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ABSTRACT 

This report contains a description of the models to be used in 

analyzing the capabilities of ground-based sensors in determining the 

mass of orbiting bodies, a description of the model coefficients, and the 

justification for their selection. Relations are derived for computing 

sensitivity coefficients and their coupling to mass variance. 

VI 



SECTION I 

INTRODUCTION 

This document is Technical Report Number 1, the first in a series of 

three theoretical reports prepared under Air Force Contract F19628-67-C0041. 

It is concerned with the mathematical models and relationships necessary 

to perform a detailed maximum-likelihood/minimum-variance error analysis 

of the capability of ground-based sensors in determining the mass of a 

satellite.  It is specialized to account for the following restrictions: 

1) The sensors observe the satellite without error. 

2) The satellite is a sphere of 5-meter diameter. 

3) All the physical characteristics of the satellite except mass 

are known without error. 

4) All the error in the computer mass results from errors and 

uncertainties in the knowledge of the orbit-perturbing forces. 

Technical Report Number 3 will be a companion document, extending the 

theoretical development to remove the restrictions of perfect sensor 

observations and perfect knowledge of the non-mass body characteristics. 

In addition, the body shapes will be generalized from the sphere of this 

report to include also one of a pair of tumbling cylindrical objects of 

length 10 meters and diameters 2 and 5 meters, respectively. 

The theoretical basis for mass determination rests in the fact that the 

mass of a man-made satellite drops out of the gravitationally induced 

motion of the satellite and appears only in the effects produced by the 

non-conservative force fields. For the sort of satellites specified in 
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the contract, solar radiation pressure and atmospheric drag are the only 

two non-conservative phenomena whose effects are reasonably observable. 

Hence the problem is to separate the gravitationally induced motion from 

the net motion and then use the proper solar pressure and atmospheric 

drag models to extract mass-parameter values for the satellites tracked. 

This contract is not concerned with the processing of real tracking 

data. Rather it is a study to ascertain how accurately mass parameters 

can be typically determined in the way just described and what are the 

critical error sources in such a determination. 

Tn choosing the mathematical models upon which to base the necessary 

orbital calculations, one finds oneself deeply involved with questions of 

practical computation. A central-force gravity law, for example, leads 

to expressions for the state of the orbit which are closed-form functions 

of eccentric anomaly and hence are easily computable.  Unfortunately, 

this solution is far too inaccurate a representation of the real world 

to be used as is in orbit or vehicle-parameter determination. 

More exact models of satellite dynamics do not lead to closed-form 

solutions.  Not only must the trajectories that evolve from the direct 

use of these more accurate models be determined by numerical integration, 

but also the state and mass-parameter estimates and the associated sensi- 

tivity matrices must be determined by numerical integration. 

To handle this problem, the use and extensions of techniques contained 

in NASA's KINTVAR family of orbit-determination computer programs will be 

made in this contract. 
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In what follows in this first Technical Report, the basic theory of 

two-body mechanics will be presented, the means for correcting this model 

for various pertubation effects will be discussed, and methods for computing 

the effects of variations in the model coefficients will be developed so 

as to avoid the need for numerous integrations. Finally, the models them- 

selves will be discussed. 
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SECTION II 

TWO-BODY MECHANICS 

A two-body or Keplerian earth orbit leads to an essentially closed- 

form expression for the state of the orbit as a function of the state 

at any prior time. 

In particular, if 

r = 

is the column vector of satellite position in the geocentric inertial 

coordinate system (X, Y, Z) depicted in Figure 1, then the central- 

force-law acceleration is 

d2r/dt2 - M _r/r
3, (2.1) 

where ,/* is the gravitational constant of the earth. Given 

initial conditions at some time t for position and velocity, r and o    * ^ ' -o 

wean 
Equatorial 
FLane 

0" January 1 

Figure 1.  Geocentric Inertial Coordinates 
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i0 
= (dr/dt) , respectively, one can write the position and velocity 

at any later time t as 1, 2, 3, 4* 

where 

r = SQ  f(AE) + fQ gUE), 

dr/dt = rQ ft(AE) + rQ g^AE), (2.2) 

f(AE) - 1 - (a/rQ)(l - cos A E), 

g(AE) = r0(a//c )
(l/2) sin AE + (ado/>)U - cos A E), 

ft(AE)« - («/p)(l/r0)(/t/a)
(l/2) sin A E, 

gt(AE) - 1 - (a/r)(l - cos A E), 

and 

a    =    y#r0/(2/f  ~r0**0 )> ^he semi-major axis 

d    =    r  -f  , o        -o -o' 

AE = E - E, the change in the eccentric anomaly fro* tin* t , 

r/a - (1 - cos A E) + (rQ/a) cos A E + d (/t&r^1'2'  sin AE. 

Kepler's equation provides the means for finding A E, giv«n E ,th» tine step 

At, and ta« •cc«atrioity «: 

n At = AE - e (sin E - sin E ), 

or, after some elementary substitutions, 

nAt = AE + (dJ\IM~Z)(1  - cos AE) 

+ (rQ/a - 1) sin AE, (2.4) 

where 

At- = t - t o 

n = the mean motion, (j/ /ary   '    . 

^•Superscript numerals denote entries in the References Section of this report. 
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The solving of (2.4) for AE completes the two-body solution. 

For notational simplicity, the equations (2.2) can be expressed 

in state-variable form: 

x = x(x , AE), (2.5) 

where x 1 

L*6J 

; x±  = x, x2 = y, x„ = z, x^ = x, x^ = y, x6 - z, 

fol] 
: i 

Lxo6i 
'   ol    o5 

Hence a small change  A x in the state caused by a variational change 

Ax in the initial conditions is, to first-order accuracy, 

Ax = $(t, t ) Ax , -    xx ' o    -o (2.6) 

where 

l(t, t ) = dx./ d x 
o      [_ x °J 

The 36 elements of the transition matrix |(t, t ) are derived in Appendix 

IV. They are evaluated on the nominal two-body orbit calculated from (2.2) 
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SECTION III 

PERTURBATIONS TO TWO-BODY MOTION 

Although the means has just been developed for accounting for 

variations in initial conditions, two-body assumptions are still inadequate. 

The closed-form solutions presented above will, however, be useful in 

the more sophisticated computations which can be made. 

A. GENERAL EQUATIONS OF MOTION 

In general, 

dx/dt - f(x, t) + F(x, £, u, t), (3.1) 

df/dt =0(x,f , u, t), (3.2) 

where x is as defined for equation (2.5), £ ^s a six-dimensional state 

vector describing rigid-body rotation, having the Euler angles of the 

satellite as its first three elements and th«ir time derivatives as its 

remaining three, and u is a vector containing all the model parameters 

about which there exists modeled uncertainty. 

The vector f(x, t) describes the two-body accelerations, while the 

non-Keplerian perturbations enter with F(x,£, u, t), which contains also 

all the dynamic biases and uncertainties: 

f(x, t) = column (x^, x$, x6, yi^/r
3, -yux^r3, -^r/r3) 

I(x> £ , u, t) = column (0, 0, 0, Yy Y^,  F^. (3-3) 

The rotational states £  arise for aspherical satellites to describe the 

cross sectional area presented to the drag media and to account for the 
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dynamic coupling between rotational and translational energy. 

B. EQUATIONS FOR SPHERICAL SATELLITES 

For the purposes of this Task I effort, only spherical satellites 

are to be considered. To a high degree of accuracy, then, ^ may be 

dropped from (3-1) and (3-3)) and equation (3-2) can be discarded. 

Only the following need therefore be considered: 

dx/dt - f(x, t) + F(x, u, t), (3-4) 

The non-Keplerian perturbations contained in F(x, u, t) will consist of 

1) an atmospheric drag acceleration 

(3-5) 

where 

u = (A/m)C„, the ballistic coefficient, constant but unknown, 

u,(t) = a stationary random error in the ballistic coefficient with 

autocorrelation function ~2   .-W&I , due to drag        ' 

atmospheric density uncertainties, 

3_ (x, t) = 
3- 

" \PJ{\ + UeX2)2 + (X5  ~ "e*l)2 + V 

x, -ho x0 4    e  2 

x^^ 
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where, in turn, 

A  • mean atmospheric density at x and t, 

u = rotation rate of the earth: 
e ' 

2) a solar pressure acceleration (see Appendix I) 

*4clar " "3 «* tJ (3-6) 

where, for the spherical satellites in this Task I effort, 

u. = (l+Akd/9) (Inon/
c)(A/m), a solar "ballistic" coefficient, constant 

but unknown, 

and 

Y(x, t) - 

1 

Y3 

- ^A^» 

where 

k, = diffuse reflectivity of satellite, 

I    = solar irradiance at nominal earth-sun distance R , 
nom es' 

R    « nominal earth-sun distance, es ' 
r    = actual earth-sun distance, 
es ' 

c • speed of light 

A 
i     = unit vector from center of earth to center of satellite, 

i    = unit vector from center of sun to satellite, 
ss ' 
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r Xq (a-, + a ) cos a 

n o 
|a| ^ n/2 - Bx 

n/2 - B^ ^ |a| i n/2 + B^ 

n/2 + B, i lal < rr 
A. 

f (1 + >^qa2) 

(1 i >.qass) 

|a| £ n/2 - Bx 

n/2 - B, ^ |a| *S n/2 + B. 
A. A. 

/2 + B^ £ |a| s£ nr, n 

cos a = -(i  . i  ), 0 * a £. rr, 

2
SS  (1/2) 

sin a = +(l-cos a ) 

q = earth albedo, 

A. = ratio of earth radius to distance between satellite and 
earth center, 

B = cos X, 

ax =- (.0417 + .5431^)/3 

a2 =[.0444 - 3-17(X -.77)3 + .0045 (X-.77) sin   [l4.3(X-.77)n]}/3 

acc = a_[l+ s - sesry - e~Ty (2 + sy)] /2 

ar "s{a
8s+al/2 0 + 1 - s(l + sy)d ] }   cos a 

+ 
f X2 j(l/X-sin a)3 + (X-sin a)3] 

(1+X2-  2X sin a)3'2 

(1-X2)3/2 sin a 

1   = -4 + 9.3X 

y    = (a-n/2)/B> 

t 1 , y-o, 

d   = 3.7 + 59(X-.77)2; 
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3) an acceleration due to solar and lunar attraction 

-sun, moon 'sun 

i 
se 

R2 
•- es 

i 
ss 

ss J 
/*hn oon 

me 

»- em 

i 

R 

ms 
2 
"ms J 

(3-7) 

where 

u , LL       ~ gravitational constants for sun and moon, 

i , i    = sun-to-earth and moon-to-earth unit vectors, 
se' me 

R , R    = sun-to-earth and moon-to-earth distances, 
es' em ' 

/v    A- 
i , i    = sun-to-satellite and moon-to-satellite unit vectors, 
ss' ms 

R , R    = sun-to-satellite and moon-to-satellite distances; 
ss' ms ' 

4) and, finally, a geopotential acceleration due to the oblateness (more 

generally, the asphericity) of the earth (see Appendix III): 

N  n 
F (x) = T E .  Z    (C erad U m + S grad V m), 
-o -     " _~  nm6   n   nm6   n ' 

n=2 m=0 
(3.8) 

where T = the rotation transformation that takes the earth-fixed 

geocentric coordinate system (]i , i , Z ), defined as the 

right-hand system with A at Greenwich and Z being the 

north-directed polar axis at time t, into the inertial 

geocentric coordinate system (X, Y, Z) defined in Figure 

1, 
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C  , S  = the geopotential coefficients from (n, m) equal to nm5 run     b * '    n 

(2, 2) upto (N, N) whose published values have constant 

but unknown biases on them, 

grad = column (—j-, —j-, —j), 
dx   dy   dz 

>- (/Vr) (R/r)n F^ (sin 3) - 

r        \ 
cos mX 

sin m\ 

where 

M—  earth's gravitational constant, 

r = the geocentric distance to the satellite at time t, 

R = earth's mean equatorial radius, 

F\sin 3) = associated Legendre polynomials, 

3, X = satellite latitude and longitude, respectively, at time t, 

Hence 

F(x, u, t) 

—                               mm —                    — — 

0 

-drag 
+ 0 + 0 

?  -sun, moon 
+ 0 

F 
—0 -solar 

(3.9) 

C.  ENCKE INTEGRATION 

Given the initial condition x(t ) and the actual values of the — o 

parameters that appear in (3-9), equation (3«4) can be integrated numerically 

to yield the satellite trajectory x(t). Since in the class of orbits 
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germane to this contract the earth's central-force field is the strongly- 

dominant effect, an Encke integration of (3.4) will generally be the 

most accurate approach for a given integration step size and arithmetic 

precision. 

The Encke method that will be used computes small perturbations 

about the two-body orbit defined by equations (2.2) and (2.5). Call the 

two body orbit x (t), or, more exactly, 

x°(t) = x°[t, x(t0)]. 

It satisfies the equation 

dx%t = f(x°, t), (3.10) 

x(tQ) = given. 

If we define 

Ax(t) = Ax [t, x(tQ)] = x(t) - x° [t, x(tQ)] 

and subtract (3.10) from (3.4), we find 

d(Ax)/dt = f(x, t) - f(x°, t) + F(x, u, t), 

Ax(tQ) = 0. (3.11) 

The integration of this equation by an appropriate starting technique, such 

as the Range-Kutta-Gill, and an appropriate long-term technique, such as 

an Adams interpolation method, completes the Encke orbit computation. 

- 13 - 



Reference 1+  presents the Runge-Kutta-Gill and Adams methods that will 

be used, except that it associates the Adams method with a Cowell integrator. 

The CPCEI Detail Specifications, Part II, for the present contract will 

describe the same Adams method in the context used here. 

D.  RECTIFICATION 

If we continue assuming that x(t ) and the actual parameter values 

are known exactly, care must nontheless be taken that the magnitude of 

Ax(t) does not exceed certain assignable bounds, or the Encke integrator 

will lose its accuracy.  If it does, say at time t , then the integration 

must be stopped and the generated value 

x(tr) = x° [tr, x(tQ)] + Ax [tr, x(tQ)] 

used as a new initial condition. A new two-body trajectory is generated 

from (2.2) and (2-5), 

x°(t) =x° [t, x(tr)] , 

a new Ax(t) defined, 

Ax(t) = Ax [t, x(tr)] = x(t) - x° [t, x(tr)]  , 

and the process continued. The technique is known as rectification, and 

proceeds in one dimension as shown in Figure 2, below. The times 

t  , t  ..... are the rectification times. r   r 
1   2 

The generation of an orbit under the assumption of perfect knowledge 

is carried out in the Reference Mode of MINIVAR'  in the manner discussed 

in this section. 
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SECTION IV 

ESTIMATION AND PREDICTION 

The assumptions of the previous section, i.e., that the initial 

conditions and the model parameters are completely known, led to an 

Encke integration which, in reality, only God can perform. Rather, a 

ground-based observer has incomplete knowledge of the initial conditions 

and model parameters and often can see only some nonlinear combination of 

some of the satellite states. Even that which can be seen is masked in 

uncertainty because of fluctuating measurement noise and fixed, but 

unknown, measurement biases. 

A.  PROBLEM FORMULATION 

Consider the equations 

d(Ax)/dt = f(x, t) - f(x°, t) + F(x, u, t), (4.1) 

Az = h(x,2) , b , t) - h (x°, 0, 0, t), (4.2) 

where Ax(t) is the Encke variation from the two-body orbit x (t) discussed 

in Section III, and the vector 

z = k(x>H>  £ i t) (4.3) 

defines the observations z(t) on the orbit, where 

2)(t) = zero-mean Gaussian white noise, 

b = constant but unknown biases, 

Az(t) = z - z , the difference between the actual noisy observation 

and the noise-free observation of the two-body motion. 
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For the special case of perfect sensors to be considered in this Task 

I report, z(t) is always h(x, 0, 0, t), which we will shorten to 

z=h(x). (4.3') 

In addition to the physically meaningful equations (4.1) and (4.2), 

additional equations can be written which describe how the unknown 

parameters and biases within F(x, u, t) change with time. Three of these 

will be modeled and estimated from received sensor data: the three "ballistic" 

coefficients u,, u , and u, in expressions (3.5) and (3.6), which have the 

dynamics 

duj/dt = -(i/rd) \ + wx(t), 

du^dt = 0, 

d^/dt - 0, (4.4) 

where w, (t) is a zero-mean, Gaussian white-noise process with power 

^^Td^d  a Per-unit-double-bandwidth in rad./sec; i.e., it has 

covariance 

Cov [wx(t), w^t'j] = (a/^C^g^t-t'), (4.5) 

where d(t) is the Dirac delta function, and where in general, for random 

vectors a(t), b(t). 

Cov (a(t), b(t)] =E[a(t) b(t)] - E[a(t)J EJV(tj] , 

where E( ) denotes mathematical expectation and ( ) denotes matrix 

transpose. 
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Additional uncertain parameters are contained in the oblateness 

contribution F to F(x, U, t). These are the geopotential coefficients 

J = column (C2Q, C^,. •22' u3i'*"» °33»- 31' 22' • • •, J„-,J • . •) , 

which are constant but have unknown biases on their published values. These 

errors will be modeled, but sensor data will not be used to correct the 

published values. 

