Lvid il JUry

ESD-TR-66-653, VOL. I MTR-35

ESD RECORD COPY
RETURN T0 ESD ACCESSION LIST
B o oong 1L o ol A S0606
of cys.

COLINGO C-10 USER® % .

VOLUME I

MAY 1968

COLINGO Project

/=S¢ E

Prepared for

AIR FORCE COMMAND AND MANAGEMENT SYSTEMS DIVISION
DEPUTY FOR COMMAND SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 512V
Prepared by
. THE MITRE CORPORATION

This document has been approved for public
its distribution is un- Bedford, Massachusetts

release and sale;
i Contract AF19(628)-5165
y,

"‘\\‘\.‘,\ ((A\ o
- L

[

When U.S. Government drawings, specifica-
tions, or other data are used for any purpose
other than a definitely related government
procurement operation, the government there-
by incurs no responsibility nor any obligation
whatsoever; and the fact that the government
may have formulated, furnished, or in any
way supplied the said drawings, specifica-
tions, or other data is not to be regarded by
implication or otherwise, as in any manner
licensing the holder or any other person or
corporation, or conveying any rights or per-
mission to manufacture, use, or sell any
patented invention that may in any way be
related thereto.

Do not return this copy. Retain or destroy.

1

)

ESD-TR-66-653, VOL. I MTR-:

COLINGO C-10 USERS' MANUAL

VOLUME 1

MAY 1968

COLINGO Project

Prepared for

AIR FORCE COMMAND AND MANAGEMENT SYSTEMS DIVISION
DEPUTY FOR COMMAND SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 512V
Prepared by

S ' THE MITRE CORPORATION

This document has been approved for public
release and sale; its distribution is un-

limited. Contract AF19(625)-5165

Bedford, Massachusetts

FOREWORD

This report was prepared by The MITRE Corporation, Bedford,
Massachusetts, under Contract AF 19(628)-5165, Projects 504F, 512B,
and 512V. Portions were written over the period 15 December 1965 to
23 February 1968 and provide a complete Users' Manual.

ESD Project Officer: Lt Col James L. Blilie, ESLFE.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

JAMES L. BLILIE, Lt Col, USAF
Chief, Engineering Support Branch

ii

ABSTRACT

The COLINGO C-10 Users' Manual, a combination of tutorial and
reference material, is presented in two volumes. This volume con-
tains a general introduction to the system, a description of the
C-10 file structure, a reference manual of the PROFILE language, a
comparison of the PROFILE language and the COLINGO-D control language,
and a section about the C-10 Editor.

p i3

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
GLOSSARY

SECTION I INTRODUCTION
EXTERNAL VIEWS OF C-10

C-10 as a Data Management System

The Large Program Problem and Functional

Modularity
INTERNAL VIEWS OF C-10

Equipment
Languages
Data Structures
Data Flow
Procedures

SECTION II FILES AND DICTIONARIES

TREE DIAGRAMS

GROUP AND TERMINAL PROPERTIES
DICTIONARIES (DETAIL)

A SAMPLE DICTIONARY AND FILE
FILE PROCESSING

ALTERNATE STRUCTURING OF DATA
FILE PROCESSING EXAMPLE
SUMMARY

SECTION III PROFILE

INTRODUCTION
STATEMENTS EXECUTED DIRECTLY BY THE PROFILE
PROCESSOR

Names

File Names, Group Names, Property Names
The CREATE DICTIONARY Statement
The RENAME Statement

The INSERT STRUCTURE Statement
The REPLACE STRUCTURE Statement
The DELETE STRUCTURE Statement
The DISPLAY DICTIONARY Statement
The DISPLAY STRUCTURE Statement
The DELETE FILE Statement

The REMARK Statement

STATEMENTS CONTROLLING FILE ACCESS

The READ Statement
The CLOSE Statement

ix

10

10
10
13
15
17

21

21
22
23
25
26
28
30
33

34
34

35

35
35
38
44
46
48
50
50
52
53
53

54

55
58

TABLE OF CONTENTS (Continued)

Page

Cursors and the SET Statement 58

The WRITE Statement 61

The COMPLETE Statement 61

The ASSIGNMENT Statement - First Form 62

VARIABLES 72

The VARIABLE DECLARATION Statement 2

The ASSIGNMENT Statement - Second Form 73

GENERAL HANDLING OF INPUT T4

The INITIALIZE INPUT Statement 75

The INPUT Statement 75

The DEFINE UNIT Statement - First Form 76

The DEFINE I1/0 DEVICE Statement 77

The SPACING Statement - First Form 79
Parases Which Fetch Values From Input

Streams 81

EXPRESSIONS AND BOOLEANS 88

Integer 88

Floating Point Number 88

Literal String 88

Expressions 85

Special Functions 89

Booleans 90

GENERAL HANDLING OF OUTPUT 92

The INITIALIZE OUTPUT Statement 93

The OUTPUT Statement 93

The DEFINE UNIT Statement - Second Form 94

The SPACING Statement - Second Form 95

The ASSIGNMENT Statement - Third Form 98

CONTROL STATEMENTS 101

The GO TO Statement 101

LABELED Statements 101

The CONDITIONAL Statement 102

The COMPOUND Statement 103

The CONTINUE Statement 104

The PAUSE Statement 104

The COMMENT Statement 104

PROCEDURES 105

The PROCEDURE DECLARATION Statement 106

The ASSIGNMENT Statement - Fourth Form 107

The RETURN Statement 107

The DO Statement 109

vi

TABLE OF

The
The
The
The
The
The

CONTENTS (Continued)

CHANGE Statement

SORT Statement

SUBSET Statement

SUBSET FORMAT Statement

PROCESS Statement

COMMENCE and TERMINATE Statements

FILE GENERATION AND MANIPULATION EXAMPLE

Data Format
File Generation
File Manipulation

A NEW PHILOSOPHY CONCERNING FILE ACCESSING
COMPLICATED FORMS OF THE READ STATEMENT WHICH
PERMIT MORE EFFICIENT PROCESSING

The
The

DELETE OBJECT Statement
GET Statement

SECTION IV A COMPARISON OF PROFILE AND THE COLINGO-D
CONTROL LANGUAGE

INTRODUCTION
THE GET VERB

File Selection
Dictionary Retrieval
File and Dictionary Names Retrieval

THE CRITERION STATEMENT

OUTPUT

Standard Output
Editing

DATA TRANSFER VERBS

General Verbs
Special Verbs

CONTROL VERBS
FILE GENERATION AND MAINTENANCE
OTHER COLINGO-D VERBS

SECTION V THE EDITOR

INTRODUCTION

vii

124
126
128
131
136
138
141
142
146

146
147

147
150
150

151
156

156
157

159

159
165

169
169
170
171

171

TABLE OF CONTENTS (Concluded)

Page

Definitions 172

ERROR CORRECTION 173

Unit Record Correction 173

Message Correction and Editing Commands 174

SEGMENTATION 181

Character Set 181

Terminators 182

Atoms 183

APPENDIX I PROFILE IN BACKUS NORMAL FORM 189
APPENDIX ITI PROFILE IN COBOL METALANGUAGE 203
APPENDIX III ADDITIONS TO PROFILE IN BACKUS NORMAL FORM 218
APPENDIX IV ADDITIONS TO PROFILE IN COBOL METALANGUAGE 219

vidii

Figure No.
?

2

10
1L
12
13
14
15

16

17

LIST OF ILLUSTRATIONS

Structure of an Object in the PEOPLE File
Hierarchical Order of C-10 Data Structures
Data Flow

Typical Tree Diagram

Linkage of Objects in a File

Group Repetitions Within an Object
PLANE.CLASS File Tree Structure

Flow Chart of Solution of File Processing Problem
COUNTRY File Tree Structure

COUNTRY.A File Tree

File Reading Process

Tree Diagrams for the PERS and PEOPLE Files
CONTROL.REPORT File Structures

Tree Diagram of a PERSON File

Data for a PERSON File

Printout of Entire PERSON File

Tree Diagram of FOREBEAR File Created from the
PERSON File

ix

14

16

21

26

27

28

31

36

37

58

66

68

124

127

130

133

GLOSSARY

Actor

A mechanism within TAP which allows the evaluation of specified STEP
procedures triggered by the presence of a key word, the actor name,

at any point in a message; a generalization of the concept of an
assembler pseudo-operation.

A-stack (Association Stack)

A pushdown stack with push/pop and name-value pairing association
used by STEP for

(a) recursion of procedures

(b) global communication between procedures

(c¢) association of arguments with procedures by
variable-value binding

(d) local storage within procedures.

Atom
1) Elementary syntactic unit; any number, literal or identifier.

2) (ATOM) In STEP, a way of allowing names to denote themselves;

e.g., ATOM A refers to the name A rather than the value associated

with A.

Autocoder

1) The basic assembly language for the IBM 1410.

2) The same, augmented by a set of C-10 specific macros.

Block

1) The basic unit of bulk storage, used on disk, tape, and in core.
Data structures such as P-stacks, streams, and files are modeled

into sets of linked blocks.

2) (BLOCK) In PROFILE, one of several types of logical units into
which input and output streams may be divided.

Crock

A sequence of ten characters which contains an identifier type code
in the low order position, and information in the other positions;

the basic unit of information transfer between procedures and sub-
routines; the canonical data form in C-10.

Cursor
1) A pointer to a specific group or property within a file.
2) (CURSOR) In PROFILE, a special function whose value is a cursor.

Dictionary

A user-built data structure describing the structure and characteris-
tics of the properties in the file with the same name as the dictionary.

Directory

A file which contains cursors; used for rapid access by direct entry
to data in another file.

Dynamic Relocation

Refers to the method of relocation used in C-10 whereby subroutines
may be moved about in core memory after having been loaded from disk
at some particular location. An index register set by subroutine
control specifies the location of the currently operating subroutine.

