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ABSTRACT

A proposed nucleation rmechanism is described for mixed smkes

composed of potassium iodide and silver iodide.

D*e dynaic dissolution of such smoke particles is considered

to be theoretically of significance in the nucleation mechanism

of supercooled fogs of water droplets.
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I. Introductio-.

Early in May 197, the Research and Developffent Department,

Naval Amminition Depot, Ci-ane, Inedana, was introduced to an ap-

plication of pyrotechnics which differed grossly from normal uses.

The Naval Weapons (enter (NWC), China Lake, California, re-

quested the assistance of this Departrment in the development of

a pyrotechnic nuclei generator to be utilized in atrospheric

research projects such as Project Storwfury.

After a brief educational period, predondnant processes, involved

in the conversion of supercooled water droplets to ice crystals,

were studied and there apprared to be an area of investigation

which demandee 4urther study.

One of the pyrntechnic formulations developed during this pro-

gram yielded abnormlly high nucleation efficiencies at supercoolings

of approximetely six degrees Centignade when the pyrotechnically

generated stmoke was evaluated in a cloud chamber.

It was felt that the nucleating Trechanism of this srmke was

probably different from that of previous pyrotechnic smokes

utilized Vnd warrynted study.
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II. Background

During the educational process, the nucleation characteristics

of a pre.viously developed NWC pyrotechnic formulation was investigated.

This formulation, designated as TB-2, yielded nucleation results as

illustrated by Figure 1.

Lstimations of the flame products for this formulation were

made assurrirng equilibrium was reached in the flame at a teqperature

of 20000 C and one atmosphere pressure. Table 1 lists the results

of these calculations. 1he reaction which was considered is

illustrated below.

Agt{ 9( -4- K(91 - Ag -+- KI19 )

If it is assure' that equilibrium is rewched in the flame of the

pyrotechnic, then it becorres obvious that the nucleating efficiencies

of the silver iodidc present is dppruximteiy twelve times greater

than the values listed in Figure 1 where all of the silver present

was assumed to be in the form of silver iodide. When the equilibrium

values of silver iodide are used with the nucleation efficiency

points of Figure 1 and a second efficiency curve is plotted, the

results indicate that all test points lie above Fletcher's theoretical

sublimation curve1 for silver iodide. (See Figure 2.)

2
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This informiation, assuming the cloud chamber tests to be valid,

indicated that a nucleating process was occurring which was signi-

fficantly morc officient tran thot expected for silver iodide

acting aG a sublimation nuclei. The nucleation efficiency at -SOC

is definitely indicative of processes other than sublimation, and

the other two points may likewise be assumed to be acting by other

processes also.

Another pyrotechnic formulation, TB-7, was developed at the

request of Dr. F. K. Odencrdntz of WiC. During so=e invetigations

which were conducted in a cloud chmber, he determined that a mixed

smoke ccposed of a 3:1 mole ratio of potassium iodide to silver

iodide produced a very efficient nucleant. The TB-7 formulation

was formulated to theoretically produce the desired 3:1 mole ratio

product. The snoke from this formulation produced an efficiency

which is in between the efficiency values for the TB-2 formulation

(see. Figure 3).

The final smoke products from either formulation produces

particles which should be hygroscopic due to the presence of

potassium iodide and other potassium by-products, such as, potassium

oxide. The basic literature revealed very little infornotion

regarding nucleation mechanisms involving mixed smokes. The effect

t3
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of soluble salts admixed or corqlexed with inoluble nucleantts

is admittedly not knowi. & 3' In fact, one authority in this area

has chosen to assure that mixed smokes of silver iodide behave

simply as silver iodide sublimation nuclei. 5

It is the purpose of this report to present (1) a proposed

meneanism which could explain the nucleation efficiencies observeo

and (2) a mechanism by whichi the action of mixed smokes nay be better

undersmtood.

