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PREFACE

This Memorandum presents an algorithm for choosing locations to
place air or ground forces in order to prevent an opposing force from
proceeding through a transportation or supply network. It is a part
of continuing RAND research on the effectiveness of interdiction and
is particularly applicable to infiltration and counterinsurgency.

The model has been programmed for use on RAND's computer, and

should also be useful to other organizations, including agencies
interested in targeting strikes against lightly traveled line-of-

communications networks.




SUMMARY

This Memorandum presents an algorithm for determining where to
place forces in order to maximize the probability of preventing an
opposing force from proceeding from one particular node in a network .
to another.

The usual gaming assumptions are invoked in this model; namely,
that the strategy for placing forces is known to the opponcat and that
he will choose a path through the network which, based on this knowledge,
maximizes his probability of successful traverse. As given quantities,
the model requires a list of the arcs and nodes of the network, the
number of forces available to stop the opposing force, and the proba-
bilities for stopping the opposition at the arcs and nodes as functions
of the number of forces placed there. From this data, the model cal-
culates the probabilities for placing the force at tihe arcs and nodes
when one force is available, and the expected numbers of forces to
place at the arcs and nodes when multiple forces are available.

A computer program for the model has been written in Fortran IV,
Though originally intended for the IKM 7044, it may be adapted to fit
other computers. The program prescntly handles problems with up to
300 urcs, 150 nodes, and 25 foices. By changing the dimension state-
ments, these quantities can be increased for larger computers, or their

proportions can be modified for computers of the same size.
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L. INTRODUCTION

For many years RAND has been interested in problems of inter-
diction and infiltration. Interdiction has been dealt with extensively
from the standpoint of reducing the throughput capacity of a supply
network. The most recent study owes most of its theoretical develop-
ment to Wollmer (6), operating models to Durbin (1), and operational
studies to J. W. Higgins. This approach is inadequate, however, in
applying interdiction to infiltration and counterinsurgency. The
reason is that requirements are so small under those circumstances
that air and ground bombardment could never hope to reduce a network's
throughput capacity below the level necessary to meet minimum require-
ments. For these situations, interdiction must therefore be approached
from the standpoint of direct assault,

In the situation depicted here, an infiltrator attempts to proceed
from one point to ancther in a network. An interceptor, who may
possess one or more forces, attempts to stop him by placing forces
along arcs or nodes that he expects the infiltrator to travel. His
problem is to place his forces so as to minimize the infiltrator's
probability of successful traverse. The infiltrator's problem is of
course to select a path that will maximize this probability. Both
problems can be represented by a zero-sum two-person game. As the
next section will show, however, the game matrix is very large end
difficult to generate. By using an incremental approach, a solution
may be obtained much more easily for the interceptor.

This report presents a model based on such an approach. As

inputs, it requires a list of the arcs and nodes of the network, the



number of fcrces available to stop the opposing force, and the proba-
bilities fcr stopping the opposition at the arcs and nodes as functions
of the number of forces placed there. From this information, the model
calculates the expected number of forces to place at each arc and each
node. For the case where only one intercepting force is available,
the expected values are probabilities of force placement; for more
than one force, expectations are to be interpreted in the most obvious
way. Specifically, if the expected number of forces to place at a
particular location is 4%, one would place four forces there always
and a fifth force one-fourth of the time.

The solutions obtained by this model are always optimal in the
gaming sense (i.e., the infiltrator's best chance of successful traverse
is as small as possible) if the interceptor has one force available,

and are optimal or nearly optimal if he has more than one.



II., INTERCEPTOR'S PROBLEM

The network is characterized by sets of elements called arcs and
nodes. Nodes are points or junctions, and arcs are line segments
joining nodes. An arc that joins node i to node j is designated by
the symbol (i,j). The node from which the infiltrator starts is called
the source; the one he attempts to reach is called the sink.

It is assumed that the infiltrator and interceptor are each composed
of a single force. Later on this restriction will be relaxed for the
interceptor. As is customary in game theory, it is assumed that the
interceptor's strategy will become known to the infiltrator. However,
this does not necessarily mean that the infiltrator will know *he
location of the force. Specifically, if the interceptor decides to
adopt a mixed strategy such as placing his force at node a with proba-
bility % and at node b with probability %, the infiltrator will know
the probabilities but will not know when the force will appear at a
and when it will appear at b. The infiltrator will react by traveling
only on source-to-sink paths that maximize his probability of success-
ful traverse. The interceptor tries to choose a location for his force
that will minimize that probability. He bases his choice on the
topology of the network and upon the vulnerability of the arcs and
nodes.

Note that mixed strategies are often necessary. To see this
consider a network in which the source and sink are relatively invul-
nerable to attack and any other particular arc or node can be bypassed.
In this situation, placing a force at any arc or node other than the

source or sink with probability one would be ineffective since the



infiltratcr would then choose a path that did not include the arc or
node where the force was placed. Since placing the force at the source
or sink would also be ineffective, no pure strategy would be desirable,
To develop a good mixed strategy, it is necessary to define quan-
tities measuring the effectiveness of placing a force at the various
arcs and nodes, and quantities expressing the interceptor's strategy.

These are as follows:

p(i) = probability that the infiltrator will be stopped at
node i, given that he attempts to cross it and the

interceptor chooses to place his force there

p(i.j) = probability that the infiltrator will be stupped at
arc (1,j) given that he attempis to cross it and the

interceptor chooses to place his force there

n(L) = probability that the interceptor places his force at

node i
n(i,j) = probability that the interceptor places his force at
arc (1,j)

The quantities p(i) and p(1L,j) may themselves include many
elements and factors, For example, suppose it is determined that if
nocde { is on the infiltrator's chosen path and the interceptor chooses
to place his force there, there is a probability of 0.8 that the inter-
ceptor will arrive there before the infiltrator. Suppose further that
1f both were at node i, the interceptor's probability of detecting
the infiltrator is 0.9, and 1f the two engaged in direct combat the
probability of the interceptor's winning is 0.7. Then p(i) would be

the product of these three factors--0,8, 0.9, and 0.7--or .504.




The probability that the infiltrator can successfully cross a

particular node, a is 1 - ﬂ(ai)p(ai), and that of crossing a partic-

i’

ular arc, (ai,a ) is 1 - n(ai,aj)p(ai,a ). Assuming these probabilities

b )

*
are independent and the infiltrator attempts to reach the sirk by the

path a1y ceey A, his probability of successful traverse is
n n
= - ] 0 - F
(1) K 1[11[1 m(a,) x p(a;)] x igll[l mag,a ) X plag,a; )]

This quantity, K, will be referred to as the value of the path @y e
a. Given the p(1), p(i,j), n(l), and n(i,j), the infiltrator's

problem is to find a source-sink path of maximum value. The interceptor's
problem, given the p(i) and p(i,j), is to choose n(i) < 0 and n(i,j) 2 O
such that the maximum value of all source-sink paths is minimized,

subject to the constraint L n(i) + T n(i,j) s 1.

