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ABSTRACT

A review of the literature on spall fracture and dynamic response of
materials is presented. Current theories underlying large amplitude wave prop-
agation and spall fracture under conditions of uniaxial strain are described in
detail, Relevant features of elastic, plastic, and shock wave phenomensg sre
revieved, and the effects of subsidiary properties on the material responge are
cons'dered, including strain rate, temperature, finite strain, work hardening,
and the Bauschinger effect.
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SPALL FRACTURE AND DYNAMIC RESPONSE OF MATERIALS

by

J. H. Oscarson
K. F. Graff

INTRODUCTION

This report presents a review of the literature on spall fracture and
dynamic response of materials. Since the purpose of the review is to provide
background and direction for an experimental and analytical spall study presently
being conducted at Battelle-Columbus Laboratories (BCL), the greatest emphasis
ie given to thcse topics most closely related to this study. With this con-
straint, most of the subject matter will be devoted to a detailed description of
the current theories underlying large amplitude wave prepagation and spall

fracture under conditions of uniaxial strain.

Fundamental to the study of spallation phenomena is ““~ determination
of stress history at the spall plane. However, the stress cona...ou in the
interior of the material cannot be measured directly, but must be inferred frem
measurements of free surface motions of the target material and solution of
the stress wave propagation problem. It is necesssary, as a prelude te solution
of the stress wave problem, to know the dynamic properties of the material--

that is, the constitutive relation of the materiel,

The purpose of the appendices is to review the relevant features of
elastin, plastic, and shock wave phencmena. Prime attention is directed to a
review of elactic-plastic stress wave theory with the intent of relating experi-
mental measurements of rear surface motion to the gross features of the interior
stress nistory. It will be found, however, that the detailed analysis of the
stress history is too complex for simple analysis and must await computer

investigation,

‘The effects of a number of subsidiary properties on the material
respouse will also be considered. These will include the effects of strain
rate, temperature, finite strazin, work hardening, and the Bauschinger effect.
Some assessment of tliese effects is necessary if the spall study data are to be

interpreted unobscured by unknown complexities of material response.
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Unfortunately, detailed knowledge of dynamic material properties is scant, so
that it is only pcssible to estimate the consequences of a number of the material
effects. It shoul. be noted that dynamic maeterial properties is cuirently the

subject of intense research.

The early time response of a plate subjected to lateral impulsive
loading takes the form ¢f a compressive dilatational stress wave propagating
through the thickness. If the induced stresses are greater than the elastic
limit of the material, the peak stress of the wave will be attair..d and propa-
gate behind a higher velocity elastic precursor wave. Thus, at the strain rates
of interest {106 - 107/sec), the unstressed material will first experience an
almost instantaneous rise to the stress corresponding to the elastic limit, It
will remaia at this stress for some finite time, and then experience another
rapid rige to the peak stress. Details of the unloading will depend in large
part on how the impulsive load was generated, i.e., contact explosive or flying

plate impact.

When the front of the waveform reaches the stress-free rear surface of
the plate, it reflects as a tensile wave and propagates into the compressed
material assoclated with that part of the wave which has yet to be reflected.
If the total duration of the incoming compressive pulse is sufficiently short,
there will be a plane at some finite distance from, and parallel to, the rear
surface, for which the net stress first becomes tensile. (Here, net stress
rafers to the sum of the compressive st~ess associated with the incoming wave
and the tensile stress associated with the reflected wav:.) If the stress
and pulse duration are sufficientiy large, the materfal may fracture (spall) at
or near this plane. Avpendices A, B, C, D, and E describe all the events
leading up to conditions sufficient for spall.

"General Physical Features of Plastic Flow and Fractu-e'" provides #
brief and very elementary review of the physics and mechanics of flow and fracture
from a primarily micromechanical point of view. It is included in this report ac
that those readers unfamiliar with these concepts might acquire some background

for the topics discussed in sgabsequent sections.
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"Spall" is a detailed statement of the current knowledge regarding
spall fracture. This includes a discussion of the factcrs affecting spall, as

well as the means by which these factors and their effects are used to predict

spall,

The final section is a brief summary of conclusions drawn from the

review of literature on spall.

Appendices A, B, C, D, and E present s detailed discussion of large
amplitude wave propagation and constitutive relations of materials, the major

emphasis being given to metals,
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DISCUSSION

General Physical Features of Plastic
Flow and Fracture

Observations generaily descriptive of material behavior in standard
tensile or compressive tests (i.e.. quasi-static loading and uniaxisl stress
states) are sufficiently numerous and well-developed to serve as a background
for understanding the physical nature of stress wave propagation and spallation
in uniaxial strain., Furthermore, the existence and operation of many of the
basic mechsnisms are only quantitetively modified by changes in loading condi-
tions. Thus, before proceeding tc detailed diascussions on material response and
spall, a brief review of the essential physical features of flow und fracture

appears to ke in order,

Physics_and Mechanics of Plastic Flow
Composition of Metals. Metallic elements consist of atoms in an

ordered arrangement, called a lattice, at equilibrium under their mutual forces.
Typical crystallographic arrangements are body-centered cubic (BCC) and face-
centered cubic (FCC) as shown in Figure 1.

BCC (DF 193)

FIGURE 1. BODY~CENTERED AND FACE-CENTERED LATTICE
ARRANGEMENTS
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These figures represent only a small portion of the total possible lattice
arrangements. However, over 70 percent of metals and alloys crystallize in

the above or in a hexagonal system.

A pure and perfect metallic specimen would consist of an uninterrupted
repetition of the particular lattice arrangement cof the metal. However,
typically, as a liquid metal solidifies from a melt, a variety of defects are
formed. The simplest defect, called a vacecncy, occurs when an atom is missing
trom the lattice. An extra atom wedged in the lattice between the normal
atomic sites may also occur; this is termed an interstitial atom, Impurity
atoms may replace a regular lattice atom or be accommodated within the lattice
as an interstitial impurity. Such defects, involving only one atom, are called
point defects. Line defects are the next level of lattice imperfection., The
incomplete trenslation of one part of the lattice relative to the other,

designated as a dislocation, is an example,

Surface defects within the crystal may also exist. Thus, across a
surface defect, the crystal structure may undergo a change of orientation. An
example would be the boundary which occurs when the crystallographic structure
forms a mirror image of itself as shown in Figure 2.

As a metal solidifies from a melt, crystals grow from many nuclei on
cooling so that the resultant solid consists of many grains of metal, each grain
composed of the crystal lattice. Since the grains will be misorieated relative

to one anocher, grain boundaries are formed where some compromise of lattice

[iii

Deforrned grid

Twin boundary(112)

Unit cells (OF 194)

FIGURE 2. TWIN BOUNDARY WITHIN A CRYSTAL

£
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position occurs. In fact, if the relative misorientation between grains is
large, the boundary may be considered a thin transition layer of high disorder
with smorphous rather than crystalline properties. The situation is schemati-
cally {illustrated in Figure 3.

Microscopic Deformation of Metals. In the case of small loads applied

to a perfect crystal, small distortions will occur in the crystal lattice as the
atoms seek new equilibrium positions in response to the applied foreces. If the
lattice is perfect, enormous forces are required to rupture the atomic bonds--
as shown by tests on perfect crystals. Once the loads are removed, the atoms
return to their original positions and the material thus exhihits '"perfect
elasticity'”. The case for polycrystals is similar except the loads necessary

to produce some irreversible changes in the lattice structure are much smaller;
therefore, polycrystals are also capable of exhibiting perfect elasticity, but

to a lesser extent.

The case of permanent changes in the lattice structure caused by loads
greater than considered above will now be considered. The fundamental mechanisms
of permanent or plastic deformation within a crystal are the generation and motion
of dislocations. The two basic dislocation types are screw dislocation and
edge dislocation. In a screw dislocation, relative shifting of the crystallo-
graphic planes has occurred, but this has no( propagated through the euntire
crystal and, in fact, terminates along the screw dislocation line. The edge
dislocation, which is simpler to visualize, is the result of an extra half plane
of atoms being "pushed" into the lattice.

Regular lattice within grains
Grain

= Distorted, high energy lattice
at boundary

{OF 195}

FIGURE 3. GRAINS AND GRAIN BOUNDARIES IN A POLYCRYSTAL
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In either type of dislocation, a plane or a portion of a plane of
atoms has glided with respect to an adjacent plane, and after the gliding

motion, the geometric pattern of the crystal has again come back into registry.

In all types of deformation considered, the lattice undergoes some
distortion in the vicinity of the crystal fault; consequently, the lattice
possesses additional strain energy and is therefore in a higher energy state
than without the fault. Nevertheless, the essencial lattice structure is only
locally distorted by the presence of a dislocation and the identifying features

of the crystal are, in the main, retained.

Macroscopic Deformation of Metals. The microscopic deformation of
metals manifests itself macroscopically as plastic flow and deformation. That
is, microscopic dislocations translate as plastic deformations of the crystal
or polycrystal, Although an annealed crystal will contain a large number of
dislocations per unit volume (10° to 108 per cubic centimeter), the magnitudes
of macroscopically observed plastic strains are not solely attributable to the
gliding of these existing dislocations. It is known that the dislocation density
increases with the start of plastic deformation., Although the description of
these multiplication mechanisms is beyond the scope of this review, both the
theoretical basis for their operation and X-ray evidence of their existence
have been established. Thus, flow takes place due to relative motion of various
dislocation glide planes. The number of operative glide planes tends to
greatly increase due to multiplication mechanisms as flow progresses, resulting

in macroscopic plastic deformation.

Physics and Mechanics of Fracture

Fracture in most materials requires the contribution of two usually
distinct mechanisms; crack or void nucleation and crack growth or propagation.
Since the operation and characteristics of both mechanisms are highly dependent
on the inelastic behavior modes of the material, the discussion to follow will
consider separately the fracture of perfectly-brittle materials, semibrittle

materials, and ductile materials.*

* Principal sources for this discussion are References 1, 2, 3, and &4, page 35.
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Perfectly-Brittle Materials

Under certain conditions, e.g., low temperatures, both amorphous
materials and some metals will behave in a semibrittle or ideally brittle fashion.
(Fracture of materials falling in the semibrittle category are discussed in a
subsequent section.) Those materials belonging to the latter category, wbich have
been studied most extensively, are the inorganic glasses. Materials such as

ceramics have received less attention.

Crack Nucleation. The discrepancy between the theoratical cohesive

strength {5-107 of E*) and the experimentally determined tensile strength is

attributed to stress concentrations at the tips of randomly distributed microcracks

on the surface or in the volume of the material. For uniformly stressed material,
the most severe (longest) crack propagates through the material in a direction
perpendicular to the maximum principal normal stress, and thus causes failure at

relatively low applied stress, While these microcracks have never been micro-

scopically observed, order-of-magnitude increases in the strength of glass specimens

with a surface layer etched off have been obtained. 1In the case of glass, the
severe surface cracks which cause failure are attributed to mechanical damage

introduced in processing or handling,

Crack Propagation. In uniaxial tension, the stress, o, necessary to

propagate an elliptical crack of length 2C (with major axis normal to ob) was

derived by Griffith:(l)
ey
%, nc ¢))

where o = specific surface energy. When this equation is satisfied, the crack
begins to propagate across the plane of maximum tension. As the crack elongates,

the stress concentration at its tip increases, thareby accelerating the motion

*Young's Modulus,
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of the tip to maximum velocities as high as the Rayleigh wave velocity. As long
as Uo is maintained on the specimen, the crack will continue to move at steady-

state velocity unless it hits an obstacle (hard region) or forks.

Materials with crack nucleation and propagation characteristics like

those described above exhibit pronounced size effects in their tensile strengths,

—i  owh e

.o i.e., large specimens are weaker than small, This is due to the fact that the

.S probability of a specimen containing a severe crack increases with sgize.

The simple considerations introduced above have been extended to more
T elaborate analyses; these include biaxial and triaxial stress fields and

i

“ statistical approaches relating flaw densities and distributions to strength.

Semibrittle Materials

Some body-centered cubic metals (BCC), such as low-carbon steel and

T tungsten, and glassy materials, such as inorganic glasses and polymers, will

- deform plastically or viscously at high temperatures or low strain rates, but at
'{ low temperatures or high strain rates they will fracture in a semibrittle manner.
-4

In both crack nucleation and propagation, striking differences can be found

between semibrittle fracture and the perfectly-brittle fracture. Another factor

bt

which contributes to the ductile/semibrittie fracture mode transition of these

materials is the presence of a high triaxial tensile stress. 1In the poly-

| S

crystalline materials, the fractures are usually transcrystalline (cleavage of
individual crystals), although some semibrittle fracture is of the intercrystalline

variety (brittle separation along grain boundaries).

breorn  bomd

Crack Nucleation. The main difference betw:.en perfectly-brittle and

semibrittle fracture in the glassy materials is that, in the latter case, some
plastic deformation may precede or accompany failure. The mechanism for crack
nucleation is the same as that discussed earlier. In metals, however, cracks are
preceded and can be nucleated uy inhomogenecus plastic deformation on a

microscopic scale, i.e., slip and twinning,

QO O bugp e ey Oerd
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Crack nucleation by slip can be caused by an edge dislocation pile-up
at a strong obstacle such as a high or medium angle grain boundary {(see Figure &)
or a pile~up in the form of a2 low angle boundary (see Figure 5). In both cases,
the corcentrated stress becomes equal to the theoretical strength of the material,
and as long as the stress does not relax too rapidly, the cracks will continue to
grow. An interesting aspect of the grain boundary pile-up mechanism ia that the
crack nucleation stress is grain-size dependent. This is due to the fact that
more dislocations, and hence greater stress concentrations, will occur in larger
grained materials. Pile-ups in the form of low~angle boundaries are common to
hexagonal metals and single crystals of ionic compounds, such as magnesium oxide.

(See Figure 5.)

A sketch of the mechanism of crack nucleation by the interaction of
deformation twins is shown in Figure 6. Thic mechanism, found in BCC crystals,
requires higher stresses than those needed for dislocation pile-ups. Only a few

intersectiuns of this type will result in crack nucleation, since the stresses are

easily relieved.

Crack Propagation. Once defects {cracks) have been introduced by the

flow of crystalline material, the occurrence of semibrittle or ductile fracture
will be governed by whether or not an elastic-plastic crack propagation condition

is satisfied. Such a condition was given by Orowan(l) as

2,E
= _I_
% = & (2)
where p = the work of plastic deformation per unit increase in crack area. This
is just the Griffith equation with p substituted for a. In gereral, however, p

will not be constant.

Observed from a microscopic point ot view, it is probable that a flow-
nucleated crack in a single crystal would be of sufficient length to satisfy the
Griffith brittle crack propagation criterion. In a polycrystalline material
however, a clzavage crack will usually be stopped by a grain boundary between
grains with greatly differing cleavage planes. Oncc the crack is stopped, plastic
deformation at its tip serves to blunt it, thus creating the necessity for
additional crack propagation energy. For this reason, the term "p" in Orowan's

equation *‘_ much higher than the corresponding "o" term in Griffith's equation.

O |

P

L]
g

fomi  Bosd Pewd  fmod  Gewl s W

bl
]

R Tt )

»
L

[t SR L B A et B s

e

»
5 s}




[ S

fodn Saie s ot TS U O

et el lamd B

L3

.
»

| T

ey

N GER e

N

o

-
.

wr"‘"r‘

{a)

(b)

i

{oF 198)

FIGURE 4. FORMATION OF A CRACK BY FUSING TOGETHER OF
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FIGURE 5. PORMATION OF A MICROCRACK BY SHEAR
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FIGURE 6. CRACK NUCLEATION BY THE INTERSECTION

OF TWO DEFORMATION TWINS
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As was the case for crack nucleation in polycrystalline materials,
grain size plays an important rcle in crack propagation. The improved resistance
to semibrittle fracture of fine-grained materials is due not only to the fact that
cracks are more difficult to nucleate, but also that they are more difficult to

propagate.

Intercrystalline semibrittle fracture is nucleated and propagated in
the grain boundaries. It is due either to some form of grain boundary embritt.e-

ment or a thin film of a brittle phase separating at the grain boundary.

Ductile Materials

Materials such as some FFC (face-centered cubic) metals do not undergo
a ductile/semibrittle fracture mode transition. In a standard tc.sion test, these
materials develop voids or ductile cracks under the influence of triaxial tension
in the center of the necked region. These voids subsequently grow in size and
number and coalesce as the load is maintained or increased. The fine structure
of the fracture surface at the center of a completely separated specimen shows
that the voids grow to such an extent that the material between them ruptures

(shear failure) rather than cleaves.

Crack Nucleation. The origin of the voids which grow to cause ductile

fracture is attributed to either stress concentrations in the grain boundaries
due to impurities or inclusions, fracture of perfectly-brittle 2lements (such as
pearlite ir stecel), or excessive localized straia concentrations in bands of

heavy deformation.

Crack Propagation. Crack propagation, or more descriptively, void
growth, proceeds according to the manner in which the crack was nucleated. Thus,
if the cracks were initiated by failure of brittle elements, thay would become
blunted and turn into holes. The growth and coalescence of the holes would depend
on the amount of further plastic strain and the magnitude of the trangverse stress.
On the other hand, if the cracks were formed along grain boundaries or bands of

heavy deformation, the cavity acts as a notch to concentrate stress in planes
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oriented at 30 to 40 degrees to the tensile axis., Large samounts of plastic flow
occur in this region, forming a hesvy concentration of veids in the shear band,

and the weakened region then splits open.

Spall

This section is devoted to a detailed statement of the current know-
ledge of spall fracture. For reasons of readability and conceptual clarity, the
results of the various investigators are presented in an integrated (5) rather
than sequential (6) manner. 1In this format, topica such as spall models and
degrees of snall are discussed separately. Particular emphasis is placed on
those results most closely related to spallation in uniaxial strain caused by
plate-slap impact, i.e., rectengular pulses. Furthermore, the closely related
and at least equally important problem of determining material response prior to
spall will receive only cursory attention, since this has been considered in

detail in Appendices A to E.

