propagation is, of course, open to question. Ultimately,

the degree of comparison between experimental results and theoretical predictions

will establish the applicability. These will be discussed in a later section in

an attempt to arrive at an assessment of such items as strain rate, finite strain,

thermodynamic and Bauschinger effects. For the immediate purpose of reviewing

wave propagation, unobscured by the complicating effects mentioned above, the

I quasi-static, isothermal relation, as given by Equation D-39, will be used.

I The Basic Governing Equations

The basic postulates of continuum mechanics will be applied to derive

the governing equations of elastic-plastic wave propagation. The constitutive

F relations developed in the preceding section will be utilized and the method

of characteristics will be applied to solve the equations. The devclopment

parallels that of Morland.(D' 5 )

Wave propagation in the x direction will be assumed, and a Lagrangian

coordinate system (x,t) will be employed. Under these conditions, conser-

vation of mass requires that

p(l - x) = Pi (D-46)

I where pi and p are initial and final densities, respectively; cx is the

infinitesimal compressive strain defined as e x = u/6x; and u(x,t) is the

particle displacement. Conservation of momentum gives

I Iv au 1_;3t P i ýx ;(-7

I
where v(x,t) is the particle velocity defined as v = ýu/bt. The compressive

stress is a . Because uniaxial strain conditions will be assumed, there will

also exist stresses a and Oz, where o =aiy y z

IiI
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Assuming the existence of a constitutive equation, ax = a(ex), as
x xx

discussed ia the previous section, the above may be written as

Lv 2 2 xC- (C x)-• (D-48),

where do
x2 1 (D-49)C2(x Pi -

From the definitions of strain and velocity,

_x X (D-50)

Using Equation D-50, Equation D-48 may also be written as

b2. u + C2 (C ) 6 2.. . (D-51)
2 x2

at ax

The moment-of-momentum postulate of continuum mechanics does not enter

here because of the uniform normal stresses and zero shear stresses. Similarly,

the energy equation does not directly influence the development. Neglecting

thermodynamic effects, it would merely represent a first integral of the

momentum equation.

The method of characteristics will be used to solve the system

governing equations, given by Equations D-48 and D-50. The characteristics in

the x - t plane for these equations are given by

dX/dt - + C(Cx), or j-t - + i/C(e_) . (D-52)

The invariant quantities along these characteristics are

dx = 4 C(e ), v X C(C )dcx constant R (D-53)

and

dx -C(C ), v - C(C )de constant R (D-54)

where the constants (Rl, R2 ) are, in general, different along different

characteristics.
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i Further Information regarding the above constants may be developed as

follow3: Suppose the gtress pulse is propagating into a uniform region of the

i material, whAre v and ex are constant. This would correspond to the situation

before arrival of the pulse, whiere v- e x - 0. It is represented by the shadedx

region of the x - t plane in Figure D-10.

Ro~itive characteristic

Negtive chamcteri3tlc

~ .

I.x

DF 213
x

FIGURE D-1O. THE x - t PLANE, INCLUDING A UNIFORM
REGION OF v - 9 - 0

Since each negative characteristif; passes through the uniform region, it may be

_. concluded that the invariant, R2 , is the same for all characteristics and may be

replaced by R. A pcsitive characteristic is intersected at each point by a

negative characteristic, so that along each positive characteriscie

e xx
- • V + 4C)dcx -R v -V C(ex)dc R. (D-55)

Results of adding and s,.btracting the above are

""RI + R e R1 - R

v x C(ex)dz 1 (D-561S2 x x 2

I-
U
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In other words, v and f XC(C )dex are separately constant along each positive

characteristic. Further, since C(ex)>O, S xj(6 x)dx is an increasing function

of ex' it is concluded that c must remain constant along a positive character-

istic if the integral is to remain constant. It follows directly that the

dependent variables, C(ex), ax(Cx), are also constant. A further result,

uceful in a later, limiting case, is obtained by integrating Equatic.a D-47.

Thus,

v- .a (D-57)v v i to -

Propagation of Elastic-Plastic Waves - General Description

The propagation of an elastic-plastic wave considered here is that

initiated by a general, prescribed stress applied on the surface of a half-

space. The essential feacures of the initial stages of propagation will be the

existence of an elastic precursor or forerunner, a propagating plastic wave

front lagging behind the elastic front, an elastic unloading front that Is

overtaking the plastic front, and finally, a possible plastic unloading front.

The formation of plastic shock fronts will be considered, as well as specialized

loading pulses. (However, treatment of complicated wave interactions that occur

when unloading waves overtake the loading fronts will be treated in the next

section.) The equations of motion and constitutive relations developed in the

previous section will be utilized. Thus, complications due to strain-rate or

Bauschinger effects will be avoided at this stage, as well as other subsidiary

effecto briefly discussed in the previous sections.

The prescribed stress pulse is shown in Figure D-ll(a). Figure D-ll(b)

shows the associated stress-strain curve. Each strets amplitude propagates with

the local slope of the stress-strain curve. The associated Lagrangian diagram

is shown in gigure D-12.
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The portion OA of the pulse propagates with the elastic velocity,

C 0. These are represented on the Lagrangian diagram by the rays emanating

between 0 and tA' the time duration of the elastic portion of the pulse. The

AB portion of the pulse is represented by rays from tA. - tB of th- Lagrangian

diagram. The various stress levels of this portion propagate with different

velocities, as indicated by the variation of slope of the stress-strain diagram

in the AB region. Thus, because of the upward curvature of AB, higher values

of stress rropagate at higher velocities. This is indicated by the clustering

together of the rays from tA - tB. A region of constant stress, BC, then

exists from tB to tC.

Unloading occurs along CE. LTe initial stage, CD, is elastic and is

indicated in the Lagrangian diagram by rays from t - tD. The final stage of

unloading, DE, is anelastic due co reverse yielding and has various velocities

associated with the various stress levels. The rays from tD - tE

represent this region. The divergence of this family of rays is a consequence

of unloading from higher stress with associated higher velocities to lower

stress with associated lower velocity levels.

It is of interest to consider the variations of pulse shape that arise

from variations of wave velocity indicated in the foreguir;g. There would, of

course, be no such variations if the loading were within the elastic region,

since the stress-strain curve would have constant slope. All rays of the

Lagrangian diagram would then be parallel and would indicate undistorted

propagation of the stress pulse. However, variations do occur for the

anelas ic case, as shown in Figure D-13, where the pulse shapes at two time

instants are shown. The major features of Figure D-13 are: (a) the elastic

precursor or forerunner, OA; (b) the plastic wave, AB, whose front is

increasingly steep due to the greater propagation velocity of the higher stress

levels; (c) the region of constant stress, BC, that is diminishing because of

the overtaking elastic unloading wave, CD; (d) the plastic tail, DE, that is

becoming stretched out because of the slower propagatioa, velocity of the lower

stresses. Because the effects described are essentially related to the stress-

amplitude dependence of the velocity, the subbcquent wave distortion is referred

to as amplitude dispersion.
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FIGURE D-13. VARIATIONS IN STRESS PULSE AT TWO INSTANTS OF TIME

This description of the progressive variation in the wave shape has
been terminated before two major events have occurred. These are the formation

.-. of a plastic shock front at AB and the overtaking of the loading front (either
before or after shock formation) by the unloading front, UD. Consideration will
be given to shock formation. The stages leading to this situation are shown
in Figure D-14. The steepening of the front is shown for t = t tl, t2

-0*"
• O - t=to

I'Mo

c.o

I ~FIGURE D-14. FORMATION OF THE PATCSHOCK FRONT(O >''
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At t = t 3 , a physically unacceptable situation has arisen as the more rapidly

traveling stress components have "overlapped" the slo-er, lower stress level

portion of the wave. This situation is indicated on the Lagrangian diagram

by the crossing of characteristics.