The problem of finding the m(i) and n(i,j) is really one in game
theory., It can be represented by a game matrix and solved by linear
programming. The linear program solution would include an optimal
strategy for the infiltrator as well as the interceptor. The value of
the game would be equal to both the infiltrator's maximum guaranteed
probability of successiul traverse, and one minus the interceptor's
guaranteed probability of stopping the infiltrator. However, the game
matrix would require a column for every possible source-sink path and
a row for each of the interceptor's pure strategies. (The number of
these pure strategies becomes exceedingly large when the interceptor

is allowed multiple forces.) Hence, this formulation is impractical,

*

While this assumption is not strictly true, it will be shown
later that this leads to no inaccuracies for the one-intercepting-force’
case,




l
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The incremental apprcach to be presented avoids these problems
of enumeration and the resulting large number of variables for the
linear program, Furthermore, it yields an optimal strategy when the
interceptor has but one force, and an approximately optimal strategy

when he has more than one force,




III. AN INCREMENTAL APPROACH FOR ONE INTERCEPTING FORCE

This section solves the interceptor's problem by a marginal
analysis or steepest-ascent approach when the interceptor has bhut one
force,

Specifically, the approach is as follows. Initially, all n(i) and
(i, j) are assigned values of zero. Then they are increased by small
amounts An(i) 2 0 and An(i,j) = 0. The proportions for the An(i) and
An(i,j) are such that the additional force allocation, X An(i) + & An(i,j),
divided by the decrease in maximum path value, is minimized as these
two quantities tend toward zero. This is equivalent to maximizing the

decrease in maximum path value per unit of additional force allocation,

The n(1) and n(i,j) are then increased again in the same manner until
they sum up to one.

For a specific path, Apy eees A, increasing ”(ai) by Av(ai) replaces
the factor [1 - n(ai)p(ai)] in Eq. (1) by [1 - (n(ai) + An(ai))p(ai)] and

reduces the value of the path from K to K - 4K, where

T {1 - Ln(ai) + An(ai)l X LP(ai)J}

1 - n(ai) X p(ai)

Solving for the quotient of the additional force allocation and the

decrease in path value, the following expression is obtained:

dn(a)) ;1
TR [p(ai) - "("’i)]'

If force allocation were increased at an arc instead of a node,

the same argument would yield an expression for the additional torce




allocation divided by decrease in path value identical to the preceding
one, with arc probabilities substituted for node probabilities. Speci-

fically, for arc (ai,a ), this would be

i+l

Bmagaiy) ) 1 T
AK K [p(ai’ai+l) i’ i+1]'

Note that in order to obtain any decrease in aximum path value,
the An(i) and An(i,j) must be strictly greater than zero along a subset,
C, of the arcs and nodes that intersects all paths of maximum value.

An efficient ailocation would require that all members of C remain on
maximum value paths, for otherwise, lessening the force increase at

an arc or node not on a maximum value path by a small amount would
decrease IAn(i) + ZAmn(i,}), while not affecting the maximum path value.
Then, of course, this small amount of force could be redistributed

among arcs and nodes on maximum value paths to get a strict improvement,.
Thus, the An(i) and An(i,)) assigned to the chosen C must be such that
the AK's are equal for each of its members., In other words, they must

be proportional to

1
(2) a) ;'(—5 - (i)
b) ey - n(i,j)
p(1,3) 0

The constant ﬁ, where K is the maximum path value, was dropped in

Expression (2), of course. The total increase in force allocation

per unit decrease in the value of a maximum probability path would be:




(3) %Z[-pt—i) - (] + ) [p(ifj) - "(i'j)] ’
ieC (1,j)eC

Thus, the problem is reduced to finding a subset of arcs and nodes
intersecting all maximum probability paths that minimizes Expression (2).

Initially, all paths have value one since all n(i) and n(i,j) are
zero., Thus C is required to be a set blocking all source-sink paths,
If the nodes and arcs are assigned capacities equal to the quantities
of Expression (2a) and (2b), the provlem of finding C is reduced to
one of finding a minimum cut.* However, this is equal to the value of
the maximum source-sink flow and can be found by the maximum flow
algorithm of Ref. 3.

Note that once additional force is allocated to the minimum cut,
C, the capacities of all arcs and nodes in C decrease by the force
increase while the capacities of all other arcs and nodes remain the
same, Thus, the value of C will be reduced by 2An(i) + ZArn(i,j) while
all other cuts will decrease by amounts that do not exceed this. Hence,
C remains minimum and the entire unit of force may be allocated to C.

The n(i) and n({,j) may therefore be solved for as follows:

1. Assign all nodes capacities of 1/p(1) and all arcs capacities

of 1/p(i,}) (since all n(i) and n(i,j) are zero).
2. Maximize flow from source to sink.
3. Let C be the minimum cut set and V its value. Set n(i) =

p(1)/V for i € C and n(i,j) = p(i,j)/V for (i,j) € C. Set

*
Essentially, a cut set is a set of arcs and nodes blocking all
source-sink paths. Its value is the sum of the capacities of its arcs
and nodes, and the minimum value of all cuts is equal to the maximum
value of the source-sink flow.
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all other n(i) and 7n(i,j) equal to zero.

Note that since only one cut is obtained, each path of maximum
value lhas force allocated to only onc of its arcs or nodes, and both
its value and traverse probability are equal to the probability
associated with that particular arc or node. Hence, the independence
assumption does not lead to inaccuracies for the one-intercepting-
force case. Finally, the maximum path value is L = %, where V is the

value of C found in step 3.

TR
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IV, MULTIPLE INTERCEPTING FORCES

The incremental procedure c¢f the last section may be modified to
handle the more general case in which there is more than one intercepting
force. The quantities measuring the effectiveness of placing forces
at the various arcs and nodes and thosc defining the interczptor’s
strategy must be redefined as follows:

p(i)k = probability that the infiltrator will be stopped at
node i, given that he attempts to cross it and the

interceptor has placed k of his forces there;

p(i,j)k = probability that the infiltrator will be stopped at
arc (i, j), given that he attempts to cross il and

the interceptor places k of his forces there;

(i) = expected number of forces the interceptor places at
node i ;
n(i,j) = expected number of forces the interceptor places at

arc (i, j),

where p(i)0 and p(i,j)0 are both identically zero. Also let

() = m(i) - [n(i)]
F(i,3) = n@i, i) = (n@i,i)]

Note that 7(i) and n(i,j) are mercly the fractional parts ot n(i) aud

m(i,j). It will be assumed that
P(1)y 4y - P = p(L) - p()
P )y - PG = pGL ) = pGLD) 0 kL.