Editor

A processor which obtains text (by performing input operations),
segments it, and builds messages with the atoms produced by the seg-
mentation.

File

A user-built data structure, comprising an ordered collection of
information about a set of objects which have a set of properties in

common.

Floating Point Number

An unsigned string of digits with a prefixed, suffixed or imbedded
decimal point, optionally followed by the letter E and a signed or
unsigned string of digits.

xXi

Form

1) A procedure whose arguments:

a) may be indefinite in number, and
b) are not evaluated at the time the form is accessed.

2) (FORM) In STEP, used to declare a form.

Function

1) A procedure with up to ten arguments which are evaluated at
the time the function is accessed.

2) (FUNCTION) In STEP, used to declare a function.

Functional Modularity

A concept in which procedures perform well-defined, simple functions,
with interfaces standardized to allow both the addition of new pro-
cedures, and the recombination of old procedures to form new units.
Global

A datum which is globally available. Usually refers to one of the
following:

a) an upper core Q constant
b) one of the sixteen 10-character crocks in core available

for communication
c) a variable associated with a value in the A-stack.

Group
A property of a file, to which other properties belong.
Identifier

In text, a sequence of characters identified as an atom by the

segmentation rules of the Editor, but which is not a number (integer
or floating point) or literal; includes punctuation marks.

Integer

A sequence of unsigned digits.

=it

Literal

In text, an arbitrary string of characters surrounded by quotes.

Message

1) A user-entered sequence of characters terminated by a delta (A).

2) A data structure composed of a sequence of atoms; the internal
result of processing a message defined as in (1) above by the

EDITOR; often used as the input to processors.

3) Text output used by the system to supply information to the user:
a system message; an error message.

Object
The highest level group in a file.
Pointer

1) A crock which specifies the location of other information on
disk or tape.

2) 1In PROFILE, an indicator of the current position in an input
or output stream.

Procedure

A formally established functional structure.

1) 1In STEP; known also as a soft procedure.

2) In AUTOCODER, a subroutine; known also as a hard procedure.

3) 1In PROFILE, a structure which, when translated, becomes a
hard or soft procedure.

4) (PROCEDURE) In PROFILE, used to declare a PROFILE procedure.
Processor

A collection of procedures which form a functional unit of signifi-
cance to the external user.

xiii

PROFILE (PROcess FILEs)

1) A high level file-oriented procedural and query language; the
highest level language in C-10.

2) A processor which transforms a message written in the PROFILE
language into one interpretable by the STEP processor.

Property

An element of a file which belongs to another higher level element;
a datum or a group.

P-stack (Private stack)

A data structure providing generalized recursion/lookup stack capa-
bility; like the A-stack, provides push/pop capability and name-
value pairing.

Q

An arbitrarily chosen character administratively reserved for use
in C-10 as the initial character of the names of symbols of system-
wide use; used particularly for subroutine and Q-constant names.
ARGL

A set of ten core-resident, consecutive crocks named QARG1 through
QARG10 in which arguments to a subroutine are stored.

Q-constant
A system-wide constant, often resident in high-numbered core memory.

QSTRVAL

A special, core-resident crock used to hold a secondary value returned

by some subroutines.

QTEMP

A set of 30 core-resident, consecutive crocks, named QT1 through
QT30 used to present arguments to a subroutine and provide tempor-
ary storage.

xXiv

QVALUE

A special, core-resident crock used to store the primary value of a
subroutine. QVALUEl, QVALUE2, and QVALUE3 are similar crocks used
occasionally to store additional subroutine values.

Recursion

The action of a procedure in appealing to itself directly or
indirectly.

Repetition
Instance of a group.

Segmentation

The process of separating a sequence of characters into a sequence of
(equivalent) atoms.

Skeleton

A sequence of atoms which, after modification by the arguments of a
terse, is to be substituted for the name of the terse and its argu-
ments in a message.

STEP

1) A LISP-like stream processing language.

2) A processor which executes by interpretation a message written
in the STEP language.

3) (STEP) In PROFILE, used to declare a statement written in STEP.
Stream

1) A data structure in which variable length text and/or
hierarchically structured data may be stored.

2) In PROFILE a continuous sequence of characters representing input
or output data.

Subroutine
A formally established functional structure executable by the Central

Processing Unit.

XV

TAP (Terse Actor Processor)

A processor which acts as a general purpose message manipulator,
providing the mechanisms '"terses'" and "actors."

Terse

A mechanism within TAP in which a key word, the terse name, and
arguments which follow the name are replaced by a skeleton possibly
modified by the arguments; a generalization of the concept of an
assembler macro.

Variable

1) A data structure within the PROFILE language, each instance
capable of holding any single datum.

2. (VARIABLE) In PROFILE, used to declare the presence of a variable.

*xvi

SECTION I

INTRODUCTION

""COLINGO" is a name that has had many uses at MITRE. It was
originally used to denote a concept of system interaction with an
operator, wherein a new command is presented to the system only after
the previous one has been executed (Compile On LINe and GO). It
has since been used to name six programming systems: COLINGO A,
COLINGO B, COLINGO C, COLINGO D, COLINGO C-10, and COLINGO P-10. These
two volumes describe COLINGO C-10. The differences between
COLINGO C-10 and the other systems are considered to be so basic
that little more can be said of system similarities other than the
fact that they all fall in a general category of 'data management
systems' and share the name '"COLINGO."

The project which is building C-10 is a research and develop-
ment effort intended to help close the gap between existing piecemeal
software (separate assemblers, compilers, monitors, etc.) and a
software system capable of accomplishing all these functions in a

unified way.

C-10 is an attempt at a computer software system designed to
aid programmers in all areas of the preparation and use of large
programs: designing, programming, debugging, executing, and evaluating.

Thies assistance takes the form of these facilities:

(1) A framework for segmenting a large program
into small procedures, and a mechanism for
"managing' these procedures.

(2) A mechanism which provides centralized allo-
cation of computer resources (and keeps all
programming relatively independent of machine
configuration).

(3) A set of data structures and an associated
set of "primitive" procedures that manipulate
them.

(4) A set of utility procedures.

(5) A set of languages and an associated set of
processors.

Although any large program could conceivably be designed and
implemented within the framework of C-10, special emphasis has been
given to those applications which involve the manipulation of large
amounts of data and have been referred to as ''data management'' prob-
lems. Thus one of the basic data structures is a '"file.'" One of the
languages includes a collection of explicit file-oriented statements,
and special functions exist for conversion of input data. As a ''data
management system,'' C-10 will generate files from input data without
restrictions on format, generate reports from file data without
restriction on format, perform the usual functions of file maintenance

and updating, and process on-line retrieval ''queries."

This introductory section of ESD-TR-66-653 is intended to give
several overviews of C-10. C-10 is considered '"externally' as a data
management system and as a means for producing large programs. An
"internal" discussion presents brief descriptions of the equipment, lan-
guages, data structures, and procedure structures that are part of C-10.
Most of this material is covered more exhaustively in the remainder of

ESD-TR-66-653.

Historically, C-10 developed from experience gained from four
other MITRE projects: The Experimental Transport Facility, the ADAM
Project, COLINGO-D, and the software development for MITRE's PHOENIX

Computer.

N

EXTERNAL VIEWS OF C-10

C-10 as a Data Management System

Special emphasis has been given in the design of C-10 to applica-
tions involving large amounts of data, and some attention has been given
to the design of a set of statements in one C-10 language (PROFILE) which
may be used conveniently to manipulate files of data on-line. It is the
intent of this section to present the flavor of simple ''data management'

in the C-10 environment.

The operation of the C-10 system is controlled by commands which
are entered either from the operator's console or punched into cards
which are read by the card reader. A command may speak to the system in
any of its languages. In the performance of data management tasks, a
command may direct the system to generate a report based on files existing
within the system, read large volumes of data from cards or tape and store
them as files, cull information from several files and generate a new file
of composite information, or direct the system to perform composite tasks
of unlimited complexity involving the input of raw data, the manipulation

of files, and the generation of reports.

In order to present some simple example commands, we will consider
a sample file: the PEOPLE file contains information about the personnel
of a company. It consists of a sequence of ''objects,' each object contain-
ing the information pertaining to one employee. This information includes
the employee's name, his employee number, the organization to which he is
attached, his sex, his birthdate, the number of skills he possesses, and
a small subfile which describes these skills. The ''structure' of an

object in the PEOPLE file is shown in Figure 1.

PEOPLE

N/

NAME EMPLOYEE. ORGANIZATION SEX BIRTHDATE NUMBER.OF

ER UNIT SKILLS
. NAME CODE

Figure 1. Structure of an Object in the PEOPLE File

If this file is part of an operating C-10 system, we could

enter these commands on the console typewriter:

PRINT SUBSET PEOPLE (NAME, BIRTHDATE) A

This command will produce a list of all the employees' birth-
days in the company; the list will be printed in whatever order the
file is in. To produce an alphabetical listing of employees' birth-
days, we could sort the file and then have it printed:

SORT PEOPLE ON NAME;
PRINT SUBSET PEOPLE (NAME, BIRTHDATE) A

To produce a listing of employee's birthdays in the order in
which they occur, we could sort the file on BIRTHDATE:

SORT PEOPLE ON BIRTHDATE;
PRINT SUBSET PEOPLE (NAME, BIRTHDATE) A

If we wished to compile a list of employees in the company that
were at least 40 years old,male, with a master's degree in electrical
engineering and a pilot's license, we could enter this command:

PRINT SUBSET PEOPLE IF YEAR(BIRTHDATE) < 25
AND SEX = 'M' AND ANY [SKILL(NAME) = 'MSEE']

AND ANY [SKILL(NAME) = 'PILOT']
(NAME) A

To get more complete information about these people, we should type:

PRINT SUBSET PEOPLE IF YEAR(BIRTHDATE) < 25

AND SEX = 'M' AND ANY [SKILL(NAME) = 'MSEE']

AND ANY [SKILL(NAME) = 'PILOT']

(NAME, EMPLOYEE.NUMBER, ORGANIZATION.UNIT,SEX,

BIRTHDATE, NUMBER.OF.SKILLS, SKILL(NAME, CODE)) A

Suppose that we wish to split the PEOPLE file into two smaller

files: a file containing information about all the technical people,
and a file containing information about the nontechnical people. To
facilitate this process, suppose that technical people were
assigned employee numbers less than 5000 and nontechnical people were
assigned employee numbers greater than 5000. We might also wish to
have the technical people file in alphabetical order by employee name,
and the nontechnical people file in order by department, and within

each department in order by name.