The Degrees of Spall

The most general definition of spall is given in terms of its cause;
namely, material failure due to the interaction of two or more rarefaction
waves, The failure itself may range from cracks, detectable only by microscopic
examination, to sublimation or disintegration of part of the material. The latter
type of failure is rzferred to as ultimate or cohesive spall; the former type
represents a lower limit to a different and less drastic failure mode called
ductile spall. In addition, materials which exhibit a pressure-induced phase
transfonmation may fail in an intermediate mode known as phase transformation
spall. Since both ultimate and phase transformation spall occur at relatively
high stress levels compared to ductile spall, and since they bave received only
a small amount of experimental or theoretical attention, they will be mentioned
oanly briefly in this study. The major emphagis will be placed on the more

practically interesting failure mechanism known as ductile spall,
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Ultimate or Cohesive Spall. This mode of spall has been obrerved by a

()

tion pulses with an explosively-driven flyer plate, and assuming hydr>dynamic

few investigators, most notably McQueen and Marsh. By generating shnrt dura-
material response, the ultimate strength of single~-crystal and polycrystalline
copper was found to be ir excess of 150 kbar. The distinguishing feature of the
observed failure mode was that the material literally disintegrated or sublimed,

in contrast to the behavior at lower spall thresholds where flaw-related mechanisms
such as crack nucleation and propagation are prominent. It is interesting to note
the rather favorable comparison between the experimentally obtained ultimate spall
threshold and the static theoretical strength cf the material derived from con-
sideration of the interatomic forces in a crystal. Using the equation for the
theoretical, stati: cohesive of .05E - .10E, and assuming a modulus of 18 x 106 psl
for copper, the strength is found to lie between 62 and 125 kbar.

Phage-Trans formation Spall. This mode of failure occurs oaly in materials

which exhibit a pressure-induced phase transformation. It has been observed in

(8) (%)

Armco iron by Erkman and Moss and Glass. Both of these irvestigations used
plate-slap impact techniques to induce stresses in excess of the phase-transforma-
tion pressure (130 kbar), thereby crzating a characteristic double plastiec shock
vave structure. The phase-transformation spall threshold, which is the negative
of the phase-transformation pressure, does not represent a point of change in
failure mecharism, but rather marks a point of change in the appearance of the
spall surface. This change is attributed to the phase transformation. As induced
pressures are increased through the phase~transformation pressure, the spall
plane takes on a characteristically smooth appearance, although the failure
mechanism remains orie of crack nucleation and propagation, Phase-transformation
spall has also been observed in steel by Novikov and ochers,(IO) and in iron and
gteel by Ivanov and others;(ll) both studies used contact high explosives to

induce the required pressures.

Ductile Spall. Low-pressure or ductile spall involves the same basic

mechanisms, i.e., crack nucleation and propagation, that are associated with lower
strain-rate failure. Three separate levels of ductile spall have been recognized
and classified accurding to the severity of damage. 3In order of increasing damage

they are; incipient, intermediatc¢ :nd complete.
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The incipient spall threshold is defined as that combination of stress
and time (pulse duration) below which no damage to the specimen would be visible.
In order to determine the visibility of failure, it is necessary to gection,
polish, and etch the specimen and perform a metallographic examination at about
100 x magnification. The large number of parameters influencing the spall thresh-
old precludes a general description of the appearance of the fractured region,
although it can be stated that several usually transgranular microcracks or voids
with dimensions on the order of a grain diameter would be evident. Also, the
cracks would be generally parallel and would lie in a fairly narrow htand parallel
to the free surface of the specimen. Photomicrographs illustrating the appearance
of incipient spall in 6061-T6 aluminum and copper are given in References 12 and

13, respactively.

( If the tensile stress and/oxr pulse duration is greater than that required
for incipient spall, the degree of damage is correspondingly greater; i.e., the
cracks are more numerous and larger, and some are joined together. A criterion

for quantitative determination of the degree of damage has been suggested by
Herrmann of Sandia, who proposed that the damaged specimens, including the spall
plane, be cut into tensile members and pulled apart in a tension testing

13) In this way, a quantitative measure of the degree of damage is pro-

machine.
vided by the residual strength of the tensile member. As the tensile stress
and/or pulse duration is increased beyond the incipient spall threshold values,
the degree of demage to the specimen increases and, hence, its residual strength
decreases. At some point, however, the residual strength of the specimens ceases
to decrease with increase in the severity of loading. The tensil: stress and
pulse duration corresponding to this point are said to define the intermediate

spall thrashold.

1 a specimen is subiocted to a tensile pulse of sufficient magnitude
and/or duration in excess of the intermediate spall threshold values, the damage
will be so great that a fairly intact piece of material will separate or be
detached from the specimen., The combination of stress and pulse duratic . at which
this occurs is known as the complete spall threshold. This threshol- is of greater
practical importance thar the others and has, historically, becn the object of

<he greatest study, e.g., Hopkinson, Kolsky, Rinehart. Obvious.y, the residual




strength of the material above this threshold is zero, and a complete charac-

terization of the three ductile spall thresholds in terms of residual strength
would appear as shown in Figure 7.
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FIGURE 7.

RESIDUAL STRENGTH OF TARGETS USING 1.5 ws SQUARE PULSES

* The 24-kbar data were obtained with a grooved target.
Edge effects prevented complete geparation at 22 kbar.
Photomicrographs illustrating the appearance of the fracture zone in copper at

the three ductile spall thresholds are given i1 Reference 13.

Some of the more recent investigators of the complete spall threshold
have used specimen configurations specifically designed to eliminate the influence
of edge effects and shear failure, which necessarily enter into the complete spall
of a standard plate specimen. By using tapered plugs fitted into plates of
gimilar material, Smith(13) obtained complete spall thresholds for copper which
were lower than those obtained with standard specimens. #hen a scheme such as
this is emploved, however, care must be taken to ensure that uniaxial strain

conditions are maintained while the material is in tension. If this is not done,

the different stress states occurring in compressicn and tensicn must be accounted

for in the¢ soiution of the wave propagation equations. Glass and others,(la)
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experimenting with single crystals of copper, used cylindrical svecimens of L/D > 1
embedded in copper plates. They observed rather severe necking in the region of
the specimen adjacent to the spall zone, indicating a stress state similar to that

prevailing in a stendard tensile test, i.e., uniaxial stress.

Parameters Influencing Ductile Spall Thresholds

A sufticient amount of experimental and theoretical evidence has now been
gathered to support the assertion that the "critical normal fracture stress'
criterion for spall must be at leas: extended, if not totally revised. This
criterion, vhich states that a material will spall instantaneously and completely
when a unique critical value of normal tensile stress is attained, has yielded
erroneocue and even contradictory predictiona of spall in several instances. Indica-
tions are that a realistic spall criterion must include at least one, if not several
more parameters to account for the anomalies in experimentally observed spall
behavior. In this section, thoge parameters which have been found to affect gpall

behavior will be enumerated and discussed, with reference to specific experiments.

Time~Related Parameters. One of the first indications that a critical

rnormal fracture stress did not constitute an adequate spall criterion was the
disparity, both in numbers and sizes, between predicted and measured scabs in
multiple~spall experiments. 1In his experiments with several metals and glass

subjected to explosively induced pressures, Broberg(ls)

attributed these discrepancies
to the noninstantareous fracture behavior of ductile materials. If a material which
is subjected to a triangular compressive pulse does not spall instantaneousiy when

the net reflected tension reaches a critical value, then the magnitude of the pulse
available to cause additional spalling upcn reflection from the first spalled

surface 1is reduced.

In a later article,(lﬁ) reporting on experiments done with granite and
lucite, Broberg explained the spall delay time in terms of the mechanisms associated
with fracture at lower strain rates, i.e,, crack nucleation and propagation. Thus,
the stregs-dependent fracture delay time decreases with increasing stress, not
ontly because more cracks are nucleated, but also because the acceleration of the

crack tips increases. Similarly, ductile materials require more time to fracture
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than brittle materials because stresses are relieved not only by fracture, but
also by flow. Ductility limits the magnitude of stress concentrations and causes
the tips of cracks to become blunt, thereby retarding both the velocity and the

acceleration of crack propagation,

Results of plate-slap tests provide additional evidence for the necessity
of including a time-related parameter in the spall criterion. Butcher and others(l7)
point out that, for the same material, the difference between the spall threshold
stress generated by contact explosives {triangular pulses) and the spall threshold
stress obtained by plate-slap impact (rectangular pulses) indicates a time dependence
for spall failure. 1In the cases where a strict comparison was possible, the
explosively induced spall threshold stress was always greater than the plate-slap
spall threshold.

In plate-slap experiments on 6061~T6 aluminum, Blincow and Keller(le)

observed that the flyer velocity required to cause incipient spall decreased with
increasing flyer thickness in an approximately linear manner. Since impact
velocity can be directly related to stress, and flyer thickness can be similarly
related to pulse duration, a definite time dependence of spall is implied. Another
interesting observation made by these investigators was that the thickness or extent
of the spalled region increased with decreasing impact velocity (above the incipient
spall threshold). This phenomenon can also be attributed to a time-dependent spall
mechanism by recognizing that for a given pulse width, if the stress is greater
than that required for spall, the material will fail more quickly than it would at
the threshold value of stress. Due to this more rapid spall at higher stress levels,
the remainder of the tension wave reflects sooner from the spalled surface as a
compressive wave to prevent additional £fracturing near the original spall. Also,
since the width of the pulse that is transmitted across the spall plane prior to
spall is less than that at lower stress levels, the material between the impact
surface and the spall plane is less likely to experience subsequent fracture

(multiple spall).

Other investigators have found evidence for time-dependent spall in
experiments with copper. 1In his plate~-slap experiments, Smith(13) found that the
required tensile stress decreased with increasing pulse duration for all ductile
spall thresholds. Of additional interest in this reference are several photo-

micrographs illustrating spall damage for different combinations of stress and pulse
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duration. These pictures show increasing damage, i.e., larger cracks and voids,
for the case when stress is held constant and pulse duration increased and the
case when pulse duration is kept constant and stress is increased.

(14) used contact explosives to study the fracture of

Glass and others
copper single-crystals. These authors point to the presence of a necked-down
region adjacent to the spall zone as definite proof that the material does not

fracture instantaneously.

Not all investigators explicitly introduce time as a parameter with
which to augment a spall criterion. Al'Tshuler and others(lg) attribute the
difference between explosive and plate-slap spall threshold stresses to the
different tensile strain rates corresponding to these loadings. It is interesting
to note that, contrary to the results of the comparison made by Butcher,(17) they
found the spall threshold stress for copper obtained by plate-slap impact to be
more than twice the explosively induced threshold stress. They estimate the strain
rates as 10S sec -1 for explosive loading and 107 sec -1 for plate slap.

(20) has introduced tensile-stress unloading rate to account for

Whiteman
the nonunique spall threshold stresses which he measured in aluminum, mild steel,
brass, and copper by plate-slap impact techniques. Plausibility of the results is
indicated to the extent that curves of spall stress versus this stress rate
generally show spall stress approaching the theoretical strength at the highest
stress rates. In addition, the trends of the curves appear to be consistent with
theoretical considerations. If it is assumed that cracks are nucleated by dis-
«ocation pile-ups at grain boundaries, then the stress necessary to initiate
fracture must increase with increasing stress rate (and, “ence, shorter load-
application times) to give the dislocations sufficient velocity to reach the
boundary. More discussion of the stress-rate dependent spall criterion will be

given in the section devoted exclusively to spall models (pages 23-32).

Other Parameters. 1In contrast to time-related effects, evidence per-

taining to the influence of other parameters on ductile spall thresholds is
comparatively meager. Furthermore, some of this evidence is not only rather
tenuous, but contradictory as well. For the sake of completeness, however, results
pertaining to the influence of all parameters (other than time, of course) will be

presented here.
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The previously discussed discrepancies obgerved in multiple-spall
experiments evoked an explanation other than that of a time~dependent spall
mechanism, Rinehart(ZI) felt that the discrepancies could be explained by the
fact that not all spall planes experienced the same peak compressive stress before
going into tension. 1In other words, the critical normal fracture strcis of a
material depends on the transient compressive stress immediately preceding
tengsion. To the extent that explosively generated pulses can be controlled, and
their shapes accurately described, Rinehart's suspicions are borne out by the
experiments of Buchanan and James(zz) with mild steel. Varying the magnitude of
the precompression pulse by using specimens of different thicknesses, they found
that the critical normal fracture stress increased in an approximately linear
manner with increasing precompression. In particular, the tensile stress required
to cause rpall increased by about 50 percent when the magnitude (peak stress) of
the preceding compressive pulse was tripled. However, n these experiments, the
rate of stress application also increased with increasing peak stress so that the

precompression explanation of the observed effect is not unique.

More work should be done to determine what effects the compression phase
of the stress~time history has on the spall bechavior of materials, if for ro other
reaecn than the fact that crack nucleation, which is dependent on shear stresses
rather than normal stresses, can occur in the compressive as well as the tensile
phase. In both phases, the stress states are nonhydrostatic. Note that the trend
of the results described above, i.e., increasing strength with increasing pre-
compression, runs contrary to what would be expected if increased precompression

implied a greater amount of crack nucleation.

The influence of ambient temperature on spall thresholds is another area
warranting further investigation., For the rather extensive range of temperatures

(23)

they considered, O'Brien and Davis' ~° found no change in the fracture stress of

high-purity polyecr; talline aluminum subjected to explosive loads. In contrast to

(12) from plate-slap tests on

this are the results obtained by Penning and others
lucite. With a very limited number of tests, covering only a small temperature

range, they found that the fracture stress increased with increasing temperature.

It appears that neither of the above-mentioned investigators accounted

for the influence of temperature on the equation-of-state, and consequently, on

i
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the wave propagation. Obviously, this type of effort must accompany, if not pre-
cede, any investigation into the effect of ambient temperature on spall thresholds.

(24) show that yield

The results of a study done by Piacesi and Watt
strength can play a double role in the spallation phenomenon. In additicn to
affecting the shape of the stress pulse and, therefore, the stress-time history
at the spall plane, the yield strength of a material influences the amcunt of
bulge at the rear surface of a specimen that has not completely spalied. Thus,
with specimens not designed to be free of edge effects and shear failure, such as
described previously, yield strength would influence both the intermediate and

complete spall thresholds.

In this study, the effect of yield strength on rear surface bulge was
demonstrated experimentally by impacting 7075-T6 aluminum targets at various
temperatures (and, consequently, different yield strengths) with 1/4~-inch-diameter
aluminum spheres. The bulge distance versus impact velocity curves for 7075-T6
aluminum at 500° F and 7075-0 aluminum at 72° F, which have equal yield strengths,
were approximately identical. This result indicated that temperatuvre did not

(23) discussed previously.

affect spall, in agreement with the conclusions of O'Brien
Thug, the results obtained in tests at lower temperatures, i.e., smaller bulge
distances for all impact velocities, could justifiably be attributed to the

influence of yield strength alone.

The necessity for investigating the influence on spallation of micro-
scopic material properties, such as structure and composition, has been recognized,
and some work has been done. 1In the study previously mentioned,(23) 0'Brien and
Davis found that the fracture stress remained constant for aluminum single crystals
at various orientations, zone-refined polycrystalline aluminum, polycrystalline
aluminum rods that had been cold worked to varicus textures, and 2024 aluminum-
copper alloy in the hardened and solution-treated condition. Although the ap-
pearance of the spall was influenced by the ductility of the specimens, the
conclusion reached was that the structural defect causing failure was present in
an as-grown crystal or was caused by the precompression shock,

In their experiments witn lead, aluminum, and copper, subjected to

(25)

explosive loads, Vitman and others found spall threshold stresses to be

insensitive to alloying.
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The structural parameter that nas been found to have the greatest

!

influence on spallation is the material form (i.e., bar or plate). Using plate-

2 - =
-

slap techniques to study spallation in copper, Plauson and others(26) found that

the spall stresses for annealed bar s7 ~iusens (grains aligned ncrmal to the speci-
men faces) were more than twice the stresses for plate specimens {grains aligned e
parallel to the specimen faces). In addition, the spall stresses of the plate

specimens were .ound to be relatively insengitive to material condition ({i.e.,

annealed, 1/4 hard, or hard).

The individual cracks constituting the entire spall zone were observed
to be of a transgranular nature in both the bar and plate specimens, but the gross
appeurance of the spall differed greatly. In the plate material, the individual
fractures were cleavage fractures which showed little attendant grain deformat.on,
while in the bar material, shear fractures and large amounts of grain deformation
were observed. In both bars and plates, the gross spall formed on a plsne per-
pendicular to the direction of impact. However, the individual cracks were oriented
in the direction of grain alignment.

Similar, but less quantitative results on the effect of grain alignment
(13)

in copper have been obtained by Smith. This reference contains excellent )
photomicrographs which illustrate the marked differences in the appearance of the
spall zones in bar and plate specimens. -

In a series of plate-slap experiments on 6061-T6 aluminum plate stock,

Butcher(27)

found that the critical values of stress and pulse duration required
for crack nucleation were insensitive to the angle between the impact veioccity
vector and the plane of grain elongation and impurity stratification. Crack
propagation, on the other hand, was found to be extremely sensitive to this
orientation. Cracks usually propagated in the plane of weakness, i.e., grain
elongation and impurity stratification, regardless of the plane's orientation.
Thus, when this plane was parallel to the direction of impact, little propagation
was noticed because the tension normul to this plane is neither uniform nor of
maximum magnitude. In this cvientation, evidence of massive plastic flow was

found in the area of the spali zone.

-~
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It appears that the incrzased spall strength of specimens in which
grain elongation is parallel to the direction of impact is due to the fact that
cracks nucleated in these specimens are not aligned perpendicular to the direction
of maximum tension and, thus, do not propagate as readily nor coalesce as easily

as cracks aligned parallel to the spall plane. Since incipient spall involves

verv ' - -~ack propagation, the insensitivity of thia threshold to grain align-
ment. -~ 7ed by Butcher, is not surprising. Blincow and Keller (18) also
repoi e incipient spall threshold of 6061-T6 aluminum is the same for

both pl. .and bar specimens, but certainly more data is needed.

These observations, and the remarks made previously in connection with
the effect of precompression, indicate that significant progress toward under-
standing the spallation phenomenon must necessarily involve a deeper under-

standing of the roles played by the basic fracture mechanisms,

Spall Models

Except for very simple pulse shapes, analytical predictions of spall
(i.e., thickness and number) are handled most efficiently by a computer in
conjunction with wave propagation calculations., The critical normal fracture
stress spall criterion, being the simplest and requiring the least data, is
presently being used in several codes and requires no further discussion. The
more sophisticated models, incorporating such parameters as time, rats, tempera-
ture, and thus requiring more experimental data, are at various stages of develop-
ment. Some have had successful, if limjted, application and verification, while
others remain at the purely conceptual stage. With ore exception, which will be
discussed separately, ail of these spall models are phenomenolcgical in nature;
e.g., spall stress is related to time, rate, etc., by experimencalily determined
constants which characterize the spall behavior of the material. The explanatory
model, based on the principle of bond rupture, represents an attempt to predict

spall behavior from consideration of the physical mechaunisms actually involved.