For simplicity of notation, the vector v, will be used to denote 

those biases and parameters which will be actively estimated, and v will 

be used to account for those that will be modeled, but not actively 

estimated. If y_ is defined as the vector which contains all variables that 

are to be actively estimated, then it is the 9-vector 

Ax" 

where 

*L " 
~ul 

U2 

_\ 

Now, for any random vectors a(t) and b(t) we will define 

a(n/k) = a(t /t, ), the minimum - variance estimate of the vector 
n K 

a at time t = t based upon data upto and including time n 

t = tk, 

P ,(n/k) = Cov[_a(n) - a(n/k), b(n) - b(n/k)| , the covariance matrix 

on the estimation errors between a and b, 
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and the short-form notation. 

Cov [ a(t), a(t)]  - Cov [a(t)j . 

In this notation, the problem of minimum - variance estimation on the 

vector y_ is simply the problem of choosing a filter for the data sequence 

(Az(n)j such that 

Z a. <J" (n/n) = trace jkP   (n/n)A> = min., (4.7) 

where* 

V I  (n/n) 
yi 

- Cov \y±M - y^n/n)] , 

a. 
I 

a pre-assigned weight given to an error in the 

estimate of the ith variable y. , 

"l 

°9 

trace (  ) = the sum of the diagonal elements of its argument matrix. 

To derive the filter as the sequential processor implemented in MINIVAR, ' 

a regression formula will be applied to incorporate into the estimate each new 

data point as it arrives: . 

2(n/n) = z(n/n-l) + ^(n) [Ia(n) - Az(n/n-lT] , (4.8) 
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where 

B(n) is a 9 x (dim z) gain matrix which has yet to be determined,""" 

Az(n/n-l) = h [x(n/n-l)] - h [x°(n)] in the notation of (4-3 )• 

The computation of the one-step extrapolation y_(n/n-l) is straightforward, 

given state and parameter initial conditions (or prior in-step estimates) 

y_(n-l/n-l). From equations (4.4), since w, (t) has an expected value of zero, 

A A -U -t J/T- A//,x  A    .      .  v
n n-1" a 

u,(n/n-l) = u, (n-l/n-1 J e , 

u2(n/n-l) = i2 (n-l/n-1) 

iu(n/n-l) - £_ (n-l/n-1) (4.9) 

The rest of the y_(n/n-l) vector is computed directly from (4.1) by 

numerically integrating up to time t = t after the appropriate notational 

changes have been nade: 

d(Ax)M = f(x° + Ax> t) - f(x°, t) + F(x° + 4, L  t) 

Ax I      = Ax (n -1/n-l), (4.10) 

initial 
cond. 

where Ax and u are short-form notation for Ax(t/t ,) and u(t/t , ), respectively. 

Hence B (n) in (4.8) is the only computation for which the machinery does 

not yet exist. The remainder of the section will describe how it is computed 

by linearization techniques. Note, however, that up to this point in the 

discussion no linearizing assumptions have been made, since so far B (n) 

could just as easily have been a function of y_ as not. 

-"-The notation dim z is the dimension of the vector z. 
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B. MINIMUM-VARIANCE DERIVATION 

1. Basic Principles 

By their very mode of operation, ground-based sensors deal with 

sampled-data information which can become rather sparse after normal 

pre-processing and conditioning is performed. Hence, only at discrete 

points in time need we have the ideal curves (or their equations) to 

which the data is to be fit. 

This section will generate the sampled-data expressions for y_ (t) 

which describe the ideal orbital motion. They will not be integrated to 

yield the best estimate itself, since equation (4.10) has already been 

developed to do that. Rather these sampled-data expressions will be 

used for the received data. 

Because of the inherent theoretical problems in obtaining B(n), 

the equations of motion must be linearized around a nominal trajectory, 

and Gaussian probability distributions will be assumed for all the random 

variables. Then some rather well-developed theory ' '      and available 

4 5 computer programs    apply after some modification. 

2. The Linearized Equations of Motion 

Consider equations (4.1) and (4.10): 

d(Ax)/dt = f(x,t)-f(x°,t)t-F(x,u,t), 

d(A$)/dt = f(£,t)-f(x°,t)+F(x,u,t) 

where again Ax and u are A*(t/t , ) and u(t/t ,.) respectively, and x(t) 

x°(t)+Ax(t) and x(t/t -) = x° (t) + Aac(t/t x). 

Note that if x and S are both sufficiently close to x  and hence 

to each other, then the f terms can be replaced with the first-order 
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terms in the Taylor's  series  expansions around x : 

d (Ax)/dt « (—)Q Ax •'- F(x,u,t), (4.11) 

6f 

d  (Ax)/dt-(-&-)0  ^  '' ZQ&V' <4-12) 

Now F(x,u,t) can be expanded in a Taylor's series around the best estimates 

x (t/t ,) and u (t/t ,): to first order, 

d F dV 
F (x,u,t)« F (£%t)   r  (-^-) (Ax-4) :• (y^—) (u-£)  (4.13) 

where (—r ) is,—    evaluated at x(t/t ),u(t/t ). v ox '   dx —N ' n —x ' n' 

Moreover, we can define the error vector 

e (t/t, ) = a (t) - a (t/t, ) for any vector a (t).  In the special 
cases where t assumes discrete values, t , the notation 
will be simplified to e (n/k). 

cL 

Clearly, then, equation (4.12) can be subtracted from (4.11)j after (4.13) 

is substituted in, to yield the error propagation equation 

e (t/t .)» -x  ' n-1 

f? a f 
( ) + (—^— ) v dx yo  v dx  ' 

dF 

^c ^W + (—}  ^ (t/t^) . 

(4.14) 

d f       d F 
In the coefficient matrix (— )     i- (— )  the non-Keplenian x d x  o   d x r 

accelerations appear in the lower three rows. However, the components 

of F are smaller than those in f by at least two orders of magnitude 

even for the lowest-altitude satellites. Since the components of the 

lower half of f attenuate as 1/r and those of F attenuate at least as 

fast in the altitude range of interest, it is clear (see the slopes of 

the curves in Figure 3) that the column inequalities 
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I d?±/^\«  Id^/dxj | , j = 1,2,3, all i, 

hold in a component-by component sense when averaged over a complete 

orbit. Because F contains velocity terms (x„, x,, xS)  whereas f does 

not, the column inequalities will fail to hold for j = 4, 5, 6. Still, 

the velocity contributions (damping terms) are very small, and a part 

of these are included in (4.14) via the term 

Since, in addition, x (t) is forced by the rectification process 

described in Section III to remain close to the best approximation to 
df 

the actual, decaying orbit, we can expect (—T-—)  to provide suf- 
°i  °      dF 

ficiently accurate long-term behavior in (4.14) to allow (—r-—) to 

be dropped. 

n 
o 

•5 
c 
o 

•H 
+^> 
nJ 
U 
<D 
H 
d) 
o 
o 
< 

0.5-- 

Keplerian 

Sum of all perturbations 

1.5 

A/m =12.5 m2/kg 

Radial Distance, r 
(Earth Radii) 

FIGURE 3>   Relative Magnitudes of Keplerian 
versus Pertubative Accelerations 
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All such terms, except one, will in fact be dropped. The one that will 

be kept is the oblateness contribution. This is because in 

F(x, u, t) = 
0 

^drag 

+ 
0 

—solar. 

. + 
0 

^-sun, moon. 

+ 
0 

F 
. -o_ 

the oblateness-acceleration 3-vector F is a function of the geopotential 

coefficients J, which correspond to all but the first three entries in the 

vector e that appears in (4.14)- However, the satellite does not sense 

the J vector; rather it senses the oblateness force, which happens to be 

modeled often as an expansion (3-8) having coefficients J. There are only- 

three components of force, but (in our case) 113 components in J. Hence, 

to account for these modeled but not actively estimated parameters, it is 

economical to let the 3-vector 

v2(t) = Fjx, J) - ^(3, J) 

denote the change in the force due to deviations in position and in J from 

their best estimates. Again employing the first-order terms in a Taylor's 

series expansion about x, J, we find 

A 
dF 

A 
dF 

v2(t) * (e?} fe(t) " ^/W] + <a?) I, 

- (3?) |>£<t) - A2(t/Vl)]  + (^) AJ, (4.15) 

where r and Ar are the first three components (the position components) of 

x and Ax, respectively. Obviously, since v (t/t  ) = 0, then 

e (t/t , ) = vJt). 
-v v '   n-1'  -2 (4.16) 
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Identifying the first three components of e in (4.14) as e  and 
dF    1 

the rest as e , we find that after throwing away all of (—) except the 
-*2 ox 

oblateness part and using (4.4), 

e (t/t .)" -x ' n-1' 

e (t/t .) 
-V-, ' n-11 

A 
af 3F 

(fxK & —1 
__ —_ 

-^ 
0 

0 

0 
L> 

"e (t/t .)" -x '  n-1 

e (t/t ,) .-v1
v ' n-1' 

0 

0 

wx(t) 

0 
0 

(4.17) 

Even though e  is a function of e , the equation can still be integrated 
V2 ~* 

formally in the following way. Write only the first part of (4.17): 

e (t/t .) = A(t) e (t/t , ), —y       n-1       -y ' n-1 ' -y 
(4.18) 

where 

e 
"7 

e 
-x 

e 
-v. u 

A(t) = 

df 

«S»0 

0 

A 
dF 

n 

-^ 

0 

0 
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Find the transition matrix $ (t, s) for (4.18). This can be done either 

by noting that 

ejr(t) 

dx(t) 

dx(s) 

dv^t) 

ax(s) 

t 
-+- 

dx(t) 

a^Cs) 

dv^t) 

ay^TiT 

(4.19) 

or by writing the Voiterra series solution for (4.18), 

t t  a 

| (t, s) = I + / A(a)da + /  / A(a)A(a1)da1da - 

s  s 

t a a. 

//I     A(a)A(a1)A(a2)da2da1da + ..., 

s s s 

and picking out the developing infinite series. 

If we take the first approach to finding $  , we write 
<J 

x(t) = x[v (t), I (t), x(s), t,  sj     , 

vx(t) - 

Lls~" -2 

-(t-s)/r. 

Z1(s) + 

1 

0 

0 

t -(t-o)/r 
w, (a)da, 
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and we abreviate equation (3.4) to 

x(t) = f(x,t) + F(x, u, t) =w[x(t), v^t), v2(t), t] (4.20) 

Applying the chain rule to (4.20), we obtain 

0 

dx(t) 6W(t)      dx(t) 

ax(s)       axTtT    dxTU      + (4.21a) 

dx(t)       aw(t)    ax(t) 

av^s) =   ax(t)    dv1(s) 

dW(t) 
+ a^TiT   ' (4.21b) 

dv1(t) 

ai(¥r=  °' (4.21c) 

r -(t-s)/r. 

av1(t) 
av^(s) (4.2ld) 

where W(t) = W fx(t), v,(t), v (t), tj . Again, to first-order accuracy, 

aw df 
A 
dF af 

ax " (dx°o + (ax"} * (ex"}o 

ax(t) 
Hence (4.2la) is a homogeneous equation in J  v with approximately the 

ai 
two-body coefficient matrix (—) , so that 

^ dx o' 

$3 - »*• •>• (4.22) 
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On the other hand, (4.2lb) becomes 

dx(t) 

9v1(s) 
^ 

df    dx(t)        aW(t)    Sv-^t) 

ax(t) 
Integrating -—7—y with respect to time t, we have 

dx(t) dx(s)     r 6W(u)   3v,(u) 

a^Til * $(t' s) ^TiT + J   1(t' u) (^TT) (a^(iT) du- (4.23) 

Since by definition 

I (s, s) = I, 

the initial condition on (4.23) is ,.. / _\    - 0 for all s 
dx(s) 

dy-^s) 

(3.4) and (3'5), we obtain the 6x3 matrix 

Moreover, from 

dW(t) 

av^TtT 

0 

g.(t) 

0 0 

i(t) I(t) 
L - 

which in conjunction with (4.2ld), provides the final form for (4.23): 

dx(t) 

dv1(s) 

ax       /• 
— (t, s)«j $(t, a) 

0 

2.(a)e 
-(a-s)/r, 

0 I  0 " 
I 
I 
I 
I  +  
I 
I 

i(a)    Y(a) 

da, 

(4.24) 
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A       A A 

where the notation (3(a) and Y(a) indicates evaluation around x(a/s). 

Equations (4.21c), (4.2ld), (4.22), and (4.24) define the transition 

matrix f (t, s) in (4.19): 

$y(n, n-1) = 

l(n, n-1) 
dx, 

"-Tn/rd 

n, n-1) 

where T = t -t , .       The formal solution to (4.17) can now be 

written aa the Volterra equation 

e 
-y ww* yt, vi^ww+/ Vtj s) 

'n-1 

+ / V*' s) 

'n-1 

0 

0 
0 

ds 

(4.25) 

which in general cannot be solved in closed form because the middle term is 

a function of e . However, that term is extremely small compared to the 

rest of the expression. Hence it is not unreasonable to approximate that 

term by rectangular integration: that is, to take e (s/t ..) to be constant 
-v2   n-l 

between time points t and t , , where these instants may be data points, or 

rectification points called by the Encke integrator (see Section III), or 

rectification points called by a test on the constancy of e (s/t ,). 
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The approach will be to take e (s/t ..) = e (t ,/t ,) for 
^ -v x ' n-1'  -v n-1' n-1 

t _-,* tit to produce the staircase approximation suggested in one dimension 

by Figure 4,  below. Of course, we cannot test the error itself to ascertain 

that it is near enough to being constant, but we can test to see if its 

covariance has changed significantly with reference to the covariance of that 

to which it contributes:  i.e., the e (t/t _, ) in equation (4.2$). This will 

be made clear shortly. 

ACTUAL e (t/t . ) 
—v„   n-1 

time 

n-1 n 

FIGURE 4. STAIRCASE APPROXIMATION 

TO  e     (t/t     , ). 
-V      '   n-1 

A final linearization is still to be performed on the observation 

equations.  In particular, using the notation developed in this perfect-sensor 

case for (4.2) and (4.8), we see that the residual term in (4.8) upon which 

B(n) operates is 

Az(n) - Aj?(n/n-l) = h [x(n)] - h J^nlf - h[x(n/n-l)]+ h \£tf$    , 

which, after a first-order expansion around x(n/n-l), can be written as 
A 

Az(n) - 4(n/n-l)*(—) [x(n) - £(n/n-l)J 

= H(n) [Ax(n) - Ax(n/n-l)] , (4.26) 
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ft 
where H(n) = (—) is the partial derivative evaluated at x(n/n-l) 

3. Prediction Covariance Computations 

Evaluate equation (4.25) at time tBt n 

Call 

dv. rn 
-— (n, n-1) = /   f (t , s) ds 6v   '      /   xy n' 

n-1 

0 0 o' 
0 0 0 
0 0 0 
1 0 0 
0 1 0 
0 0 ] 

0 0 0 
0 0 c 
0 0 c 

(4.27) 

and assume the staircase approximation 

e (s/t . ) = e (n-l/n-l) -v x ' n-17  -v v (4.28) 

Define the 9-vector 

a(n-J.) -/    L(tn, 

n-1 
w1(s) 

0 
0 

ds, 

n 

n-1 

r ax 

au^ <V s) 

-;-Tt-HT7f- 

o 
0 

w1(s) ds, (4.29) 
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and its covariance matrix 

Cov w(n) = Q (») = 
lT(n) i *(n) 

0   | 0 

0 0 

0 0 

—, 

(4.30) 

where,  from (4.29) and (4.5), it can be computed that 

Q^n-1)   = (2/rd)<Jdrag 

a(n-D     = (2/fd)adrag 

[n     ^<V->{*£<V->} ds 

t •"     n-1 
r t 

,s)e ds 

Ltn-1 

o -2(t -t    J/7- 
^(n-l)     = (i_e        n    n-l^ck     2 

drag 

Then (4.25)  can be rewritten as 

aZ 
e^n/n-l) = $y(n, n-l)  e^n-1/n-l) + — (n, n-l)  ey    (n-l/n-l) 

+ w(n-l), 
(4.3D 
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and its covariance P (n/n-l) becomes, after we note that co(n-l) is 
yy 

uncorrelated with cj(n-2), and hence is uncorrelated with everything else 

on the right, 

PyyCn/n-1) = $y(n, n-DP^n-l/n-l^n, n_1} 

+  Vn, n-l)Pyv (n-l/n-1) |Z-
T(n, n-1) 

*- 2 

+ J|- (n, n-l)P  T(n-l/n-l)$ T(n, n-1) 
-2 * 2 y 

+ 5^ (n> n-l)Pv^(n-l/n-l) *£. (n, n_i)  + <y n-1)    (4.32) 

A recursion can be developed once the in-step covariance matrices 

P (n/n), P . (n/n), and P (n/n) are defined in terras of covariance 

matrices with argument (n/n-l). However, since these in-step covariances are 

functions of B (n), that gain matrix will now be developed explicitly. 
«/ 

4. Computation of Optimal Gain B (n) 

We begin by applying the linearization (4.26) to (4.8) and subtracting 

y_(n) from both sides of the resultant equation. We find 

e (n/n) - e (n/n-l) - B (n)H(n)e (n/n-l). (4-33) 
~y      y        y     ~-X 

If we define the (dim z) x 9 observation matrix 

H (n) = [H(n) *. o], (4-34) 
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then (4-33) becomes 

e^n/n) = (I - ByH )<^(n/n-l), (4-35) 

where the argument (n) has been dropped from B and H . 