It is when the wavefront, or a portion of the wavefront, becomes

vertical that the continuous plastic wave front breaks down and a discontinuous

shock front is formed traveling at a shock velocity, U. Across the shock front,

the variables of stress, density, velocity, and internal energy vary discon-

tinuously as shown in Figure D-15.

r,, v,, p,, E,

U °

(rot Vo, po, Eo
x ~DF 216

FIGURE D-15. SHOCK FRONIT ACROSS WHICH MATERIAL
VARIABLES CHANGE DISCONTINUOUSLY

'a

The equations of conservation of mass, momentum, and energy still

pertain in the region separating the two states, 0 and 01. If qo v - U and "
0 o

ql = v, - U define the material velocities relqtive to the shock, the mass and

momentum equations become ., !

2 2
plql = poq 0 , PI - a0 = Po0 q -" pq . (D-58) -

These may be solved to give

2 Pi(a 1 -a) 2 Po(01 - J)q o = po(5l - Po)' ql = ý7!(Pl - Po0) /%(D-59)
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I Conservation of energy is expressed by

1 3 1 3
pqlEl - Po 0 0 l0  0 0  Po pq° - p1q, (D-60)

where E0 , E1 are the internal energies. When the values of qj, qo given in

Equation D-59 are substituted in the energy expression, one obtains

E E + . (D-61)E1 0 P°" e ° o "Pl

This is the well-known Rankine-Hugoniot relation presented earlier in the review

of hydrodynamic shock theory. By substituting for p in terms of E, the results

for qo q become

01 0a_ a 2J '.qo -lo) -p(lo-- 'ql, "l€) i€-o (D-52)

Finally, by defining the particle jump velocity across the shock as vs,

a M v v 1 -e (o 1 -o] (D-63)

S-. To complete the development, it would be useful to compare the pre-

.•dicted velocity jump via the shock mechanism to that predicted by the continuous

S.. solution. The details of this, which require assumption of the stress-strain

S-: curve form, will not be presented here. However, Morland(D-5) has investigated

!-. this and found that the difference between che two solutions is only about 0.3%.

The magnitude of the shock velocity, U, is given by

U = v + (1 - eo)[(1c') 2 (D-64)"0 0 P i ( e 1 - C 0)

Of particular interest in Equatiorn D-64 is the form of the square root term,

S-. which can be interpreted in terms of the chord connecting the two points on the

-~ stresj strain curve connected by the shock transition. This is shown in

Figure D-16.

The location of the shock front in space and time must be considered.

ii That is, the location, x, where the shock front forms must be established, as

well as the subsequent location of the front, x s(t). The details of this, whichI
I
I
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FIGURE D-16. SHOCK CHORD CONNECTING TWO
STRESS-STRAIN STATES

have been developed by Morland for the general case, are somewhat involved.

However, for the case of a step-function loading, the oituation is considerably

simplified as illustrated in Figure D-17. The loading pulse of magnitude, are,

is shown in (a) of the figure. Since the stress rises immediately to a , a

shock front immediately forms behind the elastic precursor, since none of the

lower stress level increments have had time to propagate ahead of higher stress

levels. In other words, the overtaking of stress levels, and breakdown into

0Oy- 0' "

Cs

•to t - x L v--- x

(a) (b) (c) (d) OF 220

FIGURE D-17. SHOCK FORMATION FOR STEP-FUNCTION LOADING
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shock that occurs for a smooth loading now occurs instantaneously under step

loading, This is illustrated in (b) by the shock chord connecting a and 0y,m

and in (c) by only two rays from the origin. The resulting wave shape is shownI in (d). Fcrtunately, the simplified case discussed is the one of greatest

interest since it represents the nature of the stress pulse induced in plate-

-€ impact experiments.

"Before concluding this section on shock formation, it is of interest

to note other forms the elastic-plastic wave front may take due to veriations
in the stress-strain curve of the material. These are shown in Figure D-18,

"along with wave fronts characteristic of such materials.

SC b b

b bCss

-'aa aa

( ~XX

(a) (b) (OF221)

FIGURE D-18. VARIATIONS IN WAVEFORM DUE TO MATERIAL CHARACTERISTICS(D- 6 )

. (a) Material without a well-defined yield point.
(b) Material without a liiear elastic portion.

i--

I Elastic-Plastic Waves of Unloading and Reflection

Sf The interaction between loading and unloading portions of the pulse

occurs when the unloading wave overtakes the loading wave front. At this point,

it is encountering a change in acoustic impedance and reflects from and transmits

through this discontinuity accordingly. The general features of the reflection

of elastic-plastic waves from a free surface will also be described.

I
.1
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The approach taken by Morland is to approximate the wave profile by

a series of discontinuous steps, or stress increments, and to consider the
"I.

interaction of these increments. A stress increment, 6G, propagating at a

velocity, c, will cause a change of particle velocity, 6v, and strain, be.

These quantities, which result from a discontinuous pulse, may be calculated

from Equation D-57, which was developed for the continuous case by considering

the limiting case of the pulse shown in Figure D-19.

q-S

FIGURE D-19. PROPAGATING STRESS PULSE
OF LENGTH 6x

Thus, in Equation D-57, it may be written that

c 01 -a0"
x 1 0 6C

Tx 6x 6x " (D-65)

Noting that bx = c6t, it can be found that

to+6t _ b
6v = 60'dt 6__ (D-66)

Pictt P• Pic

The jump in strain is found from the definition of c, i.e., c2 b6/Pi be. Thus,

2
be - /UOc . (D-67)

Now consider the situation of an elastic unloading stress increment
overtaking a plastic loading increment, as shown in Figure D-20. The dotted lines

represent the point of interaction;YO are particles on either side of this line.

After interaction, a new stress, 03, exists at the interaction line. This may be -3
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(12V

(a) (b) (OF223)

FIGURE D-20. SITUATION BEFORE (a) AND AFTER (b) INTERACTION

BETWEEN ELASTIC-PLASTIC STRESS INCREMENTS(D 5 )

determined by applying velocity continuity conditions subsequent to the

interaction. Thus, it may be written for va, Vo that

M 2 " a 1 ao 2 2 3 o 3- 1-68)
aPiC Picoo Pico , + c

The final velocity of 0 is determined by the initial velocity, vl, and the

velocity increments imparted by the plastic loading wave (a2-al), the elastic

unloading wave (ao-al), and the wave resulting from the interaction (a3-Ol).

For 0, only the latter of these three waves affects its initial velocity, vI.

Writing v o vo gives

c -c 2
S0 + ,ao3 -a I = A 1 A' (D-69)

o c +c 1  3Co

where A,A' are the loading and unloading stress increments, respectively, given

by

SA 2 - aI A' = ao2 -a ((D70)

The resulting strains, c ,,e, may be calculated by using the incre-

mental expression, Equation D-67. Thus,

o 2+ a 1  a 2 - 3-
o_ ,.)

cc, , l + 2 2 + 2 (D-71)
Pi'l Pic0  Pic 0

S- a C-

1" 2SPiClI

iPLC
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From Equations D-69 and D-70, this gives

+ 2 ' Co 1  A, I
c1 P l 1 2 2 +c + cI 2 2)

ThnPic P0c 1 P ic

Pl Pioo i~o (-2

A 2C20 2 c +c

Th~enj

1 0I

40

This indicates that a discontinuity in strain has been introduced at the

interaction line, and that it subsequently propagates at the local particle

velocity.

Before the wave interaction process can be completed, the interaction A.

of the reflected elastic loading wave, creat. v the foregoing procees, and ""

other overtaking elastic unloading waves mu-. .e considered. The situation is

shown in Figure D-21.

co" I_ _! co

Co 22, .

a oa If a DF22

(a) (b)

FIGURE D-21. SITUATION BEFORE (a) AN. AFTER (b) INTPRACTION
BETWEEN ELASTIC STRESS INCREMENTS (D-5)

The particle velocities, v0,, v,, are given by

Co2 - a a 3 -a

o2 0 (D-74)

Pic 0 Pic 0

1~ V a 2 a1 2

vP¢ = v2 2 -2

PiCo PiCo 0!

Ii
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Pu tting v gives

C3 - 02 =A a (D-75)

S01 03 02 0 "

where A,%' are the loading and unioading increments. Calculation of e , in the

manner used for the plastic interaction, shc-s that e e,, so that no strain

discontinuity arises.

