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ABSTRACT

This report contains a description of the models to be used in
analyzing the capabilities of ground-based sensors in determining the

mass of orbiting bodies, a description of the model coefficients, and the

Justification for their selection. Relations are derived for computing

sensitivity coefficients and their coupling to mass variance,



SECTION 1

INTRODUCT ION

This document is Technical Report Number 1, the first in a series of
three theoretical reports prepared under Air Force Contract F19628-67-COOL1.
It is concerned with the mathematical models and relationships necessary
to perform a detailed maximum-likelihood/minimum-variance error analysis
of the capability of ground-based sensors in determining the mass of a
satellite. It is specialized to account for the following restrictions:

1) The sensors observe the satellite without error.

2) The satellite is a sphere of 5-meter diameter.

3) All the physical characteristics of the satellite except mass
are known without error.

L) All the error in the computer mass results from errors and
uncertainties in the knowledge of the orbit-perturbing forces.
Technical Report Number 3 will be a companion document, extending the

theoretical development to remove the restrictions of perfect sensor
observations and perfect knowledge of the non-mass body characteristics.
In addition, the body shapes will be generalized from the sphere of this
report to include also one of a pair of tumbling cylindrical objects of
length 10 meters and diameters 2 and 5 meters, respectively.

The theoretical basis for mass determination rests in the fact that the
mass of a man-made satellite drops out of the gravitationally induced
motion of the satellite and appears only in the effects produced by the

non-conservative force fields. For the sort of satellites specified in



the contract, solar radiation pressure and atmospheric drag are the only
two non-conservative phenomena whose effects are reasonably observable.
Hence the problem is to separate the gravitationally induced motion from
the net motion and then use the proper solar pressure and atmospheric
drag models to extract mass-parameter values for the satellites tracked.

This contract is not concerned with the processing of real tracking
data. Rather it is a study to ascertain how accurately mass parameters
can be typically determined in the way just described and what are the
critical error sources in such a determination.

In choosing the mathematical models upon which to base the necessary
orbital calculations, one finds oneself deeply involved with questions of
practical computation. A central-force gravity law, for example, leads
to expressions for the state of the orbit which are closed-form functions
of eccentric anomaly and hence are easily computable. Unfortunately,
this solution is far too inaccurate a representation of the real world
to be used as is in orbit or vehicle-parameter determination.

More exact models of satellite dynamics do not lead to closed-form
solutions. Not only must the trajectories that evolve from the direct
use of these more accurate models be determined by numerical integration,
but also the state and mass-parameter estimates and the associated sensi-
tivity matrices must be determined by numerical integration.

To handle this problem, the use and extensions of techniques contained
in NASA's MINIVAR family of orbit-determination computer programs will be

made in this contract.



In what follows in this first Technical Report, the basic theory of
two-body mechanics will be presented, the means for correcting this model
for various pertubation effects will be discussed, and methods for computing
the effects of variations in the model coefficients will be developed so
as to avoid the need for numerous integrations. Finally, the models them-

selves will be discussed.



SECTION IT

TWO-BODY MECHANICS

A two-body or Keplerian earth orbit leads to an essentially closed-

form expression for the state of the orbit as a function of the state
at any prior time.

In particular, if

is the column vector of satellite position in the geocentric inertial
coordinate system (X, Y, Z) depicted in Figure 1, then the central-

force-law acceleration is

d*r/dt? = - ur/r’, (2,27

where 4 1is the gravitational constant of the earth. Given

initial conditions at some time e for position and velocity, r, and

7
L
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Direction of
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oh January 1
Figure 1, Geocentric Inertial Coordinates
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B = (dg/dt)o, respectively, one can write the position and velocity

at any later time t as 1, 2,3, 4%

r = r, f(AE) +f_ g(AE),

dr/dt = r, ft(A E) + 3'-0 gt(A E), (2.2)
where

f(AE) =1 - (a/ro)(l - cos A E),

g8 E) = r_(a/u ) sin A + (ad_/u)(1 - cos & B),

f,(AE) = - (a/r)(l/ro)(,u/a)(l/Z) sin AE,

g, (AE) = 1 - (a/r)(1 - cos AE),
and

a = urf(2p -t ?), the semi-major axis

45" Ty

AE =E - E, the change in the eccentric anomaly from time tos

r/a = (1 - cos A E) + (ro/a) cos AE + do(,aa)-(l/z) sin AE.

Kepler's equation provides the means for finding AE, givea Eo,tht time step

At, and the eccemtrieity e:
n At= AE - e (sinE—sinEo),
or, after some elementary substitutions,
nAt = AE + (do/\//_,(_a)(l - cos AE)
+ (ro/a - 1) sin AE, Caal)

where
At = t -+t
o

n = the mean motion, ( &« /a3)(l/2).

#*Superscript numerals denote entries in the References Section of this report.

= B e



The solving of (2.4) for A E completes the two-body solution.
For notational simplicity, the equations (2.2) can be expressed

in state-variable form:

x = x(x, OE), (2.5)
where
el
P !; | X T X, x2 = x3 Zis xh = x5 Vs x6 Z
Lx6 4
xoiw
X~ : R IS x , etc.
X0t

Hence a small change A x in the state caused by a variational change

Axo in the initial conditions is, to first-order accuracy,

ax = Q(t, to) Ax, (b))

where

o(t, to)-_- [axi/ axoj]

The 36 elements of the transition matrix Q(t, to) are derived in Appendix

IV. They are evaluated on the nominal two-body orbit calculated from (2.2).



SECTION III

PERTURBATIONS TO TWO-BODY MOTION

Although the means has just been developed for accounting for
variations in initial conditions, two-body assumptions are still inadequate.
The closed-form solutions presented above will, however, be useful in

the more sophisticated computations which can be made.

A. GENERAL EQUATIONS OF MOTION

In general,
dx/dt = £(x, t) + E(x, €, u, t), (3
df/dt = G(x,§, u, t), (3.2)

where x is as defined for equation (2.5), £ is a six-dimensional state
vector describing rigid-body rotation, having the Euler angles of the
satellite as its first three elements and their time derivatives as its
remaining three, and u is a vector containing all the model parameters
about which there exists modeled uncertainty.

The vector 2(5, t) describes the two-body accelerations, while the
non-Keplerian perturbations enter with F(x,§ , u, t), which contains also
all the dynamic biases and uncertainties:

f(x, t) = column (xh, X5 5 % -}JX.l/PB, -/uxz/rj, —}AXB/I'B)

F(x, € , u, t) = colum (0, 0, O, F3, Fh’ F5)° (3.3)

The rotational states § arise for aspherical satellites to describe the

cross sectional area presented to the drag media and to account for the



dynamic coupling between rotational and translational energy.

B. EQUATIONS FOR SPHERICAL SATELLITES

For the purposes of this Task I effort, only spherical satellites
are to be considered. To a high degree of accuracy, then,fg may be
dropped from (3.1) and (3.3), and equation (3.2) can be discarded.

Only the following need therefore be considered:
dx/dt = f(x, t) + F(x, u, t), (3.4)

The non-Keplerian perturbations contained in F(x, u, t) will consist of

1) an atmospheric drag acceleration

where
u, = (A/m)CD, the ballistic coefficient, constant but unknown,

ul(t) = a stationary random error in the ballistic coefficient with

2 -[tal

autocorrelation function o© due to
drag
atmospheric density uncertainties,
s 7
xl++wex2
By
1 / 2 4 ( I
= = . = + =
A, h = A, B Vo, WRG) F g S S RS Gk
53 .
6
— -




where, in turn,
/9 = mean atmospheric density at x and t,
wy = rotation rate of the earth;

2) a solar pressure acceleration (see Appendix I)

r
=solar

= 113 1(3_‘, t) (3.6)

where, for the spherical satellites in this Task I effort,

uy = (l+hkd/9) (Inom/c)(A/m), a solar "ballistic" coefficient, constant

but unknown,
and
Y
: 2 A A
Y(x, ) =T | = (R /r Q%mi tpa ),
Y
3
where

k, = diffuse reflectivity of satellite,

= solar irradiance at nominal earth-sun distance Res’

nom
- = nominal earth-sun distance,
s = actual earth-sun distance,

¢ = gpeed of light

= unit vector from center of earth to center of satellite,

H>

e = unit vector from center of sun to satellite,



Aq (a) + a2) cos a ; la| £ n/2 - B,

Py = Aq a, 5 rr/2—B)\5 la| = TT/2+B)\
0 s n/2 + B, = la| €
(1 +2qa,) ] laj £ n/2 - B,
p, = (1 + kqass) , /R = B, = la| = mn/2 4 B,
0 : n/2+B = [af £«
c03a=-(€r.? ), 0 € o ' m,

ss’? 5
> [(1/2)
sin @ = 4+(1l-cos“ a

q = earth albedo,

N = ratio of earth radius to distance between satellite and
earth center,

B}\ =hicesy As
a; == (L0K17 + .5431A)/3
a, ={-ou4s - 3.17(» 772 4 o045 (A-.77) sin [14.30a-.77)n)}/3
a_ = a2[l+ 5= ses’Z‘y = e_z'y {2z + sy)] Ve
4r =(ass+al/2 fs) 1 = B(1 # Sy)d] .) —
n A2 L (1/A-sin a)3 4+ {A-sin a)3J _ (l—)\2)3/2 sin a
iy 6
(12 2 sin a)3/?
T =<4 + 9.3\
y = (a-n/2)/B,
=1 ) yao’
s =
Ll ; T=0,

d =3.7 + 59(n-.77)%;

= [ =



3) an acceleration due to solar and lunar attraction

3 1 2 1
o

T = =8 _ 83 e =

I.-sun, moon sun R2 R2 +/‘&noon R2 R2 (3.7)
es ss em ms

where

Poins Mesoon = gravitational constants for sun and moon,

'ftse . ?'me = sun-to-earth and moon-to-earth unit vectors,

Regs Rem = sun-to-earth and moon-to-earth ciistances,

ASS, ’ims = sun-to-satellite and moon-to-satellite unit vectors,
S0 Rms = sun-to-satellite and moon-to-satellite distances;

L) and, finally, a geopotential acceleration due to the oblateness (more
generally, the asphericity) of the earth (see Appendix III):
N

n
- m m
go(a_c) =T L.z (C__grad U~ + S grad V. ), (3.8)
n=2 m=0 e

where T = the rotation transformation that takes the earth-fixed
geocentric coordinate system (Xl, Yl, Zl), defined as the
right-hand system with Xl at Greenwich and Z:L being the
north-directed polar axis at time t, into the inertial
geocentric coordinate system (X, Y, Z) defined in Figure

i g - T

o s



Com> Sy = the geopotential coefficients from (n, m) equal to

(2, 2) upto (N, N) whose published values have constant

but unknown biases on them,

0 0 0
grad = column (—=, . )
axl ayl azl ’
b sy e R ety [0
= (p/r) (R/r (sin B 5
VE M n sin mh

where

A= earth's gravitational constant,

3}
Il

the geocentric distance to the satellite at time t,

e}
I

earth's mean equatorial radius,

Pﬁ(sin 3) = associated Legendre polynomials,

3, N = satellite latitude and longitude, respectively, at time t.
Hence
0 0 0 0
Flx, u, t) = [ | + |g—oeee B P +H =] . (£3:9)
S L b F
—drag —solar =sun, moon o

C. ENCKE INTEGRATION
Given the initial condition x(t_ ) and the actual values of the
parameters that appear in (3.9), equation (3.4) can be integrated numerically

to yield the satellite trajectory g(t). Since in the class of orbits

= 12 -



germane to this contract the earth's central-force field is the strongly
dominant effect, an Encke integration of (3.4) will generally be the
most accurate approach for a given integration step size and arithmetic
. i
precision.
The Encke method that will be used computes small perturbations
about the two-body orbit defined by equations (2.2) and (2.5). Call the

two body orbit x (t), or, more exactly,

It satisfies the equation
dx°/dt = £(x°, t), (3.10)
E(to) = given.
If we define
ax(t) = ax [t, x(t )] = x(¢) - x°[¢, x(¢_)]

and subtract (3.10) from (3.4), we find

d(ax)/dt = £(x, t) - £(x°, t) + F(x, u, t),

ax(t ) = o. (3.11)

The integration of this equation by an appropriate starting technique, such
as the Range-Kutta-Gill, and an appropriate long-term technique, such as

an Adams interpolation method, completes the Encke orbit computation.

=l



Reference L4 presents the Runge-Kutta-Gill and Adams methods that will
be used, except that it associates the Adams method with a Cowell integrator.
The CPCEI Detail Specifications, Part II, for the present contract will

describe the same Adams method in the context used here.

D. RECTIFICATION

If we continue assuming that z(to) and the actual parameter values
are known exactly, care must nontheless be taken that the magnitude of
A;(t) does not exceed certain assignable bounds, or the Encke integrator
will lose its accuracy. If it does, say at time tr, then the integration

must be stopped and the generated value
_ .0
Z(tr) =X [tr: l((to)] + Ax [tr: 3_((1:‘0)]

used as a new initial condition. A new two-body trajectory is generated

from (2.2) and (2.5),
(e == [t, x(t,)]
a new ax(t) defined,
ax(t) = ax [t, x(e )] = x(¢) - | ¢, x(t)]

and the process continued. The technique is known as rectification, and
proceeds in one dimension as shown in Figure 2, below. The times
., are the rectification times.

The generation of an orbit under the assumption of perfect knowledge
is carried out in the Reference Mode of MINIVAR3’L in the manner discussed
in this section.

= il
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SECTION IV

ESTIMATION AND PREDICTION

The assumptions of the previous section, i.e., that the initial
conditions and the model parameters are completely known, led to an
Encke integration which, in reality, only God can perform. Rather, a
ground-based observer has incomplete knowledge of the initial conditions
and model parameters and often can see only some nonlinear combination of
some of the satellite states. Even that which can be seen is masked in
uncertainty because of fluctuating measurement noise and fixed, but

unknown’measurement biases.

A. PROBLEM FORMULATION

Consider the equations

I

d(ax)/dt = £(x, t) - £(x°, t) + F(x, u, t), (4.1)

Az =h(§’11 b E b t) - }_1 (3_<o: O: O: t): (L-2)

where ax(t) is the Encke variation from the two-body orbit zo(t) discussed

in Section III, and the vector

z=h(x,, b, t) (4.3)

defines the observations z(t) on the orbit, where

21 (t) = zero-mean Gaussian white noise,

b constant but unknown biases,

z - go, the difference between the actual noisy observation

pz(t)

and the noise-free observation of the two-body motion.

- 16 -



For the special case of perfect sensors to be considered in this Task

I report, z(t) is always h(x, O, O, t), which we will shorten to
t
z = h(x). (4.3)

In addition to the physically meaningful equations (4.l) and (4.2),
additional equations can be written which describe how the unknown
parameters and biases within F(x, u, t) change with time. Three of these
will be modeled and estimated from received sensor data: the three "ballistic"

coefficients U, u and Uy in expressions (3.5) and (3.6), which have the

2’
dynamics

du /dt = -(1/7) v +wy(t),

duz/dt
du3/dt

]

0,

0, (4.4)

where wl(t) is a zero-mean, Gaussian white-noise process with power

2 ’ . . s :
(2/1))0 Sty per-unit-double-bandwidth in rad./sec.; i.e., it has
covariance

cov [y (8), w(t")] = (/2 02, S+t (4.5)

where J(t) is the Dirac delta function, and where in general, for random

vectors a(t), Q(t)’

Cov [a(t), n(t)] —E[a(t) b(t)] = E[:a(t] E[b (t]

where E( ) denotes mathematical expectation and ( ) denotes matrix

transpose.