Clearly, then, 

P (n/n)= (I-B H ) P (n/n-l) (I-BH )T, (4-36) 
yyv '     y 7    77 y y 

and its total differential, given that B is the only variable that can 

be manipulated, is just 

dP (n/n) = dB  (ft P (n/n-l)H Tl B T - H P (n/n-l)) 
yy '    y H- y yy '   y J y   y yy    J 

+ dB  f [« P (n/n-l)H Tl B T - H P (n/n-l)} T     (4-37) 
y 1L y yy    y J y  y yy   J 

Now, to achieve the minimum required by (4.7),  the total differential of 

the terms on the left of that expression must be zero: 

d [trace {AP (n/n)A)] = trace {AdP (n/n)Aj =0.       (4-38) 

It is a property of the trace that 

trace {XY} = trace $YX] , 

trace{x+Y] = trace X + trace Y, 

T trace X  = trace X , 

for any square matrices X and Y. Therefore (4.37) and (4.38) combine to 

yield 

trace{A2(B   [H P    (n/n-l)H T~| - P    (n/n-l)H T) dB ]• - 0. 1     v yL 7 yy y J      yy y '    yJ 
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Since this must hold for all differentials dB , 
y' 

A
2
(B TH P (n/n-l)HTl-P (n/n-l)H T ) = 0 v y L y yy    7 J yy y ' (4.39) 

is the condition for an optimum. When A is any nonsingular matrix, 

the optimal B (n) is defined to be 
«7 

By(n) = Pyy(n/n-l) H^n) [Hy(n)Pyy(n/n-l)Hy
T(n)] _1,     (4-40) 

which is the usual Kalman gain matrix 6,7 

In the event that we are interested only in estimating the mass parameters, 

we can set all the a. in A to zero excep for cu and aq.    Then only the last 

two rows in B (n) are defined by (4.39), the others being arbitrary. These 
v 

last two rows are the same as the last two rows in the usual Kalman matrix 

given by (4.40). The remaining rows we can set to anything. Let us set them 

to the usual Kalman values defined by (4.40). Hence, independent of the 

weights A, the Kalman gain (4-40) is always optimal. Note that if we had 

generalized A to be non-diagonal, the result would have been the same. 

In terms of the partition 

P (n/k) 
yy 

"p (n/k)  ' Pw (n/k) 
xx I   XV 1 

-T(*A) ! p
vv_(n/k) XV, 

I 'lvl 

equation (4.40) becomes 

By(n) - 
Bx(n) 

iA(n) 

P (n/n-1) xx._ 

P T(n/n-1) 
L^l 

HT(n) [H(n)Pxx(n/n-l)H
T(n)]    (4.40*) 
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where B (n) is the 6 x (dim z) gain for the satellite state estimates and 

B (n) is the 3 x (dim z) gain for the mass parameters v. . 
vl L 

5.  In-Step Covariance Computations 

Inserting (4.40) in (4.36), we can show that 

P (n/n) = (I-B H TP (n/n-1) = (I-B H ) P (n/n-l). (4-41) 
yy      y y yy       y y YY 

T 
Moreover, we can post-multiply equation (4-35) by e    (n/n), use (4.15) 

-V- 

and (4.16). and take the expectation: 

dF —o P  (n/n) = (I-B H) P (n/n-1) -=^ (n) 
yv y y yy ax 

dF 
+ (I-B H ) P T(n/n-l) r~ (n) 

y y yJ    ^J   » 
(4.42) 

where the argument (n) on the partial derivatives indicate evaluation at the 

point x(n/n)> and 

dF 
—o 

dF 
—o 
dr 

000 jooo 
000 jooo 
000 iooo 

The matrix PyJ(n/n-l) is found by multiplying (4.31) by (AJ)
T
 and taking the 

expectation: 
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PyJ(n/n-l) |$y(n, n. 
dj        dF 

1) + e^; (n, n-1) ^ (n-i) PyJ(n-l/n-l) 

ay dF 
+ — (n, n-1) -? (n-1) ?JJt av. aJ (4.43) 

where P. T = Cov (AJ). The in-step matrix P T(n-l/n-l) obtains by yJv 

multiplying (4-35) by (AJ) and taking the expectation: 

P T(n/n) = (I-B H ) P T( n/n-1). 
yJ ' '  v  y y yJ ' (4.44) 

This completes the detail for (4.42). To summarize what we have done 

so far, 

P(n/n) = D(n)F(n/n-1), (4.45) 

PyJ(n/n) - D(n) P .(n/n-1), (4.46) 

T T 

P^n/n) = Pyy(n/n) ^_ (n) + Pyj(n/n) _^_ (n), (4.47) 

where 

D(n) 

I-Bx(n)H(n) 

-By (n)H(n) 

(4.48) 

and where P T(n/n-1) is given by (4.43) y«J 
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To compute P   (n/n) from (4.15) is now theoretically straightforward: 
V2V2 

A A rn 

dF d? 
P   (n/n) = -pL  (n)P (n/n) ^2 (n) v v K ' dr v ' rrv ' ' dr v ' 

A >s T 

^ (n)PTT -^ (n) +U(n/n) + TT
T(n/n), dJ JJ dJ (4.49) 

where 

TT(n/n) 

A A ip 
dF dF 

5 (n) P („/n)^2(n), dr rJv aj 

and P  and P . are the submatrices defined by rr     rJ J 

P (n/n) 

P (n/n) rrv ' ' 

P .(n/n) rr ' 

PrJ(n/n) 

P .(n/n) rr ' 

P. .(n/n) rrv ' 

PyJ(n/n) 

Pv(n/n) 

the latter being given by (4.46). 

3o far, the updating of P  has been described only for the cas-e 

of closely spaced data points, t , and t ; for widely spaced points, 

the assumption of constant e  (s/t ,) in equation (4.25) is not valid. 

This problem is easily circumvented; there is no need to wait until data 

point t to perform the covariance matrix update. Rather, when (accord- 

ing to some criterion) the assumption of constant e  is in danger of 
V2 
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being violated, say at intermediate time t , , = t . + At, a new in- 
n-1,1   n-1 

step covariance matrix can be defined as 

VVi,A.i,i»" VW^' 
i.e., the filter gain B (t . ,) that appears in equation (4.41) 

y n—J., i 

is set to zero. The update procedure for the extrapolated covariance 

matrix can now proceed normally from t _, , , either to the next data point, 

t , or another non-data update point, t _,  . 

Calculate P   (n-l/n-1) from (4.49); compute P (t , ,/n-l) from 
v2v2

v  ' yy   n-1,1' 

(4.32), retaining the sum of the first and last terms, which involve P (n-l/n-l) 

and Q (n-l). Compute now, the matrices P  (t . ,/t , , ) and 
yy       F    ' yv n-1,1' n-1,1 

P
ir   ^n i iAr 1   1) to be used in the next update. Before updating, v v   n—-L,_L n—i-,-L 

recompute P.(t -, -,/n-l) using the same first and last terms as before. 

In place of P  (n-l/n-l) and P   (n-l/n-l), use P  (t , ,/t    ) * yv2
v  ' ' v v K      '        yv2

v n-1,17 n-1,17 

and P   (t , ,/t , ,), respectively. v2v2' n-1,1' n-1,1"   
v ' 

The changes in the P   and P    matrices are indicative of the errors w     v v y  2      2 2 
implicit in the constant e  assumption; the difference between the 

V2 
P (t , .,/n-l) matrices using the old and new P   and P    illustrate 
yy' n-1,1' * yv2    v2v2 
the order of magnitude of the maximum errors in P  that result from the 

assumption under test. Thus, for the elements p.. of the extrapolated 
1 

P , and p. . of the recomputed P , find 
yy'        *ij *        yy 

! 
IP,- *  " PA 

E      = max JJ lil 
yy i + 

1 

i,J   iPijl + lPiji 

Then, if E >b, for some upper bound, b, reduce the At used to 

advance to the next non-data update point, if any.  If E <a, for some 

lower bound, a, increase At. 
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C.  SUMMARY OF FILTERING PROCEDURE 

1. Start with an initial estimate 

I  (0/0) = 
Ax(0/0) 

iCO/O) 

of the satellite states Ax and the mass parameters v, . 

Use the mass-parameter model (4-9) to compute the extrapolations 

%_  (t/o) = 

-_(t-t )/r. e v  o" d 
•]_ (o/o). 

3. Employ these extrapolations in the Encke equation 

[equation (4.10)] 

d(Ax)dt = f(x°+Ax,t)-f(x°,t) 

+ F(X°+AX, v^t/0), J), 

and integrate from the initial condition Ax(0/o) to obtain 

A$(l/0). Also evaluate v-^t/O) at t = t± to obtain v (l/O) 

4. Guess at the covariances on the initial estimates: 

Pyy(0/0),  Pyy (0/0),  PyJ(0/0). 

5. Use these matrices to compute [from (4.49)1 

dF dF 
P   (0/0) = r^ (0)P (0/0) ~  (0) + V_v       dr v '  rrv ' ' dr v ' 

A >v T 

^ (o) pTT^ (o) + it (o/o) +n(o/o)J aj JJ aJ 
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where 

It (0/0) 
6F dF 

6. Then evaluate (4.32): 

Pyy(l/0) = {^(1,0) PyyCO/0) iy
T(l,0) + A(l/0) + 

+ AT(l/0) + d*_  (1,0) Pv  (0/0) fZ_ (1,0) 
ai2     2 2   av2 

+ V0)' 
where 

aZ 
A(I/O) = $ (1,0) P  (0/0) —- (1,0). 

yv. d^2 

Also evalute (4.43): 

PyJ(l/0) - 
av_    aF 

$ (1,0) + — (1,0) -p-  (0) *yv '   dv2 '     ay_ PyJ(0/0) 

3y_      aF 
+ aT(1'0) ' aJ v ' JJ. 

7. Then use the first of these in (4.40 ): 

B  (1) = 
y 

D (1) x 

B„ (1) 
- vl 

^/o) 

J5  (I/O) >- xv,  ' - 

HT(1) 11(1) P^ 1/0)^(1) 
1 -1 

Use B (1) in (4-45): 

Pyy(lA)    -D(l)    P^d/O), 
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and (4.46): 

PyJ(l/D -D(l)PyJ(l/0), 

where 

D(l)    =    " 

I-B (l)H(l) 

-Bv (l)H(l) 

9. From P (1/1) compute P  (l/l) using (4-47), 
77 7v, 

P , (1/1) = P (1/1) yv yy 

dF 
—o 

(1) + D(l)PyJ(l/0) 

•A  T 
dF —o 
aJ (i), 

and compute P   (l/l) from step 5 with "0"s replaced by "l"s. 
V2V2 

10. Use B_(l) and y(l/0), together with a measurement z(l), to 

compute y_(l/l) from (4-8): 

2(1/1) =z(l/0) -i B(l) [ Z(l)-h[x(l/0)]] 

11. Return to step 1 and re-do the process with "0" subscripts and 

arguments replaced with "l"s and "l"s replaced with "2"s. Skip 

steps 4 and 5.  Repeat for t , t , ...,t , t , ,. . . . 

The above holds for two data times t and t ., sufficiently 
n     n+1 

close.  If the test on the constancy of e_ (t/tn) requires an update 
V2 

point at t +At <•  t , , the same process as the above is followed, 

except that 

(a) t +At replaces t   in the program; 

(b) step 7 is replaced with a step that sets B (l) = 0. 
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D. SENSITIVITY COEFFICIENTS 

One of the major aims of this study is to determine the quantitative 

effects of an-error source on the estimates of the ballistic coefficients 

u and it.. These effects are computed classically by assuming that the 

error contributions from each source are small. In addition, it is assumed 

that the functional relationships between the error-eource parameters, 

say a = column (a,,  a_   ) and the ballistic-coefficient estimates 

are known to be, say, 

u2-g2(.« ), 

u^ =g3( o ). (A.50) 

Then a Taylor's series expansion in the errors can be performed and 

truncated at the first-order terms to yield 

T 
A u2 = (grad g2) A a , 

A u= (grad g3)
T A o , (A.51) 

where the gradients are taken with respect to v*   and evaluated around the 

nominal values of the parameters. The biases in the ballistic coefficients 

are 

E(A u2) = (grad g2)
T E(A a ), 

E(A UJ)  = (grad g3)
T E(A O ). 

The variances are 

*u_ • (grad g )T E(A a A a T)(grad g ) - E2(A u ), 

*u3 = (grad^)T E(A a A a T)(grad g^) - E2(A I^). 
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or 

^ = (grad g ) Cov (A a ) (grad g ), 

2 
<T = (grad g^)1 Cov (A a ) (grad g^).        (4-52) 

In terms of these second-order statistics, the gradient vectors define 

completely the importance of each error-source parameter in the ballistic- 

coefficient error build-up. The elements of these gradient vectors are 

often called "sensitivity coefficients." 

Unfortunately, in a maximum-likelihood or minimum-variance estimation 

procedure of the sort required here, the functions g and g„ in (4.50) 

cannot be written as closed-form expressions of the error-source parameters 

a . Hence the gradients cannot be obtained analytically. 

1. Modeled Parameters 

In the minimum-variance estimation equations developed in parts 

A and B of this section, certain parameters have variance-covariance values 

associated with them. It is said that the errors in these parameters are 

thereby "modeled." The stochastic component of drag, u, , and the geopo- 

tential perturbation acceleration v are the only two modeled error sources 

considered in this perfect-sensor phase of the study. Call these modeled 

2     ? error parameters 3,, 3,, •••, and the variances   ^L     <T  , .... 
•L  2 1*    ^ ? 

Then the minimum-variance equations yield implicitly the in-step esti- 

mation errors 
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AU3"°3    (   \,    *»2,  ...). 

To ascertain the importance of reducing the ignorance in one modeled para- 

meter relative to another, assuming small reduction in such ignorance, we 

need to find for all i 

^u /*?  "A«£ /AV 
2     pi 2     pi 

d<r2 /b% » A**2 /A . u„     B,        u '    3 • 
3        i 2i 

where A indicates a (small) change in the variable that follows it. 

Each of these partials is a form of sensitivity coefficient which 

is really the desired end product of the study. The manner of computing 

it consists simply of making a run with all the   <r~  reduced by the 
Pi 

amount A 3", . 
i 

2. Unmodeled Parameters 

The minimum-variance expressions contain a few parameters which 

may have incorrect values, but for which no reasonable vaHance-covariance 

information exists. Such parameters, having so-called "unmodeled" errors, 

are typified by the correlation time constant t"\ in the stochastic drag 

expression (4.4), or the geomagnetic index a that enters the nominal 
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atmospheric-density calculations. Call these unmodeled parameters  0, , 

.2    _2 ~t  , ..., and their (unknown) variances  a*  ,  g-  , 
2 yx   y2 

Now the estimation errors will not directly reflect any improvement 

in our knowledge of the error-source parameter values. However the esti- 

mates themselves are implicit functions of the parameters:  from (4.50), 

- go (3] j 32J  • "i *l> ~^2'     " '^ 

Hence by changing each Y. while holding the other parameters at their 

nominal values, each sensitivity coefficient in grad g and grad g„ can 

be determined numerically. Put into (4.52), these coefficients lead at 

once to the pinpointing of the dominant error sources. 

E. MINIMUM-VARIANCE VERSUS MAXIMUM LIKELIHOOD 

Although the contract specifies analysis of the errors in the 

maximum-likelihood estimation of mass, the approach contained herein is 

based upon minimum-variance estimation. As is shown in detail in Appendix V, 

the theoretical details may be different, but the practical solution to the 

problem is essentially the same in both cases.  Computationally, the 

problems that arise in one approach arise also in the other. 
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SECTION V 

ENVIRONMENTAL MODELS 

A. SOLAR RADIATION PRESSURE 

The model is discussed in Appendix I. It will become important at 

altitudes of about 500 km or higher, and will be the sole mass-determining 

force at altitudes in excess of 1000 km. 

B. ELECTROMAGNETIC DRAG 

A detailed analysis of the three types of significant electromagnetic 

21 
drag is carried out in Appendix IE based upon the CIRA 196$  tables for ion 

and neutral-particle densities. 

Of the three types of electromagnetic drag, two are distinguishable 

from atmospheric drag because they are latitude-longitude dependent and 

have a velocity dependence different from atmospheric drag. These consist 

of 

(1) Electromotive drag, where the charged vehicle interacts with 
the earth's magnetic field; 

(2) Induced drag, where the potential induced in the moving 
satellite (conductor) by the earth's magnetic field sets up 
a current through the ionized atmosphere which produces a 
back-EMF retardation. 