III. Possible Nucleation Mechanisms

A. Condensation-freezing

Assuming that the mixed smoke produced by these pyroteclu.ic

fornlations contains a conplex salt of potassium iodide and silver

iodide, e.g. AgI • 3KI, AgI • 2KI or l*I • KI, it can be assumed

that the smoke particles produced would be hygroscopic. F-om work

of Tc,qokirs, 1Ius nd PearsonG, it is obvious that appreciaule

quantities of water would condense on these complex salts at normal

saturation ratios existent in clouds.

Solubility data drawn from the International Critical Tables

for the KI-AgI-1I2 0 system indicate, as illustrated by Figure 4,

that silver iodide would be precipitated if the double salt (AgI

3KI) concentration was greater than about 73 percent by weight or

'4
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less than about 45 percent by weight. As illustrated, the double

salt would be completely soluble between these limits at the

prescribed teperat ure.

The smoke products from pyrotechnics will normally have

particle sizes around U.01 to 0.1 micron, the exact size being a

function of properties of the specific products formed and ie pro-

perties of the flame.

For particle sizes of this range, condensation can occur

depending on the specific properties of the particle. As pointed

out, the double salt would be subject to condensation due to the

hygroscopic nature of the salt. Once the particle was coated

with a water layer, droplet growrth would be expected. Realizing

that dissolution of the double salt would result in precipitation

of silver iodide within the droplet, it would be expected that

freezing of the droplet could occur under certain conditions. Such

a mechanism of condensation-freezing has been proposed by Vornegut. 7

B. Direct Contact Freezing

Direct contact freezing is defined as a freezing process

initiated bh, the intinte contact of a nucleant and a supercooled

water droplet. In theory, this process occas by the Brxmniar. motion

of small particles.
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It, for, ron reason, the water droplets are electrically

charged and the nucleant p,rticles are oppositely charged, a very

high collision rate or contact rate would be expected. kiwever,

without both particles beia charged in this manner, the direct

contact process of nucleation would be expected to be iiisignificnt

in droplet fogs and seeding densities norrally cone idered.

Some experinental basis for the direct contact freezing

process exists. Maybank and Barthakur 8 used fog droplets labeled

with urenyl nitrate and seeded the radioactive fog with an crganic

nu.leant, leucine. '1e ice crystals formed were collected and aiwed.

At tenperatures warier than -20 0 C, almost all ice crystals were

radioactive. If a transfer of water molecules had occured via

sublimation, the ice crystals would have ideally no radioactivity.

This exTeriment strongly suggests the predomination of a direct

contact process. It should be realized that the leucine molecule

is readily polarized and space charges on a leucine crystal may

be induced by presence of other clarged particles, e.g. charged

water droplets. The ability to become polarizeu and slightly

charged may account for the results of this experiment.

The snmrke products of pyrotechnics and uter combustion

processes can be produced with an electrical charge. For example,

the magnesium oxide aeroeol produced Dy the combustion of

6
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magnesium ribbon is reported to form 0.8-1.5 micron particles with

44 percent of the particles charged positively, 42 percent

negatively and 14 percent neutrealy. 9

Thus, it would appear that the mixed smoke particles produced

by the two pyrotechnic foritmlations could be charged and the direct

contact process would be significantly encouraged.

C. Sublimation

The ability of a writer soluble material to produce ice

formation via sublimation has been demonstrated. Iksler and

Spaldingo0 demonstrated that a very soluble salt, potassium iodide,

was able to promote ice formation in supercooled fcgs at temperatures

of -22.9:C to -26.5'C depending on the particle size of the

potassium iocide. Ammonium iodide was reported to have induced

ice formation at terrperatures as warm as -150C.

The temperature at which a double salt particle of potassiur

iodide and silver iodide might induce sublimation is presently not

known, however, it would be doubtful that the double salt would

act as sublimatio i nuclei at warier tempermlures of approximately

-6OC.