Mathematically, this is essentially g convexity assumption on the value

of forces at the arcs and nodes. Physically, it expresses the jact
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that multiple forces may result in overkill. This assumption assures
that for a given value of n(i), the probability associated with node {
is minimized by allocating [m(i)] + 1 forces at i with probability
f(i), and [n(i)] forces with probability 1 - #(i). In other words, if
n(i) = 3%, n(i) would be realized by assigning three forces at i half
the time and four half the time, as opposed to such a policy as allocating
two forces half the time and five half the time. A similar result holds
for the arcs.* Thus, only policies of this type need be considered
and the n(i) and n(i,j) completely define the interceptor's strategy.

As in Eq. (1) cf Sec. II, the value of a path is still the
product of the probabilities associated with its nodes and arcs;

however, the probability associated with node i is now

RAY = I yg40) + (L= FADA = U 4yp)

or

b pWiaeyy = MGy 7 Py

and that with arc (i,j) is
1 - p(i’j)[n(i.j)] - ﬁ(i’j)(p(i'j)[n(i,j)]i-l - P(i'j)l.n(i,j)])'

If Ay eeey @ is a path of value K, and ”(ai) 1s increased by

' An(ai), reducing the path value to K - AK, the expressions for K and

K - AK, as before, differ only in the factor for node a Thus, for

i.
sufficiently small An(ai), the expression for the quotient ot the

force increase and path decrease is

*
See Appendix C.




Sas

onm(a,) - p(ai)[ﬂ(ai)]

AK

1
=5 'ﬁ(a) ]
& p(ai)[n(ai)]+1 - p(ai)[n(ai)] i

and decreasing path value by increasing force at an arc instead of a

node yields the analogous expression,

1 - p(a ,8,)
bm(a,a.) i J[n(ai.ai)]

AK

1
== - n(a,,a.)) .
[Pt a1 T P G ap)

As in Sec., III, force must be allocated along all arcs of some
cut set, and the problem {s reduced to finding a minimum cut set, which
in turn reduces to one of finding a maximum source-sink flow., The

node and arc capacities are now

E LA CTO N '
"“)[n(i)]ﬂ B P(‘)[n(i)]

(4) a) c(i) - f(i)

) p(i’J)Lﬂ(iJj)J
P D, Ia ™ PE D e, 1))

b) c(4,)) = - (i, ).

Note that the c(i) and c(i,j) are no longer decreasing functions
of n(1) and n(1,j) except over intervals whose endpoints possess the
same Integer part. Specifically, c(i) is a decreasing function of
n(l) for 0 s n(i) <1, 1 £ n(l) <2, etc. However, c(i) increases at
the points n(i) = 1, 2, etc. Thus, when a minimum cut set is tound and
additional force is allocated along its arcs and nodes, that cut remains
minimum provided the forces on these arcs and nodes do not 1cach or
exceed their next highest integer values, This requires that the

{ncremental approach be modified as tollows,
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Starting with all n(i) and n(i,j) equal to zero, capacities are
assigned to the arcs and nodes of the network which are equal to the
quantities defined by Expression (3). Flow is maximized from source to
sink and the n(i) and n(i,j) corresponding to the arcs and nodes of the
minimum cut set are increased by amounts 4n(i) and An(i,j) which are
proportional to their capacities. The constant of proportionality, M,
is the smallest possible such constant that will either increase some
n(i) or n(i,j) to the next highest integer or will increase in(i) +
Zn(i,j) ton. If the latter does not happen, the new values of m(i) and
m(i,j) are used to calculate new capacities and flow is maximized again
to obtain a new cut. The process is repeated until Im(i) + Zm(i,j) = n.

Specifically, the algorithm for the general case of n intercepting
forces is as follows:

1. Sct all n(i) = 0 and all n(i,j) = 0.

2, Assign the arcs and nodes of the network capacities of c(i)

and c(i,j) respectively, where c(i) and c¢(i,j) arc as defined
by Eq. (4).

3. Maximize flow from source to sink and let C be the arcs and

nodes of the minimum cut set found,

{1 - f@)}

4, Compute M, = min

L jec ¢ (L)
1 - (i, ]
M, = min L-—ffif*ill
2 (i,J)eC (—(Lv.])
Mj =n -~ In(i) - ¥In(i j)

L c(il) + - e (Ls])
ieC (]_,_])CC

5. Let M = min (“I’MZ’MJ)' Set An(i) = Mc(i) Lif ieC and
am(i,j) = Mc(i,j) Lf (i,j)eC. Set all other An(i) and

A~(i,j) equal to zero,




incre

n(i,]

to n.

=15-

6. Set n(i) = n(i) + 4n(i) and n(i,j) = n(i,j) + &n(i,j) for all
i and (i,j). If Z w(i) + £ n(i,j) < n, go back to step 2,

Otherwise terminate.

In step 4, M is that constant of proportionality which would

1

ase some (i) to an integer, M2 the one which would increase some

) to an integer, and M. the one which would i~crease £ n(i) + Z n(i,])

3

At termination the n(i) and n(i,j) represent the cxpected number

of forces to place at node i and arc (i,j), respectively. The policy

will

[m(i)

be to place [n(i)] + 1 forces at node i with probability #(i) and

] forces with probability 1 - 7(i). The value of the resulting

maximum probability path can be calculated by the algorithm of Appendix D.

(i.e.

If the iterations yield a sequence of but one minimum cut set

, Lf steps 2 through 6 are performed only once), the solutions

found are optimal, as in the case of one intercepting force, and also

the i

ndependence assumption on the arc¢ and node probabilities leads

to no inaccuracies in maximum path value., However, if the procedure

yield

§ a sequence of several cuts, neither optimality nor independence

can be guaranteed. Nevertheless, the nature of the strategy indicates

that
n(i)
the ¢

value

independence can be violated only by the fractional parts of tle
and n(i,j). The maximum path value can be kepu track of during
ourse of the algorithm, Specifically, if K is the maximum path

at the beginning of an iteration, then the maximum path value

at the end of the iteration is K(l - M), where M is that found in Step

*
Sl

Of course, K =1 at the beginning of the first jiteration.

