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ABSTRACT 

The radar cross section of a continuous,   convex,   body of revo- 
lution composed of N sections,   each section described by a second- 
degree equation has been analyzed using the geometrical theory of dif- 
fraction.    Wedge diffraction has been applied to determine the scattered 
field due to discontinuities in slope between sections of the target,   and 
creeping wave theory has been applied to determine the scattered field 
due to propagation of energy around the target.    A solution for the 
diffracted field on an axial caustic is presented.    An approximate 
solution for the scattered field near and at the normal direction to a 
conical generator is developed.    A "simplified ray path geometry" 
for the creeping wave is presented and related to the scattering by 
spheres and prolate spheroids.    The H-plane field of the sphere is 
calculated using creeping wave techniques for a ray geometry defined 
by the Poynting vector at the shadow boundary.     The approximate 
creeping wave solution for the edge-on backscattering of disks is 

< 

m 



CONTENTS 

Chapter Page 

I                            INTRODUCTION 1 

A. Components   of  the   Backscattered 
Field from a Composite Target 1 

B. Description  of  the Principal   Back- 
scattering Mechanisms 3 

C. Superposition of the Geometrical 
Optics,   Wedge Diffraction and 
Creeping-Wave Contributions 6 

II                            GEOMETRICAL OPTICS 9 

A. Ray Optics 9 
B. Specular Scattering of the Reflecting 

Surface 14 

in                           WEDGE   DIFFRACTION 20 

A. Single Diffraction 20 
B. Diffraction by a Pair of Wedges 30 
C. Multiply Diffracted Rays 36 
D. The Effects of Edge Curvature 

on Diffracted Rays 41 
E. Correction for Axial Caustics 45 

IV CREEPING WAVE ANALYSIS OF 
BODIES OF REVOLUTION 55 

A. The Creeping Wave Concept 55 
B. The Creeping Wave Solution 

for Scattering by a Sphere 59 
C. The Prolate Spheroid 85 
D. The Ogive 94 
E. The Extension of Creeping-Wave 

Analysis to Disks 105 

V                            COMPUTER  PROGRAM  RESULTS 116 

A. Circular Cylinder 118 
B. Cone 120 
C. Double Cone 122 

IV 



D. Conically Capped Cylinder 124 
E. Prolate Spheroid 126 
F. Prolate Spheroid-Sphere 

Combination 127 
G. Prolate Spheroid-Oblate 

Spheroid Combination 129 

VI CONCLUSIONS 132 

Appendix 

I THE GEOMETRIC PROPERTIES OF A 
GENERAL SECOND ORDER SURFACE 

OF REVOLUTION 134 

II DIFFRACTION BY  A   PERFECTLY 
CONDUCTING  WEDGE 142 

III APPROXIMATION FOR THE SPECULAR 
SCATTERING BY A GENERATOR 
OF A CONE 150 

IV THE   DETERMINATION OF THE GEODESIC 
PATHS ON A GENERAL QUADRIC OF 
REVOLUTION 152 

V THE COMPUTER SOLUTION FOR 
BACKSCATTER BY A SECTIONALLY 
CONTINUOUS BODY OF REVOLUTION 
DESCRIBED BY A SECOND DEGREE 
EQUATION 154 

REFERENCES 172 



SYMBOLS 

Co-ordinates 

( £> t• n)   ray coordinates 

(r,9,<j>)    spherical coordinates system 

A    A   A 
r,6,<t>       unit vectors in spherical coordinates 

( p,4>,z)    cylindrical coordinate system 

A    A    A 
PJ9»

Z
        unit vectors in cylindrical coordinates 

Angles 

0, G0, 0j , t,, a, p, 6 angles indicated in figures 

<j> a phase angle 

cj)|, <j>i  , c|)2 , 4>2 angles used as arguments of the 
diffraction coefficient 

81, &i angles of the incident field 

0(1 angle of the diffracted field 

a, an , a2 wedge angles 

(3,0', 6 angles used to describe diffraction by a curved edge 

y half cone angle of the diffraction cone 

VI 



SYMBOLS   (Cont. ) 

Distances 

ii , iQ, h, Li, L2, d, S   distances indicated in figures 

s arc length 

ds incremental arc length 

a,a[,a2   radius of a ring 

Constants 

A,A0, B, CD as indicated in equations 

Aj , • • • • , An constants used to describe a general 
second order surface 

•^Rl "^R3 ' ^Ri ' -^Rq ' "^Rio * "^Rll constants used to describe 
a general second degree  surface of 
revolution 

Geometrical Parameters 

F( i ) spatial attenuation factor 

G( s) ray path geometry factor 

R far field distance 

P» Pi > P2> PQ' 
P
A' 

P
B     radii of curvature 

rg normal radius of curvature of a surface 

r•, r principal radii of curvature 

K curvature or Gaussian curvature 

Kn normal curvature 

Ki , K2 principal curvatures 

M mean curvature 

vn 



SYMBOLS   (Cont. ) 

A,B,C,D surface parameters 

A   A   A    A 
i,t, n, d, unit vectors shown in figures 

n unit normal vector to a surface 

Ci , (r2 areas 

or echo area 

A 
v^ incident unit vector 

Electrical symbols 

£x»€2 permittivity of the media 

[i- permeability of the media 

n index of refraction 

k = 2TT/X. propagation constant 

X wavelength 

ZQ, Y0 impedance and admittance of free space respectively 

Ie electric current 

I magnetic current 

E the electric field 

E1, Es incident and scattered electric fields 

Eg.Ej, 6 and cj) components of the electric field 

cw 
E creeping wave electric field 

H the magnetic field 

HQ.Hi 6 and a> components of the magnetic field 

Vlll 



SYMBOLS  (Cont. ) 

S the Poynting vector 

a>= 2-irf       angular frequency 

y complex propagation constant 

Rj., Tj-        reflection and transmission coefficients 

r, y reflection coefficients 

Tos, Tso transmission coefficients 

p, m electric and magnetic dipole moments 

Scalar fields 

v' ( x, 4>) geometrical optics field 

vg( x» n, <j>) diffracted scalar field 

UJ, u^ incident and diffracted fields 

^Di'^D2 singly diffracted fields 

^D2Dl'^DiD2  doubly diffracted fields 

UJOT a total field 

u( i ) a scalar field 

Diffraction coefficients 

D( r,n,4>) plane wave diffraction coefficient 

VT-,, J.I>V   , cylindrical wave diffraction coefficient 
B(r,n,ci>)      B(r,n,4>)       1 

G( n, 4>) angular part of the plane wave diffraction 
coefficient 

DA'-^B creeping wave diffraction coefficients at 
points A and B 

IX 



SYMBOLS   (Cont. ) 

Dg creeping wave diffraction coefficient of the sphere 

D(j creeping wave diffraction coefficient for a disk 

Dyj wedge diffraction coefficient 

Attenuation coefficients 

Qs complex attenuation coefficient of a sphere 

a
0o complex attenuation coefficient of an ogive 

Q( p) complex attenuation function 

Miscellaneous 

e base of the natural logarithm 

TT ratio of circumference to diameter of a circle 

A(x) a small increment on x 

Pi , P2       points 

T dummy variable of integration 

P( £,) a pattern function 

XQ an argument of a function 

Q a scattering cross  section 

f( 6) a scattering amplitude 

J0( x) , Ji ( x) , J2( x)      Bessel functions 

(l) 
Hv    (x)    Hankel function 

u = 2 ka sin ( 9) 

x 



SYMBOLS   (Cont. ) 

A^ an Airy function 

q^ root of an Airy function 

m, N integers 

Y, M functions 

Vi a Foch function 

C0 a divergence factor 

wi a function related to the Hankel function 

U( 9) , V( 9)       angular functions 

Si, S2        functions 

r"u, Fv       partial derivatives of the position vector 

E,F,G,e,f, g    functions of differential geometry 

XI 



CHAPTER  I 
INTRODUCTION 

A.     Components of the Backscattered 
Field from a Composite Target 

The determination of the backscattered fields of a composite 

conducting target is a practical problem of interest.     Such a target 

which may be composed of smooth surfaces,   flat facets,   edges,   fins, 

and cavities presents a formidable problem in analysis.     An exact 

solution using analytical techniques  such as separation of variables 

is,   in general,   impractical for such a target.     Thus the usual 

approach to the analysis is by summation of solutions for the back- 

scatter of the component parts of the target.     This approach has 

enjoyed good success in determining the major scattering mechanisms 

for complex targets.    However,  previous analysis has been devoted 

to specified targets.     An approach which will apply to a class of 

targets whose individual characteristics may be varied at will is 

needed.     Several techniques have been developed for the analysis 

of the general target.     These consist of the point-matching computer 

solution,   and the wire grid model computer solution.     Both of these 

approaches yield good results for targets whose electrical size is 



small,   resulting in a set of N linear equations which are within the 

capacity of present digital computers to handle.     The "Third Gener- 

ation" computers with their greatly expanded capabilities promise 

extension of these techniques to larger targets.    However,   the time 

involved in such computations is great resulting in a high cost per 

data point.     Thus a relatively rapid and inexpensive technique would 

be valuable,   especially where real time simulation of radar problems 

is desirable.     An analysis based upon geometrical optics,  and the 

geometrical theory of diffraction,   is presented herein which yields 

approximate results with relatively little expenditure of computer 

time.     This technique is suited to real time computation for simu- 

lation of radar problems. 

Thus the task of this study consists of assembling known solu- 

tions for the particular scattering mechanisms involved,   extending 

these solutions where necessary and applying the solutions in the 

development of a computer program to determine the monostatic 

radar cross  section for a large class of axially symmetric targets. 

Future problems involved in extending the computer program include 

nonsymmetric targets and bistatic scattering.     These problems are 

discussed briefly and it is seen that such extensions are possible 

using the solutions which have been applied to the restricted class 



of targets.     The objective of this  study is to demonstrate the capabili- 

ty of these techniques in a practical manner. 

B.     Description of the Principal 
Backscattering Mechanisms 

The principal backscattering mechanisms of a composite target 

can best be illustrated pictorially.     Figure  1  illustrates a composite 

target viewed by an interrogating radar signal.     The numbered po- 

sitions on the target correspond to different scattering mechanisms 

Fig.    1--A general target. 



on the target which may contribute to the backscattered field.    We 

divide these mechanisms into five classes as follows: 

1. The geometrical optics field 

The geometrical optics field results from reflection of the 

incident energy at the specular point on the target.     The resulting 

contribution to the backscattered field may be evaluated using geo- 

metrical optics techniques involving the Gaussian curvature at the 

specular point.     The specular point is defined as that point in the 

illuminated region where the surface normal is parallel with the 

direction of incident wave propagation. 

The geometrical optics field solution fails for some targets 

such as the cone,   cone sphere junction,  and flat plates.     For such 

targets the physical optics  solution is required. 

2. Wedge diffracted fields 

The wedge diffracted fields result from diffraction at slope 

discontinuities on the target.     This contribution can be evaluated 

using the techniques of the Geometrical Theory of Diffraction 

developed by Keller[ l] . 

The effects of fins at aspects removed from the normal to the 

plane of the fin may be evaluated using wedge diffraction techniques. 

Normal to the plane of the fin the techniques of physical optics may 



applied.    However,  the vertices of fins cannot be treated using the geo- 

metrical theory of diffraction as the diffraction coefficient of a vertex 

is not known. 

3. Creeping wave fields 

The creeping wave backscattered fields arise from that portion 

of the incident energy which is trapped at the  surface of the target, 

and propagates around the target,   eventually reradiating energy in the 

backscatter direction.     These fields may be computed using the geo- 

metrical theory of diffraction and knowledge of the differential geome- 

try of the target surface. 

4. Cavity fields 

The cavity fields are caused by concavities in the target which 

may focus energy as for a corner reflector.     The point matching tech- 

nique[ 2] has been applied to the determination of cavity contributed 

fields. In some cases these cavity contributions can be analyzed as 

antenna contributions. 

5. Antenna mode fields 

The antenna contributions are due to antennas on the target which 

receive and then reradiate energy in the backscatter direction.     These 

contributions can be treated using antenna scattering techniques[ 3, 4] . 



It is apparent that an analysis which combines all the scattering 

mechanisms listed above would be a truly formidable task.     It is the 

purpose of this  study to treat the contributions due to the first four 

mechanisms,   i. e. ,   geometrical optics fields,  wedge diffracted fields, 

fin diffracted fields,   and creeping wave fields,   for a general convex 

second degree surface of revolution. 

C.     Superposition of the Geometrical 
Optics,   Wedge Diffraction and 
Creeping-Wave Contributions 

In order to obtain a solution for the backscattered fields,  the 

contributing mechanisms and their locations on the target must be 

identified.     Thus it is necessary to scan the surface of the target to 

obtain the specular point,   the location of wedges,  and the points of 

attachment and reradiation of the creeping waves.     This portion of 

the solution thus deals with the geometrical properties of the target. 

In particular,   the normal vector to the surface must be calculated in 

order to determine the location of the specular point and the attach- 

ment and reradiation points of the creeping waves.     The normal 

vector is also needed to identify the location and included angle of 

the wedges.     In order to calculate the creeping wave path lengths 

the differential arc length on the surface is needed as well as the 

principal radii of curvature at each point along the path.     The 



Gaussian curvature at the specular point is needed to calculate the 

geometrical optics field. 

Given the geometrical properties of the surface of the target, 

the solutions for the scattered fields must next be obtained.     The 

specular scattered field is easily obtained from the Gaussian 

curvature at the specular point.     The wedge diffracted fields may 

be obtained using the Keller[ l]    or Pauli[  5]    solution for wedge 

diffraction and the ray techniques of the Geometrical Theory of Dif- 

fraction.     However the creeping wave contributions are not easy to 

obtain since the complete creeping wave solution   is    available only 

for the cylinder and sphere.     The behavior of the creeping wave dif- 

fraction and attenuation coefficients and the geodesic ray paths are 

not known for a general body.     Thus it is necessary to obtain an 

approximate  solution for the behavior of a creeping wave on a general 

surface.     The effects of ray path geometry on the sphere have been 

examined in order to obtain an approximate simplified ray path for 

a general target.     Diffraction and attenuation coefficients have been 

developed empirically for such a simplified ray path and have been 

shown to yield good results for prolate  spheroids,   ogives,   and disks. 

The assumption of a simplified ray path on the surface reduces the 

computation complexity and allows one to reduce the determination 

of the ray path on a general target to a single numerical iteration of 



the differential equation for the geodesic on a surface.    In addition, 

such a simplified ray picture allows one to take into account the 

effects of intersections on the surface which have discontinuities in 

the first derivative along the ray path.     These effects are treated 

only in the first order in this study but extension to higher order 

effects is  straightforward. 

The determination of the backscattered fields from a general 

target is thus accomplished by utilizing geometrical optics and wedge 

diffraction techniques for the illuminated portions of the target and an 

approximate creeping wave solution for the contributions from the 

shadow zone of the target.     A computer program coded in Fortran IV 

is the  end result of this  investigation.     This program computes the back- 

scattered fields of a general second order  surface  of revolution using 

geometrical optics,  wedge diffraction,   and creeping wave techniques 

for the case of parallel polarization,   and geometrical optics and 

wedge diffraction techniques for the case of perpendicular polari- 

zation of the incident field.     The program is suited for on-line  simu- 

lation of radar problems.     This program has been tested for both 

canonical shapes and complex targets and the results have been com- 

pared to measured data of test targets.     Results to date indicate that 

the computer solution is accurate to within 3 dB of the measured 

data in the regions where the solutions applied are valid. 



CHAPTER   II 
GEOMETRICAL   OPTICS 

A.     Ray Optics 

The analysis of wave propagation using geometrical optics is 

based upon the assumption that energy travels along straight lines, 

called rays,   except when modified by reflection or refraction.     Or- 

thogonal to the ray trajectories there exists a set of equiphase 

surfaces.     Figure 2 illustrates this orthogonal coordinate set.   The 

relation of geometrical optics to electromagnetic theory has been 

derived by Luneberg[ 6]    through the application of Maxwell's e- 

quations and the boundary conditions.     For the purposes of this 

study a brief description of the methods required to calculate the 

scattered fields of interest will be presented here. 

In an isotropic,  homogeneous medium the rays are straight 

lines,   and the law of reflection and Snell's law of refraction de- 

scribe the behavior of the rays at a boundary. 

(1) 60 = Gj     ( Law of Reflection) 

( 2) \Tt~l  sin 6Q = N/77 sin G2     ( Snell's Law). 

where t] ,£2 are the permittivities of the media. 

9 
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RAYS 

L(x,y,z) = L0 + AL 

Fig.   2--The relation of rays and wavefronts. 

Figure 3   illustrates these laws; the incident,      reflected,  and re- 

fracted rays and the normal to the surface at the point of encounter 

are coplanar.     In the investigation of scattering by conducting bodies 

the law of reflection is used.    However scattering by penetrable 

bodies  such as dielectric spheres requires use of Snell's Law. 

Such analyses have been performed by Peters and Thomas[ 7] , 

Kouyoumjian,   Peters,   and Thomas[ 8] ,  Swarner and Peters[9j , 

and Peters,   Kawano,   and Swarner[ lOj . 
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REFLECTED 
RAY 

INCIDENT 
RAY 

REFRACTED 
RAY 

Fig.   3--Reflection and refraction at a boundary 
between two media 

In addition to specifying the ray trajectories it is necessary to 

account for the amplitude behavior of the field.     This is accomplished 

by applying conservation of energy within the astigmatic flux tube 

depicted in Fig.   4.     It is assumed that the field associated with a 

particular ray u( i )   can be described as 

(3) u(i )   = AQe^ F(i )   e"Jki 

where 

A is the amplitude at a reference point, 

<\> is the phase at the reference point, 

F( i ) is the spatial attenuation factor,   and 

e  J is the phase factor   . 
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CAUSTICS 

Fig.   4--An astigmatic ray tube 

F( i )   is dependent upon the nature of the reference equiphase surface 

and accounts for the convergence or divergence of the flux tube in the 

direction i.       The flux tube depicted in Fig.   4   is used to determine 

F( i )   as follows.     It is seen that the principal radii of curvature of the 

cross section d(r0 are    px  and p2.     The field amplitude at the reference 

point O is taken to be AOJ  and the field amplitude at the distance I   is 

A.     The energy in the wave is proportional to the square of the 

amplitude.    Applying conservation of energy within the flux tube we 

have 

Z 2 ( 4) A0dcr0 = A   do- = constant 

where dcr is the c ross  section of the flux tube at i ,   having principal 

radii of curvature  pt   + £   and p2 + l . 
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The ratio of their areas can be written as 

( 5)  
d0"o P1P2 

Inserting this result into Eq.   ( 4)   yields 

A 
(6) F( i ) 

Pi P2 

A0     \|(Pl + i)(Pz + i) 

The field u( I )   is then 

(7) u(i )   - Aoe^o Pi Pz       -jki 
—————^—^—————     c . 