D. SrmIary

Of the three nucleation -echanisms discussed, it would

appear that the condensation-freezing and the direct contact freezing

7
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processes probably predominate in the production of ice crystals

when a double salt nucleant is utilized.

For the purposes of this report, it is not immediately

important to deternine which of these two processes predominate.

Therefore, it will be ,imed that either the direct contact

process or the condensation-freezing process is precminating

during further discussions in this report.

IV. The Dynainic Dissolution Process

A. General Description

To better understand the mechanism which might be occurring

in nucleation processes involving mixed SrrLkes, i.e. a ckuble

salt in this instance, it is necessary to in., stigate the dyraic

dissolution process and the energy transfer which occurs.

if a planar solid-solution interface is corsiderxed, as

illustrated in Figure 5, tne ions from the dissolving solid would

be seen to be nmst concentrated next to the interface and less

concentrated away from the interface. At the immediate surface

of the solid, the solution would have a concentration equal to the

concentration of a saturated solution of the solid soluble material.

Due to diffusion processes and concentration gradiente within the

solution, the ions would diffuse towards levs concentrated areas

while solid material was dissolved at the solid-solution interface.

8i
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Depending on the heat of solution of the dissolving solid

material, a change in temperatures within this system would be

expected.

As the double salt begins to dissolve, precipitation of

silver iodide at sae critical level of concentration would be

initiated and would continue along with the diffusion process.

B. Heat and Mass Flow

To understand the potential significance of the double

salt-dissolution process, it is necessary to establish the energy

and mass transfer processes occurring in this type of system.

The nss flow rate, R, in units of mass per time, is

given by"1

R,-DA dc (EQ. 1)
dx

where D is the fmas3s diffusion coefficient, A is the areea of mass

transfer, C is the concentration in units cf .rasc per voluzi- and

X is distance for a diffusion controlled dissolution process. If

a planar solid-solution interface is considered, as illustrated

in rigure 5, the concentration of the solution at the interface

is C., the concentration of a solution saturated with the given

soluble material.

Since this diffusion equation has the sam form as the heat

conduction equation T
9(LQ. 2)

L9
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ard the diffusion equation, Fick's "Second Low of Diffusion",

has the same form as the basic heat flow equation,

aT a (EQ. 4)

the mathena-Lical solutions of these mass diffusion equations are

all identical to the solutions which have been developed for the

heat equatiors.
1 2

In the above equations, t is time, q is rate of heat flow,

K is thermal conductivity and T is temperature.

From Equation 4, it can bc shown that 1 3 "14

dT (To-T) At

- x e4 OK (EQ. 5)

is a solution which has the limitations that t>O and (<X>L where L

is the length of the conducting medium, X is the thezmaldiffusivity,

Ta is the initial tenperature of the meoium and T is the temperatur~e

at the distanue, X, and time, t for the syztem to be described.

Cotining Lquations 2 and 5 yields Lquation b.

KA(T-Ta)

her efore, treating Equations I and 3 in a similar manner,

Equation 7 results. 0.5

R'A(Cs- CO) (;-)*e '' (EQ. 7)

It is assumed that the tenperature, T, is different than

the arbient or initial tempereature, Ta, of the solution due to the

10



RBTR No. 112

heat of solution, A 11s, of the solable solid material. As the

dissolution process occurs, a cooling or heating effect should

occur, dependent on the value of the heat of solution, &HE.

Then by definition, the rate of heat flow, q, is equal to

the product of the rate of mass flow, F, and the heat of solution,

&H5 . g: RA H s(EQ. 8)

It is assured that the heat flow into the ,solid crystalline

material is neglible under the conditions to be considered.

Substituting for q and R frrm Lquations 6 and 7 and

solving fcr thc tcrrerature difference, (T-Ta), yields the following

equation,r 1

(T-To) (Cs - C, C)(°'&HzD) (. 9)

where 0
<-O (IEQ. iC)

This equation my be utilized to calculate the tepierature

difference, (Ts-Ta), by letting X and t approach zero. This

temperature difference is that which would be expected to be present

in a dynamic siiatior at the instant of soluble particle-water

droplet contact.