*
See Appendix D,
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Appendix A

*
COMPUTER PROGRAM (FLOG)

A computer program for the model was written in Fortran IV for
use on the IBM 7044, It can easily be adapted for use on other high
speed computers. The main inputs are the total number of forces
available to the interceptor, and, for each arc and node, his probability
of stopping an infiltrator attempting to cross it as a function of the
number of forces placed there. The outputs are the expected number of
forces to place at the arcs and nodes and the infiltrator's maximum
probability of successful traverse.

The program presently handles problems with up to 300 arcs, 150
nodes, and 25 forces, These capabilities can be modified to meet
individual needs by changing the cimension statements.

In changing the dimension statements, note that the subscripts
of the NI, N2, X, CA, PA, and DPA arrays, and the first subscript of the
U array, are all equal to the maximum number of arcs. The subscripts
ol the NL1, NL2, Y, CN, PN, and DPN arrays, and the first subscript
of the V array, are all equal to the maximum number of nodes. The
maximum number of forces is equal to the second subscripts of the U
and V arrays.

*
The program of this section was written by Steve Glaseman uand
Richard Clasen,
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FLOG

DATA SUBMISSION INSTRUCTIONS

I. Card 1:
Col,  Data
1-3 Total number of nodes.
4-6 Total number of arcs.
7-9 Number of source node.
10-12 Number of sink node,
13-15 Total number of forces involved.
16 Output flag. O = print output only at end
of problem.
l = print output after each iteration.
17 Input flag. O = no data cases following,

l = case following present case.
II. Group 1:
Punch the number of the first node of each arc as follows:

a. Start in col. 1.
b, Three columns per entry. ‘

¢. Ten entries per card.
III. Group 2:

Punch the number of the last node of each arc in the same

format as group 1.
IvV. Group 3:
Punch the arc input probabilities as follows:

a. Start in col. 1.

b. Six columns per entry.

c. Ten entries per card.

As a guide, consider the following: with eight forces and ten arcs,

group 3 would consist of eight cards, each with ten entries. The first

cvard would contain arc 1 with 1 through 8 forces, and arc 2 with 1 and

2 forces, etc,

T e

A




V. Group 4:

Punch the node input probabilities in the same format as group 3.

VI. Notes

l. All card entries are right-justified.

2. Data deck must adhere to group order in above instructions,

Each node must be identified by a4 number not to exceed three
digits. Output muay be requested at the end of each iteration or maxi-
mum- f low problem, or may be requested only at the conclusion ot the
entire problem. Multiple sets of data may be run. If this is done,

a 0 must be placed in column 17 of the first card of the last case,
and a 1 in column 17 of the first card of all other cases.

The output format and the program follcw.

OUTPUT FORMAT

SOURCE NET FLOW SINK MAX PATH VALUE
XXX XX XXXXX XXX X XXX XX
NODE FLOW CUT SET FORCLES
XXX X JXXXXX X X o XXXXX
ARC FLOW CUT SET FORCES
XXX X JXXXXX X X OXXXXX

A one in the cut set column indicates that that particular node
or arc 18 in the minimum cut set and hence will have its number ot
forces increased. A zero indicates it is not in the cut set, The

other headings are self-explanatory.
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$IBFTC FLUG
C
C TO EXAMINC LI ANELRAL ATTACKER - FVADER NETWCRK,
C INPUTS = ATIACKEK®S ARC AND NCDL FCRCE PLACEFMENT PROB.
C

CIMENSTUN NLE30LG), N2(300), ULE300,25), VII50,25), X(300),
LYCLSC)y CALSCOD, NLLIELS0)y NL2(150), CRJLL), NCHLLS0), ACS(S0,50),
JPNCL150), CNULSC), PA(300), DPNILL1S0O), DPA(300)

INTFGER ACS

INITIALIZATION.

aNeNea

I8 CO 19 | = 145C
Yl =
NLLCT)
NL2CT)
NCSUT)
OPNLT) O
CO 2C J = 1,50

20 ACSUILyd) = ¢

19 CONTINUF
Lo 21 1 = 1y1CC
PALT)
PNCT)
CALIL)

21 CNLT)
ne 22
xXti) =
LPALT)

22 CUNTINUE
PV = 1.

Heowon oD
ke k=

L L U U TR T}
=]
L]

Ce
= 0,

C READ INPUT PARAMETERS.

READ 10CUe MoNgISRCoyISNKoIFoIFLAGy JFLAG
REAU 2000, (NLCI)y I = 1,4N)

READ 20000 (N?(l,' I = loN)

RCAD 30C0, ((UGT,J)ed = 141F)l = 1,4N)
READ 300Uy ((VIIgJ)ed = l'IF)'l = ]oWV)
t = FLOAT(IF)

M
N

I SKRC
I SNK
If
T+LAG
JFLAG

NLMRt R UGF NODES.

NUMUER OF ARCS.

SOURCE NODE.

SINK NOGE.

NUMBER UF FORCES IKRVOLVED.

PRINT +LAG. QO = END PRINT ONLY, 1 = RUNNING ACCOUNT.
INPUT FLAG. O = 1 DATA SET, L = MULTIPLE DATA SETS.
NEICT) 10 OF FIRST NODE OF ARC 1.

Neit) ID OF LAST NOUREC OF ARC 1.

Ull,J)= PRURAR. (Ot ARCS

VilsJ)= PROBAB. (F NCDES

CHANGE ARC AND NIIDE PROK, INTO CAPACITIES.

e alaeaReNelalasNaNaNalaNaN ol e!

po 1
I CACD)

cc 2
2 CANED)

o™
«/ULJ,1)

LoV
lo/v‘J'l,

0N e N




e ————— e r—

(aNeNe

100
101

102

2]~
SEND COLUMN TO ALGORITHM,

cOo 101 1
NCStT) =
o 102 1
N1I = NILULT)

nN2T = Net D)

ACSINIIWN?21) = O

CALL FLOWMXINM Ny ISRC s ISNKgNT yN2yCAyXoCNyYoNLLoNL2yURY)

LoV

o

1N

UPON RETURN, FIND ARCS AND NODFS IN CUT SET.

DO 3 1 = 1M

TFINLLUT) eEQeQaANDNL2(T)oNFEL.O) NCSET) = 1

CO & | = leN

N1I NICT)

N2I N2( L)

TFINL2INLT ) e FCaGLoANDNLLINZ2TI)oNEL.O) ACSINLI4N2T)
TFIML2IN2TD) eCCoOANDGNLLINLIT)NELO) ACSINLToN2I)

"o

"o
g

CALCULATE MOST LIMITING ARCS AND NCDES IN CUT SEY.

