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THEORY OF SHOCK WAVES AND INTRODUCTION TO GAS DYNAMICS

By

Ya. B. Zel'dovich

Introduction

Gas dynamics is a component part of hydrodynamics, the science of fluids, liquids

and gases.

A particular feature of gas dynamics is the need to keep account of the compressi-

bility of the medium. Liquids may be considered incompressible under normal circum-

stances, whereas gases change their volume considerably even under a slight variation

in pressure.

It is obvious that specific formulas and laws of gaa dynamics have to be applied to

gases only insofar as we are dealing with pressure changes of great magnitude.

In the case of small velocities, the motion of gas can be regarded in the same way

as the motion of a liquid, i. e., ignoring the change of volume and compressibility.

Depending upon the condition, the order of n'agnitude cf pressire differentials

arising in a flow changes from pu2/2 the value of dynamic Impact according to Bernoulli's
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formula, to puc, where c is the speed of sound, u to the speed of motion and p in gas

density. Gas pressure is approximately equal to p c2.

If we Juxtapose the expressions, we see that at slubsonic velocities the pressure

{ differentials are small as compared with pressure proper and, consequently, we may

} therefore, as a rule,_ ignore the compressibility of the medium.

• Following is a definition of the scope of gas dynanmics. Gas dynamics is the

!! science of motion at great pressure differentials and high velocities, velocity being

I . measured in terms of the speed of sound.

! " in similarity theory we have the following ratio between motion and speed of sound:

ti U/c = Ba

S• where Ba is known as the Barstow criterion.

Gas dynamics studies motion and Ba values close to unity. If Ba is considerably

! smaller than 1, the general equation of gas dynamics becomes those of hydrodynamics of

I

i • an incompressible liquid.

it will be assumed in the following that laws of hydrodynamics of an imcompressible

Sliquid are known, and we shall therefore not dwell on the derivation of the corresponding

S: formulas.

S~To take account of compressibility means 'hat one also has to take account of the

S~change in the state of the medium. In hydrodynamics the action of dissipative forces

S~(viscosity) leads to a release of heat In the liquid and to a change in its temperature, but

S~it does not lead to a change in volume: the changes within the liquid have no inverse

S~effect on the nature of the flow and have little importance for the phenomena investi-

• •pted in hydrodynamics.

S~in gas dynamics, instead, we shall continuously deal with changes in the state of

Sthe medium in the flow proper. This aspect of gas dynamics requires that any and all.

•-phenme be also invetigate from a thermal dyai point of view; thus, themod~y-

S~namics is totally indispensable for the study of gas dynamics

[-2
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In the present book we shall deal only with specific phenomea of gas dynamics,

i. e., such that have no analogies in the mechanics of an incompressible liquid. WeL

shall not dwell on those subjects in which gas dynamics and the consideration of com-

pressibility give only slight correction for the conventional formulas of hydrodynamics

of an incompressible liquid. The emphasis in the present book will be on the careful

definition of the fundamentals of gas dynamics, of the fundamental laws, and of the methods

for solving the simplest problems, rather than on the computational methods of gas i
dynamics, the methods of numerical integration of complex twvo- and three-dimensional

flows, etc. We shall proceed here from the simple to the complex, rather than from

general problems to particular ones. Instead of writing first the equations of gas dy-

namics in their most general form (taking into consideration all the factors), searching

for general solutions and then, by simplifying these solutions, going on to the particular

solution of simple cases, we shall solve simple, elementr.ry problems that describe

certain aspects of some phenomena, and then, by means of these individual partial

solutions piece together the solution of more complex poblerms.

We can outline the following, fundamental fields of application of gas dynamics.

The first, which today is the better known and more developed one, ccmprlses problems

of flow around bodies moving at great speeds. This involves, first of all, the correc-

tions in ordinary formulas of resistance and lift for bodies moving At subsonic speeds,

i. e., corrections that are already applicable to contemporary aviation. A radical

change in flow around bodies occurs when we deal with velocities exceeding the speed

of sound. These speeds are involved in ballistics, i.e., the science of the motion of

missiles and projectiles, and also in the study of rocket aircraft of the near future.

This application of gas dynamics to the problem of the motion of a body in a gas

at speeds of the order of the speed of sound or exceeding it is dealt with in detail in

text books, hence we small deal with it only marginally here.

The second, extremely important field is that of the motion of a gas in ducts, such

3
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as nozzles and pipes. Again, gas dynamics becomes Indispensable if and when the

velocity of the gas attains or exceeds the speed of sound. In this field, the nature of

the flow, and the dependence of velocity and flow rate on pressure drop, are subject to

qualitative changes. This group of problems is of great significance for the theory of

turbinesi, jet engines and missiles.

A peculiar field of gas dynamics based on the consideration of the compressibility

of the moving medium is the teaching on sound - acoustics. The velocty of the medium

and the amplitude of pressure changes -.uder the effect of sound are very small. Never-

theless, consideration of compressibility becomes indi-penshble when studying the initial

stages of any motion, and when studying rapidly changing, especially periodical motion.

Shock waves are of particular interest from various points of view, ard they will

be oe of the main subjects of the present book. On the one hand, wherever the attempts

of integrating ecq-ations without introducing discontinuities (I. e., shock waves) lead to

paradoxes which make it impossible to solve these equations, the theory of shock waves

eliminates the paradoxes and makes it possib) a to design a regime of motion under any

conditions.