=

»



Additional uncertain parameters are contained in the oblateness

contribution E, to F(x, u, t). These are the geopotential coefficients

J = column (C2O’ C3O"" :C22; C31,..., C33;... :522; 831,..., 533;...),

which are constant but have unknown biases on their published values. These
errors will be modeled, but sensor data will not be used to correct the
published values.

For simplicity of notation, the vector v, will be used to denote

il

those biases and parameters which will be actively estimated, and L will
be used to account for those that will be modeled, but not actively
estimated. If y is defined as the vector which contains all variables that

are to be actively estimated, then it is the 9-vector

AX

ok ) T (4.6)
i)

where

N e

=1 2
u
3

Now, for any random vectors a(t) and b(t) we will define

A N . . .

a(n/k) = g(tn/tk), the minimum - variance estimate of the vector
a at time t = tn based upon data upto and including time
t=t,

Pab(n/k) = Cov[g(n) = g(n/k), b(n) - /Q\(n/kﬂ , the covariance matrix

on the estimation errors between a and b,

= A8 =



and the short-form notation.

cov [ a(t), a®)] = cov [a®)] .

In this notation, the problem of minimum - variance estimation on the
vector y is simply the problem of choosing a filter for the data sequence

'{Ag(n)} such that

9

z a?az (n/n) = trace {AP (n/n)A} = min., (L7

et . Yy

i=1 i
wheres

o ? (n/n) = Cov [;r.(n) = ?.(n/nﬂ .

Y5 il i
a, = a pre-assigned weight given to an error in the

estimate of the ith variable s
Gl
ag
trace () = the sum of the diagonal elements of its argument matrix.

To derive the filter as the sequential processor implemented in MINIVAR ,3 h
a regression formula will be applied to incorporate into the estimate each new

data point as it arrives: ’

T(n/n) = n/n-1) + B(n) [az(n) - s2n/n-1)] (4.8)
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where
%}n) is a 9 x (dim z) gain matrix which has yet to be determined,*
A 1
0z(n/n-1) =h [E(n/n—l)] -h [zp(n)] in the notation of (4.3 ).

A .
The computation of the one-step extrapolation y(n/n-1) is straightforward,
given state and parameter initial conditions (or prior in-step estimates)

A
y(n-1/n-1). From equations (4.4), since wi(t) has an expected value of zero,

-(t -t )/T.
Gl(n/n—l) = Gl(n-l/n—l) e 07l a:
Gz(n/n—l) = 32 (n-1/n-1)
A A
uB(n/n—l) = u, (n-1/n-1) (4.9)

A
The rest of the y(n/n-1) vector is computed directly from (4.1) by

numerically integrating up to time t = tn after the appropriate notational

changes have been made:

d(aR)/dt = £(x° + oR, t) - £2(x°, t) + F(x° + oR, G, t)
A
initial
cond.

A A , A A .
where Ax and u are short-form notation for Ag(t/tn_l) and E(t/tn_l), respectively.

Hence. B (n) in (4.8) is the only computation for which the machinery does
not yet exist. The remainder of the section will describe how it is computed
by linearization techniques. Note, however, that up to this point in the

discussion no linearizing assumptions have been made, since so far By(n)

could just as easily have been a function of y as not.

*The notation dim z is the dimension of the vector z.
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B. MINIMUM-VARIANCE DERIVATION
1. Basic Principles

By their very mode of operation, ground-based sensors deal with
sampled-data information which can become rather sparse after normal
pre-processing and conditioning is performed. Hence, only at discrete
points in time need we have the ideal curves (or their equations) to
which the data is to be fit.

This section will generate the sampled-data expressions for y (t)
which describe the ideal orbital motion. They will not be integrated to
yield the best estimate itself, since equation (4.10) has already been
developed to do that. Rather these sampled-data expressions will be
used for the received data.

Because of the inherent theoretical problems in obtaining B(n),
the equations of motion must be linearized around a nominal trajectory,
and Gaussian probability distributions will be assumed for all the random

variables. Then some rather well-developed theory 67,11

by 5

and available
computer programs apply after some modification,
2. The Linearized Equations of Motion

Consider equations (4.1) and (4.10):

d(ax)/dt = £(x t)-£(x°,t)+F(x,u,t),

d(a®)/dt = £(&,t)-£(x°,t) (X8, t)

where again A% and i are Ag(t/tn_l ) and ﬁ(t/tn_l) respectively, and x(t) =
x°(t)+ax(t) and X(t/t =x° (t) + 8R(t/t_ ,).
= = & n-1 = = n-1

Note that if x and 2 are both sufficiently close to 5? and hence

to each other, then the f terms can be replaced with the first-order



. . o
terms in the Taylor's series expansions around X :

d0f

d (x)/dt = (537), & - E®ut), (4.11)
of

d (A%)/dtz(—ax—)o Ag - _E@,'ﬁ,t)- (l+.12)

Now F(x,u,t) can be expanded in a Taylor's series around the best estimates
® (t/t__1) and B (t/t_,): to first order,

¥ &y

F (x,u,t)= F (J:\C_,'ﬁ,t) X A?_E) b (6 ) (1_-1_"2\) (4.13)
N u
dF 3F .
vhere ( ) is ;7 evaluated at ’g(t/tn),g(t/tn).

Moreover, we can define the error vector

g, (t/t,) =a () - & (t/t_) for any vector a (t). In the special
cases where t %ssumes discrete values, t n’ the notation
will be simplified to e (n/k).

Clearly, then, equation (4.12) can be subtracted from (4.11), after (4.13)

is substituted in, to yield the error propagation equation
~~

3 f § F d &
& (e )* |G+ Gy )| & W) * G & iy
(4.14)
d.f 3 F
In the coefficient matrix (ax )o i (ax ) the non-Keplenian

accelerations appear in the lower three rows. However, the components
of F are smaller than those in f by at least two orders of magnitude

even for the lowest-altitude satellites.5

Since the components of the
lower half of f attenuate as l/r2 and those of I attenuate at least as
fast in the altitude range of interest, it is clear (see the slopes of

the curves in Figure 3) that the column inequalities

& 20 B



| oF, /ax | << lor, /ox, |, § = 1,2,3, all 4,
hold in a component-by component sense when averaged over a complete

orbit. Because F contains velocity terms (XB’ 5 x5) whereas f does

*
not, the column inequalities will fail to hold for j = 4, 5, 6. Still,
the velocity contributions (damping terms) are very small, and a part

of these are included in (4.14) via the term

= &, (t/t ).

Since, in addition, gé(t) is forced by the rectification process

described in Section III to remain close to the best approximation to

of
the actual, decaying orbit, we can expect (—3z )o to provide suf-
= oF
ficiently accurate long-term behavior in (4.14) to allow ( = ) to
be dropped.
A

1.0 4
_U)
B Keplerian A/m =12.5 m2/kg
5
<
=
» 054
5
[V}
—~
[}
[&]
[&]
<t

Sum of all perturbations
0 hé : i

i f.S Radial Distance, r
(Earth Radii)

FIGURE 3. Relative Magnitudes of Keplerian
versus Pertubative Accelerations

= P



A1l such terms, except one, will in fact be dropped. The one that will

be kept is the oblateness contribution. This is because in

0 0 0 0
F(x, u, t) = |=—-- S + e - + |- s
Edrag, Lsolar £sun, moon Eo

the oblateness-acceleration 3-vector Eo is a function of the gébpotential
coefficients J, which correspond to all but the first three entries in the
vector &, that appears in (4.14). However, the satellite does not sense
the J vector; rather it senses the oblateness force, which happens to be
modeled often as an expansion (3.8) having coefficients J. There are only
three components of force, but (in our case) 113 components in J. Hence,
to account for these modeled but not actively estimated parameters, it is

economical to let the 3-vector

1=

)

%>

Xz(t) - LO(E’ i) - F (

-0 3)

denote the change in the force due to deviations in position and in J from
their best estimates. Again employing the first-order terms in a Taylor's

. . " .
series expansion about X 3 we find
3 J
A A

BLO i . azo
v(t) = (522) [ax(e) - aR(t/t )]+ (5) ad,
ok A &
= (GT) [Az(t) = Az(t/tn—l)] G (SJ—) Ag-’ (l},.15)

where r and Ar are the first three components (the position components) of

x and Ax, respectively. Obviously, since iz(t/tn_l) = 0, then

e, (t/t 1) = v (). (4.16)
2

= 2l =



Identifying the first three components of S in (4.14) as e

the rest as e
_v

2

oblateness part and using (4.4),

o1 oF
(Sg)o (525 e (t/t )
= ik
0 gvl(t/tn—l)

b &
0
0
e, (t/t 1)
2
o
0
0

0

and
1

, we find that after throwing away all of (Si) except the

(4.17)

Even though e, is a function of e the equation can still be integrated

formally in the following way.

Write only the first part of (4.17):

E e/t 1) = A(t) e (b/Y 1),

where

e
_y

A(t) =

e
ﬂ
e,
i
. n @
of 8F
(52 = (Sii)
1%,
0 0
8 0]

= 35 =
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Find the transition matrix Qy(t, s) for (4.18). This can be done either

by noting that

—a;g(t) E ox(t)
ay(t) ax(s) : ov. (s
@y(t, s) =W = % === (4.19)
3y, (t) b oy (t)
ax(s) : ales5

or by writing the Volterra series solution for (4.18),

t t o
@y(t, s) =1 +/ Ala)da +/ / A(a)A(a.l)do_lda +
s s s

t « al
/// Ma)A(ey JA(a,)dadada + ...,
S S S

and picking out the developing infinite series.

If we take the first approach to finding @y’ we write

x(t) = x[ ¥ (), v,(t), x(s), ¢, 5] ,
-(t-S)/c"d
© LA -(t-a)/z,
El(t) = 1 Xl(s) + 0 / e wl(a)da,
1 ol ®

= 96 =




and we abreviate equation (3.4) to
é(t) fa Q(J_C,t) i E(?_{,: u, t) =V_’[§(t), .Y.l(t): Xz(t): t]- (4.20)

Applying the chain rule to (4.20), we obtain

0

ax(t) W(t) ax(t) ow(
ax(s)  ox(t) 0ox(s) ol ) (4.21a)
ax(t) aW(t) ax(t) MW(t)
6X1(8)= ox(t) oy, (s) s oy, (s) (4.21b)
oy, (t)
ax(s) 9 Ch.dle)

-(t-s)/ry

e
oy, ()
ov, (s) ~ L (4.21d)

1

A
ow of oF of
T (@)o S (@) = (@)O .
ax(t)
Hence (4.2la) is a homogeneous equation in a—zm with approximately the
of

two-body coefficient matrix (5;{-)0, so that

ax(t

3%%_5; s §(t, s). (4.22)

= 2 =



On the other hand, (4.21b) becomes

» A sy
ax(t) af ax(t) aW(t) v, (t)

ax(t)
Integrating = ) with respect to time t, we have
=k

A
ax(t) ax(s) < Si(u) oy, (u)
wm S W gy ¢ MW G Gy & )
S
Since by definition
@y(s, s) =1,

ax(s)

the initial condition on (4.23) is e il O for all s. loreover, from
=1

(3.4) and (3.5), we obtain the 6 x 3 matrix

3W(t)

b= T i I ___________
azl(tj T F ?

which in conjunction with (4.21d), provides the final form for (4.23):

-

0 0

ox(t) ox %
. a_xl' (t’: S)zf @(t’ a) | ———---
S

I

azl da,

3(a) | Ya)

—— e e e e o

(L.24)



A A
where the notation 8(a) and Y(a) indicates evaluation around g(a/s).

Equations (4.21c), (4.21d), (4.22), and (4.24) define the transition
matrix Dy(t, s) in (4.19):

= ! e
]
dx
' X
Q(n’ n_l) ! be_(n, n—l)
|
) = - = = B e S e
Qy(n, n ) . e_Tn/t'a
: 1
0 : 1 :
e ! .
where Tn = tn_tn-l' The formal solution to (4.17) can now be
written as the Volterra equation
p— O -
0
t ..
e, (b/t, ))= };y(t, tnoa ety /b g) + f Qy(t, s) E'Vz(s/tn—l) ds
t
n-1  |e——— G —————
0
t :
0
tn—l 0
o

which in general cannot be solved in closed form because the middle term is

a function of gy. However, that term is extremely small compared to the
rest of the expression. Hence it is not unreasonable to approximate that
term by rectangular integration: that is, to take gvz(s/tn_l) to be constant
between time points tn and tn—l’ where these instants may be data points, or
rectification points called by the Encke integrator (see Section III), or

rectification points called by a test on the constancy of e (s/tn_l).
2
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The approach will be to take gvz(s/tn—l) = gv(tn—l/tn-l) for

tn-l‘ t‘tn to produce the staircase approximation suggested in one dimension
by Figure 4, Dbelow. Of course, we cannot test the error itself to ascertain
that it is near enough to being constant, but we can test to see if its
covariance has changed significantly with reference to the covariance of that
to which it contributes: i.e., the gy(t/tn_l) in equation (4.25). This will

be made clear shortly.
ACTUAL gv2(t/tn_l)

FIGURE 4. STAIRCASE APPROXIMATION

TO gvz(t/tn_l).

A final linearization is still to be performed on the observation
equations., In particular, using the notation developed in this perfect-sensor
case for (4.2) and (4.8), we see that the residual term in (4.8) upon which

§§n) operates is

sz(n) - 82(n/n-1) = h[x(n)] - QJ;;S£ﬁjT - Q_[%(n/n—l) * Q‘[ > nﬂ ,

which, after a first-order expansion around 2(n/n—l), can be written as
A

3h A
a2(n) - 82(n/n1)=(3) [x(n) - Kn/n-1)]

= H(n) [Az(n) = Aﬁ(n/n—l)] 5 (4.26)

= 90 =



where H(n) = (-=) is the partial derivative evaluated at‘g(n/n-l).

&2

3. Prediction Covariance Computations

Evaluate equation (4.25) at time t = t .

Call

[0 0 O]
& 0O 0 O
oy n 0 0 O
o (n, n-1) =f @y(tn’ s)ds|1 o0 oOf, (4.27)
=2 A 0O 1 0
n-1 0 0 1
0O 0 O
0O 0 0O
0 0 0
and assume the staircase approximation
&, (s/tn_l) =8, (n-1/n-1). (4.28)
2 2
Define the 9-vector
-0 -
t 5
= 0
w(n-1) =/ L, 0 | 2 as,
t Wy (s)
n-1 0
0
o0x
t i
fn a—ul— (tn, s) ( :
= [ —— | w,(s) ds, L.29
4 6—(tn-377?d 1
n-1 0
0

= &1 =



and its covariance matrix

@ jami o o]
-’I—‘—_- 1’—2— = &R T TEEE
q(n) 10(n)
Cov w(n) = Qy_y(n) = -O----"": . ’ (4.30)
cecmenene]
0 ' 0
L ' .

where, from (4.29) and (4.5), it can be computed that

n-1

-t
n T
a,(n1) = (/TP J’ 'bé-uf (t_,s) {b"—uili(tn,s)} d%l ,
Lt
— t

n <l =g )T
g(n-1) = (2/‘(‘,'(1)(351,aLg S‘ gﬁx (tn,s)e n dds] ,

1
- Jc'n-l

'2(tn"tn-1)/z&

o(n-1) = (1-e )g 2

drag )

Then (4.25) can be rewritten as

o)
gy(n/n—l) = @y(n, n=i) _ey(n-l/n—l) + a—ig (n, n-1) §v2 (o=1/0=-1)

+uln-), (4.31)
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and its covariance 3yy(n/n—l) becomes, after we note that w(n-1) is
uncorrelated with w(n-2), and hence is uncorrelated with everything else

on the right,

F&y(n/n—l) = Qy(n, n—l)gxy(n—l/n—l)QyT(n, n-1)

T
+ Qy(n, n—l)gyvz(n—l/h—l) g%; (m, n-1)

o
+ 5%; (n, n—l)F’yv T(n—l/n—l)@yT(n; n-1)

2

P T
+-5§; (n, n—l)P;zvz(n—l/n—l) %§5 (n, 1)+ q(ne1) (4.32)

A recursion can be developed once the in-step covariance matrices

Pyy(n/n), gyvz(n/n), and Pvzvz(n/n) are defined in terms of covariance
matrices with argument (n/n-1). However, since these in-step covariances are

functions of By(n), that gain matrix will now be developed explicitly.