^(Pl+   ^)(P2+^) 

At the locations i = -pi   and i  = -p2 the field given by Eq.   ( 7)   becomes 

infinite,   and the ray optics  solution fails to obtain the correct value 

of u(-pi)   or u(-p2).     These locations are termed   "caustics" of the 

geometrical field.     In order to calculate the field at such a caustic 

point Kay and Keller[ ll]    have derived a caustic correction factor. 

The derivation of such a correction factor proceeds from a solution 

of the  scalar wave equation,   and will not be presented here.     How- 

ever,   certain results of this derivation are necessary.     It has been 

demonstrated that in the region away from the caustics the geo- 

metrical optics  solution is correct if a phase  shift of    (- — J   is 

introduced upon traversal of a caustic line.     This phase shift is 

accounted for by Eq.   ( 7)   if the sign of I   is preserved.     If 
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- p2 <  I  <   -p! ,   i. e. ,   the caustic line has been crossed,  then 

pl+i   <  0,   p2 + i   >   0,  andu(i)   is 

(8) u(i)   =A0e J<t>o Pi P2 -jki 

\-(Pl+^)(p2 + i) 

= A0 e J<t>o 

\ 

Plp2 
.IT 

-37     -jki e    "   e  J 

(Pi +^)(p2
+i) 

and the phase shift is apparent. 

If a ray strikes a boundary,  and is transformed into reflected 

and refracted rays with directions specified by the laws of reflection 

and refraction the values of A0,  <j>0,   pj ,  and p2,   must be determined 

for both the reflected and refracted rays.     In the general case the 

reflection and transmission coefficients are polarization sensitive 

except for normal incidence.     This polarization sensitivity does not 

concern us here as the targets to be treated are conducting bodies. 

However,   in the case of penetrable bodies these coefficients must be 

evaluated ( see for example Thomas[ 12] ). 

B.     Specular Scattering of the 
Reflecting Surface 

Consider a ray incident upon a curved surface as shown in 

Fig.   5.     The two dimensional case is illustrated for simplicity. 

The source of cylindrical rays is a point P located a distance i0 

from point Q,   the intercept of the rays and the reflecting surface S. 
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Fig. 5--Reflection by a singly curved surface 

The surface has a radius of curvature rs at point Q,   and the angle be- 

tween the incident ray and the surface normal at Q is 8_.    It is now a 

geometrical problem to determine using the law of reflection,   the 

direction and divergence of the reflected rays.     In order to determine 

the spatial attenuation factor two rays originating at P are used. 

These rays have a small angular deviation p.     Provided the angular 

difference Aa  of the reflected rays is small we have 

(9) 
A(QQ-a) A(90 + a) 
     =    Pi       
cos 0~ cos 8_ 

= rs Aa 
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Upon reduction one has 

( 10) _L = 1    +_L 
Pi       rs cos eo      io 

Thus we have obtained the caustic distance pi of the virtual focus in 

terms of the local radius of curvature of the surface, the reflection 

angle and the caustic distance of the incident ray. 

A similar situation exists for the case of a three-dimensional 

problem.    A three-dimensional problem will involve two caustics of 

the reflected ray tube (which may not be coincident)   similar to the 

case shown in Fig.   6.        The same procedure may be used to obtain 

the caustic distances by separating the problem into two cylindrical 

problems.     In this case the two principal radii of curvature of the 

surface at the reflection point are required.     The principal radii of 

curvature may be used in conjunction with Euler's theorem to de- 

termine the radius of curvature in a direction which is not coincident 

with a coordinate direction as noted in Appendix L 

Once the reflection point,  angle of reflection and the local 

radius of curvature are known the divergence factor can be de- 

termined.     This information in connection with Eq.   (10)   allows the 

reflected field to be calculated.     In a later chapter it will be demon- 

strated that these techniques are more generally applicable,   specifi- 

cally to the case of diffraction by a curved edge in connection with 

the geometrical theory of diffraction. 
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Fig.   6--Reflection by a double-curved surface, 

Consider the situation depicted in Fig.   6.     A spherical bundle of 

rays originating at P is incident upon a three-dimensional surface S 

at the reflection point Q.     It is desired to obtain the scattered field 

through the use of ray optics techniques.     Let the coordinate system 

describing the surface be the spherical system ( r, 6,4)).     The rays 

bounding the incident flux tube can be taken to lie in the 8 and 4> 
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planes respectively with no loss in generality.     Thus the incremental 

area of the surface about the reflection point can be written as 

(11) do Q = r2sin 0 d0 d$ 

We may now separate the problem into two two-dimensional problems. 

Referring to Eq.   ( 10)  we may determine the caustic distances in 

terms of the principal radii of curvature r   ,   r^ of the  surfac ice as 

(12) 
2 1 

+ 
pi       r    cos 90      l0 

( 13] + 
P2 r^ cos 4> i 

where 0O and <j>0 are defined as in Fig.    5 ( i. e. ,   they are not polar 

angles) .     Thus we may write the reflected ( i. e. ,   scattered)   field as 

li/l 

( 14) u(i)   =A0e j^o PlP2 

(Pi   + *)(p2+i) 

-jki 

The case of backscatter ( i. e. ,   0Q - cj>0 - 0)   results in 

( 15) u(i)   =AQe j^o 
+ rei* J.T     J- 

( r9i0 + i ) ( r4)i0+ I ) ( 2iQ + r*) ( 2iQ + r8) 

V* 

•jki 

For the case of an incident plane wave ( I    —- ro)   the far-zone  scat- 

tered field ( 1   > >   0)   is 
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j*        nrr   ~"Jki 

,i6,      u(i) =^- J77 e 

I 

The spatial attenuation factor appearing in Eq.   (15)   is seen to be one 

half the reciprocal of the square root of the Gaussian curvature of the 

surface at the reflection point.     Thus the problem of determining the 

geometrical optics backscatter from a three-dimensional target re- 

duces to the differential geometry problem of the determination of 

the Gaussian curvature given in Appendix L 



CHAPTER   in 
WEDGE  DIFFRACTION 

A.     Single Diffraction 

Consider the case of a perfectly-conducting wedge illuminated by 

a monochromatic plane wave as illustrated in Fig.   7.    According to 

Fig.   7--Geometrical optics rays for cylindircal 
wave incidence on a wedge 

the principles of geometrical optics two classes of rays may exist. 

These are the direct rays A-B and the reflected rays A-C-B. The 

behavior of these rays is determined by Fermat's principle which 

20 
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may be stated as follows: "The time elapsed in the passage of light 

between two fixed points is an extremum with respect to possible 

paths connecting the points. "    Or equivalently that the value of the 

integral  between points Pi , P2 on a path s 

Pi 

(17) 1=        nds 

where n is the index of refraction of the medium,   be an extremum. 

Keller[ 1]   has extended Fermat's principle to edge diffraction in 

three dimensions through the following assumption: "A singly dif- 

fracted ray connecting two points is a curve whose length is  station- 

ary among all curves connecting these two points and having one 

point on the edge. "   Asa consequence of this extended principle, 

a ray normally incident upon the edge of a wedge generates a family 

of diffracted rays which lie in a disc having the edge as its axis. 

Also a ray incident obliquely to the edge of a wedge generates a 

family of diffracted rays which lie on a cone having the edge as an 

axis and a half-angle of the cone equal to the angle between the 

incident ray and the edge.     These two cases are  shown in Figs.   8 

and 9.     In addition Keller[ l]   has  shown that for diffraction in three 

dimensions the two-dimensional diffraction coefficients must be 

modified to take into account the distribution of energy in the cone 

of diffracted rays. 
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(a)u 
Boundary 

(X0,a) 

<b)£ 
Boundary 

=   0 

Fig.   8--Diffraction of a cylindrical wave by a wedge. 
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NCIDENT 
RAY 

DIFFRACTED 
RAYS 

INCIDENT 
RAY  \^ 

DIFFRACTED 
RAYS 

Fig.   9--Three-dimensional picture of the rays 
diffracted by a wedge. 
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In the geometrical theory of diffraction the use of ray techniques 

to describe energy flow is employed in the same manner as in geo- 

metrical optics.     In fact,   the treatment is the same as in geometrical 

optics,  except for diffraction effects which are caused by discontinuities 

of the structures involved.     In conventional geometrical optics,  illumi- 

nation of structural discontinuities causes  shadow boundaries about 

which the field is discontinuous; its unperturbed value is on the illumi- 

nated size of the shadow boundary and the null value is on the shadow 

side.    A similar situation exists for the reflected rays for which there 

is also a shadow boundary.     The geometrical theory of diffraction takes 

into account the diffraction effect of a structural discontinuity by using 

solutions of canonical problems,   and expresses the field more exactly 

by eliminating the apparent discontinuity of the field at the shadow 

boundaries introduced by geometrical optics.     In particular,  the dif- 

fraction by a wedge of perfect conductivity is one of the most important 

canonical problems and is the one employed in this research.     The dif- 

fracted field introduced by the geometrical theory of diffraction is a 

cylindrical wave emanating from the edge of the wedge and is de- 

scribed by a diffraction coefficient obtained from the solution to the 

perfectly conducting wedge problem. 
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For the two-dimensional case illustrated in Fig.   10,   the far- 

field diffraction for a unit cylindrical wave incident upon a perfectly 

conducting wedge is given as a sum of geometrical optics (vv )   and 

diffracted ( vB)   rays as[ 5] 

(18) u( i)   = v' ( x0, i-a) - v'r (x0, i+a) + vB( x0,n, i-a) 

- vB( x0, n, i+a)   , 

where the choice of signs is determined by the appropriate boundary 

condition ( - for u=0 and + for the normal derivative of u=0 on the 

walls)   and the variables are defined in Fig.   10.     The individual terms 

are given by[ 5] 

(19) 

and 

(20) 

v   ( r, (j>) 
exp [ jkr cos $] , -ir+ 2rrnN < cj> < + IT + 2-rrnN, 

N= 0, 1,2,... 
0,   otherwise 

vB( r, n, <j>)   = TT"
2
 eJ^   I — sin - j 

X 

r 

2    cos(cf>/2j| 
IT                       <(> 

cos — - cos — 
n               n , 

ikr cos cb   (       -IT2     , ;J T   \    e   J        dT   y 

[kr( l+cos4>)]2 

+ [ higher order terms] 

where r and (j) are dummy variables.     For large values of 

[ kr( 1 + cos <\>) ] ,  vg   can be expressed as 

-J?      -jkr 
e e   J 

(21) vB( r, n,<j>)   = 
^2TT ki 

1      .      TT 
TT sin TT 

TT * 
cos — - cos — n n 

X [1 + (    )(kr)_1   +    ...] 
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///////////////////  

Fig.   10--Three-dimensional diffraction by a 
wedge of finite edge length. 

Using the first term in the asymptotic expansion given in Eq.   ( 21)  we 

write the  diffraction coefficient for plane wave incidence as 

(22) D( r,n,<\>) 

• TT -, { i 

n 
\l 2TT k] 

sin. 

cos n * cos T 
n 

The total diffracted far zone field for plane wave incidence is then 

( 23) uD( r,n, <t*=[D( r,n, ^>~)  -   D( r, n, cj>+ )] uincident 
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A detailed discussion of the diffraction coefficient is given in Appendix 

II. 

The diffraction of a spherical wave by an edge has been studied 

by Oberhettinger[ 13]   and also by Nomura[ 14] .     Oberhettinger has 

obtained the diffraction by an infinite wedge for a point source utilizing 

a Green's function technique.     Nomura has obtained the solution for dif- 

fraction by an infinite wedge for a dipole source.    However the two- 

dimensional diffraction solution can also be applied to wedge diffrac- 

tion of a spherically incident field through the use of ray optic tech- 

niques.     That is,  the magnitude of the incident ray is determined 

using the  spatial attenuation factor for a point source rather than that 

of a line source,   and the diffracted field in the plane of the point 

source and the normal to the wedge is then obtained using Eq. ( 23) . 

The determination of the diffracted field in other planes requires an 

extension of the two-dimensional solution to the three-dimensional 

case.     Keller has shown that the extension of Fermat's principle to 

edge diffraction in three dimensions  results in the multiplication of 

the diffraction coefficient by a factor of    l/sin y  to account for the 

dispersion of energy in the cone of rays illustrated in Fig.   9. 
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In addition the source of rays need not be isotropic,   but may 

have a field pattern in the general case.     Thus in the application of 

Eq.   ( 23)   to diffraction by a source with a nonuniform pattern,   the 

geometrical optics terms are multiplied by the pattern and the dif- 

fraction terms are multiplied by the value of the pattern in the di- 

rection of the edge[ 15] .     Thus the far-field form of the diffraction 

of a source,   incident at an angle v with respect to the edge of a 

perfectly conducting wedge,   is given by 

P(S)    r ...       t     , 
(24) EU)   = TlnV    {v"<X°'^-Q>} 

1       iv' (x_, i+a) } 
sin V 

+   £ii°l   {vB(x0,n,e-")   i vB(xQ,n,e+a)}     , 
sin y 

where P( £)   is the pattern of the line source and  £Q = ir + o   is the 

direction of the edge.     The phase reference for Eq.   ( 24)   is the edge 

of the wedge.     The pattern of the reflected term is P( 2TT-£).      The 

factor  1/sin v  expresses the effect of conical diffraction and x    is 

the minimum distance from the source to the edge. 

For two-dimensional diffraction the foregoing technique yields 

diffracted rays which are parallel,  having been derived for an infinite 

edge.     This diffraction solution is not valid for a wedge having an edge 
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of finite length.    However it will be assumed that the diffraction pat- 

tern in the plane containing the finite edge is the same as the radi- 

ation pattern of a line source of finite length.     The line source has 

an excitation determined by the diffraction by an infinite wedge.     This 

assumption takes into account the distribution of energy in three 

dimensions of the family of parallel diffracted rays due to an edge 

of finite length.     The effects of the finite edge upon the radiation pat- 

tern in the plane containing the edge are then calculated by consider- 

ing a travelling wave on the edge having a phase velocity of ( kQ cos y). 

Ignoring end effects,   the radiation pattern in the plane containing the 

edge is that of the travelling wave antenna of length  i   and phase 

velocity ( k0 cos y).     This pattern can be evaluated using the radiation 

integral.     Thus the total diffraction for a finite wedge shown in Fig.   10 

can be approximated as 

k  t     sinX 
(25) E(6,£)   =E(£)  -f-      2. 

2 X0 

where E( £)   is the excitation obtained using the diffraction 
coefficient,  and 

kQi   ( cos 8 - cos y) 
Xo= . . 

This technique has been applied successfully in the computation of the 

radiation pattern of a rectangular waveguide using diffraction tech- 

niques[ 16] .     The use of the diffraction coefficient in combination 
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with the radiation integrals allows the determination of the scattered 

field in three dimensions for a finite wedge. 

B.     Diffraction by a Pair 
of Wedges 

The process of diffraction by a pair of interconnected wedges is 

shown in Fig.   11.      It is assumed that an incident plane wave strikes 

the edge of each wedge of included angles ax  and az.    The incident 

U1^1) 

u! (Bl) 
uDi(0) 

Fig.   ll--Single diffraction by a pair of connected wedges. 
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rays are diffracted giving rise to the singly diffracted rays Up.   and 

UT-J  .     These rays may be evaluated using the techniques previously 

described.     In order to calculate higher-order effects an extension 

of the geometrical theory of diffraction is applied.     Namely,   dif- 

fraction for cylindrical wave incidence is applied to determine the 

interaction between the wedges. 

Since the incident waves are plane waves the plane wave dif- 

fraction coefficient is used to calculate the singly diffracted rays. 

Taking wedge 1 as a phase reference we may write 

(26) UDl<Q)   =   nT  Sin 

TT 

cos 
ni 

cos 
e1- e 
ni 

+ TT 
COS COS 

ni 

2IT- 91- 0 

"l 

and 

(27) 
1 TT 

UD2(6)   -  — sin — 
n2 n2 

TT e-e1 

cos cos   
n2 n2 

1 

TT e + ei 
cos — -   COS  —— 

n2 nE 

Jk0S    _jkQi  cos e 

/here ( 2-nx ) ir = Qi ,   ( 2-n2) TT = az,  S = i   cos 9    and the reference 

+    . 
for the angles 4>~,<t>      is the common surface of the two wedges. 
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The factor e  J* ' /\l 2irkr is omitted as only angular 

variations are of interest.      When the angle of scattering (9)  is 

equal to the angle of incidence ( 6)   as in the case of backscatter, 

Eqs.   ( 26)   and ( 27)  become, 

(28) 

(29) 

1 
U-Q,   -   — sin — 

ni n! 