Under the worst-case conditions (the largest satellite, highest charged- 

particle densities, and stro-ngest magnetic field), these effects are at 

least two orders of magnitude smaller than atmospheric drag. 

The remaining type of electromagnetic drag is indistinguishable 

from atmospheric drag to the ground-based observer. It is known as coulomb 

drag, and results because the charged satellite electrostatically attracts 

to it ionized particles that it would not otherwise hit. The ensuing increase 

in the effective area-to-mass ratio may reach 10 per cent or more. It will be 

accounted for by making off-line corrections to the estimate of ballistic 

coefficient u . 
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C. GEOPOTENTIAL MODEL 

The earth's geopotential model is discussed in Appendix III. 

D. SOLAR-LUNAR GRAVITATION 

The solar-lunar gravitational accelerations on the satellite will be 

computed from the assumption that the sun and the moon are point masses. 

Computational details will be as specified for the MINIVAR computer program, 

and presented in equation (3«7) of this report. The respective distances 

and gravitational constants will be assumed exact. 

E. ATMOSPHERIC DRAG 

Atmospheric drag can be computed interchangeably from the expression 

of Appendix II or from the usual velocity-squared law given in (3-5). Both 

require an accurate upper-atmosphere model. The Jacchia 1965 model, published 

in Reference 8 and described briefly below, will be used here, in conjunction 

with expression (3-5) of this report. RMS values (T,   and correlation 

times T for equation (3.5) will be chosen in concert with the contracting 

agency. Suggested values are given in Reference 7« 

The following summary of the Jacchia 1965 model was extracted, with 

minor corrections, from Reference 28: 

Jacchia's 1965 atmospheric model (Reference S^) begins at a 

boundary altitude of 120 kilometers where the following assumptions 

are made: 

1) TKO  - 355°K 

n(N2) = 4.0 x 1011 molecules/cm3 

n(Qa) = 7.5 x 1010 
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n(0)   = 7.6 x lO10 molecules/cm 

n(He) = 3.4 x 107 

Below the altitude, Z = 500 kilometers, n(H) • 0. 

At 500 kilometers, the boundary condition for hydro- 

gen is : 

L0G10Cn(H)] - 73.13 - 39.40 L0G10 (T5C0) + 5.5^00^(1^)^ 

Where : 

Tgoo   = temperature in degrees Kelvin at 500 kilometers 

n     = number density of individual constituents of 

the atmosphere; nitrogen(N2), oxygen(02), free 

oxygen(O), helium(He) and hydrogen(K). 

Using the boundary conditions as a starting point for 

the concentrations n. of each consitituent i, the 
x 

following diffusion equation is integrated to find 

the concentrations as a function of altitude Z. 

o\ ^1  ="dZ  dT (1 + a) 
;  n. " H. " T 

L     1 

Where : 

T  = temperature in degrees Kelvin 

a  • thermal diffusion factor 

(- 0.38 for helium 

0.0 for other consitutuents 
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m,     • mass  of  each constituents. 

m(Na )   • 4.6515 X   10 grams/molecule 

m(0a)  = 5.3129 X   lO"33    grams/molecule 

m(0)     = 2.6565 X   lO'33    grams/atom 

m(He)   = 0.6648 X   lO"33, grams/atom 

m(H)     = 0.1674 X   10"33    grams/atom 

k       =  1.38054 X   lO-16 ergs/°K   (3oltzmann's   constant) 

R       = 6.35677 X   108   cm.   (radius   of   the  earth) 

g       =  980.665   (1 + —)  2   cm./sec.2   (acceleration due   tc 
gravity) 

kT 
H.     =    (scale height) 
1   nug 

Equation 2) when integrated becomes: 
2 

i-Tjao-1 + a   r-  mi p  dz-, 
3)  n. = ni30 L—J     exp j_— I g TJ 

120 

Simpson's rule of order 2 with a step size of .1 k.n 

is used for numerical integration. 

The following sequence of operations determine the 

temperature T at the desired altitude Z 

4)  T = T^ - (T^ - Tja,) exp [-S(Z - 120)] 

Where: 

T   = exospheric temperature  K 

Tjao = temperature at 120 km. 
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Z  • altitude in km. 

-X2 
S  - 0.0291 exp (-—) 

,      T  - 800.0 

750.0 + 1.722 X 10  (T^ - 800.0)"* 

Note:  The expressions S and X are approximations to the 

profile derived by L. Jacchia by trial and error 

methods. 

5) p = ) n.m.  gm/ 
3 

cm 

p = density as a function of altitude 

The following procedure is used to determine the exospheric 

temperature, T 

1) TQ = 357°K + 3.6 F10<7 

Where: 

T  is the average nighttime minimum temperature 

F10_7 is the smooth solar flux over 3 solar rota- 

tions 

2) T^ - TQ + 1.8° (F10.7 - Fio.7.) 

Where: 

T  is the variation expected during a given 

solar rotation (27 days) 

F10.7   is   the  solar flux for  the previous day. 
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3)     TQ  - T;   + [0.37 + 0.14  sin (_2n ^ff)] F10.7   sin £r ^g) 

Where: 

T accounts for the semi-annual variation. 
o 

d is the number of days from January 1. 

4)    x.h [,.0,(^)^(1)] 

Where: 

T = T  (1.0 + R cosm r\) 

T = T  (1.0 + R sin  9) 
N,   o 

r\    = 0.5 |0 - 6 I 
s 

6  = 0.5 10 + 6 | s 

s   s 

0 =TAN'1 (/x. ^) 
V    V 

R = 0.28 

m = 2.5 

T  = H + 3 + P sin (H + a) 
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3 = -45° 

p =     12a 

a =    45° 

T accounts for the diurnal effect. 

T  is the daytime maxima. 

T  is the nighttime minima. 

R  is a factor for computing the maximum temperature 

as a function of the global minimum temperature. 

0  is the geographic latitude of the vehicle. 

6  is the declination of the sun. 
s 

X , Y , Z  are the current coordinates of the vehicle 
V   V    V 

r 
in an earth-centered cartesian coordinate 

system. 

X , Y , Z  current coordinates of the sun 
s  v  s 

H is the hour angle of the sun 

5)  T = T + 1.0° a + 125° [l.O - exp (-0.08 a )] c» p p 

Where: 

T  is the exospheric temperature. 

a  is the 3 hour geomagnetic index (measured approximately 

6 hours before the time in question.) 
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APPENDIX I 

PERTURBATIONS ON SPHERICAL SATELLITES DUE TO 
SOLAR RADIATION PRESSURE 

A. GENERAL 

A photon flux of irradience I directed along m unit 
w 

>r i  from a distant radiating t 
80 

satellite will produce a pressure of 

rector i  from a distant radiating body (e. g., the sun) to a 
89 

E-(Ve>^.8' (I'1} 

where c is the speed of light. When p_ impinges upon a differen- 

tial surface area dA, the differential force due to the incident 

flux is 

dP^ -fas (£ • dA) - iM (I8/c) (iM . dA),     (1.2) 

vrhile the differential force due to the flux being reflected back 

from the surface is 

*2refl "-W <VC> (*refl' ^> ^3) 

A 
where i *n is the unit rector in the direction of the reflected 

flux and I is the irradiance in that direction. 
r 

The net solar force due to direct solar radiation is the 

integral of (1.2)  plus (1.3): 

Id " (V)        J &. <*.. •  **> ^ref! <W  tfrefl ' *$ 
As (I.A) 
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where A is the illuminated surface area of the satellite. For 
8 

satellites with uniform reflectivity, equation (1.4) can be 

simplified to a form such that the acceleration magnitude due to direct 

solar pressure is 

r direct = Fd/m = K(I /c) (A/m), (1.5) 

where K is a parameter dependent upon the shape of the satellite, 

its reflectivity coefficient, and its mode of reflection (diffuse 

on specular), A is the cross sectional area as seen by the radiation 

source, and m is the mass of the satellite. 

The constant c is known very accurately, but I , which has 
s 

a nominal value of 1.94 cal/(cm - min),# may vary by as much as 

10 T7 
1,5% due to solar activity.    Furthermore, the varying solar 

distance throughout the year causes the irradiation to change by 

as much as J. 5% from the mean. This latter phenomenon can be cor- 

rected for by expressing the solar constant as 

h  - <Res/res>2lnom Cl.6) 

where R  is the mean earth-sun distance, r  is the actual earth- 
es es 

sun distance and I   is 1.94 cal/(cm -min).  This leaves K(A/m), 
OQfll 

which can be considered a (partially) unknown parameter. The 

accuracy to which it can be determined is highly dependent upon 

the accuracy to which K can be determined by optical means. 

For non-spherical satellites, the problem is considerably 

more complicated. This is principally a result of a different 

* A calorie is referenced often as a gram-calorie. 
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cross-section area A being illuminated at each instant of time. This 

arises not only because of the earth's revolution about the sun, but 

also because of satellite tumbling. For the purposes of the present 

report, only spherical satellites will be considered. 

B. DIRECT RADIATION FORCES ON A SPHERE 

1. Specular Reflection 

Consider a spherical satellite of radius R which reflects in a pure 

specular manner all light it does not absorb, having a uniform re- 

flectivity coefficient kg. The incident radiation pressure p_, having 

A 
magnitude p and direction i , can be taken to approach the satellite 

88 
A A A A     A 

in the coordinate triad (i,j,k) shown in Figure 5 such that igg = -l. 

The angle ^ is defined as the angle that 2 makes with any differential 

A 
element of surface area dA, which has magnitude dA and outward normal i.. 

By the definition of specular reflection, the luminous flux leaving the 

surface element also makes an angle Y  with the normal in accordance 
^   n 

with Snell's Law, and has an irradiance I = k I . r   s s „ . 

^S f ^re*l 

FIGURE 5.   SPECULAR REFLECTION FROM A 
SPHERICAL SATELLITE 
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In spherical coordinates, 

dA = R 2 sin © d© d#, 
9 

^A = (sin © cos (f>) $ +  (sin © sin ) t + (cos©) 1c, 

'frefl = (2 sin
2 © cos2^ -1) ^ + 2 (sin2 © sin^ cos^ ) $ 

rv 
+2 (sin© cos© cosi^) k 

(1.7) 

/> /\ 
The last unit vector can be computed by noting that i, i., and 

i -, are necessarily co-planar and by working with the simple 

sketch in Figure 6,  below. 

/N 
GEOMETRY FOR DIRECTION COSINES OF i refl. 

Once the relations in (A.7) are used to obtain 

A 

refl dA = R Z sin2 © cos^d© &(j>, 

equation (1.4) can be evaluated over the illuminated surface, 

the hemisphere defined by 0£ © £ n and -(n/2) ^ <p ^   (TT/2), 

to yield 
^ 0 n   TT/2      i-    , » , 

Pj»-i (Ig/c) Rs^  T     r (sin2© cos^> -kg(2 sin4© cos-^   - 

0    -TT/2 

-sin2 © cos f T|      d ^> d© + j Odd( cf) +k Odd (©), 
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where Odd ( S )  is the integral of an odd function of (f>  , sin (p • 

cos <p   , over the rang* -TT/2 to TT/2, and Odd (©) is the integral 

of a function of 0, siir© cos©, which is odd over the range 0 to 

n. Hence 

Odd (<f> ) - Odd (©) - 0, 

and the net force is in the -i direction. Moreover, the factor 

multiplying k in the first integral is clearly odd over the inter- 

val -TT/2 £. <h  ^ TT/2. Hence if F, is divided by the mass a, and the 

final integration performed, 

direct -i..<V«HV-), (1.8) 

2 
where A • it 1   .    Note that the constant K introduced in (1.5) 

8 

is 1.0, independent of the reflectivity kg for this pure specular 

case of a spherical satellite* 

2. Diffuse Reflection 

Consider a spherical satellite having uniform reflectivity kd 

which reflects in a pure diffuse manner all light it does not ab- 

sorb. The net differential forces dF -, are normal to each incremental 

illuminated area dA, i.e., in the direction i., and the reflection 

obeys Lambert's Law. The magnitude of dF f, can be deter- 

mined by centering a hemispherical "cake cover" of unity radius 

over dA, as suggested in Figure 7, below, and by noting that the 

total luminous flux (power) P passing through the cake cover is 

all that dA emits: it is kd times the flux incident on dA. That is, 

if I (f) is defined as the irradiance in the direction of dS due to 

reflection from dA, 
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\ k   Ak       cake cover o • 

FIGURE 7. DETERMINATION OF NET PRESSURE NORMAL TO 
INCREMENTAL SURFACE AREA DUE TO DIFFUSE REFLECTION 

/ 
= \\ (isa *  dA) = J I( ^ ) dS. (1:9) 

cake cover ' 

Denoting the irradiance normal to dA by I., Lambert's Law provides 

for diffuse reflection 

I ( y  ) = IA cos^ . (1.10) 

Putting this into the integral in (1.9), noting that dS = (sin 'f  )dVdcJ   , 

and integrating over the range 0 < £  < 2rr, we find that 

y\ 
IA = -(1/n) kdIs (igs •   dA). (1.11) 

The pressure on the cake cover due to the light reflected 

from dA is clearly 

Erefl </) - (1/c) X (t) V (1.12) 

of which only the component normal to dA produces a reaction force 

on dA: 

cake cover 
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From (1.10), (I.ll), and (1.12), this becomes 

dW=V2/3>Vs/c)(*ss 'dA)- (1.13) 
Hence, in (l.3)> 

Ir « (2/3) kdIg (4M -\). (1.14) 

Using (1.7) and the convenience i  = -k, which is the unit 
So 

vector in the minus vertical direction,  (1.13) can be integrated 

over 0 £ 0 £ rr/2 and 0 •£ $ £ 2nr to provide 

2rr      TT/2 

/. / 
4efl = *ss  (2/3)  (kdVc)Rs      ' '      cos2 Q sin 0 d 0 d 0 

0       "   0 

= iss (4/9)  (kdIs/c)rrRs
2 (1.15) 

Added to F.    = F,, which is still valid, and then dividing by m, 

(1.16) direct =^ss   t1+kd<^]   (Vc)(A/»), 

so that in this pure diffuse case the K introduced in (1.5) is 

dependent upon the reflectivity constant and assumes a maximum of 1.44. 

C. SHADOW REGIONS 

The above equations depend upon the direct solar radiation pressure, 

which is directly proportional to the free-space solar radiation pressure 

in full sunlight, some fraction thereof in the penumbra, and zero in 

the umbra. 

In this section it will be shown that the penumbral region can be 

neglected and the umbral regions boundary can be expressed as the simple 

relationship 

r I sin a I = R, (rr/2) £ a £ 3n/2 
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where r is the geocentric distance to the satellite, a is the geocentric 

angle between the sun and the satellite and R is the radius of the earth . 

The use of this approximation results in errors of less than 0.3 percent 

for orbits within 2000 miles of the earth. 

Specifically, it suffices to assume that the sun and earth are 

perfect spheres and the satellite a point. The geometry then appears 

as in Figure 7,  below, 

3 
R  = radius of the sun, 432 x IQr  miles, 

R  = radius of the earth, 3.964 x Kr miles, 

r  = distance from sun to earth, having a mean R  of 93 x 10 miles, 
6S / 65 

a perihelion of 91.6 x 10 miles, and an aphelion of 

94-7 x 10 miles, 

r   = radial height of the umbral cone measured from earth, c 

Penumbral 
Region 

FIGURE 8 

• radial distance to the apex of the penumbral cone as 

measured from earth. 

- 64 - 



By similar triangles, 

r  = R r /(R   -R) c      es/v sun 

= a mean of 860,000 miles and 850,000 £ r, £ 878,000 miles. 

Let the satellite be restricted to within 2000 miles of the earth. 

Consider the vertical line marked h in Figure 8 to cross the 

sun-earth line at a distance of 2000 miles from the earth's surface. 

The ratio of hc to R is clearly 

hc/R = (rc-R-2000)/rc 

-  0.993- 

Therefore, for all orbits within 2000 miles of the earth, the umbral 

region can be represented by boundaries parallel to the earth-sun line 

with an error of less than 0.7 percent. 

For the penumbral region, similar calculations yield 

r'  ^ 845,000 miles, 

and 

h'  = (r> + R + 2000)/r' 6   1.007. c       c c 

Hence, for a satellite orbit in an earth-sun plane, the penumbra will 

be less than 0.7 percent larger than a cylindrical shadow. 

The use of a cylindrical umbral region with no penumbral region 

at all involves the shrinking of the region of partial shadow and 

expanding the region of total shadow. Except in certain somewhat 

pathological cases, these changes will tend to cancel each other for 
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near-earth orbits. A rule-of-thumb estimate indicates that the maximum 

error in solar pressure due to the approximation will be on the order 

of 0.3 percent on any single pass, with the effect averaging to trivial 

proportions on multiple passes. In any event, the errors due to the 

assumption of only a cylindrical umbral region will be negligible in 

comparison with the uncertainties in solar intensity, in refraction of 

the shadow boundaries, and with similar ignorances of the physical situation. 