SMZ = 9944,
CO S I = l'N
NLT = NLCT)
N2T = N2(T)
IFCACSINLIWNZI)GNFLL) GO TO S5

AM2= ((FLOAT(IFIX(PA(I)+.00002))¢1.)=-PALI))/CALL)
IF(AM2.GE.SM?) GO TO S

SM2 = AM?2

CONTINUE

SM2 IS NOW MDST LIMITING ARC IN CUT SET,

SM1 = 9999,

CO 6 | = 1M

IFINCSUI)NELL) GO TO 6
AMI=((FLOATUIFIXIPNIT)+.00002))¢1.)=-PNLIYI/CONLT)
IF(AML.GELSML) GO TO 6

SM1 = AM]

CONTINUE

SML 15 NOW MCST LIMITING NODE IN CUT SFT.

SUMNP Je

SUMNC Ue

0O 7 1 = 1M

SUMNP = SUMNP ¢ PNI(T)

IF (NCSUE)eNL.L) GO TO 7
SUMNC = SUMNNC ¢ CNLIT)
CONT INUE

SU"AP = Q.

SUMAC = 0.

NO 8 I = 1,N

SUMAP = SUMAP ¢+ PALIL)
NLI = NICT)

N2T = N2(T)

IFCACSINLI N2T).NE.1) GO TO 8
SUMAC = SUMAC ¢+ CAC(I])
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6 CONTTMULL

SM3 = { & - SUMNP - SLwvAPR)

L FIND MIST LIDITING @ OF ALL MtS,

ALTIY = AMINL(OSM],SM2,5M3)

¢ CALCLLATE MaxiMuyM PATH VALUt .

PV = PV * (1. - ALIM)

C INCRFEMENT (ot TA-PT ARRAYS,
a9 I = 1,
TF(NCSETY N L)
PNELE) = Pl ) ¢

9 CONTINUL
e e 1 o=
NI = qEe D)

)
0

GO YO 9
(CNiT) & ALTM)

NZL = N2

TFOACH (N

PALT) = PACL) ¢
1C CONT [ MU

i?7U)NT1) GO TO 10
(CA{I1) * ALIM)

(RTRLVR I COMPUTE

(50

TEST FI.K 1F NOT,
SPNI = U,
(HOREP AV B
SPNL = sPNI
SPAl = 0,
DN 202 1 = 1¢N

SPAL = SPAL ¢ PALIL)

TEST = 5PN ¢ SPAL ¢ .CCO2
[FITESTonE el JUURLIFLAGLEQ. L)
DG 11 1 = 1,M
TFINCSUT) oNY o 1)
‘ J = IFIx(PNtL) ¢
IFtdt.0) il TG

oM
+ PNLT)

p 202

U TC 13

20C

GO TO 1L
«00CC2)
300

o

CNLT) (VIT,4J¢l)=-VII,J)})
GC 10 11

ChnET) =

(tla-vilyJ)) /

3C0 CHIL)Y = PHNLT)

1l CONTINUF
cc 12 | =
NIT = %001)
N2l = N2(1)
TFLACSINI T 12T NE 1) GG
J = IfIxieati) ¢ .CCC2)
IF(JstQ ) . T 400

1N

T4H 12

cattny - (UlT,d¢l)-Ull,43)))
GoOoTe

catty =

({l.-tt1,J)) /
CALL) - PALT)

; 12 CONTINUE
GU TG 10O

NEw CAPACITIFS.

/ISUMNC + SLNMALC)

PRINT STAIF,

= PN{I)+FLUAT(J)

- PA(L)+FLUAT (D)




13

| S}

16

17

aNal e

aNeRel

10Ce
2000
1000
4CCC
|
4001
4002
4003
LO04
4005
2C00

$IHFTL
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WRIITF{6e4CLU)

WRITF(6,4C01) Gl RJy ISNK, PV

WRITH(-,4C02)

CO 14 1 = 1M

WRITHF(G4CCA) Ty YUL)y MOSET)y PNLTY
WRITiIT{(6Hea00N)

CaO 1% | = 1M

NIT = NICT)

N2T = N2tT)

IFIX(I) AT o) G0 TO L6

WRITHLA, 40U ) Ny N2y XUT)y ACSINVL WNCTY, PALTY
CONTIMUE

GO 10 {7

xI = x{1)

AVX= ALYIXT)

WRITF(6,4C0C3) N2l NLle AVXy ACSINIT P 1), PALTLY
GO 10 1o

IFLTESTLLTLE )Y GO TO 200

{ONEy GET OFF MAUYINE,

WRITH (A4,50C0)
THCJRLAGLEGG L) G TO 18
CALL FXxIT

FORMATS,

FORMAT (4l 301 34211)
FORMAT(L0T13)
FORMAT(LOFA L)
FORMATULIHL g 93X g 6HSOURCE o 3IXoBHMNF T FINMmy 3% 4HSIMNK 25K, LOHMAC, AL W
ALUE }
FORMATIIHU p 00X gl 3o X F L2020 303133090, F12.0/741)
FURMATL LN 4%y 4HNODE o 1OX gHFLUWL LOX, THCUT SETy T oML ES/ )
FORMATIIN 460Xy | 3 Iy o [ 3N FL12.00 01X, 124 1X,F12.5)
FORMATIIH sa7%s 135X Fl2.9sl1lNyl2s3KsFlla™)
FORMATILIRO, 7/ 40Ky IMARC g 10X g4HFLOWy LOX g THCJT SETy TH RV W/ F )
FORMAT (IHE, &2%, L4HFND OF PROHLEWM)
END
FLIWMX
SUPHUIUTINE FLUWYXINTIDES JARCS ySHO ySNR o [ g JaHT g FLOWNC o NE g NAG KU 1)
INTEGER NIIDFSoARC S SNE ,SRC, 11200001, 4020000 HI(20000 LWL 2000L)
INTEGER SCOLICCUODeNFILLICCO) 4NALLIOQUU) fNHITNOU) OB

RCHGIK ) FLOETI®D/EL
ACHG( X)) tl SAMITILIX F2)
tkl = 2.¢#1¢

E2 = 2.%824
EQUIVALENCE(L ,P)

COoO 1 JI= 1,AKRCS

L = HI(J])

HItJL)= ACHG(P)

CO 2 1l= 1y 40'PES

L = NCCIT)

NCU{IT) = ACHLIP)

CALL FLOH”( \ll IJLS.’\MCS. SR('SNKtl lJ'Hl .f l fh.NC.NF'NA.NH.(‘HJ)
00 3 Jl= 1,ARCS

P = “CHGIBTILJT))