1      •      w 
UDz " - sln — 

n2 n2 

cos —  - 1 cos JL - cos   ZTr-29 

ni "l ni 

1 

cos JL -1 
n2 

cos JL -  cos l6. 
n2 n2 

-jki cos 0     -jki cos 6 
e e 

Figure  12 illustrates the shadow boundary and the reflected waves 

which exist for plane wave incidence upon the pair of wedges.     In 

the directions of the reflected fields and in the direction of the 

shadow boundary care must be taken in the evaluation of the total 

field.     In these directions a geometrical optics field exists,   and 

the combination of the terms representing the geometrical optics 

field and the singly diffracted field to obtain the total field is 

specified in Appendix II.     The behavior of the singly diffracted 

fields for the case of backscatter when the incident angle 9 

approaches IT /2 is of interest as it is seen that the expressions 

for the singly diffracted fields approach infinity as 9 approaches 
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u'u-a.-Tr-G1) 

SHADOW 
BOUNDARY 

Fig.   1Z--Geometrical optics rays for a pair 
of connected wedges 

ir/2.     If the singly diffracted fields are written in the form of real 

and imaginary parts,  the combination of Eqs.   ( 28)   and ( 29)   re- 

sults in 

(30) Real ( UD    + UD2)   =     cos ( ki   cos 9) 

f 

1 IT 
—  sin — 
ni ni 

1 1 
TT AT + 26\        AT-29\ 

cos —   -  1 2 sin    sinl  I 
L        ni \  m     /       \   nj    / 

.      1     .    ir +   — sm — 
n2 n2 IT , '       I       •       ^TT-Ze\     .        /26-TT^ 

:os 1 2 sm       sin      n2 V   n2     ; V   n2   ) 
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(31) Imaginary ( U-Q1  + U^ )   =   sin ( ki   cos 0) 
f 

1 TT 
— sin   — 
ni nx 

1       .       TT 
+ — sin — 

n2 n2 

1 + 1 

cos 
ni 

1 

TT-29 
-  1 Z sin I 1 sin I   

V nx     / V     n!     J     J 

1 
IT _ /3TT-Z0 

cos I Zsin 
n2 \     n2 (^M^) J 

When the real and imaginary parts are placed over least common 

denominators and the limits taken through application of 

L'Hospital's rule it is found that the real part diverges while for 

t, = Q - TT/Z small the imaginary part becomes 

( 32) Imaginary ( UD    + UD )   = sin ( ki   sin £) 

1 TT 
— sin — 
ni ni :os —  -   1       Z sin  ] sin — 

nx v ni    / vni / 

,      1        . TT 
+ — s in — 

n2 n2 cos —-  1        Z sin   sin   —I 
n2 U2   /        Vn2 J 

Taking the limit as t, — small,  Eq.   ( 3Z)   becomes 

(33) Imag ( UDl + UDz) =   + 

+ 

1      sin( ki   sin £,) 

2n!      sin ( t,/n\ ) 

1       sin(ki   sin t,) 

Znx        sin( £/n2) 

+ ki    for Z, = 0 
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Kellerf 1]   has examined this problem of determining the scattered 

field in a geometrical optics region.    He presents a solution[ l]   using 

the "Cross Section Theorem[ l] " or "Forward Scattering Theorem[ 15] 

that states that the forward scattering cross section Q is 

(34) Q = 4TT /k   lmag(f(0) ) 

where f( 0)   is the scattered field amplitude in the forward ( i. e. ,   geo- 

metrical optics)   direction.     Noting that the geometrical optics  scat- 

tered fields exists only in the forward and back directions,   then 

Im f(0)   is the geometrical optics result.     Using this theorem Keller[ l] 

demonstrates that the cross section obtained using single diffraction 

may be obtained in this way.     He further states that if the geometrical 

optics terms are included in the evaluation of the scattered field the 

singularities of the singly diffracted field on the shadow boundaries 

are cancelled resulting in a finite expression for the scattered field. 

The behavior of the total field on the shadow boundary is discussed in 

Appendix IL     The proper combination of the diffracted and geometrical 

optics fields  results in continuity of the field across the shadow bounda- 

ry. 

The cross section theorem expressed by Eq.   ( 34)   yields the 

geometrical optics cross section if the imaginary part of the singly 

diffracted field is known.     This imaginary part of the field is obtained 

e-J4 
using the result of Eq.   ( 33)   and re-introducing the factor ——^    from 

\/ 2irk 

the diffraction coefficient.     The backscattered field in the specular 
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direction by a body of revolution having the profile shown in Fig.   11, 

may be obtained using the above results and the spatial attenuation 

factor.     The geometrical optics backscattered field in the specular 

direction may thus be written as 

(35) Es(e = 7)=^^    ,-$   e"jkr     F(r) 
rk \fr 

where F( r)   is the  spatial attenuation factor.    An approximate solu- 

tion for the spatial attenuation factor for a conical generator is 

presented in Appendix III.     In the region close to the specular 

direction the sin ( x) /x pattern behavior indicated by Eq. ( 33)   may 

be used. 

C.     Multiply Diffracted Rays 

Another class of rays which are of interest are the multiply- 

diffracted rays.    An example of multiple diffraction may be found 

in the analysis of parallel-plate waveguides by Ryan and Rudduck[ 18] 

and in coupling between parallel-plate waveguides by Dybdal, Rudduck 

and Tsai[ 19] .     Figure 13 illustrates the doubly-diffracted rays 
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U0.D««*> 

UD|(TT) 

T7TTTTTTTTT1 

Fig.   13--The multiply diffracted rays for a 
pair of connected wedges. 
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UJ-J j-jj ( 8)   and Up 1Q2( 6) .     These rays arise when a singly diffracted 

ray is incident upon a wedge and is itself diffracted.     In the case de- 

picted in Fig.   13 the doubly diffracted rays may be expressed by as- 

suming that the  singly diffracted rays are cylindrical rays emanating 

from the edge of the wedge.     Using the wedge diffraction coefficient 

for cylindrical fields we may write 

(36> UD2Di(e>   =UD2
(0)[ vB(i'nl^Sin)  *vB(/,nIf*?)] 

and 

< 37> UDX D2< 6>   = UDi < *> t VB( i ' n2' *")   + V
B

( i * n2' ** ) ] 

p        m 
where cj)j   = <\>i    = TT - 0 

, p _  . m _ fi 
9z   ~ <t>i    - e 

For spacings between the wedges on the order of two wavelengths or 

less the doubly diffracted rays are significant as has been demon- 

strated by Ryan and Rudduck[ 16] ,   and Dybdal,   Rudduck and Tsai[ 19] 

It is noted that,  just as the singly diffracted rays correct for the 

discontinuities in the geometrical optics field which arise in the 

directions of the shadow boundary and reflection boundaries,  the 

doubly diffracted fields correct for the discontinuities in the singly 

diffracted fields.     Thus it is  seen in Fig.  13   that the singly diffracted 

fields U-Q   ( 6)   and UD ( 6)  have shadow boundaries at 6 = IT and 0 
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respectively.     This process continues ad infinitum,  that is,   the 

triply-diffracted rays correct discontinuities in the doubly-diffracted 

rays and so forth.     Yu and Rudduck[  19]  have formulated a   "Higher- 

Order Diffraction" technique which allows the effects of all orders of 

diffraction to be calculated.     This self-consistent behavior was first 

described by Karp and Russek[ 20] .     This technique is a self-con- 

sistent field technique which generates a system of linear equations. 

This process can be illustrated using Fig.    13,  where it is assumed 

that the total field diffracted at each wedge can be expressed as the 

singly diffracted field plus the diffraction field due to all higher 

orders of diffraction in the form 

(38) UDl(6)   = Di(6)Ui + VB(i,nx,<|>x)UD2(0) 

and 

( 39) UD2( 6)   - D2( 9) U1 + VB( i , n2, 4>a)UDl ( IT) 

where 

(40) <t>i   = IT - 6 

4>2 = 0 

In Eqs. ( 38) and ( 39) the known quantities are the diffraction coef- 

ficients Di ( 9) , D2( 9) , VB( i , nj ,$l) > VB( I, tig, 4>) • Setting 9 equal 

to IT in Eq.  \ 38)   and setting 9 equal to zero in Eq.   ( 39)   results in 
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(41) UDX(TT)   = DXCTTJU
1
 + VB(i .m.OjUjjfO) 

(42) 

where 

(43) 

(44) 

UD, ( 0)   = D2( 0) U1 + VR( I , n2J 0) Un. ( ir) Di 

-j( ki + ir/4) 

DI(TT) 
\Z2irki 

1 TT 

sin 
nz nx 

TT TT • e1 

cos COS 
nx nx      / 

-j(ki +TT/4) 
e   J* 1 

D2( if) 
^2TTki 

— sin —• 
n2 n2 

1 
TT 8 

COS COS  -— 
n2 nz 

e1 ^ O,7T 

A  set of two equations in the two unknowns UJJ, ( TT) ,   and Urx (0)   is 

determined,   thus a solution is obtained for the total diffraction pat- 

tern 

(45) Utot(6)   =UDl(9)   +UD2(6) 

This form of solution can be extended to the interaction of any 

number of wedges.     In most cases of interest it is not necessary 

to proceed past the evaluation of the doubly-diffracted fields in 

order to obtain a satisfactory solution.    However the higher order 

diffraction solution is nearly as simple as the evaluation of the 

doubly-diffracted rays and is thus the best technique in general. 
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D.     The Effects of Edge Curvature 
on Diffracted Rays 

In the examples of diffraction above only the case of a straight 

edge was discussed.     In order to apply the wedge diffraction coef- 

ficient to more general cases it is necessary to describe the behavior 

of the incident and diffracted rays for a curved edge.     This has been 

done by DeVore and Kouyoumjian[ Zl ]   and Ufimtzev[ 22]    for the 

circular disk.    It is assumed that in the case of the circular disk 

shown in Fig.   14,   the points of diffraction which contribute to the 

scattered field in the x-z plane are located at $ = 0,ir.     It is further 

assumed that the diffraction coefficient for the infinite edge given 

previously can be assumed to be valid at points  1 and 2.     This as- 

sumption is consistent with the property of diffraction being a local 

phenomenon.     The effects of curvature on the behavior of reflected 

rays has been described previously.     This analysis can be extended 

to diffracted rays using the extension of Fermat's principle.     Refer- 

ring to Fig.    15 we have,  after Kouyoumjian| 23] 

( 46) cos p=i-t ,0<P<TT 

2 ~      ~   2 

» -TT  <   6   <   TT 

cos P A 
1 • 

A 
t 

-  sin 9'= 
A 
i • 

A 
n 

cos  6      = 
A 
d • 

A 
n 



4Z 

(a) 

/ SPECULAR 
REFLECTION 

ZONE 

Fig.   14--Diffraction by a circular disk. 
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Fig.   15--Vector relations for diffraction 
by a curved surface. 

A     A    A 
where t,  n, b are the tangent,   normal,   and binormal vectors of the 

edge with the tangent and normal vectors in the plane of the screen, 

and where i,   d,   are the directions of incidence and diffraction.     The 

half cone angle of the diffracted rays about the positive tangent is p. 

The distance p between the edge caustic and the second caustic is 

given by Kellerf 1]    as 

(47) Pi   = -PQ sin2p/( pQP sin (3   + cos v) 
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Kouyoumjian[ 2 3]    has given this relation in the form 

(48) ^_   _£       n .   (1-d) 
p   ~ 1  '    p    sin' (3 

where p.-. is the radius of curvature of the edge at Q. 

In the case of the circular disk shown in Fig.   14,  the caustic 

distances pj ,   p2,   can be obtained from Eq.   (48).     For an incident 

plane wave i i  becomes infinite,   and for backscatter (3   =   -n/Z. 

Thus 

t AQ\ 1    =   sin 6+ sin 6^ 1      _        sin 8+ sin 6^ 

P2 a P2 a 

The negative value of p2 means that the caustic is between the edge 

and the field point.     Thus the scattered rays pass through the caustic 

and a phase jump of TT/2 is expected to occur at the caustic.     This is 

automatically accounted for by the negative value of pz. 

Equation ( 48)   in combination with ray optics thus allow the 

determination of the effects of edge curvature upon the diffracted rays. 

Assuming that the edge diffraction coefficient may be applied at each 

point along the edge the diffracted fields of a curved edge may be 

calculated. 
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E.    Correction for Axial Caustics 

In the case of diffraction by a circular aperture or circular 

disk for an axially incident plane wave each point on the edge con- 

tributes to the scattered field on the axis.     Thus an infinity of dif- 

fracted rays converge on the axis creating a caustic.     This effect 

is also present for the case of diffraction by a slope discontinuity 

on a body of revolution.     In the case of the circular aperture the 

axis is also the direction of forward scatter and for the case of the 

circular disk,  the axis is the direction of specular reflection.   The 

forward scatter theorem!  19]   allows the determination of the fields 

in the geometrical optics regions if the diffracted field can be ob- 

tained.     Keller[ l]   has derived a   "caustic correction factor" using 

an asymptotic solution of the scalar wave equation.     By comparison 

of this  solution with the divergent result calculated using the dif- 

fraction coefficient and ray optics,  he has obtained a correction 

factor which,  when multiplied by the diffraction solution yields the 

correct solution.     This correction factor for a caustic on the z-axis 

is 

1 ~   V& (50) Corr = — ( Z-rrkp sin 6) sec kPBine-(n + i)|] 

Jn( kp sin 6 ) 
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where p = r sin 6.     If the solution is desired on the caustic ( p = 0) , 

the diffraction solution is first multiplied by the correction factor 

and the limit as p tends to zero is taken. 

Another procedure for obtaining the field on the axis in the 

geometrical optics region of the circular aperture or disk is to use 

the equivalent physical optics fields over the aperture (or on the 

disk)   and evaluate the radiation integral for these fields.     The case 

of interest for backscatter is that of backscatter by a circular disk 

of radius a,  which results in the well-known formula 

(51) •s  - ka' 2Jj ( 2ka sin 6) 

( 2ka sin 0) 
cos 8 

The case of axial backscatter by a slope discontinuity on a 

body of revolution can be treated using a combination of diffraction 

theory and the radiation integral.     The diffraction coefficients are 

used to specify the diffraction at each point on the "ring" and the 

radiation integral is used to sum these contributions.     In order to 

obtain the individual contributions at each point the incident wave is 

decomposed into tangential electric and magnetic fields in the x-y 

plane at the edge of the ring shown in Fig.   1 6a.     Taking the plane 

of incidence to be the x-z plane we have for the {-^ }   incidence plane 

- cos 9 sin V 
(52) V 

+ cos <t>' 

ika sin 8 cos 6' _i 
y   eJ E 
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(a) 

Fig.    16--Coordinates for the ring source 
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(53) Hc|>. = 

cos 4>' 

cos G sin ct>' 

jka sin G cos <j>'     i 
e H 

E plane 

H plane 

Applying the diffraction coefficient to these tangential components of 

the incident field we obtain for the scattered fields at the edge of the 

ring 

(54) 

(55) 

- cos G sin 9' 

'4>' 

<• 

cos cj> ' 

•   cos <j>' 

•cos G sin 4>' 

[vB(r,n, 40   - vB(r,n, i|; + )] E1 

jka sin 6 cos $' 
•   e 

. [ vfi( r,n, i|>")   +vB(r,n,i|j   ) ] H1 

jka sin 6 cos 4>' 

where 9       = TT + 2s* cos-1  ( -vj •   n) 

4J "     =0 

= incident unit vector 

A 
n = unit normal to the surface 

+ 1     if   -Vj X n    is    -y directed 

-1    if   -v^ X n    is   +y directed 

The scattered fields obtained using the diffraction coefficients can be 

related to equivalent electric and magnetic currents at the edge of the 

ring using the asymptotic form of the diffraction coefficients and the 
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far fields of electric and magnetic current filaments[ 24] .     For z 

directed filamentary currents we have 

(56) 

(57) 

TT 

E2 =-z0kr •jkp 

Z\i Zitkp 

Hz = -Y0kl 
m 

.TT 

•34 -jkp 

Z'slZ-a'kp 

where Z0 and Y0 are the impedance and admittance of free space 

respectively.     Equating Eqs.   ( 56)   and ( 54) ,   ( 57)   and ( 55) ,   and 

using the asymptotic form of the diffraction coefficients given in 

Eq. (22)   results in 

(58) Ie = - JL [G(n)ijJ-) -G(n,i|;+)] 
Zk 

-cos 8 sin 4>l> 

cos 4>! 

v 

jka sin 8 cos <t)l yi 

(59) 

where 

,m 

Yk 
[G(n,4j")+G(n,4; + )] 

r-cos <(>' 

•cos 6 sin $' 

jka sin 0 cos 4>'     i 
H 

D( r,n, i(j) 

e"J4   e-jkr 

N/2TTkr 
G(n,4;) 

These equivalent currents on the edge of the ring apply to the diffracted 

fields only and do not include geometrical optics terms. 
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Richmond[ 25]   has presented the radiation integrals for an e- 

lectric current loop of radius a as 

t- ii 

(60) Ee=,J^acos9   e-jkr0   f ^ ^   sin{^t) 

4TT r_ J 

2TT 

OS_J9   e-jkrQ 

4irr, 
0 

ejka   cosfftj)') sin 6 

2TT 

(61) E    =.&£!   e"Jkro   C    Ie(<t>«)   cost*-*') 
v 4-nTr. J 

0 

jka cos(cj>-4>') sin 6        , 

We may apply the Duality Theorem to obtain the radiated fields in 

terms of the magnetic current (I111) rather than in terms of the e- 

lectric current ( Ie) .  with the result 

2TT 

lii.   e"Jkro  ' 
4trr, 

0 

jka cos( 4>-<t>') sin 9 

( 62) He - - ja)€aCOsQ.   e"Jkro   C   Im( V,   sin( +-+•) 

= "YoEct> 

2TT 

(63> *+"&   e"jkr°i   ^^ cos(*-**> 
o 

Jka cos(4>-ct>') sin 6 

= Y„E o^e 
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In the case of backscatter close to the z-axis 0=6   with 6 small,   and 

we take \\i     = TT-2 COS
-1

 ( z -n)   ( i. e. ,   0=0)   in the diffraction coef - 

ficients.     Substituting the edge currents given by Eqs. ( 58)   and ( 59) 

into the radiation integrals we determine the backscattered fields. 