To perform this task we could enter the following command into
the system:
WRITE SUBSET PEOPLE (TECH.PEOPLE) IF EMPLOYEE NUMBER < 5000

(NAME, EMPLOYEE.NUMBER, ORGANIZATION.UNIT, SEX, BIRTHDATE,
NUMBER.OF . SKILLS, SKILL(NAME,CODE));

WRITE SUBSET PEOPLE (NONTECH.PEOPLE) IF EMPLOYEE.NUMBER > 5000
(NAME, EMPLOYEE.NUMBER, ORGANIZATION.UNIT, SEX, BIRTHDATE,
NUMBER.OF.SKILLS, SKILL(NAME,CODE));

SORT TECH.PEOPLE ON NAME;
SORT NONTECH.PEOPLE ON ORGANIZATION.UNIT, NAMEA
If this task were to be performed frequently, the need for typing
the long command above could be obviated by defining it as a 'procedure."

A command which would create such a procedure looks like this:

PROCEDURE SPLIT.PEOPLE ();

BEGIN;
WRITE SUBSET PEOPLE (TECH.PEOPLE) IF EMPLOYEE.NUMBER < 5000
(NAME, EMPLOYEE.NUMBER, ORGANIZATION.UNIT, SEX, BIRTHDATE,
NUMBER.OF .SKILLS, SKILL(NAME,CODE));
WRITE SUBSET PEOPLE (NONTECH.PEOPLE) IF EMPLOYEE.NUMBER > 5000
(NAME, EMPLOYEE.NUMBER, ORGANIZATION.UNIT, SEX, BIRTHDATE,
NUMBER.OF.SKILLS, SKILL(NAME,CODE));
SORT TECH.PEOPLE ON NAME;
SORT NONTECH.PEOPLE ON ORGANIZATION.UNIT, NAME;

END A

After entering this procedure into the system, the PEOPLE file

can be split into the two smaller files by entering the simple command
DO SPLIT.PEOPLE () A

However, the main advantage of defining procedures is not that
they may be used to abbreviate commands, but that procedures may be

used by any procedure to perform subtasks. In this way it is possible

to build up a library of procedures which becomes more useful with the

addition of each new procedure.

To illustrate how tasks may be simplified by segmenting them
into procedures, suppose that, in the example above, employee numbers
had not been assigned in such a convenient way. Instead, what has to
be done to determine if an employee is a technical employee is to
examine his skills to see if any of them is a technical skill. This
is easily done assuming a small file exists containing the codes of
all the technical skills. The command below defines a procedure which
accepts as input the code for a particular skill and looks to see if
this skill is entered in the TECH.SKILLS file. The procedure returns
a '"value" of 0 if the code does not represent a technical skill and 1

if it does.

PROCEDURE CHECK.SKILL (INPUT);
BEGIN:
CHECK SKILL = @;
COMMENCE ;
PROCESS TECH.SKILLS;
IF INPUT = CODE;
BEGIN;
CHECK.SKILL = 1;
RETURN;
END;
TERMINATE;
RETURN;
END &

The CHECK.SKILL procedure may now be used by any C-10 procedure
which needs to find out if a skill code is entered in the TECH.SKILLS
file. 1In particular, it may be used by the SPLIT.PEOPLE procedure,
which now looks like this:

PROCEDURE SPLIT.PEOPLE ();
BEGIN;
WRITE SUBSET PEOPLE (TECH.PEOPLE) IF
ANY CHECK.SKILL(CODE) = 1;
(NAME, EMPLOYEE.NUMBER, ORGANIZATION.UNIT,SEX,BIRTHDATE,
NUMBER.OF .SKILLS, SKILL(NAME,CODE));
WRITE SUBSET PEOPLE (NONTECH.PEOPLE) IF
NOT ANY CHECK.SKILL (CODE) = 1;
(NAME, EMPLOYEE.NUMBER, ORGANIZATION.UNIT, SEX, BIRTHDATE,
NUMBER.OF.SKILLS, SKILL(NAME,CODE));
SORT TECH.PEOPLE ON NAME;
SORT NONTECH.PEOPLE ON ORGANIZATION.UNIT, NAME;
ENDA

In a manner similar to the one in which the SPLIT.PEOPLE pro-
cedure has been defined, procedures may be defined which generate files,

update files, format reports, or perform combinations of these operations.

The Large Program Problem and Functional Modularity

Many programmers have had the experience of working on a small
project with one or two other people, meeting the specifications for
the product and the deadline for its delivery, and being reasonably
satisfied with the integrity of the design and its realization in code;
and then subsequently working on a large project involving many people,
failing to meet either the specifications or the deadline, and being
disappointed with a fragmented design and replications in the resulting

code. This phenomenon has been called the ''large program problem."

The large program problem is, perhaps, something for managers
and group psychologists to worry about; but there does seem to be a
technical aspect of the problem which requires the attention of

programmers themselves.

The technical aspect of the large program problem seems to
have something to do with the interfaces between routines; and with the
lack of communication about the basic tools that are required and the
resulting duplication of these tools in various forms throughout the
system. The designers of C-10 believe that a partial solution to the
large program problem rests with a piece of software that provides a
framework for fitting the pieces together, verifying their correctness,

and determining their efficiency.

To say this another way, we believe that in order to piece to-
gether a large program efficiently something else is needed in addition
to an assembler, a compiler, and a monitor. It is our belief that the
assembler, the compiler, the monitor and all other system and user
programs should be based on a '"'system framework' comprised of a set

of rules and programs which include:

(1)

(2)

(3)

4)

(5)

(6)
(7)

C-10 was

system possesses

(1)

(2)

A set of explicit rules by which one procedure
can call upon another to perform a sub-processing
task.

Specification of a set of data structures in
terms of which the entire system operates.

A mechanism for the automatic allocation of
storage space to procedures (core and secondary
storage) .

A mechanism for the automatic allocation of
storage space to data (core and secondary storage).

The centralized allocation of other computer
resources.

A comprehensive debugging framework.

A mechanism for building "experimental' systems.

constructed on such a framework, and as a result the

these characteristics:

The functional units of the system may be combined
together to form new units in any meaningful way,

and new parts may be added which will work harmo-

niously with the old parts, provided that they

fit within the framework rules.

All programs within the system carry out well-
defined functions. This means that the functional
boundaries of programs are clearly specified, so
that the functions which they are intended to
perform can be called upon without consideration
of a proliferating maze of details and qualifi-
cations.

In other words, a certain kind of functional modularity has

been achieved, and it is in the application of such functional modu-

larity that some hope exists for the economical construction of large,

flexible programs.

INTERNAL VIEWS OF C-10

Equipment

The C-10 system has been designed to operate on a '"minimum
configuration'" of a 40K core, disk unit, typewriter, card-reader and
printer. Additional optional equipment may also be added. Additional
core and disk units increase the efficiency of the system, but not its
inherent capabilities. Other optional devices which may be added to
the system include tapes, displays, a remote inquiry unit and a clock.

The exact configuration is stated at loading time.

Languages

C-10 procedures may be written in AUTOCODER, STEP, or PROFILE.
These three languages and a language defining facility that is provided

are discussed below:

C-10 procedures may be written in AUTOCODER (the assembly
language of the 1410), but must follow the conventions outlined above.
In AUTOCODER, nearly all the flexibility and speed of the 1410 machine
language instructions are available. A set of macros is provided for
integrating AUTOCODER procedures within the C-10 framework. AUTOCODER
procedures are assembled individually off-line; they are stored and

executed as machine language procedures.

C-10 procedures may be written in STEP language (a language
formally very similar to LISP). STEP is a very simple language
syntactically. A STEP program consists of a sequence of calls to
procedures in a prefix functional notation. STEP procedures may be
stored and executed as STEP procedures (using the '"STEP interpreter'),

or translated into AUTOCODER procedures (using the "STEP compiler').

10

C-10 procedures may be written in PROFILE language. PROFILE has
a syntax somewhat like ALGOL. It is the only C-10 language built around
files per se, and around the basic operations that are performed on
files. Statements in STEP language may be mixed with statements in
PROFILE language within a PROFILE procedure. PROFILE procedures may
not be stored and executed directly. They must be translated first

into STEP procedures (using the "PROFILE processor').

The sample procedures in this Section are written in PROFILE,
the file manipulation language of C-10. In PROFILE it is possible to
express the processing of arbitrarily formatted "raw' data from cards
or tape; the preparation of arbitrarily formatted data onto cards,
tapes, printer, or typewriter; and the generation, maintenance and
retrieval of file data. Because PROFILE integrates these functions,
the expression of complicated processes comes naturally. For example,
it is easy to generate a new file from data which comes from a combina-
tion of sources; a portion from cards, a portion from tape, and a
portion from files already part of the system. Summary reports, if

desired, could be generated simultaneously.

PROFILE was designed with the intent that it would be used
(typically) off-line to build procedures, and occasionally on-line to
perform very simple operations. PROFILE is not 'mear English." In
order to make use of PROFILE it is necessary to spend some time study-
ing the language, and it is necessary to understand the basic processes
involved in file generation, manipulation, and retrieval. It is not
necessary to be a 1410 programmer, to WOrry about the limitations of
memory size, the allocation of resources, or the location of data
files. It is hoped that anyone who understands the logical organiza-
tion of the data files and is able to express the processes which are
to be performed in terms of the basic file processes provided by C-10

will find the language natural and easy to use.