To compute when the satellite is within these simplified 

boundaries is just a matter of analyzing the geometry of Figure 9: 

the satellite is in complete shadow if 

(sin a I £ R/r,     (TT/2) i a £ 3n/2, 

and in full sunlight otherwise. An Alternative expression avoids 

(1.17) 

FIGURE 9 

the computation of a from inverse trigonometric functions. Here 

(AJ7) appears as 

complete shadow:   jsin aj  — R/r and cos a L  0, 

full sunlight:   otherwise. (I.17') 
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The cos a can be determined in terms of the ecliptic coordinates of the 

•ua and the instantaneous orbital elements: 

cos a = -i «i 
ss r 

= (cos \  )  x/r 

-Ksin Xe)(cos ie)  y/r 

+(sin \  )(sin i )   z/r 

where X = celestial longitude of the sun (measured e 

in the ecliptic plane from the vernal equinox), 

ie • obliquity. 

Sin a then follows from 

2 (1/2) . 
sin a = (1 - cos a) 

Oh 
Musen  obtains expressions for the long-term effects of solar 

radiation pressure by neglecting shorter-term effects such as those due 

to the shadow. By examining long-term effects only, he is able to estimate 

such things as satellite lifetimes. However, these approximate methods 

are not applicable to observations on only a few periods. 

D. REFLECTION AND RE-RADIATION 

Terrestial radiation or "earth shine" pressure also exists. Of the 

total insolation, an average of 36 percent is reflected or back-scattered 

and 64 percent is absorbed and re-radiated thermally.   Reflection and 

back-scattering varies between 15 percent for a clear sky and 55 percent 

for an overcast sky. That which is absorbed and re-radiated as heat is 

primarily counter to the central-force acceleration of gravity and virtually 

uniform over the surface of the earth. Since this cannot exceed 10 g 
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for the satellite and orbit types specified under this contract, where g 

is the acceleration of gravity, it is doubtful that this radial component 

could ever be identifiable in a satellite orbit. 

Hence thermal re-radiation will be neglected and only reflection and 

back-scattering will be examined. These two reflections have the alter- 

native nomenclature "specular" (mirror-like) reflection and "diffuse" 

reflection. Of the two, diffuse reflection by far comprises the major 

form of "earth shine." 

1. Earth Shine Theory 

Consider a spherical earth illuminated by the sun. The fireball 

on the earth's surface can be neglected because of its small contribution 

to the total reflected irradiance at satellite altitudes (viz. pictures 

of the sunlit earth published by NASA which were taken by its Applications 

Technology Satellite (ATS)). Since the fireball is the manifestation 

of the specular part of the reflection, its negligibility permits the 

assumption that the earth is a perfect diffuse reflector. 

Much of the analysis performed earlier in this appendix therefore 

applies.  Instead of applying Lambert's Law to the satellite, however, 

we now apply it to the earth. 

Examine Figure 10, below, where for convenience we have positioned 
A /\  A A 

the satellite along the k unit vector in the coordinate triad (i, j, k), 

and the sun has been put along the i  unit vector in the (i, k) plane. 
DO 

We maintain the convention that the earth-sun angle a lies between 0 

A, 
and n. The unit vector i. is the outward normal from any infinitesimal 
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NIGHT SIDE OF EARTH 

FIGURE 10.     GEOMETRY FOR DIFFUSE 

EARTH SHINE 
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element of area dA on the earth's surface, L is distance between the 

element dA and the satellite, i. is the element-to-satellite unit vector, 

and (p  is the interior angle between i. and i. . 

Clearly, 

i = k , r    ' 

i  = -(sin a; i - (cos a)k, ss 

i. = (sin Q cos 0)i + (ein 0 sin 0)j + (cos 0)k, 

dA = R2 sin 0 dO d0. (1.19) 

With I. defined as the component of irradiance normal to dA at dA, 

we employ an equation much like (i.ll): 

IA = - (1/TT) qls (iss   '  dA), (1.20) 

where q = earth's albedo, or (diffuse) reflectivity coefficient. From 

Lambert's Law, the component in the i.  direction will be I, cos jt* 

At the satellite, a distance L away, the irradiance l( \J/ )  due to dA 

will therefore be 

!(//) = (IA/L
2) cos^ . (1.21) 

The distance L can be computed from the simple sketch given in 

Figure 11, below, where, by inspection, 

a = r cos 0 -R, 

b = r sin 0 , 

L = /a2 + b2   = r J 1 + X2  -2\ cos 0 

(1.22) 

where X = R/r. 
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FIGURE 11. SKETCH FOR COMPUTING 

SURFACE-TO-SATELLITE DISTANCE L. 

Now we develop i,  by subtracting the geocentric vector to dA from 

the vector r = rk and dividing by the distance L: 

A.      _    -X  (sin 0 cos 0) ? - \  (sin Q sin 0) j + (1 - X  cos Q) k 
As 7 

Then, from (1.19), 

* - CCS 
A.    A. 

1 + X*  - 2X cos 0 

cos 0 -X 

r 

(1.23) 

(1.24) 

1 + x^  - 2X  cos 0 

Because of the symmetry about the (i, k) plane, the solar pressure at 

the satellite's location due to dA has its component out of that plane 
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cancelled by another area element on the other side of the plane. The 

in-plane components are, of course, doubled in magnitude by that other 

area element. Hence, restricting 0 to be between 0 and rr, we find that 

the incremental pressure at the satellite due to the reflected light from 

dA is 

dE (0, 0, a) - 2 [l( f  )/e] (i^).^, 0 < 0 < TT 

(1.25) 

where (iAs).r k = the projection of i. on the (i,k) plane. 

For simplicity, now, let us normalize the solar pressure by removing 

the environmentally dependent quantity (ql /c). We define the residual s 

expression as the differential illumination factor 

dC(0, 0,  a) = dp_(0, 0,  a)/ (ql /c). (1.26) 

From (1.25), we find that 

,p/Q g/ \ .. / / \\  (cos 0 -X)(sin Q)(cos a cos Q + sin a sin Q cos 0) 

(1  + X2 - 2 X cos 0)2 

• [-X(sin 0 cos 0) l + (l - X cos 0) £"] dO d0, 

which we can express more compactly as 

dC(O,0,a) = (2X2/rr) [cos a (I^+Ik) + sin a (Li+I,kj]dO d0, 

(1.27) 

where 

—     \ cos Q sin 0 cos 0  (cos 0 -X) 
(X2 + 1- 2X cos 0)2 

T    cos 6 sin 8 (l - X cos 0) (cos Q -X) 

(X2 + 1 - 2X cos 0)2 
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X  sin-3 Q cos2 0 (cos 0 -X) 

(X2  + 1 - 2X cos 0)2 

I sin2 g cos 0 (1-X  cos 0) (cos Q -X) 

(X2  + 1 - 2X cos 0)2 

The total earth-shine illumination factor is the integral of (1.27) 

taken over that part of the earth's sunlit surface that is visible to the 

satellite: 

A       A 
C(a)     /      /     dC(O,0,a). (1.28) 

0 - 0    0 = 0 

The upper limit on 0 is always 

0X = cos"
1 (R/r) = cos-1\, (1.29) 

as is quickly discernible from Figure 11. The lower limit on 0 and the 

upper limit on 0 depend on the satellite-earth-sun geometry: i.e., on 

a and X.    The situation decomposes into four distinct cases. 

Case A. The Satellite Sees an Earth which Is Entirely Sunlit 

(0 4  a < TT/2 - 9L). 

This is the only case that can be integrated analytically. Figure 10 

indicates that 0 = 0, 0L = TT. Hence, from (1.28), 

C(a) = X  (k J, cos a + i J. sin a)  , (1.30) 
K 1 

where „ 0..       TT 

Jk - (2\/TT) f f I2d0 dQ - -(l/2)(B1+B2B3+kB4), 

0 = 0  0 = 0 
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0,        TT 

± - (2X/TT) J J        I3 d0 dO = (1/4) j E^ -(\+2k)(l-\) + 
0 

-K3k^+2kX-l)B -(k+\)B4j  , 

2y 
E^ = (l-X^)/2 

2 B„ - 1-k 
2 

Bj  = log[\ + kl 

B4 = B2 LTTk ~ \+k J 

k = (X2+l)/(-2X)  . 

Case B.  The Satellite Sees a Dark Region Which Covers Less Than Half 

the Visible Earth (n/2 - 0, < a«n/2). 

We approximate the sun as a point source of light at infinity. Then 

the terminator (the line on the surface of the earth that separates night 

from day) is a great circle. The terminator intersects the horizon 

circle of the satellite at the two points A and B shown in Figure 12, 

below. If a is less than 90 , i.e., if less than half the visible cap 

is dark, as shown, then there will be a circle (circle 0 in the figure) 

which will be concentric with the horizon circle and tangent to the 

terminator at point C within which 0 can range freely from 0 to TT. 

The circle is at 0 = n/2 - a. 

For 0 in the range 0, > 0 > TT/2 - a, the range on 0 will be a constrained 

function of a and 0, having upper limit 

0t = cos (-cot a cot 0). (1.31) 
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CIRCLE 0 

HORIZON AS SEEN 
FROM SATELLITE 
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FIGURE 1; 
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This derives from Figure 13, below, wherein the following relations 

apply: 

c • R sin 0 sin 0, 

d = R / 1 - c2     -  R / 1 - sin2 0 sin2 0," 

     2     2 1 - sin 0 sin 0 cos a. 

The length e can also be obtained as 

e = - R sin 0 cos 0. 

Equating the two versions of e, we obtain (1.31). 

Now (1.28) becomes   /_ /„ v    r       TT/2-a   TT n/2-a   n 

C(a) = (2X2/n)| k cos a f I     I d0dO + 1 sin a j J       I d0dQ+ 

°1   *t 
+ cos a  /    /   (i^ + kl2) d0dO + 

n/2-a   0 

A      ?t 
+ sin a  /     /  ($I3  + tcl,) d0dO 

Ti/2-a  "0 J (1.32) 

Case C. The Satellite Sees a Dark Region Which Covers More Than 

Half the Visible Earth  (n/2 < a <. TT/2 + ft,). 

We refer again to Figure 12, except that now the terminator lies on 
A A 

the other side of the k axis (overhanging the positive i axis). No 

Circle 0 now exists within which 0 has an unconstrained range between 0 

and rr. Hence 
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TERMINATOR 

FIGURE 13. 

C(o) = (2\7n) 
0, 0. 

cos i, f (iI f kl2) d0dO 

a-Tt/2 0 

e, 
+ sin a       / 

-rr/2 0 

. + kl. ) d0dO 
J 4 ] 

Case D. The Satellite Sees a Completely 

Dark Earth (TT/2+Q-, £• a < tr). 

(1.33) 
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No earth shine, hence C(a) S 0. Note, also, that this corresponds 

to the satellite's being in the umbral region specified by the first 

line of (1.17')• Hence there is no solar pressure whatsoever. 

2. Earth Shine Calculations 

The evaluation of (I.31) and the numerical integration of (1.32) 

and (1.33) yield the magnitude and angle curves of Figure 14, below. 

The vertical slash on the right end of each curve denotes the value 

a = TT/2 + 0, , where the satellite begins to see a wholly dark earth. 

Note that in the vicinity of a equals 80 or 90 , the magnitude curves 

cross. That is, the illumination for large-enough sun-satellite angles 

is not a monotone decreasing function of altitude. This contradicts 

29 Dennison's  interpretation of his previously published results, which 

were somewhat more complicated than those of Figure 14 and provided no 

angle information. 

That our results are qualitatively correct is clear if we consider 

the following thought experiment. Put a satellite just off the surface 

of the earth at, say, a = 91 . It is in complete dark, and hence 

C(a) = 0. Somewhat higher, at a 100 km altitude, the satellite sees a 

good patch of sunlit earth, and so C(a)^0. But most of what it can see 

is dim due to the glancing incidence of the sun's rays. As it goes yet 

higher, it sees more and more of the directly lit earth, and so |[c(a)| 

keeps increasing for a while. Eventually, however, the (R/r) dependence 

of the received illumination begins to take effect, and ||c(a)|( begins 

to drop with further increases in altitude. Hence the illumination for 
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FIGURE 14. MAGNITUDE AND ANGLE PLOTS FOR EARTH-SHINE 
ILLUMINATION FACTOR AT SATELLITE. 
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large-enough a cannot be monotonic with altitude. 

For purposes of digital computation, it is convenient to represent the 

curves of Figure 14 in an approximate analytic form. Since the direct 

A 
solar radiation impinges in the direction i , the approximation will be 

s s 
A        A 

resolved into i  and i components, as follows, s s     r 

C(a) =T  qx ir + q2 !„, (1.34) 

where 
r\  (a, + a ) cos a, 

ql = 

|a| < TT/2 - Gj_; 

X  a 
i 

0 

A a. 

H2      ss 

, TT/2-O-L ^  kl •£ TT/2 + 0 ; 

, elsewhere; 

|a| < TT/2 - 01 

"/Z-O^ £ |a| ^TT/2 + 01 

elsewhere 

a-L = (l/3)(-.OU7 + .5431 A), 

a2 = (l/3)(.04U-3.17(X-.77)
3+.0O45(A-.77)sin [H.3(A-.77)TT] ), 

ss - (a2/2) [l + s - s  eSyr  - e"T  y( 2 + sy)]     , 

ar =  f ass + (a]/2)   ts+1 ~ sd^y^]}    cos a + 

+ (l/6)fx
2C(lA-sina)3 + (X-sina)3]   _  (l-X2)3/2js-n ^ 

I (1 + X2 -  2X sin a)3'2 X        J 

T   = -4 + 9.3 X  , 

y   = (a - TT/2)^  , 

S =l   1  , y< 0 j 

d = 3.7 + 59 (X-.77)2. 
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Figures 15 and 16, below, provide a comparison of the approximate and 

exact values as decomposed into the k and - i (radial and cross-radial) 

components 

Ck(a) = qx - q2 cos a, 

-C.(a) = q„ sin a. 
l     ^2 

E. FINAL RESULTS 

A combination of all the details for a spherical satellite yields 

finally 

r i  = L-  4. + (ql A)C(a), -solar  -direct  XH s'  -v  ' 

^3 1  (x, t). (1.35) 

where 

u„ = (1 + 4 kd/a)(lnojn/c)(A/m) is a solar 

"ballistic" coefficient, 

I (x,t) 

Y. 

= (R /r fynJx    + D i ), v es' es' v'l r  * 2 ssy' 

Pj_ = qQ]_» 

P2 = qq2' 

all other terms having been defined in the body of this appendix. 

Equation (3.6), in the main text of the report, summarizes all these 

details in a concise way. 
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FIGURE 15.    APPROXIMATE AND EXACT VALUES OF RADIAL 
EARTH-SHINE ILLUMINATION FACTOR 
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FIGURE 16.    APPROXIMATE AND EXACT VALUES OF 
CROSS-RADIAL EARTH-SHINE ILLUMINATION FACTOR 

- 84 - 



F. CLOSING DISCUSSION 

Hainly as a result of its effect on the orbit of Echo I, solar radia- 

tion is regarded as the most significant perturbative effect for orbits 

whose perigees exceed 1000 km. Large variations in the eccentricity and 

geocentric perigee distance for such orbits are almost wholly attributable 

to the effects of sunlight pressure. 

Radiation pressure has no effect on the period if the orbit is circular. 

However, if the orbit is non-circular and is partly in shadow, the satellite 

can enter and leave the shadow region at different distances from the 

sun, resulting in a net gain or loss of energy from the radiation field. 

Even if the orbit does not pass through the earth's shadow, the radiation 

pressure has the effect of pushing the orbit "sideways," so that its 

effect on the perigee does not vanish even for circular orbits. 

The force exerted on the satellite by direct solar radiation is known 

to within about 2£ if K(A/m) is known perfectly. Therefore, the effect 

of the radiation is highly dependent upon the accuracy to which K, A, 

and m are known. The effect of thermal terrestial re-radiation has been 

neglected, since it is in the same direction as that of the principal 

gravitational term and its magnitude is negligible in comparison. A 

16 18 
more exact analysis is available in Harvey  and Fitz, et. al ., although 

this accuracy is unnecessary. 
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APPENDIX II 

ELECTROMAGNETIC AND ATMOSPHERIC DRAG 
ON SPHERICAL SATELLITES 

DEFINITION OF SYMBOLS 

q = satellite charge 

e - electron charge 

X,    =  permeability of free space 

£ = permittivity of free space 

M —  earth's magnetic dipole moment 

R • satellite radius 
s 

r = satellite distance from earth's center 

Q = satellite potential 
s 

v = satellite velocity 
s 

B = magnetic field strength 

n = number of neutral particles per unit volume 

-1.6065X10"19 coulombs 

4nX10~7 (MKS units) 

8.85X10"12 (MKS units) 

n. = 

m.. = 

mn 

b. 
1 

number of ions per unit volume 

ion mass 

neutral particle mass 

effective satellite radius 
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A. GENERAL 

There are basically four types of forces, other than solar radiation 

and geopotential forces, which produce effects upon earth satellites. 