After some manipulation we obtain for the E-plane, 

(64) Efi= -jaE1 
-jkr 

•< -cos2e[G(n,i|;') -G(n, v|;+) ] 
Ji(u) 

u 

+ [G(n,i|0+G( 

and for the H-plane, 

(65) 

- [G(n,^") -G(n, I\J 
+

 )] 

n, 4^   ) J       •Jz(u) 

-jkr    f 
H| = -jaE1 2-    j + cos26[ G( n, i\> ") + G( n, 4; + ) ] 

Ji(u) 

u 

J,(u) 

u 
J»(u) 

where u = 2ka sin 6 

For backscatter on the z-axis ( i. e. ,   on the Caustic)  we have 

(66) -s _ 
,-Jkr 

E0 - -jaE   G( n, 4J   ) 

Thus,   in the case of backscatter Eqs.   ( 51)   and (66)   allow the 

computation of the axial scattered field due to  a "ring" slope 

discontinuity.   A  similar integration could be performed for non- 

circular slope discontinuities. 
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If the z-axis is a geometrical optics region we must apply the 

cross  section theorem[ l]   in order to obtain the axial scattered field, 

and thus determine the equivalent currents on the ring.     In order to 

do this we combine the integrals of Eqs.   ( 60)   and ( 63)   to obtain for 

the E-plane, 

(67) 

2TT 

s 
Ee J*.   e"Jkr f L 

2rrr J    [ 
s2 6  sin*))1  sin(4>-cj>') 

cos — -1        cos _ - COS — 
n n n 

jka sin 6 cos $ ' 

+  cos <j)' cos( (j)-*))') 
TT         1                       IT                    TT + ZL 

COS   —   -   1 COS COS  
n n n 

jka sin 0cos <j>'        jka sin 8cos(<|)-(t)')    -i. 

where t, = sin"   ( sin 0 cos ((>') 

Expressing the diffracted fields in terms of real and imaginary parts 

and applying the cross section theorem[ l]    results in 

2TT 

(68) E|=-Jf-   e"Jkro f  „ •cos   6 sin (p 
TT      , IT TT+2C :os — 1   cos—cos-li—=*A 
n n n 

+ cos2c)>' 
1 

TT        , TT TT+Zt, COS--  1        cos—  -   COS  n n n 

sin( 2ka sin 6 cos cj)') 

d9' 
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Taking the limit as 8 — 0,  and performing the integration results in 

,69) E| = d^4^ 
c r0 

"Which agrees with the physical optics on-axis result for a disk given 

by Eq.   ( 51).     The physical optics solution is accurate within 3 dB 

for a/X  >   0. 5[ 23] . 

The scattered field predicted for a ring,   as given by Eq. ( bb) , 

may be in error if higher-order diffraction terms are significant. 

However these terms can be evaluated and their contribution computed 

in the form of Eq.   ( 66). 

A particular case of interest is where several "rings" contri- 

bute to the near-on-axis field.    Such a case is illustrated by a cylin- 

der,   or by a conically capped cylinder.     For the case of the cylinder 

the specular return from the flat end would be dominant,   and the 

contribution of the rear "ring" can be neglected.    In the case of the 

conically capped cylinder,   the contribution from the cylinder end 

can be significant with respect to the contribution from the "ring" 

formed by the cone-cylinder junction.     In such a case the total field 

is the sum of the individual contributions of the "rings".     In 

evaluating the contribution from each ring the integration limits 

must define the illuminated region.     Thus in the case of the rear 

"ring" of a cylinder these limits would be -    7   .     For "rings" of 
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radius a separated by a length i   as illustrated by Fig.   16b   the scat- 

tered field is then 

(70) Ee- EQ> 1 + -   e E0j2 

where the subscripts  1 and 2 refer to the front and rear rings re- 

spectively and E®   . is defined by Eq.   ( 64) ,  and the phase reference 

is at the front "ring" . 

If the on-axis field is desired,   the limit of Eq.   ( 70)   as 6 — 0 

may be taken.     Equivalently,   the incident field specified by dif- 

fraction along the shadow boundary ( i. e. ,  —   E1)   may be used and 

the integration limits extended to 0-ETT.     In the second case it is 

necessary to evaluate the scattered field at a small angular distance 

from the axis in order to avoid higher order diffraction from the 

front "ring" . 

If the radii of the rings differ,   as for a conical frustrum,   the 

contribution of the second ring must be evaluated using an integration 

over the illuminated portion of the ring. 



CHAPTER  IV 
CREEPING  WAVE  ANALYSIS   OF 

BODIES  OF   REVOLUTION 

A.     The Creeping Wave Concept 

The concept of creeping waves was introduced by Franz and 

Depperman[ 26, 27]   for the interpretation of the scalar solution 

for diffraction by a circular cylinder or a sphere.     Senior and 

Goodrich[28j   have obtained a representation similar to that of 

Franz and Depperman through the application of the Watson trans- 

formation to the Mie series solution for the sphere. 

Kouyoumjian[ 29]   has presented a creeping wave solution for the 

sphere which includes all higher-order modes. 

A general illustration of the creeping wave format is shown 

in Fig.   17.    An incident plane wave is diffracted at a point of 

tangency (designated A)   on the target.     A portion of the diffracted 

energy is trapped at this point,   resulting in a wave which propa- 

gates on the surface of the target,   shedding energy by radiation 

as it progresses.     Finally,   this wave reradiates at B in the scat- 

tering direction of interest.     This "creeping wave"  can thus be 

described by diffraction coefficients at the points of diffraction and 

55 
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TRANSMITTER^ 

RECEIVER 

Fig.   17--General concept of the scattered field 
due to creeping waves. 
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reradiation,   by an attenuation factor to account for radiation losses, 

and by a description of the ray path geometry on the target traversed 

by the creeping wave.     Thus we write,  a general form for the creeping 

wave scattered field as 

B 

- \    Y( S
)   ds 

(71) Ec
S
w = DADB G(s)   e   ~A 

g 
where E is the creeping-wave  scattered field cw r    fe 

D^       is the diffraction coefficient at A 

Dg       is the diffraction coefficient at B 

y( s)     is the creeping-wave propagation factor 

s is the arc length along the path 

G( s)   is the convergence factor for the surface rays. 

The primary task is the determination of these diffraction,   attenu- 

ation and ray path factors for a general body.     However this does 

not appear feasible.     Thus it is necessary to evaluate these factors 

for canonical targets whose exact solutions are available,   i. e. ,   the 

cylinder and sphere.     In order to obtain a more general solution 

for these factors it is necessary to utilize experimental data to 

obtain an empirical solution for more general targets such as the 

prolate spheroid.     It is the purpose of this chapter to examine 

both the exact and empirical solutions for the    sphere in order to 
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formulate a solution for the more general target.     It will be demon- 

strated that a rather simple approach yields accurate results for a 

large class of targets. 

The form of the simplified creeping wave analysis desired is 

such that the convergence factor expressed in Eq.   (71)   may be taken 

equal to unity,   i. e. ,  no convergence or divergence of rays need be 

considered.     In addition,   it is desired to evaluate the creeping wave 

contribution due to all creeping waves by evaluation of Eq.   ( 71)  for 

a single equivalent creeping wave.     The simplified analysis thus 

uses a single equivalent non-divergent (or non-convergent) 

creeping wave to construct the approximate solution for the scat- 

tered field.     In order to demonstrate the validity of the simplified 

creeping wave solution it is necessary to identify the major creeping 

wave contributors in existing creeping wave solutions.     Consequently 

the  surface fields of a target,   for which the exact surface fields are 

known,  has been examined.     In particular,   the solution of interest is 

that for the sphere. 
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B.     The Creeping Wave Solution 
for Scattering by a Sphere 

The analysis of the scattering by a sphere has been one of the 

most important problems in electromagnetic theory.     The classical 

solution of Mie using separation of variables and series techniques 

is the basic  starting point for casting the exact solution into the 

asymptotic form on which the creeping wave format is based.       The 

analysis of Senior and Goodrich[ 2 7]    is an illustration of this adaption. 

A recent paper by Hong[ 30]    gives a derivation which is more closely 

related to the geometrical properties of the ray paths,   deriving the 

attenuation and diffraction coefficients based upon the properties of 

the ray paths from the exact solution.     Hong's analysis yields the 

higher-order correction terms for the cylinder and sphere but is not 

applicable to more general bodies.    Hong restricts the ratio of radii 

of curvatures in the propagation and orthogonal directions to be less 

than or equal to unity.     This restriction limits his analysis to the 

cylinder and sphere.     Keller and Levy[ 31, 32]    have also treated this 

problem.     Kinber[  33]   has developed a general technique using a 

"semi-geodetic" ray coordinate system which applies to bodies of 

revolution and has used this technique to develop a creeping wave 

analysis of the sphere[ 34] .     Moreland,   Peters,   and Kilcoynef 34] 
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have adopted a different approach which is empirical in nature and 

utilizes a simplified ray path geometry. These solutions and their 

adaption to more general targets will be discussed briefly. 

The analyses of Kouyoumjianf 29]   and Hong[30 ]   are based upon 

the concept that the incident energy is diffracted at the shadow bounda- 

ry,   and a portion of this energy becomes attached to the surface of 

the sphere.     This trapped ( or creeping)  wave traverses the sphere 

on a geodesic ( a great circle route)   specified by the direction of the 

incident ray shedding energy tangentially as it progresses,   finally 

contributing to the backscattered field as depicted in Fig.   18.     The 

great circle paths are assumed to intersect the back point of the 

sphere,   forming a caustic at that point.     A consequence of this  ray 

path picture is that in the directions of axial scatter a line caustic 

is formed.     In the analysis of Keller this requires the evaluation of 

a "caustic correction factor" for axially scattered fields.    Also this 

picture does not account for the magnitude of the field in the minor 

creeping wave plane as noted by Kazarinoff and Senior[36] .     In 

each of these analyses the results for the echo area of the sphere 

are in good agreement with the exact solution.      The diffraction 

and attenuation coefficients derived by Keller and Levy[ 31, 32]   are 

carried out to first order while the forms  given by Hong[ 30]    and 
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INCIDENT 
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corn- 

Fig.    18--Creeping waves on the sphere. 

Voltmer[ 37]   incorporate higher-order correction terms.    A 

parison of the results of Keller and Levy[ 31, 32]   and Voltmer[ 37] 

is given in Table I which has been prepared by Voltmer[ 37] . 

An approach to the general formulation of the creeping wave 

paths on bodies of revolution has been developed by Kinber[  33] 

Kinber has  shown that the vvave equation may be expanded in a  set 

of "ray coordinates"  in which the solution can be written in a form 

whose magnitude is dependent upon the cross  section of the ray tube 
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and whose phase is dependent only upon the propagation constant and 

the path length traversed.    In particular he seeks a solution of the 

form 

(72) u = eikeW(£-C, Ti-y 

where £,   £,, r|  are the ray coordinates.    In the case of the sphere the 

ray coordinate system obtained by Kinber [34] is shown in Fig.   19- 

Fig.   19--The ray coordinate system developed by Kinber. 
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Here it is seen that the ray path does not intersect the back point but 

is instead tangent to a cone whose cone angle can be written as 

(73) f?0 = sin"1  (m/ka) 

for a source field having an e      • azimuth dependence.     The cone 

angle is dependent upon the mode order ( m).     The analysis of Kinber 

for an arbitrary incident field requires a summation of modes.      As 

the ray coordinates used for each mode differ the task of constructing 

the  surface field at a given point on the  sphere is formidable.     For 

the case of plane wave incidence of the form 

(74) 
•H^x /cos 4>'v ik(£'  -V) 

K2p    — 
.E^/ Vsinc(></ (£'-iY) 

the analysis for the scattered field is simplified resulting in a solution 

for the scattered field of the form 

c;xi,) •"' (75) 

C0 \Ta. cos 6        ^ [*<«•> 4 ^-3 

Vi 

2N/-rrMh( i -r|) 

Z, Y', 

where p, m    are electric or magnetic dipole moments 
respectively 

h is the distance to the observation point 

Y      = kh/M,   Y' = kh'/M 
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M 

Vi 

= (ka/2)lA 

-i -77 ^   e          wl(tn-Y') 
£   tn-g

2    w\(ts) 
IT 

Co = k" ex4   2\ZTT sin 6WM 

WI ( t- Y) =  W7M HV    ( kr) 

This  solution is  similar to that of Kouyoumjian[ 29]    and 

Hong[ 30]  ,   the primary difference being in the ray path geometry 

used.     A complete discussion of this solution is given by Kinber[ 34] . 

To date the above solutions have not been applied to the task of 

determining the surface fields on the sphere.     Kazirinoff and 

Senior[ 36]    have attempted to apply creeping wave theory to calcu- 

late the major and minor axis  surface fields.    While the agreement 

in the major axis is good,   the minor axis fields have not been 

satisfactorialy   calculated. 

The empirical approach adopted by Moreland,   Peters,   and 

Kilcoyne[ 35]    utilizes the known E-plane field to determine 

appropriate attenuation and diffraction coefficients.     This approach 

is of interest in that it lends itself to extension to more general 

targets.     It proceeds by assuming that the surface field shown in 

Fig.    18  in the shadow region of the sphere can be represented as 

the sum of two creeping waves as 
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(76) H^H0  [e-(J
ko + *s)   a( ir/2 - 9) 

+ e-(jk0 + as)   a(ir/2 + 6)1 

and the radial electric field may be written as 

,)   a(Tr/2 - 6) ( 77) Er - E 

(jk0 + ^s)  a(W2 + 8)1 

Now HQ and E0 are chosen to match the exact solution as closely as 

possible for some value of kQa.    A value of k  a - 10 was chosen. 

Then,  assuming as to be modified by a constant from the value of that 

given by Keller and Levy[ 32]    for the cylinder,   one obtains 

( 78) as = 0. 84 a"3 \~1 eJ° 

in order to fit the curves of Fig.   20. 

It is seen that fields of the form given in Eqs.   ( 76)   and ( 77) 

are a reasonable approximation to the exact fields.     The back- 

scattered fields due to the creeping wave may be written as 

2 Q-j2k0a   Q-( jkQ + as)ira   e"J   ° 
( 79) E        = 2E:D   e  J     °      e v       ' cw is R 

where R is the observation distance from the center of the sphere. 

The magnitude and phase of the creeping wave obtained using Eq. 

( 79)   can be compared to the magnitude and phase of the exact 
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Fig.   20--Normalized fields on the surface of a 
conducting sphere. 
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69 

creeping-wave fields obtained by subtracting the specular point contri- 

bution of the physical optics term from the exact scattered fields; i. e. , 

,80, C^^'.M^^Jl 

where the factor e  ^   °    /R has been suppressed.     The value of Dz  is 

adjusted by a constant to agree with the exact backscattered fields for 

2 \ 
a radius of 1. OX..     The form of Ds is also modified by a factor of X.      in 

order that Eq.   ( 79)   be dimensionally correct,   resulting in 

I    1      _iWl2 
( 81) D2

s = 0. 27 P3 \3    e  
J 

The magnitudes of the exact and approximate creeping-wave com- 

ponents as a function of radius are compared in Fig.   21 and their 

phases are compared in Fig.   22.     The agreement is good for a wide 

range of k0a values. 

Moreland,   Peters,   and Kilcoyne[ 35]   have also applied this 

form of solution to the problem of bistatic  scattering in the E-plane 

with excellent results. 

The analysis of Moreland et. al.   [35] is a simplified creeping 

wave analysis.    It uses a single non-convergent (and non-divergent) 

ray path together with approximate diffraction and attenuation co- 

efficients to construct an approximate solution for the scattered field 
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due to creeping waves propagating in each direction along the ray path. 

The path chosen is the path traversed by the "major" ray (i. e.   the path 

corresponding to the E-plane of the sphere).     This analysis suggests 

that an approximate picture of scattering by a sphere can be con- 

structed by neglecting the creeping waves which have a radial 

magnetic field (i. e.   the "minor" creeping waves) and by considering 

only the creeping waves which have a radial electric field (i. e. 

the "major" creeping waves). 

The analyses outlined above do not allow the determination 

of the fields in the minor axis because of the ray geometry 

which has been assumed.    The analysis of Kinber [34] may allow 

such a calculation but this has not yet been performed. 

A new approach to the determination of the ray paths and the 

surface fields on the sphere is considered here. It will be assumed 

that all the modes may be lumped into a single traveling wave or 

that only a single mode is dominant. In order to determine the path 

followed by such a creeping wave the results of the exact Mie series 

solution are used to compute the real part of the Poynting vector 

at the shadow boundary,  i.e., 
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Fig.   22--Phase of backscattered fields due to 
creeping waves. 

(82) S = e(-ErH*)l0=W2   +<KErHe)|e=ir/2 

cj> <j> 

It is assumed that a creeping wave originating at a point on the 

shadow boundary (TT/2,^>)   propagates in the direction of Real (S)at that 

point and thereafter follows a great circle route around the sphere. 

The result of such an assumption is  shown in Fig.   23 where it is 

seen that the ray paths do not intersect the back point of the sphere, 
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Fig.   23--Ray paths on the sphere determined 
using the Poynting Vector. 
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and indeed miss the back point by varying amounts.     In addition to 

the ray paths the creeping wave fields have been calculated along 

the ray path in the form 

-( ikn + as)i 
(83) Hcw = (H0cos4>)W2-   e •   F/H) 

4> ' 

where the factor cos 4> accounts for the tangential component of the 

incident magnetic field at the shadow boundary and where the exact 

as is used and i is measured along the great circle specified by the 

Poynting vector.     The calculations were performed using a computer 

program.    For the case of the ka = 10 sphere the intersections of the 

ray paths in the <J> * 0°,   90° planes have been plotted in Figs.   24 and 

25.    In addition the angles at which the ray paths cross the axes 

are plotted in Figs.   26 and 27.    As seen from Fig.   23 the H-plane 

magnetic field can be written as 

(84) He - HQ cos 4> F( i )   e"( jk° + "^ *    sin 5 

where 6 is the angle between the ray and the H-plane  and where 

the attenuation constant as is the attenuation constant for the 

"hard" sphere given in Table L    Using the intersection and angle 

data from Figs.   25 and 27 it is possible to determine F(i ),  I, and 6 

for each ray which intersects the minor axis,   and thus compute the 

magnetic field in the H-plane.     The results   of such a calculation 
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Fig.   24--Intersection of the ray paths and the 
4> * 0° plane (i. e. ,   the E-Plane). 
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Fig.   25--Intersection of the ray paths and the 
4> = 90° plane {i.e.,  the H-plane)- 
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Fig.   26--Angle between the ray path and the 
<j> = 0° plane. 
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boundary,   the contribution of the "minor" creeping wave ( i. e. ,   the 

rays corresponding to the "soft" sphere)   may be important,   even 

though the attenuation of this wave is large,   as can be seen from 

Table L     Using the attenuation and diffraction coefficients of Table 

I,   and assuming no convergence or divergence of the minor creep- 

ing wave about the <j> = 90° plane the minor creeping wave may be 

calculated.     The results of this calculation are also shown in Fig. 