1L

C-10 procedures may be written in new languages which are defined
with the aid of TAP, the C-10 terse/actor processor. A terse is a
generalization of a macro which may be used anywhere in a message, not
just in the operation code of a line of code to be assembled. An actor

is a procedure whose execution is triggered by a keyword in a message.

Developing the algorithm for solving a problem and explaining it
to a computer, in the case of a complex problem, is a painstaking
process. It would be better if the problem could be stated to the
computer, which could in turn develop the algorithm. Unfortunately,
for systems that handle unrestricted data bases, there are no general
techniques available for doing this with a computer. This means that
statements in the query languages of general purpose data management
systems are, in effect, abbreviations for algorithms for solving

problems; in other words, they are procedures.

TAP is a facility which aids the construction of abbreviations
for C-10 procedures. These abbreviations may take the form of "English-
like'" statements, if that is desirable. TAP may be used to generate
statements in any language. Generating PROFILE statements, TAP can

emulate the query languages of the ADAM system.

12

Data Structures

From the point of view of data management, C-10 i8 a device for
organizing data into files and performing subsequent operations on them.
Files within C-10 may be organized in many different ways, but the word
"file" within the context of C-10 does not have the broad meaning of

the word "file'" in the general sense.

A file is an ordered collection of information about a set of
objects which have in common a set of properties. Thus the PEOPLE
file is a collection of information about a set of people which have
in common the set of properties: name, employee number, sex, etc. Put
another way, a file is a collection of sets of property values, linked

together in a chain.

A typical set of property values in the PEOPLE file of this
Section might be ADAMS HENRY, 3147, MALE, etc. Five kinds of property

values are distinguished in C-10:

(1) integer

(2) '"floating point"

(3) character string

(4) cursor

(5) group

Integer and ''floating point'' property values are numeric informa-

tion, character strings are alphabetic information, cursors are pointers
to objects in this or other files, and groups are files, that is, a
group is an ordered collection of information about a set of objects
which have in common a set of properties. In the PEOPLE file, SKILL

is a group.

For many users, the point of building a system like C-10 is that
it is easier to implement many data manipulation procedures in terms of
a data structure like C-10 files, than to implement the same procedures

in terms of computer words and disk and tape records. It is easier

13

because data fits more easily into the structure of C-10 files than
into the basic data structure of the computer; because data can be
referenced by name; and because data can be referenced without regard

for where it is and whether or not it will fit into core.

For many applications of C-10 it is not necessary to think in
terms of any data structure except files. But several other data
structures exist within C-10 which share some of the useful attributes
of files and are available for the implementation of applications.
These include '"streams," "lists," and "P-stacks.'" Like data within
files, data within any of these data structures may be referenced
without regard for where it is and whether or not it will fit into

core.

The several data structures that exist within the framework of

C-10 actually exist in a hierarchical order, as shown in Figure 2.

files

M st _ — — T T T T]
[streams SR :
[I
l I
| blocks |
: |
i l

|
L _ _structure of core and disk storage |

Figure 2. Hierarchical Order of C=10 Data Structures

As shown in Figure 2, blocks are modeled in terms of the
basic 1410 machine, streams and P-stacks (Private, or Push-down
stacks) are then modeled in terms of blocks, files in terms of

P-stacks, and lists in terms of streams.

14

The dotted portion of the figure contains what may be considered
the "internal" portion of C-10 and, in fact, a great many data manipu-
lation problems can be solved without any knowledge of what lies inside
the dotted lines. But the dotted lines exist only in the figure and in
the minds of most of those who use C-10. There are no restrictions what-
ever that prevent use of lists, streams and P-stacks, or the "internal"

procedures that manipulate them, from the 'outside.'

This is possible
because of the way procedures have been structured in C-10: a great
deal of care has been taken in the design to group together similar
functions into common units that can be used throughout the system,
and even ''outside" the system. Together with the fact that the number
of data types has been minimized, this means that there is a minimum
amount of duplication of effort inside C-10 and, with appropriate care

on the part of those who use C-10, on the outside.
Data Flow

In order to generate C-10 files, unstructured, unformatted data
is read by the system. In order to retrieve information from C-10
files for the preparation of reports, the information in the files is
converted once again into unstructured, unformatted data. The flow of

data to and from files within C-10 is shown in Figure 3.

15

FILES (DATA BASE)

VARIABLES (TEMPORARY

DATA INPUT DEVICES

____p»{ PROCEDURES COMPRISING C-10

/ PROCEDURES
(PROCEDURE BASE)

)
\
77
i

v/

DATA OUTPUT DEVICES
-

+

APPLICATIONS -ORIENTED

-
INPUT EDITOR !
+ EXECUTIVE :

COMMAND SOURCES

Figure 3. Data Flow

16

The directed arrows may be considered as possible data paths.
During a simple file generation task 'raw" data is read from an input
device, operated upon by the 'procedure base," and placed into a file.
During a simple retrieval task, data is read from the files, operated
upon by the procedure base, and directed to an output device. An
important aspect of the design of C-10 is that data may flow over any
combination of the paths, or all of the paths at once. Thus data may
flow directly from an input device to an output device, or from one
file into a second file, or from several input devices and one or
more files into several output devices and one or more files. 1In the
process of passing through the procedure base, data may be combined
and operated upon to an unlimited extent. This logical organization
makes possible the natural implementation of complex data management
procedures. A typical application of this type might read data for
updating a file from a card reader, perform a computation on it
involving a reference to a second file, update the file, and generate

a summary report at the same time.
Procedures

The C-10 system may be considered a tool for constructing a
library of procedures, that is, a ''procedure base." It is the
procedure base which actually directs the generation and maintenance

of the data base, and prepares and formats reports.

C-10 procedures may be written in any of three different
languages. The rules for constructing procedures apply to procedures
written in any of these languages. The procedure framework of C-10

consists of the following:

All appeals to procedures from within a procedure must be made
through an intermediate routine (this fact is masked from the procedure

writer in all three languages). The use of an intermediate ''linkage'

17

routine accomplishes the following:

(a) The allocation of core space to procedures
is easily automated. When an appeal is made
to a procedure through the intermediate
linkage routine, the linkage routine checks
to see if the procedure is in memory. If
the procedure is not in memory and the
appropriate space is available, the procedure
is read from disk. If the procedure is not
in memory and the appropriate space is not
available, procedures that have not been used
for a long time, beginning with the 'oldest,"
are discarded until enough space in memory
is available. The remaining procedures are
consolidated and the newly-appealed-to
procedure is read from disk.

(b) The logging, timing, and tracing of procedures
is easily automated; the appropriate instru-
mentation is centralized in the intermediate
linkage routine.

(c) Recursive procedures present no special
problem. In fact, for simplicity, all pro-
cedures in C-10 are assumed to be recursive.
All the necessary bookkeeping associated with
arguments, exits, and temporary storage loca-
tions is performed by the intermediate linkage
routine.

There is a rigid set of rules regarding the number and type of
arguments a procedure may expect, the values it may return, the
temporary storage it may use, and the ways in which it may modify
itself. 1In particular:

(a) The number of arguments a procedure may have
must be declared and is limited to 10. The
limitation to 10 arguments was reluctantly

imposed; it is a direct result of the high
penalty paid in the IBM 1410 for indexing.

18

(b) The values which are supplied as arguments to
a procedure, or returned from a procedure, must
be self-identifying as to type and conform to
system data formats.

(¢) The number of temporary storage locations a
procedure may use must be declared and is
limited to 30 minus the number of arguments.
Again, the restriction was imposed because
of hardware considerations. In addition to
its own (recursive) temporary storage, any
procedure may reference files, dictionaries,
lists, streams, P-stacks and other data
items which are pointed to from global
locations.

(d) A (machine language) procedure may not modify
itself, except between calls to other procedures.
This allows the procedure to be "evaporated' from
core without copying it onto disk, when in the
midst of its operation the space it occupies
is required for another purpose. Machine language
procedures must also follow a set of rules which
allow them to be dynamically relocated.

The C-10 procedure framework has an automatic mechanism for
adding, modifying, and deleting procedures from the system; and a
facility which allows ''experimental' systems to be constructed and
tested. In building an experimental system, some subset of the
existing procedure base is selected, combined with new procedures,
and tested. The "experimental' system may be dismantled as easily
as it is put together, leaving the machine with the original 'production"

system.

The process of building new procedures in C-10 is analogous to
the process a mathematician goes through when he constructs a proof

of a new theorem. In proving his theorem he is allowed to use any of

19

the axioms of that branch of mathematics , plus any other theorems that
have previously been proved; just as the C-10 programmer may use any
of the "primitives' of the system, plus any other procedures that have
been constructed. One important difference should be noted, however.
The mathematician is unconcerned with the number of logical steps

each theorem he uses represents, while the C-10 programmer must be
aware of the execution time involved in each appeal to another pro-
cedure. It is for this reason that timing instrumentation is a very
essential part of a modular system like C-10. With proper instrumen-
tation, the programmer may evaluate exactly where time is being spent

if it turns out that the program he has constructed is too slow.

20

SECTION II

FILES AND DICTIONARIES

C-10 is a generalized data management system intended to process
data stored in files. A "file" is an ordered collection of information
about a set of objects which have a set of properties in common, Files
may be organized in many ways, according to the rules and definitions of
the system, It is the purpose of this document to elucidate these rules
and definitions, to show some possible arrangements of data in C-10 files,
to describe briefly the kinds of data which files may contain, and to
prepare the reader to read the PROFILE manual in Section III of this Volume.