Phenomenological Spall Models. Aside from being a numerical application

of a particular spall criterion, a spall model should also have the capability to
predict the spall behavior of a material subjected to & pulse of arbitrary shape.

Thus, if an experimentally determined relationship between fracture delay time




and consrant applied tensile stress is known, the spall model must contain some
statement as to how this information is t> be used when the material is subjected

(12) suggest that the spall delay time

to a variable stress. Peanning and others
of a material under variable tensile stress is cumulative, i.e., the material will

spall at that time, T, given by

[Mdt .y, )
J t ?
o] 8

where ts = ts (0) is the delay time versus constant
tensile stress relationship.
To see this more clearly, consider the sketch of the stress~time history, 0 = ¢ (t),

shown in Figure 8.
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FIGURE 8. ASSUMED TENSILE STRESS TIME-HISTORY
AT THE SPALL PLANE

At time t = T, spall occurs, i.e.,
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It can be seen that spall does not uccur until the percent of damage assoclated

with the individual approximating pulses (0,, At,) accumulates to 100 percent.

The obvious shortcoming of this sclieme is that the effect of previous
stressing is not included in the t, versus O relationship., For each time incre-
ment, Ot,, the corresponding delay time, ts {¢,), is based on 0, being applizd
instantaneously, with no previous stress present. From these congiderations, it

would appear that the T obtained by this method wculd be too large.

Butcher and others(17) have utilized the cumulative method to obtain
closed form expressiong r.r T. By considering only triangular pulses, and as-
suming a defi{nite functional relationghip between ts and o, they were able to
integrate Equation 3 and solve for T in terms ¢f a material spatial coordinate,
the shock velecity, and parameters characterizing the pulse shape and the t8

versus O relationship.

Tuler and Butcher(za)

incorporated the cumulative spall model into an
elastic-plastic-save propagation code. They used a te versus O relationship of
the form

-\
ts = k(o-oo) ; (5)

where k and A are positive constantg and
C, represents the minimum tensile stress
required for failure, regardless of time
duration.
Predictions made with this model were compared t¢ spall data for 1100 aluminum

which had been subjected to explosively induced pulses.

More fundamental difficulties are encountered when the spall delay time
versus applied tensile stress relationship is examined. Two of the more common
forms of this relationship are given by

t, = P (References 29 and 30), (6)

ts = aoﬁ (Reference 31); (N
where A, |4, @, and B are constants.

Equation 6 represents not only the experimentally observed behavior of

& wide variety of materials when ts i3 relatively large (milliseconds and above),
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but has been derived by Waldorf(zo) from theoretical considerations and shown
to hold for al’ values of ts. In this theory, which will be discusgsed sub-
sequently in more detail (see page 28), the constants A and ¢ are identified
with such physical parameters as sublimation energy, Boltzmaan's constant,

absolute temperature inside the shock, and the fattice vibrational frequency.

Egquation 7 mevely represents a& fit to data gathered for several

materials, most of which were ablators and plastics.

Regardless of the form of the delay timc versus constant applied-stress

relationship, the difficult: cf applying the relationship to the prediction of

spall when a materidl is subjected to unsteady tensile stress is one of logical con-

tradiction. When tiie stress causing spall is not large compared to the dynamic
yield stress, the hydrodynamic interpretation of material response is not
justified. Elastic-plastic wave-propagation calculations show that the stress-
time historv at the spall plane is very unsteady due to the complicated
interaction of the unloading compressive wave and the elastic-plastic rare-
faction from the free surface. Thus, data describing a spall threshold in term.
of ctresg and pulse duration necessarily imply that the fine structure of the
actual siress-time history at the spall plane is unimportant, and that spall <-.
be characterized in terms of an equivalent ractangular pulse. This equivalen:
rectangular pulgse can be obtained in various ways. In his experiments with

copper, Smith(13)

completely neglected the effect of the elastic precursor.
Others(lz) have performed sophisticated calculations of the stress-time history
at the spall plane, and then they appear to have '"ayeballed" an cequivalent

rectangular pulse with which to describe the spall threshold.

From these cunsiak.ariong, it must be conciuded that the only con-
sistent way to predict the snall behavior of a material subjected to an arbitrary
finely-structured pulse, from this type of Jata, is to idealize the actual pulse
in a manner identical to that which was used to obtain the data. From a physical
standpoint, a more desirable approach would be to introduce additional parameters
to characterize the actual shape of the spall-threshold pulse. Again, since

fracture mey be considered basically a mechanism of energy transfer, it may be
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more realistic to describe spall in terms of totil mechanical energy introduced

to the spall plane. A spall criterion based on this concept would have the form
lr
kuIWdt ; (8)
o

where
k = an empirically determined constant in units of energy per
unit ares,
= time at which spall occurs,
ingtantaneous net tensile stress at the spall plane,

= ingtantanecus net particle velocity at the spall plane,

< qQ 3
L ]

= the length of time for which the spall plane has been

in cension.
If only rectangular pulses are considered, and if linear elastic msterial approxi-
mations are made, i.e., 0 = pcv, then this equation can be integrated to yield

T=t = kpeo | )

Note the formal similarity to Equation 7 which represents a fit to experimental
data. Equation 7 also involves a negative exponent, although it is of different

magnitude.,

A spail model based on the criterion of stress~rate-dependent spall

(32) at Log Alamos Scientific

(26)

/ data, relating

stress has been used successfully by Breed and others
Laboratories (LASL). These investigators found that Whiteman's
apall stress to the tensile stress unloading rate for aluminum and copper, could
be put in the computationally convenient form of

GS-A+B(?>—£

; (i0)

where

o, = spall stress,
-%% » instantaneous net tensile-stress unloading gradient at spall plane,

A,B = experimentally determined constants.

Using this model in the LASL hydrodynamic SIN code, the damags: done to

a 2.5 cm thick aluminum block, subjected to the contact explosion of a 10 cm
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block of composition B-3, was predicted to be 10 spalls in 23 ps. A radiograph

of an actual test specimen taken at 25 us showed J1 T 1 spalled layers. Close
agro=ment between predictlons of the code and experimental vesults was also

found for the case of a copver-aluminum-copper sandwich subjected to plate-slap

-

impact.

gl el el G

These results illustrate how successful a phenomenological spall model

can be, provided that consistency is maintained between the analysis of test data

i
el
and analytical predictions of materigl behavior based on this data. Since it is 1. :
now generally accepted that the hydrodynamic material approximation yields -
erroneous results, except at extremely high pressures, a more physically satis- o g
fying approach would be te incorporate this spall model into a code for elastic- o
plastic stress wave calculations, i;,
Explanatory Spall Model. The spall model developed by Waldorf(3o) is .
based on the fundamental physical criterion that atomic bonds must be broken in -
order for fracture to occur. By using this criterion in sonjunction with geveral e
material idealizations, Waldorf was able to derive a relationship between espall e
delay time, ts, and apylied tensile stress, 0,: for homogenecus materials, i.e., -
single crystals. This relstionship is then extended and mcdified to describe the .-
fracture of materials in which crack propagation plays an important role, i.e., e .
polycrystalline materiais. The escential features involved in the development .
of these relationships are outiined in this section. i
For a microscopicsally homcgeneous, isotropic, and flawless material 2'
loaded in uniaxial strain with the bonds parallel to the applied stress carrying -
the entire load, the rare at which bonde are broken can be written as :
& - ooy 3 (11) .
where -
n = the number of unbroken bonds per unit area perpendicular to t
the stress, -
Pb- the probability of 2n atomic bond rupturing per unit time. ;‘
(This is a function of the applied stress and temperature. -
R




o

NIV B S

[OR—y

o e RN T e 2 g RIS T Y & A

«29-

Now assuming that the atoms move abcut their equilibrium positions in the lattice
with a Maxwellian velocity digstribution in the direction of the applied stress,
and defining bond rupture as occurring when an atom has traveled a distance equal

tc the equilibrium spacing, 60, the rupture probability, P, , is derived as

-E/kt
Pb = (e

H (12)
where

= the vibrational frequency of the lattice,

= Boltzmann's constant,

absolute temperature,

m 3w B
]

= the energy per bond with which the atoms are bound into
the lattice,
In the unstressed state, thie binding energy, E, is equal to Eo’ which is approxi-

mately the sublimation energy.

The dependence of E on applied stress, ob, is found by assuming that E
varies linearly with lattice spacing, 6§, and by using an average value of bulk
modulus to relate ¢, to 6. By further assuming that fracture occurs at a time
equal to the mean lifetime of the bonds and that, during this time, the number of
unbroken bonds may be averaged to a constant value, the E versus 0o relaticnship

becomes

; (13)

where

e
Oof o ewmee

e-1°
no = pumber of bonds per unit area in the unstressed state.
Now Equation 1l can be integrated to yield
” 6 o
e, - S0 ]
. T ° g Oo(t)
Ins=w | expj- .Jdt. (14)

o o i KT
Since fracture occurs when n = o, the delay time, ts’ versus applied stress,co,

relationship hecomes 5 o
0
t, Eor A, % ()
l=w f exp | - dt. (15)
J KT
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When g, is consgtant, this reduces to

éoa
Bo =%
e, - ul) exp — ° : (16)

A less approximate approach would be to relate E and § by the Morse
potential function, i.e.,

E = E£—28(60-6)_2e-a(6-60)] ; aan

where 2 18 a coastant such that E = o when § = 260, i.e., the atoms become unbound
when forced apart by an amount §,. Then, using an average value of effective

modulus in uniaxial strain, f, it can be written that

°o.lo (18
% E
and

This expression could then be used in place of Equation 13 in the solution to the

bond breaking equation, i.e., the t, versus g, relationship.,

The fracture of polycrystalline materiais involves plastic flow and
crack propagation, so that the relationships previously derived must be modified
to account for nonhomogeneous rates of bond rupture. Waldorf's material model
assumes a distribution of microcracks which grow until they join to form a con-
tinuous fracture surrace. The lengths and spacing of the cracks, which are assumed
to be nucleated by the usual mechanisms, are assumed to be about the same as the
grain diameter, so that each crack must roughly double its length for fracture to
occur. It is assumed further that crack widths are about equal to the thickness

of the grain boundaries, i.e., 10 atoms.

The time required for neighboring cracks to coaleace, and hence the delay
time for fracture, ts’ is given by
b
t, =3 (20)

where
v = the crack propagation v:locity (this is a function of the

applied stress),
b = one-half the mean tip-to-tip spacing of the cracks.
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In order to find the relationship between crack-propagation velocity and
applied stress, it is assumad that the variation of tensile stress with distance
from the crack tip is described by a step function. Thus, for a distance d° from
the crack tip, the stress is conetant and equal to the maximum value of concen-
trated stress at the crack tip, At distances fom the crack tip greater than do’

the stress is constant and equal to the applied stress, 0,.

Now, by assuming that the stress level in the region do of stress con-
centration is g0 large that fracture will cccur across the width do in a time very
small compared to fracture anywhere else, and considering the grains to be perfect
homogeneous crystals, it may be concluded that the crack tip moves across the dis-
tance do in the time t; required for & homogeneous material to fracture under the
concentrated stress. As the crack propagates, this process repeats, so that the
propagation velocity may be written as

do
Ve —g; (21)
ts
where t; is the delay time for fracture in homogeneous materials subjected to

constant applied stress.

Expressing do and b in terms of the grain diameter, Y, and the grain
boundary thickness, c, and making a correction for plastic flow, the equations for
propagation velocity and, hence, fracture-delay time may be obtained in terms of
the applied stress and atomic characteristics of the material. For a constant

value of applied stress, the deiay time versus stress relationship becomec

N (2 3o)
2)(30,0) L., 1 \e
o 1 \Q. (BUOQ)L. 2 BA E e O’o ts (22)
1l = 7'5335 e - e
where

- we'EOIKt,

6°a

noKY ’

1
(1\2
c]

grain diameter,

§

%

(2]
]

grain boundary thickness.,
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Since the crack-propagation velocity cannot exceed the velocity of sound
in the material, cg, the minimum value of delay time, occurring at high stress
levels, would be given by
. (23)

As a partial experimental verification of his theory, Waldorf cites the
agreement between his predictions and streass-fracture delay-time data obtained by
other investigators for homogeneous plastics and metals at relatively low values
of applied stress and long time durations, i.e., quasi-gtatic strengths.

Louie and others(33)

attempted to test the validity of Waldorf's theory
by conducting crack-propagation experiments with plastics and polycrystalline
aluminum. By applying quasi-static tensile forces perpendicular to the line of
small surface cracks, they found that the cracks widened prior to a sudden increase
in length., This circumstance made it difficult to measure the crack velocities
accurately and correlate them with the appiied tensile stresses. Nevertheless,
their results showed no indication that crack velocity is an exponential function
of applied stress, as predicted by Waldorf's theory. In addition, photographs
showed that the propagation was accompanied by considerable plastic flow at the
crack tips. From these observations, it was concluded that omission of plastic
flow effects in the Waldorf equation is a serious omission, since this flow can
appreciably alter the effective stress at the crack tips under suitable conditions.
This phenomenon will also modify the temperature dependence of the strength of

the material aon the a priori determined parameters of the theory.

From these considerations, it would appear that the Waldorf model in
its present form is applicable only to very brittle materisls. It shouid be noted,
however, that stress wave propagation in uniaxial strain inhibits plastic flow
due to the triaxiaiity of the stress state and the high strain rates. Thus, the
results of the crack-propagation study done by Louie and others do not prove con-
clusively that the Waldorf model is unsuited to the prediction of spail in ductile
materials. Experimental verification of the Waldorf theory for the stress levels
and pulse durations associated with plate-slap impact spallation has yet to be

provided.
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SUMMARY

Three major categories of spall fracture in materials have been identi-
fied. In the order of decreasing associsted stress levels, they are; ultimate or
cohesive gpall, phase transformation spall, and ductile or low-pressure spall.
Low-pressure spall has been further subdivided into complete spall, intermediate
spall, and incipient spall, These low-pressure spall thresholds mentioned here
are also listed in order of decreasing associated stress level, Damage done to
materials at the low-pressure spall thresholds varies from separation of large
parts of the material at the complete spall threshold to microcrack formation at

the incipient spall threshold.

Several investigators have found that other parameters, in addition to
a unique value of tensile stress at the spall plane, are necessary to the formu-
lation of an adequate spall criterion. Parameters that have been found experi-
meutally or offered in the way of conjecturz as influencing the spall behavior
of materials are; tensile pulse duration at the spall plane, strain and stress
rates as the gpall plane is loaded in tension, spatial stress gradients repre-
senting the unloading of the spall plane from a maximum value of tension, pre-
compression of the material at the spall plane, ambient temperature, yield strength,

and metallurgical characteristics such as grain orientation.

Spall models which would appear to have some feasibility for the
prediction of spall at intermediate stress levels are neither abundant nor
verified. Four basically different types of models exist: the Cumulative model,
the Energy model, the Stress-Rate model, and the Bond-Breaking model. The first
three of these models are of a phencmenological or empirical nature, while the
last represents an attempt to describe time-dependent fracture in terms of

processes taking place at the atomic level of activity.

The cumulative model purports to predict the spall due to an arbitrarily
shaped pulse by combining previously obtained rectangular pulse data in a cumula-
tive manner. Thus, if the relationship between spall delay time and constant
applied tensile stress is known for all values of stress, the arbitrary pulse in
question can be apprcximated by a series of rectangular pulses whose cime dura-

tions can be compared with the data. The ratio of the duration of the approximating
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pulse to the spall delay time corresponding to that stress level is calculated
for each approximating pulse consecutively and added to the sum of those

calculated previously. Spall occurs when the accumulated sum of these ratios
is equal to unity.

The Energy model conceived at Battelle is based on the criterion that
the mechanical energy supplied to the spall plane up to the time of fracture is
invariant. Thus, spall would be predicted to occur at the time, T, when the
following equation is satisfied:

T
K = Joosvsdt ; (24)
where
Oy = 0g(t) = net tensile stress at the spall plane,
Vg = Vg(t) = net particle velocity at the spall plane,

K = the invariant spall energy in units of energy per unit area.

The Stress-Rate model uses the criterion that the tensile : trength of
a material is dependent on its tersile unloading characteristics, Z.e., stress
rate or stress gradient., For a given material, a locus of tensile stress versus
corresponding stress-rate (or gradient) points, dividing spall and "no spall”,
can be determined empirically. To predict spall due to an arbitrary pulse,
tensile stresses and stress rates are calculated and compared with the critical

values lying on the locus.

The Bond-Breaking model represents an attempt to predict spall from
physical, rather than phenomenclogical considerations. For a microscopically
homogeneous material, i.e., a single crystal, the relationehip between time re-
quired for fracture and applied tensile stress is found by integrating an equation
expressing the rate at which ztomic bonds are broken as a function of stress.
Using this relationship to determine an expression for crack-propagation velocity
in terms of stress, and assuming a typical size and distribution of microcracks,
a delay time versus applied stress relationship is found for polycrystalline
materials. Since the delay time versus applied stress relatione are derived from
physical considerations, the constants in the equations represent physical
characteristics of the material rather than the empirical "black boxes" of the
preceding models. Some of the material congtants that are required are the

vibrational frequency of the lattice, the sublimation energy, and grain size.
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APPL'DIX A

BASIC PRINCIPLES OF CONTINUUM THEORY

The fundamentusl principles of continuum theory are restated briefly in
this Appendix. Although it is possible to present these principles in their
general tensorial form, thie would onrly tend to obscure the fundamental simplic-

ity of the postulates. These are

CONSERVATION OF MASS,

CONSERVATLON OF M(MENTUM,
CONSERVATION OF MQOMENT-OF-MOMENTUM,
CONSERVATION OF ENERGY.

1f thermodynamic effects are includ:d in a continuum formulation, to the above
must be added the

PRINCIZ?LE OF ENTRPY.

In addition; the basic councepts of

STRESS, STRAIN

must be included.

The above postulatzs pertsin to &sll medie and do net contain the
distinguishing characteristics of a rdarticular material. There musc be

included, therefore, a material characterizing rciation in tie form ot a
CONSTITUTIVE EQUATION

that relatcs che basic state variables (e.3., stress, internal energy, and

temperature),

It is to this basic equation, descriptive of a material and its
relation to the stress wave propagation problem, that attention is directed in
the following appendices. The various postulates are given mathematical

formulations convenient to is applications at hand.
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APPENDIX B

ELASTIC WAVES

When the propagation of plane compressional waves in an infinite,
isotropic, elastic medium is considered, the previously stated postulates

yield the equation of motion:

2 2

(A + 2u) é—% = p é—% ; (B~1)
ox ot

where u is displacement in the x direction, ard A, 1 are materiel moduli (the

Lamé constants). The constitutive eguation is Hooke's Law, given as

g ) + 2ue

15 ™ M Oy (8-2)

1y °

where cij is the stress, eij j

summation convention for repeated subscripts is utilized, The strain and

the strain, and 6i the Xronecker delta, and the

displacements are relav: by the infinitesimal strain expression,

1

eij =3 (ui,j + uj,i) .