These four are all true drag forces. In order to determine their signifi- 

cance it is necessary to have a reasonable estimate of their magnitude. 

B.  ELECTROMOTIVE CHARGE DRAG M  _     ft 

A satellite accumulates a charge q while moving through the iono- 

sphere. Since the satellite moves through the earth's magnetic field, 

it experiences a force given by the basic equation governing the force 

19 on a charged particle moving in a magnetic field. According to Bechner , 

the magnitude of this force is 

qjj Mv 
F^ -     M°    "      cos (0-11.4°) (II.1) 

2TTT-3 

for a polar orbit with the ascending node at 70.1 . Here/< is the 

permeability of free space, M is the magnetic dipole moment of the 

earth, v is satellite velocity, r is satellite distance from the 
s 

earth's center, and 0 is the angle between the radial vector to the 

satellite and the earth's rotational axis. 

In order to perform a sample computation cos (0 - 11.4 ) will be 

assigned its maximum value of 1. The charge q is 

q = 4Tr£oRgQa 
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where  £ is permittivity of free space, R is satellite radius, and 
u s 

Q is the satellite potential. According to Brundin in Ref. 20, Q 
s s 

has a maximum negative potential in the neighborhood of 0.75V. For 

computational purposes Q will be assigned a value of -1.0V. s 

Assuming a spherical satellite of radius R = 5.0m at an altitude 
s 

of 200 km, 

q - 4TT(8.85X10 12)(5)(D coulombs 

v = 7.787X103 m/sec 

M    M ,r 
-T- = 8.1X10 5 weber-m 
4TT 

r = 6.578X106 m. 

The pressure is F  /rrR 2 and equals 3.14X10" 2n/m2. 

C.  INDUCED DRAG 

The motion of a conducting satellite in the earth's magnetic field 

will cause a current flow and, hence, a resultant force. This force 

20 has been treated by Brundin  and found to have a magnitude of 

?      eBR 
Find = "eni VsnRs B(l" -JL- )    (II.2) m. v 

i s 

below the hydrogen region, where the photoelectric emission has little 
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effect upon the effective current. At higher altitudes, the photoelectric 

emission current may produce forces one or two orders of magnitude higher 

than the force yielded by this equation. Because of the difficulties 

in predicting photoemission currents, only forces at lower altitudes 

( < 800km) will be considered. For a more detailed discussion of photo- 

emission current see Ref. 20. 

Here, 

e = electron charge 

n.*= number of ions per cubic meter = 3.857X10  at 200km 

R = 5 meters 
9 

u  M B = magnetic field strength =     J*Q  
4TTT3 

* kg at ; 

The pressure at 200km is 

m. - ion mass = 2.5X10""^ kg at 200km 

F     M2   =f(1-6065)(3.857)(5)(8.l)X1011 yi_a.6065)(8.l)(5)X10-4 

\ TT(6. 578)3H018 )\   (2.5)(7.787)(6.578)3X10"7 

- 2.A4XL0"4n/m2 

D.  COULOMB DRAG 

The term coulomb drag is given to that force caused by incident 

ions which hit the satellite because of the satellite's accumulated 

charge. This force is given by 

F  , = nm.n.v2 (b2 - R2)        (II.3) coul    1 1 s  i   s 

where b. = RJ1+    s j* is the effective radius according to Ref. 20, 

m.v 
1 s 

*• All data concerning atmospheric structure was obtained from Ref. 21, 
MODEL 10, HOUR 0. 
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This force will not be considered independently, as it is a component 

of atmospheric drag and will be treated as such. 

E. ATMOSPHERIC DRAG 

Atmospheric drag is produced by the collision of satellite and air 

particles. It therefore includes the aforementioned coulomb drag. It 

may be instructive to consider the atmospheric drag on nonconducting 

as well as conducting satellites, thereby obtaining some appreciation 

of the coulomb drag effect. 

Conducting  ^  Nonconducting 

(a) Atmospheric drag on a conducting satellite 

F .  = F + F. 
atm   n   1 

where F    is drag due to neutral particles and F.   is due to incident ions 

If nis the number of neutral particles encountered per unit volume, 

F    = TTR2m nv2 (TT L) n s n    s K-i-i-'1*-/ 

F.   = rrbfm.n.v 
1 111s 

9 /      2eQ<,    \ o 
= ^(1+  !     Hni< (II.5) 

\     m.v' 
—- 

i s 

Hence, 

F.   *mini [l+**s    \F 
i        [  2"        n I11'6) 

m n \ m.v       J n \ is/ 
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and 

fl+  mini  /l+2'Q3  \lFu «*  r A* r-? r n (n.7) 

This yields a reasonable upper bound of 

Fatm 
= (1 + 0'625r K (H.8) 
2eQ 

since m./m ^% 0.5 and   has a least upper bound of 0.25 in the 
2 m.v 

l s 

region being considered. 

P = F /rrR 
n   n  s 

= m nv 
n s 

2 
c 

2 _ 

44_3/.„2, 

where v = GM /r. G is the gravitational constant and M is the earth's 
s    © c 

mass. (GM = 3.98866X10^ nrVsec ) 
0 

and 

P   = 1.624 xl0_<d n/nr at 200km 

P = F/TTRJ 

= 2.26X10"2 n/m2 

(b) Atmospheric drag on nonconducting satellite 

The force equation for atmospheric drag on a nonconducting satellite 

is identical to that for a conducting satellite (II.7). In the case of 

the nonconductor, Q is zero and, therefore, the equation reduces to 
5 

F .  =/l + 0.5 ni \ F ,TT a atm ^      n/ n (II .9 
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Thus the ratio of nonconducting drag to conducting drag is 

1 + 0.5 ni 

1 + 0.625 "i 

(11.10) 

F. RELATIVE MAGNITUDES 

The accompanying table and figure allow comparison of the four 

drag effects.  In addition, the solar pressure due to the direct radia- 

tion of the sun is imposed on the figure for the cases of pure specular 

reflection and pure diffuse total reflection. 
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TABLE 1. 

DRAG PRESSURES (n/nT) 

SPHERICAL SATELLITES 

ALTITUDE (km) AIRi AIR2 INDUCED ELECTROMOTIVE 
CHARGE 

200 2.26X10 "2 2.14X10"2 2.44X10-4 -12 3.14X10    * 

300 2.83X10"3 2.54X10"3 5.29X10"5 2.98X10"12 

500 1.64XL0"4 1.36X10"4 4.8LX10"6 2.68X10"12 

800 6.91X10"6 5.54X10"6 2.26X10"7 2.31X10-12 

 __ j 

Aiis - Atmospheric drag on conducting satellite 

Air  -  Atmospheric drag on nonconducting satellite 

* Helium considered to be charged particles 
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APPENDIX III 

THE EARTH'S GEOPOTENTIAL FIELD 

A. INTRODUCTION 

The potential function 0(x) for the geopotential field of the earth 

can be written as an infinite series of associated Legendre polynomials. 

In truncated form, this may be expressed as 

0(x) =M/r2  + 0o(x), (III.l) 

where 
N   n 

0 (x) = L E  (C  if+S^ll") (III.2) 
0     n=2  m=0   •   n   m n 

is the potential due to the oblateness (more generally, the asphericity) 

of the earth. The oblateness acceleration F (x,J) is the gradient of —o 

0 with respect to r: 

(ni.3; 

F^x) - T E  J (C^rad Un» + S^rad v/), 

where 7 = the rotation transformation that takes the earth-fixed 

geocentric coordinate system (X"% i", Z ), defined as the 

right-hand system with X at Greenwich and Z along the 

north-directed polar axis at time t, into the inertial 

geocentric coordinate system (X, Y, Z) defined in Figure 1, 

C  , S  = the geopotential coefficients from (n, m) equal to 

(2, 2) upto (N, N) whose published values have constant 

but unknown biases on them, 

grad = column ( —j , -4r- , -4j- , 
dx   dy   dz 
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u m 
n 
m (u/r) (R/r)n Pn

m (sire) 
cos rnX 

- 
sin m\ 

where u = earth's gravitational constant, 

r = the geocentric distance to the satellite at time t, 

R = earth's mean equatorial radius, 

P (sin@)= associated Legendre polynomials, * 

3 , X —  satellite latitude and longitude, respectively, at time t, 

The rotation matrix T consists of a precession and a nutation 

necessary to align the polar axis at time t with the polar axis at 

time 0 January 1, and then a rotation around the polar axis to 

align the Greenwich meridians.  (See Reference 4.) 

The gradients in (III.3) are given by 27 

grad U 
m 

(1/R) 

m „ m-1 
9 Am U 

h n+l 

m ,r m-1 

- * U m+1 
n+l 

-4A V 
n n+l 

- (n-m+1) U 

iv  m+1 
5n+l 

m 
n+l 

*We use the definition 

li On' 2 ni 
(1.x2)m/2  d 

m+n 

dxJ m+n 

/ 2 , \n (x -1) . 
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grad Vn
m = (1/R) 

n n+1 

i .m . m-1 
2 A U ...  + 

n n+1 

iv. 

u 

n+1 
n+1 

m+1 
n+1 

-(n-m+1) V 
m 

n+1 
(III.U) 

where A = (n-m+1) (n-m+2). 

Note that with the vector J defined to be the column array of 

geopotential coefficients 

J = column (C_Q, C„Q, ... C ; ^^1'' " '  ^33' * * *  ^?2' ^31* * " ' ^33' * * 

—o 
the sensitivity matrix dJ can be written as 

3F 
r^p - T [gradU2 , gradU^ ,...  gradt^2; grad U1... 

gradU J; ...  gradV 2; gradV ,..., gradV 3: ... J 

(III.6) 

The gradient - gradient of 0 can also be found 27 

«%. 

dx. dx. 

dF 
—o 
3r 

i,3=1,2,3 

N   N 
T E   £ (C_ grad-grad U^ + 
n=2 m=0 

nm n 

+ S  grad-grad v") TT, nm s   B    ny 

(III.7) 

grad-grad u = 
2R 

IxT 
A* (grad U^)T - (grad l££) n 

-2 (n-m+1) (grad U^+1) 
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grad-grad V* = 
n 2R 

An (g-
d Ci)T + Cgr* <£)T 

_  -2 (n-m+1) (grad V^fl)
T 

Note that both the gradient and gradient-gradient expressions 

require the negative-order expression for efficient computer calcul- 

ation. 

u-m) 
n = (-l)m  (n-m)1 

V 
.-m 
'n / (n+m)I 

if n 

-V*1 

n (III.8) 

Note, for purposes of numerical checks, that 
dF 
—o is clearly 

symmetric and, moreover, its diagonal elements are the Laplacian of 

0    and hence must vanish identically in free space: 

2      2 
V <fl    = ox +    oy e2F oz 9  0. 

dx d/ dz' 
(HI.9) 

B.  GEOPOTENTIAL MODEL COEFFICIENTS 

The geopotential model to be used will be the essentially eighth- 

23 order model published at the 1966 COSPAR by Gaposchkin -*  and reproduced 

?ZL 22 
by Wackernagel.   It consists of Kozai's  thirteen zonal coefficients 

C-„ = -J_ to C,. _ = -J.,, plus the thirty-four pairs of tesseral co- 
2U     2. 14, U    ±4 

efficients (2,2), (3,1) to (3,3),   •••> (8,1) to (8,8), plus the sixteen 

pairs of resonance terms (9,1), (9,2), (9,9), (10,1) to (10,4), (11,1), 

(12,1), (13,12), (13,13), (14,1), and (15,12) to (15,14). The un- 

moralized zonals are presented in Table 2 and the normalized tesser- 

als are in Table 3. 
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The term "normalized" applies when the conventional spherical 

harmonics PT(x) are replaced with the fully normalized spherical harmonics nN 

^J(x) = \l(n-m)l    (2n+l) k/(n-Hn)l  P*(x) = N(n,a)l*(x) 

(III.10) 

where      r..     „ 
1, m = 0; 

k = | 2, m^O. 

The coefficients C , S  are then replaced with their normalized versions: nm'    nm r 

Cnm = Cnn/N<n>m)> 

Snm=Snn/N(n'm)> (III'i:L) 

wherever the F^(x) appear. 

The geopotential-coefficient covariance matrix P.. is 113 x 113, 

although the majority of its elements are zero. Tables 4 and 6 present 

the standard deviations on the coefficients, and Tables 5 and 7 their 

correlation matrix. We were unable to fine the standard deviations for 

the (9,9) terms and therefore used the rule-of-thumb value 0.2 x 10 

commonly applied to these normalized coefficients. This pair was determined 

from the special resonance properties of MIDAS, and hence are uncorrelated 

23 to any other coefficients. 

The coefficients form essentially three uncorrelated groups: the 

even zonals, the odd zonals, and the tesserals. The correlation matrix, 

therefore, is presented in three parts, one for each of these groups. 
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Because of its size,  the tesseral correlation matrix is presented 

in thirty-one pages.    The placement of these pages is keyed to the 

correlation-matrix map in Figure 18. 

J2    = 1082.645 X 10"6 , J3 = -2.546 X 10"6 , 

J.     =       -1.649 XlO"6, Jc = -0.2i0 x 10"6 , 
4 o 

J,     =         0.646 X 10~6 , J^ = -0.333 x 10*6 , 
o ( 

Jg     =       -0.270 X 10"6 , J9 = -0.053 X 10~6 , 

J1Q =       -0.054X10"6, J =    0.302X10'6, 

J,2, =       -0.357X10"6, J. = -0. 114 X 10"6 , 

JM = 0. 179 X 10"6 . 

Table 2.       Unnormalized Zonal Coefficients 
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n B C X 106 S X 106 n m CXlfl6 S X 106 

2 2 2.379 -1.351 7 7 0.055 0.096 

3 1 1.936 0.266 3 1 -0.075 0.065 

3 2 0.734 -0.538 8 2 0.026 0.039 

3 3 0.561 1.620 8 3 -0.037 0.004 

4 1 -0.572 -0.469 8 4 -0.212 -0.012 

4 2 0.330 0.661 8 5 -0.053 0.118 

4 3 0.851 -0.190 8 6 -0.017 0.318 

4 4 -0.053 0.230 8 7 -0.0087 0.031 

5 1 -0.079 -0.103 8 8 -0.248 0.102 

5 2 0.631 -0.232 9 1 0.117 0.012 

5 3 -0.520 0.007 9 2 -0.0040 0.035 

5 4 -0.265 0.064 9 9 -0.065 0.0909 

5 5 0.156 -0.592 10 1 0.105 -0.126 

6 1 -0.047 -0.027 10 2 -0.105 -0.042 

6 2 0.069 -0.366 10 3 -0.065 0.030 

6 3 -0.054 0.031 10 4 -0.074 -0.111 

6 4 -0.044 0.518 11 1 -0.053 0.015 

6 5 -0.313 0.458 12 1 -0.163 -0.071 

6 6 -0.040 -0.155 12 2 -0.103 -0.0051 

7 1 0.197 0.156 13 12 -0.058 0.048 

7 2 0.364 0.163 13 13 -0.075 0.010 

7 3 0.250 0.018 14 1 -0.015 0.0053 

7 4 -0.152 -0.102 15 12 -0.062 0.058 

7 5 0.076 0.054 15 13 -0.063 -0.066 

7 6 -0.209 0.063 15 14 0.0083 -0.0201 

Table 3.   Normalized Tesseral Coefficients 
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J2 

J4 

J6 

J8 

J10 

J12 

J14 

6.0-09 

1.6-08 

3.0-08 

5.0-08 

5.0-08 

4.7-08 

6.3-08 

J3 

J5 

J7 

J9 

Jll 

J13 

2.0-08 

2.5-08 

3-9-08 

6.0-08 

3.5-08 

8.4-08 

Table 4.  Geopotential Coefficient Standard 

Deviations (Unormalized) - Zonal Coefficients 
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J2 

JH 

J6 

J8 

J10 

J12 

J2 JH J6 J8       JIO       J12 JiK 

1.00     -.60       ,80     -.89       .79    -.71        ,83 

1.00     -.86       .80     -.85       ,91 -,U7 

1.00     ».79        .96     -.88        ,60 

1.00     -.60        ,8«* -.84 

1.00     -.80 .70 

1.00 -,50 

1.00_ 

J3 

J5 

J7 

J9 

Jll 

J13 

J3          J5          J7          J9       Jll J13 

1.00     -.93        .98     -,9U        ,U8 -.86 

1,00     -.96        ,86     -.69 .75 

1.00     -.92        .57 -.82 

1,00     -.27 ,97 

1.00 -.12 

1.00 

Table  5.      Geopotential Coefficient Correlation Matrix - Zonal Coefficients 
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APPENDIX IV 

TRANSITION MATRIX $(t,t ) IN RECTANGULAR 

COORDINATES 

Repeating equations (2.2), 

r = rQ f ( A E) + *o g( A E), 

r =*r/dt = iv. f ( A E) + f- g ( A E), ^O *t ^O °V (IV .1) 

where the f and g functions are defined with equations (2.2). From 

(2.6), the Keplerian transition matrix is 

br/ drQ bvj      btQ 

bt/ *% b*/ din 
$(t,t0) = 

evaluated on the two-body orbit (IV.1), where the state vector is, 

of course, 

(IV.2) 

x    = 

From  (IV.1), the  four 3x3 submatrices are 

br/   a 1^   =    fH• PQC d f/ b^)     +    i^ (   bg/ dr^)  , 

br/   6^   =   TA bt/bfr)     +   gi   + in ( ds/ <*£n) > ±0 ^0V ^0 ±0 =oj 
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dr/ dr^ V   +   V dV a^o}     +   V ^V^V ' 

**/**o  - io(dft/dV    +  St1  +^o ( dgt/ dV ' (^-3) 

where,  for example, the row vector 

(  df/ dr^)     = (  df/ dx^,    df/ dx^,    df/ d^). 