Thus, if a seris of elascic unloading increments propagacing at

velocity c0 overtakes a plastic front propagating at cI, the sequence of events

is as follows: (1) the first unloading increment interacts with the plastic

front; (2) a reduced plastic front is formed of stress 03 and propagates ahead

at c1 ; (3) an elastic loading increment of stress a3 is reflected at a velocity,

c ; (4) the reflected increment interacts with an oncoming elastic unloading

increment; (5) the two elastic increments pass through each other, stepped to

n~w levels; (6) the second elastic unloading increment, modified by the inter-

action, overtakes the plastic front and interacts with it, starting the sequence

of events over again. Further consideration will be given to this prceess

in regard to specific aspects of the plate impact.

Consideration is now extended to the reflection of waves from a free

surface. For simplicity, an elastic-plastic wave having a two-front structure,

as shown in Figure D-22 (a), will be considered to impinge on the free surface.

By simple superposition methods, it is established that the elastic compression

front reflects from the surface as a tension front and induces a change of

velocity. The reflected tension, propagating to the right and annihilating

the compressive elastic precursor, effectively creates an unloading wave

pzopagating to the right, as shown in (b) of the figure. The elastic unloading

wave then interacts with the oncoming plastic front, reduces the magnitude of

the plastic wave, and creatc. a reflected elaotic loading wave propagating

back to the free surface ahead of the reduced plastic front (c).

I!o

I-
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Free surfoce-. - - (a) i

S•Cl " 0"2 -- (b)

S(b) OF C

Ix
I Co

FIGURE D-22. VARIOUS STAGES OF WAVE REFLECTION AND
INTERACTION WITH A FREE SURFACE

It is, of course, evident that the above interaction process could I
continue an indefinite number of times before the plastic front reaches the

surface. In actuality, the amplitude of the reverberating elastic wave is i
rapidly reduced to an insignificant amount compared to the plastic stress

amplitude, and only the first reverberation is of significance. Thus, the i

first reflection of the elastic front from the plastic wave will, when it

reaches the free surface, induce an additional step in velocity. The plastic 1

wave front will then reach the surface, stepping the velocity yet again. The

velocity and displacement profiles of the free surface motion would have the

general appearance shown in Figur,; D-23. Further consideration of the actual

velocity changes induced will be given in a subsequent section in which theI

entire wave propagation process due to plate impact is considered.

Ii
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FIGURE D-23. VELOCITY AND DISPLAC]2IENT PROFILES
OF FREE SURFACE MOTION

Plate Impact and Determination of Material Properties

In the last three sections, various aspects of elastic-plastic wave

initiation, propagation, Interaction, and reflection have been considered.

In the present section, the wave propagation problem resulting from the planar

impact of two flat plates will be reviewed. For such a problem, conditions

of uniaxial strain pertain in the interior regions of the plates until the

first rarefactions from the edges reach the center. All aspects of initiation,

propagation, etc., discussed previously, will be present. Although the

complexities of t~ie many wave interactions will preclude extensive hand

analysis, the early stages of the process will be reviewed. A relatively simple

elastic, perfectly-plastic material model will bc used so that the basic

features of the stress wave system may be easily studied. The method of

deducing the stress-strain relation of the material from the measurement of

rear surface motion will be reviewed.

- An example, taken from Penning, et al,(D- 7 ) will be used to illustrate

various aspects of the resultant stress wave system. The planar impact of a

driver plate upon a target plate, where both plates are of the same material,

will be observed. An elastic, perfectly-plastic material, having the charac-

teristics mentioned and illustrated on pages D-1 through D-17 and Figure D-8,Ii
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I
will be used to rcpresent the material. The Lagrangian wave diagram will be

employed to depict the wave process. I

xaple. Consider the case of a driver plate impacting the target

plate at a v'locity of 0.010 cm/psec, inducing a compressive stress of

8.1 kbar at the plate interface. This compression will be achieved in

two steps. There will be a compression to 6.33 kbar propagating into

the target at the elastic velocity of 0.623 cm/Psec, followed by a further

compression to 8.1 kbar propagating into the target at 0.541 cm!Psec.

The former wave is the elastic precursor, and the second wave represents

the plastic front. Exactly the same thing is occurring in the driver

plate. This stage of the process is indicated by OA and OP on the wave

diagram of Figure D-24.

The compressive waves first reach a free surface at P in the driver

plate. The elastic front reflects as a decompression, or unloading

wave, releasing the material from 6.33 kbar to zero stress. This

front interacts with the oncoming compressive front of magnitude

1.77 kbar at point Q. The analysis of the interaction at Q follows

the methods outlined on pages D-27 through D-33. The resulting stress

wave system is composed of a recompression or loading wave of

amplitude 1.96 kbar, propagating on to the free surface at the

elastic velocity, and an unloading wave from 3.1 kbar to 1.96 kbar,

propagating (at the elastic velocity) back through the driver plate.

At the interaction line between these two waves, a density discon-

tinuity or contact surface has been created. The recompression wave

reflects from the driver-free surface as an unloading wave and

propagates back through the driver plate leaving unstressed, unstrained

material in its wake until it reaches the contact surface. Beyond the

contnct surface, the material is left unstressed, but with a net

residual strain. Exactly Ute same interaction occurs in the target plate

at A, only &t a later time. iwo stages of this interaction process are

shown in Figure D-25. One occurs at t tl, subsequent. to the reflection

from the driver-free surface, but prior to reflection from the target

surface. The ol..her is at t = t 2 , subsequent to the reflection from the
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target surface, but prior to further interaction. These times are

I indicated on the Lagrangian diagram, Figure D-24, as dashed lines

at t - t 1 ,t 2.

At this stage, the interaction between the unloading waves from

the driver and target-free surface begins. The first interaction is

between the 8.1 kbar to 1.96 kbar unloading waves, which occurs at

point B of the Lagrangian diagram. This produces two oppositely-moving

* tension waves of magnitude -4.28 kbar propagating at the elastic

velocity. These interact almost immediately with the oncoming 1.96

-? kbar to 0 unloading fronts (points C and D on the diagram). Each of

-i these interactions (C and D) produces two oppositely-directed tension

waves (this is illustrated for the interaction at C by the symbolt.).

Now, the tension waves produced at C are actually dual fronts; the first

step takes the pressure from -4.28 kbar to -4.52 kbar (and propagates

at the elastic velocity of 0.623 cm/psec), while the second step is

from -4.52 kbar to -5.96 kbar and propagates at the plastic velocity

0.541 cm/Psec. The identical situation is created at D. Lack of space

on the Lagrangian diagram prevents showing all of these details. Thus,

of the two dual systems from C, only the one propagating to the left

* ;shows both wpve fronts (those propagating to the right from D). The

resultant stress wave system is shown at an intermediate time, t w t

in Figure D-25. This is a time instant between the identical inter-

actions at C and D described above.

Now, two of the dual systems created at C and D undergo a head-on

interaction at E of the diagram. This produces a region of -7.60 kbar

stress bounded by waves propagating at the plastic velocity in the

I opposite directions. The resulting stress situation is shown at t - t4
in Figure D-25.

The next step of the process occurs when the dual wave system,

emanating from D toward the target-free surface, encounters the contact

surface formed from the first wave reflection off the free surface

Il

Ii
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(identical contact surfaces were formed in the driver and target

plates from the reflections and interactions at P and A). The first

step of the dual wave passes through at unchanged magnitude and speed.

When the second step encounters the surface, a very weak elastic

tension wave is reflected, moving to the left at 0.623 cm/psec and

dropping the pressure about 0.15 kbar. This wave is neglected on

the diagram. The second step also refracts, taking on the elastic

velocity and an amplitude of -6.06 kbar. This situation is shown as

t - t 5 in Figure D-25.

The next stage of the process concerns the reverberation of the

-4.52 kbar tensile wave between the target-free surface and the -6.06

kbar tensile wave front. Thus, the former tensile wave reflects from

the free surface as a -4.52 kbar to 0 compressive wave at unchanged

velocity. It interacts with the second tensile wave step producing a

compression wave, from -6.06 to -1.51 kbar moving toward the driver

plate, and a tension wave, from 0 to -1.51 kbar moving toward the free

surface where it reflects as a compression wave from -1.51 to 0 kbar.