It should be noted that this tenperature difference is not

nearly as large as would Y - calculated for the solution temperature

change observed under completely adiabatic dissoltition of a soluble

i 11
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material to form a saturated solution,

AT AHs(EQ. 11)Cps
where Cs is the concentration of solute in the solution (mass of

solute per mass of solution), All is the heat of solution and

Cs is the specific heat of the solution.

If these equations for mass flow and heat flow are examined,

it is seen that extremely high rates of heat and mass flows occur

at the instant of water contact. The high rate of heat flow is

responsible for significant temperature changes within the system

described. For a material such as silver iodide which is highly

insoluble, it is obvious that a very small temperature difference,

rate of heat flow and rate of mass flow would exist.

C. Tempenature-Concentration-Time Interactions

The integration of Lquatiore 3 and 4 yield the two fcllowing

equations, respectively.
T-Ts eof --f ;) (Q. 12)

C- S" erf f (EQ. 13)
Ca-Cs D

In these equations,f (-- )andj( ( are functions which

are called Gauss's error integral. Tables are available 1 5 for

evaluation of these functicrs for given values of x, t and the

diffusivity terws, x and D.

32
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By substituting for values of the above variables, the tem-

perature, T, at a given distance, X, and time, t, may be calculated,

as likewise nay be the ocncentration, C.

In order to establish if the double salt concentration would

be relatively high when significant temperature changes occurred,

calculations utilizing Equations 12 and 13 were perfored.

A search of the literature failed to reveal values for O

and D. However, calculations were possible utilizing values for

potassium iodide solutions. It is realized that neither c or D

ar constant when the temperature or concentrfatior is changed, but

it is felt that the values utilized are adequately cxn-rect to

demonstrate the magnitude of changes in the temperture-concentration-

tiJme-distance system.

lsing values of 00 1.35 x 10 - 3 cm2 /second, D = 1.40 x i0 - 5

cm2/second, Cs = 0.6, Ca = 0.00, R = 1.35 x l0- 3 calories/cm. deg.

second and LH = 28.9 calories/gram, various calculations were
s

performed utilizing Lquations 9, 12 and 13.

By letting x approach zero in Lquation 9, the value for

the temperature, T., at the solid-solution interface was estimated to

be 2.8 degrees centigrede lower than the ambient temperature (or

initial water tenperature).

13
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Assuming an ambient temperature, Ta, of -6.0OC, the

interface temperature, Ts, would be -8.81C.

Using these values for Ts and Ta, calculations were

performed utilizing Lquation 12 to determine at what points in time

and distance a temperature, T, in the solution would exist where

T = -6.51C. These values are plotted in Figure 6.

Inspecting this graphical information leads to the conclusion

that a U.5 degree undercooling by a dissolution process would occur

quite rapidly - less than a millisecond - at distances of ten

microns away frtm the solid-solution inteA'face.

Calculations were similarly made for the concentration, C,

and it was seen that the concentration was effectively zero with

the distances and times considered in Figure 6.

To better evaluate the variables of temperature and

concentration versus distance, values were calculated for a fixed

time of t = 2.05 x3D-6 seconds using Lquations 12 and 13. Figure 7

demnstrates quite vividly that underooolings of over two degrees

could be realized by a dissolution process.

It is likewise observed that the freezing point of the solution

at underciclings of approximately two degrees or less would hardly

be affected by the salt concentrations present.

14
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D. Silver Iodide Precipitation

For the double salt, AgI * 31, it would be predicted that

silver iodide would be precipitated continually near the leading

edge of the diffusing ionic species. Later in time, as the concen-

tration of the potassium and iodide ions increased, the precipitated silver

iodide would be redissolved and transported by the diffusion process

towards lcer concentration areas where precipitation would once

again occur.