(B-3)
The stated case of propagation represents motion under conditions of
one-dimensional strain. Thus, by replacing index notation with coordinate

subscripts, one has

“xx T O+ 2u)exx ? oyy =0 T xexx . (8-4)
The governing equation of motion (Equation B-1) is the wave equation, having

the general solution

4= fx + clt) + g(x - clt) s (B-5)
i
whers ¢ sf(A + 2u)/p]2 is the dilatation velocity. The solution indicates that
a given wave shape propagates undistorted with distance and at a constant

velocity, ¢y» a8 shown in Figure B-1l.

F‘{
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FIGURE B-1, UNDISTORTED STRESS~-PULSE PROPAGATION

The reflection of an elastic wave from a free boundary results in
tension waves reflecting as compressive waves, and incoming compressive waves
reflecting as tension waves. This latter phenomenon is the basic mechanism

of spall fracture, both in the elastic and inelastic regimes.

Although the character of elastic waves is altered by interaction
with boundaries, the waves do not interact with themselves. That is, leftward-
and rightward-propagating elastic stress waves may encounter and pass through
one another without consequent alteration of their wave shapes or propagetion
directions. During the duration of *their encounter, the resulting stress and
displacement fields will merely be the superposition of the individual fields,
1t will be found that the simpie reflection and interaction behavior reviewed

here for elastic waves does not hold fer elastoplastic waves.

Finally, it is useful to review propagation of elastic waves in thin,
straight rods, since many studies of dynamic material properties use this
geometry. The bar geometsy, which is the simplest case, is assumed to

represent a one-dimensional stress situatioa and has the governing equation

2 2
9
e i e (B-6)
Ox ot

where E is Young's modulus and is related to the previously given Lamé constant
by A = BEV/(1 +v)(1 ~ 2v). Only the Uy LTR8BS is nonzero, with all other
stresses assumed zero; then

(o} = Fe

Xx xx * Sxx ™ a“/Bx . (B-7)
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B-3

There are nonzero lateral gtrains, but since the inertia associated with the

resultant motions is neglected, the remaining strain expressions sre not required.

The governing equation is also the wave equation predicting constancy
of wave shape. The propagation velezcity is given as cg = JE/p, and is somewhat
less than the one-dimensional strsin-wave velocity. For example, in steel,
¢y = 22.4 x 104 in/sec and g = 20 x 104 in/sec. This decreased velocity for
the bar case may be interpreted as g result of relaxation of lateral constraints.
For elastic-plastic waves, the plastic wave velocities are drastically different
between one-dimensional stress and strain cases, whereas the wvelocities given

above show only a glight di. «rence for the elastic case,
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APPENDIX C

SHOCK _WAVES

The preceding discussion of elastic wuves represents wave propagation
at very low stress regimes (of the order 104 pel). Under conditions of extremely
high impulsive stress (pressures of the order 106psi), shock waves develop and
prepagate in a material in a manner similar to the fluid dynamics situation.
Thua, there is a propagating single wave front across which the material
variables, such as density, stresy, velocity, and energy, undergo large changes
in short distances. Also, it becomes reasonable to consider the solid as
behaving like a compressible fluid, described by an equation-of-state in the
form P = P(v), where v is the specific volume. Consequently, shock wave
propagation, as in the case of elastic waves, has inherent simplifying features
(simplified equation-of-state versus linear elastic behavior) permitting ready
solution to the stress wave problem, at least for the one-dimensional strain

case,

The theory of shock wave propagation, again in contrast to the elastic-
plastic case, has been reviewed extensively. (bee, for example, References
C-1 and C-2.) As a result, only one or two mejor aspects of the theory, useful

for lLater comparisons with the elastic-plastic case, will be reviewed here.

Conside> a shock wave propagating, as shown in Figure C-1.

U = shock velocity

Py, P1 || Por P

E E

u 1 o

1’
FIGURE C-1. PROPAGATING SHOCKX FRONT

The conservation of mass, mcmentum, and energy-equations applied across the

shock front are, respectively:

P U = p (U - u), (a)

P} = Py ™ P lu (b)

1’




c-2

(e yXy

p Uu
Py =Tt pOU(E1 - Eo). (c) (c-1)

According to these equations, velocities, densities, pressures, and energies are
discontinuous across the shock front, but they are relaced as given above. There
is a total of eigit varameters in the three equations above (po, 91’ Pyt Py» U,
Uy, Eo’ El). If it is asaumed that Eo’ Pos and p, are known, three equations

in five unknowns remain. By eliminating U and u, between two of the equations,

1
the equation can be reduced to

L _1_ -
EI-EO-]./Z(po pl)(p1+po). (C-2)

This establishes the states (El, Pys pl) that can be reached by a shock transition

from an initial state (Eo’ Po po)‘ By elimination of the particle velocity, u,,
from the mass and momentum equations above, an equation for the shock velocity

becomes

1 i
Ue===1[(p; - p)/ (v, - vpI2

by H (c-3)

vwhere v_ = 1/p1 and v, = 1/p1 are the spacific volumes.

When a plane shock wave arrives at a free surface, the shock pressure,
Pp is reduced to zero by a rarefaction wave from the free surface. Both the
arriving compression and reflected rarefaction waves impart particle velocities

to the free surface. The total free surface motion, Ug: is given by
Fem U tu g (C-4)

where u, and u, are the compression and rarefaction particle velocities,
respectively. Experiments have shown that u, ® u_. Hence, from Equation C-4,
it is concluded that the particle velocity, u, is equal to one-half the free

surface velocity,

1
u=3uc. (C-5)

z' V“& et x|

8

-e

e

e

-

.




AR CRYRNTS

PR

b

bt beeed B!

.
L

[ S

G EER R R o el

C-3

Experimental measurements enable one to obtain the shock velocity and
free surface velocity. These results, coupled with the conservation equations,
are sufficient to determine the equation-of-state for the material. As an
example, consider the results obtained from an experiment on Armco iron.(c‘3)

Measurements indicated that

Py = 7.87 g/cc,

U = 6.06 x 10° cm/sec,

ug = 2.786 x 10° cm/sec,

P, = 1x 10° dynes/cm2 . (C-6)

From Equation C-5,
u=1,393 x 105 cm/sec . c-7)

By substituting in Equation C-1 (b) and solving for p;» ore obtains

? dynes/cm2 = 665 kbar . (c-~8)

P = 665 x 10
To obtain the specific volume Vs the above data is substituted in Equation
C-3 and solved by vy giving

v, = 0.09787 gram/cm3 . (c-9)

Consequently, vllvo = (.77, indicating that the iron was compressed to 77% of its

original volume.

The results of a series of experiments at differing shock pressures
constitute a Hugoniot equation-of~state curve which relates pressure to specific

volume. A typical result for copper is shown in Figure C-2.

Because of permanent deformations and heat generation that occurs
during the shock transition, the Hugoniot is neither an adiabatic nor an
isothermal curve. It is, instead, a dynamic compressibility curve representing
an irreversible process; that is, S1 - So > 0. However, more detailed thermo-

dynamic considerations shurr that dS is small, and that it is a reasonable




C-4

approximation to consider the process as isentropic (i.e., constant entropy).
Thie approximation, which is useful at shock pressure, will also be used in

the =2lastic-piastic wave process.
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FIGURE C-2. HUGONIOT CURVE FOR COPPER(C-3)
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APPENDIX D

ELASTIC-PLASTIC WAVE PROPAGATION

—————

The past sections have reviewed briefly the basic principles of con-
tinuum theory and some of the major features of elastic and shock wave propaga-
tion. The cases of wave propagation considered represented extremes in terms of
stress levels, with elastic waves corresponding to wave propagaticn at low stress
levels and shock waves corresponding to extremely high stress levels. It was
roted that at either extreme, various assumptions tending to simplify the propa-
gation problem became reasonablz, The present case of elastic-plastic waves

represents the intermediate case of stress level.

At intermediate stress levels, the inherent ability of solid materials
to support significant shear stresses makes the assumption of ideal fluid
behavior used in shock analysis a less accurate one. Thus, neglecting material
rigidity, which represents a realistic assumption at extremely high stresses,
becomes less plausible at intermediate stress levels and must be replaced by

a more accurate model of the material.

In thlis section, the theory of plasticity will be applied to the
derivation of the governing equations for stress wave propagation under con-
ditions of one-dimensional strain. A number of complicating subsidiary effects,
known to exist in some materials, will be neglected in this preliminary review
of theory, but will be considered in later sections. Attention will, instead,

be focused on the mejor features of wave propagation and the governing equations,

The Longitudinal Stress-~Strain Relationship

In this section, the essential features of stress-strain curves
resulting from qucel-static, uniaxisl~stress test conditions will be reviewed,
as well as the idealized forms used for mathematical analysis. The construction
of the elastic-plaestic stress-strain relations corresponding to conditions of

uniaxial strain will then be given.
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D-2

Stress-Strain Relations Under Uniaxial Stress

Representative results of stress-strain curves obtained for varicus
materials under quasi-static, isothermal, uniaxial tensile-ctress conditions

are shown in Figure D-1.

7
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FIGURE D-1. TYPICAL STRESS-STRAIN CURVES FOR VARIOUS MATERIALS

The curves are not meant to represent any specific material, but, instead, to

illustrate a number of properties. Thus, material (a) is a linear elastic

material until the proportional limit, O, is reached. Beyond Y the material

’
deforms plastically. The increasing strZss with strain, however, indicates that
work-hardening is occurring. Material (b) possesses a definite yield point,

o,. In some cases, a lower yield point exists, as indicated by the dotted line.
M;terial (c) has no well-defined, proportional limit. Of course, such material
behavior representz the macroscopic response of the material and is a consequence

of the microscopic deformation processes reviewed earlier irn chis report.

The behavior described above is a result of a continually increasing

load. If the specimen is unloaded, reverse loaded, or load cycled during a test,
regsponses as depicted in Figure D-2 are possible,
UA
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FIGURE D-2. TYPICAL LOAD CYCLING AND REVERSE LOADING CURVE

i

“se

-

e




B

il

Liohtaduins Raihanid Mg o0 Ssede ML oY

™

b ——- et v a——

- A g so—— -

— o———

L.

»

e ts o

t
..

ouw e Pwef  beed b b

Al ', et % S ey R TR TR T e

D-3

Thus, the material has been loaded beyond¢ its yield point, and then unloaded (a).
Upon reloading, a small hysteresis loop is formed. 3Both unloading and loading are
elastic until, in the latter case, the load reaches the original unloading value,
(b), at which yielding again occurs. I1f, at a later stage, unloading and then
reverse loading occurs, reverse yielding takes place approximately at (c), which
is the magnitude of the maximum stress attained less twice the yield stress, Ty
However, reverse yielding may occur at a somewhat leeser value, (d), in which

case the material is said to exhibit the Bauschinger effect.

A detailed mathematical representation of the actusl stress-strain
curve is generally too complicated for use in analysis. Hence, simplifications
are often adopted which, although approximating the actual stress-strain rela-
ticns, greatly reduce the complexity of the mathematical representation. Figure

D~3 shows a number of idealized curves.

2
{ {a)

(b)

(c

(e)
OF 208

(d)

FIGURE D-3. MATHEMATICAL IDEALIZATIONS OF STRESS-STRAIN CURVES

In Figure D-3, (a) is a bilinear representation of an elastic-plastic
material with work hardening; (b) is an elastic, perfectly-plastic material.
The lower curve is an idealization of several aspects of unloading and reverse
loading. Thus, the small hysteresis loop which occurs during load cycling has
been neglected, (c). Reverse yielding is shown at (d), and a representation of

the Bauschinger effect i3 indicsted by (e).
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The stress-strain relations, discussed in the foregoing, have been

based on engineering stress and strain defined as

P L- Lo
U=X’e= L * (D-l)

However, these definitions are often replaced by true stress and true strain

definitions, given as

aj
]

, T - 1n %o; (D-2)

> v

where A represents the instantaneous cross-sectional area, and L is the current
length. The relationships between the true stresses and strains and the engincer-
ing counterparts* are given by
g
1l +e¢

, € = 1n(l +¢€) . (D-3)

Stregs-Strain Relations for Uniaxial Strain

The governing equations of elastic-plastic wave propagation for con-
ditions of one-dimensional strain require the appropriate stress-strain
relations. These will be derived in this section using plasticity theory and the
quasi-static, stress-strain relations from uniaxial stress conditions. The basic
concepts of plasticity theory will be reviewed briefly before developing the

stress-strain relations using the Fowles procedure.(D'l)

Plasticity Theory. When a material is loaded, permanent deformation

occurs as stresses exceed certain limits characteristic of the material, including
its past loading history. Unloading allows a degree of elastic recovery. In
plasticity theory, a basic assumption is made that there exisc¢s a scalar

function, f(oijr € n), called a yield function, which depends on the state

P
ij’
of stress and strain and the history of loading. This function characterizes

* In the work that follows, the engineering definition is used,
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the yielding of the material under any possible combination of stresses. Here,

browdd  Grove]  fooend el

aij is the stress state, egj is the plastic strain, and x is a parameter

representing the previous loading history. The equation, f = 0, represents a

]

closed surface in the atress space. No change in plastic deformaticn occurs

when £ < 0. Plastic deformation only cccurs for £ = 0. No mesaning is associated

- —

with £ > 0, provided the material properties are independent of strain rate.

.

Yield functions of complete generality, containing the parameters

v .
o —,

indicated above and successfully describing all aspects of plastic deformation
of materiale, have not been developed. However, many materials may be

adequately descrived by simplified forms of the yield function. Thus, if the

.
o 2w

plastic deformation characteristics of a material are isotropic and work-

NP —

hardening effects are neglected, it is reasonable to assume that plastic yielding
can depend only on the magnitudes of the three principal applied stresses, o»
. Oy, O35 and not on their directions. Hence, a yield function of the form(D'z)

» £(3):d.,35) = 0 (D-4)

.
L S

may be assumed, where Ji is the invariant in each of the first three stress

tensors given by

~m

v

J1 n 01 + 02 + 03, 32 = -(0102 + 0203 + 0301),

Con
“
L At I

J3 = 010263 . (D~5)

s
O g

However, experimental observations have indicated that plastic yielding is quite

insensitive to hydrostatic stress, By introducing the deviatoric principal

.
e

stresses, Ui, al, 03, defined as

1
[ -
o1 °1 3 (01 + c2 + 03),

cé = 02 - % (01 + oz + 03), 05 o 03 - % ocl + 02 + 03), (D-6)

and noting that Ji = di + Oé + 03 = 0, the general form of the plastic yield
criteria may be reduced to

f(Jé, Ja) = 0 . (D-7)
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Many specific foras of yfeld criteria have been suggested over the
years, However, most of these have attributed some influence to hydrostatic
stress and, thu:; , have not been in accord with experimental observations. The
two simplest criteria not having this fault were those suggested by Tresca
(1864) -»~d von Mieg (1913). The Tresca criterion states that vielding occurs

whenr the maximum shear stress reaches a certain value; thus,
0y - Oy = constatic (D-8)

where o > 9, 2> 0,

resuits are scmewhat cumbersome.(D‘3)

The above may be expressed in terms of Ji, J!, but the

The von Mises criterion does not involve the function J., but states

that yielding occurs when Jé reaches a critical value, given as

TR 2 12 12. . -
°iy %4 = %1 + 05" +0) coastant; (p-9)
where the deviatoric stress tensor, Gij’ is defined in terms of cij by
1] - - -
aij oij c&ij . (D-10)

Both models describe elastic, perfectly-plastic behavior. For most metals, it

is found that the von Mises criterion fits experimental duata more closely, although
the Tresca condition is simpler to use in theoretical applicatiors. This diffi-
culty iz sometimes resolved by u3ding the Tresca condition with 2n empirical
adjustment factor intended to minimize the differences between tie two results.
Fortunately, in the one-dimencional situstions to be considered, both criteria

reduce to the ssme result.

The two major mathematical formulations of placticiry are identified
as plastic deformation theory {also known as total strain theory) and plastic
flow theory (also known as incremental theory). Although the deformation theory
finds application in some problems involving continuous loading, it yields
anomalous predictions under conditions of cyeclic or reverse loading. The p.astic
flow theory, which re. "tea increments of strain to increments of stress at any
given «tate of strers and strain, has generally found the widest acceptance and

applicetion and is utilized in the present review,
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In the elastic region, the relation between stress and strain is

given by Hooke's Law. In incremental tensor form, this is

do

?
e o 4. 1o 2, . (p-11)
dbij 2 + E ij du

where do! is the deviatoric stress increment defined as

3

1 = - -
daij doij do {(D-12)
and 40 = dcii /3 is the hydrostatic component. Compressive stresses and strains
are taken as posirive,

When the material is strained beyond the yield point, the total
strain increment, deij,at & given state of strain is comprised of an elastic
and a plastic portion given as

dei = def + deF ({D-13}

j ] i3 .

Hence, at a given stress-strain state, the increment of plastic werk, dwp, will

be given as
)
W = a,, de’, . D-14)
p ™ Ty e (
The von Mises yield criterion has the form
1 ]
v 3 /3.— 1] ) Py
E(WP) = \2>2 (cij gij’z R (n-15)
where Y is the yield stress in simple tension. Since Y may change as a result

of work hardening (i.e., plastic work, Wp), this is accounted for by the

functicnal form Y (wp), and is illustrated in Sigure D-u,
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FIGURE D-~4. CHANGE OF YIELD POINI AS A RESULT OF PLASTIC WORK
Yl = initial yield point

Y = increasing value of yield point
as a result cof plastic work.

Finally, it was previously pointed out that plastic deformation was
observed to be insensitive to hydrostatic pressure. This observation is stated
mathematically by requiring no permanent volumetric change due to plastic
deformation; it is given as

P . -
deii (D-16)

The fundamental relations of elastic-plastic theory, mentioned above, will now

be specialized to one-dimensional stress and one-dimensional strain situations,

Cne~Dimensional Stress. The cne-dimensional stress situation corre-

sponding to uniaxial tension and compression test conditions is approximately
achieved during longitudinal wave propagation in rods. This phercomenon will be
developed briefly here. To distinguish between later one-dimensional strain
results, the direction of stress will be taken here as the s direction. Then,

the incremental elastic stress-strain relations, Equation D-11, become

do' do
Ge = 2 -(1 - 2\)) = B -
d s = + 3E do mall (D-17)

The von Mises yield criterion (Equation D-15) reduces to €y ™ Y(wp)a

The expression for the increment of plastic work, de,raduces to

W =¥ deg : (D-18)
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D-9

where deg = de8 - dej. I1f there is no work hardening, Y = constant, and dY = 0

for the added strain increment. Consequently, deB = 0.

of work hardening (i.e., dY f 0, de: = dY/E so that Equation D-1& becomes

dwp = Y[de8 - dcs/E] = Y[dc8 - dY/El.