Associated with each file is a dictionary which tells how data
is organized in that file. A dictionary may be thought of as a table of
contents or an outline of the file., It indicates the kinds of data in

the file and how this data is to be placed within the file.

TREE DIAGRAMS

A "tree diagram' is sometimes used to visualize the structure
of a file. A tree diagram for the file AIRFIELD might look like Figure 4.

/

AIRFIELD
NAME (A) UNWAY LANE ,CLASS

LENGTH (I) WIDTH (I) TYPE (A) RANGE (I) CAPACITY (I) NWUMBER (I)

Figure 4. Typical Tree Diagram

Tree diagrams are composed of nodes and lines. Nodes are points

at which lines intersect or are the points connected to higher level nodes.

21

The topmost node is labeled with the name of the file and lower nodes

are labeled with names of properties within the file. A property connected
by a line to a higher level property belongs to the higher level property.
In the AIRFIELD file, for example, LENGTH and WIDTH belong to, or are
properties of , RUNWAY. NAME, RUNWAY, and PLANE,CLASS belong to AIRFIELD,
Of course, the lower level properties LENGTH and WIDTH (of RUNWAY) and
TYPE, RANGE, CAPACITY,and NUMBER (of PLANE,CLASS) also belong indirectly

to AIRFIELD.

GROUP AND TERMINAL PROPERTIES

A "group" is a property to which other properties belong and a
"terminal property'" is a property to which no other properties belong.
The AIRFIELD file is itself a group, and within it RUNWAY and PLANE,CLASS
are group names, NAME (of airfield), LENGTH and WIDTH (of runway) and
TYPE, RANGE, CAPACITY, and NUMBER (of PLANE,CLASS) are all terminal
properties. Tree diagrams are useful because they enable us to see at
a glance which properties are groups and which are terminal, and what
properties belong to what groups.

It is important to note that one property, RUNWAY, is a lower
level property with respect to one property (AIRFIELD) and a higher level
property with respect to another (LENGTH and WIDTH). A group is a
single property of a higher level property to which it belongs.

The information stored in a file comprises sets of values for
the terminal properties of the file. The data associated with a terminal
property is its "property value." The property value of a group is a
collection of sets of property values, each element of which is a set of

values for the terminal properties which belong to the group. Only

22

terminal properties have actual pieces of data directly associated with
them, No data is directly associated with groups, A terminal property

can have only one value for each occurrence of a group, as a runway can
have only one value for its length. A group, however, may repeat any
number of times, as an airfield may have many runways. For each occurrence
of a group, its terminal properties may have only one value, but when a
group repeats, each terminal property of that group may have a property

value for each repetition of the group.

DICTIONARIES (DETAIL)

Tree diagrams are merely visual guides for people who use files.
Dictionaries provide C-10 with the structure of files. There is an
obvious correspondence between the two, however. The dictionary for the

AIRFIELD file might look like this:

AIRFIELD
(NAME,
RUNWAY
(LENGTH,
WIDTH) ,
PLANE ,CLASS
(TYPE,
RANGE,
CAPACITY,
NUMBER))

Although it is not required that dictionaries be written in any
particular format, writing the dictionary this way makes it easy to see
the structure of the file. Properties are indented under the heading
(group) to which they belong. As in tree diagrams, properties are

suspended from properties to which they belong.

23

The creation of a dictionary is more complex than this example
indicates, however, The properties in the file may have different
characteristics., For example, the name of an airfield will be a string
of alphabetic characters, and the length of a runway will be specified
by a number. The characteristics of the properties in the file must be
specified in the dictionary., These characteristics remain constant
throughout the file. Three characteristics that must be specified are

type, length and whether or not the property is padded with special

characters if it is fixed length,

Five types of property values are distinguished in C-10:

(1) integer (I)

(2) floating point (H)

(3) character string (A)

(4) cursor (C)

(5) group
The first three are quite clear., Cursors are special and are discussed
elsewhere. A group is a collection of sets of property values. What
may, in another context operate as a complete file, e.g. RUNWAY, can also
operate as a single property value in a larger file.

In addition to the type of property values, we may also specify
the length of property values and whether or not they are padded with
blanks or other characters. It is possible to specify that property values
for a property be

(1) wvariable length (W)
(2) variable length with trailing blanks truncated (V)
(3) fixed length (i)

(4) padded with a specified character (PAD WITH 'x'),
if fixed length,

24

String properties may have different lengths in different objects
or repetitions or they may have fixed length throughout the file. Floating
point and integer property values are always ten characters long.

These "attributes" are specified in the dictionary as follows:

The property name is followed by a dollar sign, then within parentheses

the list of attributes separated by commas,

A SAMPLE DICTIONARY AND FILE

The AIRFIELD file dictionary might be written like this:
AIRFIELD(NAME $(A,V,20) , RUNWAY(LENGTHS$(I,6) , WIDTHS$(I,3)),

PLANE,CLASS (TYPES$(A,8) , RANGES$(I,6) , CAPACITYS(I,9), NUMBERS(I,4)))
The file itself, might be like this:

AIRFIELD
NAME = 'HANSCOM'
RUNWAY
LENGTH = 10¢¢
WIDTH = 50
RUNWAY
LENGTH = 150¢
WIDTH = 7¢
PLANE,CLASS
TYPE = 'F1¢5'
RANGE = 540
CAPACITY = 4@
NUMBER = 20
PLANE,CLASS
TYPE = 'B52'
RANGE = 660¢
CAPACITY = 550
NUMBER = 6
PLANE,CLASS
TYPE = 'T33'
RANGE = 2¢¢
CAPACITY = 15
NUMBER = 10

25

AIRFIELD

NAME = '0OTIS'
RUNWAY
LENGTH = 10¢¢
WIDTH = 60
RUNWAY
LENGTH = 1¢0¢
WIDTH = 60
PLANE,CLASS
TYPE = 'F1¢5
RANGE = 540
CAPACITY = 4@
NUMBER = 13
PLANE,CLASS
TYPE = 'B52'
RANGE = 660¢
CAPACITY = 550
NUMBER = 6

In this file there is information (data) about two objects, the
airfields whose names are Hanscom and Otis. According to this information,
at Hanscom there are two runways, one 1000 units long and 50 units wide, the
other 1500 units long and 70 units wide, There are three classes of planes
at this field, and information as to type, range, capacity and number is
given about each class. There is similar information about Otis, where

there are two runways, but only two classes of planes.
FILE PROCESSING

The PROFILE language of C-10 is built around the idea of processing
files sequentially, one object at a time, and within each object one repetition
of a group at a time. The collection of sets of property values which

comprise a file is linked together like this:

Object 1 Object 2 Object 3 Object 4 soe

7

Figure 5. Linkage of Objects in a File

26

Within a set of property values, a group is linked together in a similar
manner. The objects which comprise a group are called repetitions of the

group.

Object 1

Rep 1 Rep 2 Rep 3 coe

sl A

Figure 6. Group Repetitions Within an Object

Upon the excecution of an appropriate statement, the first object
of a file is accessed; all the terminal property values in the first
object may be referenced, and all the group property values may be
processed sequentially exactly as a file is processed, While the first
object of a file is being accessed, the remaining objects may not be
accessed, Upon the execution of another appropriate statement, the second
object of the file is accessed; all the terminal properties in the second
object may be referenced, and all the group property values may be
processed sequentially as a file is processed. When the second object is
accessed, property values in the first object may not be referenced.

This process continues until the end of the file is reached, or until a

statement is executed which terminates the processing of the file.

There is an exception to the sequential processing of files.
Files may be processed in random fashion by making use of '"cursors,"
During the sequential processing of a file it 4{s possible to remember the
points at which particular objects began and to return to these points
later, Cursors are pointers to specific objects within a file. They

may be stored in files, or in any other C-10 data structure, A file which

27

contains property values which are cursor type is sometimes called a

directory, because it provides a means of accessing

another file without searching sequentially through

ALTERNATE STRUCTURING OF DATA

File structures in C-10 are very flexible.
with many vastly different structures, and the same
in many ways. For example, the set of data used in
be organized differently. A file PLANE.CLASS could

with this structure:

PLANE,CLASS

specific objects in

the file.

Files may be created
data may be organized
the AIRFIELD file may

be constructed from it

RFIELD ,WHERE, STATIONED RANGE (I)
NAME " (A)
NUMBER OF PLANES (I) UNWAY
LENGTH (I) DTH (I)

CAPACITY (I)

Figure 7. PLANE . CLASS File Tree Structure

The dictionary of this file might be like this:

PLANE, CLASS (
TYPES (A,8) ,
AIRFIELD,WHERE, STATIONED)
NAMES (A,V,20) ,
NUMBER ,OF , PLANES$ (I ,4) ,
RUNWAY (
LENGTHS (I,6) ,
WIDTH$(I,3)))
RANGES (I ,6) ,
CAPACITYS$(I,9)) ;

28

The file itself would be as follows:

PLANE,CLASS
TYPE = 'F1¢5'
AIRFIELD,WHERE , STATIONED
NAME = 'HANSCOM'
NUMBER,OF ,PLANES = 2¢

RUNWAY
LENGTH = 1¢0¢
WIDTH = 50
RUNWAY
LENGTH = 150¢
WIDTH = 7¢
AIRFIELD,WHERE, STATIONED
NAME = 'OTIS'
NUMBER .OF ,PLANES = 13
RUNWAY
LENGTH = 10¢d
WIDTH = 60
RANGE
CAPACITY
PLANE ,CLASS
TYPE = 'T33'
AIRFIELD,WHERE, STAT IONED

NAME = 'HANSCOM'
NUMBER,OF ,PLANES = 10

RUNWAY
LENGTH = 10¢d¢
WIDTH = 5¢
RUNWAY
LENGTH = 15¢¢
WIDTH = 7¢
RANGE = 20¢
CAPACITY = 15
PLANE,CLASS
TYPE = 'B52'
AIRFIELD,WHERE , STATIONED

NAME = 'HANSCOM'
NUMBER,.OF ,PLANES = 6

RUNWAY
LENGTH = 1¢¢¢
WIDTH = 5¢

RUNWAY
LENGTH = 15@¢
WIDTH = 79

29

AIRFIELD,WHERE, STATIONED

NAME = 'OTIS'
NUMBER,OF , PLANES = 6
RUNWAY
LENGTH = 1¢¢¢
WIDTH = 6¢
RUNWAY
LENGTH = 10¢¢
WIDTH = 6¢
RANGE = 66¢¢

CAPACITY = 550

FILE PROCESSING EXAMPLE

C-10 files may be manipulated in many ways. Details of statements
used to process files are given in the PROFILE Section, next. For
purposes of general illustration, however, we will examine a hypothetical
problem and propose two possible solutions.