HICJ1)= L
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P = ECHGIFLOW(JID)
3 FLOWIJT )= L
CO 4 T1= 1,NJDES
P = PCHGINF(LT))

NFOIT)= L

P= BCHGINCIII))
4 NCUIT)= L

P = BCHGIGRY)

08d = L

RETURN

END

$INFIC FLOWM
SURRQUTINF FLOWM (NOUES ARCSySRCySNKel ¢ JoHIyFLOWNCoNFoNANB,ORJ)
INTEGER NODFSL,ARCS,SNK,SRC,1(2C00),J(2000),HI(2000),FLOW(2C00)
INTEGER MCUICO0)4NF(I1CCL) ¢NACLOOU)oNBIL1D0O) 0B

GEFINITION OF CALLING SFEQUENCE

NAME USF

NODES NUMPER OF NODLS
ARCS NUMBER MF ARCS

SRC SOURCE NODL

SNK SIK NUME

I LIST OF FIRST NODES

J LIST OF StCOND MNODES
H1 UPPER HOUNLCS FOR ARCS
FLOW AMOUNT OF FLOW IN ARCS
NC NODE LAPACITY (INPUT)
NF NUDE FLOUW

NA SOURCE NODE LABELS

Ng SINK NODC LARELS

oHJ ORJECTIVE VALUE

REGIN
INTEGER A AA N "NLyN2,GTARCS,INC,LABEL
LOGICAL TvyPE
GTARCS = ARCS ¢+l
PO 10 A =1,ARCS
FLOW(A) = O
IF (I(A).LF.0.0R.I(A).GT.NODES) GO TO 999
I (JUA)LE.CfIR.JIA).GT.NODES) GC TN 999
I (1(A).FY.JtA)) GO TO 999
HICA) = [ABSIHI(A))
10 CONTINUE

NO 2C N = 1,NODLS
NFI(N)Y = O
NCIND = TABSINCIND)
2C CORTINUY
aBJ = 6

C 71RO NODE LABELS
100 L 200 N =]1,NODES
NA(N) =0
NR(N) =0
200 CONTINUF
C VABLL SOURCE NODE
NBISRC)Y = 1
[+ (NCUSRC)I.EQ.NFISRC)) RETURN
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NA(SRC) = GTARLS
C LAREL
210 LABFL = O
DO 250 A=1,ARCS
N1 = [(A)
(F (Nl.LTL.0) GO TO 2%0
NZ = J(A)
IF (FLOWlLA)Y.LT.0) GO TO 225
IF (NAINL)NFLO) GO TO 220
IF (NBINZ2).EQ.0) GO TO 250
IF (FLOW(A).EQ.O) GO TO 224
NA(N]l) = -A
IF (NBINL).NELQ) GO TO 240
NBR(N1) = -GTARCS
GO 10 24C
220 IF (INRINZ2) NELOLOR.FLOWIA) .FQ.HI(A)) GO T1C 245
NRB(N2) = A
IF (NFIN2).EQ.NCIN2)) GU TQ 240
NA(N2) = STARLCS
G0 TO 240
224 1F (NAINZ2Y.FL.0) GO TO 250
GO TO 2?6
225 IF (NAIN2).EQ.Q) GO TO 230
226 IFf (NRINL) NE.ULORFLOWIA)LEQ. (-HI(A)})) GC T0O 245
NUINL) = ~-A
[F INFINL)LFC.NCINL)) 60 TO 240
NA(NL) = #CTAHCS
GD TN 240
2130 IF (NBIND).EC.0) GO TO 250
NA(NZ2) = ¢A
IF (NBIN2).NELC) G0 TU 240
NR(N2) = -GTAKRCS
240 LABFL = 1
IF (NAISNK).NE.U) GO TO 260
265 [(A) = -NIL
250 CONTINUE
C GO BACK AND LADEL MORE IF SOME NODE WAS LAHBELEC ON LAST LOOP
IF (LABEL.NF.C) GO TO 210
C RESTORE POSITIVE SIGNS TO FIRSYT NODF LISTY
260 NO 270 A = LARCS
1(4a) = (ABStIcaA))
270 CONTINUE
C IF NOTHING LABFLED ON LAST LOOP, DONE
IF (LAREL.FU.C) RETURN
C BREAKTHRU, FIND THU INCREWENT
300 INC = NC{SRC)-NF (SRC)
C FOLLOW PATH RACK FR(OM SINK
N = SNK
TYPE =.TRU+.,
310 AA= NA(N)
IF (.NOT.TYPE) AA= NA(N)
A = [ABS(AA)
IF (A.GT.ARCS) GOV TO 320
IF (AA.LT.O0) GO TO 315
N2 = T{A)
IF (FLOW{A).LT.0) GO T0 316
INC = MINOCINC ,HI(A)-FLOW(A))
GO 1O 318
315 N2 = JlA)
IF (FLOW{A).LEF.O) GO TO 317




Mo

s
Y

1%¢

325

340
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18C

3156

365

36 h
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994

994
X
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INC = MINCUINGLABSITLOWIA))Y)
SIDIE VIR B W

INC = MINOCTIrC bl (A) eI (A))
N = N2

GC T 340

It (TYPE) &G0 TU 342¢

INC = MEHOCTRLCy )

GO T 340

INC = MINOCINC ¢NCIN) -NF (1))
TYPE = NOT,TYPI

TE (MNP SSRUD) GO 1L 3L
REMENT ARCS

N o= SNK

1ypr =, TRUI,

URY = UBJ ¢ (ML

AA = NI(N)
I+ (TYPE) AA = “A(N)
A = TABS(AA)

IF (A GTLARCS) GO TO 365

IF (AALLTLO) G T 39S

FLOW(A)Y = FLOW(A) ¢ INC

N o= TLA)

e Tu 370

FLUWIA) = FLW(A) - INC

Nz U(A)

GCe 100 370

1F (FTYPED) GO T 38R

NFIN) = NF(C1) - INC

Go 10O 31re

NFE(M) = NEIND ¢ INC

TYPt =z.NUT.TYPE

T (veNELSRCLORLTYPE) GIF TO 350
W INCREMENTED, k- TLRY T LABELING
GU T 10ou

PRIIT 99, A, f(A),J(A)
FORMAT(48H ARCS INCORRECILY SETULP
1o 1Hy 16y 1H) )