This interaction occurs in, the vicinity of point F on the Lagrangian

diagram. Because of the fine detail of the wave structure at this

stage, it is not possible to show all of the rays of the diagram. Thus,

a single ray, marked G in the diagram, has been used to depict the 0

to -1.51 and -1.51 to -6.06 fronts. The situation is shown as t = t

in Figure D-25.

Meanwhile, the main tension wave (marked as "main T-wave" on the

Lagrangian diagram) encounters the previously mentioned contact surface.

In reality, this wave system, which resulted from the previously described --

wave interaction at E, is a dual wave structure, although this detail is

omitted on the Lagrangian diagram (thus, only a single ray is shown --

propagating to the right from E). At this stage, the interactions that

occur with the contact surfaces and with the compression fronts are too --

finely spaced on the Lagrangian diagram, and too numerous to describe in

detail. The contact surface interaction is followed by wave interaction

at point H of the diagram.
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I
After the interaction at H, waves of tensile unloading, marked I

in the diagram, propagate toward the driver, while waves of tensile

loading propagate toward the target-free surface and reflect. The

-" situation, after the above interactions, is shown at time t = t 7 in

Figure D-25. Som, of the fine details of the wave structure in this

diagram are only suggested in approximate terms.

"The wave system, for the example just considered, was somewhat

simplified by virtue of the magnitude of the induced stress at collision. Thus,

the impact velocity was such that the peak stress was 8.1 kbar. At this

level, the unloading that occurs when the first *7aves reach the free surfaces
is purely elastic (points A and P of Figure D-24). If the impact velocity

i- is high enough, reverse yielding occurs at unloading, creating an additional
wave front. This factor is illustrated in Figure D-26 for a 14 kbar impact

"stress. At point P of that figure, the plastic front reflects as an elastic

"and a plastic front, as indicated by the dual waves emanating from that point.

A similar situation holds at point A of the diagram. The subsequent wave

-. interactions are considerably more numerous than those described in the

lower stress level impact example. If the impact stress is still higher, the

consequent wave interactions are even more complicated due, in general, to the

reverse yielding effects which occur during unloading. This is indicated in

Figure D-27 for a 19 kbar impact stress.

The preceding discussion has been devoted to the stress history in the

interior of the material as a result of plate impact. The results have been

based on an a priori knowledge of the constitutive eq,•ation of the material and

the conditions of impact. The inverse problem, in which the material properties

are to be found from the plate-impact test, is of equal interest. Thus, assuming

that both impact conditions and experimental data on the ensuing motion of the

S, •target-free surface are known, determination of the material constitutive

equation is desired. The procedure for this is outlined in the following.

I

It
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A typical free-surface i..otion record from a plate-impact experiment

is shown in Figure D-28. From the discussion of the last few pages, it is J
0.007

0.006- Experimental data

0.0-- Calculated curveI
0.005-

S0.004-

0.003-

0.002 T

0.001 !

2.0 2.2 2.4 2.6 2.8 3.0 32 3.4 3.6 3.8 4.0 oF 231

Time After Impact, pýsec

FIGURE D-28. FREE SURFACE DISTANCE-TIME PLOT fDOR

TYPICAL PLATE-IMPACT EXPERIMENT 8

realized that the observed free-eurface motion is a result of a rather compli-

cated system of wave interactions. A procedure for obtaining the constitutive

equation for a material from free-surface motion measurements would be to !

assume a constitutive equation and then, using this relation and the impact

conditions, to solve the wave-propagation problem. Such a solution, using a

characteristics computer code, would account for all of the complex wave

interactions and would compute a predicted free-surface motion. The results

would be compared with the experimental data. If the comparison were poor, the

constitutive relation would be revised and the analysis repeated in an

iterative manner until agreement was reached. However, if the initial assumed

constitutive relation greatly deviates from the actual one, a number of itera-

tions might be required beiore good match between theory and experiment is

obtained. A procedure, which is described below, yields a very good approxi-

mation to the constitutive relation by neglecting many of the complex wave

interactions. -
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The experimentally obtained displacement-time record is approximated

by a series of straight line segments. When a step-pressure pulse arrives at a

free surface, it causes a step change in surface velocity which translates as a

• sloped straight line in the displacement-time record of the motion. If the

S.1 reflection and subsequent interaction of the pressure step with che remainder

of the oncoming wave is neglected, then approximation of the free-surface data

by straight line segments is equivalent to representing the wave shape by a

Sco,• " seies of discrete pressure steps, or stress jumps. The situation

is !I1, in Figure D-29, which is intended to depict a stress wave at an

arbit t - tn, prior to impinging on the free surface. Each stress

incremet. _d considered to propagate with its own characteristic velocity.

,Free surfoceC

C C

- OF 232

FIGURE D-29. APPROXIMATION OF A STRESS PULSE BY STRESS JUMPS

* The procedure is to apply the Rankine-Hugoniot conditions across the

stress jumps. Thus, the relations of interest are the momentum and mass

equations which have the form

SP 2 U s

Aa - P U u $ -(D76
x lsp P'I Us-Aup (D-76)

where AG ie the stress jump, U the shock velocity, Au the change in particle
x 9 p

velocity, and plP 2 the densities ahead of and behind the shock, respectively.

The parameters determined from the experiment are Us$ Lu, and p Thus,
velocity of propagation of each stress step is found merely by dividing the plate

thickness by the time required for propagation from the impact surface to the

free surface. The change in particle velocity is found by taking one half of

I the difference between successive velocity steps of the free surface. Vie

density ahead of the shock, pI, is considered as known. Thus, Aox cnd P2 may

ii

"I~
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be found, which establishes points on the stress-strain curve."

An outline of a typical computation would be as follows.

Given: Target-plate thickness = T

Initial target density = p 0

Displacement-time data given by Figure D-30.

d

d2 
.d i.

to tl t2  t (DF233)

Time

FIGURE D-30. HYPOTHETICAL DISPLACE24ENT-TIME
HISTORY OF REAR SURFACE MOTION

Calculations:
T

(1) Velocity of first shock, U1  -
0

d
1 1l

Change of particle velocity, AUl 2 -

Change of stress, AUx = 1 - o =0o 1 PoUIAul

P1  UI
Change of density, - uPO UI - AuI 

.

PO

Resultant strain, 1 = 1 -P

(2) Velocity of second shock, U = T
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IAd " l d 2 1 d ul

I A2 " 2 - 2 1 UL
Au C - -Au A

2 tt tI to t21 1

"* •~2 2 "-al =PlU2Au 2 '

S" P2 = 2

I "Pl U2 Au2
P2

a
1P

In this way, successive pairs of poivts, Oi el, 0i 2) C2. O2' e3 etc., are

established on the stress-strain curve and connected by straight line segments.

-. Having obtained an approximate stress-strain curve in this way,

the results are then used in the computer program which takes into account

the complex wave interactions to predict a free-surface motion. Although a

-• number of approximations are used in generating the initial stress-strain

* curve, it is frequently found that the subsequent exact analysis yields

-- predicted free-surface motion that agrees, within experimental error, with

-, measured data and that no further iterations are required.

Nevertheless, it must be realized that the foregoing approximate

procedure neglects density changes insofar as wave interactions with these

changes are concerned. Also, unloading by rarefiction waves has been neglected,

and the particle velocity has been approximated by one-half of the free-surface

motion. This last, which 1olds for elastic waves, is not strictly true for the

inelastic case.!I

1'
1I
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"APPENDIX E

[I M4ATERIAL PROPERTIES EFFECTS

The propag&tion of elastic-plastic waves under conditions of one-dimensional strain has been considered in the past several sections. The
equations governing the propagation (developed on pp D-l-D-17) were derived on the

basis of certain kinematical assumptions on the deformation of the material and on
a rather simple constitutive equation. For example, temperature and strain-rate
effects were assumed to be negligible. From the standpoint of understanding the

essential features of elastic-plastic wave propagation, it was certainly advisable
to make such assumptions so that subtle material effects would not obscure the

basic features of the propagation.