L. Computation of Optimal Gain By(n)
We begin by applying the linearization (4.26) to (4.8) and subtracting

y(n) from both sides of the resultant equation. We find
gy(n/n) = gy(n/n—l) - By(n)H(n)gx(n/n—l). (4.33)

If we define the (dim z) x 9 observation matrix

H (n) = [H(n) : 0], (4.34)
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then (4.33) becomes

e, (n/n) = (I - BH )e (n/n-1), (4.35)
where the argument (n) has been dropped from By and Hy'

Clearly, then,

- i
Pyy(n/n)— (I—ByHy) Pyy(n/n—l) (I—ByHy) s (4.36)

and its total differential, given that ?y is the only variable that can

be manipulated, is just
: Ty . T
dP =ap_ {[nr 1)H,]B - HP -1
yy(o/m) = by R (o/n)d ] BT - R (n/ne1))

+ap, ([P (/mDET] BT - mP (n/n-1)) T (4.37)

Now, to achieve the minimum required by (4.7), the total differential of

the terms on the left of that expression must be zero:

d [trace {AR_(n/n)}] = trace {AdP_(n/n)a} = o. (4.38)

It is a property of the trace that

trace {XY} = trace iYX} 5

trace{X+Y} = trace X + trace Y,

trace X = trace XT,
for any square matrices X and Y. Therefore (4.37) and (4.38) combine to
yield

trace{ Az(By [HyPyy(n/n—l)HyT] . Pyy(n/n—l)HyT) dBy} = 0.

= Gl =




Since this must hold for all differentials dB

A% B, [HyPyy(n/n—l)HyT j = Py_y(n/n—l)HyT ]=0 (4.39)

is the condition for an optimum. When A is any nonsingular matrix,

the optimal By(n) is defined to be

By(n) - Pyy(n/n-l) HyT(n) [Hy(n)Pyy(n/n—l)HyT(n)] -l, (4.40)

Gl

which is the usual Kalman gain matrix.”’
In the event that we are interested only in estimating the mass parameters,

we can set all the a. in A to zero excep for ag and a9. Then only the last

two rows in By(n) are defined by (4.39), the others being arbitrary. These

last two rows are the same as the last two rows in the usual Kalman matrix

given by (4.40). The remaining rows we can set to anything. Let usset them

to the usual Kalman values defined by (4.40). Hence, independent of the

weights A, the Kalman gain (4.40) is always optimal. Note that if we had

generalized A to be non-diagonal, the result would have been the same.

In terms of the partition

Pxx(n/k) : val(n/k)
e i i B
|
P l(n/k) i Pvlvl(n/k)

5
N bt Pdn/ot) K (n) [H(n)P_(n/n-D)H (n)] (4.40)
y B, (n) P_'(n/n-1)

1 1
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where Bx(n) is the 6 x (dim z) gain for the satellite state estimates and

B, (n) is the 3 x (dim z) gain for the mass parameters vy
1t

5. In-Step Covariance Computations

Inserting (4.40) in (4.36), we can show that
=~ i 2 g = A -
Pyy(n/n) (W ByHy) Pyy(n/n 1) = (I ByHy) Pyy(n/n 1). (4.41)

Moreover, we can post-multiply equation (4.35) by g_?, (n/n), use (4.15)

2
and (b,.lé)’ and take the expectation:

AT
oF
Pyvz(n/n) = (I-ByHy) Pyy(n/n-l) BXE (n)

FoSli |

3F
e (I—ByHy) PyJ(n/n-l) f En) (L.42)

where the argument (n) on the partial derivatives indicate evaluation at the

point ’J_\{( n/n), and

oF 3F_ | 000 1000
o = e | 000 1000
L < 1000 000

The matrix P (n/n-1) is found by multiplying (4.31) by (aJ)7 and taking the

expectation:

= B o



F
P (n/n—l) = [Qy(n n-1) + 22 (n, n-1) — —O (n-l{] P3J(n-l/n-l)
A
oy aF
ey mel) = = (n-1) Prs (4.43)
=2

where P; . = Cov (Ad). The in-step matrix gyJ(n-l/n-l) obtains by

multiplying (4.35) by (Ag)T and taking the expectation:
gyJ(n/n) = (I—ByHy) gyJ(n/n-l). (4.44)

This completes the detail for (4.42). To summarize what we have done

so far,
Pyy(n/n) = D(n)Fyy(n/n—l), (L4.45)
PyJ(n/n) = D(n) PyJ(n/n—l), (L4.46)
oF & GF &
Pyvz(n/n) = Pyy(n/n) = (n) + B sn/n) 55— aJ (n), (4.47)
where
I-B(n)H(n), O .
Dn) =|-=-----!---- : (4.48)
-B, (n)H(n): I

M

and where 3yJ(n/n—l) is given by (4.43).
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To compute Pv = (n/n) from (4.15) is now theoretically straightforward:

22
A A T
an an
Pvzvz(n/n) = (n)Prr(n/n) o (n)
A A T
& & .
o 37 (n)Py, 37 () “=H(n/m) + IT (ofw), (4.49)
where
Val A T
oF oF

TI(n/n) = 5?3 (n) P_;(n/n) aT_o (n),

and P}r and Pr are the submatrices defined by

J

3yJ(n/n) = PfJ(n/n) s

the latter being given by (4.46).
So far, the updating of Pyy has been described only for the case

of closely spaced data points, t and tn; for widely spaced points,

n-1

the assumption of constant g (s/tn l) in equation (4.25) is not valid.
5 -

This problem is easily circumvented; there is no need to wait until data

point tn to perform the covariance matrix update. Rather, when (accord-

ing to some criterion) the assumption of constant =3 is in danger of
2

= 26l



being violated, say at intermediate time t =t + At, a new in-

n-1,1 n-1
step covariance matrix can be defined as

Pyy(tn-l,l/tn—l,l) - Pyy(tn-l,l/n)’
i.e., the filter gain By(tn 1 1) that appears in equation (4.41)
=y
is set to zero. The update procedure for the extrapolated covariance

matrix can now proceed normally from tn

1.1° either to the next data point,
Gt
tn’ or another non-data update point, tn—l,2‘

Calculate Pv2v2(n—l/n—l) from (4.49); compute Eyy(tn_l,l/n—l) from

(4.32), retaining the sum of the first and last terms, which involve 3yy(n—l/n—l)

and ny(n—l). Compute now, the matrices Pyv 1§ ) and

2
Pv2v2 (tn-l,l/tn-l,l) to be used in the next update. Before updating,
recompute Pyy(tn 1 l/n—l) using the same first and last terms as before.
SShy

et A e

In place of Pyv2(n-l/n-l) and Pv2v2(n-l/n-l), use Pyvz(t
and Pvzvz(tn—l,l/tn—l,l)’ respectively.
The changes in the P and Pv = matrices are indicative of the errors
2 24 2
implicit in the constant & assumption; the difference between the
2

Pyy(tn—l,l/n_l) matrices using the old and new P , and Pv2v2 illustrate

the order of magnitude of the maximum errors in 3WY that result from the

n-1,1tn-1,1’

assumption under test. Thus, for the elements pij of the extrapolated

!
P _, and p,. of the recomputed P_ , find
Yy 1] Iy

1
BLe = s s
B, = max g~ ad
1,5 Ipysl*Ipgsl
Then, if ?K;'b’ for some upper bound, b, reduce the At used to

advance to the next non-data update point, if any. If gﬁ;za, for some

lower bound, a, increase At.
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C.

SUMMARY OF FILTERING PROCEDURE

s

Start with an initial estimate

of the satellite states ax and the mass parameters vy-

Use the mass-parameter model (4.9) to compute the extrapolations

e-(t-to)/rd

v, (£/0) = ol ) v, (0/0).

Employ these extrapolations in the Encke equation

[equation (h.lO)]

d(aR)dt = £(x™+aR,t)-£(x",t)
A
+ E(Eo_*_Ag’ il(t/()), J)J
and integrate from the initial condition a%(0/0) to obtain

t2(1/0). Also evaluate ¥)(t/0) at t =t; to obtain ¥,(1/0).

Guess at the covariances on the initial estimates:

B (0/0) (0/0), By ;€0/0).

Use these matrices to compute[from (h.h9ﬂ

5‘50 a'i“ &
= (0/0) = — (O)P (0/0) =, 103 =
Y2
3F 5% v

~0

=3 (0) P;; 552 (0) + w (0/0) + 1 (0/0),

= e =



where A A
oF, oF,

I (0/0) = — (O)P ;(0/0) 57— (0).

6. Then evaluate (4.32):
P(1/0) = §(1,0) B_(0/0) §.7(1,0) + a1/0) +

T oy 3 T
+ 28 (1/0) + &£ (1,0) P (0/0) %L (1,0) +

¥, 22 6v2
e QW(O),
where T
oy
2(1/0) = § (1,0 Py (0/0) 5= (1,0).
Also evalute (4.43):
oy OF
PyJ(l/O) = @ o) +———; (1,0) 7§— (0) gyJ(o/o)
ax OP
fregee (1,0) aJ (O)P

<2

7. Then use the first of these in (4.40° ):

O A N LFCT00 o]
%y )= B, (1) . G@7o) H (1) [H(l) Pxx(l/O)H (1) .
le

8. Use By(l) s Elskis)s

Pyy(l/l) = D(1) Pyy(l/O),

N -



and (4.46):

PyJ(1/1> = D(l)PyJ(1/0>,

where

10

81315

=B (L)H(1)
1

From Pyy(l/l) compute Pyvl(l/l) using (4.47),

QEOT 5\§OT
Pyvz(l/l) = Pyy(l/l) i (1) 4 D(l)PyJ(l/O) FA (1)

and compute PV v (1/1) from step 5 with "O"s replaced by "1's.
2 2

Use By(l) and y(1/0), together with a measurement z(1), to
compute i(l/l) from (4.8):

7(1/1) = 3(1/0) + B(1) | 2(1)-h [x(1/0)]]
Return to step 1 and re-do the process with "O" subscripts and
arguments replaced with "1'"s and "1"s replaced with "2"s. Skip
steps 4 and 5. Repeat for t2, t3, ...,tn, tn+l""'

The above holds for two data times tn and tn+ sufficiently

1

close. If the test on the constancy of e (t/tn) requires an update

2

point at tn+At < i the same process as the above is followed,

n+l’
except that
ear) t ot replaces t ., in the program;

(b) step 7 is replaced with a step that sets By(l) = 0,

= g =



D. SENRSITIVITY COEFFICIENTS

One of the major aims of this study is to determine the quantitative
effects of an-error source on the estimates of the ballistic coefficients
u, and us. These effects are computed classically by assuming that the
error contributions from each source are small. In addition, it is assumed
that the functional relationships between the error-source parameters,
say & = column ( ay, ai’...), and the ballistic-coefficient estimates

are known to be, say,
=g(2),
o =gl @ ) (4.50)

Then a Taylor's series expansion in the errors can be performed and

truncated at the first-order terms to yield

1]

B T
b, = (grad 32) A

b uy = (grad 33)T sa, (.51)

IR

where the gradients are taken with respect to = and evaluated around the
nominal values of the parameters. The biases in the ballistic coefficients

are
B(a u,) = (grad g,)" E(s 2 ),

E(s uy) = (grad 33)T E(aa ).

The variances are

42 . T T 2
u, = (grad g,) E(a2 2 @ ")(grad g,) - E%(s u,),

<

u, = (gradsgg)” E(s @ & g T)(grad g;) - BXa wy),
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or

2

@ = (grad g )" Cov (aa ) (grad g,),
2 e - 2

O‘uj = (grad g3)T Cov (a2 ) (grad g,). (4.52)

In terms of thése second-order statistics, the gradient vectors define
completely the importance of each error-source parameter in the ballistic-
coefficient error build-up. The elements of these gradient vectors are
often called "sensitivity coefficients.”

Unfortunately, in a maximum-likelihood or minimum-variance estimation
procedure of the sort required here, the functions g, and g3 i (4 .50)
cannot be written as closed-form expressions of the error-source parameters

a . Hence the gradients cannot be obtained analytically.

1. Modeled Parameters

In the minimum-variance estimation equations developed in parts
A and B of this section, certain parameters have variance-covariance values
associated with them. It is said that the errors in these parameters are
thereby '"modeled." The stochastic component of drag, U s and the geopo-

tential perturbation acceleration v, are the only two modeled error sources

2
considered in this perfect-sensor phase of the study. Call these modeled
error parameters Bl’ 3., ..., and the variances Q‘2 6'2 5

Then the minimum-variance equations yield implicitly the in-step esti-

mation errors

- L -



A u =G ( O’Bl, G-Bz, ...),

=G
Al =Gy Selh o, wenil
To ascertain the importance of reducing the ignorance in one modeled para-
meter relative to another, assuming small reduction in such ignorance, we
need to find for all i

)
aa< /o & pg? /AT
uy By uy By

2

2
dc< /aw, ~ A7° /b
ug Bi u, B.1

where A indicates a (small) change in the variable that follows it.

Each of these partials is a form of sensitivity coefficient which
is really the desired end product of the study. The manner of computing
it consists simply of making a run with all the cﬁ3i reduced by the

amount A <Tb g

1

2. Unmodeled Parameters

The minimum-variance expressions contain a few parameters which
may have incorrect values, but for which no reasonable variance-covariance
information exists. Such parameters, having so-called 'unmodeled" errors,
are typified by the correlation time constant ‘tﬁ in the stochastic drag

expression (4.4), or the geomagnetic index ap that enters the nominal

- L5 -




atmospheric~density calculations. Call these unmodeled parameters U&,

'52, ..., and their (unknown) variances 03?1, 0-3 ,
2

Now the estimation errors will not directly reflect any improvement

in our knowledge of the error-source parameter values. However the esti-

mates themselves are implicit functions of the parameters: from (4.50),

A
w, =g, (8,8, .05 ¥y, 12,...),

A

U.3 :g3 (Bl’ 32, ee ey )’1, Y2, ...).
Hence by changing each 'Yi while holding the other parameters at their
nominal values, each sensitivity coefficient in grad g, and grad gB can

be determined numerically. Put into (4.52), these coefficients lead at

once to the pinpointing of the dominant error sources.

F. MINIIMUM-VARIANCE VERSUS MAXINUM LIKFLIHOOD

Although the contract specifies analysis of the errors in the
maximum-likelihood estimation of mass, the approach contained herein is
based upon minimum-variance estimation. As 1s shown in detail in Appendix V,
the theoretical details may be different, but the practical solution to the
problem is essentlally the same in both cases. Computationally, the

problems that arise in one approach arise also in the other.
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SECTION V

ENVIRONMENTAL MODELS

A, SOLAR RADIATION PRESSURE

The model is discussed in Appendix I, It will become important at
altitudes of about 500 km or higher, and will be the sole mass-determining

force at altitudes in excess of 1000 km.