Noting that 

x i+3 1   *   i   *   3, 

we can employ for the sake of clarity the convention that the x 

subscripts will never exceed 3 and derivatives will be denoted by 

(") rather than by the subscripts A to 6. Then 

*2 

L*3J 

r = (xx
2 + x2

2 + x3
2) , 

^O 

x 01 

*02 

x03 

2x2 

'0 = (*01 + *02 + "b? > 

f = (i^2 + x2
2 + x3

2)2, 

^0 = 

A01 

*02 

*03 

r0 - (X01 + ^2 + X03) ' 
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In these terms, we can write the semi-major axis as 

a = #TQ I    {2M  -r0*0 ): 

the inner product 

d0 ^0  * ^0 *bl *01 +   *02 *02   +   *03 *03 

will also be useful, 

From the definitions of the f and g functions, 

_ax0i- r02 (   da/dxoi) 

df/a^ - 
a(AE) 

(l-cos  AE)-(a/r0)sin AE dxQ. 

bt/di^ 

dg/dxQ. = 

( da/ die..) d(AE) 
       (1 - cos    A E)-(a/rn) sin AE 

•o dx0i       ' 
1 

(ua)2x .   sin AE + ar.JL.. (l-cos  A E) 

>*b 
+ A1(aa/ax0.)+A5^ a(AE) 

Oi 

*g/ <* *oi    =    ^/H^i d"005 A E)    +A1(da/o xQi)+A5    ^^ , 
ax0i 

dft/dx0i    =    A2    ^i + 2ar, 
a(r/a) aa 3 

12 a(AE) 
dX0i °    dx0i rr0 ^ 

* V dioi = A
2 

rol>   a I*    + (r/a) "air 3 - S^ cos AE ^M 
oxQi 

d «t/ d *0i 

* gt/ * *0i 

* (r/a) 
Oi 

A3        Vxl7   -(aA) sin AE && 

A ^ (r/a)     /   / \    .    AT, d(AE) A,    —Vl'   '   -(a/r) sin AE -*—L . 

dx0i 

alAE^ 

d*0i 
(IV.4) 
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The partials that appear in (IV.4) are simply 

da /axoi 
xQ. (M + arQ ) 

ro(* " ro^o2) 

6a/6x0i = 
2>"b *0i 

(2^-r0r0
2)2 

a(r/a)    U'XQ.COS AE + a'-'roc^.sin AE 

5x0i F*rQ 

+  A6 (dAE/ox^), 

- A^aa/ax^) 

o(r/a)    xQi sin AE 

fc^i      (?ia): 
- A (da/dx^) 

+ A6(dAE/axQi) 

ere 

6AE 
=    A8 

6AE 
^A8 

A  faa/ax„   )  -    3in ^    v-    -  (^cosAE)     • A7^a/03tOi;        arn *0i ,^^    *0i 
0 (ua)' 

(>aa). 

and the parameters A, through A^ are 

i 

. _  nrnsin AC + 2a'dr.(l-cos AE) 

2}i»- 

[   =  (ua) " sin AE 
2 "     op^ 3 
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A      -       (a/r)2(l-cos   A E), 

2jrr0cos    AE + a*dQ sin    AE 

,   i 
A      _        (au)    rQ cos AE + adQ sin AE 
5      _  f 

1 
A^ =   (1 - rQ/a) sin AE + d0(cos AE)/(ua)

5  , 

A„ = 

A8 " 

(ro/a
2) sin AE + d0(l "  COS ^    - (3/2)(u/a

5)^ At, 

2 (ua3)^ 

1 + dQ (sin AE)/(ua^ - (l-rQ/a) cos AE 

Clearly, when rQr„ approaches 2 u, *he elements of the transition 

matrix tend to be ill-conditioned because of a and its partials. This 

corresponds to a near-parabolic orbit. Although this case does not apply- 

to the present study, it was considered in the development of MINIVAR, 

and hence the so-called NASA orbital-element states are used there. Only 

one of the states reflects a, and the ill-conditionedness of the corresponding 

transition matrix is virtually avoided in the near-parabolic case. 

To go from the transition matrix of this appendix to the form used 

in MINIVAR requires only a point transformation, as outlined in Reference 4. 

A comparison of this sort was programmed, and in all cases the two transition 

matrices agreed to within round-off tolerances. Thus, both the algebraic 

details developed here and the MINIVAR development are sustantiated. 
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APPENDIX V 

COMPARISON OF MAXIMUM LIKELIHOOD AND 
MINIMUM-VARIANCE ESTIMATION OF SPACE-VEHICLE MASS 

Suppose that the sequence  4x(k); k = 0,1,... j-   of real 

random n-vectors x(k) is governed by the recursive equation 

x(k+l) = $(k+l, k) x(k) - f(k) + ag(k), (V.l) 

where (p (k+1, k) is a  given n x n transition matrix, a is an 

unknown system parameter (such as the area-to-mass ratio of the 

main report) which will be regarded as a real random variable having 

a priori mean a and variance C  ;  f(k) and g_(k) are random n-vectors 

with means ?(k) and g(k) respectively, and x(0) is a random n-vector 

with mean x(0) and covariance matrix P~. In addition, suppose 

that for each k = 1, 2, ..., N, we have available an m x 1 

observation vector z(k) given by 

z(k) = H(k)x(k) + v(k), (V#2) 

where H(k) is a given m x n matrix and v(k) is a random m-vector 

of observation errors having mean zero and covariance matrix R(k). 

Finally, we will assume that all of the vectors x(0), f(0), f(l),..., 

S(0)j £.(!)>•••> v(l), v(2),..., are pairwise uncorrelated, and that 

the random parameter a is strictly independent of all of these vectors, 

Using the available observations, we wish to determine an optimal 
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(in some well-defined sense) a posteriori estimate of the parameter a. 

For any random vector y, if y is the a priori (unconditional) 

mean of y, we will write 2 = y-y; i.e., y = y + y is a well-defined 

decomposition of y into a deterministic part and a zero mean 

random part. In equation (V.l), we then define e(k) = f(k) + a£(k), 

and note that e(k) is orthogonal to x(0), y(l), v(2),..., cf, and 

to each e(j) for j / k. With this notation we have 

x(k+l) = $(k+l,k)x(k) + ?(k) + ag(k) + e(k).        (v.la) 

The covariance matrix of the zero mean random vector e(k) will be 

denoted by Q(k). 

If h, and h are zero mean real random variables with finite 

variances, we define the scalar product (h, , h ) - Eh-ih  (where 

E(.) is the expectation operator), and the norm ||h||  = (h,h)5. 

Let yf  denote the Hilbert space which is the closure in this norm 

of the linear manifold generated by all the components of 3f(0), 

«(!)> •(2),..., v(l), y(2),..., and by a. Clearly, for each k = 1, 

2,..., the components of x(k) and zf(k) are elements of K ,  since each 

of these components is expressible as a finite linear sum of elements 

of the generating set. For each positive integer N, let /?? (N) be the 

finite subspace of y{ which is spanned by the components of Sf(l),..., 

zf(N), and let K-. be the orthogonal projection on 7I\ (N). 

If hj, is an arbitrary element of ???(N), then 

iisr-hjjii  = 1*- K/II   +  H^-V1 ,        (v.3) 
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since KJi - h„ € 7f\ (N) and a  - K.,a JL 7ty (N) by the orthogonal 

projection theorem. From (E.3) it follows that KJ2£ is the unique 

element of 7l\ (N) which minimizes the distance from a to //^(N); i.e., 

K„a is the unique (up to equivalence) minimum-variance, linear 

estimate of a with respect to the observations z(l),..., z(N). 

If the components of z(l),...z(N) are all linearly independent, 

then the projection K..a can be represented as follows. Let 2L. denote 

the vector whose transpose is defined asZ^ =  Lz(l),...,z(N)J . 

The linear independence of the components of Z means that the 

matrix cov (ZL.) = E2LZ„, which we will henceforth call IL, is positive 

definite. Setting %, =  U"2^,, we see that cov (%,) =  I. Therefore, 

the components of %,  comprise an orthonormal basis for lf\  (N), 

and we can write 

y* - (rfN)
T^ - ^)\%, (v.4) 

where the components of EfiEiLare the Fourier coefficients of a with 

respect to the orthonormalized observations. Since TL  = a-a, the 

minimum-variance, linear estimate of a based on N observation points is 

given by 

SOD = a + (BBfi^Dj1^ - y. (V.5) 
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The variance of the estimation error may be computed as follows; 

2 _ II A/  „  «/ n2 E(a-ft(N)r= IU- K/ll 

<r 2  /r-,* XT„-1 - (Eftgj/U^CE^). (V.6) 

REMARK: We note that even if the components of 2L. are not 

all linearly independent, equations (V.4), (V.5) and 

(V.6) remain valid if we replace U~ by U*", the generalized 

inverse of the positive semi-definite matrix UV. in the 

sense of Penrose . The question of linear independence, 

which we will not consider in this appendix, is probably 

most easily discussed using the notation of the sequential 

estimation procedure of Kalman, described below. A 

sufficient, but by no means necessary, condition for the 

linear independence of the components of the iz(i) s is 

that rank (R(k))= m for each k. 

Let us suppose for a moment that the random variable & and 

each of the random vectors x(0), e(0), e(l),..., v(l), v(2),..., has 

a Gaussian distribution. In this case, the orthogonality of these 

random quantities implies that they are actually strictly independent 

of one another. For our purposes, the important fact is that & 

and the components of 2L will then have a joint Gaussian distribution. 

Hence, it is quite easy to obtain the maximum likelihood estimate of 

a given 2L,. For this and later computations, we will need the 
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following result. 

LEMMA: Let the symmetric, positive definite matrix M be 

partitioned as 

II 
A   B 

T 
B   C 

where A is p x p, B is p x q, and C is q x q. Then the matrices 

-IT      T -1 
A, C, A - BC B and C-B A B are each positive definite. Further- 

more, if x and u are p-vectors and v_ and v are q-vectors, then the 

bilinear form 

<fe Z) H> l) = [x , Z ] A  B 

T 
B  C 

-1 

admits the expansions 

T -1 
(i) Q(x, v_, u, v) = x A" u + (y_ BTA_1x)T(C-BTA_1B)-1( v-BTA_1u), 

and 

(ii) Q(x, z>  H> l) ZTC_1v + (x - BC"1jr)T(A-BC"1BT)"1(u - BC_1v) 
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PROOF: The positive definiteness of A and C is obvious. 

Writing 

'A B" 'A 0" 'I A~XB         1 

.BT C. .BT I. .0 T -1 
C-B A    B. 

T.-l. and taking determinants of both sides, we see that  |C—B A~ B I > 0 

T —1 —1 
which shows that (C-B A" B)~ exists. Inverting both sides of the 

above decomposition then gives 

A  B 

T 
B  C 

-1 1 rn        -I     1 

I  -A XB(C-BXA B) 

o     (C-BV^-B)"
1
] 

-1 

T -1 
-BXA X   I 

If Q(x, y_, u, v,) is computed using the representation of M~ 

given by the above equation, (i) is obtained. Setting x = u = 0, 

T -1 
y_ = v, the positive definiteness of C-B A B is apparent. The 

proof of the remaining statements is similar. 

The maximum likelihood estimate of a given 2Lis simply the 

value of a which minimizes the quadratic form 

*T 
»•§] <r2 E82J -l s 
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which occurs in the exponential factor of the joint Gaussian density 

of a and Z„. Using expansion (ii) of the above lemma, this 

quadratic form may be written as 

    + 4 UN %' (V-7) 
( cr2-(E8^)TuN-Hugg)) 

From this last expression, we see that the maximum likelihood estimate 

of a given Z., under the Gaussian assumptions is just the same as 

the general linear, minimum variance estimate (V.5), and the estimation 

error also has the same variance (V.6). 

Returning now to the wide-sense, minimum-variance point of view, 

we note that not only for K,  but in fact for any element h £/r  , the 

projection 

KJL = (rflZ/) uN-% (V.8) 

is the optimum linear estimate of n given zL in the sense of the 

norm of ft  , i.e., in the minimum-variance sense. If j is a random 

vector such that the components of the associated vector J a**e 

elements of rf , we will denote by KL.2 that vector whose components 

are the projections on /!( (N) of the components of y\ Hence, we 

can write 
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The covariance matrix of the estimation error will then be 

given by 

Uf - y\ f1 - K/)] 

= cov (J) - (E^T) U^1 (4$), (v.10) 

• 1 X U x u 

where f   and y^ denote the i— and j— components of the vector £. 

The minimum-variance, linear estimate of the original vector y_ is 

then ^ + KVTSLJ anc^ the covariance matrix of the error involved in 

this estimate is also given by (V.10). 

We will now re-write the system (V.la) in the augmented 

form 

y_(k+l) = $y(k+l, k) Z(k) + u(k) + w(k), (v.ll) 

where 

y(k) Tx(k)j  ; u(k) = ri(k)T ; w(k) = f"e(k)l ; 

and 

$y(k+i,k) = r$(k+i,k)    £(k)i 
[   0       1  J 
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If M(k) is defined as the m x (n+l) matrix [H(k), 0 ] , we then 

have 

z(k) = M(k) v_(k) + v(k) (V.12) 

instead of equation (V.2). Together with (V.ll) and (v.12), we 

have the associated equations 

£(k+l) = $ (k+l,k)y_(k) + u(k), (V.lla) 
«7 

2(k+l) =  $ (k+l,k)f(k) + w(k) (V.llb) 

z(k)  = M(k)Z(k), and (V.l2a) 

2(k)  = M(k)2(k) + v(k). (V.l2b) 

The optimal estimate of v_(k) given Z, = Z,, - Z„ will be denoted 

by y(k/N); hence, 

£(k/N) = y_(k) + K^k), (V.13) 

since the components of Z(k) are obviously elements of /f . The 

estimation error associated with this estimate will be designated 
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as 2(k/N), so that 

2(k/N) = Z(k) - $(k/N) 

-&*) - K^[(k). (V.14) 

setting P (k/N) = cov (£(k/N)), it follows from equation (V.10) 

that 

P (k/N) = cov (g(k))- (Ef(k)y) UN~
X (E^f (k)).        (V.15) 

yy 

Since w(k) and 2. are orthogonal for each k, we compute 

£(k/k-l) = $ (k,k-l)£(k-l) + u(k-l) + K^t $ (k,k-l)g(k-l) + w(k-l)) 

= $ (k ,k-l )£(k-1 A-i) + u( k-1). (V.16) 

Subtracting (V.16) from (V.ll) (after replacing k by k-1 in (V.ll)), 

and evaluating the covariance matrix of the resulting expression, 

produces 

(V.17) 

"Q(k-l)   0 Pyy(kA-l)    =    ^(k^-DPyyCk-lA-l)       $y
T(k,k-l)    + 

o 0 
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Applying expansion (i) of the above lemma, we now compute 

K^(k) = (E2(k)^T) Uk~% 

% T  ^v,, XA/T> [E2(k)^1} ^(k)r(k)] «/T,, v n-1 U
k_l      ^./(k) 

Ef(k)2k^  E|(k)?
T(k) 

4-1 

*(k) 

Kk-#(k) + Vk) (-(k)" Kk-i^(k))> (V.18) 

where 

By(k) =D#(k)f
T(k) - (EyXk)^) U-^CE^f(k))] 

S- T x „-l ,<»      «,T,, sM-1 [fl[(k)f (k) - (EKk)^) l£ (E^f^k))]-1. 