However, since the prediction of spallation relies on decermination of
the stress field in the interior of the material, it is advisable to reexamine the
basic governing equations of the wave propagation since these are utilized to deter-
mine the stress field. It is important, for example, to establish whether the
assumed constitutive relation accurately reflects the real behavior of the material
and to assess the degree of confidence that may be placed in experimentally deter-
mined material relations, It is also important to review the current assessment
of the value of strain-rate and temperature effects in describing the dynamic

response of materials.

Review of Basic Equations

In order to provide a basis for the reexamination of the governing
equations, the equations on pages D-17 - D-20 are restated.

Conservation of mass:

p(l - ex) "P

Conservation of momentum:

6a"•x " P i L (E-l)
x

Kinematics (strain):

C ex W- Ul/;)
Constitutive relation:

I ax M arx (ex) .
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On the basis of elastic-plastic theory, the constitutive relation for a material I
under conditions of one-dimensional strain was developed on pages D-1 - D-17.

Also illustrated there were the forms taken by an elastic, perfectly-plastic and

an elastic, work-hardening material. How to establish the quasi-static consti-

tutive relation directly from the results of quasi-static uniaxial stress tests

was shown as well.

The order of the reexamination shall now be as follows:

(a) Thermodynamic effects I
(b) Work-hardening and Bauschinger effects

(c) Strain-rate effects

(d) Finite strain effects.

Thermodynamic Considerations

Before discussing possible temperature effects on elastic-plastic wave

propagation, it is desirable to review some general thermodynamic considerations

of material stress-strain relations. In a propagating stress-wave system, the

first physical action is generally that which compresses the material, causing

a temperature rise of some magnitude. This action is followed by decompression

caused by rarefaction waves. The decompression cools the material. If the

process occurs rapidly enough, so that heat conduction processes do not have

sufficient time to act, and if initial and final temperatures are the same

indicating that a reversible action has occurred, the elastic-plastic shock-wave

system would be thermodynamically described as isentropic-adiabatic. The

resulting material stress-strain curve would be an isentropic relation.

However, it might be recalled that the initial development of the elastic-

plastic stress-strain relations for conditions of one-dimensional strain

(pages D-1 - D-17) were based on utilizing the results of quasi-static, isothermal,
uniaxial stress tests. The resulting stress-strain curve for uniaxial strain con-

T

ditions was, thus, an isothermal relation. Since the conditions of stress-wave

propagation are more likely to be adiabatic co~iditions, a governing stress-strain

relation based on isothermal conditions would '-, in error thermodynamically.

The above error may be eliminated by utilizing adiabatic data to develop i
the uniaxial strain relation. Thus, for materials adequately described by a simple

T
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elastic, perfectly-plastic material model, the resulting stress-strain relation

i is determined by two straight lines; one the elastic slope and the other paralleling

the hydrostat. The slopes of these lines are directly related to the elastic

constants. Hence, by establishing these conrtants under adialatic conditions using

A ultrasonic pulse-echo techniques, an adiabatic, uniaxial strain relation may be
-~(E-l)anotes

constructed. This method has been utilized by Barker, et al, and others.

The plate-slap experimental technique offers the possibility of estab-

lishing the material constitutive relation directly, in contrast to conversion of

uniaxial stress test data. To a certain extent, consequently, the preceding remarks

on isothermal versus adiabatic conditions must be reinterpreted. The question now
is not whether a dynamic uniaxial stress-strain relation can be derived from
" isothermal or adiabatic quasi-static conditions, but can the thermodynamic condi-

Stions represented by the directly obtained relation be identified? The significance

-[ of temperature as a parameter of the material constitutive relation must, then,

be assessed.
I -I .It has been recognized that the elastic-plastic stress wave represents

an irreversible thermodynamic process. The Hugoniot relations imply that the work

of dynamically stressing a material from a. to 01 is given by the area under the

shock chord of the stress-strain curve, which connects the two stress states

(refer to Figure D-16 on page D-26). Note that this quantity differs from the

area under the stress-strain curve itself, which applies for gradual loading. Thus,

I "• the plastic shock introduces irreversible dissipation of additional mechanical woik.

It has been shown that more than 85 percent of the work goes into heat dissipation,

and only about 15 percent into permanent changer in the microstructure. Con-

"sequently, it would appear that the final str-,, state, 01, should not lie on a

i. continuously loaded adia .tic curve, but on a curve modified by the additional

heat release.(E2

Lee(E 2 ) has elaborated further on the above by proposing that the
extremely high pressures and finite dilatations (up to 25 percent strain at 400 kbar

for alumP-um), present in one-dimensional strain experiments, Introduce dominant
I ~theemlomechanical coupling effects making temperature an essential variable in the

Iequation-of-state. If this assessment applies to the stress-strain regitr ; of

3 interest in the study of spall, the accuracy of stress predictions from rear

surface motion measurements would be lessened considerably.

I
I
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However, other investigators have given consideration to the thermo-

dynamic aspects of the wave propagation and have developed convincing arguments

in favor of neglecting temperature effects at the lower stress levels of the

elastic-plastic regime. It will be recalled that even for the hydrodynamic shock

regime, close approximations of material behavior were possible by neglecting

temperature effects in the establishing of the Hugoniot material (Appendix C).

Considerations, similar to those in the foregoing, have been extended

to the elastic-plastic case. The basic arguments, developed by Morland, are

closely paralleled in the following presentation. Let the irreversible energy

dissipated per unit mass in a small compression, de, be dQ. Conservation of work

and energy gives

dQ - dE - dW; (E-2)

where dE is the increase in internal energyand dW is the work done by the applied

stress. Taylor and Farren (E-4) have shown that less than 15 percent of the plastic

work goes into producing microscopic structural changes in the material, so that

heat dissipation per unit mass reL-resents more than 85 percent of dQ.

On integrat4 -ig over the full compression, the increase of E is established

from Equation D-61 as
1

El - E° = 2i (a, + Co) (eI " o) " (E-3)

The work increment per unit mass is

dW ad ed . (E-4)

Hence, the total applied work, ignoring the factor l/p, is the area under the

corresponding stress-strain curve. The area under the shock chord represents the

increase in E; the difference represents Q, the energy dissipated.

Referring again to Figure D-16, it is evident that the area between the

stress-atrain curve and the shock chorS will, in general, be quite small if the T
stress jump is small and the upward curvature of the hydrostat is negligible, or

if work-hardening effects are absent or linear with increasing load. An estimate

of Q may be found by assuming that the stress-strain relation through the Plastic

shock is the adiabatic stress-strain curve. A stress-strain relation of the T
following form is assumed: -

do . I a l+de+d22 3id- jl + dl + d 2 + d3
3 + ... J ; (E-5)
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I where a, 8, dl, d2 ... are determined from Bridgeman's formula fitting hydro-

static material data. Integrating the above between the yield point, ay, and the

arbitrary upper stress level gives
a - 1y -2 e + [ d + de +. ..... . (E-6)

3~ 2 ~e+~ 1  3 2

Then,

+( - dley2 --- ]} +e + a { (Cl + °) + dl (e12 +
-(,+ a 0) -f{ay -1a Y 2 1lY. C

O2) + } (E-7)

-. Also,

"dade ( i 1" 13 2 + 2 12

CO

d ~ { -3 e 3 + (E-8)

1 4

Neglecting terms of C or higher gives
S •d l ( C•6 0

S"3pi 12 (£1 "eo)

*• Using reasonable values for aluminum, Morland establishes that for eI e% < 0.05,

the shock change is virtually adiabatic (i.e., dQ - 0), so that the material behind

-. the shock will satisfy the original adiabatic stress-strain relation.

""- The thermodynamic considerations, reviewed in the foregoing, establish

the validity of assuming that the elastic-plastic wave process is adiabatic. How-

"ever, the importance of temperature on the wave propagation has yet to be assessed.

Thus, the fact that the process is essentially adiabatic indicates that a tempera-

-. ture rise occurs under the action of the shock front. The resulting interaction

j of the temperature on the stress field--the ceunled thermomechanical problem--has

not yet been solved for the plastic wave case. In fact, only slight progress has

T been made in the case of thermoelastic wave propagation. It is not known, for

example, whether thermo-plastic effects might be confused for strain-rate effects

in miterials. The general procedure has been to assume that the propagating

stress field is unaffected by the temperature changes.