B. ELECTROMAGNETIC DRAG

A detailed analysis of the three types of significant electromagnetic
drag is carried out in Appendix I based upon the CIRA 12652:L tables for ion
and neutral-particle densities,

Of the three types of electromagnetic drag, two are distinguishable
from atmospheric drag because they are latitude-longitude dependent and
have a velocity dependence different from atmospheric drag. These consist

of

(1) Electromotive drag, where the charged vehicle interacts with
the earth's magnetic field;

(2) 1Induced drag, where the potential induced in the moving
satellite (conductor) by the earth's magnetic field sets up
a current through the ionized atmosphere which produces a
back-EMF retardation.
Under the worst-case conditions (the largest satellite, highest charged-
particle densities, and strongest magnetic field), these effects are at
least two orders of magnitude smaller than atmospheric drag.
The remaining type of electromagnetic drag is indistinguishable
from atmospheric drag to the ground-based observer. It is known as coulomb
drag, and results because the charged satellite electrostatically attracts
%0 it ionized particles that it would not otherwise hit. The ensuing increase

in the effective area-to-mass ratio may reach 10 per cent or more. It will be

accounted for by making off-line corrections to the estimate of ballistic

coefficient u2.
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C. GEOPOTENTIAL MODEL

The earth's geopotential model is discussed in Appendix III.
D. SOLAR-LUNAR GRAVITATION

The solar-lunar gravitational accelerations on the satellite will be
computed from the assumption that the sun and the moon are point masses.
Computational details will be as specified for the MINIVAR computer program,B’h
and presented in equation (3.7) of this report. The respective distances
and gravitational constants will be assumed exact.
E. ATMOSPHERIC DRAG

Atmospheric drag can be computed interchangeably from the expression
of Appendix ITor from the usual velocity-squared law given in (3.5). Both
require an accurate upper-atmosphere model. The Jacchia 1965 model, published
in Reference 8 and described briefly below, will be used here, in conjunction
with expression (3.5) of this report. RMS values OArag and correlation
times 17d for equation (3.5) will be chosen in concert with the contracting
agency. Suggested values are given in Reference 7.

The following summary of the Jacchia 1965 model was extracted, with

minor corrections, from Reference 28:

Jacchia's 1965 atmospheric model (Reference 8) begins at a

boundary altitude of 120 kilometers where the following assumptions

are made:
1) Ty = 355°K
a(N;) = 4.0 x 10** molecules/cm®
n(0z) = 7.5 x 10'° f "

o BB



n(0) 7.6 x 10'° molecules/cm>

3.‘& x 107 " "

n(He)

Below the altitude, Z = 500 kilometers, n(ll) = 0,
At 500 kilometers, the boundary condition for hydro-

gen is:

LOG,o[n(H)] = 73.13 = 39.40 LOG.o (Tseo) + 5.5LL0Gy(Teo) )

Where:
T = temperature in degrees Kelvin at 500 kilometers.
n = number density of individual constituents of
the atmosphere; nitrogen(N;), oxygen(Oz), free
oxygen(0), helium(He) and hydrogen(H).
Using the boundary conditions as a starting point for
the concentrations n, of each consitituent i, the
following diffusion equation is integrated to find
the concentrations as a function of altitude 2.
2) i -z 4T (1 +a)
n Hi T.
Where:
T = temperature in degrees Kelvin

o = thermal diffusion factor

{;- 0.38 for helium
0.0 for other consitutuents

~ kS =



m = mass of each constituents.

m(Na) = 4.6515 x 107 grams/molecule
m(03) = 5.3129 x 10® grams/molecule
m(0) = 2.6565 x 10 ® grams/atom
m(He) = 0.6648 X 10-33.grams/atom
m(H) = 0.1674 X 10°® grams/atom
k = 1.38054 x 10°® ergs/oK (Boltzmann's constant)

R = 6.35677 x 10° cm. (radius of the earth)

g = 980.665 (1 + %)-2 cm./sec.® (acceleration due to
gravity)
_ kT )
Hi = s (scale height)

1

Equation 2) when integrated becomes:

Z
3) n; =0 || exp {7 ) 8 7]
120

Simpson's rule of order 2 with a step size of .l ka
is used for numerical integration.
The following sequence of operations determine the

temperature T at the desired altitude Z

4) T =1T_ - (T, - Tyo) exp [-S(z - 120)]

Wnere:
Tm = exospheric temperature °K
Tio0 = temperature at 120 km.
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Z = gltitude in km.

-x2
0.0291 exp (—E—)

w
L}

, T, - 800.0
T 750.0 + 1.722 X 10 " (T, - 800.0)"

Note: The expressions S and X are approximations to the
profile derived by L. Jacchia by trial and error
methods.

3

5) p j; n,m gm/cm

i

p = density as a function of altitude

The following procedure is used to determine the exospheric

temperature, T

1) Eo = 357°K + 3.6 Fyg.7

Where:
To is the average nighttime minimum temperature

Fip.7 is the smooth solar flux over 3 solar rota-

tions

o -F
23 T T + 1.8 (Fi5.7 = Fi0.7)

Where:
'1‘0l is the variation expected during a given
solar rotation (27 days)

Fig.7» is the solar flux for the previous day.

< B o



3) T =T1+r037+0145in<2ﬂ d'”l)}F sin@r
o o l_' ’ 365 10.7

Where:
To accounts for the semi-annual variation.

d is the number of days from January 1.

o 11, (1.0 + (B o ()]
N

Where:
TD = To (L.0 + R cos™ M)
T = (1.0 + R sin™ 8)
n = 0.5 I¢-6S|
8 =0.5 |¢>+6S|

(o]
|

Z -
_1/ s w
s el \~;§Z-+ Y;)

) =TAN-1-< v
7=+ ¥/
v v i
R = 0.28
m = 2.5
T =HA+B+Psin (H+a)
Yv“ 1/Ys
= -1 — - x e——
x -t () e ()

= 8o

d-59"\
36




T accounts for the diurnal effect.

T_ is the daytime maxima.

T,. is the nighttime minima.

R 1is a factor for computing the maximum temperature
as a function of the global minimum temperature.

¢ is the geographic latitude of the vehicle.

& is the declination of the sun.

Xv, Yv’ Zv are the current coordinates of the vehicle
§

in an earth-centered cartesijian coordinate
system.
X, Yv, ZS current coordinates of the sun

H 1is the hour angle of the sun

T =T+ 1.0° a 125° [1.0 - exp (-0.08 ap)]

Where:

T 1is the exospheric temperature.

a_is the 3 hour geomagnetic index (measured approximately

6 hours before the time in question.)
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APPENDIX I

PERTURBATIONS ON SPHERICAL SATELLITES DUE TO
SOLAR RADIATION PRESSURE

A. GENEBAL

A photon flux of irrediance I directed along m unit
vector ’1\” from a distamt radiating body (e. g., the sun) to a

satellite will produce a pressure of

p=(1/0) 71, (1.1)

where c is the speed of light. When p impinges upon a differen-
tial surface area dA, the differential force due to the incident
flux is

dzin =‘€;a (E : dé) 3‘2;3 (Is/c) (zas ’ dﬁ)’ (I.2)

while the differential force due to the flux being reflected back

from the surface is

A A .
AF o1 = Lregr (I/€) (L,qpy * dh), (1.3)

where';r.rl is the unit vector in the direction of the reflected
flux and Ir is the irradiance in that direction.

The net solar force due to direct solar radiation is the
integral of (I.2) plus (I.3):

Ed = (Is/c) Lj\[?;a (ﬁau ’ dA) ;i;efl (Ir/Is) (Q;efl : d#ﬂ
A (I.4)

oy



where As is the illuminated surface area of the satellite. For
satellites with uniform reflectivity, equation (I.4) can be
simplified 0 a form such that the acceleration magnitude due to direct

solar pressure is

Fiirect = Fa/m =K(I/¢c) (A/m), (1.5)

where K is a parameter dependent upon the shape of the satellite,
its reflectivity coefficient, and its mode of reflection (diffuse
on specular), A is the cross sectional area as seen by the radiation
source, and m is the mass of the satellite.

The constant ¢ is known very accurately, but Is’ which has
a nominal value of 1.94 cal/(cm2 - min),% may vary by as much as
1.5% due to solar activity.l3’17Furthermore, the varying solar
distance throughout the year causes the irradistion to change by
as much as 3.5% from the mean. This latter phenomenon can be cor-

rected for by expressing the solar constant as

_ 2
Is . (Res/res) Inom (1.6)

where Res is the mean earth-sun distance, Tos is the actual earth-

sun distance and I is 1.94 cal/(cm®~min). This leaves K(A/m),

m
which can be considered a (partially) unknown parameter. The
accuracy to which it can be determined is highly dependent upon
the accuracy to which K can be determined by optical means.

For non-spherical satellites, the problem is considerably

more complicated. This is principally a result of a different

# A calorie is referenced often as a gram-calorie,
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cross-section area A being illuminated at each instant of time. This
arises not only because of the earth!'s revolution about the sun, but
also because of satellite tumbling. For the purposes of the present
report, only spherical satellites will be considered.
B. DIRECT RADIATION FORCES ON A SPHERE

1. Specular Reflection

Consider a spherical satellite of radius R_ which reflects in a pure
specular manner all light it does not absorb, having a uniform re-
flectivity coefficient k . The incident radiation pressure p, having
magnitude p and direction Qsa’ can be taken to approach the satellite
in the coordinate triad (Q,SZQ) shown in Figure 5 such that ?ss = :2,

The angle ¢; is defined as the angle that p makes with any differential
A
G

element of surface area dA, which has magnitude dA and outward normal 4

By the definition of specular reflection, the luminous flux leaving the
surface element also makes an angle ¢; with the normal in accordance

with Snellt's Law, and has an irradiance Ir = ksIs'

hs P Apefl

Y
Qaa

FIGURE 5. SPECULAR REFLECTION FROM A
SPHERICAL SATELLITE
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In spherical coordinates,

dA = Rsz sin ¢ do d ¢,
T, = (sin 0 cos ) T+ (s1n 6 sin ) T+ (cos0) &,

A A
1er1 = (2 sin® 0 cosz¢ 1)1+ 2 (sin2 e sinqs cos¢) /:)\

+2 (sind cose cos¢)/k\.
(L)

A A
The last unit vector can be computed by noting that i, iA’ and

1
refl

sketch in Figure 6, below.

are necessarily co-planar and by working with the simple

A
)le

~
FIGURE 6. GEOMETRY FOR DIRECTION COSINES OF irefl

Once the relations in (A.7) are used to obtain
e o 2 2 '
1.1 @ =R sin” 6 cos(}SdO d@,
equation (I.4) can be evaluated over the illuminated surface,
the hemisphere defined by 0£ 0 £ mand -(7/2 < ¢p < (1/2),

to yield
T 1n/2

B = ) (Is/c) RSZS f Ein20 cos¢ -ks(2 sin* cosB(P -
0 -m/2

-sin® O cos ¢ )] dp e+ 5 0dd( ) f& odd (0),
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where 0dd (@ ) 1s the integral of an odd function of § , singd-
cos’® , over the range -n/2 to n/2, and 0dd (0) is the integral
of & function of O, sir’e cosd, which is odd over the range O to

. Hence
0dd () = 0dd (9) =0,

N
and the net force is in the -i direction. Moreover, the factor
maltiplying k in the first integral is clearly odd over the inter-

val -n/2 £ ¢ & n/2. Hence if F, is divided by the mass m, and the
final integration performed,

Edirect .288 (Ia/C) (A/m), (1.8)

where A = ﬂ:laz. Note that the constant K introduced in (I.5)
is 1.0, independent of the reflectivity k, for this pure specular

case of a spherical satellite.

2. Diffuse Reflection

Consider & spherical satellite having uniform reflectivity kg
which reflects in a pure diffuse manner all light it does not ab-
sord. The net differential forces dErefl are normal to each incremental
illuminated area dA, i.e., in the directionlgk, and the reflection
obeys Lambert's Law. The magnitude éf dzrefl can be deter-
mined by centering a hemispherical "cake cover"® of unity radius
over dA, as suggested in Figure 7, below, and by noting that the
total luminous flux (power) P passing through the cake cover is
all that dA emits: it is k, times the flux incident on dA. That is,
if I (¥) is defined as the irradiance in the direction of dS due to

reflection from dA,

)



\IS 4 h
Ay “eake cover of
unity yudius

FIGUKE 7. DETERMINATION OF NET PRESSURE NORMAL TO
INCREMENTAL SURFACE AREA DUE TO DIFFUSE REFLECTION

- an) = f Iy ) as. (3:9)

cake cover

Denoting the irradiance normal to dA by I,, Lambertt!s Law provides

A’
for diffuse reflection

I(Y)=1I,cosy . (1.10)

Putting this into the integral in (I.9), noting that dS = (sin ¥ )d¥dd

and integrating over the range O < § < 2m, we find that

I, = -(/m1 (L, -+ 4a). (02

The pressure on the cake cover due to the light reflected

from dA is clearly

Brepy (V) =(1/0) I (’}”)/i\s, (I.12)

of which only the component normal to dA produces a reaction force
on dA:

A A j
AE oy = =1, (1, Bregy (¥ 4S).
cake cover

= B2 ~



From (I.10), (I.11), and (I.12), this becomes

A A
dF op1 = Ip (2/3) (kI /c) (1 -« dA). (1.13)
Hence, in (I.3),
- %) LA
L= gB) 80, K . « 5l (I.14)
Using (I.7) and the convenience/i\ss = J&, which is the unit

vector in the minus vertical direction, (I.13) can be integrated

over 0 £ 0 < m/2 and 0 < ¢ < 2m to provide
2t m/2

-l 2 2 .
Frer1 = *ss (2/3) (kdIs/c)Rs cos“ 9@ sinedody
Y 0

=1y (4/9) (kg1 /e) mia? (1.15)

Added to Ein = Ed’ which is still valid, and then dividing by m,

T [+ k49 ] (1/e) (a/m), (1.16)

r,. =
~direct ss

so that in this pure diffuse case the K introduced in (I.5) is

dependent upon the reflectivity constant and assumes a maximum of 1.44.
C. SHADOW REGIOQONS

The above equations depend upon the direct solar radiation pressure,
which is directly proportional to the free-space solar radiation pressure
in full sunlight, some fraction thereof in the penumbra, and zero in
the umbra.

In this section it will be shown that the penumbral region can be
neglected and the umbral regions boundary can be expressed as the simple
relationship

r |sina | =R, (n/2) < a < 3n/2

= (B =



where r is the geocentric distance to the satellite, a is the geocentric
angle between the sun and the satellite and R is the radius of the earth.
The use of this approximation results in errors of less than 0.3 percent
for orbits within 2000 miles of the earth.

Specifically, it suffices to assume that the sun and earth are

perfect spheres and the satellite a point. The geometry then appears

as in Figure 7, below,

Ry radius of the sun, 432 x 10° miles,
R = radius of the earth, 3.964 x 10° miles,
roq = distance from sun to earth, having a mean Res of 93 x 106 miles,

a perihelion of 91.6 x lO6 miles, and an aphelion of
9L.7 x lO6 miles,

W = radial height of the umbral cone measured from earth,

Penumbral

Region «
e \“?\.

Sun Earth \f\‘\%{\&\
S
RSu;HH\H&\R“HMH\_,/,////, ;;ﬁ\\\\ B { } )
‘xaaxanhxgxxxh_ ‘///4‘2000* ;
LU

3
il Umbral
Region

FIGURE 8

rc' = radial distance to the apex of the penumbral cone as
measured from earth.
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By similar triangles,

r, = Rr /(R -R)

a mean of 860,000 miles and 850,000 £ r, % 878,000 miles.