For the more general case

(D-19)

The overall relationship of total work, plastic work, and increments of total

work and plastic work i3 illustrated in Figure D-5. A diagram that helps clarify

the remarks on the effects of work hardening on plastic strain and that led to

Equation D~19 is given in Figure D-6.

FIGURE D-5. WORK DONE DURING PLASTIC DEFORMATION

(a) wp = plastic work, We = plastic work, and Wp + We = total work at stress level O,

(b) For added strain de at stress O, dW = total added work, dW_ = ode_ =
irrecoverable plastic work, P

UsA

dY %fk'l./ ,éning
// Non work-hardening
e
I’ de
/ Y
/
,I
y i P € DOF 209

depz—h g

FIGURE D-6. EFFECTS OF WORK HARDENING ON THE RELATIONSHIP
BETWEEN TOTAL ELASTIC AND PLASTIC STRAIN

For work hardening, dep = depl, de€ = dyY/E.

I1f work hardening is absent, dY = Q, de® = 0, de = dep2

DF 208
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One-Dimensicnal Strain, The x direction will be designated as the

strain direction. The elastic relations, Equation D-11, then become

2 1 . e e _ 1 . - . B
dex E (d-Jx - 29 dc}), dey dez % (1 V)day Vdox ; (D-20)

where the equaljty dcy o dcz, due to symmetry, has been utilized in the above.

The plastic incompressibility relacion, Equation D-16, becomes

aeP + 2de? = 0 , (D-21)
x y

The von Mises critericn (Equation D-15) reduces to

o - cy - Y(Wp) . (D-22)

It should be recalled that the von Mises and Tresca yield criteria are identical

under the conditions of uniaxial stress and uniax’al strain, as above,

Finally, the general relation for plastic work must be specialized to

the present case. Thus, Equation D-14 reduces to
aW_ =0 deP 4+ 20 geP | (D-23)
P x x y ¥
However, deg = -dei/z from Equation D-21, so that the above becomes
= - F -
de (cx oy)dex . (D-24)
Using the yield condition, Equation D-22 thus becomes
= P -
dwp Y(Wp)dex s (D-25)

which is the same as the case for one-dimensional stress,

In order to express the incremental plastic work in terms of total
strain increment and work-hardening characteristics ia a manner analogous to

Equation D-19 for one~dimensional stress, the following relation is utilized:

dei = de, - dei . (D-~26)
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Recall that, for the one-dimensional stress situation, the case of no work
hardening yielded des = O; wherceas for work hardening.dei = dY/E was obtained.

In the present case, from Equation D-11,

do!
dei PG S ¢ L¥4) R

2% E ; (p-27)
so that
p ey (1-2v)
dex = dex - -EE'— 3 do . (D-28)

Expressions may be developed for dU; , do that make it possihle to put the above
in the desired form. Thus it is observed that

p e e

€ - ]

d i1 deii + deii dcii (D~29)
by virtue of Equation D-16., However, deii = dex, since dey = dez = 0, Then,
since dei = dex - dep, Equation D-26 may be written as

e
deii deii = o + T do . (D-30)

Noting that dcé s dc; (= dc;) are increments of the deviatoric principal stressss,

and recalling that in an earlier observation J{ =g! + 0! + 0, =0, one finds

i 2 3
that dcii = 0, Consequently,
de,, = de o A2 (D-31)
i X E
It is further noted that
do' =do - do = do_ - % (do +2d0 ) =2 (do_ - do) (p-32)
3 X x 3 b3 y 3 x y !

From the yield criterion, Equation D-22, dﬁx - doy = dY so that d0; = % dy,

Substituting these results, and substituting Equation D-31 in Equation D-28, one

obtains
P _ 2 - [0 4 -
dex 3 [dex o 1. (D-33)




b-12

This pernits expression of Equation D-25 in the desired form:

2 ay -
dwp 3Ylde, =200 . (D-34)
The next objective is to relate explicitly the stress increment, dcx,
to the total strain increment, dex. Now, dex = dei + deP . The conditions of

uniaxial strain require that de = dez = 0, so that deg = - de; . Using this

e
¥

y ? so that the total strain increment,

and Equation D-2i, dez = - 2de; = 2 dg
dex’ is given by

e e
dex de  + Zdey . (D-35)
Using Hooke's Law, Equation D-11, for dei s de; , one obtains

o -2
de, = =54 (do, +200) . (D-36)

Now, the yield criterion mey be put in the form

do_ + 2do_ = 3do_ -~ 2dY. (D-37)
X y x
Hence, Equation D-36 becomes
o 3(1-2v _2 _
dex - (dﬁx 3 dy). (D-38)

From the relationships between the elastic moduli, the bulk modulus, K, is given
by K = E/3(1-2v) so that
do_ =K de_ +2av (D-39)
X x 3 ’
which ig the desired : :remental stress-strain relation. The mean stress, 40,
is given by 40 = Kde = Kdex. Hence, Equation D-39 becomes d0x - do = 2 dy.

3
This integrates to

o ~o=ty, (D-40)
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Thus, beyond the material yield 1limit, the difference between tne one-dimensional
strains and hydrostatic stress-strain curves is only a function of the material
yleld stress as a function of strain. If the material does not strain harden,

dY = 0, Y = Yo = constant, and ox -0 = % Yo.

Some of the features of the resulting stress-strain relations for

one~-dimensional strain are reviewed in Figure D-7.

DF 210
FIGURE D-7. STRESS-STRAIN RELATION FOR
ONE-DIMENSIONAL STRAIN
(a) HMaterial hydrostat; dox/dex = K = slope.
(b) Perfectly-plastic material; parallel to
hydrostat but removed a distance 5 Yo.
(¢) Work-hardening material; dox = Kdex + % dy.
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Ic is also of interest to review the loading, unloading cycle for the one-

dimensional strain case. This is shown in Figure D-8.

O-XJ
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FIGURE D-8. LOADING-UNLOADING CYCLE FOR
ONE-DIMENSIONAL STRAIN

In cycle OABG, plastic yielding has occurred, but unloading has been purely
elastic, BG. Cycle OACEF illustrates the reverse yielding that can occur under
one-dimensional strain conditions at sufficiently high loads. Unloading from
the maximum stress, C, is initially elastic, CE. At E, reverse yielding sets
in, since the yield criterion is again satisfied. Further unloading, EF, is
plastic and leaves a residual strain. Cycle OACDH illustrates reverse yielding

with a Bauschinger effect.

The reverse yielding phenomenon during unloading represents one of
the major differences between one~-dimensional strain and one-dimensional stress
loadings. A second major difference is the relative slopes of the stress-strain
curves under the itwo conditions. The initial elastic portions of the two cases
are given by

L EQ-V)
o /de, = q2v) (1 + V)

= one~-dimensional strain

and
dos/dsS = E = one~-dimensional stress ,
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and they are nearly the same for most materials. However, beyond the yield
poiut, the slopes differ radically. Thus, for a non-work-hardening material,
the slope of the one-dimensional strain case is dcx/dex = |, whereas,

dcs/des = 0, This factor will be of significance when wave-propagation
velocities are considered.

The preceding development has served to delineate the major features
of the stress-strain curve, such as the slopes of the curve (before and after
yielding) and the relation to the hydrostat. It is evident that the parameters
necessary for the construction of the curve are the elastic constants and the
yield stress obtained from uniaxial stress experiments. In fact, if the stress-
strain curve for uniaxial strain is to be approximated by straight line segments
with an abrupt break at the yield stress, the preceding is sufficient. However,
if a more detailed picture of the transition region between elastic and plastic

behavior is desired, further considerations are necessary.

It is possible to obtain the desired information from uniaxial stress
data, provided the comparison is made at corresponding values of strain for
which the plastic work is the same. Equating increments of work, dwp, for the
two caseg, as given by Equations D-19 and D-34, gives

2 S AT b 4 -
3 Y[dex Zu] Y[de8 E] . (D-41)
This simplifies to
3 dy
dex ) deS " 6K ° (D-42)

I1f any variation in K with strain is neglected, the aboves may be integrated to

give

o_3 N gY-Y°2
fx T %x 2 (es €g ) 6K (D-43)

where the "o" superscript refers to inltial yield values. However,

o 1 +y o C ¥°
€ = Y, e = B

X E s ? (D-44)
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so that Equation D-43 reduces to
3 Y
x " 2% T 6K ° (p-45)

Thus, the procedure is to calculate €y from uniaxial stress data,
using Equation D-45, and to obtain O using Equation D-40 and the fact that
q = Kex. Figure D-9 illustrates the procedure,

o
x* (€x,0y)

oF 212

FIGURE D-9. RELATION OF UNIAXIAL STRAIN
AND STRESS CURVES

A slightly modified procedure, described by Barker, et ul,(D”a) calculates the
strain offsets relative to the elastic slopes in order to establish the com-

parison.

At this stage, a constitutive relation between stress and strain for
uniaxial strain conditions has been derived. The uniaxial stress, isothermal,
quasi-static stress-strain curve has been utilized in the development., Varia-

tions in the elastic constants due to finite strain effects have been neglected,

i
i

-
ey
-

..




o

D-17

The applicability of the resulting quasi-static relation to the dynwmic situation
of elastic-plastic wave propagation is, of course, open to question. Ultimately,
the degree of comparison between experimentsl results and theoretical prcJiictions

will establish the applicability, These will be discussed in a later section in

an attempt to arrive at an assessment of such items as strain rate, finite strain,
thermodynamic and Bauschinger effects. For the immediate purpose of reviewing
wave propagation, unobscured by the complicating effects mentioned above, the

quasi-static, isothermal relation, as given by Equation D-39, will be used.

The Basic Governing Equations

The basic postulates of continuum mechanics will be applied to derive
the governing equations of elastic-plastic wave propagation. The constitutive
relations developed in the preceding section will be utilized and the method
cf characteristics will be applied to solve the equations. The devclopment
parallels that of Morland, (D~5)

Wave propagation in the x direction will be assumed, and a Lagrangian

coordinate system (x,t) will be employed. Under these conditions, conser-

Lt bk bi bl bvid e peeed e o TP OB S8

vation of mass requires that
Pl -e) =p; (D-46)

where pi and p are initial and final densities, respectively; € is the
infinitesimal compressive strain defined as €. =" du/dx; and u{x,t) is the

particle displacement. Conservation of momentum gives

s T o R S Y

dc
ev _ 1 _x -
3t p, ax ° (D-47)

where v(x,t) is the particle velocity defined as v = 3u/3t. The comprcssive
stress 1is O+ Because uniaxial strain conditicns will be assumed, there will

also exist stresses 0 and 0 , where 0_ =0 .
y z y z
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doeany 22

Assuming the existence of a constitutive equation, ox = ox(ex), as

discussed ia the previous section, the above may be written as -
al
d¢
ov 2 X -
where ) . dox “
Ce.) = ==, (D-49) o
X Py dex .
From the definitions of strain and velocity, a
o€
oV _ _ X _ .
ox 3 (D-50)
Using Equation D-50, Equation D-48 may also be written as
2 2
Q_%,+ Cz(ex) a ; . (D-51)
ot ox
The moment-of-momentum postulate of continuvum mechanics does not enter
here because of the uniform normal stresses and zero shear stresses. Similarly,
the energy equation does not directly influence the development., Neglecting )
thermodynamic effects, it would merely represent a first integral of the )
momentum equation. -.
The method of characteristics will be used to solve the system B
governing equations, given by Equations D-48 and D-50. The characteristics in
the x - ¢ plane for these equations are given by
dx/, = + C(e ), or L + 1/C(e ) (D-52)
dat -~ x’? dx - x"
The invariant quantities along chese characteristics are
dx ex
S o=+ 0e), v+ [ ¥ cle )de = constant = R, (D-53) ‘
and
dx €%
—_—R - - = " . {D- -
dat C(ex), v I C(ex)dex constant RZ, {D=54)

where the constants (Rl’ Rz) are, in general, different along different

characteristics.

.
—
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Purther Iinformation regurding the above constants may be developed as
fcllowa: Suppose the stress pulse 1s propagating into a uniform region of the
material, whare v and €, are constant, This would correspond to the situation
before arrival of the pulse, whera v = €. " 0. It is represented by the shaded
vegion of the x - t plane in Figure D-10.

Positive characieristic
~Negative charncteristic

OF 213

FIGURE D-10. THE x - t PLANE, INCLUDING A UNIFORY
REGION OF v = Cx =0

Since each negative characteristi«: passes through the uniform region, it may be
concluded that the invariant, RZ’ is the same for all characteristics and may be
replaced by R. A pcsitive characteristic is intersected at each point by a

negative characteristic, so that along each positive characteriscic

€ €
X x -
v + I C(ex)dex = Rl’ v - I C(ex)dex = R. {D-55)
Results of adding and subtracting the above ave
R, + R € R, - R
X 1
ve = [ F e ydn w—5— . (D-56)
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In other words, v and f C(e )d€ are separately congtant along each positive
characteristic. Further, since C(e )>0 f C(e )de is an increasing function
of € it is concluded that o must remain constant along a positive character-
istic if the integral is to remain constant, It follows directly that the
dependent variables, C(ex), ox(ex), are also constant. A further result,
uceful in a later, limiting case, is obtained by integrating Equatica D-47.
Thus,

S .
vy, = 5;'{; \5;5 at . (D-57)

Propagation of Flastic-Plastic Waves =~ General Description

The propagation of an elastic-plastic wave considered here is that
initiated by a general, prescribed stress applied on the surface of a half-
space. The essential feacures of the initial stages of prcpagation will be tne
existence of an elastic precursor or forerunner, a propagating plastic wave
front lagging behind the elastic froat, an elastic unloading front that is
overtaking the plastic front, and finally, a possible plastic unloading front,
The formation of plastic shock fronts will be considered, as well as specialized
loading pulses. (However, treatment of complicated wave interactions that occur
when unloading waves overtake the loading frorts will be treated in the next
section.) The equations of motion and constitutive relations developed in the
previous section will be utilized. Thus, complicetions due to strain-rate or
Bauschinger effects will be avoided at this atage, as well as other subsidiary

effects briefly discussed in the previous sectisoms.

The prescribed stress pulse is shown in Figure D-11(a). Figure D-11(b)
shows the associated stress-strain curve. Each strecs amplitude propagates with

the local slope of the stress-strain curve. The associated Lagrangian diagram

ig shown in Figure D-12,
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FIGURE D-11 (a). APPLIED PRESSURE PULSE

(b). STRESS-STRAIN CURVE FOR THE MATERIAL
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FIGURE D-12. LACGRANGIAN DIAGRAM DESCRIBING
PRELIMINARY STAGES OF ELASTIC-
PLASTIC PULSE PROPAGATION
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The portion OA of the pulse propagates with the elastic velocity,
Co. These are represented on the Lagrangian diagram by the rays emanating
between 0 and tA’ the time duration of the elastic portion of the pulse. The

AB portion of the pulse is represented by rays from t, ~ tB of the Lagrangian

diagram. The various stress levels of this portion piﬁpagate with different
velocities, as indicated by the variation of slope of the stress-strain diagram
in the AB region. Thus, because of the upward curvature of AB, higher values
of stress rropagate at higher velocities. This is indicated by the clustering
together of the rays from ty - tg- A region of censtant siress, BC, then

exists from tp to ta.

Unloading occurs aiong CE. 1lhe initial stage, €D, is elastic and is
indicated in the Lagrangian diagram by rays from tc - :D. The final stage of
unloading, DE, is anelastic due co reverse yielding and has various velcocities
asgociated with the various stress levels. The rays from & " tE
represent this region., The divergence of this family of rays is a consequence
of unloading from higher stress with associated higher velocities to lower

stress with associated lower velocity levels.

It is of interest to consider the variations of pulse shape that arise
from variations of wave velocity indicated in the foreguirn.g. There would, of
course, be no such varxiations if the loading were within the elastic region,
since the stress-strain curve would have constant slope. All rays of the
Lagrangian diagram would then be parallel and would indicate undistorted
propagation of the stress pulse. However, variations do occur for the
anelas ic case, as shown in Figure D-13, where the pulse shapes at two time
instants are shown. The major features of figure D-13 are: (a) the elastic
precursor or forerunner, 0OA; (b) the plastic wave, AB, whose front is
increasingly steep due to the greater propagation velocity of the higher stress
levels; (c) the region of ccnstant stress, BC, that is diminishing because of
the overtaking elastic unloading wave, CD; (d) the plastic tail, DE, that is
becoming stretched out because of the slower propagation velocity of the lower
stresses. Because the effects described are essentially related to the stress-
amplitude dependence of the velocity, the subscquent wave distortion is referred

to as amplitude dispersion.
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FIGURE D-13. VARIATIONS IN STRESS PULSE AT TWO INSTANTS OF TIME

This description of the progressive variation in the wave shape has
been termirated before two major events have occurred. These are the formation
of a plastic shock front at AB and the overtaking of the loading front (either
before or after shock formation) by the unloading front, tD. Consideration will

be given to shock formation. The stages leading to this situation are shown

in Figure D-14, The steepening of the front is shown for t = tyr tp t,.
4
A % =10
A O
— X
% t=1,
Aaco
e 3(
O, amm t=t,
A c
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O) 4 g t=1y
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FIGURE D-14. FORMATION OF THE PLASTIC SHOCK FRONT
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At t = ty, @ physically unacceptable situation has avisen as the more rapidly
traveling stress components have "overlapped" the slcver, lower stress level
portion of the wave., This situation is indicated on the Lagrangian diagram

by the crossing of characteristics.

it is when the wavefront, or a portion of the wavefront, becomes
vertical that the continucus plastic wave front breaks down and a discontinuous
shock front is formed traveling at a shock velocity, U. Across the shock front,
the variables of stress, density, velocity, and internal energy vary discon-

tinuously as shown in Figure D-15,

o
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FIGURE D-15. SHOCK FRONT ACROSS WHICH MATERIAL
VARIABLES CHANGE DISCONTINUGUSLY

The equations of conservation of mass, momentum, and energy still
pertain in the region separating the two states, Oo and 9y 1f 9, = VY, ~ U and
q; = Vp - U define the material velocities relative tc the shock, the mass and
momentum equations become
2 2

- P9y - (D-58)

P19 = poqo ’ 01 - oo = poqo

These may be solved to give

(2.0 2 P 7)) (D-59)
o p(py-mp)" Tl pylpy - ) )
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Conservation of energy is expressed by

+

N e~

(Db-60)

3 1 3
plqlEl -0 9qE dq -0 quO = 2 plql ’

00 © * Y% 1M

where Eo’ E1 are the internal energies. When the values of 9 4, given in

Equation D~59 are substituted in the energy expression, one obtains

1 1 1
E, - EO--Z' (01 +00) (B—-—) R (D-61)

1 o pl

This is the well-known Rankine-Hugoniot relation presented earlier in the review
of hydrodynamic shock theory. By substituting for p in terms of E, the results

for 9, 9 become

1 1
C. - O -— g, =0 -~
1 o 2 1 o 2
q = -(l-e ) __—-.._-_—-— y Qq = _(l-e ) ———-—-:—— R (D-éZ)
o o pi(e1 eo) 1 1 pi(e1 eo)

Finally, by defining the particle jump velocity across the shock as Vo
o, -0 1t
v-v--v=(<-:-e)——l—--——o—--2 (D-63)
8 1 o 1 o'l py(e, - eJl

To complete the development, it would be useful to compare the pre-
dicted velocity jump via the shock mechanism to that predicted by the continuous
solution. The details of this, which require assumption of the stress-strain
curve form, will not be presented here. However, Morland{D-5) has investigated
this and found that the difference between che two solutions is only about 0.3%.
The magnitude of the shock velocity, U, is given by

. . c1 - oo %
U=v +(1-€) [:m:] . (D-64)
Of particular interest in Equation D-64 is the form of the square root term,
which can be interpreted in terms of the chord conmecting the two points on the
stres; strain curve connected by the shock transition. This is shown in
Figure D-16.