Recently, Lee and Liu and Lee and Wierzbicki -6) have generalized
elastic-plastic theory to include finite strain and temperature effects. Although

only the governing equations were developed, with numerical solutions yet to be

11
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obtained, application of their theory to specific stress-wave problems may

soon yield a more definite assessment of the importance of temperature on the

elastic-plastic wave problem.Z 7
Work-Hardening and Bauschinger Effects I!

As was evident in the review of elastic-plastic wave propagation in

Appendix D, the structure of the propagating stress wave is a function of the I
material stress-strain relation. This relation will be characterized, in the

absence of strain-rate effects, by the nature of its loading and unloading. Does

the material have a sharp or ill-defined yield point? Does work hardening occur?

Is curvature of the hydrostat significant? Is a Bauschinger effect present? I
If, b-" experimental methods, the precise shape of the stress-strain xirve

is known, no assessment of the above effects is required to complete the analytical I
process uf computing the interior stress field in a plate-impact t(st. Yet, in the

earlier study of the wave propagation and interior stress field 'Appendix D,j

page& D-33-D-45),even the use of a simple material model (elastic, perfectly-plastic)

led to a complicated wave structure due to many wave interactions. However, the

availability of computer codes for analyzing the stress-wave propagation, in-

cluding all of the wave front ane interface interactions, removes the analytical

difficulties resulting from complexities in the material stress-strain relation.

Hence, the presence or absence of the aforementioned effects, which serve to

distinguish various materials, presents no fundamental difficulty in solving the

stress-wave problem. I
The preceding remarks are presupposed on the basis of knowing the material

stress-strain relation. However, if inexactitude exists in the experimental methods

for establishing the stress-strain relations, there will be a consequent uncer-

tainty as to the interior stress field. The present method for establishing the

stress-strain relation (reviewed on pages D-33-D-45) is to measure the rear sur-

face motion in a plate-slap experiment and, by trial-and-error solution of the

stress-wave problem, to deduce a stress-strain curve that will yield a theoretical

prediction of the rear surface motion in accord with the experiment. It, there-

fore, becomes important to assess the accuracy of the stress-strain relation T
obtained from the plate-slap experiment itself.
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The first remark to be made in this context concerns the sensitivity of

, the stress-strain relation to erroneous measurement of surface motion. In this
(E-7)

regard, it has been pointed out by Butcher and Canon that errors in the

- "measurement of surface velocity, when converted to material velocity, cause data

points to move along the dynamic stress-strain curve rather than, say, parallel

to the stress or strain axis. This means that errors in surface motion rmeasurement

i "are reflected as much smaller errors in the determination of the stress-strain

curve.

Further assessment may be divided into consideration of the experimentally

obtained loading and unloading information about the material. There is, in fact,

basis for confidence in the rear surface motion measurement approach to establishing

the loading characteristics of the stress-strair curve. Thus, the magnitude

of the elastic precursor establishes the material yield point. The propagation

velocity of the plastic front establishes the shock chord on the stress-strain

curve, and, by performing several exper.nents at differing plate-impact velocities,

several stress-strain points on the loading curve may be determined. The elastic-

plastic compression waves that establish the above data are the first waves to

arrive at the free surface, and they have done so with a minimum of self-

interaction (see pages D-33-D-45 for the dWscussion of the interactions that

- have occurred).

* However, the deduction of the unloading characteristics of a material

from rear surface measurements is less certain. Thus, the unloading information

appearing in Lhe form of rear surface motion is due to waves reflecting from the

back surface of the projectile-target combination. These waves arrive at the

rear surface only after traveling as compression, then release, and finally as
(E-1)

-i .tension, undergoing numerous interactions in the process. Barker, et al,

discuss the necessity for performing tests using various target-projectile

thickness ratios. Use of various retios would help to establish unique unloading

information, which is difficult to acquire because of multiple reflections and

I interactions. The necessity for performing multiple experiments, and resultant

indirectness in establishing the stress-strain curve, casts doubt on the accuracy

4, of unloading and reverse loading information established by rear 5urface motion

measurements.

I
11
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Until recently, the primary method for determining material properties

was by inference from rear surface motion measurements. Refinements in measuring

technique, utilizing laser velocity interferameters, have been reported
[Karnes (E-8)]1. However, Barker (E-9) has recently reported on measurements of .

material particle velocities in the interior of a shocked solid wherein the laser

interferometer was used in conjunction with a transparent quartz window on the

specimen to obtain the interior data. Iransparent window, of similar mechanical

impedance as the shocked material (alL, s attached to the specimen. The

interface motion was obtained with the in-. 'meter and was assumed to depict the

motion of a truly interior point of the material. Although the complete validity

of the technique has not been established, since questions of slight impedance

mismatch effects and the light transmission characteristics of quartz under dynamic

loads remain, it does, apparently, enable the elastic-plastic wave structures to

be established directly, before wave reflections and interactions have occurred.

As a consequence of this development, direct information on the unloading charac-

teristics of materials is now available.

In Figure E-l, the data obtained by Barker on the particle velocity-

time history at an interior surface is shown for three different tests. Consider,

in the figure, the general nature of the loading portion of the wave and of the

unloading portion. It is to be noted that at the higher stress level shots

(Nos. 926 and 927), the plastic front is discontiLuous, but the low stress leqei

of Shot 922 yields a rather smooth stress variation. This is cited by Barker as

evidence of a strain-rate effect and is discussed later. The unloading portion

of the wave, not heretofore directly measured, exhibits considerable lack of

structure. This also has been partially attributed to a strain-rate effect. How-

ever, comparing predicted and observed results, it is evident that considerably

more release wave structure was predicted bj some material models,

In order to obtain comparable experimental and theoretical results,

Barker found it necessary to postulate a pronounced Baaschinger effect for aluminum.

Two other material models did not include this effect. The simplified model,

identified as Y - 2.4 kbar model in Figure E-1 (i.e., a constant yield strength of

2.4 kbar), postulated no Bauschinger effect and no work hardening. Although the

loading behavior predicted by this model is as satisfactory as the more complicated
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models, considerable deviation from the observed data is predicted on unloading.

A second model, without a Bauschinger effect but including work hardening

(Y - 2.4 + 0.05P, P = hydrostatic stress), also has significant discrepancies in

the predicted unloading.

In order that tlhe Do-icted release wave take on the observed form, it

was necessary for the rev , jieid strength on unloading to be initially small,

then to increase--at first rapidly and later more slowly. This amcunt. d to th.

prenounced Bau4chinger effect. The mathematical expression for this effect was

given by describing the ten.ile ýield strength, YT' as a function of plastiL

strain, ep, according to the form

Y1 a 4[1 - exp (-800 Cp)]. (E-9)

In addition, a work-hardening model, ilightly different than the one previourly

given, wae used for the loading behavior. It was assumed that the compressive

yield strength increased from 2.4 kbar to 3.0 kbar. The resulting wave predic-

tion is shown as the dark ±ine in Figure E-1. It is seen that considerably better

agreement between thtýiry and test exists. Of'Vcourse, the fine structure of the

predicted wave shape is a result of the numerical analysis which uses the method

of characteristics. This breaks a stress pulse into stress increments or steps,

as discussed in earlier sections of this report, and of necessity leads to a pre-

dicted wave shape possessing definite structure. The three stress-scrain models

used are compared in Figure E-2.

By observing Figures E-2 and E-l, it is possible to assess, at least

qualitatively, the effect of uncertainty in the stress-strain curve on stress
pulse prediction. Tt is seen that all cf the models accurately predict the maximum

stresses, ard that at the highest stress level (Shot 926 of Figure E-l), all of

the models adequaitely predict the loa.ing behavior in general. At the lower

stresses (particularly in Shot 922), discrepancies in the plastic shock front

occur, and these are thought to be due to strain-rate effects. Th-is, at lowest

stress level, tone of the m(els properly depict the natur• of th- plastic com-

pression front.