RETUIN

tNU

fN NCTWORK ROUTENE,

ARC

164 3IH

(
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Appendix B

EXAMPLE

For illustrative purposes, the algorithm is used to find the
optimal placement of forces for the network of Fig. 1, with output
printed after each iteration. Ten forces are available, and all arcs
and nodes have identical probabilities associated with them. Thus,

for each node, i, and each arc (i,j), we have:

p(i.)1 = ,66606 p(i,j)1 = .bhhh
p(L)2 = ,8332 p(i,j)2 = ,.8332
p(i)3 = ,8748 p(i,j)3 = L8748
p(i)a = ,8852 p(i,j)a = ,8852
p(i)S = .8878 p(i,j)S = 8878
i = /, 3 =
p(1)6 .8884 p(i.,_])6 .8884
p(i)7 = ,8886 p(i,j)7 = ,8886
= j = 888/
p(i)8 8887 p(i,J)8 888
p(i.)9 = .8888 p(i,j)9 = ,8b88
p(i)10 = ,8889 p(i,j)lO = ,8889

The input deck is given in Fig. 2 and the output deck or results

follow,
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02 06

01 09

04 08
Fig. l--Sample problem network

0990150010090101

0010010V0100200200300300400500%

00600600700T700¢

01200300400300500400%005006008

0C7009008009009
1.66660.83320,87480.88520.88780.88840.HR860.,8B88T70.888R(.8A89
Ue66660.831320.87480.88520.88780.88R40.98R860.88RT70.888H40.84E9
0.66660.83320,87480.88520.88780.88840.88860.RH8TO.RBB80.888Y9
U.,6660.83320,87480.88520.88780.A88840.88860.88870.,88RR0.8884
Ne66660.83320.87480.88%520.H8780.88840."8860.888T70.,R8880.8HE9
0.66660.83320.87480,88520.88780.8R840.73860.R8870.88A90,8889
0.66660.83320.87487.88520.88T7H80.48840.88860.88870.888K0.8869
L.66660.83320.87480,.88520,8878C.88840.R8860.86870.8R840,.8RHK9
0.66660.83320.,87480.88520.88780.88840.48860.848870.88A880.8HR9
0.66660.83320.874H0.88520.88780.88840.R8R60.88RT0.BRHR0.BRKY
)e66660.83320.87480.48520.88T7TR0.8BH640.H8860.,688T0.88880.8889
0.66660.83320.87480.68520.88780.88840.R8860.88R70.R88H0.8KHK9
0e66660.83320.47480.88520.88780,.88840.H4860.88870.88880.8R89
0.66660.83320,874580.88520.88780.88R40.43860.88RT0.88880.8889
0e66660.83320.87480.88520.88780.88840.8HR60.,888T70,.RBARN.BERD
0.6666G.83320,874R80.88520,88780.88840.PAR60.88RT0.RARBR0.8BBHI
C+66660.83320.876480.868%20.88780.888640.68860.88870.88880.8889
U.66660.83320.87480.88520.R8780.H8840,.4RR60.88RTO.R3RR0.88R9
(.66660.83320.87480.86520.88780.88840."RH60.,88KHT0V.888H0.8889
Ue6660.83320.H74648(,88520.88780.88840.RAR60.8B3T0.88RR0,BBHI
Ue6r6660.83320.87480.88520.88780.808840.08860.888T70.88860.8889
Le6660.83320.87480.8R520.RA8780.8R340.%9860.888T70.88A80.R8889
Cetr6660.83320.8764180.68920.8RT780.8K840.1HB60),88RTO.RBBRO.HBBI
e 6660.83120.87440.88520.,887TA0.88R840,"HB60.BBRT0.888A0.88AY

Fig. 2--Input deck




NODE

oo -l Ve NS I K S

ARC

CLCXTL~NTO T VS Db wr

SOURCE

1

FLOW

1.50000
1.50000
0.60000
0.00000
1.50000
1.5000¢C
0,00000
OCUUUOU
l o')OOUO

FLuw

1.50000
0.00000
0.00000
0.00000
1.90000
J.00000
0.00000
J.0C000
1.90000
0.00000
0.00000
1.50000
0.00000
0.00:000
0.00000

OUTPUT DECK

NET FLOW

1.50000

S INK

9

CUT SET

COCCOT OO~

CUT SET

c2o2ccCcCcCcoocoococ

<

FORCES

1.00000
0.00000
0.000cCo0
0.000Con
0.000cC0
0.000C0
0.0CC00
0.00000
0.00000

FORCES

0.00000
0.00000
0.00000
0.00000
0.00000
0.000C0
0.00000
0.00000
0.00000
0.00C00
0.00000
0.00000
0.00000
0.0000n
0.00000

MAX.

PATH VALUE

O.

3333
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STOUKRCH AET HLIW S INK MAX. PATH VALUF
l 190000 9 0.11111

AN Ftiw Cul StEr FOURCES
| 1.50000 0 1.C0OCH0
/ l.5000¢C v 0.0CCCL
3 0.00000 0 0.00000
4 0000 0 0.0CCCU
5 1.50000 | 1.0CC00
t 1.2000C 0 0. CUCLN
7 0.06000 0 0.00CC0
C D 0CH00 0 0.00C00
Y 1.%0000 ] 0.0CCCH
A FLiw CUt St FORCLES
ly 2 LentOUL V] C.0C000
1 A 0,00000 ] 0.06000
oy 4 N, 00000 0 0.00000
o) ) (.00000 V] 0.00000
Je b l.Hc000 0 0.GCGUO
b 4 000000 0 0.0C0C0
1, 4 0.00000 0 0.CCC00
4y N 0.0000" 0 0.0CCCu
vy 3 1.56000 0 0000000
1y 1 C.ulouvy 0 G.0CGCCO
he T 000000 Q 0.C0C000
‘e ) %0000 0 0.00000
{y M (. 00000 0 0.00000
fy 9 C.00000 0 0.0000C0
‘e " 0.,00000 0 0.00000
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SOUKCE NET FLOW S INK MAX. PATH VALUE
1 1.50000 9 0.03704

NUDE FLUW CUT SET FORCES
1 1.90000 0 1.00000

7 1.>0000 0 oc.00coe

3 0.00000 0 0.0CCO0

4 0.00000 Q0 0.CCO000

2] 150000 0 1.0000C0

6 1.50000 0 o.GCceCe

7 0.0000¢ 0 n.0CCcoC

# .00000 0 n,0ceeon

4 1.u0000 l 1.0C0C0
ARC FLOW (UT StT FORCES
le 10000 0 0.00CCO
1y 3 0.00000 J 0.00CCO
le % (. 00000 0 0.00000
2y ) V. 00000 V] C.0000C
‘e " 1.50000 0 0.00000
1, 4 0.00000 0] 0.00C00
) P 0.00000 () 0.00000
Ny ’ N ,00000 0 0.0C0CuL
Ty 6 1.,0000 0 0.00000
>e R 0.00000 0 0.00000
6y ! 0.00000 0 0.0CQcCo
Ly 9 150000 0 0.00000
Iy, R 0.00000 0 0.00000
Te 9 0.,00000 0 0.00000
Hy ) 0.00000 0 0.00000
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SNURLE NET FLOW S INK MAX. PATH VALUE
1 2.00098 9 0.01893