28.     Close to the shadow boundary the minor creeping wave field 

is seen to be a reasonable approximation to the exact field.     Thus 

both the major and minor creeping wave contributions are needed 

to predict the minor axis field.    A more accurate solution for the 

effect of the major creeping wave near the shadow boundary is 

needed in order to demonstrate the continuity of these solutions in 

the <j> = 90° plane. 

In the calculation of the major axis field (<f> = 0° plane)  it 

suffices to know the intersection of the closest ray,   as indicated 

in Fig.   24.     This is because the rays  removed from the major 

axis have little effect on the field in the major axis due to polari- 

zation,   flux tube width,   and crossing angle effects.     The calculated 

major axis field is shown in Fig.   29.     It is seen to be in good agree- 

ment with the exact solution.     The calculated field is normalized to 

the exact field at 8 = — ,  4> = 0.    A disadvantage of the Poynting 
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Fig.   27--Angle between the ray path and the 
4> = 90° plane. 
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for a ka = 10 sphere are presented in Fig.   28,  where the field is 

normalized to the exact field at 8 = "j ,  <j> = 0 .    It is seen that close 

to the back point the calculated field is in good agreement with the 

exact solution.     The agreement deteriorates as one approaches the 

shadow boundary.     This is expected as the attenuation coefficient 

for the "hard"  sphere derived by Voltmer[ 37]    is most accurate 

for the deep shadow region.     The region close to the shadow bounda- 

ry has been examined by Foch[ 38] .    Also,   close to the shadow 
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Fig.   28--H-plane surface fields on the sphere. 
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boundary,  the contribution of the "minor" creeping wave (i. e. ,  the 

rays corresponding to the "soft" sphere) may be important,   even 

though the attenuation of this wave is large,  as can be seen from 

Table   I.     Using the attenuation and diffraction coefficients of Table 

I,  and assuming no convergence or divergence of the minor creep- 

ing wave about the <f> = 90° plane the field of the minor creeping wave 

may be calculated.    The results of this calculation are also shown 

in Fig.   28.    Close to the shadow boundary the minor creeping wave 

field is seen to be a reasonable approximation to the exact field. 

Thus both the major and minor creeping wave contributions are 

needed to predict the H-plane field.    A more accurate solution for 

the effect of the major creeping wave near the shadow boundary is 

needed in order to demonstrate the continuity of these solutions in 

the <J> a 90° plane. 

In the calculation of the major axis field (<J> = 0° plane^ it 

suffices to know the intersection of the closest ray,  as indicated 

in Fig.   24.     This is because the rays removed from the major 

axis have little effect on the field in the major axis due to polari- 

zation,  flux tube width,  and crossing angle effects.    The calculated 

E-plane field is shown in Fig.   29.    It is seen to be in good agree- 

ment with the exact solution.    The calculated field normalized to 

the exact field at6 = i,  (|, « o,    A disadvantage of the Poynting 
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Fig.   29--E-plane surface fields on the sphere. 

vector approach to determining the ray paths is that the exact solu- 

tion at the shadow boundary must be known.     Thus it is not possible 

to extend this technique to targets for which the exact solution is not 

available.     Also the ray paths must be recalculated for each sphere 

radius of interest.     These calculations have been performed for 

values of kQa = 4. 0 and 10. 0.     Over this range   of kQa values the 
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ray paths do not differ substantially,   as may be seen from Table II 

where some major and minor axis intersections are compared. 

It is noted that the attenuation coefficient developed by Moreland, 

et al. [ 35]   for the sphere does not yield the correct major axis fields 

when the effect of the convergence of the flux tube to form a caustic 

is considered.     This is reasonable as the solution of Moreland,   et 

al. [ 35]    includes the effects of the caustic and integration of the 

shadow boundary contributions in the determination of the empirical 

attenuation and diffraction coefficients.    However good results are 

obtained for the backscattered fields using their solution.     The fact 

that their approximate solution gives reasonable results is not 

surprising if one considers the ray path picture of Kinber[ 34J    and 

that of the Poynting vector method.    It is seen that in the E-plane 

the major axis creeping wave is the dominant contributor,   and the 

rays which skew about the back point are negligible as regards back- 

scatter since there are no tangent lines from the skewed creeping 

wave paths in the direction of the source.     These creeping waves 

would contribute to the bistatic radar cross  section in planes 

removed from the E-plane.     Thus, because of the ray path geometry, 

a simple traveling wave picture suffices to describe the E-plane. 



83 

2 
H 
O 
w 

w 
H 
n 

H X 
-l < 

w 

W 

CO 

Pi 
O 

_^ 
o o 

# o sO CO 00 i—1 o .—t -* CO o 
o o (NJ 0> xO o "tf i—t (NJ •tf o a 1—* 

o II o r~ on ON CO ^H \0 •* ND o 
•H 00 r» r>- ^o \0 LD CO <—I o ON 

o ni 
<D X 
to 
h 
0) 

•P 

d 
i—i 

en 
• iH 
X 
< o o o ro r~ <f in NO ""*< r- o 
h •*' 

o NO r- -* xO o m i—1 o o 
O 

II o sO rM r- ON r~ o o m o 
•I-I ao r~ r- xO in •* CO I—1 o ON 

% 

o o 
— d 

xO CO CO CO 
in 

•—i 
i—i 

CM 
IN] rx] 

o 
o 

c ^H 

o II 
1 co co N o xD i—i 1—1 (NJ o 

+4 -X> xD xO in m in <* N ON 

o nj 
V ^ 
0) 
h 
V 

en 
•H 
X! 
< O cr* co o> N co o r- CO o 
h •* vO -X) a> N in .—i CO (NJ o 
O 

•<—i II I i—i O 00 sO 00 sD in r- o 
n) vO xO LO in m "<* CO r—I ON 

2 a) 

>> 
.   »-. 
IS    ni 0 o o o o o o o o o 

O   T3 o o O o o o o o O o 
T3    C 1—I CM CO <* m NO r- 00 ON 

(0    3 
X   o 

01   X* 
-e- 



84 

The Poynting vector analysis suggests that a "simplified ray 

path geometry"  based upon the component of the electric field normal 

to the surface may be used for more general targets.     In such a 

geometry only the electric field component normal to the surface 

( i. e. ,   the "major creeping wave")   is considered.     If the family of 

rays is considered,   thus determining the spatial attenuation factor 

F( i )   the exact diffraction and attenuation coefficients of Keller and 

Levy[ 27, 28]    or Voltmer[ 32]    are used to compute the creeping wave 

fields.     If only the ray corresponding to the point at which the incident 

E-vector is normal to the surface is used and a single nondivergent 

( or nonconvergent)   path is used,   the approximate diffraction and at- 

tenuation coefficients of Moreland,   et aL   are used. 

A simplified ray path geometry,   using the approximate forms of 

the attenuation and diffraction coefficients has the advantage of being 

easy to apply to the case of parallel polarization backscatter for 

complicated targets as the geodesic path is simply the profile of the 

target.     In the case of perpendicular polarization the geodesic path 

is more difficult to determine.     A numerical method for finding a 

geodesic path is presented in Appendix IV.    Several examples of a 

simplified analysis will now be considered for the prolate spheroid, 

the ogive,   and the spherically capped ogive. 
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C.     The Prolate Spheroid 

The prolate spheroid represents a body for which an exact 

closed form solution is not available except on the axis of rotation. 

The creeping wave solution for the prolate spheroid proposed here 

is similar to that of the sphere.     That is,   it is assumed that the inci- 

dent plane wave is diffracted at the shadow boundary causing the exci- 

tation of creeping waves which propagate around the spheroid and 

contribute to the scattered field.     The scattering due to the illumin- 

ated portions of the spheroid will be computed using geometrical 

optics. 

In order to find the ray path geometries for the prolate spheroid 

for an arbitrary angle of incidence,  the geodesic corresponding to the 

point of attachment and the tangent direction at that point must be 

calculated.    As  seen from the sphere analyses of Kinber[ 34]   and by 

the Poynting vector method the determination of the tangent direction 

of the creeping wave at the shadow boundary is not an easy task in 

general. 

The prolate spheroid has previously been studied by Moffatt[39] 

using time domain analysis.     Moffatt's approach is  similar to the 

creeping-wave approach in that he approximates the impulse response 

through the use of a "physical optics" contribution in the form of an 

impulse at time t = 0,  which decays and joins into a creeping wave 
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return at time t = TQ (where T0 corresponds to the time required for 

the creeping wave to propagate around the spheroid).     The form of 

the impulse response postulated by Moffatt is shown in Fig.   30. 

A,B, DETERMINED FROM PHYSICAL OPTICS (SHORT TIME) 

T0     DETERMINED BY   GEOMETRY AND POLARIZATION 

Fig.   30--Impulse response of the prolate spheroid. 

Moffatt1 s determination of the transit time T0 of the creeping 

wave was carried out by finding the path length of the ellipse defined 

by the intersection of the plane defined by the incidence vector and 

the incident E vector with the prolate spheroid.     The initial point of 

intersection is the point at which the surface normal and the E-vector 

are collinear.     This form of analysis,   which resulted in excellent 
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agreement suggests that the simplified ray path geometry used by 

Moreland,   Peters,   and Kilcoyne[ 35]   for the  sphere can be applied 

to the prolate spheroid. 

Following this line of reasoning we write,   for the case of 

parallel polarization for the prolate spheroid that 
r,B 

-V(jk0 +a(p))di 

<85> Ecw = 2DADBEle 

In the case of the prolate spheroid the creeping wave paths are el- 

liptical,   thus the total attenuation must be expressed as an integral 

which is dependent upon the radius of curvature along the path.   Also 

the radius of curvature at the points of attachment and reradiation (A, B) 

must be computed in order to determine the diffraction coefficient. 

It was found that the product of the diffraction coefficients at 

the points of attachment and reradiation could be related to the dif- 

fraction coefficient of the sphere with the sphere radius replaced by 

V p. pr, .     The square of the diffraction coefficient is thus 

1 2 

(86) D2
g  =0.27 (pAPB)      X3 e  J 

where pA and pR are the radii of curvature in the propagation direction 

at points A and B respectively.     The specific  solution for the prolate 

spheroid has been presented by Ryan[ 40]    and Peters and Ryan[4l]    in 

previous papers.     This case is automatically formulated by the 
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computer program for the second degree surface of revolution.     This 

program compute    the geometrical optics contribution,  the points of 

attachment and reradiation and performs the integration over the path 

for the case of parallel polarization. 

The investigation of the prolate spheroid carried out previously- 

indicated that the magnitude of the attenuation factor required for ac- 

curate results in the case of the prolate spheroid differs from that of 

the sphere. Computations were performed using different magnitudes 

and the results are shown in Fig. 31. It was concluded that the form 

of the approximate attenuation coefficient appropriate to the 2:1 

prolate spheroid for parallel polarization was 

(87) a  = 0. 55 p"3 \_3 eJ6 

where p is the radius of curvature in the propagation direction. 

Previous work by Peters[ 42]   had been devoted to the determin- 

ation of the effects of the ratio of the orthogonal radii of curvature on 

the attenuation and diffraction coefficients.     Using the case of the 

ogive he was able to determine that the diffraction coefficient was the 

same as given in Eq. (86) but that the attenuation coefficient was 

modified to 

1 I -IT 
(88) aog = 0.20 p-3 X.   3   ej-£ 
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Fig.   31(a)--Backscatter patterns of the prolate spheroid for a 
range of magnitudes of the attenuation coefficient. 
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Fig.   31(b, c)--Backscatter patterns of the prolate spheroid for a 
range of magnitudes of the attenuation coefficient. 
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It is seen that the attenuation coefficient for the 2;1 prolate 

spheroid examined lies between the values for the sphere and ogive. 

Figure 29 illustrates the magnitudes of the approximate attenuation 

factor for the single path simplified ray geometry as a function of 

the orthogonal radii of curvature for bodies which have been examined 

to date.     It is seen that the points may be fitted by the smooth curve 

shown in Fig.   32 of the form 

3 X"3 e
j6 (89) a  =   L48e"°'84(pP/p0)  + 0. 201 Pp 

where pp and p^. are the radii of curvature in the propagation and 

orthogonal directions respectively. 

2.0 

a -[..48 e-0-84' *V +0.2o],-2/3X->'3e % 

OGIVE 

Fig.   32--The variation of the magnitude of the approximate 
attenuation coefficients as a function of the two 

orthogonal radii of curvature. 



92 

This form has been used to compute the scattered fields of the prolate 

spheroid for parallel polarization and is in agreement with the best 

fit obtained in Fig.   31 using Eq.   (87).    In addition the echo area as 

a function of wavelength was calculated for parallel and perpendicular 

polarization for 6= 90° .     These results are shown in Figs.   33 and 34 

and are seen to be in excellent agreement with the experimental data 

of Moffatt. [ 39 ] 

2:1  PROLATE  SPHEROID 

8 

A     "4 
09 

b    -8 

-12 

-16 

-20 

Et A +1*1 1 INCIDENT   zxe 

xxx    MEASURED 
     GEO. OPTICS  + CREEPING  WAVE 

2 3 

K    (SEMI-MINOR   AXIS) 

Fig.   33--Echo area of the prolate spheroid as a function of 
k0a for perpendicular polarization and 6 = 90°. 
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Fig.   34--Echo area of the prolate spheroid as a function of 
kQa for parallel polarization and 6 = 90°. 
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The form of the attenuation coefficient given by Eq.   ( 89)   yields 

good results when used in conjunction with a simplified ray path ge- 

ometry which utilizes a single ray path defined by the "major" creep- 

ing wave.     The results of Moffatt[ 39]   indicate that this form of the 

ray path geometry is also applicable to the case of perpendicular 

polarization.     Due to the difficulties of computing the ray paths for 

the general body for perpendicular polarization,   computations have 

not yet been made for this case.     This will be a future goal in the 

extension of the creeping wave analysis. 

D.     The Ogive 

The ogive has been treated by Peters[43]   using a traveling 

wave antenna approach.     In the near-nose-on region this  solution 

has been the only satisfactory solution to date.     The form of this 

traveling wave solution suggests that a creeping wave  solution for 

the ogive can be found providing that the effects of the tip in the 

shadow region can be determined.     Since no diffraction coefficient 

for a cone tip is available an analytical expression for the reflection 

and transmission coefficients at the ogive tip is not available.     How- 

ever,  experimental measurements have been performed for a range 

of tip angles to determine reflection coefficients.     Using these 

measurements Peters  [42] has determined the ogive attenuation 

factor previously cited. 
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Figure 35 shows the ogive and the coordinate system.    As in the 

case of the prolate spheroid,   incident energy is trapped at points A 

and B where the incident vector is normal to the surface.     These 

creeping waves travel along the ogive until they encounter the tip. 

Fig.   35--Coordinate system for the ogive. 
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At the tip,   part of the creeping-wave energy is diffracted as 

creeping waves on all geodesies containing the tip and the remainder 

is radiated from the tip.     The previous treatment 35]   assumed that 

the creeping-wave fields on all of the geodesies have equal magni- 

tudes.     This is only approximately correct.     Small differences in the 

magnitude of diffracted rays for different geodesies will yield the on- 

axis creeping-wave field which can be observed in the measurements 

reported by Blore[ 44] .     Off-axis the creeping wave return is a 

result of the creeping waves which propagate on the ogive in the plane 

defined by the incidence direction and the incident E-field.     In this 

plane the effect of the tip can be characterized by reflection and 

transmission coefficients at the tip. 

Referring to Fig.   35,   the backscattered fields attributed to the 

creeping-wave fields may be written as 

(90) ES     =Ei-   D2{Rt[e"(Jko + Q°g)2Ll   e"2koS 
cw 

+ e-(J
ko + 0,og)-  2L2 e

j2k°S] 

-jkR 
+ 2Tt[e-(Jko+Qog)(Ll +L2)]}   £—- 
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where D is the diffraction coefficient given in Eq.   (86) 

R^. is the tip reflection coefficient 

Tt is the tip transmission coefficient 

a0„ is the ogive attenuation coefficient 

Li , L2 are shown in Fig.   3 5,   and 

S refers the phase to the center of the ogive. 

For the spherical ogive Rt = -T^ =  r  approximately,   and values of 

r  have been obtained experimentally.     Bistatic  radar cross section 

measurements of the ogive have shown that the energy incident on the 

tip is scattered by the tip along each geodesic on the ogive,   i. e. , 

these tip - scattered fields show no 4> dependence.     This agrees with 

the results of the equivalent antenna approach,  for which no <|> vari- 

ation of the field was assumed.     Thus a factor of 1 f\l 2tr   is introduced 

to account for the lack of 4> dependence of the tip-scattered fields. 

The radar cross section of the ogive calculated using Eq. (90) with 

F = 0. 54 is compared with the experimental results and with the echo area 

calculated by the equivalent antenna approach in Fig.   3 6.     In this 

figure the equivalent antenna solution has been corrected for radi- 

ation loss using the ogive attenuation factor as described by 

Peters[ 42] . 
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Fig.   36--Backscattered field patterns for the ogive. 