Ccnsidering the unloading portions of the variotis waves, it is :een that

significant discrepancies ucclir in the material .aodels that do not contain

Tkauschinger effects. Thus, fairly significant differences occur between measured
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FIGURE E-2. LOADINIG AND UNLOADING STRESS-STRAIN PATHS
FOR SHOT 927 ACCORDING TO THREE MODELS OF
MATERIAL BEHAVIOR (E-9)

and predicted unloading at all three stress levels for the constant yield model

(Y 2.4 kbar) and tli work-hardening mov-del (Y -2.4" + 0.05 P). The inci.usion

of the Bauschinger effect, in the manner indicated by Equation E-9, yields close

agreemcnt between the predicted and measured results. Yet, referring to Figure

E-2, it ia apparent that the percentage dif~erences among all three models is

* quite small. This suggests that the stress h4story within the material,
particularly the unloading -.4_tory, is a scnsitive -function of the stress-Strain

relation. Sing. -he resultant spall-producing tensile wave is a result of inter-

action between unloading waves, it becomes important to havc an accurate knowledge

~ j of the un~loading behavior of a material to be able ti predict spall.
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E train-Kate Effects

In the p-evtous sections, some statements, at least qualitative, were

possible on Bauschinger or work-hardening effects and materi.. response. In fact,

rather than actually assessing the effects, it was a matter of establishing the

presence or absence of the effects by experimental methods and incorporatiag them

into the resultant material constitutive relation. The situation is much less

certain in the case of strain-rate effects. At present there is considerable

controversy regarding the degree of straLn-rate sensitivity of materials. More

basic than this is the controversy aroused by the question of whether strain

rate is even a parameter of the constitutive relation for some materials.

Nevertheless, it is a fact that wave-propagation experiments in rods and

thick plateg have yielded results, all details of which cannot be explained by a

strain-rate independent I.heory. For example, in the review of elastic-plastic

wave propagation (Appendix D), particularly the part referring to Figure D-25,

it is indicated that sharply discontinuous plastic shock fronts are expected from

a strain-rate-independent theory. However, Barker, et al,(E-1) have indicated

that their experimental results were a consequence of stress waves having the

general configuration shown in rigure E-3. Worthy of note in Figure E-3 is the

lack of a sharp plastic front, with the strain gradually attaining its maximum

value as though a relaxation process were operative. Referring also to Figure E-l,

which showed Barker's results, it is evident that sharp discontinuities are

absent, particulaciy at the lower loadings.

0

T~m~DF 236S~~Time ••

FIGURE E-3. QALITATIVE DRAWING OF A WAVE E [WICH INDUCED
THE OBSERVED FREE SURFACE MOTIONE-1)

rhe presence of a strain-rate effect in terms of a general viscoplascic

relaxation mechanism would tend to explain qualitatively the results obtained.

This may be illustrated , considering a material that exhibits the charateristics
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of a simple Voigt viscoelastic model, shown in Figure E-4. Thus, it is seen thit

the application of a sudden, step-function-type stress to the materlal would re-

j suit in a delayed strain response, with the strain approaching its final value

only gradually. I ; ] 
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I(a) (b)

FIGURE E-4 (a). SIMPLE VOIGT VISCOELASTIC NODEL

(b). STRAIN RE"?ONSE TO STEP LOADING

Although certain experimental results indicate strain-rate sensitivity

Sin materials, and the operation of certain viscoplastic mechanisms could account

Sfor some of the obeervaticas, considerable controversy still attaches to this

subject. In fact, interest in this matter arose with the earliest developments of

elastic-plastic th--ry by von Karman, E-b) Taylor,(E-II) and Rakhmatulin.(E-'2)

Thus, these earlie, . developments pertained to a strain-rate-independent theory

of elastic-plastic waves in rods and succeeded in prediting the essential features

of such wave propagation, e.g., the existence and magnitude of an elastic precursor

and the existence of a plateau of constant strain behind the wave front. The

theory also predicted that superimposed stress increments would propagate at the

* plastic-wave velocity given by the local tangent modulus of the stress-strain curve.

However, experiments by Bell(FEl 3 ) and others showed the increments to propagate at

the elastic velocity. In addition, the theory failed to account f the iucrease

in yield strength noted for some materials, such as iron, under dynamic loading.

In an effort to remove the apparent anomalies of the theory,(14,(E-15)

Malvern "1 developed a strain-rate-dependent theory where the basic

constitutive equation took the form,

Eý = & + g(ca) ; (E-IO)

w.'re e is tb'ý total strain, a is stress, and E is Young's modulus. The function

g(o,e) is related to the plastic strain rate p by

*Ep g(C'e) (E-11)

Although some of the anomalies wire removed by this theory, the constant strain

plateau predicted by the rate-independent theory and observed experimentally was not

predicted by the rate-dependent theory.
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In tne ensuing years, there have apparently developed "schools" of

thinking regarding the sensitivity of materials to strain rate. Bell and his

co-workers have been the principal proponents of the strain-rate-independent

behavior of materials; Lindholm,(E-16) Malvern, and others have suggested that

materials are strain-rate sensitive to one degree or another. Unfortunately,

the experimental techniques used by the various investigators to arrive at their

differing conclusions on dynamic materials properties have been different. Thus,

the difficulty of assessing the importance of strain-rate effects is increased.

Bell, for example, has utilized his unique diffraction grating technique for

studying elastic-plastic wave propagation in long rods. Lindholm and others of

the rate-dependent school have used the split Hopkinson bar method. Although

members of each school have developed impressive arguments tending to show the °"

experimental methods of the other school at fault, a definitive set of compara-

tive experiments has not heen conducted to settle this matter.

It has been suggeeted that, in fact, both schools may be correct--under

the proper conditions. Dorn and Hauser(El17 ) have postulated that, under proper

conditions, certain materials may be essentially strain-rate independent; and

other materials, under proper conditions, may be quite sensitive to rate effects.

Of course, there exist intermediate regions of varying degrees of sensitivity.

The factors differentiating the degrees of sensitivity were postulated to be the

dislocation activation mechanisms. Thus, strain-rate-sensitive materials were
-.

postulated to be those whose dislocation mechanisms of deformation could be

thermally activated, whereas rate insensitive materials had mechanisms that were

athermally or stress activated.

Although the above postulation of intermediate position between the .

strain-rate schools certainly appears reasonable, the problem of establishing the

physical classifications of naterials, including the various subtle transition

regions, has not yet been solved.

Accepting the existing uncertain state of affairs regarding strain-rate

seasitivity of mate'ials, it is instructive to consider the recent work of Butcher

and Karnes(E-18) on strain-rate effects in metals. In their work, the strain-rate

theory of Malvern was app;ied to the one-dimensional strain configuration of the
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plate-slap experiment. Predicted stress-strain curves were determined and found to

be more in accord with experimental results than rate-independent theory. Thus,

the Malvern theory, which yielded some anomalous results in the one-dimensional

stress application (no constant strain plateau), successfully predicted the es-

sential features of the experimentally )bserved response in the one-dimensional

strain situation. However, it was also pointed out by Butcher and Karnes that

certain experimental factors, in particular a slight lack of planarity between the

impacting plates, were capable of producing results resembiing strain-rate effects.

It was also indicated the- increascd distance of travel tended to decrease rate

effects in the wave front, permitting the wave to be treated as essentially

strain-rate independent. Although future study of strain-rate effects utilizing

the plate-slap configuration will certainly be done, the general conclusions

reached by Butcher and Karnes appeared to be that strain-rate effects were rather

slight under plate-slap conditions and that, furthermore, the presence or plate

tilt and propagation distance effects wds capable of obscuring rate effects.

The basis for the relative insensitivity of the one-dimensional strain
configuration (in comparison to the one-dimensional stress situation) to strain-

rate effects has been discussed by Barker, et al.(E-1) In this configiration, the

majority of the strain is dilatational and not deviatoric. However, it is the

deviatoric, or shearing-type deformation, -hat causes dislocation wction and the

consequent strain-rate effect. It follows that strain-rate effects will be con-

siderably less significant in such configurations,

Despit! the considerable research that has been directed toward as-

certaining the sensitivity of materials to rate effects, it appears that material

constitutive relations, including these effects and atcounting for the various

experimental observations, have not been established although many have been

postulated. Thus, in contrast to th.e previouily discussed Bauschinger and work-

hardening effects, where explicit inclusion of these effects in the stress-strain

relation became possible on the basis of experimental observations, similar

developments have not been made in regard to rate effects.