DE FLOW CYT SET FCRCES

1 2 .0009R 1 2.00000

2 1.50000 0 0.00000

3 0.50098 0 0.00000

4 0.00000 0 0.00000

5 2.00094 0 1.00CC0

6 1.50000 0 0.00000

' 7 0.50098 0 0.00000

q 0.50098 0 0.00000

; 9 2.00098 0 1.00CC0
|

Aq( FLUW CUT SET FORCES

1y 2 1.50000 0 0.00000

Tor o) 0.50098 0 0.00000

1s % 0.00000 0 0.90000

Ze 3 0.00000 0 0.00C00

2¢ 5 1.50000 0 0.00000

Il 0.00000 0 0.00000

3, & 0.50098 0 0.00000

4y 0.00000 0 0.00000

b Y O l.‘)OOOO (V] 0000000

by 9 0.50098 0 0.00000

| oty T T 0.00000 0 0.0C000

l' 6y 9 1.500G0 0 0.00000

W, 7 0.500984 0 0.0000C

! Te 4 0.50098 0 0.00000

Hy 9 0.00000 0 0.00000
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SOURCE NFT FLOW S INK MAX. PATH VALUF
1 2.00098 9 0.00927

NODE FLOW CUT SkT FORCES
1 2.00098 0 2.00000

2 1.50000 0 0.00000

3 0.50098 0 0.00C00

4 0.00000 0 0.00000

5 2.00098 1 2.00000

6 1.50000 0 0.00000

7 0.50098 0 0.00000

8 0.50098 ) 0.00000

9 2.00098 0 1.00C00
ARC FLOW CUT SET FORCES
ly 2 1.50000 0 0.00000
1, 3 0.50098 0 0.00000
ly 4 0.00000 0 0.00000
2y 3} 0.00000 n 0.00000
2y 5 1.%0000 U 0.00000
3, 4 0.00000 0 0.00000
3, 9 0.90098 0 0.00000
hy S 0.00000 0 0.00000
5y 6 1.50000 0 0.00000
S 8 0.90098 0 0.00000
6y 1 0.00000 0 0.0C000
6y 9 1.50000 0 0.00000
Hy 7 0.5098 0 0.000C0O
T 9 0.5009R 0 0.00000
He 9 0.00000 0 0.00000
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SURCE NCTOfLOW < TNK MAX. PATH VALUE
1 2.00098 9 0.00464

NI FLOW cur SLY FORCES
1 2.00098 2.00C00
2 1.50000 0.0C0CO
) 0.50098 0.0C000
4 0.00000 0.00000
D) 2.00008 2.00000
¢ 1.52000 0.ut000
! CeH 9 0.00000
R 0500498 0.0CCLU
200098 2.0C0C0
FLOW FURCES
/ 1.50000 0 0.0C0LO
) 0.50098 0] 0.,00000
A 0.00000 0 0.00CC00
t 0. 00000 0 0.00000
9 1.50000 0 0.00000
Y G.00000 0 N.0CCC0
) 0.20098 0 0.00C00
n 0.00000 0 0.00000
' 1.50000 9 0.0CC00
4 0.50098 U 0.00000
{ 0.,00000 C 0.0¢C000
) 1.50000 0 0.0CC00
7 0.50098 0 0.00000
) 0.50098 0 0.000¢C0
) 0.00000 0 0.00C00




|(‘l}[

NN W\ -

-~

ARC

-~

SOUURGE

|

FLLW

3,00000
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Appendix C

CONVEXITY ASSUMPTION ON MULTIPLE FORCES

It was mentioned earlier that the assumption p(i)k+1 - p(i)k <
p(i)k - p(i)k.1 assures that allocating [n(i)] + 1 forces with probability
fi(i) and [n(i)] forces with probability 1 - (i) minimizes the proba-
bility that the infiltrator can successfully cross node i for given
n(i). This appendix will verify that statement.

Let P{k,i} be the probability that k forces are placed at node i.
Then, ZkP{k,i} = n(i) and the probability associated with node i is
1 - Z?{k,i}p(i)k. Minimizing this probability is equivalent to
maximizing ZP{k,i}p(i)k. The following theorem shows that for given
n(i), this occurs when the conditions above are satisfied.

THEOREM. The quantity (i)ZP[k,i}p(i)k is maximized, subject to
the constraint (ii)ZkP{k,i} = m(i) when P{{m(i)] + L,i} = #(i),
P{{m(i)],i} = 1 - (i), and all other P{k,i} = 0.

PROOF. Let h = max{k/P{k,i} > 0}, £ = min{k/P{k,i} > 0}, and
d =h- 2. Let P{k,i} = P{k,i} be a set of values of smallest d which
maximizes (i) subject to (ii). Suppose the theorem is false. Then
h- £=d22. Let m=min{P{h,i}, P{2,i}}. Set P{h,i} = P{h,i} - m
and P{h - 1,i} = P{h - 1,i} + m. Then set P{£,i} = P{4,i} - m and
increase P{£ + 1,i} by m. (If h- £ =2, then P{£ + 1 = P{£ + 1} + 2m).
Either P{h,i} or P{£,i} is now zero, decreasing d by at least one unit.
The increase in (i) is equal to m(-p(i)L + p(i)z+1 - p(i)h + p(i)h_l)-
Since (ii) is still satisfied, this is strictly negative from our choice

of P{k,i}. However, since h > £ + 1,
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p(1), - p) ;S pP), , - p(i),

- p(i), +p(Ld,,, - p) +p) ;<0

for a contradiction. QED.



Appendix D

FINDING MAXIMUM PATH VALUE

This appendix briefly explains the procedure for keeping track
of the maximum path value during the algorithm.

Let K be the maximum path value at the beginning of the algorithm
and let V be the value of C, the minimum cut set. Substituting the
generalized capacities (Expression (4a-b)) for the oues (Expression
(2a-b)) that appear in Expression (3), one obtains:

Zop(d) + ¥ ap(i,§) _ 1
AK K

vV .

But £ An(i) + T an(i,j) = MV, where M is as defined in step 5 of the

multiple intercepting force algorithm, Thus

MV
AK

1
X v

or K- AK = K(1 - M),
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