Suppose the AIRFIELD file is far larger than the example shows,
and we wish to get a list of all airfields represented in the AIRFIELD
file which have at least one runway longer than 1000 feet and at least
30 T33 planes stationed there. For each airfield which satisfies these
criteria, we wish to list the name of the airfield, the length and width
of all runways with a length greater than 500 units and we want the name
and quantity of each type of aircraft stationed there.

A flow chart for solving this problem with the file processing

framework of C-10 is shown in Figure 8.

30

Access next object of
AIRFIELD file

end of file

access next repetition of
RUNWAY group

O

close PLANE,CLASS

group

int NAME

LENGTH: 10¢¢

close RUNWAY
group

‘.—

access next repetition of
PLANE,CLASS group

Access next repetition
of RUNWAY group

Print LENGTH,
WIDTH

| .

{

Access next repetiti on
of PLANE,CLASS group

end of group

Figure 8. Flow Chart of Solution of File Processing Problem

31

Two PROFILE solutions to this problem are shown here.

One PROFILE solution makes use of the PRINT SUBSET statement:

PRINT SUBSET AIRFIELD IF ANY [RUNWAY(LENGTH) > 1000¢]
AND ANY [PLANE,CLASS(TYPE) = 'T33' AND NUMBER > 29]
(NAME, RUNWAY IF LENGTH > 5@¢ (LENGTH, WIDTH) ,
PLANE,CLASS (TYPE, NUMBER))

Another PROFILE solution makes use of explicit file manipulation

statements and resembles the flow chart more closely.

Ll

1.2;

L3¢

L4:

L5¢

DO SPRINT1 (1,'NAME',2():;
DO SPRINT1 (2,'LENGTH',10);
DO SPRINT1 (3,'WIDTH',10) ;
DO SPRINT1 (4,'TYPE',3);

DO SPRINTL (5,'NUMBER',5);

READ AIRFIELD; ELSE RETURN;

READ RUNWAY; ELSE GO T6 L1;
IF LENGTH < 1¢¢1; GO TO L2;
CLOSE RUNWAY;

READ PLANE,CLASS; ELSE GO TO L1;
IF NOT TYPE = 'T33'; GO TO L3;
IF NUMBER < 3@; GO TO L1;

CLOSE PLANE,CLASS;

DO SPRINT (1,NAME) ;

DO SPRINT (,0);

READ RUNWAY; ELSE GO TO L5;
IF LENGTH > 50¢;
BEGIN;
DO SPRINT (2,LENGTH) ;
DO SPRINT (3,WIDTH) ;
DO SPRINT (¢,9);
END;
GO TO L4;

READ PLANE,CLASS; ELSE GO TO L1;
DO SPRINT (4,TYPE);
DO SPRINT (5,NUMBER) ;

DO SPRINT (9,0);
GO TO L5 A

32

SUMMARY

A C-10 file is a collection of information abait a set of objects
which have in common a set of properties; a C-10 file is a collection of
sets of property values.

Each property value may be:

(1) an integer

(2) a floating point number
(3) a string of characters
(4) a group
(5) a cursor

A property has the same type of values throughout the file.
Integer and string properties may have different lengths in different
objects or repetitions, or they may have a fixed length throughout the
file. Fixed length properties may be padded with a special character.
Floating point property values are always ten characters long.

Associated with each file is a dictionary which lists the
names, types, and lengths of all the properties in the file, and their
relationships to each other.

C-10 files are linked sequentially and are normally processed
sequentially, beginning with the first object and proceeding to the last.
However, it is possible to process files non-sequentially thmw ugh the
use of directories. Groups are processed in a similar manner,

There is no restriction on the number of files which may be

processed at once.

38

SECTION IIT
PROFILE

INTRODUCTION

This is a reference manual in the use of the PROFILE file-

manipulation language and the PROFILE processor.
The design of the PROFILE language is based on these two ideas:

(a) To provide in a single integrated language all the
features of the multiplicity of languages usually
found in a data management system. PROFILE is used
to generate files, query files, update files, re-
structure files, and generate reports.

(b) To provide a set of elementary file manipulation
functions, from which more complicated languages
may be built using terses and actors.

The basic unit of the PROFILE language is the statement.

Statements fall into two categories: (a) statements which instruct

the PROFILE processor to perform some action directly (such as crea-
ting a dictionary or deleting a file from the system); and (b) state-
ments which are translated by PROFILE into procedures to be executed
at some time subsequent to their translation (such as subsetting a
file). Following is a description of the use of all statements

which fall into the first category; the remainder of this Section

is concerned with statements that are translated. A concise syntactic

description of the language is given in the Appendixes.

34

STATEMENTS EXECUTED DIRECTLY BY THE PROFILE PROCESSOR

Names

Names are a fundamental unit out of which PROFILE statements
are constructed. Names are used to name files, properties of files,
variables, procedures, input and output dgvices, and anything else
which requires identification.

A name is any sequence of characters which is recognized by the

C-10 input editor as an "identifier." (This is described in Section V).
For practical purposes this means that a name is a string of letters and
digits not exceeding 27 characters in length. A name may contain em-
bedded periods if at least one letter precedes the first period. A name
may contain spaces and other punctuation only if it is surrounded with

backslashes.

Examples

LENGTH
NEWYORK
NEW . YORK
\NEW YORK\
231748K
64X3.2

File Names, Group Names, Property Names

A file name names a file; a group name a group; a property name
a property.
Consider the file that has a structure represented by this out-

line and this tree diagram (Figure 9):

COUNTRY
NAME
STATE
NAME
CITY
NAME
STREET
NAME
LENGTH

35

STREET

NAME LENGTH

Figure 9. COUNTRY File Tree Structure

In this file, COUNTRY is a file name; STATE, CITY, and STREET are group
names; and NAME, STATE, NAME, CITY, NAME, STREET, NAME and LENGTH are
property names.

Note, with respect to the COUNTRY file, that a single occurrence
of the name NAME is ambiguous: it could refer to the country name, the
state name, the city name or the street name. To resolve ambiguities
of this type in PROFILE, the folleowing convention has been adopted;

An ambiguous name is made unambiguous by repeatedly surrounding
the name with parentheses and prefixing the name of the group of which
it is a property. Thus NAME becomes either COUNTRY(NAME), STATE(NAME),
CITY(NAME) or STREET(NAME). Although they are not any less unambiguous,

these names may be used also:

COUNTRY (STATE (NAME)) , STATE (CITY(NAME)),

COUNTRY (STATE (CITY(NAME))), CITY(STREET(NAME)),
STATE(CITY(STREET(NAME))),COUNTRY(STATE(CITY(STREET(NAME)))).
In this description of PROFILE. whenever a ert

name is specified, an unambiguous property or group name is implied.

36

The following file illustrates further the construction of un-
ambiguous property names:

COUNTRY .A
NAME
STATE

CITY
NAME
TERRITORY
CITY
NAME

OUNTRY .A

NA STATE

—

ERRITORY

CITY

NAME

Figure 10. COUNTRY.A File Tree

With respect to the COUNTRY.A file, the name NAME is ambiguous. CITY(NAME)
is also ambiguous.

STATE (CITY(NAME)), TERRITORY(CITY(NAME)) and COUNTRY.A
(NAME) are unambiguous.

CITY is ambiguous; STATE(CITY) and TERRITORY(CITY)
are not.

37

The CREATE DICTIONARY Statement

Associated with each file in the C-10 system is a dictionary.
A dictionary is a list of the properties of a file, and where a prop-

erty is a group, a list of its properties also.

Each property that is not a group is accompanied in the dictionary
by a list of its "attributes." As the C-10 system grows, additional attri-
butes which a property may have can be defined. The attributes currently
defined for properties are listed below; the designations in the left
hand columms are the notations used to communicate to the system that a
property has the attribute, and any additional information that may be
necessary.

A Values for this property are strings of
characters.
Values for this property are integers.

F Values for this property are floating
point numbers.

C Values for this property are cursors.

Values for this property vary in length,
and trailing blanks should be truncated
from the property values when stored into
the file.

W Values for this property vary in length,
and trailing blanks should not be truncated
from the property values when stored into
the file.

i i denotes an integer. If the values for this
property do not vary in length, i is the
(fixed) length of the property values; if the
values for this property do vary in length,
i is the maximum length of the property values.

38

PAD WITH 'c' This attribute only applies to properties

whose values are fixed length, that is, the
same size in each object. When an object
is created containing a value for a fixed
length property, and the value supplied is
shorter than the length specified by the
dictionary; the short value is 'padded" on
the right until it conforms in length.
Normally the padding character is blank.
This attribute allows a non-blank padding
character to be specified (c denotes the
character).

Although the general mechanism of the C-10 dictionary allows

any (non-group) property to have any combination of attributes, in

many cases this does not make sense and some rules-of-thumb are in

order:

(a)

(b)

(e)

(d)

Each property should be either A,I,F or C; but not
more than one of these.

Each variable length property which is to be used in
a SORT statement or a SUBSET statement should have a
maximum length specified.