Let the satellite be restricted to within 2000 miles of the earth.
Consider the vertical line marked hc in Figure 8 to cross the
sun-earth line at a distance of 2000 miles from the earth's surface.
The ratio of he to R is clearly

hc/R = (rc—R—ZOOO)/rc
2 0.993.
Therefore, for all orbits within 2000 miles of the earth, the umbral
region can be represented by boundaries parallel to the earth-sun line

with an error of less than 0.7 percent.

For the penumbral region, similar calculations yield

P 2 845,000 miles,
and

— ' rA
h'c (r'c + R + 2000)/r . = 1.007.

Hence, for a satellite orbit in an earth-sun plane, the penumbra will
be less than 0.7 percent larger than a cylindrical shadow.

The use of a cylindrical umbral region with no penumbral region
at all involves the shrinking of the region of partial shadow and
expanding the region of total shadow. Except in certain somewhat

pathological cases, these changes will tend to cancel each other for

= GF =



near-earth orbits. A rule-of-thumb estimate indicates that the maximum

error in solar pressure due to the approximation will be on the order

of 0.3 percent on any single pass, with the effect averaging to trivial

proportions on multiple passes. In any event, the errors due to the

assumption of only a cylindrical umbral region will be negligible in

comparison with the uncertainties in solar intensity, in refraction of

the shadow boundaries, and with similar ignorances of the physical situation.
To compute when the satellite is within these simplified

boundaries is just a matter of analyzing the geometry of Figure 9:

the satellite is in complete shadow if

‘sin a.l £ R/r, (n/2) 4 a £3n/2, (1.17)

and in full sunlight otherwise. An alternative expression avoids
A

iy
Satellite
Sun Earth r )
r sin a
a R
4 A
1

1 ’-SS

FIGURE 9

the computation of a from inverse trigonometric functions. Here
(A7) appears as
complete shadow: }sin a| % R/r and cos a £ 0O,

full sunlight: otherwise. (L.im)

= 6k =
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The cos a can be determined in terms of the ecliptic coordinates of the
sun and the instantaneous orbital elements:

cosa=-3 4
ss “r
= (cos Ke) x/r
+(sin ke)(cos ie) y/r
+(sin xe)(sin ie) z/r

where ke = celestial longitude of the sun (measured
in the ecliptic plane from the vernal equinox),
ie = obliquity,
Sin a then follows from
(1/2) &
sin a = (1 -~ cos“a)

Musen26 obtains expressions for the long-term effects of solar
radiation pressure by neglecting shorter-term effects such as those due
to the shadow. By examining long-term effects only, he is able to estimate
such things as satellite lifetimes. However, these approximate methods
are not applicable to observations on only a few periods.

D. REFLECTION AND RE-RADIATION

Terrestial radiation or "earth shine" pressure also exists. Of the

total insolation, an average of 36 percent is reflected or back-scattered

5 Reflection and

and 64 percent is absorbed and re-radiated thermally.
back-scattering varies between .15 percent for a clear sky and 55 percent

for an overcast sky. That which is absorbed and re-radiated as heat is
primarily counter to the central-force acceleration of gravity and virtually

uniform over the surface of the earth. Since this cannot exceed lo_hg

e G =



for the satellite and orbit types specified under this contract, where g
is the acceleration of gravity, it is doubtful that this radial component
could ever be identifiable in a satellite orbit.

Hence thermal re-radiation will be neglected and only reflection and
back-scattering will be examined. These two reflections have the alter-
native nomenclature "specular" (mirror-like) reflection and "diffuse"
reflection. Of the two, diffuse reflection by far comprises the major
form of "earth shine.”

1. Earth Shine Theory

Consider a spherical earth illuminated by the sun. The fireball
on the earth's surface can be neglected because of its small contribution
to the total reflected irradiance at satellite altitudes (viz. pictures
of the sunlit earth published by NASA which were taken by its Applications
Technology Satellite (ATS)). Since the fireball is the manifestation
of the specular part of the reflection, its negligibility permits the

assumption that the earth is a perfect diffuse reflector.

Much of the analysis performed earlier in this appendix therefore
applies. Instead of applying Lambert's Law to the satellite, however,
we now apply it to the earth.

Examine Figure 10, below, where for convenience we have positioned
the satellite along the Q unit vector in the coordinate triad (3, 3,’&),
and the sun has been put along the ’%SS REE str S Bhe (e - 08, plahes
We maintain the convention that the earth-sun angle a lies between O

. AT, cpe s :
and m. The unit vector i, 1is the outward normal from any infinitesimal
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element of area dA on the earth's surface, L is distance between the
element dA and the satellite, EAS is the element-to-satellite unit vector,

Al ~
i, and i, .

and ¢ is the interior angle between A -

Clearly,

A
=k’

-> HH)

” A
i —(sin a) i - (cos a)k,

>N

N A
A= (sin © cos ¢)3 + (8in 6 sin @)j + (cos 6)k,
dA =R? sin 0 do aff. (1.19)
With IA defined as the component of irradiance normal to dA at dA,

we employ an equation much like (I.11):
A
1= - (/m ar, & - a), (1.20)
where q = earth's albedo, or (diffuse) reflectivity coefficient. From

A
Lambert's Law, the component in the i, ~direction will be I, cos v .

As
At the satellite, a distance L away, the irradiance I( ¢ ) due to dA
will therefore be
_ 2
(y) = (I,/L ) cos¢/ : (I.2L)
The distance L can be computed from the simple sketch given in

Figure 11, below, where, by inspection,

a =r cos 0 -R,

b=rsin© ,
L=,/a2+b2 =r/l+)\2—2)\cosO 5

(I.22)

where A = R/r.
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—\
b—

r=

FIGURE 11, SKETCH FOR COMPUTING
SURFACE-TO-SATELLITE DISTANCE L.
4N
1h
the vector r = vk and dividing by the distance L:

Now we develop " by subtracting the geocentric vector to dA from

A _ -2 (sin @ cos Ql? - A (sin © sin @) 3 + (1 - A\ cos OL’l?

3t
55 J[Lf+ 7\2 - 2\ cos ©
(L.23)

Then, from (I.19),

PN A -
ccs % =i, - i, = Cos 8 o) 3 (I.24)
,/l+)\2—2)\cosO

Because of the symmetry about the (’i\, ) plane, the solar pressure at

the satellite's location due to dA has its component out of that plane

= Pion e



cancelled by another area element on the other side of the plane. The
in-plane components are, of course, doubled in magnitude by that other
area element. Hence, restricting @ to be between O and m, we find that

the incremental pressure at the satellite due to the reflected light from

dA is
[ A
dp (0, = 1 T ). L, 0<¢g<
p (6, &, a) =2 [ (¢ )/c] (1‘“,,)1,k £¢<Ln
(I.25)
A A A A
where (iAs)i,k = the projection of iy on the (i,k) plane.

For simplicity, now, let us normalize the solar pressure by removing
the environmentally dependent quantity (qIS/c). We define the residual
expression as the differential illumination factor

dc(e, ¢, a) = dp(e, ¢, a)/ (I /c). (I.26)

From (I.25), we find that
dc(e,d,a) = (Q/W)A2(cos © -A)(sin O)(;os a cos @ + Zin a sin © cos ¥ )
(L +A° - 2A cos Q)

. [-—A(sin 0 cos #) T+ (1 - A cos ) ﬁ] 40 daf,

which we can express more compactly as

dc(e,d,a) = (2}\2/17) [cos a (Il'{+12f<) + sin a (13?+Ihf<)]do ad,
fTa27)

where
A cos © sin® @ cos @ (cos O -A)

Il = >

(A2 + 1- 2\ cos 0)?

I = cos © sin © (1 - A cos ©) (cos © =A)
b

2 (x2+1-2lcos 0)2
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I = A in° @ Gas~ Z (cos © =)
- b

3 (A2 +1 = 2\ cos 0)?

_ sin” O cos @ (1-A cos 06) (cos O -A)
& (A% +1 - 2\ cos 0)?

L

The total earth-shine illumination factor is the integral of (I.27)
taken over that part of the earth's sunlit surface that is visible to the

satellite:
0 ¢1

1
Q(a) = / / d_(_:(03¢:a)- (I-28)

0 =0 g=0
The upper 1limit on © is always
Ol = cos—1 (R/r) = cos-lk, (I.29)
as is quickly discernible from Figure 11. The lower limit on © and the
upper limit on @ depend on the satellite-earth-sun geometry: i.e., on
a and A. The situation decomposes into four distinct cases.
Case A. The Satellite Sees an Earth which Is Intirely Sunlit
(0 a< /2 - Ol)'
This is the only case that can be integrated analytically. Figure 10

indicates that 9 =0, ¢1 = . Hence, from (I.28),

Cla) = A (}?Jk cos @ + 1 Ji sin a) , (I.30)
where Ol =
Jy = (2>\/n)/ / 12d¢ do = -(1/2)(B1+B2B3+th),
e=0 @g=0
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104

Ly
Jy = (:&/n)/ _/ I, d¢ 4o = (1/4) ‘Bl -(A2k)(1-A) +
0=0 @=0
+(3k2+2}<x-1)}33 -(k+)\)Bh] .

B = (1-2°)/2
2
B, = 1-k
< 1 +k
B3 = log‘_ Atk

BL=B2|::1L+1< -)\}-k ]
k= (\*)/(-20) .
Case B. The Satellite Sees a Dark Region Which Covers Less Than Half
the Visible Earth (n/2 - 0, < a<n/2).

We approximate the sun as a point source of light at infinity. Then
the terminator (the line on the surface of the earth that separates night
from day) is a great circle. The terminator intersects the horizon
circle of the satellite at the two points A and B shown in Figure 12,
below. If a is less than 900, i.e., if less than half the visible cap
is dark, as shown, then there will be a circle (circle O in the figure)
which will be concentric with the horizon circle and tangent to the
terminator at point C within which @ can range freely from O to n.

The circle is at © = n/2 - a.

For © in the range 6, » © > n/2 - a, the range on § will be a constrained

function of a and @, having upper limit

¢t = cos_l(-cot a cot Q). (1.31)
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HORIZON AS SEEN
FROM SATELLITE

TERMINATOR
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This derives from Figure 13, below, wherein the following relations

apply:
¢ =R sin 0 sin §,

d=R J1-¢ = R/ 1 - sin® 0 sin? g,

L
e =d cos a = sz-sinzgsinzﬂfcos a.
The length e can also be obtained as
e = - R sin O cos @.

Equating the two versions of e, we obtain (I.31).

Now (I.28) becomes

n/2-a U n/2-a n
C(a) = (2}2/17) % cos a / / I2d¢d0 +% sina A é@ I3d¢d0+
=0 #=0
Ol ¢t
+ cos a f (f]’.l +'1‘<12) dgdo +
n/2-a 0
. P
+ sin a / (?L'I3 8 QIL) d@do
n/2-a 0 ' (1.32)

Case C. The Satellite Sees a Dark Region Which Covers More Than
Half the Visible Earth (n/2< a «n/2+ Ol).
We refer again to Figure 12, except that now the terminator lies on
the other side of the '}\c axis (overhanging the positiveg axis). No
Circle O now exists within which @ has an unconstrained range between O

and r. Hence
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TERMINATOR

FIGURE 13.

o 7
c(a) = (2%/n) leos a/ f (% L + '1‘<12) dgdo
0

a~m/2

Ol ¢t ~ Pad
+gin o (iI3 A7 ka) d@de

a-rr/2 0

Case D, The Satellite Sees a Completely

Dark Earth (m/2+6, € a < m).
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No earth shine, hence C(a) = O, Note, also, that this corresponds
to the satellite's being in the umbral region specified by the first
line of (I.17'). Hence there is no solar pressure whatsoever.

2. Earth Shine Calculations

The evaluation of (I.31) and the numerical integration of (I.32)

and (I.33) yield the magnitude and angle curves of Figure 14, below.

The vertical slash on the right end of each curve denotes the value
a=mn/2+ Q , where the satellite begins to see a wholly dark earth.
Note that in the vicinity of a equals 80° or 90°, the magnitude curves
cross., That is, the illumination for large-enough sun-satellite angles
is not a monotone decreasing function of altitude. This contradicts
Dennison's29 interpretation of his previously published results, which
were somewhat more complicated than those of Figure 14 and provided no
angle information.

That our results are qualitatively correct is clear if we consider
the following thought experiment. Put a satellite just off the surface
of the earth at, say, a = 91°, It is in complete dark, and hence
C(a) = O. Somewhat higher, at a 100 km altitude, the satellite sees a
good patch of sunlit earth, and so C(a)#0. But most of what it can see
is dim due to the glancing incidence of the sun's rays. As it goes yet
higher, it sees more and more of the directly lit earth, and so ||C(a)]]
keeps ihcreasing for a while. Eventually, however, the (R/r)2 dependence
of the received illumination begins to take effect, and ||C(a)|]| begins

to drop with further increases in altitude. Hence the illumination for
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large-enough a cannot be monotonic with altitude.

For purposes of digital computation, it is convenient to represent the
curves of Figure 14 in an approximate analytic form. Since the direct
solar radiation impinges in the direction gss’ the approximation will be

A A
resolved into iss and ir components, as follows.

A A
Cla) = q i, +a,i_, CT. B8
where
2’ (a:L + a2) cos a, Ial £ n/2 - Ol;
ql=1 )\ar ,TT/Z—Olf |a|5rr/2+01;
| O , elsewhere;
(A a, o Ialsrr/2-01 3
a, =y ra, > W20 g lalem/2+0
‘ 0 5 elsewhere -

a; = (1/3)(-.0417 + .5431 A),
a, = (1/3)( Obdi-3.17(A=.77)>+.0045(A=.77)sin [14.3(x-.77)m] ),

a (32/2) [l + 85 -5 esy'b' = e-T y(2 + sy)] :

SS

(ass + (al/2) [s+l = s(l*sy)d]} cos a +

N (1/6){x2 Lap-sina)® + (- sina)®] g;_x2)3/2}sin "
(1+>\2-2}\sina)3/2 A

a
¥

T =-4+931,

y=(G.-TT/2)/O 3
{-1,}'20;
STl 1,y<¢0;

d=3.7 +59 (A=.77)2.
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Figures 15 and 16, below, provide a comparison of the approximate and
A A
exact values as decomposed into the k and - i (radial and cross-radial)
components
Ck(a) =q - q, cos a,

-Cl(a)

It
Ko
[é2]
',_h
=
f

E. T[FINAL RESULTS

A combination of all the details for a spherical satellite yields

finally
Lsolar ~ Xdirect © (qu/c)g(a),
=u ¥ (x, t), (I1.35)
where
u, = (1 + 4 kd/a)(Inom/c)(A/m) is a solar
"wallistic" coefficient,
Yl
: - = 2 2N 2\
¥ (x,t) = Yo = (R /r )Npi. + pzlss)’
-
Rl
By = 9%y

all other terms having been defined in the body of this appendix.
Equation (3.6), in the main text of the report, summarizes all these

details in a concise way.
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F. CLOSING DISCUSSION

Mainly as a result of its effect on the orbit of Echo I, solar radia-
tion is regarded as the most significant perturbative effect for orbits
whose perigees exceed 1000 km, Large variations in the eccentricity and
geocentric perigee distance for such orbits are almost wholly attributable
to the effects of sunlight pressure,

Radiation pressure has no effect on the period if the orbit is circular,
However, if the orbit is non-circular and is partly in shadow, the satellite
can enter and leave the shadow region at different distances from the
sun, resulting in & net gain or loss of energy from the radiation field.
Even if the orbit does not pass through the earth's shadow, the radiation
pressure has the effect of pushing the orbit "sideways," so that its
effect on the perigee does not vanish even for circular orbits.