The location of the shock front in space and time must be considered.
That is, the location, x, where the shock front forms must be established, as

well as the subsequent location of the front, xs(t). The details of this, which
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FIGURE D-16. SHOCK CHORD CONNECTING TWO
STRESS-STRAIN STATES

hove been developed by Morland for the general case, are somewhat involved.
However, for the case of a step-function loading, the situation is considerably
simplified as illustrated in Figure D-17. The loading pulse of magnitude, A
is shown in (a) of the figure. Since the stress rises immediately to om’ a
shock front immediately forms behind the elastic precursor, since none of the
lower stress level increments have had time to propagate ahead of higher stress

levels. 1In other words, the overtaking of stress levels, and breakdown into
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FIGURE D-17. SHOCK FORMATION FOR STEP-FUNCTIOM LOADING
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shock that occurs for a smooth loading now occurs instantaneously under step
loading, This is illustrated in (b) by the shock chord connecting om and Uy,
and in (c) by only two rays from the origin. The resulting wave shape is shown
in (d). Fortunately, the simpiified case discussed is the one of greatest
interest since it represents the nature of the stress pulse induced in plate-

impact experiments.

Before concluding this section on shock formation, it is of interest
to note other forms the elastic-plastic wave front may take due to veriations
in the stress-strain curve of the material., These are shown in Figure D-18,

along with wave fronts characteristic of such materials.

‘0‘

X
(a) (b} (DF 221)

FIGURE D-18. VARIATIONS IN WAVEFORM DUE TO MATERIAL CHARACTERISTICS(D-6)

(a) Material without a well-defined yield point.
(b) Material without a linear elastic portion.

Elastic-Plastic Waves of Unloading and Reflection

The interaction between loading and unloading portions of the pulse
occurs when the unloading wave overtakes the loading wave front., At this point,
it is encountering a change in acoustic impedance and reflects from and transmits
through this discontinuity accordingly. The general features of the reflection

of elastic-plastic waves from a free surface will alsc be described.
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The approach taken by Morland is to approximate the wave profile by
a series of discontinuous steps, or stress increments, and to consider the
interaction of these increments. A stress increment, 80, propagating at a
velocity, ¢, will cause a change of particle velocity, 6v, and strain, be.
These quantities, which result from a discontinuous pulse, may be calculated
from Equation D-57, which was developed for the continucus case by considering

the limiting case of the pulse shown in Figure D-19.

(o
%

Sx ja— (DF 222)

FIGURE D-19. PROPAGATING STRESS PULSE
OF LENGTH 0x

Thus, in Equation D-57, it may be written that

X _ 1 o _§&9 (D-65)

Noting that 6x = ¢6¢t, it can be found that

i} fto+6tdt _ & (D-66)
pycdt Yto

PiC

bv

The jump in strain is found from the definiticn of c, i.e., c2 = 50/016e. Thus,

be = 6c/pic2 . (D-67)

Now consider the situaticn of an elastic unloading stress increment

overtaking a plastic loading increment, as shown in Figure D-20. The dotted lines

represent the point of interaction;®,B are particles on either side of this line.

After interaction, a new stress, 03, exists at the interaction line. This may be
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abﬁ
(a)

FIGURE D-20. SITUATION BEFORE (a) AND AFTER (b) INTERACTIO
BETWEEN ELASTIC-PLASTIC STRESS INCREMENTS(D-3

determined by applying velocity continuity conditions subsequent to the

B
(b)

— o ——

interaction. Thus, it may be written for Va? VB that

02'0'1 0'0-02

g, - a
o

Vg V1t oo + = -
pi 1 pico

The final velocity of @ is determined by the initial velocity, v,, and the

pico

,VB-V1+

9

(DF223)

Pi¢1

(D-68)

velocity increments imparted by the plastic loading wave (02-01), the elastic

unloading wave (Oo-ol), and the wave resulting from the interaction (03-01).

For B, only the latter of these three waves affects its initial velocity, vy

Writing va = vg gives

c = c1

0. ~0 a-2—2p
3 o c +c
o 1

, O, = O

3

1

=A -

2c1

c +c

1

Al.

’

{D-69)

where 4,A' are the loading and unloading stress increments, respectively, given

by

A= o, - cl R

A' = 0

2

o .
o

(D-70)

The resulting strains, ea,es, may be calculated by using the incre-

mental expression, Fquation D-67. Thus,

f me 22" 227% %" 9%
o " 61 2 2 2
Pi¢y Pi Pi%
g, -~ C
Pi¢1

(D-71)
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From Equations D-69 and D-70, this gives

' c = cC '
L : 2 ° - Tty c1 : 70
Py Pic ") 1 4%, (D-72)
2c
A 1 4!
€g = & *+ 27 ¢ +¢ 2
Piep o Tl
Then,
2¢
R - i 40 ( D SO W ¢
e "B " C + cy P 2 2 ) >0 . (D-~73)
1 1 co

This indicates that a discontinuity in strain has been introduced at the
interaction line, and that it subsequently propagates at the locai particle

velocity.

Before the wave interaction process can be completed, the interaction
of the reflected elastic loading wave, creat. y the foregoing procees, aud
other overtaking elastic unloading waves mut. .e considered, The situation is

shown in Figure D-21.
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FIGURE D~21. SITUATION BEFORE (a) AN. AFTER (b) INTERACTION
BETWEEN ELASTIC STRESS INCREMENTS (D~

The particle velocities, Vyr Vg» are given by

v =y, - Z o _3 9 {D~74)
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Puttsd 1, =
tt..ﬂg Ia Va gives

€y " 9, %0 =0, = 4, (D-75)

where A,A' are the loading and univading increments. Calculation of LY in the
manner used for Che plastic interaction, shows that €, = GB’ so that no strain

discontinuity arises.

Thus, 1f & seri.s of slastic unlcading lncrements propagacing at
velocity R overtakes a plastic front propagating at 29 the sequence of events
is as follows: (1) the first unloading increment interacts with the plastic
front; (2) a reduced plastic front is formed of stress 03 and propagates ahead

at ¢,; (3) an elastic loading increment of stress 0, is raflected at a velocity,

¢ (4) the reflected increment interacts with an oicoming elastic unlecading
increment; (5) the two elastic increments pass through cachi other, stepped to
ncw levels; (6) the second elastic unloading increment, modified by the inter-
action, overtakes the plastic front aud interacts with it, starting the sequence
of events over again., Further consideration will be given to this prccess

in vegard to specific aspects of the plate impact.

Consideration ie now extended to the reflection of waves from a free
surface. For simplicity, an elastic-plastic wave hkaving a two-fronc structure,
as shown in Figure D-22 (a), will be considered to impinge on the free surface.
By simple superposition methods, it is established that the elastic compression
fromt reflects from the surface as a tension front and induces a change of
velocity. The reflected temnsion, propagating to the right and annihilating
the compressive elastic precursor, effectively creates an unloading wave
piopagating to the right, as shown in (b) of the figure. The elastic unloading
wave then interacts with the oncoming plastic front, reduces the magnitude of
the plastic wave, and create: a reflected elsntic loading wave propagating

back to the free surface ahead of the reduced plastic frent (c).
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FIGURE D-22. VARIOUS STAGES OF WAVE REFLECTION AND
INTERACTION WITH A FREE SURFACE

It is, of course, evident that the above interaction process could
continue an indefinite number of times before the plastic front reaches the
surface. 1In actuality, the amplitude of the reverberating elastic wave is
rapidly reduced to an insignificant amount compared to the plastic stress
amplitude, and only the first reverberation is of significance. Thus, the
first reflection of the elastic front from the plastic wave will, when it
reaches the free surface, induce an additional step in velocity. The plastic
wave front will then reach the surface, stepping the velocity yet again. The
velocity and displacement profiles of the free surface motion would have the
general appearance shown in Figur: D-23. Further consideration of the actual
velocity changes induced will be given in a subsequent section in which the

entire wave propagation process due to plate impact is considered.
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FIGURE D-23. VELOCITY AND DISPLACEMENT PROFILES
OF FREE SURFACE MOTION

Plate Impacf and Determination of Material Properties

In the last three sections, variocus aspects of elastic-plastic wave
initiation, propagation, interactlon, and reflection have been considered.
In the present section, the wave propagation problem resulting from the planar
impact of two flat plates will be reviewed. For such a problem, conditions
of uniaxial strain pertain in the interior regions cf the plates until the
first rarefactions from the edges reach the center. All aspects of initiation,
propagation, etc., discussed previously, will be preseat. Although the
complexities of t)e many wave interactions will preclude extensive hand
analysis, the early stages of the process will be reviewed., A relatively simple
elastic, perfectly-plastic material model will be used so that the basic
features of the stress wave system may be easily studied. The method of
deducing the stress-strain relation of the material from the measurement of

rear surface motion will be reviewed.

An example, taken from Penning, et al,(D'7) will be used to illustrate
various aspects of the resultant stress wave system. The planar impact of a
driver plate upon a target plate, where both plates are of the same material,
will be observed. An elastic, perfectly-plastic material, having the charac-

teristics mentioned and illustrated on pages D-1 through D-17 and Figure D-8,
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will be used to represent the material., The Lagrangian wave diagram will be

employed to depict the wave process.

Example. Consider the case of a driver plate impacting the target
plate at a v~locity of 0.010 cm/usec, inducing a compressive stress of
8.1 kbar at the plate interface. is compression will be achieved in
two steps. There will be a compression to 6.33 kbar propagating into
the target a' the elastic velocity of (.623 cm/usec, followed by a further

compression to 8.1 kbar propagating into the target at 0.541 cm/psec.
The former wave is the elastic precursor, and the second wave represents
the plastic front. Exactly the same thing is occurring in the driver
plate. This stage of the preccess is indicated by OA and OP on the wave
diagram of Figure Dw24,

The compressive waves first reach a free surface at P in the driver

plate. The elastic front reflects as a decompression, or unloading

wave, releasing the material from 6.33 kbar to zero stress. This

front interacts with the oncoming compressive front of magnitude --
1.77 kbar at point Q. The analysis of the interaction at Q follows

the methods outlined on pages D-27 through D-33. The resulting stress .
wave system is composed of a recompression or lcading wave of

amplitude 1.96 kbar, propagating on to the free surface at the

elastic velocity, and an unloading wave from 3.1 kbar to 1,96 kbar,

propagating (at the elastic velocity) back through the driver plate. .-
At the interaction line between these two waves, a density discon-

tinuity or contact surface has been created. The recompression wave

reflects from the driver~free surface as an unloadiag wave and

propagates back through the driver plate leaving unstressed, unstrained

marerial in its wake until it reaches the contact surface. Beyond the

contact surface, the material is left unstressed, but with a net

residual strain. Exactly tre same interaction occurs in the targzt plate

at A, nnly st a later time. w0 stages of this interacticn process are

shown in Figure D-25., One occurs at t = tl’ subsequen: to the reflection

from the driver-free surface, but prior to reflection from the target -

surface, The o'her is at t = tys subsequent to the reflection from the

-—
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target surface, but prior to further interaction. These times are
indicated on the Lagrangian diagram, Figure D-24, as dashed lines

at t = tl’tZ'

At this stage, the interaction between the unloading waves from
the driver and target-free surface begins. The first interaction is
between the 8.1 kbar to 1.96 kbar unloading waves, which occurs at
point B of the Lagrangian diagram. This produces two oppositely-moving
tension waves of magnitude -4.28 kbar propagating at the elastic
velocity. These interact almost immediately with the oncoming 1.96
kbar to O unloading fronts (points C and D on the diagram). Each of
these interactions (C and D) produces two oppositely-directed teansion
waveeg (this is iilustrated for the interaction at C by the symbolt.).
Now, the tension waves produced at C are actually dual fronts; the first
step takes the pressure from -4.28 kbar to -4.52 kbar (and propagates
at the elastic velocity of 0.623 cm/psec), while the second step is
from -4.52 kbar to =-5.96 kbar and propagates at the plastic velocity
0.541 cm/wsec. The identical situation is created at D. Lack of space
on the Lagrangian diagram prevents showing all of these details. Thus,
of the two dual systems from C, only the ane propagating to the left
shows both wave fronts (those propagating to the right from D). The
resultant stress wave system is showm at an intermediats time, t = t3,
in Figure D-25. This is a time instant between the identical inter-

actions at C and D described above.

Now, two of the dual systems created at C and D undergo 2 head-on
interaction at E of the diagram. This preoduces a regioan of -7.60 kbar
stress bounded by waves propagating at the plastic velocity in the
opposite directiong. The resulting stress situation is shown at t = tA
in Figure D-25.

The next step of the process occurs when the dual wave system,
emanating from D toward the target-free surface, encounters the contact

surface formed from the first wave reflection off the free surface
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(identical contact surfaces were formed in the driver and target
plates from the reflections and interactions at P and A). The first
step of the dual wave passes through at unchanged magnitude and speed.
When the second step encounters the surface, a very weak elastic
tension wave is reflected, moving tc the left at 0.623 cm/usec and
dropping the pressure about 0,15 kbar. This wave is neglected on

the diagram, The second step also refracts, taking on the elastic
velocity and an amplitude of ~-6.06 kbar. This situation is shown as

t = t. in Figure D-25.

5
The next stage of the process concerns the reverberation of the
-4,52 kbar tensile wave between the target-free surface and the -6.06
kbar tensile wave front, Thus, the former tensile wave reflects from
the free surface as a -4.52 kbar to 0 compressive wave at unchanged
velocity. It interacts with the second tensile wave step producing a
compression wave, from -6.06 to -1.51 kbar moving toward the driver
plate, and a tension wave, from 0 to -1,51 kbar moving toward the free
surface where it reflects as a compression wave from -1.51 to O kbar,
This interaction occurs irn the vicinity of point F on the Lagrangian
diagram. Because of the fine detail of the wave structure at this
stage, it is not possible to show all of the rays of the diagram. Thus,
a single ray, marked G in the diagram, has been used to depict the 0

to -1.51 and -1.51 to -6.06 fronts., The situation is shown as t = te

in Figure D-25,

Meanwhile, the main tension wave (marked as "main T-wave" on the

Lagrangian diagram) encounters the previously mentioned contact surface.

In reality, this wave system, which resulted from the previously described

wave interaction at E, is a dual wave structure, although this detail is
omitted on the Lagrangian diagram (thus, only a single ray is shown
propagating to the right from E). At this stage, the interactions that
occur with the contact surfaces and with the compression fronts are too
finely spaced on the Lagrangian diagram, and too numerous to describe in
detail. The contact surface interaction is followed by wave interaction

at point H of the diagram.
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After the interaction at H, waves of tensile unloading, marked 1
in the diagram, propagate toward the driver, while waves of tensile
loading propagate toward the target-free surface and refiect. The
situation, after the above interactions, is shown at time t = t, in
Figure D-25. Som. of the fine details of the wave structure in this

diagram are only suggested in approximate terms,

The wave system, for the example just considered, was somewhat
simplified by virtue of the magnitude of the induced stress at collision. Thus,
the impact velocity was such that the peak stress was 8.1 kbar. At this
level, the unloading that occurs when the first waves reach the free surfaces
is purely elastic (points A and P of Figure D-24). If the impact velocity
is high enough, reverse yielding cccurs at unloading, creating an additional
wave front, This factor is illustrated in Figure D-26 for a 14 kbar impact
stress. At point P of that figure, the plastic front reflects as an elastic
and a plastic front, as indicated by the dual waves emanating from that point,
A similar situation holds at point A of the diagram. The subsequent wave
interactions are considerably more numerous than those described in the
lower stress level impact example. If the impact stress 1s still higher, the
consequent wave interactions ares even more complicated due, in general, to the
reverse yielding effects which occur during unloading. This is indicated in
Figure D-27 for a 19 kbar impact stress.

The preceding discussion has been devoted to the stress history in the
interior of the material as a result of plate impact. The results have been
based on an a priori knowledge of the constitutive eqration of the material and
the conditions of impact. The inverse problem, in which the material properties
are to be found from the plate-impact test, is of equal interest. Thus, assuming
that both impact conditions and experimental data on the ensuing motion of the
target-free surface are known, determination of the material constitutive

equation is desired. The procedure for this is outlined in the following.
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A typical free-surface w..otion record from a plate-impact experiment

is shown in Figure D-28. From the diacussion of the last few pages, it is

0.007

® Experimental data
Calculated curve

00061

oXe 01] oy

0.004

0003~

Distance, in.