Since v(k) is orthogonal to both y(k) and Z, ,, we can substitute 

the right side of (V.l2b) for |f(k) in the latter expression, and 

obtain 

Bv(k) = P (k/k-l)MT(k) [M(k)P (k/k-l)MT(k) + R(k)] 
#/      y y yy 

-i 
(V.19) 

The orthogonality of v(k) and Z, , also implies that K, -,z(k) 

M(k)lt  £(k); hence, the combination of (V.13) and (V.18) 

produces 

£(k/k) = y(k) + K^ftk) + B (k) [ z(k) - M(k)[z(k) + K^k)]] 

= z(k/k-l) + By(k) [ z(k) - M(k)£(k/k-l) ] (V.20) 
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From (V.llb), (V.l2b), (V.14) and (V.18), we find 

2(kA) -gk) - \_±ZM ~  B (k)M(k)[2(k) - ^jRk)] - B (k)v(k) 

= (I-B (k)M(k))J(kA-l) - B (k)v(k). (V.21) 

Computing the covariance of the latter expression gives 

P (k/k) = (I-B (k)M(k)) P (k/k-l). (V.22) 

Equations (V.16), (V.17), (V.19), (V.20), (V.21) and (V.22) are 

equivalent to those originally derived by Kalman for the sequential 

estimation of the state vector of the system (V.ll) based on 

observations of the form (V.12) (c.f. equations (3«5), (3.6), (3-14), 

(3-15), (3.16) and (3.17) of reference 11). In order to start the 

computation, it is clear that we should set 

P (0/0) = 
yy 

0 

0 

and $(0/0) x(0) (V.23) 

As the computation proceeds, the optimal estimate of the parameter 

a based on N observation points, which is given by equation ( .5), 

is obviously the same as the last component of the vector y_(N/N). 
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APPENDIX VI 

THE  PSEUDO-INVERSE AND DATA EDITING 

A.     INTRODUCTION 

The optimal noise-free solution for the Kalman filter derives from 

finding the gain B (n) that satisfies the equation (4.39): 

B    [H    P    (n/n-1)  H Tl -    P    (n/n-l)  H T = 0, (VI.l) 
y L y  yy y J       yy y 

where the argument (n) is implicit in the B and H terms.  In order 

for the processing of perfect observations to be meaningful, we can use 

a maximum of only three position measurements and three velocity measure- 

ments at any time t , for otherwise we would have some wholly redundant 
•    •    • 

equations in the unknowns x, y, z, x, y, z without enhancing our knowledge 

of the mass parameters u, , u , u_. As long as we are dealing with a single 

sensor at time t , as long as t is not identical to t , for all n (no 
n'     ^    n n-1 

matter how close they may get), and as long as the trajectory is randomly 

T 
perturbed (with geopotential and drag uncertainties)-, then H P  (n/n-1 )H 

u     «y«/       J 

is theoretically nonsingular and the solution (4.40) 

B (n) = P (n/n-1 )H T I"H P (n/n-1 )H T 1 _1 (VI.2) 7    yy     y L y yy     y J v  ' 
is theoretically possible. 

In a practical sense, however, the inversion called out in (VI.2) 

often meets with severe numerical difficulties. The first of these 

arises because we may not be able to keep t distinct from t , for 
^ n n-1 

all n. 
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1. Multiple-Sensors, Simultaneous Observations 

Two or more sensors, each perfect, may be able to see the satellite 

at the same instant of time t . For any of the sensors of concern to us 
n 

T 
in the present work, H P (n/n-l)H  would then be singular. 

y yy    y 

EXAMPIE 1. 

Suppose two Baker-Nunn cameras sight a satellite at the same time 

t . Each of the cameras has an observation matrix 
n 

H = 
y 

da/djr hll hl2 ° ° ° ° ° ° ° ° 

where a = right ascension, 

6  = declination, 

y-yD 

11   (sec2a)(x-x )2 ' 
s 

1 
h, „ = 
12   (sec2a)(x-x )2 ' 

h„, = 
-(z-zg)(x-xs) 

21   R3 cos * 

h_ = 
-(z-zs)(y-ys) 

22    R3 cos* 

h23 = 
R2 - (z-z )2 

     3 

R3 cos $ 

where (x , y , z ) are the coordinates of the camera in question, R is 
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the range from the camera to the satellite, and the h.. are evaluated 
1J 

around nominal satellite values at t  . n 

We can let t be itself for camera 1, and let it be t . for camera 2. 

To make the computations easier, we will take both cameras at the same 

latitude such that z = z , and normalize where we can to obtain 
s' 

Camera 1: Hyl(„) 
110 000000 

001000000 

Camera 2:  H „(n+l) = II (n) 
y2       J2 

abOOOOOOO 

OOcOOOOOO 

We will assume, without any real restriction, that 

P (n/n-1) = 0^1. 
yy 

Then we can show that 

(VI.3) 

P (n/n) = (c72) 
J17 

1 

-1 

(VI.4) 

(This is also P (n+l/n) since the data from camera 2 occurs at t ,, = t .) 
yy n+l   n ' 

Note that the two angles from camera 1 removed two degrees of freedom 

(reduced the rank by 2) between (VI.3) and (VI.4). This occurred where 

it should, in the 3x3 submatrix in the upper left-hand corner, which 
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corresponds to position uncertainties. To remove the final uncertainty 

in that 3x3 submatrix, we should use only one more angle measured at that 

time: the right ascension reading from camera 2. Without a special 

procedure, however, we try to use both new angles: 

Hy2(n+l)Pyy(n+l/n)Hy2
T(n+l) = Vn+l)Wn/n)Hy2T(n+1) 

9 [(a-b)2 

0    0 (VI.5) 

and we obtain an expression which cannot be inverted far (VI.2). 

2. Round-Off 

Even when the matrix is theoretically well-behaved, the finite 

precision of the computation equipment may present us with severe numerical 

problems. In the case of multiple sensors, two observations may not be 

truly simultaneous, but they may be so close in time that the trajectory 

perturbations have had essentially no effect on the orbit: i.e., the obser- 

vations are treated numerically in much the same way as led to (VI.5). Note 

that the perturbations enter the covariance computations through Qfn-l) 

and  £  (n, n-1), both of which are integrals of finite functions over the 
ai2 

range (t , t ,),* and hence vanish as t -*t , . ^*   n'    n-1 ' n   n-1 

Problems can still arise with closely spaced observations after care 

has been taken to throw away redundant readings, such as the declination 

*See equations (4.27) and (4.30). 
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measurement in the above example. The transition equations for 

the stochastic and deterministic estimates of drag are given respectively 

as 
A i   I    -, \  ^ i     i / -i \ -(t -t . )/Td u, (n/n-1) = u,(n-l/n-lj e  n n-1"    , 

u2(n/n-l) = u2(n-l/n-l). (VI.6) 

If t is too close to t , , the two equations are numerically difficult 
n n-1 

to distinguish, and since u, and u aooear in the equations of motion 

only as the sum (u, + u ), we find ourselves faced with a system which is 

essentially Kalman-unobservable. 

EXAMPLE 2. 

6,30 

Consider the hypothetically simplified example 

x(n+l) = | (n-il,n) x(n), 

z(n) - H(n) x(n)  , 

v;here 

f (n+l,n) = | = 

(VI.7) 

] 1 0 
- 

0 

0 1 1 1 

0 0 1 0 

0 0 0 1_ 

H(n) = H 
12 0 0 

3 4 0 0 

Components x^ and x., here, correspond to the u, and u of our real syst 

under the condition that t and t ,. are so 
n     n+1 

exponential in (VI.6) is numerically unity. 

em 

under the condition that t and t ,. are so close together that the 
n     n+1 ° 
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After one measurement, say at t , 

Cov - 0. 

We will assume that the overall covariance 

P(n/n) 

*42J 

Then 

P(n+l/n) = $ P(n/n) $ T = 

and 

H P(n+l/n)H 4(<rA *,2) 

0 

0-2 
4 

s 
3 

0 

V 
0 

<r2 
4 

(VI.8) 

Again, we cannot perform the inversion required for (VI.2). What we should 

have done was to accept only one of the two observations at this time 

and estimate, in effect, only the sum of x, and x, , rather than try to 

estimate them independently. Then, when we obtain some better-spaced 

future data that causes their behavior to separate, estimate them individually. 

B. THE PSEUD0-INVERSE 

Rather than attempt to throw away data in the conscious way just described, 

we can achieve the same effect by replacing the inverse in (VI.2) with a 
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pseudo-inverse. The general method of pseudo-inversion, with overtones 

for least-squares fitting, is described in Penrose,  and Kalman 

alludes to it throughout his work without, however, going through the 

mechanics of what it achieves. 

For our purposes, since we require it only for the observation- 

covariance matrix II P (n/n-l)H , it suffices to specialize the pseudo- 

inversion to a symmetric k x k matrix, say A. Denoting the eigenvalues 

of A as K ,...,X, , we can always transform A to the diagonal form 

1 

D = 
T 

= S AS, (VI.9) 

by taking S to be a matrix whose k columns arc the k distinct eigen- 

vectors of A, normalized such that 

If some of the X's  are zero, say \. ,, , X. ,0,..., X,  , then the pseudo- 

inverse of A is defined as 

A* = (SDST)* = S 

(1/V 
(iA2) 

dAp 
o 

0 
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That is, the part of A that has a normal inverse is inverted normally; 

the part that has zero eigenvalues is pseudo-inverted to have zero 

eigenvalues. 

APPLICATION TO EXAMPLE 1. 

Consider the solution with the declination measurement thrown away 

by conscious editing. We use ( J to denote the matrices so obtained 

for camera 2: 

z' = a, 

H' = [a b 0 0 0 0 0 0 o] 

Then, from (VI.2), (VI.4), and (VI.5) 

B'(n+1) = P (n/n)H'T2(n+l)[H'(n+l)P (n/n)H^(n+l)] 
-1 

= (<r2/2) 

a-b 

a+b 

0 
-1 

[(tf^Xa-b)2]   = 

1 
a+b 

1 
a-b 

0 

0 

(VI.10) 

Now we apply the pseudo-inverse, instead, to (VI.5) in the automatic 

way described: 

Vn+1)" Vn/n)Vn+1) [Hy2<n+1VnAiVn+1)]* 
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- (<r2/2) 

a-b 0 

a+b 0 

0 0 

0 

(0-2/2)(a-b)2   0 

0 

1 
a+b 0 

1 
a-b 0 

0 0 

0 0 

(VI.11) 

Relation (VI.10) directs that the first two position extrapolations be 

corrected by multiplying the right-ascension residuals by l/(a+b) and 

l/(a-b), respectively, and all others be left unconnected; (VI.11) directs 

the same thing. Hence the results are the same. 

APPLICATION TO EXAMPLE 2. 

We accept only the z-, measurement in the simplified example specified 

by (VI.7). Then 

and 

H   =[l   ; 2    0    o] 

0 0 

i 

9            9 

3       4 

<J;2 

2 2"1 1 
(T2 +T2 

3       4 

<r2 

3 
B (n+1) - 2 = 2(<^2+<^2 

A2 

(VI.12) 
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The in-step covariance is 

P'(n+l/n+l) = [i-B'Cn+ljH'JPtn+l/n), 

0 0 0 0 

_   v3   ^4 
0 0 0 0 

3    ^4 
0 0 1 -1 

0 0 -1 1 (VI.13) 

The pseudo-inverse approach employs the original unprimed matrices 

from Example 2. First we must find the eigenvalues of (VI.8): 

X, = 5, X„ = 0. We then determine the matrix of eigenvectors to be 

s = sT = (i//T ) 

Equation (VI.8) becomes 

[-: i] 
H P(n+l/n)HT = 20 (<T 2 + <r 2) S 

J 4 

0      0 

0      1 s, 

so that 

[H P(n+l/n)HT] 1 

20(<T2+<£2) 

ioo(c2+<r2) 
J>       4 

p • 

0 0 

0 1 
I" •" 

1 2 

2 4_ (VI.14) 

Hence 

B(n+1) 
10(^2+C^2) 

0 

sH2 

V 

0 

2(<r2+o-2) 
3    4 

2^ 

204 (VI.15) 
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Comparison of (VI.15) with (VI.12) is not particularly enlightening, 

Hence we compute the in-step covariance with the unprimed values, 

P(n+l/n) = 

0 0 0 0 

0 0 0 0 

0 0 1 -1 

0 0 -1 1 

and find that it agrees with (VI.13), thus verifying that the pseudo- 

inverse automatically performs the desired editing. 

C. NUMERICAL IMPLEMENTATION 

Computer round-off usually prevents a calculation from yielding a true 

zero value when there should be one if the calculation involves more 

than a very few steps. Hence the examination of D for computed singularities 

will not always be sufficient. 

There are two cases to consider. The first and most common arises 

2 
when some diagonal entry (T.  in P  should be zero, but is not. The entries 

i        yy 
2 

in the row and column that contain <J~.     should also be zero if P  is to 
1 yy 

have the non-negative definite property that a covariance matrix must have. 

If these row and column entries are wholly due to round-off, it is very 

unlikely that P  will be non-negative definite (have only non-negative 
i7 1/ 

eigenvalues). Hence, one approach is to positive-semi-definitize the P. 
yy 

matrices. 

TEST 1. 

Check the diagonal entries in P .  If there are any negative entries, 
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2 
say <T , set them and the ith column and row to zero. Set also the 

appropriate rows in P'  and P_ to zero. Perform the check for both 

the arguments (n/n) and (n/n-l). 

TEST 2. 

Compute the diagonal matrix of eigenvalues 

T 
D - S P S 

yy 

for arguments (n/n) and (n/n-l).  If any eigenvalue is negative, set it 

to zero and reconstruct 

P ' = SD'ST, 
yy     ' 

where the primes denote the matrices after the negative eigenvalues are 

made zero. It is assumed that any negative eigenvalue is small enough 

in magnitude that setting it to zero has negligible effect on S. 

TEST 3. 

For some input parameter C, set the ith row and column in P (n/n) 

to zero if <T. 2 <•  C. 
l — 

TEST 4. 

Having obtained a data value z. (n), and therefrom a residual 

e± = z±(n) - l-ufxtn/n-Dj    , 

set the ith element <f .    in H (n)P    (n/n-l)H    (n) to zero if 
—      ei   y  yy    y 

er>Ki(r- 
2 

ei 

for some input parameter K, . However, set the residual e. to zero if 

K. <T ? > e? >K0^. T. ei — i   2 ei 
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for some input parameter K (< PL ) and proceed with the covariance 

computations as if the data was used. 

The second case arises when the P  matrices are numerically positive 
yy 

semi-definite, but some small sT.  should be zero. There are two possible 

approaches. One is to diagonalize to the D matrix and set any X.   to 

zero that is "very much" smaller than any other X.. There is a difficulty 

in assigning a number to the "very much", especially since some of the 

variances have the units of distance, some have the units of velocity, and 

some have units involving area-to-mass ratio.  In general, however, it 

is better to discard good data (by setting a X.   to zero that should not 

be) rather than to include bad, or meaningless data in the smoothing. 

The computed covariances will simply be a little larger than they should 

be. 

A second approach, which also covers some of the problems encountered 

earlier, is to include a round-off "noise" matrix R  in the residual 
' rr 

covariance 

[H (n)P (n/n-l)HT(n) + R    (n)l 1 y      yy y rrv  J 

to reflect the fact that we do not have an infinitely precise processing 

chain, even when the first unit in the chain (the sensor) is perfect. 

- 166 - 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA -R&D 
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified) 

I. ORIGINATING  A c Tl V l T V (Corporate author) 

Westinghouse Defense and Space Center 
Surface Division 
Baltimore, Maryland  

2a.  REPORT   SECURITY   CLASSIFICATION 

UNCLASSIFIED 
Zb.   GROUP 

N/A 
3.   REPORT   TITLE 

MODELS FOR ANALYSIS OF THE CAPABILITIES OF GROUND BASED SENSORS 
IN DETERMINING THE MASS OF ORBITING BODIES 

4.  DESCRIPTIVE NOTES (Type of report and inclusive dates) 

None 
5.   AU THORISI (First name, middle initial, last name) 

Walter J. Culver, et al 

S     REPORT   DATE 

23 June 1967 
la.    TOTAL   NO.   OF   PAGES 

166 
7b.   NO.   OF   REFS 

50 
8a.   CONTRACT  OR   GRANT  NO. 

FI9628-67-C004I 
b.   PROJEC T   NO. 

9a.   ORIGINATOR'S  REPORT  NUMBER(S) 

ESD-TR-68-I57, Vol. 

9b. OTHER REPORT NOISI (Any other numbers that may ba assigned 
this report) 

None 
10.   DISTRIBUTION   STATEMENT 

This document has been approved for public release and sale; its distribution is unlimited. 

II.   SUPPLEMENTARY   NOTES 12.   SPONSORING  M1LI TARY   ACTIVITY 

Space Defense Systems Program Office, Electronic 
Systems Division, Air Force Systems Command, 
USAF, LG  Hanscom Fid, Bedford, Mass.   01730 

13.   ABSTRAC T 

This report contains a description of the models to be used in analyzing the capabilities of 
ground-based sensors h determining the mass of orbiting bodies, model coefficients, and the 
justification for their selection.   Relations are derived for computing sensitivity coefficients 
and their coupling to mass variance. 

DD FORM 
1    NO V   G5 1473 UNCLASSIFIED 

Security Classification 



mCLASSIFIED 
Security Classification 

KEY    WO ROS 

RADAR 
MASS 
ERRORS 
ANALYSIS 
SENSOR 
ORBIT 
SATELLITE 

UNCLASSIFIED 
Security Classification 