The force exerted on the satellite by direct solar radiation is known
to within about 2% if K(A/m) is known perfectly. Therefore, the effect
of the radiation is highly dependent upon the accuracy to which K, A,
and m are known. The effect of thermal terrestial re-radiation has been
neglected, since it is in the same direction as that of the principal
gravitational term and its magnitude is negligible in comparison. A

18

more exact analysis is available in Harvey16 and Fitz, et, al™"., although

this accuracy is unnecessary.
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APPENDIX IT

ELECTROIAGNETIC AND ATMOSPHERIC DRAG
ON SPHERICAL SATELLITES

DEFINITION OF SYMBOLS

q = satellite charge

e = electron charge —1.606‘5}(10—19 coulombs
M = permeability of free space Lrx10~7 (MKS units)
€_ = permittivity of free space 8.8‘5)(].0—12 (MKS units)

11 = earth's magnetic dipole moment
R = satellite radius

r = satellite distance from earth's center
Q_ = satellite potential

v_ = satellite velocity

B = magnetic field strength

n = number of neutral particles per unit volume

n; = number of ions per unit volume
m; = ion mass

m. = neutral particle mass

bi = effective satellite radius
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A. GENERAL

There are basically four types of forces, other than solar radiation
and geopotential forces, which produce effects upon earth satellites.
These four are all true drag forces. In order to determine their signifi-

cance it is necessary to have a reasonable estimate of their magnitude.

B. ELECTROMOTIVE CHARGE DRAG 8

<E
A satellite accumulates a charge q while moving through the iono-
sphere. Since the satellite moves through the earth's magnetic field,
it experiences a force given by the basic equation governing the force
on a charged particle moving in a magnetic field. According to Bechnerlg,

the magnitude of this force is

LM
3

F

(o]
_— cos (6-11.4°) (II.1)

2mr

for a polar orbit with the ascending node at I, Here}uo is the
permeability of free space, M is the magnetic dipole moment of the
earth, % is satellite velocity, r is satellite distance from the
earth's center, and 6 is the angle between the radial vector to the
satellite and the earth's rotaticnal axis,.

In order to perform a sample computation cos (0 - ll.ho) will be
assigned its maximum value of 1. The charge q is

q = Lr € R Qg

= BT



where €, is permittivity of free space, Rs is satellite radius, and
Qs is the satellite potential. According to Brundin in Ref. 20, Qs
has a maximum negative potential in the neighborhood of 0.75V. For
computational purposes Q will be assigned a value of -1.0V.

Assuming a spherical satellite of radius RS = 5,0m at an altitude

of 200 km,
_ =10}
q = 4m(8.85X10 ~<)(5)(1) coulombs
0 = 7.78’7X1O3 m/sec
MM
29 = 5,100% weber-m
L

r = 6.578X106 m.

The pressure is Fmag/rrRs2 and equals 3.1LX10—12n/m2.

C. JINDUCED DRAG

The motion of a conducting satellite in the earth's magnetic field

will cause a current flow and, hence, a resultant force. This force

has been treated by Brundin20 and found to have a magnitude of

3 eBRs
= _eni VSTTRS B(l— R = ) (IIoZ)

m.v
1l's

Find

below the hydrogen region, where the photoelectric emission has little
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effect upon the effective current. At higher altitudes, the photoelectric
emission current may produce forces one or two orders of magnitude higher
than the force ylelded by this equation. Because of the difficulties
in predicting photoemission currents, only forces at lower altitudes
( £ 800km) will be considered. For a more detailed discussion of photo-
emission current see Ref. 20.

Here,

e = electron charge
n.*= number of ions per cubic meter = 3.857X10ls at 200km

R = 5 meters

magnetic field strength = MM
Aan

072 kg at 200km

m. = jon mass = 2.5X1

The pressure at 200km is

p, op? = [(1-6065)(3.857)(5)(8.1)00™ \ /| €1.6065)(8.1)(5)x107
ind 18
m(6.578)°110 (2.5)(7.787)(6.578)°x1077

2. LLX10™%n /m?

D. COULOMB DRAG
The term coulomb drag is given to that force caused by incident
ions which hit the satellite because of the satellite's accumulated

charge. This force is given by

- 2 732 P
Fooul = ™40 Vs (b1 Rs) (IL)

—_—

where bi = %(1+ 2eQ 8 )i is the effective radius according to Ref. 20.
2
8

m.v
bl

# All data concerning atmospheric structure was obtained from Ref. 21,
MODEL 10, HOUR O.
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This force will not be considered independently, as it is a component

of atmospheric drag and will be treated as such.

E. ATMOSPHERIC DRAG

Atmospheric drag is produced by the collision of satellite and air
particles. It therefore includes the aforementioned coulomb drag. It
may be instructive to consider the atmospheric drag on nonconducting

as well as conducting satellites, thereby obtaining some appreciation

of the coulomb drag effect.

o> :
GF,,/’ Conducting Nonconducting

(a) Atmospheric drag on a conducting satellite
F =F + F,
atm n i

where Fn is drag due to neutral particles and Fi is due to incident ions.

If nis the number of neutral particles encountered per unit volume,

IS SO
F = nRim nv? (II.4)

F.=m%mw2
s s s

2eq
2 S 2
i (1+ - ) m;n, v (11.5)

fl

Hence,

(II.6)
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and

= m.n, 20Q
F = J1+ "i"% [1+ s F
atm : n (IT.7)
b ( m, v° ))P
i's
This yields a reasonable upper bound of
( &
Faop = (L + 04625 = ) E_ (II.8)
2eQS
since m.i/mn S 0.5 and has a least upper bound of 0.25 in the
m, v2
i's

region being considered.

E

2
n Fn/ﬁRs

m_nv
n s
where v§ = GME/r. G is the gravitational constant and Me is the earth's

mass. (GME = 3.98866X101h m?/secz)

P =1.62 %1072 n/m? at 200km
and
P = F/m{

2.26X10™2 n/m2

(b) Atmospheric drag on nonconducting satellite

The force equation for atmospheric drag on a nonconducting satellite
is identical to that for a conducting satellite (I1.7). In the case of
the nonconductor, Qs is zero and, therefore, the equation reduces to

- nj
Fatm. (l + 0.5 = ) Fn (11.9

= G ==



Thus the ratio of nonconducting drag to conducting drag is

(11.10)

I

1+ 0.625 1

n
F. RELATIVE MACNITUDES

The accompanying table and figure allow comparison of the four

drag effects. In addition, the solar pressure due to the direct radia-
tion of the sun is imposed on the figure for the cases of pure specular

reflection and pure diffuse total reflection.

—9%.=



TABLE 1.

DRAG FRESSURES (n/m®)

SPHERICAL SATELLITES

ALTITUDE (km) AIR; ATR> INDUCEDH EI.E(}%ES%OTIVE
200 2260 (| AuipagTe 2 LLX10™ o T
300 2.83007 | 2.50007 5.29X10™ 2.9810712
500 166007 | 1.36m07% 1,.81x1078 > AL
800 6.91x10° | 5.5x07° 2.26x:077 2.31x10°12
Airl - Atmospheric drag on conducting satellite
Air2 = Atmospheric drag on nonconducﬁing satellite

3 Helium considered to be charged particles

w G5 =




DRAG PRESSURE (n/m<)
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FIGURE 17. Drag Pressure Versus Altitude

for Spherical Satellites
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APPENDIX TII

THE EARTH'S GEOPOTENTIAL FIELD

A, INTRODUCTION
The potential function @(x) for the geopotential field of the earth
can be written as an infinite series of associated Legendre polynomials.

In truncated form, this may be expressed as

B(x) =m/r? + g (x) (III.1)
where
N n vm
g0 = I I (O up +S V) (III.2)

is the potential due to the oblateness (more generally, the asphericity)
of the earth. The oblateness acceleration Eo (x,J) is the gradient of

¢o with respect to r:

(LT3}
& o n m
go(:_l:)-'rni2 r (c grad U ™ + 8 grad V °),

where T = the rotation transformation that takes the earth-fixed
geocentric coordinate system (Xl, Yl, Zl), defined as the
right-hand system with X* at Greemwich and Z' along the
north-directed polar axis at time t, into the inertial
geocentric coordinate system (X, Y, Z) defined in Figure 1,
Cnm’ Snm = the geopotential coefficients from (n, m) equal to
(2, 2) upto (N, N) whose published values have constant

but unknown biases on them,
) o) o)

grad = column (

=8



Un - cos mA
2= (W/r) (R/r)” B " (sin3) ;
' sin mA
01
where p = earth's gravitational constant,
r = the geocentric distance to the satellite at time t,
R = earth's mean equatorial radius,
an(sinB)= associated Legendre polynomials, *
3, A = satellite latitude and longitude, respectively, at time t.

The rotation matrix T consists of a precession and a nutation
necessary to align the polar axis at time t with the polar axis at
time Oh January 1, and then a rotation around the polar axis to
align the Greenwich meridians. (See Reference i)

The gradients in (III.3) are given by<'

== 1 m m-1 1 mtl T
5 & Do 2 Unn
m _ 1l y M-l g
grad Un (1/Rr) ‘2An Vn+1 - 2Vn+l ’
m
- ( n—m+l) Un +]1
*We use the definition
P (x) = 2. 4T 2 )
B AL = 2nn! Gl sl
dxmfn



. —_
m. m-l 1y Il
BALVI - RV
m _ 1 ,m . m-1 mtl
grad V = = (1/R) B Ut AU .
-(n-m+1) VnTi (III.4)

where Arrr: = (n-mtl) (n-mt+2).
Note that with the vector J defined to be the column array of
geopotential coefficients
J = column (020, 030,... 022; 031,..., 033;... 522; 531,..., 533;...),
oF, (BLL.5)

the sensitivity matrix 6J can be written as

oF
0 _ 0 0 2 1
_.:I_ =Eh [gradU2 , gradl, ,... gradU2 ; grad U3 oe
3 2 1
gradU3 et gradV2 s ;g:radV3 SRs=aRey gradVBB; ]
(II.L.O‘I
The gradient - gradient of ¢o can also be found: <’
?-2—¢2——-—-— = o =" 1}\; 12\:I (C__ grad-grad U™ +
axi axj or =0 m=0 nm n
15055252
I’l'l
+ 8 . grad-grad VIII;) S
(BrikgRl)
A (g;radUml - (grad Um_'—l'T
B i 1,T
grad-grad U-;; = = -A (grad Vm l) - (grad Vrrr;il)
i
A -2 (n-mtl) (grad U?llﬂ) §
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R -1, T 1, T 7]
&2 (grad VT’ - (grad VoiD)

n+
rad-grad - —= m m-1\T ol T
g g Vﬁ T An (grad Un+l) + (grad Un+1)
T
-2 (n-m+l) (grad v§+l)

Note that both the gradient and gradient-gradient expressions

require the negative-order expression for efficient computer calcul-

ation.
U;m . e
= (-1) (n-m) h
~m .
M (rtm) ! ‘Vﬁ (111.8)

dF
Note, for purposes of numerical checks, that 552 is clearly

symnetric and, moreover, its diagonal elements are the Laplacian of

¢o and hence must vanish identically in free space:

2 2 2
V2¢ - aFox+ aFoy s aFoz

ax? ay2 8z°

H
©

(TIT.9)
B. GEOPOTENTIAL MODEL COEFFICIENTS
The geopotential model to be used will be the essentielly eighth-

order model published at the 1966 COSPAR by Gaposchkin23 and reproduced
L

by Wackernagel.2 It consists of Koza.i's22 thirteen zonal coefficients

CZO = -J2 to ClL,O = -th,

efficients (2,2), (3,1) to (3,3), --+» (8,1) to (8,8), plus the sixteen

plus the thirty-four pairs of tesseral co-

pairs of resonance terms (9,1), (9,2), (9,9), (10,1) to (10,4), (11,1),
(1252), (13:]-2): (13,13), (14,1), and (15,12) to (15,114-). The un-
moralized zonals are presented in Table 2 and the normalized tesser-

als are in Table 3.
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The term "normalized" applies when the conventional spherical

harmonics Pﬁ(x) are replaced with the fully normalized spherical harmonics

Fix) = \(nm)t (201) k/(ntm)t  Fi(x) = N(n,m)F(x)
(II1.10)
where

k = 2, m # 0.

The coefficients Cnm’ Snm are then replaced with their normalized versions:

Enm Cnm/N(n,m),

Enm Snm/N(n,m), (TELTL)

wherever the ?ﬁ(x) appear.
The geopotential-coefficient covariance matrix PJJ s 1AL i S
although the majority of its elements are zero. Tables 4 and 6 present
the standard deviations on the coefficients, and Tables 5 and 7 their
correlation matrix. We were unable to fine the standard deviations for
the (9,9) terms and therefore used the rule~of-thumb value 0.2 x 10—7
commonly applied to these normalized coefficients. This pair was determined
from the special resonance properties of MIDAS, and hence are uncorrelated
to any other coeﬁ‘icients.23
The coefficients form essentially three uncorrelated groups: the

even zonals, the odd zonals, and the tesserals. The correlation matrix,

therefore, is presented in three parts, one for each of these groups.
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Because of its size, the tesseral correlation matrix is presented
in thirty-one pages. The placement of these pages is keyed to the

correlation-matrix map in Figure 18.