Moreland, et al. have applied creeping-wave theory to analysis 

of a spherically capped ogive as shown in Fig. 37. This body repre- 

sents another target having a discontinuity in the shadow zone. They 

have expressed the scattered field as[ 35] 

(91) Es = EiD
2e-^°gre° {F[e-J2V +2Vogr6

+ e-^ogre] 

+ 2TosTso[e-(Jkoi+^rs2e1+J.)]}.^      e.jkR 

N/2-rrR 
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Fig.   37--The spherically capped ogive. 

where V °g 

Qo> ei 

a °g 

vs 

a s 

= jk0 
+ <*og ' 

= radius of curvature of the ogive 

= radius of the spherical cap, 

= angles shown in Fig.   37, 

= attenuation coefficient of ogive, 

= diffraction coefficient,   given in Eq.   (8 6) 

= jkQ + QS ,   and 

= attenuation coefficient of the sphere. 
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The reflection coefficient,   T,   and the transmission coefficients,   Tos 

and Tgo,   arise because of the change of surface impedance at the 

junction of the ogive and sphere.     The surface impedance of the ogive 

is taken to be Z0,   the impedance of free space,  and the surface im- 

pedance of the sphere is taken to be the ratio of E0 to H0 for the fields 

of the major creeping waves postulated in Eqs.   ( 76)   and ( 77)   for the 

sphere.     Referring to Fig.   20 we see that this ratio is dependent 

upon the sphere radius and can be determined from the exact fields 

of the sphere for a given radius.     Thus T  and T       can be written as 

Zs  "  Zo (92) r = -2 ° 
Zs + Zo 

and 

(93) Tos = 
zs + Zo 

It is necessary to make T  the negative of Eq.   (92)   in order to obtain 

agreement with the shape of the experimental curves.     This  sign ap- 

pears since the discontinuity acts a~ a line scatterer or a caustic. 

The ray passing through it undergoes a phase shift of IT/2 radians and 

the transmitted ray passes through two such discontinuities.     In ad- 

dition,   the factor 1 /\l 2TT    proposed by Moreland,   et al.   is retained 

to account for the rotational symmetry of the caustic which causes 

diffracted rays to propagate along the spherical cap in directions 
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other than that of the plane of incidence, thus decreasing the backscat- 

tered field. Combining all the terms the total expression for the back- 

scattered field is 

(94) Es=   EiD2e-^ogreo{r[e-J2V+2Yogr0+e-2Yogre] 

+ 2TosTso[e-J(ko* + ^srs2e1+j21T)]}  _1_  ^-jkR   _ 

\I2TTR        R 

The results of the computation for the spherically capped ogive are 

presented in Fig.   38   and compared with experimental measurement. 

It is seen that in the near nose-on region the results are in good 

agreement with measurement.     This form of creeping-wave analysis, 

coupled with the traveling wave picture and physical optics,   allows 

prediction of the backscattered field of the ogive over a wide range 

of incidence directions and k0a values.     It should be noted that the 

impedance of the creeping wave is obtained by a best fit of the fields 

at the surface of the sphere in the entire shadow region.     This would 

include the fields close to the point at the rear.     It has been noted 

that this is a region of poor fit,   regardless of the approximation 

used,   because there are fields present here which are not included 

in the simple creeping-wave picture.     This creeping wave picture, 

as noted previously,   does not include a caustic at the point at the 
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Fig.   38--Backscattered field patterns of the 
spherically capped ogive. 
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rear.     Further improvement in these results would be anticipated if 

the fields were more closely matched by two creeping waves at a 

distance removed from the rear point and if multiple interactions are 

included. 

It is seen that the effects of discontinuities in the shadow zone 

must be carefully accounted for.     Future work in this area devoted 

to the determination of the reflection and transmission coefficients 

of tips and wedge discontinuities would provide a more accurate 

solution for the effects of shadow zone discontinuities. 

In summary the attenuation and diffraction coefficients cor- 

responding to the simplified single ray geometry are presented in 

Table in. 
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E<     The Extension of Creeping- 
Wave Analysis to Disks 

The simplified ray path geometry suggests the examination of 

radar targets where only one possible creeping-wave path exists. 

Such a class of targets are disks,   for incident plane waves in and 

polarized in the plane of the disk.    A new solution for this class of 

targets may be obtained by assuming that a creeping-wave field can 

exist on the edge of the disk in such a case and that the functional 

forms of the diffraction and attenuation coefficients which have been 

ustL for volumetric shapes   apply.        Thus we write for one com- 

ponent of the cr ^eping-wave field 

( ' 5) Ecw = E1 D2
d e-V   e^

:i e"JkR/R 

wht   e E  y is the scattered creeping-wave field 

E is the incident field 

a^ is the complex attenuation coefficient 

i is the path length traversed on the edge 

D2        is the product of the diffraction coefficients 
d 

at the points of attachment and reradiation. 
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For elongated targets such as ogives the radius of curvature in 

the direction of propagation ( p)   of the creeping wave is much greater 

than the orthogonal radius of curvature ( pQ)   for the case of near- 

nose-on backscatter where the creeping wave contribution is domi- 

nant.    If the circular disk is considered to be a limiting case of an 

oblate spheroid   as the ratio of minor to major axes becomes small, 

it is seen that the ratio ( p/p0)   is large as in the case of the ogive. 

Thus it is reasonable to apply the ogive attenuation coefficient to the 

disk.     Thus for the disk we take 

;TT/6      2       1 
(96) a  = 0. 20   e"J p"3 X   3 

where p is the radius of curvature in the direction of propagation. 

In order to obtain the diffraction coefficient it is assumed that the 

functional form is 

(97) D2
d = Ap* \*   e-JW12 

We now write the scattered field of the ogival disk as 

(98) Ecw = vD2Ei(e-2(+Jko + °)il    +   e"2( +Jko + a ) lt 
d 

_2 e-(Jk0 + <OMi+^)   ) 
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where "y    is the measured voltage reflection coefficient 
of the tip f+0. 7 3 for the ogive treated)   and 

J?1  and i2 are shown in Fig.   39. 

Now,   adjusting the constant A to agree with data as shown in Fig.   39 

we find that A = 0. 1 approximately.    We now apply the above attenu- 

ation and diffraction coefficients to the cases of circular and elliptical 

disks.    However,  we first need to obtain an expression for the dif- 

fracted field at the specular point for these targets. 

For a disk the diffracted field at the specular point can be 

written using Eq.   ( 6)   as 

(99) Esp = EiDw\/d/(d + R) 

where ESP     is the specularly diffracted field 

D is the wedge diffraction coefficient w & 

d is the distance from the specular point to the 
caustic of the diffracted rays in the plane of 
the disk and 

R is measured from the specular point. 

In the case of the circular disk shown in Fig.   40 we have 

d = a/2.     For a disk the wedge diffraction coefficient becomes 

( 100) Dw = -e"J( kR + W4) / N^R 
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Fig.   39--Backscattered field pattern of the ogival disk. 
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Fig.   40--Scattering by a circular disk edge-on. 

Combining Eqs.   (99)   and ( 100)    and taking the phase reference at 

the specular point we may write for the circular disk 

( 101) ESP= -lE1*^^   e-$   e"JkR/R 
2 

A  siinilar expression can be derived for the elliptical disk.     For the 

circular and elliptical disks we now write the total scattered field as 

( 102) Et0t = E+
CW, + ESP tot 
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The radar cross section for the circular disk and results for a 2:1 

elliptical disk obtained using this approach are presented in Figs. 

41 and 42.    In some cases the measured data is presented as a 

line representing the maximum and minimum echo as read from the 

measured pattern.     For the elliptical disk it is seen that good results 

are obtained for  1. 5 < ka < 5,  while the results for the circular 

disk are good for ka >  1. 

Thus empirical attenuation and diffraction coefficients are 

obtained which yield results in good agreement with measurements 

for ogival,   circular,  and elliptical disks.     The agreement between 

theory and experiment demonstrates that the concept of the creeping 

wave may be applied to disks,   for waves incident in,   and polarized 

in,   the plane of the disk. 
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CHAPTER   V 
COMPUTER   PROGRAM  RESULTS 

The theory discussed in the preceeding text has been applied 

to the determination of the radar cross  section of targets of revo- 

lution through the development of two computer programs.     These 

programs are discussed in Appendix V.     The programs have been 

tested for horizontal polarization backscatter for circular cylinders, 

cones,   double cones,   conically capped cylinders,  prolate spheroids, 

a prolate  spheroid-sphere combination and a prolate spheroid-oblate 

spheroid combination.     The targets are shown in Fig.   43,  and the 

corresponding patterns are  shown in Figs.   44 to 49.     The agree- 

ment between the measured and calculated echo area patterns is an 

indication of the accuracy of the various techniques used in the 

computer program.     The solution corresponding to each region of 

the pattern is identified in Figs.   44 to 49.     The results for each of 

the targets will be discussed individually in the following paragraphs. 
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A.     Circular Cylinder 

The measured and calculated patterns for the circular cylinder 

are presented in Fig.   44.    As indicated in the figure,   the solution for 

the axial caustic,   the single diffraction solution,   and the solution for 

the specular direction have been used to calculate the echo area pat- 

tern.     For the region close to the axial caustic ( i. e. ,    9 close to 0* 

or 180°)   the agreement is excellent.     The magnitude of the echo area 

on axis is within 1 dB of measurement     In addition the location of the 

first null of the calculated and measured patterns is the same,   although 

the depths of the measured and calculated nulls do not agree.     For the 

region close to the specular direction (i. e. ,   6 close to 90°)   the agree- 

ment is excellent, being within 1 dB at the specular direction.    Again 

the position of the first null of the calculatedand measuredpatterns agrees. 

The depths of the measured and calculated nulls are also in reason- 

able agreement,  having an error of approximately 5 dB.     The re- 

mainder of the pattern is calculated using the single diffraction solu- 

tion.     This region shows a slight null shift between the calculated and 

measured patterns.     The magnitudes of the calculated and measured 

peaks are within 3 dB.     The accuracy obtained for the circular cylin- 

der is within * 1 dB of the accuracy obtained by Ufimtsev[ 22]    and is 

the same as the accuracy obtained by Bechtel and Ross[ 45]   using 
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singly diffracted components.     These results demonstrate that the 

computer solution is valid for a cylinder. 

B.    Cone 

The measured and calculated patterns for the cone are presented 

in Fig.   45.    The measurements were performed by Keys and 

Primich[ 46] .    As indicated in the figure,   the solution for the axial 

caustic,   the single diffraction solution,   and the solution for the 

specular direction have been used to calculate the echo area pattern. 

A diffraction solution for the cone has also been presented by 

Bechtel[ 47]   which did not include an axial caustic correction and 

consequently is in error for axial incidence.     The measured data 

is shown as a range of values.     The calculated pattern is  seen to be 

in good agreement with the measured values over the entire range 

of incidence angles.    However,   it is noted that the accuracy of the 

measurements is not good,  having a variation of approximately 5 dB. 

Thus it is difficult to specify an absolute accuracy for the solution 

by comparison to the data.     However,  the agreement obtained 

indicates that the computer solution is valid within the accuracy of 

the measurements. 
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C.    Double Cone 

The measured and calculated patterns for a double cone are 

presented in Fig.   46.    As shown in the figure the solution for the 

axial caustic,  the single diffraction solution and the solution for the 

specular region have been used to compute the echo area pattern. 

As seen from the figure the agreement close to the axial caustics 

( i. e. ,   9 close to 0° or 180°)   is excellent.     On the caustic the 

measured and calculated echo areas are within   \ dB,   and the lo- 

cation of the first nulls is in error by only 2° .     The peaks of the 

specular solution are within 2 dB of the measured peaks.     The re- 

mainder of the calculated pattern is not in good agreement with the 

measurement,   although the characteristics of the pattern are indi- 

cated by the calculations.    Comparison of the measured and calcu- 

lated patterns shows that nulls which appear in the calculated pat- 

tern are filled in the measured pattern.     In addition,  there is a 

peak at 6 = 90° which is not predicted by the calculations.     These 

results indicate that higher-order diffraction terms are significant 

for this target,   at aspects removed from the axis.    Also as this 

target is small in terms of wavelength (a = 0. 667V)   higher-order 

interactions are to be expected.     Improved results would be antici- 

pated if the scattering from the tips of the cones,   and the inter- 

actions between the joint and the cone tips were included in the 
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solution.     In order to accomplish this task the diffraction coefficient 

for a cone tip is needed.     Such a diffraction coefficient for arbitrary- 

angles of incidence and diffraction is not known.     Thus further theo- 

retical study is required before a more accurate solution for this 

target can be obtained. 

D.     Conically Capped Cylinder 

The conically capped cylinder represents a more complicated 

target,  which approximates a practical target.     The measured and 

calculated patterns are shown in Fig.   47.    As indicated in the figure 

the solution for the axial caustic,   the single diffraction solution and 

the solution for the specular region have been used to calculate the 

echo area pattern.     The regions close to and on the axis ( i. e. ,   8 

close to 0° or 180°)   are in agreement within 2 dB.     The specular 

region ( G close to 90°)   is in agreement within 1 dB.     The specular 

region normal to the cone ( 9 close to 45°)   is not in good agreement, 

having several nulls in the calculated pattern which do not agree.     It 

is noted that these nulls occur at the angles where the solution shifts 

from a diffraction solution to the specular solution and vice versa. 

The peak of the specular solution is within 3 dB of the measured 

values in this region.     It is noted that the diffraction solution is within 

3 dB of the measurements except for the region close to the normal 

to the cone.     As the error is due to the fact that the calculated nulls 
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in this region are filled in,   this error may be attributed to higher- 

order diffractions between the cone tip and the junction between the 

cone and cylinder,   and to scattering by the cone tip,  both of which 

have been neglected in this  solution.    An additional source of error 

may be attributed to the target used for the measurement.     The joint 

between the cone and cylinder was machined with a radius curve. 

Thus the wedge diffraction coefficient may not accurately describe 

the actual scattering mechanism at the joint.     In spite of these dis- 

agreements the over-all character of the scattering pattern is pre- 

dicted by the computer program,   and except for the specular region 

of the conical section the average error is less than 3 dB. 

E.     Prolate Spheroid 

The solutions used for this smooth target are the geometrical 

optics solution for the specular point,  and the creeping wave solu- 

tion.    As a test of the general creeping wave program the 2;1 prolate 

spheroid patterns previously computed using a special case program 

which were presented in Fig.   31 were re-computed using the general 

program.     The results were identical to the results presented in 

Fig.   31 for an attenuation coefficient magnitude of 0. 55.     Thus the 

error is the same as  shown in Fig.   31,   being less than 3 dB for a 
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minor axis greater than j wavelength.    These results indicate that 

the generalized portions of the computer solution were operating 

correctly.     Next,   some composite shapes were examined. 

F.     Prolate Spheroid-Sphere 
Combination 

The prolate spheroid-sphere combination represents a two 

section,   continuously curved target with no discontinuity in the first 

derivative of the surface at the join.     The measured and calculated 

patterns for this target are shown in Fig.   48.    As in the case of the 

prolate spheroid,   the geometrical optics and creeping wave solution 

were used for all aspect angles to calculate the scattered fields. 

The agreement between measured and calculated patterns is good, 

being within 3 dB for aspects more than 30° removed from the axis. 

Within approximately 30° of the axis of revolution the accuracy is 

not as good,   having an error at the null of the calculated pattern of 

5 dB.     Away from the null the error is less than 3 dB.     This inac- 

curacy close to the axis is attributed to the effects of the discontinuity 

in the second derivative of the  surface at the join.     This discontinuity 

results in a reflection at the joint as was previously discussed in the 

case of the spherically capped ogive.     These reflections are not ac- 

counted for in this program.     Improved results would be expected if 
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this reflection were accounted for.    An additional improvement would 

be expected if a more accurate solution for the scattered fields due 

to the illuminated region were used. 

G.     Prolate S'p'iero id -Oblate 
Spheroic C ^mbination 

The measured and calculated patterns for the prolate spheroid- 

oblate spheroid combination are shown in Fig.   49.     This target is 

similar to the prolate spheroid-sphere combinations with approxi- 

mately the same results.     That is,  accuracy with 3 dB for aspects 

greater than 40     removed from the axis of revolution -with errors 

as large as 8 dB at the calculated nulls within 40° of the axis.     The 

greater discontinuity in the second derivative of the surface at the 

join for this case results in a larger error in the calculations near 

the axis than for the prolate spheroid-sphere combination.    Again 

the addition of the reflections due to the join and a more accurate 

solution for the scattered fields due to the illuminated region would 

be expected to yield improved results. 

The results obtained for the targets discussed above show 

that the general computer program,   incorporating first order dif- 

fraction theory,   geometrical optics,   and creeping wave theory is 

operable.     Improvements in this program have been suggested by 

the results,   and include the use of multiple diffraction,   improved 
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solutions for the illuminated region and creeping wave reflections. 

The addition of multiple diffraction to the program is a straight- 

forward but tedious problem.     The problems of an improved solu- 

tion for the illuminated region and of the reflections of the creeping 

waves,   require further theoretical study before they can be included 

in a general computer solution. 

It may be concluded that the general computer program yields 

results which are useful in the estimation of the radar cross section 

of composite targets.   The   size of the target in wavelengths will affect 

the accuracy of the solution.     The restrictions on the size of the 

target for a class of targets can be determined by comparison of the 

measured and calculated values for a special case,   as for a cylinder 

or spheroid. 

In general,   the accuracy of the computer solution will improve 

as the size of the target in wavelengths is increased.     Thus if a 

lower limit on target size for a given accuracy is established for a 

class of targets,  this accuracy will be maintained for larger targets. 



CHAPTER   VI 
CONCLUSIONS 

The geometrical theory of diffraction and creeping wave solutions 

described have been organized in computer programs to calculate the 

backscattered fields from sectionally continuous bodies of revolution. 

The results obtained indicate that these techniques are applicable to 

this problem.     The programs have been used to investigate targets 

having either straight line or curved smoothly-joined profiles.     Targets 

having combination profiles have not been examined.    However,   the 

results obtained indicate that targets having such combination profiles 

can be treated using this analysis,   and that an extension of the present 

computer programs to treat these targets is feasible.     This extension 

would combine the existing computer programs and provide the ad- 

ditional logic required to treat the more general combination target. 