It is not meaningful to specify that a variable length
property be padded.

Confusion may result if it is specified that a variable
length property is to have trailing blanks truncated and
also that the same property is not to have trailing
blanks truncated. Common sense should prevail.

A dictionary for a file is created when a CREATE DICTIONARY is

processed by the PROFILE processor.

Generic Form:

CREATE DICTIONARY fn (pd,...,pd);
or
CREATE fn (pd,...,pd);

where fn is a file name which names the file that will be associated

with the dictionary being created, and pd,...,pd is a list of "property

descriptions."

39

A property description is one of two things:

(1) 1If the property is a group, the property description
consists of the name of the group followed by a left
parenthesis, followed by a list of property descrip-
tions for the properties that belong to the group,
followed by a right parenthesis.

(2) 1I1f the property is not a group, the property descrip-
tion consists of the name of the property, followed by
a dollar sign, followed by a left parenthesis, followed
by a list of attributes for the property, followed by
a right parenthesis.

Examples:

CREATE DICTIONARY PROGRAMMER (NAME $(A,W,58),
TELEPHONE . EXTENSION $(I,4));
The PROGRAMMER file defined by this statement has two properties:
NAME , which has values that are variable-length strings of characters
not longer than 5@, and TELEPHONE.EXTENSION, which has integer values
that are four characters long.
CREATE COUNTRY (NAME $(A,2¢), STATE (NAME $(A,20),

CITY (NAME $(A,20), STREET (NAME $(V,35,A),
LENGTH $(F)))));

CREATE DICTIONARY COUNTRY.A (NAME $(A,20),
STATE (CITY (NAME $(A,2@))), TERRITORY(CITY(NAME $(A.
28))));

The COUNTRY and COUNTRY.A files are the files used as examples
in the previous section.

The dictionaries for all the example files to be used in this
document are grouped below. The reader will probably find them repe-
titious now, but may wish to refer to them later.

Note that the '"free format' of PROFILE statements makes it
possible to write CREATE DICTIONARY statements in such a way as to

40

relate the indentation to the structure of the associated file.

Examples:

CREATE DESTINATION (
CITY.NAME $(A,V,50),
ORIGIN (
CITY.NAME $(A,V,50),
FLIGHT (
DEPARTURE.TIME $(I,4),
ARRIVAL.TIME $(I,4),
AIRLINE $(A,V,20),
FLIGHT .NUMBER $(A,V,2¢),
CLASS.OF .SERVICE $(A,V,10),
MEAL.SERVICE $(A,V,10),
MOVIE (
TITLE $(A,V,3¢00),
STARS $(A,V,300),
COLOR $(I,1)
)s
OW.PRICE $(F)
)

)

CREATE DICTIONARY MONTH (

NAME $(A,V,9),

NUMBER .OF .DAYS $(I,2),

DATE (
NUMBER $(I,2),
EVENT $(A,W,1000)
)

);

41

CREATE DICTIONARY PERS (
P.ORGNO $(I,4),
PRIME.JOB (
ADD.PEO $(A,Ll),
JOB.CODE $(I.4),
PEOPLE (
DELETE $(A,1),
NAME $(A,V),
NUM $(I,5),
LEVEL $ (A,4),
POS.TIT $(A,32),
SEX $(A,1),
BIRTH $(I,6),
SALARY $(I,5),
OTHER.SKILLS (
CODE $(1,4)
)
)i
QUAN $(I,6)
TOT.JOB.SAL $(I,6)
)
TOT.SAL $(I,6),
TOT.PEO $(I,6)
) H

b

CREATE DICTIONARY ORDER (
\ORDER NUMBER\ $(I,10),
CUSTOMER § (A, 20),
\TOTAL LIST PRICE\ $(I,14),
ITEM (
\ITEM NAME\ $(A,10),
\ INCREMENTAL COST\ $(I,10)
)
'

CREATE DICTIONARY OPTION (
OPTION.NAME $(A,14),
OPTION.ID $(I,1¢),

DELTA $(I,10)

);

42

CREATE DICTIONARY PERSON (
NAME $(A,V,12),

SEX $(A,1),
YOB $(1,5),
PARENT (
NAME $(A,V,12),
SEX $(A,1),
YOB $(I1,5)
)
SIBLING (
NAME $(A,V,12),
SEX $(A,1),
YOB $(I,5)
)s
CHILD (
NAME $(A,V,12),
SEX $(A,1),
YOB $(I1,5)
)
) H

CREATE DICTIONARY SUMMARY (
TOTAL.OPTIONS $(I,10),
TOTAL.ORDERS $(I,10),
TOTAL.SALES $(I,1¢)

)

CREATE AIRFIELD (
NAME $(A,30),
RUNWAY (
LENGTH $(I1,19),
WIDTH $(I,10)
)s
PLANE.CLASS (
TYPE $(A,10),
RANGE $(I,10),
CAPACITY $(I,10),
NUMBER $(I,5)
)
)H

43

CREATE PLANE.CLASS (
TYPE $(A,10),
AIRFIELD .WHERE .STATIONED (
NAME $(A,30),
NUMBER .OF .PLANES $(I1,5),
RUNWAY (
LENGTH $(I,1¢),
WIDTH $(I,10)
)
: B
RANGE $(I,10),
CAPACITY $(I,10)
)

The RENAME Statement

The RENAME statement is used to rename a file, and its associa-

ted dictionary.

Generic Form:

RENAME fnl AS fn2;

where fn. is the name of the file to be renamed and fn2 is the new

1
name to be used.

The file is renamed when the PROFILE processor processes the
RENAME statement.

No two files in the C-10 system may have the same name. The
RENAME statement is handy when an existing file is copied with correc-
tions. The new version of the file is given a different name; when thc
old version is no longer needed, it is deleted from the system, and the

new version is renamed with the name of the original file.

44

Examples:

RENAME DESTINATION AS \AIRLINE GUIDE\ ;
RENAME PERS AS PERSONNEL;

WRITE SUBSET MONTH (TEMP.MONTH)(NAME, NUMBER.OF .DAYS,
DATE (NUMBER = NUMBER +1, EVENT));A

DELETE FILE MONTH; RENAME TEMP.MONTH AS MONTH;A

The last example writes a copy of the MONTH file named TEMP.MONTH,
which has all the values of the property NUMBER increased by one. The
MONTH file is then deleted and the TEMP.MONTH file renamed as MONTH.

(The WRITE SUBSET and DELETE FILE statements are explained in subsequent
sections,) Note that the DELETE FILE and RENAME statements are executed
directly by the PROFILE processor whereas the WRITE SUBSET statement is
not. It is for this reason that an end-of-message character (A) has
been placed after the WRITE SUBSET statement. The WRITE SUBSET state-
ment is translated by the PROFILE processor and, because the end-of-
message symbol is reached, executed. Then processing of the two
remaining statements by the PROFILE processor takes place, which deletes
the old file and then renames the new one. If the three statements were
processed as a single message, the MONTH file would be deleted before
the WRITE SUBSET statement would be executed. The WRITE SUBSET state-
ment would then find no file to work with! It is necessary to distinguish

between statements which are executed directly by the PROFILE processor

and those which are translated and executed subsequent to this handling

by PROFILE.

45

The INSERT STRUCTURE Statement

The INSERT STRUCTURE statement is used to expand a dictionary.

Generic Form:

INSERT fn : (pd,...,pd);
or

INSERT fn gn : (pd,...,pd);

where fn is a file name which names the file associated with the

dictionary to be expanded, and (pd,...,pd) is a list of property

descriptions. If the second option is chosen, gn specifies a group in

the file which will subtend the properties to be added. The dictionary

is changed when the statement is processed by PROFILE. Two periods may

be used in place of the colon.

Examples:

1t INSERT PROGRAMMER : (OFFICE.NUMBER $(A,10));

This statement expands the PROGRAMMER file dictionary. The resulting

dictionary is identical to the one which would be created by this

statement:

CREATE DICTIONARY PROGRAMMER (NAME $(A,W,5@),
TELEPHONE .EXTENSION $(I,4), OFFICE.NUMBER $(A,1¥) .

23 INSERT DESTINATION FLIGHT..(STOP (CITY.NAME $(A,V,5¢:,
STOP .NUMBER $(I,2),GROUND.TIME $(I,3)));

This statement expands the DESTINATION file dictionary. The resulting

dictionary is identical to the one which would be created by this

statement:

46

CREATE DESTINATION (

CITY.NAME $(A,V,50),

ORIGIN (
CITY.NAME $(A,V,50),
FLIGHT (

X3

47

DEPARTURE.TIME $(I,4),
ARRIVAL.TIME $(I,4),
AIRLINE $(A,V,20),
FLIGHT .NUMBER $(A,V,20),
CLASS .OF .SERVICE $(A,V,10),
MEAL.SERVICE $(A,V,10),
MOVIE (
TITLE $(A,V,300),
STARS $(A,V,300),
COLOR $(I,1)

!
OW.PRICE $(F),
STOP (
CITY.NAME $(A,V,50),
STOP .NUMBER $ (I,2),
GROUND.TIME $(I,3)
)

The REPLACE STRUCTURE Statement

The REPLACE STRUCTURE statement is used to replace an existing

property in a dictionary with a new property, which may (of course) be

a group.