J, =1082.645x 10'6 ; J, = -2.546 X 107 ,

-6 B = -6
J = -1.649x10 ", T, =2-0,210 10 .,
4 5

=5 N -6
J, = 0.646 x 10 °, e = =023 10,

. -6 _ . -6

‘I8 = -0.270 x 10 b Jg =-0.053x%x10 s
J. .= -0.054 X 10'6 J.. = 0.302 % 10'6
10 - x 1% : ’
J.o= =0.357x 10'6 J..  =-0.114 10°°
S : : jg = ™ : ’
B = 0.179 x 10'6
14 : 4

Table 2. Unnormalized Zonal Coefficients
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n m C X 10 5 X 10 n m CX 10 S X 10
2 2 2.379 -1.351 7 7 0.055 0.096
o | 1.936 0.266 8 -0.075 0.065
3 2 0.734 -0.538 g 2 0.026 0.039
3 3 0.561 1.620 g8 3 -0.037 0.004
L 1 -0.572 -0.469 8 4 -0.212 -0.012
L 2 0.330 0.661 g 5 -0.053 0.118
L 3 @851 -0.190 8 & -0.017 0.316
L 4 -0.053 0.230 g8 7 -0.0087 0.031
5 1 -0.079 -0.103 g 8 -0.248 0.102
5 2 @. 631 -0.232 9 1 0,137 0.012
5 3 -0.520 0.007 9 2 -0.0040 0.035
5 4 -0.265 0.064 9 9 -0.065 0.0909
5 5 0.156 -0.592 10 1 0.105 -0.126
6 1 -0.047 -0.027 10 2 -0.105 -0.042
6 2 0.069 ~0.366 10 3 -0.065 0.030
6 3 -0.054 0.031 10 4 ~0.074 -0.111
6 4 -0.044 0.518 8 Gk ~0.053 0.015
6 5 -0.313 0.458 2 & -0.163 -0.071
6 6 -0.040 -0.155 12 2 ~0.103 -0.0051
7 1 0,197 0.156 13 12 -0.058 0.048
7 2 0.364 0.163 iy A3 -0.075 0.010
7 3 0.250 0.018 1 1 -0.015 0.0053
7 4 -0.152 ~0.102 15 12 -0.062 0.058
7 5 0.076 0.054 15 13 -0.063 -0.066
7 6 -0.209 0.063 15 14 0.0083 -0,0201
Table 3. Normalized Tesseral Coefficients
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J2 6.0-09 J3 2.0-08
J4 1.6-08 J5 2.5-08
Jé 3.0-08 J7 3.9-08
J8 5.0-08 J9 6.0-08
J10 5.0-08 J11 3.5-08
J12 4,7-08 J13 8.4-08
J14 6.3-08

Table 4. Geopotential Coefficient Standard
Deviations (Unormalized) - Zonal Coefficients
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Je Ji Jé J8  J10  J12 yie

J2 [ 1.00 «,60 ,80 =489 .79 «,71 .A3 |
Ju 1,00 =486 ¢80 =¢85 ,01 =.47
J6 1,00 =¢79 .96 «.88 .60
J8 1,00 «.80 ,84 =-,84
J10 1,00 =480 ,70
J12 1,00 =,50
Jie | 1,00 |

J3 J5 J7 Jo Jii J13

J3 1,00 =,93 98 =,94 48 =,86
J5 1,00 =-,96 86 =,69 «75
J? 1.00 =-,92 57 =,82
Jo 1,00 =,27 37
Jii 1.00 =,12
J13 R 1'00J

Table 5. Geopotential Coefficient Correlation Matrix - Zonal Coefficients
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APPENDIX IV

TRANSITION MATRIX Q(t,to) IN RECTANGULAR
COORDINATES

Repeating equations (2.2),

r=ry, f(AE) + t,g(AE),

f =dr/dt =r, £,(A E) + %, g(AE), G0 0 )

where the f and g functions are defined with equations (2.2). From

(2.6), the Keplerian transition matrix is

or/ O0r, or/ df,
2#/ dr, | O 31,

evaluated on the two-body orbit (IV.1l), where the state vector is,

(1v.2)

B¢t =

of course,

From (IV.1), the four 3 x 3 submatrices are

dr/ Ory = fI+r( 08/ dx)) + #,( e/ dx),

ox/ dfy = El 0E/O2) =+ gl +E ( Og/ of) ;

= 0 =



I

o1/ or, £,I + 1, (9£,/9r,) + t,( 08/ dry) ,

01/ Oty = x( B8/ O1y) + gl + i, (dg/ 3t ,

where, for example, the row vector

( of/ ago) =( of/ bel, or/ ax02, of/ 5x03).

Noting that

X. = X. . 1 =

. &
l 1
i+3 i 3

we can employ for the sake of clarity the convention that the x
subscripts will never exceed 3 and derivatives will be denoted by

(°) rather than by the subscripts 4 to 6. Then

X 5(1
= [ 3 = % .

.X3 5(3

3 3

r = (xl2 + x22 - x32) 5 = (;‘c,l2 + )'c22 + x32) .
Tou oL
EO = )(02 ’ EO = x02
*03 ok

1 3

_ 2 2 2 /s 2. .2, .2

To = (o1 T Xy *o%) fo = Uiy * %5 * %o)

=158 =

(Iv.3)



In these terms, we can write the semi-major axis as
a= Mr, / (2u -rof'oz);
the inner product
dy = X -3 = Tt XaFop t %03 %os
will also be useful.

From the definitiens of the f and g functions,

2.
S/l ) axy; - T ((0a/0xy) o(em)
£/ Oxy; = 1‘8 (1-cos AE)-(a/ro)sin OE X+
(da/ d%,,) 3(AE
df/ o J.(Oi = - aro 05 (1 - cos A E)—(a/ro) sin AE a_(x(j—ll s
(pa)%x . sin AE + aroz’co.(l—cos AE)
dg/ o X91 = . . + Al(a 8/6XOi)+A5 gﬁi‘ﬁl s
BTy 0i
og/ 9 iOi = (a/p.)xOi (1-cos AE) + Al ( 0a/ aJ’cOi)+A5 Z—(xﬁﬁz ’
i
dr,/ d = A 2 Xr/a) g Ku_aL%_ 3(4E)
t Xo01 2 [2!’3(01 sk 281‘0 301_- *+ (r/a)ro ’5;(;] - = cosAE W
o (r/a) da 1
Of,/ d%.. = A r?[oa ——— + (r/a) —— _ (ua)= 9(4E)
v Ok " horole et R T e
bgt/ bei — A3 %—%.%2 -(a/r) sin AE%(X-S—E-Z 5
1 8 1
Og,/ Ok = Ay %L;.él -(a/r) sin AE il.-@ : (IV.4)

: %o
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The

partials that appear in (IV.4) are simply

. 2
oy (m+ary®)

da/oxy; = - 2
Tol2p = rory”)
2.
. g7y
W = =
(Zp-ror,”)
a(r/a) W X cOS A + a“rOQOisin AR
- = - & (aa/axo.)
6)&01 : 1; e
poarg
+ Ay (aAE/ain),
o(r/a) Xy; sin AE .
= - A (aa/axo.)
. 3 [+ L
%91 e
+ Aé(aAE/ain) ,
where
Al _ sin AE 1l-cosAL a |
T = Ag | Aleaexg) - o %1 = I i
ain 0 (pa)

and

o6E  _ Aq [A7(53/55‘01) E %}_—;_:_C)%AEZ *oi ]

the parameters Ay through A8 are

1

S p'rosin AL + 2a“do(l—cos AF)

v s
2pa
e (gé);’sin AE
2 or?r 3 ’

-140 -



A, = (a/r)2(1-00s AE),

3

miroc()s AE + aido sin AE
T 32

J=a

(au)i r. cos AE + ad. sin AE

A = 0 0
5 ’
u
Ay = o = ro/a) sin AE + do(cos AE)/(ua)% "
A, = (ry/e?) sin ap + S1 = % &) (50)(u/a0 ) a,
2 (uaB)%

A8 = l :

1+ dg (sin AE)/(ua)% = (1—ro/a) cos AE

Clearly, when ror02 approaches 2 p, the elements of the transition
matrix tend to be ill-conditioned because of a and its partials. This
corresponds to a near-parabolic orbit. Although this case does not apply
to the present study, it was considered in the development of MINIVAR,
and hence the so-called NASA orbital-element states are used there. Only
one of the states reflects a, and the ill-conditionedness of the corresponding
transition matrix is virtually avoided in the near-parabolic case.

To go from the transition matrix of this appendix to the form used
in MINIVAR requires only a point transformation, as outlined in Reference 4.
A comparison of this sort was programmed, and in all cases the two transition
matrices agreed to within round-off tolerances. Thus, both the algebraic

details developed here and the MINIVAR development are sustantiated.
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APPENDIX V

COMPARISON OF MAXIMUM LIKELIHOOD AND
MINIMUM-VARIANCE ESTIMATION OF SPACE-VEHICLE MASS

Suppose that the sequence {}_C(k); & = 01 g } of real

random n-vectors x(k) is governed by the recursive equation
x(kt1) = @ (k11, k) x(k) + £(k) + aglk), (V.1)

where @ (k+1, k) is a given n x n transition matrix, a is an
unknown system parameter (such as the area-to-mass ratio of the

main report) which will be regarded as a real random variable having
a priori mean a and variance 6"2; f(k) and g(k) are random n-vectors
with means (k) and g(k) respectively, and x(0) is a random n-vector
with mean X(0) and covariance matrix Py+ In addition, suppose

that for each k =1, 2, ..., N, we have available anmx 1

observation vector z(k) given by

2(k) = H(k)x(k) + v(k), (v.2)

where H(k) is a given m x n matrix and v(k) is a random m-vector

of observation errors having mean zero and covariance matrix R(k).
Finally, we will assume that all of the vectors x(0), f£(0), f(1),...,
g(o), g(1),..., v(1),v(2),..., are pairwise uncorrelated, and that
the random parameter a is strictly independent of all of these vectors.

Using the available observations, we wish to determine an optimal

= Gl



(in some well-defined sense) a posteriori estimate of the parameter a.

For any random vector y, if y is the a priori (unconditional)
mean of y, we will write ¥ = y-y; i.e., y =3 + ¥ is a well-defined
decomposition of y into a deterministic part and a zero mean
random part. In equation (V.1), we then define e(k) = ¥(k) + off(k),
and note that e(k) is orthogonal to ¥(0), v(1), v(2),..., &, and

to each e(3) for 3 # k. With this notation we have
x(ktl) = @ (k11 ,k)x(k) + (k) + ag(k) + e(k). (V.la)

The covariance matrix of the zero mean random vector g(k) will be
denoted by k).

L hl and h2 are zero mean real random variables with finite
variances, we define the scalar product (hl, h2) = Ehlh2 (where
E(.) is the expectation operator), and the norm llnll = (h,h)%.
Let % denote the Hilbert space which is the closure in this norm
of the linear manifold generated by all the components of 3’(0),
e(1), e(2),..., v(1), v(2),..., and by &. Clearly, for each k = 1,
2,..., the components of ¥(k) and %(k) are elements of % , since each
of these components is expressible as a finite linear sum of elements
of the generating set. For each positive integer N, let 9 (N) be the
finite subspace of ¥ which is spanned by the components of ¥%(1),...,

Z(N), and let Ky be the orthogonal projection on m (n).

pE 4 h.N is an arbitrary element of ?7] (N), then

Ng-nll = N€-xg&l + Ix&-nl, (v.3)

= 13-



since KNg = hN € 7)) (N) and ¥ - KNa" 1 7/{ (N) by the orthogonal
projection theorem. From (E.3) it follows that Kﬁf is the unique
element of m (N) which minimizes the distance from & to ?H(N); i.e.,

N . . . . . . .
KNa is the unique (up to equlvalence) minimum-variance, linear

estimate of ¥ with respect to the observations %(1),..., Z(N).
If the components of z(l),. ..2(N) are all linearly independent,

then the projection KN&' can be represented as follows. Let 2. denote

2y
the vector whose transpose is defined as Z.NT = [zT(l),..., ZT(N)] ;
The linear independence of the components of ZN means that the

matrix cov (ZN) = Ez\]gr, which we will henceforth call Uy, is positive
definite. Setting ¥ = UQ%Z&, we see that cov (¥) = I. Therefore,

the components of 2; comprise an orthonormal basis for 77[ (N),

N

and we can write

K = L)Y = (L)Y, (V.4)

where the components of EfigNare the Fourier coefficients of ¥ with
respect to the orthonormalized observations. Since & = a-a, the
minimum-variance, linear estimate of a based on N observation points is

given by

an) = @+ (%)M, - 7). (v.5)

= T =



The variance of the estimation error may be computed as follows:

B(a - 80)% = 14 - k&I°

o2 - (et )Tu (e ). (V.6)

REMARK: We note that even if the components of z& are not
all linearly independent, equations (V.4), (V.5) and
(V.6) remain valid if we replace Uﬁl by Uﬁt the generalized
inverse of the positive semi-definite matrix UN in the
sense of Penroselo. The question of linear independence,
which we will not consider in this appendix, is probably
most easily discussed using the notation of the sequential
estimation procedure of Kalman, described below. A
sufficient, but by no means necessary, condition for the
linear independence of the components of the z(i)’s is
that rank (R(k))= m for each k.
Let us suppose for a moment that the random variable & and
each of the random vectors %(0), e(0), e(1),..., v(1), v(2),..., has
a Gaussian distribution. In this case, the orthogonality of these
random quantities implies that they are actually strictly independent
of one another. For our purposes, the important fact is that &
and the components of z& will then have a Joint Gaussian distribution.
Hence, it is quite easy to obtain the maximum likelihood estimate of

a given z&. For this and later computations, we will need the
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following result.

LEMMA: Let the symmetric, positive definite matrix ! be

partitioned as

where A is p x p, Bis px q, and C is @ x q. Then the matrices

18T and ¢c-BT'A71B are each positive definite. Further-

A, C, A-BC
more, if x and u are p-vectors and y and v are g-vectors, then the

bilinear form

e

Wx, ¥, u, v) = [x, 7] [A BJ_l

I<

admits the expansions

(1) Qx, 7, u, ¥) = xA w0 + (g - BA %) (c-B"a718) (w-BTaty),
and
(i1) Ax, 7, u, v) =y ¢ty + (x - B¢ Hy) T (a-Bc™tBT) L(u - BClv).
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PROOF: The positive definiteness of A and C is obvious.

Writing

and taking determinants of both sides, we see that |C-BIA™'B| >
which shows that (C—BTA—]‘B)—l exists. Inverting both sides of the

above decomposition then gives

A B I -A‘lB( C-BTA‘lB)'l A 0

BY ¢ 0 (c-ela~lp)y | [-gTa 7

If Q(x, y, u, v,) is computed using the representation of Mt

given by the above equation, (i) is obtained. Setting x =u =0,
Y = v, the positive definiteness of c-B'A71B is apparent. The
proof of the remaining statements is similar.

The maximum likelihood estimate of a given z&is simply the

value of a which minimizes the quadratic form

2, 2] [o? 2 '] g
B W A

b
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which occurs in the exponential factor of the joint Gaussian density
of a and ZN' Using expansion (ii) of the above lemma, this

quadratic form may be written as

(8- (o) vy )
( o 2-(za ) v (R, )

+ ZI\ITUN_lzN' (v.7)

From this last expression, we see that the maximum likelihood estimate
of @ given‘zN under the Gaussian assumptions is just the same as
the general linear, minimum variance estimate (V.5), and the estimation
error also has the same variance (V.6).

Returning now to the wide-sense, minimum-variance point of view,
we note that not only for &, but in fact for any element f GW , the

projection

Kk = (22" u Y, (v.8)

is the optimum linear estimate of R given zﬁ in the sense of the
norm of %/, i.e., in the minimum-variance sense. If y is a random
vector such that the components of the associated vector ¥ are
elements of 5V', we will denote by KNZ that vector whose components
are the projections on Z?(N) of the components of ¥. Hence, we

can write

o AR



The covariance matrix of the estimation error will then be

given by

[F - ', ¥ - )]

= cov (§) - (ELZNT) UN'l (EZNZT), (v.10)

where § and ?ﬂ denote the il

and jEh components of the vector ¥.
The minimum-variance, linear estimate of the original vector y is
then y + KNf, and the covariance matrix of the error involved in

this estimate is also given by (V.10).