It is postulated that the freshly precipitated silver iodide

would have a very high concentration of crystalline imperfections.

The imperfections could serve as potential nucleating points in

this system.

V. The Surface Panramzte, i m

In heterogeneous nucleation theories involving condensation

or sublimation, the surface parameter, m, i s considered to be of

utmost importance . The surface parameter, m, is defined by

Equation 14 and illustrated below,

m • COSINE (Eq. 14)

VAPOR LIQUID r

CRYSTALLINE SOLID
15
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where the subscripts C, V and L connote crystallie solid, vapor

and liquid phases of a system and O is the free surface energy

between phases.

Figure 8 illustrates the temperature, T, at which a spherical

particle of radius r and surface parameter m will nucleate Pm ice

crystal in one second by sublimation from a water-saturated

17environment and by freezing from water (direct contact) . This

figure illustrates the importance of the surface paraeter, m, in

both processes. It ia obvious that a particle must have a very

high value for m, as well as a rather large particle size, before

the sublimation process can be of any importance in the warmer

temperature zones.

however, it is seen that the contact freezing process is much

less subject to these restrictions. Much lower values of m and

particle sizes may be tolerated in this process.

In the potassium iodide-silver iodide direct contact nucleation

process, it is proposed that the norr.l m value assumed for silver

iodide may not be applicable. The basis for this statement becomes

evident if the interfacial free energy terms of Equation 14 are

examined.

In the silver iodide precipitation areas, the potassium iodide

solution would surely cause a decrease in the crystalline solid-

16
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liquid interfacial free energy term, CYCL due to the continuous

diffusian of iont to and from the silver iodide precipitate. Likewise,

a slight increase in the liquid-vapor interfacial free energy term,

Lwould be expected. Without a precise knowlEdge of these values,

it is not known whether the true value ef m would be increased or

decreased in this situation.

Vi. Conclusions

While this report has not proven conclusively the exact

rature by which a mixed tmoke of potassium iodide and silver

iodide affects the formation of ice crysials, enough data is

presented to draw some useful conclusions regarding experimental

results and prohablc mechanisms.

The apparently high nucleation efficiencies obtained by the

TB-2 and TB-7 pyrotechnic corpositions can very probably be

explained by a condensation-freezing mechanism or a direct contact

mechanism. If the double salt is foryed, it is obvious that

sublimacion could not occur due to the very low m value expected

from a soluble salt.

CO*enical analysis of the smoke product from the TB-2 coposition

indicates that approximately 8.35 percent of the silver in the

smnke was present as siiver iodide. CcWiaring this data to the

flue equilibrium data listed in Table 1, it appears that the

17
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equilibrium values predicted are achieved. 1r~m Table 1, it is

seen that 8.*24 percent of the silver present should be in the

form of silver iodide.

Thus, it would appea~r that if the double salt coi~lex is

for Ted, the nucleation efficiency of the TB-2 corr~osition would

be best demonstrated by the values in rigure 2.

It is concludea that the nucleation efficiencies are better

tharn norvrally observed for silver iodide simply because the

proposed nmchnism allows smaller s mike particle sizes to be

utilized via the direct contact process. (See Figure 8.) A

second benefit may be also realizedi through the undercooling

induced by the dissolution process. This underrooling would serve

to increase the rate of nucleation as well as lower the ~n value

required for a given particle size to cause freezing at a given

ambient temperature.

It is likewise conc'Luued that other nucleants car. be

developed utiliz-ing the proposed disso lUtion-1-prec ipitat ion

technique and these riucleants would not necessarily have to be based

upon silver iodide to be useful.

18
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TABLE I

COMI3STION PRODUCTS @ 2000 0C

(in noles per 100 gram of composition)

Combustion Products t-O t-teg.

Silver iodide 0.085 U.007
Silver -- 0.078
Potassium iodide -- 0.078
Potassium 0.433 0.355

Note: Binder prooucts and other diluent species are not
listeo.

20
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