The computer analysis would also be improved by including the 

effects of interactions ( i. e. ,   multiply diffracted waves and reflected 

creeping waves) .     The theory of multiple diffraction has been described. 

The reflection effects are of two kinds:    reflection from tips,   and 

reflection from discontinuities in surface derivatives at the junction 

between analytic sections.     The reflection coefficients for tips could 

be obtained experimentally,   and the results fitted by an empirical 

132 
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curve.     The effects of a surface derivative discontinuity can also be 

treated experimentally,   although physical optics is known to give a 

valid result for :his contribution.     Thus the effects of reflections could 

be included in an improved computer analysis. 

The effects of fins,   ducts,   antennas,   or other special scatterers 

may be treated using  special programming,   and are   compatible   with 

the existing program.     Also the extension of this analysis to concave 

targets appears feasible.     The results of Hutchins[50]    in determining 

an interior wedge diffraction coefficient could be applied for  "corners", 

and geometrical optics used for the focussing effects of curved con- 

cavities. 

The programs described in this paper have been tested and have 

given good results for sectionally continuous targets of revolution 

having straight line or curved smoothly-joined profiles.     Extension 

of these programs using the techniques described above is feasible. 

Thus with more effort a computer program which is  sufficiently 

general to treat a great number of practical targets would result. 



APPENDIX  I 
THE  GEOMETRIC   PROPERTIES  OF A GENERAL 

SECOND  ORDER  SURFACE   OF  REVOLUTION 

A general second order surface may be described in spherical 

coordinates by the following equation 

( 103) A:r
2 sin26 cos2<t> + A2r

2 sin29 sin2c(> + A3 r
2 cos28 

+ A4 r2 sin26 cos <J> sin cj> + A5 r
2 sin 9 cos 9 sin $ 

+ A(, r   sin 9 cos 9 cos 4> + A7r sin 9 cos <J> 

+ A8r sin 9 sin (j) + A<, r cos 9 + Ai0 r sin 9 + An  = 0 

For a surface of revolution ( i. e. ,  a surface having no <j> variation) 

we can reduce Eq.   ( 103)  to 

( 104) Arl r2sin29 + A      r2cos29 + Bri r
2 sin 9 cos 9 

+ Ar9 r cos 9+ ArXo r sin 9+ Aru  = 0 

by examining the profile of the surface in the plane 4> = 0.       For the 

sake of convenience Eq.( 104)   is written as 

(105) r2U( 9)  + r V(9)  + Aru   = 0 

134 
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The properties of this surface which are necessary for a geo- 

metrical theory of diffraction analysis are the unit normal vector 

A 
( n) ,  the differential arc length on the surface ( ds) ,  and the radii 

of curvature in the co-ordinate directions ( pi  in the 6 direction,   p2 

in the <j>-direction) .     The normal vector is most easily obtained 

through the use of the gradient.     Thus 

V[ r2U( 9)   + r V( 9)  + Arn ] 
( 106) n = 

|v[r2U( 9) + r V( 9)  + AriI] 

Taking the gradient we have 

r ( 2rU + V) + 6 { rUe + Ve) 
(107) n= r 

[(2rU + V)2 + ( rU0+ V$2]2 

where 3U( 9) 
U9 = -^i- 

8V( 9) 
Vfi = —'— 

for convenience we set 

( 108) Si   = ( ZrU + V) 

S2   =( rUe+ Ve) 

Now,   using the relations between unit vectors in the ( r, 6,<j))  and 

( x, y, z)   systems, 
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A       A A A 
( 109) r = x sin 6 cos <|> + y sin 6 sin 4> + z cos 9 

A       A A . A 
0 = x cos 0 cos <j) + y cos 0 sin <j> - z sin 0 

we may write 

A                 1 A 
(110) n = T—    {x[Si  sin 9 cos <t> + S2 cos 0 cos cf>] 

[s; + s2]2 

+ y[Si   sin 0 sin <j) + S2 cos 0 sin <j>] 

+ z[S!  cos 0 - S2 sin 0] } 

The differential arc length ( ds)  may be expressed as the 

scalar product of the derivative of the position vector with itself. 

For a curve given by the relation f( u, v)   =0 we have[ 48] 

(111) dr = ru du + rv dv 

and the differential arc length is 

( 112) ds2 = dr~-   dF 

This relation may be written in what is called the First Fundamental 

Form of differential geometry[ 48]   viz. 

(113) ds2 = E du2 + 2F du dv + G dv2 

where 
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E = r,   •   r u        u 

F = r,   '   r u        v 

G = rv •   rv 

We may write the position vector in rectangular coordinates as 

_       A A A 
(114) r = x r sin 6 cos (j> + y r sin 6 sin (|i + z r cos 8 

The G and <j> derivatives are then 

A 
( 115) r^ = x[ rg sin 0 cos § + r cos 6 cos <\>] 

+ y[ rg sin 0 sin cj> + r cos 0 sin cj>] 

+ z[ TQ COS 9 - r sin 0] 

_ A A 
(116) ri = -x r sin 0 sin <(> + y r sin 0 cos cp 

The derivative of r with respect to 0 is obtained using Eq.   ( 105)  as 

, ,,,, dr(0) r2U6 + rV6 rS2 (117) r0    = -      = -   
0        d0 2rU + V Sx 

Next,   using Eq.   (113)   and algebraic manipulation one obtains in 

(r,8,<|>)   co-ordinates 

(118) E - r2 + r2
e 

F = 0 

G = r2 sin20 

which results yield the arc length on the surface. 
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In order to obtain the radii of curvature on the surface it is 

necessary to evaluate the Second Fundamental Form of Differential 

Geometry[ 48] .     This form is as follows, 

( 119) -dr •   dn - e du2 + 2f du dv + g dv2 

in this equation e, f, g can be computed as 

e = -r u 
A 

nu 

f = -7   ' 
A 

"v 

g • " rv ' 
A 
nv 

Equation ( 119)   is not convenient for computation in the case being 

examined as it generates a great many terms which must be reduced. 

An equivalent form which in this case is easy to evaluate is given by 

Struik[48]   as 

(120) 
_ A 

e — r       • uu n 

f — r       • uv 
A 
n 

g = 7vv- 
A 
n 

This form reduces the number of terms to be reduced by about 1 /2. 

Using Eq.   ( 115)  we have 
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A, 
(121) TQQ = x[reQsin 6cos $ + 2r0 cos 9 cos <t> - r   sin 0 cos $] 

+ y[ TQQ sin 9 sin cj) + 2rg COS 0 sin 4> -  r sin 0 sin cj)] 

+ z[ TQQ cos 0 - Zrg sin 0 -r cos 0] 

A 

(122) rQi=-xrcos0sin<f> + yrcos0coscj> 

_ A A 
( 123) rix = -x r sin 0 cos <ji - y r  sin 0 sin 4> 

where 
re[(Si)e+S2]   + r (s2)e 

r00 =  
Si 

(S2 )e= reUe+ rUee+ Vee 

Performing the operations indicated in Eq.   ( 120)  we have,   after 

reduction 

Si   TQQ + 2S2 rQ - Si r 
(124) e= —r  

[s{ +s2]
2 

f = 0 

Si   r sin20+ S2r sin 0 cos 0 

g = : z—c  
[S? +S^] 2 

Now the normal curvature may be written as[ 41] 

e du   + 2f du dv + g dv2 

( 125) Kn 

E du2 + 2F du dv + G dv2 
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which in our case reduces to 

e d62 + s d<i>2 

( 126) Kn = 
E d02 + G d4>2 

Now the curvatures in the directions of the coordinates may be found 

by taking d8 and d<f> equal to zero respectively. 

( 127) Kx   = e/E 

K2   = g /G 

The curvatures Kj  and K2 are called the principal curvatures.     The 

total curvature along a tangent to a coordinate direction can be 

expressed by introducing the angle a  between the direction d<f>/d0 and 

the curvature direction d<(> = 0,   resulting in 

( 128) K = Kx  COS
2
Q + K2 sin2a 

This relation which expresses the normal curvature in an arbitrary 

direction in terms of the principal curvatures is known as    Euler's 

Theorem. 
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Two further expressions are useful.     These are expressions 

for the Mean and Gaussian curvatures and are 

Eg -2fF + eG 
( 129) M =       ,   the mean curvature 

2(EG  - F2) 

and 

eg - F 
( 130) K =  T~ '   the Gaussian curvature. 

EG  - F2 

As the radius of curvature in a given direction is the reciprocal of 

the curvature the above results yield the radii of curvature required 

in the evaluation of the diffraction and attenuation coefficients. 

The above results allow the determination of the radii of 

curvature,   differential arc length,  and Gaussian curvature at any 

point on a surface of revolution defined by Eq.   (104).     These 

surfaces include the figures of revolution derived from the conic 

sections and the ogive. 
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APPENDIX  H 
DIFFRACTION  BY  A   PERFECTLY 

CONDUCTING  WEDGE 

In order to satisfactorily calculate diffracted rays it is neces- 

sary to determine the diffraction of plane and cylindrical waves by a 

wedge.     This has previously been done ( see Reference 26)  and an 

expanded treatment is presented here.      Sommerfeld[ 49]    obtained 

the solution for a perfectly conducting wedge composed of two half- 

planes with a plane wave incident on the wedge.    Sommerfeld also 

obtained an explicit form of the solution for zero wedge angle; i. e. , 

a half-plane.     Pauli[ 5]   determined an explicit form for the general 

wedge.     Oberhettinger[ 13]    presents a different form for the general 

wedge which he obtained using Green's function techniques. 

The diffraction of a cylindrical wave by a wedge is obtained by 

the use of reciprocity,   together with Pauli's expressions for wedge 

diffraction.     Pauli's expressions give the diffraction of a plane wave 

by a wedge for a general angle of incidence and for polarization 

either perpendicular or parallel to the edge of the wedge.     The total 

field at observation point P of cylindrical co-ordinates ( r,\\>) ,   as 

shown in Fig.   50a,   is given by 
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CAL 

Fig.   50-- Diffraction by a wedge of included angle ( 2-n) IT. 

+ (131) u(r,n, IJJ)   = v( r,n, \\i -i\tQ)   -    v( r, n, \\> + \\t Q) 

for a plane wave incident from direction i\i Q.     The plus sign applies 

for the polarization of the electric field perpendicular to the edge 

( 

du 
dn 

= 0 

wedge ' 

and the minus sign applies for polarization parallel to the edge 

(u wedge J =0.      The quantities v( r, 4>)   are given by 
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(132) v( r,n;4>)   = v   ( r, n,<|>)  + vB( r, n, <\>)   , 

where v   ( r,n,<j>)   is the geometrical optics field; and is given by 

r 

( 133) 

where 

v  (r>n»4>)  =   - 
exp[ jkr cos (cj)+ 2-rrnN) ]  , 

-ir+ 2-rrnN <  4> <  IT + 2TT nN 
0 otherwise 

N = 0,   t1 ,  1 2,  ... 

vg( r.n.cj))   is the diffracted field for a wedge of angle  (2-n) TT 

and is given by 

4 
(134) 

.ir 
2eJ4 2eJ4     /j \ co 

vB(r,n,4>)   =     p.      [- sin-         
°                         slit      \n n J TT v J cos — - cos — 

n n 

.   e 
jkr cos *r •*** 

where a = 1 + cos 4>. 

Equation ( 134)   is composed of a leading term plus higher- 

order terms which are negligible for large values of kr.     For large 

values of ( akr)   Eq.   ( 134)   becomes, 

•j(kr + Tr/4)      I 

(135) vB( r,n,cj>)   i 

.      TT -  sin — c n n 

\/2Trkr 
TT <\> 

cos — - cos  -L 

n n 
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The diffracted field,   as expressed by Eq.   ( 135) ,   is that from which 

the asymptotic diffraction coefficients of the geometrical theory of 

diffraction are obtainedf 1] .     Since this expression is valid only for 

large values of ( akr) ,   it is not valid on the shadow boundary because 

a = 0 there.     Then Eq.   ( 134)   must be used,  which gives the value of 

the diffracted field on the shadow boundary as 

1 ., upper sign for <j> = tr" 
(136) vB(r,n,Tr)   = + i e"Jkr +   •..      { 

^ lower  sign for 4> = TT 

The value of v( r,<j>)   on the shadow boundary can then be obtained 

from Eqs.   (132),   (133),  and (136)   as 

( 137) v( r,n, TT)   =7 e_Jkr +   ... 2 

which is one-half of the incident field on the illuminated side of the 

shadow boundary. 

The series representation of Vg given in Eq.   ( 134)   is valid 

everywhere except for the values 

( 138) 4> = ±   TT + 2TrnN,    n 4 2,   N = -   1, ±  2,     ... 

Near these values the series representation converges slowly,   and 

the periodicity property of the exact function v( r,n, <j>)   can be used 

to overcome convergence difficulties near these values.     The exact 

function v( r, n, $)   is periodic in 2-irn so that 
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(139) v(r,n,4>+ 2iraN) - v(r,n,<j>), N = 0,  - 1,  - 2, ... 

Therefore,   if the series representation of vg converges  slowly 

because § is near one of the values expressed by N 4 0 in Eq.   ( 138) , 

the periodicity property of Eq.   ( 139)  can be used to represent v( r,<j>) 

by employing the series represenation near <j> = -    ir( N = 0).     The only 

case for which all boundaries are regular and the substitution of 

Eq.   ( 139)   is not necessary is for the thin half-plane,   in which case 

n = 2. 

We now examine the behavior of the diffraction coefficient 

VD( r,n,4>)  for the case illustrated in Fig.   51 in which two reflected 

rays exist at angles ipi and I|J2.    We first examine the values of 

cj) = ijj  +1^0 f°r the diffracted rays corresponding to the directions of 

these reflected rays.     The values of the pertinent angles are 

( 140) \\ii   - v - \\iQ , ^2 = ( 2nir - IT)   - i|iQ 

Thus the values of cj) = ^  + ip     are 

( 141) <\>i   = ir , cj>2 = ( 2n-rr - IT) 

For <j>!   = -n Eq.   ( 136)   expresses the value of the diffraction coefficient 

and thus the total field at 4;  = \\>i   is one-half the geometrical optics 

reflected field on the illuminated side of the shadow boundary,   as 

given by Eq.   ( 13 7). 



147 

REFLECTED 
WAVE    NO. I 

Fig.   51--Case of diffraction by a wedge where 
two reflected rays exist. 

However,   for 4>2 = 2n-rr - IT and n 4 2,   Eq.   (134)   is not analytic 

and consequently the following substitution is made: 

(142) v( r, n, <j>)   — v( r, n, 4>-2-rrn) 

for values of 

( 143) 4> >   trn     . 
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The region over which the substitution of Eq.   ( 142)   is made,  as 

expressed by Eq.   ( 143)   is determined from the symmetry property 

of v( r, n, <j>); i. e. , 

(144) v(r,n,-4>)   = v( r, n, +<f>) 

That is,   if the substitution of Eq.   ( 142)  is made for values of cj> < -rm, 

then the substituted values of $ - 2im are closer to the value of non- 

analyticity Tr-2mr than the original values of (j> were to the value of 

nonanalyticity 2mr-IT.    It is also noted that the value substituted for 

v( r, n, <J)2)   is v( r, n, -IT) ,  which corresponds to the correct value for 

a shadow boundary. 

The equations given in this Appendix apply for plane-wave 

incidence, but they can be used for cylindrical-wave incidence as 

shown below.     Consider the two situations  shown in Fig.   50.     It is 

desired to find the field ua  in some direction | for the wedge illumi- 

nated by a cylindrical wave with its  source located at (x0»a).     By 

reciprocity,   the field ua is equal to the field u^ which is located at 

the point ( r = xQ,   ^  = a )   an(i with a plane wave incident from the 

direction \\>Q = £.     The value of u^ is given by Eq.   ( 134) .     Thus 

using the property expressed in Eq.   (131)   the solution for dif- 

fraction of a cylindrical wave by a wedge becomes 

(145) ua = v(x0, n, i+a)   -    v(x0, n|-a) 
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The field at infinity is given by Eq.   (145) for a perfectly conducting 

wedge illuminated by a line source at (x0,a). 

If the quantity (akx0) is sufficiently large for Eq.   (135) to be 

valid,  then the diffraction pattern for cylindrical-wave incidence has 

the same form as that for plane-wave incidence.    In other words, 

the diffraction for cylindrical-wave incidence is the same as that 

for plane-wave incidence in regions sufficiently removed from the 

shadow boundaries.     The region near the shadow boundary in -which 

Eq.   (134) must be used increases for decreasing values of xQ and 

may encompass all 360 degrees. 

Hutchins  [50]   has generalized the Pauli solution presented 

above and has obtained a series solution which is valid for the 

exterior and interior regions of a wedge.    In addition his solution 

is accurate for wedges of large included angles where the Pauli 

solution is not accurate. 
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APPENDIX   IK 
APPROXIMATION FOR  THE SPECULAR SCATTERING 

BY A   GENERATOR   OF A CONE 

Specular scattering by a generator or frustrum of a cone is 

shown in Fig.   52.    An approximate solution for the backscattered field 

e f. 

Fig.   52--Scattering by a conical frustrum. 

in and near the specular direction may be constructed as follows. 

It is assumed that the backscattered field close to the normal to the 

cone can be written as 
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(146) US(U  =    +M_   F(r)  lMt:±^lHllL       e'jkr     .    ^ 
\/2iTk. kd sin  ( £) r 

Equation (146) combines the sin(x)/x pattern function behavior previ- 

ously discussed and the spatial attenuation factor F{r).     Proceeding 

from Fig.   52 we have that 

(147) pl   x   a   /cos r) 

(148) pz   = a2/ros T] 

where    pj  and p     are the finite radii of curvature at the ends of the 

frustrum. 

(149)     F(r)U=0=ff 
where 

(150) p = Pl   + j- (p2  -pj . 

The average spatial attenuation for    % small is approximated as 

Pi +-f  (P2~ Pi) 
(151) F(r)ave = i- \  

d. 