We will now re-write the system (V.la) in the augmented

form
y(e1) = Q_(kt1, k) y(k) + ulk) + w(k), (v.11)
where
z(k) =[J_c(k)J 3 ulk) = [l(k)] 3 wlk) = [g(k)] 5
a 0 0
and

@y(kﬂ,k) = [@(kﬂ,k) (k) ]
0 il
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If M(k) is defined as the m x (ntl) matrix [H(k), 0], we then

have

2(k) = M(k) y(k) + v(k) (V.12)

instead of equation (V.2). Together with (V.11) and (V.12), we

have the associated equations

1) = Qe 10F() + ux), (V.11a)
Poe1) = DOkt JOF () + wlk) (V.11b)
z(k) = M(k)¥(k), and ' (V.12a)
2(k) = Mk)F(k) + v(k). (V.12b)

The optimal estimate of y(k) given ZN = 2, - 2, will be denoted

by $(k/N); hence,

Fk/M) = (k) + KF(k), (v.13)

since the components of i(k) are obviously elements of 7{. The

estimation error associated with this estimate will be designated
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as ¥(k/N), so that

Fx/N) = 3(x) - $(x/N)

= ¥(k) - K Hx). (V.14)

setting Py_y(k/N) = cov (¥(k/N)), it follows from equation (V.10)

that

P_(k/N) = cov ($(x))- (BY0OGD) vt (EGF (k). (v.15)

Since E(k) and z; are orthogonal for each k, we compute

Hc /1) = QG k-1)F(e-1) + ule-1) + Ky ( P (k-1)F(k-1) + wlk-1))

= (by(k,k-l)f(k-l/k-l) + u(k-1). (v.16)

Subtracting (V.16) from (V.11) (after replacing k by k-1 in (v.11)),
and evaluating the covariance matrix of the resulting expression,

produces

(v.17)
- T
P (k/k-1) = be(k,k-l)Pyy(k-l/k-l) (Dy (k,k-1) + [Q(k—l) 0 } :

0 0
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Applying expansion (i) of the above lemma, we now compute

k¥ = (B0 v g,

= [0t !l Bt )] [u A A OO Rl I
k-1
B0, E200Z () 2(x)
= Kk—li(k) + By(k) (z(k) - Kk—lz(k))’ (V.l8)

where

B, (k) =[E(0)2 () - (0L 1)) vt (B 27 (k)]

L2002 (k) - (E200LT) vl Z 2T a)]

Since v(k) is orthogonal to both ¥(k) and Z%_l, we can substitute
the right side of (V.12b) for Z(k) in the latter expression, and

obtain
_ L g =
ay(k) = F&y(k/k—l)M (k) [M(k)F&y(k/k—l)M (k) + R(k)] (v.19)

3 A 5 . ~
The orthogonality of v(k) and 4. _q also implies that Kk_lg(k)
= M(k)Kk_l"X'(k); hence, the combination of (V.13) and (V.18)

produces

Fle/k) = He) + K F0) + B (k) [ 200) - mO0[50k) + K ¥(0)]]
= P(k/k-1) + B (k) [ 2(k) - M(k)(/k-1)] . (V.20)
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From (V.11b), (V.12b), (V.14) and (V.18), we find
T(k/k) = §(6) - K F() - B M) [F(k) - K 1§00 ] - B (k)x(k)

= (I-By(k)M(k))i(k/k-l) = gy(k)z(k). (v.21)
Computing the covariance of the latter expression gives

gyy(k/k) = (1-B,(x)M(k)) gyy(k/k-l). (Vv.22)

Equations (V.16), (V.17), (V.19), (V.20), (V.21) and (V.22) are
equivalent to those originally derived by Kalman6 for the sequential
estimation of the state vector of the system (V.1l1) based on
observations of the form (V.12) (c.f. equations (3.5), (3.6), (3.14),
(3.15), (3.16) and (3.17) of reference 11). In order to start the

computation, it is clear that we should set

gyy(o/o) =[5 0], and $(0/0) = [x(0)] . (V.23)

o ¢*° a

As the computation proceeds, the optimal estimate of the parameter
a based on N observation points, which is given by equation ( .5),

is obviously the same as the last component of the vector i(N/N).
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APPENDIX VI
THE PSEUDO-INVERSE AND DATA EDITING

A. TINTRODUCTION
The optimal noise-free solution for the Kalman filter derives from

finding the gain By(n) that satisfies the equation (4.39):

By [Hy Pyy(n/n—l) Hyi] - Pyy(n/n—l) HyT 0, (Tl

where the argument (n) is implicit in the ay and Hy terms. In order

for the processing of perfect observations to be meaningful, we can use

a maximum of only three position measurements and three velocity measure-~
ments at any time tn’ for otherwise we would have some wholly redundant
equations in the unknowns x, y, 2z, ;, &, ; without enhancing our knowledge

u As long as we are dealing with a single

& 3
sensor at time tn, as long as tn is not identical to tn—l for all n (no

of the mass parameters Uy, u

matter how close they may get), and as long as the trajectory is randomly

-3

perturbed (with geopotential and drag uncertainties), then Hy pyy (n/n—l)Hy

is theoretically nonsingular and the solution (4.40)

~1

By(n) = Pyy(n/n—l)Hy? [Hypyy(n/n—l)g;r] (VI.2)

is theoretically possible.

In a practical sense, however, the inversion called out in (VI.2)
often meets with severe numerical difficulties. The first of these
arises because we may not be able to keep tn distinct from tn—l for

all n.
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1. Multiple-Sensors, Simultaneous Observations
Two or more sensors, each perfect, may be able to see the satellite
at the same instant of time tn. For any of the sensors of concern to us
in the present work, HyPyy(n/n—l)Hyi would then be singular.
EXAMPLE 1.
Suppose two Baker-Nunn cameras sight a satellite at the same time

tn. Each of the cameras has an observation matrix

aa/ax_ hj; by, @ 0000000

o 36/0y| |hy By, by 0000000,

where a = right ascension,

§ = declination,
R
3
11 (secza)(x-xs)2
ili
h, = ,
12 (secza)(x-xs)2
- -(z-z_)(x-x)
3
2 R> cos §
. -(z-2 ) (y-7,)
b}
22 R3 cosd
R? - (z-zs)2
h =
23 R3 cos § ’

where (xs, g zs) are the coordinates of the camera in question, R is
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the range from the camera to the satellite, and the hij are evaluated
around nominal satellite values at tn.

We can let tn be itself for camera 1, and let it be tn+1 for camera 2.
To make the computations easier, we will take both cameras at the same

latitude such that z = (I and normalize where we can to obtain
fl 10000000

Camera 1: Harnls {001000000 ,

ab0ObO00000O0
Camera 2: Hyz(n*l) = Hy2(n) “ {00c000000

We will assume, without any real restriction, that
P_(n/n-1) = &I (V1.3)

Then we can show that

P_(n/n) = (@?/2) 2 (VI.4)

(This dis alsé Pyy(n+l/n) since the data from camera 2 occurs at tn*l = tn.
lNote that the two angles from camera 1 removed two degrees of freedom
(reduced the rank by 2) between (VI.3) and (VI.4). This occurred where

it should, in the 3 x 3 submatrix in the upper left-hand corner, which
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corresponds to position uncertainties. To remove the final uncertainty
in that 3 x 3 submatrix, we should use only one more angle measured at that
time: the right ascension reading from camera 2. Without a special

procedure, however, we try to use both new angles:

Hyz(n+l)Pyy(n+l/n)Hy2T(n+l) Hyz(n+l)Pyy(n/n)Hy2T(n+l)

(a—b)2 0]

@/2)
0 0 (VI.5)

and we obtain an expression which cannot be inverted fa (VI.2).
2. Round-Off

Even when the matrix is theoretically well-behaved, the finite
precision of the computation equipment may present us with severe numerical
problems. In the case of multiple sensors, two observations may not be
truly simultaneous, but they may be so close in time that the trajectory
perturbations have had essentially no effect on the orbit: i.e., the obser-
vations are treated mumerically in much the same way as led to (VI.5). Note
that the perturbations enter the covariance computations through ny(n—l)

and ¥ (n, n-1), both of which are integrals of finite functions over the
azz
= )
range (tn, tn_l), and hence vanish as tn—'-tn_l.
Problems can still arise with closely spaced observations after care

has been taken to throw away redundant readings, such as the declination

#See equations (4.27) and (4.30).
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measurement in the above example. The transition equations for
the stochastic and deterministic estimates of drag are given respectively

as

Gﬂnﬂ%l)=3ﬁn4jm&)e4tﬁ¢n4)/rd,

u2(n/n—l) = u2(n—l/n—l). (VI.6)

L tn is too close to t the two equations are numerically difficult

n-1’
to distinguish, and since Uy and u,_ appear in the equations of motion

<
only as the sum (ul it u2), we find ourselves faced with a system which is
essentially Kalman-unobservable.é’30

IXAMNPLE 2,

Consider the hyvothetically simplified example

x(nt1) = § (nt1,n) x(n),
z(n) = H(n) x(n) , (V1.7)
where

1 ) 0‘1

Q(n+1,n)=@=0111 ’
0010
000 1]
1 20 0

H(n) =H =

3400

Components x3 and x,, here, correspond to the u, and u, of our real system

3k 2

are so close together that the

1+,
under the condition that ¢t and t
n n+1l

exponential in (VI.6) is numerically unity.
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LR

After one measurement, say at ts

Cov % =0,
2

We will assume that the overall covariance

0
0
P(n/n) = déz
2
b
Then - -
T 0] 0 0 0
P(ntl/n) = P P(n/n) P * = 5. 5 5 5
0 gt G )
q 2 2
0] 3 G} 0
g 2 qa 2
o % o S
and 1 5
T 2 2
H P(ntl/n)H = L,(vr3 + ¢h ) (v1.8)
2 L

Again, we cannot perform the inversion required for (VI.2). What we should
have done was to accept only one of the two observations at this time
and estimate, in effect, only the sum of xj and X, 5 rather than try to
estimate them independently. Then, when we obtain some better-spaced
future data that causes their behavior to separate, estimate them individually.
B. THE PSEUDO-INVERSE

Rather than attempt to throw away data in the conscious way just described,

we can achieve the same effect by replacing the inverse in (VI.2) with a
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pseudo-inverse. The general method of pseudo-inversion, with overtones
for least-squares fitting, is described in Penrose,lO and Kalman3o
alludes to it throughout his work without, however, going through the
mechanics of what it achieves.

For our purposes, since we require it only for the observation-
covariance matrix HyP (n/n—l)HyT, it suffices to specialize the pseudo-
inversion to a symmetric k x k matrix, say A. Denoting the eigenvalues

of K as Kl,...,kk, we can always transform i to the diagonal form

— -

D = . =548, (W)

=
'8

— o
by taking S to be a matrix whose k coluwms are the k distinct eigen-

vectors of £, normalized such that

If some of the A's are zero, say Ki*l’ A .y Kk’ then the pseudo-

i+2’..

inverse of A is defined as

(1/x2)

_ T\ .
& = (sps')¥ =5 (1A, sl
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That is, the part of A that has a normal inverse is inverted normally;
the part that has zero eigenvalues is pseudo-inverted to have zero
eigenvalues.

APPLICATION TO EXAMPLE 1.

Consider the solution with the declination measurement thrown away
!
by conscious editing. We use ( ) to denote the matrices so obtained
for camera 2:

z' =a,
/

W

o [abooooooo]

Then, from (VI.2), (VI.4), and (VI.5)

B (n#1) = P_(n/n)H (n#1) [ 1) (n#1)P_(n/n)K (n#1) ] N
y(n = Poy{n/n)H (n [ — yy /R (n 5

.a-b- r L
e
'a+b
1
-1 o
w2 | °| [(F2aEw?] - a;b (VI.10)
| 0 | | 0]

Now we apply the pseudo-inverse, instead, to (VI.5) in the automatic

way described:

£:
B (n+1) = P_(n/n)H (n+) [Hyz(n+l)Pyy(n/n)Hy2(n+l)]
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a=b 0 (1 ]
5 - atb 0
atb 0 (¢</2)(a-b) 0
= |
=@ | O© 0 0 S
: 0 0
0 0
9 J
0 0
’ J

(VI.1TL)
Relation (VI.10) directs that the first two position extrapolations be
corrected by multiplying the right-ascension residuals by 1/(a+b) and
1/(a-b), respectively, and all others be left uncorrected; (VI.1l) directs
the same thing. Hence the results are the same.

APPLICATION TO EXAINPLE 2.

Ve accept only the 2y measurerient in the simplified example specified

by (VI.7). Then

gk
i =[1 2 o o]
and [ o 7 i o ]
B g 2 il
c,” +T oo +T
(n41) o 7 2>_l l ol
B (ntl) = 2 2 LT + 4T . 2ol 2
% 2 A0S, 3
2 2
RO O
(VI.12)
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The in-step covariance is

P'(n+l/n+l) = [I-B'(n+1)H']P(n+1/n),

2
99

2 2
%5,

0

0

=

0

0

1 (VI.13)

The pseudo-inverse approach employs the original unprimed matrices

from Example 2.

First we must find the eigenvalues of (VI.8):

xl =i 5. xz = 0. We then determine the matrix of eigenvectors to be
P - i
s=s5 =0/5")
1 2
Equation (VI.8) becomes R
e 2 2
H P(n+l/n)H = 20 (<r3 +¢4 ) S o 1|5
so that s -
3 had 1
[H P(n#1/n)H ] === == A s
20(9’-3 +<£ ) L J
)
1oo(o3 +a ) |2 4] (VI.14)
Hence
0 0
g2 Aq2,g2)
Vg™ 5
]
B(ntl) = ——————
i o2 2
+
10759 5 e
2 2
7% =T, (VI.15)
L i




Comparison of (VI.15) with (VI.12) is not particularly enlightening.

Hence we compute the in-step covariance with the unprimed values,

(O O 0 O

5.9

0,1,
P(n+l/n) = —%—b'—z 0 0 0 0
Z ] o 0 1 -1

O 0 -1 1
- -

and find that it agrees with (VI.13), thus verifying that the pseudo-
inverse automatically performs the desired editing.
C. NUMERICAL IMPLEMENTATION

Computer round-off usually prevents a calculation from yielding a true
zero value when there should be one if the calculation involves more
than a very few steps. Hence the examination of D for computed singularities
will not always be sufficient.

There are two cases to consider. The first and most common arises
when some diagonal entry diz in Pyy should be zero, but is not. The entries
in the row and column that contain V;z should also be zero if gyy is to
have the non-negative definite property that a covariance matrix must have.
If these row and column entries are wholly due to round-off, it is very
unlikely that Pyy will be non-negative definite (have only non-negative
eigenvalues). llence, one approach is to positive-semi-definitize the P
matrices.
TEST 1.

Check the diagonal entries in Pyy' If there are any negative entries,
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say 012, set them and the ith column and row to zero. Set also the

appropriate rows in gyJ and Pyv2 to zero. Perform the check for both
the arguments (n/n) and (n/n-1).
TEST 2.
Compute the diagonal matrix of eigenvalues
D=5"P_s
Yy

for arguments (n/n) and (n/n-1). If any eigenvalue is negative, set it

to zero and reconstruct

S sp'st,

where the primes denote the matrices after the negative eigenvalues are
made zero. It is assumed that any negative eigenvalue is small enough

in magnitude that setting it to zero has negligible effect on S,

TEST 3,

For some input parameter C, set the ith row and column in gyy(n/n)

to zero if Ti2f_ C.

TEST 4.

Having obtained a data value zi(n), and therefrom a residual

= z;(n) - b, [&o/n-1)]
2
el

2 2
&; > K) Toi

e.
1

set the ith element in Hy(n)Pyy(n/n-l)HyT(n) to zero if

for some input parameter Kl. However, set the residual e, to zero if

2 _ .2
K T zef YK, 05
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for some input parameter K2 (< Kl) and proceed with the covariance
computations as if the data was used.

The second case arises when the gxy matrices are numerically positive
semi-definite, but some small <fi2 should be zero. There are two possible
approaches. One is to diagonalize to the D matrix and set any xi to
zero that is "very much'" smaller than any other xi. There is a difficulty
in assigning a number to the 'very much", especially since some of the
variances have the units of distance, some have the units of velocity, and
some have units involving area-to-mass ratio. In general, havever, it
is better to discard good data (by setting a Xi to zero that should not
be) rather than to include bad, or meaningless data in the smoothing.

The computed covariances will simply be a little larger than they should
be. |

A second approach, which also covers some of the problems encountered
earlier, is to include a round-off '"noise" matrix Rrr in the residual

covariance

L8, ()2 (n/n-1)H (n) + R(n) ]

to reflect the fact that we do not have an infinitely precise processing

chain, even when the first unit in the chain (the sensor) is perfect.
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