0.002 |~

0.00l-

0
20 22 24 26 28 30 32 34 36 38 40 OF 231
Time After Impact, usec

FIGURE D-28. FREE SURFACE DISTANCE-TIME PLOT FOR 9
TYPICAL PLATE-IMPACT EXPERIMENT (D-8

realized that the observed free~surface motion is a result of a rather compli-
cated system of wave interactions. A procedure for obtaining the constitutive
equation for a material from free-surface motion measurements would be to
assume a constitutive equation and then; using this relation and the impact
conditions, to solve the wave-propagation problem, Such a solution, using a
characteristics computer code, would account for all of the complex wave
interactions and would compute 2 predicted free-surface motion., The results
would be compared with the experimental data. If the comparison were poor, the
constitutive relation would be revised and the analysis repeated in an
iterative manner until agreement was reached. However, if the initial assumed
constitutive relation grea*tly deviates from the actual one, a number of itera-
tions might be required belore good match between theory and experiment is
obtained. A procedure, which is described velow, yields a very good approxi-
mation to the constitutive relation by neglecting many of the complex wave

interactions.
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The experimentally obtained displacement-time record is approximated
by a series of straight line segments. When a step-pressure pulse arrives at a
free surface, it causes a step change in surface velocity which tranclates as a
sloped straight line in the displacement-time record of the motion. 1f the
reflection gnd subsequent interaction of the pressure step with che remainder
of the oncoming wave is neglected, then approximation of the free-surface data

by straight line segments is equivalent to representing the wave shape by a

cor> " series of discrete pressure steps, or strese jumps. The situation
is 117 in Figure D-29, which is intended to depict a stress wave at an
arbi. . sy £ = tn’ prior to impinging on the free surface. Each stress

incremei. _.s considered to propagate with its own characteristic velocity.

4

Free surface r—tp

o X
Z OF 232

FIGURE D-29. APPROXIMATION OF A STRESS PULSE BY STRESS JUMPS

The procedure is to apply the Rankine-Hugoniot conditions across the
stress jumps. Thus, the relations of interesat are the momentum and mass

equations which have the form

p U
U bu_ , 2. _z
8§ p Py U8 up

on = p H (D-76)

1
where on ie the stress jump, Us the shock velocity, Aup the change in particle
velocity, and P1sPy the densities ahead of and behind the shock, respectively.
The parameters determined from the experiment ave Us’ Aup, and Pye Thus,
velocity of propagation of each stress step is found merely by dividing the plate
thiclmess by the time required for propagation from the impact surface to the
free surface. The change in particle velocity is found by taking one half of

the diffeirence between successive velocity steps of the free surface. The

density shead of the shock, Pys is considered as known. Thus, 80, and p, may

L A
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be found, which establiches points on the stress-strain curve,

An outline of a typical computation would be as follows.
Given: Target-plate thickness = T
Initial target density = Po
Displacement-time data given by Figure D-30.

d
ds
d,
dl
o h 2 1 (DF233)
Time

FIGURE D-30. HYPOTHETICAL DISPLACEMENT-TIME
HISTORY OF REAR SURFACE MOTION

Calculations:
(1) Velocity of first shock, u, = %—
o)
14
Change of particle velocity, Ou, = 7 —=—,
1 2 t:1 - t(.:
Change of stress, on = 61 - Go = 01 = poUIAul,
Py Yy
Change of density, T AL
o 1 1
Po
Resuitant strain, €, =1 -« —,
1 P
1
(2) Velocity of second shock, 02 = %~ s

-

-u
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bu, = L SZV- dl - dl = l'dz ] dl - bu
- - - ?
2 2t2 t tl to 2t:2 tl 1
Aoz =0,-0; = pIUZAu2 ,
P2 _ D
- ’
Py Uy - by,
Y
e, =1~ L .
Pq

In this way, successive pairs of points, 01, el, 02, €55 03, e3, etc,, are

established on the stress-strain curve and connected by straight line segments.

Having obtained an approximate stress-strain curve in this way,
the results are then used in the computer program which takes into account
the complex wave interactions to predict a free-surface motion. Although a
number of approximations are used in generating the initial stress-strain
curve, it is frequently found that the subsequent exact analysis yields
predicted free-surface motion that agrees, within experimental error, with

measured data and that no further iteraticns are required.

Nevertheless, it must be realized that the foregoing approximate
procedure neglects density changes insofar as wave interactions with these
changes are concerned. Also, unloading by rarefiction waves has been neglected,
and the particle velocity has been approximated by one-half of the free-surface
motion. This last, which holds for elastic waves, is not strictly true for the

inelastic case.
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APPENDIX E

MATERIAL PROPERTIES EFFECTS

The propagustion of elastic-plastic waves under conditions of one-
dimensional strain has been considered in the past several sections. The
equations governing the propagation (developed on pp D-1-D-17) were derived on the
basis of certain kinematical assumptions on the deformation of the material and on
a rether simple constitutive equation. For example, temperature and strain-rate
effects were assumed to be negligible. From the standpoint of understanding the
essential features of elastic-plastic wave propagation, it was certainly advisable
to make such assumptions so that subtle material effects would not obscure the

basic features of the propagation.

However, since the prediction of spallation relies on decermination of
the stress field in the interior of the material, it is advisable to reexamine the
basic governing equations of the wave propagation since these are utilized to deter-
mine the stress field. It is important, for example, to establish whether the
assumed constitutive relation accurately reflects the real behavior of the material
and to assess the degree of confidence that may be placed in experimentally deter-
mined material relations, It is also important to review the current assescment
of the value of strain-rate and temperature effects in describing the dynamic

response of materials.

Review of Basic Equations

In order to provide a basis for the reexamination of the governing
equations, the equations on pages D-17 - D-20 are restated.
Consexrvation of mass:
Pl - &) = oy

Conservation of momentum:

2% .. pi%\t’- (E-1)
X

Kinematics (strain):
€x = - a“/ax

Constitutive relation:

°x - ox (ex) .
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On the basis of elastic<plastic theory, the congstitutive relation for a material
under conditions of one-dimensional etrain was devaloped on pages D-1 ~ D-17.

Also 1llustrated there were the forms taken by an elastic, perfectly-plastic and
an elastic, work-nardening material. How to establish the quasi-static consti-
tutive relation directly from the results of quasi-static uniaxial stress tests

was shown as well.

The order of the reexamination shall now be as follows:
(a) Thermodynamic effects

(b) Work-hardening and Bauschinger effects

(¢) Strain-rate effects

(d) Finite strain effects.

Thermodynamic Considerations

Before discussing possible temperature effects on elastic-plastic wave
propagation, it is desirable to review some general thermodynamic considerations
of material stress-strain relations. In a propagating stress-wave system, the
first physical action is generally that which compresses the material, causing
a temperature rise of some magnitude. This action is followed by decompression
caused by rarefaction waves. The decompression cools the material. If the
process occurs rapidly enough, so that heat conduction processes do not have
sufficient time to act, and if initial and final temperatures are the same
indicating that a reversible action has occurred, the elastic-plastic shock-wave
system would be thermodynamically described as isentropic-adiabatic. The

resulting material stress-strain curve would be an isentropic relation.

However, it might be recalled that the initial development of the elastic-
plastic stress-strain relations for conditions of one-dimensional strain
(pages D=1 - D-17) were based on utilizing the results of quasi-static, isothermal,
uniaxial stress tests. The resulting stress-strain curve for uniaxial strain con-
ditions was, thus, an isothermal relation. Since the conditions of stress-wave
propagation are more likely to be adiabatic couditions, a governing stress-strain

relation based on isothermal conditions would ' : in error thermodynamically.

The above error may be eliminated by utilizing adiabatic data to develop

the uniaxial strain relation. Thus, for maierials adequately described by a simple
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elastic, perfectly=plastic material model, the resulting stress-strain relation

is determined by two straight lines; one the elastic slope and the other paralleling
the hydrostat. The slopes of these lines are directly related to the elastic
constants. Hence, by establishing these constants under adiatatic conditions using
ultrasonic pulse-echo techniques, an adiabatic, uniaxial strain §§1ation may be

E~-

constructed. This method has been utilized by Barker, et al, and others.

The plate-slap experimental technique offers the possibility of estab-
lishing the material constitutive relation directly, in contrast to conversion of
uniaxial stress test data., Tc a certain extent, consequently, the preceding remarks
on isothermal versus adiabatic conditions must be reinterpreted. The question now
is not whether a dynamic uniaxial stress-strain relation can be derived from
isothermal or adizbatic quasi-static conditions, but can the thermodynamic condi-
tions represented by the directly obtained relation be identified? The signiricance
of temperature as a parameter of the material constitutive relation must, then,

be assessed.

It has been recognized that the elastic-plastic stress wave represents
an irreversible thermodynamic process. The Hugoniot relations imply that the worl
of dynamically stressing a material from o, to 9 is given by the area under the
shock chord of the stress-strain curve, which connects the two stress states
(refer to Figure D-16 on page D-26). Note that this quantity differs from the
area under the stress-strain curve itself, which applies for gradual loading. Thus,
the plastic shock introduces irreversible dissipation of additional mechanical woik.
It has been gshown that more than 85 percent of the work goes into heat dissipation,
and only about 15 percent into permanent changes in the microstructure. Con-
sequently, it would appear that the final str... atate, ) should not lie on a
continuously loaded adia* .tic curve, but on a curve modified by the additional

heat release.

Lee(E-z) has elaborated further on the above by proposing that the
extremely high pressures and finite dilatations (up to 25 percent strain at 400 kbar
for aluminum), present in one-dimensional strain experiments, introduce dominant
thermomechanical coupling effects making temperature an essential variable in the
aquation~-of-state. 1If this assessment applies to the stress-strain regim ; of
interest in the study of spall, the accuracy of stress predictions from rear

surface moticn measurements would be lessened considerably.
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However, other investigators have given consideration to the thermo-
dynamic aspects ¢f the wave propagation and have developed convincing arguments
in favor of neglecting temperature effects at the lower stress levels of the
elagtic~plastic regime. It will be recalled that even for the hydrodynamic shock
regime, close approximations of material behavior were possible by neglecting

temperature effects in the establishing of the Hugoniot material (Appendix C).

Considerations, similar to those in the foregoing, have been extended
to the elastic-plastic case. The basic arguments, developed by Morland, are
closely paralleled in the following presentation. Let the irreversible energy
dissipated per unit mass in a small comprec.sion, de, be dQ. CLonservation of work

and energy gives

dQ - dE - dW; (E-2)
where dE is the increase in internal energy, and dW is the work done by the applied
stress. Taylor and Farren(E-a) have shown that less than 15 percent of the plastic

work goes into producing microscopic structural changes in the material, so that

heat dissipation per unit mass re,resents more than 85 percent of dQ.

On integrating over the full compression, the increase of E is established

from Equation D-61 as

1 .
E1 - Bo = 75, (01 + %) (5 - <o) - \E-3)
The work increment per unit mass is
dw = L cde . (E-4)
oy

Hence, the total applied work, ignoring the factor 1/p, is the area under the
corresponding stress-strain curve. The area under the shock chord represents the

increase in E; the difference represents Q, the energy dissipated.

Referring again to Figure D-16, it is evident that the area between the
stress-3train curve and the shock chord will, in generai, be quite small if the
stress jump is small and the upward curvature of the hydrostat is negligible, or
if work-hardening effects are absent or linear with increasing load. An estimate
of Q may be found by assuming that the stress-strain relation through the plastic
shock is the adiabatic stress~strain curve. A stress-strain relation of the
following form is assumed:

do . 1

. 2 3
3¢ B il + dje+ dye +de” + ...] ; (E-5)
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where o, B, d;, dy ... are determined from Bridgeman's formula fitting hydro-
static material data. Integrating the sbove between the yield point, OY’ and the
arbitrary upper stress level gives

1 1 2 1 3 €
g-0y=30 B {e+ 5 dle + 3 dze + .....]eY . (E-6)
Then,
1 - { .1 L2, ... } 1 {g 1, . 2
2(o'l + 0g) o, -3 B [eY +3 dleY + It + 3 @ B 5 (e1 + €5) + 4 d (e" +
eoz) + ---} . (E-7)
Also,
r€ { 1 1 2 1.1 {1 2 2\ .1
- - - = [ = ——- = 2 - -
Je ode (el €o) o& 3 B iy + 3 d1 €y + ]} + 3 aB 2 (61 € ) + 6 dl
3 3 1
(e - ) + ===} . (E-8)
Neglecting terms of e4 or higher gives

d
g -%ﬁ (el -60)3 .
Using reasonable values for aluminum, Morland establishes that for € ~€ < 0.05,
the shock change is virtually adiabatic (i.e., dQ = 0), so that the material behind
the shock wiil satisfy the original adisbatic stress-strain relation.

The thermodynamic considerations, reviewed in the foregoing, establish
the validity of assuming that the elastic-plastic wave process is adiabatic. How-
ever, the importance of temperature on the wave propagation has yet te be assessed.
Thus, the fact that the process is essentially adiabatic indicates that a tempera-
ture rise occurs under the action of the shock front. The resulting interaction
of the temperature on the stress field--the ccunled thermomechanical problem--has
not yet been sclved for the plastic wave case. In fact, only slight progress has
been made in the case of thermoelastic wave propagation. It is not known, for
example, whether thermo-plastic effects might be confused for strain-rate effects
in materials., The general procedure has been to assume that the propagating
stress field is unaffected by the temperature changes.

Recently, Lee and Liu(E-s) and Lee and Wierzbicki(E-6) have generalized
elastic-plastic theory to include finite strain and temperature effects. Although

only the governing equations were developed, with numerical solutions yet to be
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obtained, application of their theory to specific stress-wave problems may
soon yleld a more definite assessment of the importance of temperature on the

elagtic~-plastic wave problem,

Work-Hardening and Bauschinger Effects

As was evident in the review of elastic-plastic wave propagation in
Appendix D, the structure of the propagating stress wave is a function of the
material stress-strain relation. This relation will be characterized, in the
absance of strain-rate effects, by the nature of its loading and unloading. Does
the material have a sharp or ill-defined yield point? Does work hardening occur?

Is curvature of the hydrostat significant? 1Is a Bauschinger effect present?

If, bv experimental methods, the precise shape of the stress-strain ~<urve
is known, no agsessment of the above effects is required to complete the analytical
process uf computing the interior stress field in a plate-impact test. Yet, in the
earlier study of the wav. propagation and interior stress field [appendix D,
pages D-33-D-45),even the use of a simple material model (elastic, perfectly-plastic)
led to s complicated wave structure due to many wave interactions. However, the
availability of computer codes for analyzing the stress-wave propagation, in-
cluding all of the wave front and interface interactions, removes the analytical
difficulties resulting from complexities in the material stress-strain relation,
Hence, the presence or absence of the aforementioned effects, which serve to
distinguish various materials, presents no fundamental difficulty in solving the

stress-wave problem.

The preceding remarks are presupposed on the basis of knowing the material
stress-gtrain rezlation. However, if inexactitude exists in the experimental methods
for establishing the stress-strain relations, there will be a consequent uncer-
tainty as to the interior stress field. 'The present method for establishing the
stress-strain relation (reviewed on pages D-33-D-45) is to measure the rear sur-
face motion in a plate-slap experiment and, by trial-and-error sclution of the
gtress-wave problem, to deduce a stress~-strain curve that will yield a theoretical
prediction of the rear surface motion in accord with the experiment., 1It, there-
fore, becomes important to assess tihe accuracy of the stress-strain relation

obtained from the plate-slap experiment itself.
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The first remark to be made in this context concerns the sensitivity of
the stress-strain relation to erroneous measurement of surface motion, In this

(E-7) that errors in the

regard, it has been pointed out by Butcher and Canon
measurement of surface velocity, when converted to material velocity, cause data
points to move along the dynamic stress-strain curve rather than, say, parallel

to the stress or strain axis, This means that errors in surface motion measurement
are reflected as much smaller errors in the determination of the stress-strain

curve.

Further assessment may be divided into consideration of the experimentally
obtained louding and unloading information about the material. There is, in fact,
basis for confidence in the rear surface motion measurement approach to establishing
the loading characteristics of the stress-stvrain curve. Thus, the magnitude
of the elastic precursor establishes the material yield point. The propagation
velocity of the plastic froni establishes the shock chord on the stress-strain
curve, and, by performing several exper.ments at differing plate-impact velocities,
several stress-strain points on the loading curve may be determined. The elastic-
plastic compression waves that establish the above data are the first waves to
arrive at the free surface, and they bave done so with a mirimum of self-
interaction (see pages D-33-D-45 for the discussion of the interactions that

have occurred).

However, the deduction of the unloading characteristics of a material
from recar surface measurements is less certain. Thus, the unloading information
appearing in the form of rear surface motion is due to waves reflecting from the
back surface of the projectile-target combination., These waves arrive at the
rear surface only after traveling as compression, then release, and finally as
tension, undergoing numerous interactions in the process. Barker, et al,(E_l)
discuss the necessity for performing tests using various target-projectile
thickness ratios. Use of various ratios would help to establish unique unloading
information, which ias difficult to acquire because of multiple reflections and
interactiong, The necessity for performing multiple experiments, and resultant
indirectnegs in establishing the stress-strain curve, casts doubt on the accuracy

of unloading and reverse loading information established by rear surface motion

measurements,
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Until recently, the primary method for determining material properties
was by inference from rear surface motion measurements. Refinements in measuring
technique, utilizing laser velocity interferameters, have been reported

(E-8)]. However, Barker(E-g) has recently reported on measurements of

[Karnes
material particle velocities in the interior of a shocked soiid wherein the laser

interferometer was used in conjunction with a transparent quartz window on the

specimen to obtain the intevior data. ~  t‘ransparent window, of similar mechanical
impedance as the shocked material (alu- s attached to the specimen. The
interface motion was obtained with the in.. meter and was assumed to depict the

motion of a truly iaterior point of the material. Although the complete validity
of the technique has not been established, since questions of slight impedance
mismatch effects and the light transmission characteristics of quartz under dynamic
loads rema.n, it does, apparently, enable the elastic-plastic wave structures to

be established directly, before wave reflections and Interactions have occurred.

As a consequence of this development, direct infsrmation on the unloading charac-

teristics of materials is now available.

In Figure E-1, the data obtained by Barker on the particle velocity-
time history at an interior surface is shown for three different tests. Consider,
in the figure, the general nature of the loading portion of the wave and of the
unloading portion. It is to be noted that at the higher stress level shots
(Nos. 926 and 927}, the plastic front is discontiiuous, but the low stress level
of Shot 922 yields a rather smooth stress variation. This is cited by Barker as
evidence cf a strain-rate effect and is discussed later. The unloading portion
of the wave, not heretofore directly measured, exhibits considerable lack of
structure. This also has been partially attributed to a strain-rate effect. How-
ever, comparing predicted and observed results, it is evident that considerably

more release wave structure was predicted by come material models.