• ' Nevertheless, when one-dimensional strain considerations govern, it

has been indicated in the previous discussion that strain-rate effects appear

to be of little significance in predicting the essential ft.ctures of the wave
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propagation. Although, as is evident from Barker's work, some detail of the

wave structure is lost, the essential features of the waves, such as stress

amplitiude, are prefictable by a strain-rate-independent theory. ""

Finite Strain Effects

The final topic of discussion regarding various subsidiary effects

pertains to the kinematic aescription of the deformation. The theoretical develop-

merit of elastic-plastic theory reviewed in this report utilized a description of

the Lagrangian strain as ex = 6U1/2x Such a representation is th, infinitesimal

strain definition and neglects quadratic terms in the displacement gradients. Yet,

under plastic deformation, large strains may exist and, thus, may require the more

ak:curate kinematical description of strain. Lee,(E-2) for example, has suggested

the necessity of including finite strain effects in the theory, since strains of

25 percent are evidently obtained in some tests. The basis for using the infini-

tesimal definition should be reviewed.

If, in fact, strains of the magnitude indicated above were typical of

those attained in the low pressure regions of interest in elastic-plastic theory,

the question of finite strain effects would need to be examined with considerable

care. Hovever, such large strains are associated more often with pure hydro-

dyn'mic shock-type loading where extremely high pressures are attained, whereas,

the stress regions of interest in elastic-plastic wave propagation are of the

order 10-50 kbar, and the associated strains are 2-4 percent. Under these con-

ditions, the squares of the displacement gradient are negligible compared to the

displacement gradient. It might be noted further that, under strains greatly in

excess of the 2-4 percent level, the differences in. the principal stresses becomes

quite small compared to the stresses themselves. Consequently, the elastic-plastic

theory becomes little more than a small, superimposed correction to a hydradyl.amic

model of the material. Hence, where it becomes necessary to include the more

complicated finite strain effects, a corresponding simplification may be made in

the nature of the constitutive relation.

On the basis of qualitative arguments, it appears safe to neglect finite

strain effects on the elastic-pla&'4 wave propagation. It is instructive to

exp> ore this topic further to see if a more precise assessment may be attached
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I to finite strain effects. It snould first be noted that, in genersl, when the

deformation of a body becomes sufficiently large, it can no longer be suitably

"characterized in terms of either "engineering" or "true' strain, This is due to

the fact that these measures of deformation are not inherently tensor quantities
and are inappropriate for the establishment of a constitutive relationship that

is to be independent of the choice of coordinates. In addition, if Lagrangian

coordinates are being used, the Eulerian stress tensor of linear elasticity theory

must be distinguished from and replaced by a Lagrangian or K.irchhoff stre3s tensor

based on predeformation geometry.

For the case of wave propagation in uniaxial strain, there is no need to

distinguish between Eulerien and Lagrangian normal-to-surface stresses, Also, as

far as stress and displacement wave propagation is concerned, it makes no difference

whether the dynamic stress-strain relationship is given in terms of the components

of a finite strain tensor or engineering strain.

To see this, consider a material with dynamic stress versus finite-strain

curve defined by

Ox m Ox(E) ;(E-12)

where

ax - stress normal to the direction of wave propagation,

E - finite strain normal to the direction of wave propagation (the

only nonzero component of the strain tensor).

Suppose, also, that the finite-strain component, E, and the engineerir.g strain

component, e,) are related by

E = E(ex) ; (E-13)

where ex is the previously defined infinitesimal strain, given by
Il Cx = (E-14)

u - particle displacement in the direction of wave propagation,

x - Langrangian coordinate in the direction of wave propagation.

The expressions for conservation of mass and momentum are, respectively,

2b~u(E-l5)Po - P(l + ex), Po -u " ýZx (E15
ai 2

I:
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Ncq assuming continuous first derivatives,

6ax = 6E 6E b BEex (E..6

6xx 6E 7x bEý_x

However, x. = _ , so that
6E bex 6ex

= -A oa•x 2u . (E-17)ax = Bx ax = b-- 6X 2

Consequently, the governing equation reduces to that which would be obtained if only

engineering strain were considered, i.e.,

_2u 2 2
S= 2 -a • (E-18)Tt 2 c 2'

where

c2 I = (E-19)

Thus, while the stress versus finite-strain and stress versus engineering-strain

relationships may be of entirely different form, the spatial derivative of ax and,

hence, the governing equation of motion is unchanged.

In order to illustrate the above comments further, it will be instructive

to consider wave propagation in two rather ideal materials. Por the purpose of

this discussion, the Lagrangian strain tensor will be used. The only nonvanishing

component of this tensor will be E, the strain normal to the direction of wave

propagation. For uniaxial strain,

1 2 bu 1 buuE =e+I x +(E-20)

First, consider a material that is linearly elastic with respect to engineering

strain, ex; i.e.,

0x = K*ex , (E-21)

where K* is the effective dynamiL modulus in uniaxial strain. Expressing ex in

terms of E gives

x= + 1 +2E - 1, (e. > -1, E > -1/2). (E-22)

The stress versus finite-strain relationship becomes

ax = K* t+ 11 + 2E - 1). (E-23)
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"NowK*
I -- K*

2E.. (E-24)

and

.'(E•u ex)2 (E-25)

K* 2

(-1+k• Kx*--

X'a 2E K .K ' (E-26)"aA' E (l+Cx) (I + 'X) -72 -*-•2 .(-6

Thus, the equation of motion is the same as it would have been if finite strain

were not considered, i.e.,

•2u 2 62u 2 K*
__- C a - (E-27)

Tt 2 = X" PO

Now consider a material that is linearly elastic with respect to finite

strain. Rubber-like materials can often be described in this way. Let the stress

versus finite-strain relationship be given by

a K E, (E-28)

where K is an effective dynamic modulus in uniaxial strain. Now
4 •2u

F1ax L~E +-) ~.i -K •.K (i+ cx)--~ (E-29)

and the equation of motion becomes

2 ""•u 2 2 u
2- u -- (E-30)

at 2 ax 2

where

2 7C K . ....p - p (E-31)i -,PO P

The interesting and perhaps surprising result is that, in this type of

material, large tensile disturbances propagate at a higher velociLy than smallI tensile disturbances, and large compressive disturbances propagate at a lower

velocity than small compressive disturbances. Such behavior has even been

II
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observed experimentally. .Koisky,(ElI9) for example, reports that the propagation

velocity of small tensile pulses in neoprene filaments increased by a factor of ten

whr-- the filament was prestretched to six times its original length. I
This behaviir is not so surprising if it is realized that a material, T

linearly elastic with respect to finite strain, is not linear with respect to

engineering strain. Using the Lagrangian definition of finite strain, the ztress- T
engineering-strain curve would have the parabolic form shown in Figure E-5. The

"sound" speed for a material with this type of stress-engineering-strain relation-

ship is given by

2 =I . K (I + ex)c = - = .... (E4-'2)
Po ýex Po

This is identical to the sound speed obtained previously with the stress-finite-

strain relationship (Equation E-31).

Tension / -
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FIGURE E-5. NONLINEAR AND ENGINEERING

STRESS-STRAIN CURVES

From the discussion above, it may then be concluded that if the stress
versus engineering-strain relationship for uniaxial strain is known, there is no

need to add a finite strain correction for large values of strain since the

"* equation governi;ig displacements would be unchanged. The magnitude or amplitude

of the strain pulse, however, does change according to how strain is defined; i.e., T I
the Lagrangian strains are always larger than the engineering strains. But these

quantities *Are not gencrally of interest. It should perhaps also be emphasized
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that the magnitude of the stress p.lse does not change. Since the use of a stress

finite-strain relationship was shown to have no effect on the equation governing

displacement wave propagation, application of the Rankine-flugoniot jump conditions

to determine stress from shock and particle velocity measurements would be no less

valid than it was when only engineering strain was considered. Thus, although

*-. E (x,t) ex (xt), the stress calculated as a function of E and the stress

calculated as a function of ex are equal because of the differe't moduli involved.

4o

ii
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