Generic Form:

REPLACE fn pn : (pd,...,pd);

where fn is a file name which names the file associated with the
dictionary to be changed, pn is the name of the property to be re-
placed, and (pd, ...,pd) is a list of property descriptions. The
dictionary is changed when the statement is processed by PROFILE. Two

periods may be used in place of the colon.
Examples:
1: REPLACE PROGRAMMER TELEPHONE.EXTENSION.. (EXT $(I1,7));

This statement changes the name and attributes of the TELEPHONE.EXTENSION
property of the PROGRAMMER file dictionary in this Section. The changed

dictionary is as though it were created by this statement:
CREATE PROGRAMMER (NAME $(A,W,5@), EXT $(I,7));
2: REPLACE PERS PEOPLE (POS.TIT) : (POSITION (
DATE.STARTED $(I),DATE.TERMINATED $(I),POS.TIT $(A,32)));

This statement changes the PERS file dictionary of this Section so that

it looks as though it were created by this statement:

48

CREATE DICTIONARY PERS (

)

P.ORGNO $(I,4),
PRIME.JOB (
ADD.PEO $(A,1),
JOB.CODE $(I,4),
PEOPLE (
DELETE $(A,1),
NAME $(A,V),
NUM $(I,5),
LEVEL $(A,4),
POSITION (
DATE . STARTED $(I),
DATE.TERMINATED $(I),
POS.TIT $(A,32)

)
SEX $(A,1),
BIRTH $(I,6),
SALARY $(I,5),
OTHER.SKILLS (
CODE $(I,4)

)s

QUAN $(I,6),
TOT.JOB.SAL $(I,6)
),

TOT.SAL $(I1,6),
TOT.PEO $(I,6)

3

49

The DELETE STRUCTURE Statement

The DELETE STRUCTURE statement is used to delete properties from

a dictionary.

Generic Form:

DFLETE STRUCTURE fn pm,...,pn;

where fn is the name of the file associated with the dictionary from
which properties are to be deleted, and pn,...,pn is a list of the
names of the properties to be deleted. The properties are deleted

from the dictionary when the statement is processed by PROFILE.
Examples:
1: DELETE STRUCTURE PROGRAMMER TELEPHONE .EXTENSION;

This changes the PROGRAMMER file dictionary to one identical to the

dictionary created by the statement:

CREATE PROGRAMMER (NAME $(A,W,50));

2: DELETE STRUCTURE ORDER \TOTAL LIST PRICE\, ITEM;

This simplifies the ORDER file dictionary to the one created by:

CREATE ORDER (\ORDER NUMBER\ $(I,1¢),
CUSTOMER $(A,20));

The DISPLAY DICTIONARY Statement

When processed by the PROFILE processor, the DISPLAY DICTIONARY
statement causes a dictionary to be displayed on the printer, type-

writer, or display.

50

Generic Form:

PRINT DICTIONARY £fn ;
or

TYPEOUT DICTIONARY fn ;
or

DISPLAY DICTIONARY f£n;

where fn is the name of the file associated with the dictionary to

be displayed.

51

The DISPLAY STRUCTURE Statement

The DISPLAY STRUCTURE statement is similar to the DISPLAY DICTIONARY
statement. When processed by the PROFILE processor, it causes a dictionary

without attributes to be displayed on the printer, typewriter, or display.

Generic Form:

PRINT STRUCTURE f£nj;
or

TYPEOUT STRUCTURE f£n;

or

DISPLAY STRUCTURE fn;

where fn is the name of the file associated with the dictionary to

be displayed.
Examples:
PRINT STRUCTURE ORDER;
This statement produces on the printer:

((ORDER(CUSTOMER TOTAL LIST PRICE ITEM(ITEM NAME
INCREMENTAL COST))))

TYPEOUT STRUCTURE PERSON;

This statement produces:

((PERSON(NAME SEX YOB PARENT(NAME SEX YOB) SIBLING
(NAME SEX YOB) CHILD(NAME SEX YOB))))

52

The DELETE FILE Statement

When processed by the PROFILE processor, this statement deletes

a file from the current C-10 system. The associated dictionary is not

destroyed.

Generic Form:

DELETE FILE f£fn;
where fn is the name of the file to be deleted.
Examples:
DELETE FILE PLANE.CLASS;

DELETE FILE PROGRAMMER;

The REMARK Statement

REMARK statements are used to annotate procedures. They have

no effect upon the execution of a procedure.

Generic Form:

REMARK s

where s is a string of characters that does not include semicolons (;)

and contains an even number of quotes (') and backslashes (\)

Example:

READ DESTINATION; ELSE CONTINUE;
REMARK GET NEXT OBJECT OF DESTINATION FILE;

53

STATEMENTS CONTROLLING FILE ACCESS

The PROFILE language is built around the idea of processing files
sequentially. Although it is possible to access objects of files on disk
at random, it is intended that most processes involving file data process

one object at a time beginning with the first and proceeding through the

file to the last.

In COLINGO C-10 there are just two basic things that are done
with files. Files are read and files are written. A C-10 file is a
collection of sets of property values linked together to form a single
chain. When we say that a file is read, we mean that the sets of prop-
erty values which comprise the objects of a file are made 'accessible,"
one at a time, in the order in which the file is linked together. When
we say that a file is written, we mean that the sets of property values
which comprise the file are assembled one at a time, and linked onto
the file. In PROFILE, a file that is being written may not be read,
and a file that is being read may not be written. Also, it is not
possible in PROFILE to be reading the same file in two different places;
that is, two different objects of the same file may not be accessed at
the same time.®* However, any number of different files may be read

or written simultaneously.

This section discusses in detail those statements in PROFILE

which control the reading and writing of files.

*An exception to this is explained in the procedures discussion.

54

The READ Statement

The READ statement is used to make the first object of a file
(or group) accessible, to make each subsequent object accessible, and

to decide when the end of the file (or group) has been reached.

Generic Form:

READ fn ; ELSE s ;

where fn is the name of a file or group and s is an executable state-
ment.

The processing of a file or group is initiated by the execution
of a READ statement, which makes accessible all the property values
in the first object. When that READ statement (or another one
referring to the same file or group) is executed again, all the proper-
ty values in the second object become accessible and all the property
values in the first object are no longer accessible. This process
continues until the last object in the file is reached. The ELSE
statement is ignored until the last object is being accessed and a
READ statement for that file or group is executed; then no objects of
the file are accessible and the ELSE statement is executed.

When we say that an object is '"accessible," we mean the follow-
ing: An object is one set of values for a set of properties. When an
object is accessible, a reference to an alphabetic or numeric-valued
property returns the alphabetic or numeric value for that property in
that object. Group-valued properties have a value in each object which
is itself an entire file. When an object is accessible, the group
values in that object may be processed in the same manner that the
larger file is processed, i.e., stepping sequentially through the

group one repetition at a time using READ statements.

55

Example:

VARIABLE SUM;
SUM = §;
L.. READ ORDER; ELSE RETURN;

SUM = SUM + \TOTAL LIST PRICE\ ;

GO TO L;A
This set of five PROFILE statements reads through the ORDER file and
adds up the total list prices of all the orders in the file. A
temporary storage location, SUM, is used to contain the final sum

(and all the partial sums).

The ORDER file comprises a set of customer orders. Each order
contains a file of items which constitute the order. The OPTION file

contains a list of items with their respective ID's and prices.

Suppose a surcharge is levied on options as follows: for
options with ID's less than 1¢¢ there is no surcharge; for options
with ID's greater than 99 but less than 2¢@, there is a surcharge
of 2%; for options with ID's greater than 199 but less than 3¢¢@,

there is a surcharge of 47%; and so on.

We wish to update the total list price of orders in the
ORDER file to include the surcharges. The following PROFILE state-

ments accomplish this:

56

Ll:

L2:
L3:

VARTIABLE NEW.PRICE;
READ ORDER; ELSE RETURN; REMARK: GET NEXT ORDER;
NEW.PRICE = §;
READ ITEM; ELSE GO TO I4; REMARK: GET NEXT ITEM;
READ OPTION; ELSE DO ERROR (1); REMARK: FIND ITEM IN OPTION FILE;
IF OPTION.NAME = ITEM.NAME;
BEGIN; REMARK: COMPUTE PARTIAL SUM;
NEW.PRICE = NEW.PRICE
+((OPTION.ID / 10@) * 2 *
\ INCREMENTAL COST\) / 10¢
A INCREMENTAL COST\ ;
CLOSE OPTION; REMARK: STOP CYCLE THROUGH OPTIONS;
END;
ELSE GO TO L3;
GO TO L2;
CHANGE \TOTAL LIST PRICE\ TO NEW.PRICE; REMARK: UPDATE PRICE;
GO TO L1;A

57

The CLOSE Statement

Sometimes, when stepping sequentially through a file or group,
it is desirable to stop processing and begin again from the beginning.

In this case, the end of the sequential processing must be signaled
with a CLOSE statement.

Generic Form:

CLOSE fn;

where fn is the name of a file or a group. After a CLOSE statement
has been executed for a file or group, no objects of that file or
group are accessible. The next READ statement that is executed for

that file or group will access the first object.

Example:

A CLOSE statement is used in the second eéxample under READ.
In that example, items in the ORDER file are looked up in the OPTION
file. After the appropriate entry has been found in the OPTION file,
the OPTION file is "closed" with a CLOSE statement, so that the next

item may be looked up.

Cursors and the SET Statement

The process of reading through a file (or group) can be viewed

as a process of moving a cursor down a set of windows (see Figure 11.)
$Cursor

OBJECT OBJECT OBJECT OBJECT OBJECT OBJECT OBJECT
1 2 3 4 3 6 7

Figure 11. File Reading Process

58

The first execution of a READ statement places the cursor on the
first object, and subsequent READ statements advance the cursor one ob-
ject at a time.

In C-10 it is possible to remember the location of the cursor

while processing a file (or group), and later return the cursor to that

place in the file (or group). When the cursor is returned, the object

to which it points may be processed, and sequential processing of the
remainder of the file (or group) may take place beginning at that
point (by advancing the cursor one object at a time, using READ state-
ments).

One place that cursors may be remembered is in a file. A file
that contains cursor-valued properties is sometimes called a "directory,"
because it may be used as an index to another file.

Cursor values are manufactured by using the CURSOR operator within
an "expression.'" Cursor values may then be placed in a file in the same
manner in which alphabetic values or numeric values are placed in a file.