0 

2 
dz 

with the result 

(1.2, F(r)ave.^.   _I_ [Pl»/«-p.'/Mx     • 
J P2    "  Pl 

The approximate scattered field from the generator of the cone is then 

(153) US
app (?) = • _^L-F(r)ave   y si" B S±L  . U1   . 
*^ \y2-irk kd sin § r 



APPENDIX  IV 
THE  DETERMINATION OF   THE   GEODESIC   PATHS 

ON A GENERAL QUADRIC   OF  REVOLUTION 

The determination of the geodesic paths on a general quadric 

surface of revolution is not an easy task in general.    It is known 

that the geodesic paths on a body of revolution can be found by 

quadratures.    However,   in the case  studied here it is convenient 

to utilize the differential equation for the geodesic given by 

Struik[ 48]   as 

(154) v"  = A(v')3   + B(v')Z + cv1 + D 

where A = _ Ge_ 
2E 

B 
E0    Ge 
E    "  2G 

E0      Ge 
C 

2E      G 

D 
_ Ee 

2G 

V = cb(6) 

and where E and G are given by Eq.    (118) and EQ and Gg are the 

partial derivatives with respect to 6. 
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We now assume a Taylor series solution for v = <)> in the form 

2 /^. 
(155) ^^—a:(fjmh 

AB = | e.+1 - e. 

The differential equation is then 

(i56,       a=AwtBf*¥tca 
ae2       \dej        [dej        de 

And the following procedure will yield a numerical solution by 

inte ration: 

1.     Determine d4>/d8| 
ei 

Z.     Compute A, B,C,D,   at 0j> 4>i 

3.     Compute d2cb/de2 I, n     . 
(9i'(t)i) 

4„     Compute 4>( Qj+j )   using the series 

5..    Compute dcj>/dG - (<j>i+1   - <f>.) / A6 

6.     i = i + 1 and proceed. 
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APPENDIX   V 
THE  COMPUTER SOLUTION FOR  BACKSCATTER 

BY  A SECTIONALLY  CONTINUOUS   BODY  OF 
REVOLUTION DESCRIBED   BY  A SECOND 

DEGREE  EQUATION 

In the computer solution Eq.   ( 104)   is used to describe the 

profile of the target within a section defined by the angles THTI( I) 

and THTF( I).     The constants must be arranged so that Eq. ( 110) 

generates an outward normal to the surface.     The angle of the 

incident wave is THT and the wavelength is WAVE.     The following 

flow diagrams describe the computer programs which were coded 

in Fortran IV for the  solution of the backscattered fields of the 

target.    A list of the Subroutines and Functions,   other than standard 

library routines which were used is also presented. 

The programs,   titled "Wedge Diffraction Computer Program" 

and "Creeping Wave Computer Program" utilize the analytic tech- 

niques presented previously.     The Wedge Diffraction Computer 

Program uses the wedge diffraction coefficient,   the diffraction by a 

pair of wedges,   and the solution for the diffracted fields near the 

axis to construct the solution for the scattered fields due to single 

diffraction from locations on the target where the slope is discontinuous. 
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The creeping wave computer program uses the geometrical optics 

field from the specular point and the creeping wave solution for 

waves which propagate around the target to construct the solution 

for a target having no discontinuities in slope on its surface.     The 

scattered fields for a target where both wedge diffraction and 

creeping wave contributions exist can be constructed using a 

combination of the results of both programs. 
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WEDGE  DiFFftAcr/o* COMPUTER PROGRAM 

COMMON 4   FORMAT 
D«ciA*Ar/o>y.s 

I 
RtAft - >/O.OF S#cr/<>v*(rJ) 

\JkV*L.eNC,TH (.WAWJ) 

Iwc iDenes AA/6I»(TVT) 

I 
Co£FFICIBwrs   OF   2*/L> 

Secr/o/v    BowOAdifJ 
r«rx(x) . rvr/^r)  

XHIT/AUZ£   Co/tsr^Airs 

i 
Do a»» iW*/ 

i D 
COAlPUTE    SURFAC* 

CALL   ^COM(V\ (.rw1) 
CALL  ^A*O^M      

G 
I 

IW: / 

0 To  202 

3 
> 

CoMf»urE SURFACE 

A/OHMAL.   F3 
CALL FCOMW^rw- 

CALL. F\ok/^ 
•0 

aoa 
CHECK F»*   1*/£D«*  AMQLC 

0/v TWE EHO 

WAU* TT-Coi (£.£/) 

V207 
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i         
WA (iw) = TT-GOS '( F/ •«) 

1 
(   IF 2W = /V QO TO 203 

207 

> 

<LoHTlNUE 

I 

(IF (SPX. 6T. rc-r)  A 

5Q» *  

CONTINUE 

ZOI I 
CONTINUE 

C 
I 

203 

Cuec*.  Fo*   \*/eo4£ 
AMQL£   O/V  TM£ E.MD 

i 
W*(Nw$-7r-cos(z »F2) 

204 

FLSX (IW)  F««AI LAW 0* COMBS 

Loop   t,N IW 

Do   log   x 

I 
W0t';/VWD      y 

"1 ~ 3Q8 

CoWT/A/ff 
Loop OM   I WD 
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Ser UP Loop ov 

f Do 
I 

> 

4-oo  o* 

(Do 4oo   o*       y 

WhVeL£M4TH       ) 

Loop ON   TUT 

Loo P  ON   WAV£ 

I 

c ~i— 
Do 3o/JO = /;WO   )* 

1 
> 

LOOP  OH Wto*£S 

THTW (l6)» THTX(Zt>) 

1 

1 
CoMPurB    «ADlAt  Lo<ATtO* (Aw) 

Aw >4x;*t LO<AT>M (ZW)OP Wetxg 

I 
F»R Bes*ci- Per. Soi.*T»«* 

I 
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XP(XD=    NWD) 

<k° To 305 

TF^THT *- Wfz.   .AA/D. Ib-rl) 

CALL FCOM/H( jo-/) 

I 
CALL. Witty   (upf£K UsooejFWiu) 

CALL  Wiu.y{ L.o*/en. WeDae , FWIL) 

CALL   FcafAtA (ID) 

I 
CALCULATE  T/vc/oe/vce 

VecroR.   V 

I 

ifiS  
Co/vi pyre   77p 
CoMTRiBur/oM 
£riP = (o.,o.) To, 
F'Ksr o*oe* 

EOTOT - £oror -f-£r/P 

CALCULATE  TN CIDVHCE ANQLE O/V W*D<itf 
UilNC, TlMCIDt VT     Ol»£cr/0/V   Vccro*   V 

AMD         S U*PAC<» A/ORM AL. VEC7 OR   F 

fr<   £ psiu « f r cos"' (- -V • FUD, rwrifri)) 

PSTL = J t c»i'(-V« F(I»i zw^ro-iV) 

»>g Pill/ *  J *• coj '(-v FCro r^rto^) 

PSTL - ^ r coj t-v. ^(*D IW.IT5J) 
^Mane THO SlftMtt^ 's   Der£«iMf«/l>o 
ay   - Vx F. 

I 
CALCULATE     PHA4£    OP   lA/2»04£ 

PHWU ~   PHKS£ (THT UP?SR */STKE) 

PH»I L -   PHASE (THT, IOWBR. WEC^E) 

 J 

3o/ 
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 1 
STTC =   3.B3,7/A£SAK 

5TTX   =   SIN (TUT) 

I IF (srrl <. srro)        \ 
V Co  To  3oz J 

1 
S«T UP  Te*r FOR.   s/v(x)/x 

WA>/£ 

€ 
I 

XF(AR6X<^-)  <$O 7b 304* 

Q 
I 

JF(rO = /)  Go    ro  3<S5 

I 

3o^  
Compute F/Si.0 
vtiHt   Sestet. 

FUNCTION SOLUTION 

I 

> 

P&£ss = /'-^^ (rwr; Wet»r/OCATN*) 

E&E53 = j Jj£(/fo»)«VlSS « PftEts 

1 
n 

W 
301 

•305 

304 
CALCULATE    P/WtAcrco   Fmu.p<, 

EDU = WCU * PHWU««WW/S„T CWu/Ave)' 
£fcl/«    £W   *(Sf>A.TIAL  ATTeN.) 

/. 
EOL = gPl« C^PATIAI- A-rrg^ 

•SSiir ^rr/vvAvs) 

1 
Compare   SPATIAL. 

ArrentiAT/o/i/ FACTOR 

I 
PBAI* * 4 7T   , 
 * SfATuu. Arratf. 
WAVE 

IF (TD • rx>x>    £»U3  C0-/0.) 

E.0TOT =   £0f0T ^£D(jf-£OL 

I 
AXSX 

gSX«   g3x« fjtgj/ 

£LTOT= fDTf E.SX 

30/ *                  -, 

CoAm*i/E ID5/ = ,T£>+/ 

r 
Loop OA i   XD 

N 
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1 
COM pure   ECHO   AUSA 

"1 
WR\TE 

^0 3 

C.QNT IHVE 

I 
STOP 

LOOP O« Wxyg 
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CREEPJA/G  WAVA COMPUTER   PROGRAM 

HORIZONTAL     PO J.A KIZ AT to A/ 

COMPCCX ,D /M e/vs/o/v, 

COMMON, 4 faRM^r 

DEC £A RAT/O/VS 

I 
READ • Aio. OF S«cT/o«i- (si) 

WAVete#«r«  ( WAVJ) 

ReAB (i = /,**) 
CotFFIC/lNTI    OF    2Mb 
Defuse £av*,TiWj 
SaCTIO*       t&oWtA   */«$ 

•TWTTCr),  THTF& 

I 

( 

Do /tftf   o,v 

c 
I 

Do   /oo     ON 

WAV Ei.£AJ(»TH 

IF CTHr> r/i)    /A/k'fRT   TARCffT 

CALL FWVRT 

r 

C*Lcut*Tf   T/VCIDB/sice 

VHcro«     V    AMD    I/VC»«WT 

Fiai-D   Vector.   £. 



1 
Q*.T£KMIN£  Spec^z-A* PUNT 

(     Do  4/0   XSP- /, V }*- 

CALL FCO*IAI (TSP) 

CALL Fspor 
CALL    FA/ORM 

SBL£CT  Z-A/?4£jr   P*O»OCT 

OP      -V «/V-=r   FNS.PP 

/-OCAT/av *( KSPP, 77/Sf/»*$/») 

4/Q I 
CONT / Nl/f 

Derc*Miw» Citeep/<v4 WAVE 

ATTACMMBMT    POINT* 

G 
E 

Loop o* ZcW 

CALL.   Pce*i/v| (lew) 

CALL.  FSPOT 

CALL    FNOfHA 

- ' 

Sfi-fa U«<esr    PRODUCT 

OF   [E.A|\=   FCWU      ON   L/PPCR 

HALF  OF   fAkoeT    Ar   LOCUTION 

(RScwo',  T*cwJy lit*lj) 

T 
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5IO 1 
CONTI HUE 

LOOP en   Xcw 

( 

I 
Do 520   2CW ED* 

1 
CAu. 

CAM. 

FC5MM 

FAtORH 

(icw^ 

I 
SBLfiCT /.ARQCtT     PKODvn   OF 

/§.fl|,.FCWL     ON    ^.owa'« 

H*L*  OP   TAKJBT  AT   loc*>Tit» 

(.RSCWL ;rrtck/t ^CIVL) 

5*o 

COHTIHUE 

OPTICS    COAITKIBUTXOA' 

CALL FC»A«>N (A/SP) 

CALL  PZFF$O 

COM pure    G» MASS/AW  CfRVAmC 

I 
PHASP=   PH*S£(Sf*a/cA* f>r) 

I 
£Co -- ( L-A  P*A»P 

"1 
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1 
CALCULATE  CR.£MPIN<,  WAf« 

PATH    LENGTH 
CWll -a-  O. 

G 
I 

o  5X2.     /VCPt/= A/CW^ l^L-/*" 

CALL  PCOMM (A/CPU) 

TCWI •= THCWU 

IP (wcpa > A/en/</)rcu/i=T«ri(jKPL>) 
rcv^a = THTF(NCPU) 

CALL  p//vr (fK/HU, «J&J TCWl,TCUtt) 

PATH   U£N&TH=    RCMLI 

CWL|=     CWLI    + RCAU-I 

5Z2. I 
COWTlA/t/e 

I 
CWLi = O. 

G O    524    /VCPL," A/Ci^L ̂ 7)*j^ ON AJCPL 

CALL  FCOMM (NCPL.) 

"TC*rt* THCWC 

rF ((VCPLV NCWL^TCWlrTKTlt/ycPL^ 

TCW^ =  THTF(/icpi.) 



1 
CALL   PINT (gourds, TCWI, TCWi) 

PATH   LEM4TM-   *CA«LZ 

I 
CONTINUB. LOOP OM MCPL 

FKLl =   3tf • Cwu/wAve 

FKJXW •   FKU + FKLl 

CALcwtAte   CREEP/A1 4   WA^e 

hrrtmj\r/on   ALO*Q   PATH 

ALPI»(JO.,O.)  , Atpze(o.,oO 

I 
(      PoiJO    A/CPU* NC*JO,H, I       /*-^ 

OOP  ON A*cpu 

CALL   FCOAIAI   (wcPi^ 
TCWl*   THCWU 

IPLHCPO-7 NCVJU)  TCwl «    rHTT(NCPu) 

TCVJZ -   THTP (NCPLJ) 

CKL-L    FlMT (pALplj O^ds yrcw^ TCIV?) 

A T T£ /V </A77 o/v «    PALPI 

166 

ALPM-    AtPi * PALPI 
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S3o 

CON TIHUE Lo££ e>* NcPV 

(       Do   S3Z     NCPLxr/tcWLfAtjl      \ 

TCWl =    THCWL. 

IF( NCPL> NCWL)   TCWI-  THTI(AJCPL) 

TCWZ  - THTF (NCPi-) 

I 
CALL   FlNT (PALP2, °<.ds; TCIV/,r CIV,?) 

ATT£HU*T/OH •=  PAUPZ 

ALP2.=   ALP2 r PhLPz 

53Z u 

Co w T / AJ u£ 

I 
ATTEW -   ALPI *ALP2 

CALCULATE CREEPINQ,  WAv/e 

F/«i.D.S 

I 
PHCWI = SP«Ase(r/ycu/^i Rswu) 

PHCWZ =   SPHA»e(THC*/Lj RSCW/L) 

CALL b r FPdo ( fHCwtl, Ricwu} 

CALL   bT^PQoCTHCWL , RSCWL) 
 r_^-  
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1 
0 SQC *   Ds<* ( /O, % fa f WAVC) 

1 
ECW=--?. *DSQC* PHCWIHPHCW2 

4 C«XP(-ATTCA/ - J FKUW) 

ETOT =   £<ko + £CVN/ 

I 
CALCULATE  ECHO hntk 

I 
WRITE 

too 

Cowr/ NUC 

I.O0E O* W*Vli.g*<bTH 

loo» QM Inat£Mca   Ami./  

STOP 
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SUBROUTINES  AND   FUNCTIONS 

FCOMM(I)      Shifts constants describing each section from   /DATA/ 

COMMON  to unlabeled  COMMON,  thus adjusting the constants 

to the current section ( I). 

RAD( THT)      Computes the radial distance to the surface at the angle 

THT. 

FNORM( FNVX, FNVY, FNVZ, R, THT, PHI)    Computes the surface 

normal N - xFNVX + yFNVY + zFNVZ at ( R, THT, PHI) 

WILLY( FWI, THTI, PHI, THIN, PHIN)       Indicates if the location 

( RAD( THTI) , THTI, PHI)   is illuminated ( FWI = 1. )   or 

shadowed (FWI = 0. )   with respect to the incident wave 

( THIN, PHIN). 

CROSS(X, Y, Z,A1,A2,A3, Bl, B2, B3)    Computes X = AX B . 

PHASE( THTI, PHII, THTB, RB, FK)      Computes the backscattered 

phase of the location ( RB, THTB)   for a wavenumber ( FK) 

and incident wave ( THTI, PHII). 

SINXX( Y)      Computes sin ( Y) /Y . 

sin ( u/FN) 
DIFF1( FN, PHI, BETA)      Computes DIFF1 = 

FN«  sin( BETA) 
.11 

e-J4 

COS(TT/FN)   -cos(PHl/FN) 
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BESLl(X)      Computes Ji(X). 

FSPDT( RSP, THSP, FNT, THTS, THTF, DTHT, PHI, VX, VY, VZ) 

Increments by steps of DTHT within the limits THTS to 

THTF and finds the location ( RSP, THSP)   at which the scalar 

product FNT = N •   V is a maximum. 

FINT( SSS, FCTI ,FLL, FUL, ERRR, NX)      Performs a numerical 

integration of the complex function FCTI between the limits 

FLL to FUL,  within a percent error ERRR,   returning the 

answer in SSS.      If NX is 1 equal increments are used,  if 2 

adjusted increments are used. 

DELSP( THT)      Computes the incremental arc length at the angle 

THT. 

SPHASE( THTI, PHII, THTB, RB, FK)      Computes the incident phase 

of the location ( RB, THTB)   for a wavenumber ( FK)  and 

incident wave ( THTI, PHII). 

ALPH( RH01.RH02.WAVE)      Computes the attenuation function 

(ALPH)   for radii of curvature ( RHOl, RH02)   and   a wave- 

length (WAVE). 

DSQ( RI1, RH.WAVE) Computes the square of the diffraction 

coefficient ( DSQ) for radii of curvature( RI1, RI2) and a 

wavelength ( WAVE). 
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ALPHDS( THT) Computes the product of the attenuation coefficient 

( ALPH) and the incremental arc length ( DELSP) at the angle 

( THT). 

DIFFGO( R, THT.RTHT, RTTH, ECAP, FCAP, GCAP, ELC, FLC, GLC) 

Computes the radial first ( RTHT)   and second ( RTTH) 

derivatives of the surface and the differential geometry 

parameters ( ECAP, FCAP, GCAP, ELC, FLC, GLC)  at a point 

on the surface ( R, THT). 
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