In order to obtain comparable experimental and theoretical resuits,
Barker found it necessary to postulate a pronounced Bauschinger effect for aluminum.
Two other material models did not include this effect. The simplified model,
identified as Y = 2.4 kbar model in Figure E-1 (i.e., a constant vield strength of
2.4 kbar), postulated no Bauschinger effect and no work hardening. Although the

loading behavior predicted by this model is as satisfactory as the more complicated
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models, considerable deviation from the observed data is predicted on unlecading. -
A second model, without a Bauschinger effect but including vork hardening .-
(Y = 2.4 + 0,05P, P = hydrostatic stress), also has significant discrepancies in ..

the predicted unloading.

In order that rhe predicted release wave take on the observed form, it
was necessary for the rev - sield strength on unloading to be initially small,
then to increase-~at first rapidly and later more slowly. This amcunted to the
pronounced Baucchinger effect. The mathematical expression for this effect wes
given by describing the ten ile yield strength, Yp, as a function of plasric

strain, €ps according to the form
Y. = 4[1 - exp (-800 €p)]. (E-9)

In addition, a work-hardening model, 3;lightly different than the one previcusly
given, was used for the loading behavior. It was assumed that the compressive
yield strength increased from 2.4 kbar to 3.0 kbar. The resulting wave predic-
tion is shown as the dark :ine in Figure E-1. It is seern that considerably better
agreement between theury and test exists. Of'course, the fine structure of the
prudicted wave shape is a result of the numerical analysis which uses the method
of characteristics. This breaks a stress pulse into stress increments or steps,
as discussed in earlier sections of this report, and of nec:ssity leads to a pre-
dicted wave shape possessing definite structure. The three stress-gcrain models

used are compared in Figure E-2,

By ubserving Figures E-2 and E-1, it is possible to assess, at least
qualitatively, the effect of uncertainty in the stress-strain curve on stress
pulse prediction. It is seen that all ¢f the models accurately predict the maximum
stresses, ard that at the highest stress level (Shot 926 of Figure E-1), all of
the models adequutely predict the loa.ing behavior in general. At the lower
stregses (particularly in Shot 922), discrepancies in the plastic shock front
occur, and thiese sre thought to b: due tc strain-rate effects. Thus, at lowest
stress level, ione of the mcdels properly depict the naturs of th- plastic com-

pression front,

Ccnsidering the unloading portions of the varfious waves, it is seen that ..

significant discrepancies ccenr in the material .nodels that do not contain .

Pauschinger effects. Thus, fairly significant differences occur between measured
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FIGURE E~2. LOALING AND UNLOADING STRESS-STRAIN PATHS
FOR SHOT 927 ACCORDING TO THREE MODELS OF
MATERIAL BEHAVIOR(E-9)

and predicted unloading at all three stress levels for the constant yield model

(Y = 2.4 kbar) and tl- work-hardening mcdel (Y = 2.4 + 0.05 P). The inclusion

of the Bauschinger effect, in the manner indicated by Equation E-9, yields close
agre=ment between the predicted and measurad results. Yet, referring to Figure
-2, it is apparent that tne percentage dif.erences among all three models is
quite small. This suggests that the stress history within the material,
particularly the unloading Listory, is a sensitive function of the stress-strain
relation. Sinc ~he resultant spall-producing tensile wave is a result of inter-
action between unloading waves, it becomes important to have an accurate knowledge

of the unlcading behavior of a material to be able tu predict spall,




[ shnan oo iueh

ERTR2 9 20 ghysiag4 4

E-12

£ ‘xain-Kate Effects

In the pvzvious sections, some statements, at least qualitative, were
possible on Bauschinger or work-hardening effects and materi.l response. In fact,
rather than actually assessing the effects, it was a matter of establishing the
presence cr absence of the effects by experimental methods and incorporatiig them
into the resultant material constitutive relation. The situation is much less
certain in the case of strain-rate effects. At present there is considerable
controversy regarding the degree of strain-rate sensitivity of materials. More
basic than this is the controversy aroused by the question of whether strain

rate is even a parameter of the constitutive relation for some materials.

Nevertheless, it is a fact that wave-propagation experiments in rods and
thick plates have yielded results, all details of which cannot be explained by a
strain-rate independent theory. For example, in the review of elastic-plastic
wave propagation (Appendix D), particularly the part referring to Figure D-25,
it is indicated that sharply ciscontinuous plastic shock fronts are expected from
a strain-rate-independent theory. However, Barker, et al,(E-l) have indicated
that their experimental results were a consequence of stress waves having the
general configuration shown in Tigure E-3. Worthy of note in Figure E-3 is the
lack of a sharp plastic front, with the strain gradually attaining its maximum
value as though a relaxaticn process were operative. Referring algso to Figure E-1,

which showed Barker's results, it is evident that sharp discontinuities are

absent, particularly at the lower loadings.

Stress or Strain

Time OF 236

FIGURE E-3. QUALITATIVE DRMWING OF A WAVE 3HAPE ?HICH INDUCED
THE OBSERVED FREE SURFACE MOTION(E-1
The presence of a strain-rate effect in terms »of a general viscorlascic
relaxation mechanism would tend to expiain qualitatively the results obtained.

This may be illustrated -, considering 2 material that exhibits the characteristics

’
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of a simple Voigt viscoelastic model, shown in Figure E-4. Thusg, it is seen that
the application of a sudden, step-function-type stress to the mater’al would re-

sult in a delayed strain response. with the strain approaching its final value

only gradually. _JvNA,V\T €

———— | R e
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FIGURE E-4 (a). SIMPLE VOIGT VISCCOELASTIC MODEL
(b). STRAIN RESPONSE TO STEP LOADING

Although certain experimental results indicate strain-rate sensitivity
in materials, and the operation of certain viscoplastic mechanisms could account
for some of the obcervaticis, congiderable controversy still attaches to this
subject. In fact, interest in this matter arose with the earliest developments of
(E-10) (E-11) (E-12)

elastic-plastic th-~ry by von Karman, and Rakhmatulin.

Tavlor,
Thus, these earlie’* developments pertained to a strain-rate-independent theory

of elastic-plastic waves in rods and succeeded in predi.ting the essential features
of such wave propa,ation, e.g., the existence and magnitude of an elastic precursor
and the existence of a plateau of constant strain behind the wave front. The
theory also predicted that superimposed stress increments would propagate at the
plastic-wave velocity given by the local tangent modulus of the stress-strain curve.
However, experiments by Bell(R-13) and others showed the increments to propagate at
the elastic velocity. In addition, the theory failed to account f the increase

in yield strength noted for some materials, such as iron, under dynamic loading.

In an effort to remove the apparent anomalies of the theory,

(E-14),

Malvern (E-15) developed a strain-rate-dependent theory where the basic

constitutive equation took the form,

Eé¢ = g + g(0.2) ; (E-10)
wt re € is tbe total strain, o is stvess, and E is Young's modulus. The function

g(o,e) is related to the plastic strain rate ép by

Eép = g(0,€) . (E-11)
Although some of the anomalies ware removed by this theory, the constant strain
plateau predicted by the rate~independent theory and observed experimentally was not

predicted by the rate-dependent theory.
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In tne ensuing years, there have apparently developed "schools" of
thinking regarding the sensitivity of materials to strain rate. Bell and his
co-workers have been the principal proponents of the strain~rate-independent
behavior of materials; Lindholm,(E-lé) Malvern, and others have suggested that
materials are strain-rate sensitive to one degree or another. Unfortunately,
the experimental techniques used by the various investigators to arrive at their
differing conclusions on dynamic materials properties have been different. Thus,
the difficulty of assessing the importance of strain-rate effects is increased.
Bell, for example, has utilized his unique diffraction grating technique for
studying elastic-plastic wave propagation in long rods. Lirdholm and others of
the rate-dependent schocl have used the split Hopkinson bar method. Although
members of each school have developed impressive arguments tending to show the
experimental methods of the other school at fault, a definitive set of compara-

tive experiments has no* been conducted to settle this matter.

It has been suggerted that, in fact, both schools may be correct--~under

(E-17) have pnstulated that, under proper

the proper conditions. Dorn and Hauser
conditions, certain materials may be essentially strain-rate independent; and
other materials, under proper conditions, may be quite sensitive to rate effects.
Of course, ther: exist intermediate regions of varying degrees of sensitivity.
The factors differentiating the degrees of sensitivity were postulated to be the
dislocation activation mechanisms. Thus, strain-rate-sensitive materials were
postulated to be those whose dislocation mechanisms of deformation could be
thermally activated, whereas rate insensitive materials had mechanisms that were

athermally or stress activated.

Although the above postulation of intermediate position between the
strain-rate schools certainly appears reasonable, the problem of establishing the
physical classifications of materials, including the various subtle transition

regions, has not yet been solved.

Accepting the existing uncertain state of affairs regarding strain-rate

sensitivity of mateials, it is instructive to consider the recent work of Butcher

and Karnes(E-le)

theory of Malvern was app:ied to the one-dimensional strain configuration of the

on strain-rate effects in metals. In their work, the strain-rate
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plate-slap experiment. Predicted stress-strain curves were determined and found to
be more in accord with experimental results than rate- independent theory. Thus,
the Malvern theory, which yielded some anomalous results in the one-dimensional
stress application (no constant strain plateau), successfully predicted the es-
sential features of the experimentally jbserved response in the one-dimensional
strain situation. However, it was also pointed out by Butcher and Karnes that
certain experimental factors, in particular a slight lack of planarity between the
impacting plates, were capable of producing results resembiing strain-rate effects.
It was also indicated the* increascd distance of travel tended to decrease rate
effects in the wave front, permitting the wave to be treated as essentially
strain-rate independent. Although future study of strain-rate effects utilizing
the plate-slap configuration will certainly be done, the general conclusions
reached by Butcher and Karnes appeared to be that strain-rate effects were rather
slight under plate-slap conditions and that, furthermore, the presence or plate

tiit end propagaticn distance effects was capable of obscuring rate effects.

The basis for the relative insensitivity of the one-dimensional strain
configuration (in comparison to the one-dimensional stress situation) to strain-

rate effects has been discussed by Barker, et al.(E-l)

In this configuration, the
majority of the strain is diletational and not deviateric. However, it is the
deviatoric, or shearing-type deformation, _hat causes dislocation mection and the
consequent strain-rate effect. 7Tt follows that strain-rate effects will be con-

siderably less significant in such configuraticne,

Despit: the considerable research that has been directed toward as-
certaining the sensitivity of materials to rate effects, it appears that material
constitutive reiations, including these effects and accounting for the various
experimental observations, have not been established althcugh many have been
postulated. Thus, in contrast to tl¢ previously discussed Bauschinger and work-
hardening effects, where explicit inclusion of these effects in the stress-strain
relation became possible on the basis of experimental observations, similar

developments have not been made in regard to rate effects.

Nevertheless, when one-dimensional strain considerations govern, it
has been indicated in the previous discussion that strain-vate effects appear

to be of little significance in predicting the essential fz.itures of the wave
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propagation. Although, as is evident from Barker's work, some detail of the
wave struciure is lost, the essential features of the waves, such as stress

amplitide, are predictable by a strain-rate-independent theory.

Finite Strain Effects

The final topic of discussion regarding varicus subsidiary effects
pertains to the kinematic description of the deformation. The theoretical develop-
ment of elastic-plastic theory reviewed in this report utilized a description of
the Lagrangian strain as €, = au/Bx. Such a representation is th. infinitesimal
strain definition and neglects quadratic terms in the displacement gradients. Yet,
under plastic deformation, large strains may exist and, thus, may require the more
aczcurate kinematical description of strain, Lee,(E'z) for example, has suggested
the necessity of including finite strain effects in the theory, since strains of
25 percent are evidently obtained in some tests. The basis for using the infini-

tesimal definition should be reviewed.

I1f, in fact, strains of the magnitude indicated above were typical of
those attained in the low pressure regions of interest in elastic-plastic theory,
the question of finite strain effects would need to be examined with considerable
care. Hoivever, such large strains are associated more often with pure hydro-
dynemic shock-type loading where extremely high pressures are attained, whereas,
the stress regions of intevest in elastic-plastic wave propagation are of the
order 10-50 kbar, and the associated strains are 2-4 percent. Under these con-~
ditions, the squares of the displacement gradient are negligible compared to the
displacement gradient. It might be noted further that, under strains greatly in
excess of the 2-4 percent level, the differences ir the principal stresses becomes
quite small compared to the stresses themselves. Consequently, the elastic-plastic
theory becomes little more than a small, superimposed correction to a hydradynanmic
model of the material. Hence, where it becomes necessary to include the more
complicated finite strain effects, a corresponding simplification may be made in

the nature of the constitutive relation.

On the basis of qualitative arguments, it appears safe to neglect finite
strain effects on the elastic-pla.ti_: wave propagation, It is instructive to

explore this topic further to see if a more precise assessment may be attached
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to finite strain effects. I& snould first be aoted that, in general, when the
deformation of a body becomes sufficiently large, it can no longer be suitably
characterized in terms of either “engineering" or "true' strain. This is due to
the fact that these measures of deformation are not inherently tensor quantities
and are inappropriate for the establishment of a constitutive relationship that

is to be independent of the choice of coordinates. In addition, if Layrangian
coordinates are being used, the Bulerian stress tensor of linear elasticity theory
must be distinguished from and replaced by a Lagrangian or Kirchhoff stress tensor

baged on predeformation geometry,.

For the case of wave propagation in uniaxial strain, there is no need to
distinguish between Eulerien and Lagrangian normal-to-gurface stresses, Also, as
far as stress and displacement wave propagation is concerned, it makes no difference
whether the dynamic stress-strain relationship is given in terms of the components

of a finite strain tensor or engineering strain.

To see this, consider a material with dynamic stress versus finite-strain

curve defined by
Oy = Ox(E) ; (E-12)

where

Oy = stress normal to che direction of wave propagation,

E = finite strain norwal to the direction of wave propagation (the

only nonzero component of the strain tensor).

Suppose, also, that the finite-strain component, E, and the engineerirg strain

component, €,, are related by

E = E(ex) H (E'l})
where €, is the previously defined infinitesimal strain, given by
ex = 5 - (E-14)

u = particle displacement in the direction of wava propazation,
x = Langrangian coordinate in the direction of wave propagation.

The expressions for congervation of mass and momentum are, respectively,

2
; e) o0
Po = P(1 + ex), Po g‘% -5 (E-15)
t
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Nev assuming continucus firsc derivatives,

Jole} O0x OE _ Qd0x OE  dex . (E-16)
—8 = = —1 —X
ox BE Ox ~ OE Oey Ox
However, %%K %%; = g%i , SO that
dog _ dox dex _ dox 2% . (E-17)
ox dex Ox O€y + 2

X dx
Consequeatly, the governing equation reduces to that which would be obtained if only

engineering strain were considered, i.e.,

2 2
Su. 22y, (E-18)
dt dx
where
2 _ 1 dox .
¢” = oo 36 (E-19)

Thug, while the stress versus finite-strain and stress versus engineering-strain
relationships may be of entirely different form, the spatial derivative of Oy and,

hence, the governing equation of motion is unchanged.

In order to illustrate the above comments further, it will be instructive
to consider wave propagation in two rather ideal materials. TFor the purpose of
this discussion, the Lagrangian strain tensor will be used. The only nonvanishing
component of this tensor will be E, the strain normal to the direction of wave

propagation. For uniaxial strain,
2
N\
E = ¢y + % ex -~—- (au . (E-20)

First, consider a material that is linearly elastic with respect to engineering

strain, e€y; i.e.,
Oy = K¥ey , (E-21)

where K* is the effective dyramic modulus in uniaxial strain. Expressing ey in

ex = +,/1 42E - 1, (ex > -1, E > -1/2). (E-22)

The stress versus finite-strain relationship becomes

terms of E gives

e r e ——

= K¥ \+ J1+ 2E - 1). (E-23)
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Now
K*
o0. K¥*
9% -
x -7 J+ 22T T Tae (E-24)
and
2 2 2
3B o du) 3%u %y
e g (=) = o (L + o) — . (E-25)
Hence,
M.ﬁa&az,_ﬁ__(l'e)i‘l.x*—a-z—“- (E-26)
3  OF ox  (l+eg) o T & 32 "l

Thus, the equation of motion is the same as it would have been if finite strain

were not congidered, i.e.,

2 2
2y, 22 3—97-, e 3 (E-27)
ot ox” Po

Now consider a material that is linearly elastic with respect to finite
strain. Rubber~like materials can often be described in this way. Llet the stress

versus finite-strain relationship be given by

Ox = E E, (E"'ZS)

where K is an effective dynamic modulus in uniaxial strain. Now

2
%ﬂ-i%-x(1+ex)§—‘§, (E-29)
X

—ai‘i . el 9-2“ (E-30)
Btz axz '
where
c2 x E_S%_i_le - % . (E-31)
o

The interesting and perhaps surprising result is that, in this type of
material, large tensile disturbances propagate at a higher velocity than small
tensile disturbances, and large compressive disturbances propagate at a lower

velocity than small compressive disturbances. Such behavior has even been
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observed experimentally. Kolsky,(E'lg) for example, reports that the propagation
velocity of small tensile pulses in neoprene filaments increased by a factor of ten

when the filament was prestretched to six times its original length.

This behaviosr is not so surprising if it is realized that a material,
linearly elastic with respect to finite strain, is not linear with respect to
engineering strain. Using the Lagrangian definiticn of finice strain, the ctress-
engineering-strain curve would have the parabolic form shown in Figure E-5. The

"sound" speed for a material with this type of stress-engineering-strain relation-

B cship is given by
| 2 _1 %% K(+ex) E-22)
! Po O€x Po ’ .

This is identical to the sound speed obtained previously with the stress-finite-

strain relationship (Equation E~31).

o
Tension 4
/

a‘=RE=F\:(e+-;- e?)
o=Ke

- €
Tension
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FIGURE E-5. NONLINEAR AND ENGINEERING
STRESS~STRAIN CURVES

From the discussion above, it may then be concluded that if the stress
versus engineering-strain relationship for uniaxial strain is known, thecre is nc
need to add a finite strain correcticn for large values of strain since the
equation governing displacements would be unchanged. The magnitude or amplitude
of the strain pulse, however, does change according to how strain is defined; i.e.,
the Lagrangian strains are always larger than the engineering strains. But these

quantities are not gencrally of interest. It should perhaps also be emphasized
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that the magnitude of the stress pulse does not change. Since the use of a stress
finite-strain relationship was shown to have no effect on the squation governing
displacement wave propagation, application of the Rankine-ilugoniot jump conditions
to determine stress from shock and particle velocity measurements would be no less
valid than it was when only engineering strain was considered. Thusg, although

E (x,t) ¥ ex (x,t), the stress calculated as a function of E and the stress

calculated as a function of €y are equal because of the differe-t moduli involved.
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