On the other hand, the shock waves themaelves are a paradoxical phenomenon.

They are paradoxical in that, without introducing any assumptions regarding dissipative

forces (viscosity and thermal conductivity), from elementary considerations we can

derive shock wave laws which include the increase in entropy, i. e., laws which in-

clude the irreversibility of the processes occurring in shock waves.

From this point of view shock waves afford a considerable logical and scientific

interest, irrespective d their application.

It is worth noting that all basic relations and fundamental concepts have been

established from the study of the general equations of gas dynamics some 50 years ago,

at a time, that is, when there existed no experimental material, and long before shock

waves were investigated by researchers.

As Emile Jouguet once said in a very poignant figure of speech, "the shock waves

4



first Appeared on the point of the pen of a theoretician."

We cannot but marvel at the keen analysis and theoretizing power of the great minds

of the past century, first of all of the German mathematician Bernhard Riemann, the

English physicitRtikine and the French artillerist Hugoniot; from different approaches

and indepetndently of one another tfey have created the theory of shock waves which, to

this day, has not lost its significance.

FinalUy, the interest in shock waves has increased over recent years in connection

with the problem of the destructive effect of explosions and the propagation of the ex-

plosion on the explosive substance (capable of chemical reaction). It is necessary to

know exactly the conidition of the substance compressed by the shock wave, the rate of

compression and s!milar properties of the wave. The present book is an introduction

to the theory of explosions.

It is the author's pleasant duty to express his gratitude to Prof. N. N. Andreyev,

B. P. Konstantinov, L. D. Landau, A. A. Sadovskiy, 0. M. Todes and Yu. B. Khariton

for going over his manuscript and giving valuable advice.

Literature: Popular introduction to hydrodynamics [22];* some general manuals

on gas dynamics [4, 23, 23, 27, 39, 1061.

Figures in brackets correspond to the numbers of the bibliography.
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SGs Chapter 1

Gas Dynamlcs Equations

We set up gas dynamics equations and neglect the effect of the force of gravity

and also (see below) that of viscosity and thermal conductivity. For the sake of sim-

plicity we shall write the equation for the one-dimensional case; generalization to

two and three-dimensional cases will then not be difficult.

We begin with the contiounity eqation, i. e., the equation that expresses the law

of conservation of matter.

We denote, as usual, by d/dt the substantial derivative in time, i.e., the deri-

vative taken for the given particle along its path, and by 8/8t the local derivative iir

time which characterizes the change of the studied quantities at the given point In

space, and write
'i-•_ ,• , (1-1)

do

or

Both formulas are, of course, completely equivalent. To derive the first formula we

observe the motion of the layer of matter that comprises a constant amount of that

matter. The second formula is derived by observing the change in density at the given

point in space.

The equation of motion does not differ from the equation of motion for incom-

pressible fluids:

Finally, the third equation is substantially new;, it represents a characteristic

feature of gas dynamics. This is the equation of the chanpe of sate.

In the hydromechanics of Incompressible fluids we added the incompressibility

equaiou p = coast to the first two equatious. How do we find the relaton between

density and pressure in a compressible fluid?

6



Density, pressure and temperature of a fluid are connected by &n equation known

as the equation of state. If we know the thermal capacity, we can connect temperature

with energy. To determine the connection between density and pressure, we must set

up another equation - the equation of energy of a fluid in motion. In the absence of dissi-

pative forces (viscosity and thermal conductivity) we have

dS d 'Pd (1-4)1
dE=---pdv, 7A p -, = 9 ••. (-)

where v is specific volume, a quantityinverse to density p.

The energy of any element of matter under investigat',on can only change on

account of the work of compression that is being performed on it by the surrounding

volumes of the fluid (gas).

Bearing in mind the fundamental thermodynamics equation

dE= TdS-pdv# 
(1-5)2

from the energy equation we readily obtain for the studiod case of the absence of

dissipative forces the natural conclusion

TUS = 4;, --- 0. (1-6)

In other words, the state of matter changes according to the adiabatic curve, it

changes with constant entropy.

As is known, for an ideal gas with constant thermal capacity, the adiabatic

equation is

p--Ae (1-7)

where k = c pCv, k = const. It can also be found without considering entropy, and it

was found that way in 1818 by Poisson who integrated Eq. (1-4), in which for an ideal

gas we substitute Clapeyron's law

E=e. T=-L R T= -5Pvt dE=-;PdV -I-4d. !L-8

Which are the conditions off applicability of the above equations 3 in which the effect

of viscosity and thermal conductivity was disregarded? It ts ibvious, in the first place,

that ba okder to apply these equations the Reynolds and Peclet numbers must he high.

7



"As is known froni similarity theory and hydrodynamics of an incompresulble iluld, the

Reynolds number charactekizes the relation of inertia and viscosity. The Peclet aumber

plays an analogous role in that it characterizes the relation of molar heat transfer of a

flowing fluid and the heat flows transferred by molecular thermal conductivity.

Thue, a high Reynolds number means that one may disregard viscosity In gas

dynamics equations, A high Peclet number means that thermal conductivity may be

ignored; it means that along the flow line motion takes place virtually adiabaticaly.

S~From the molecular-kinstic theory it follows that in gases the ratio of thermal con-

duction to volume thermal --opacity (known as thermal diffusivity) is approximately equal to

the viscosity to density ratio (known as kinematic viscosity). For this reason in a

gas flow the Reynolds number is quite close to the Peclet number, and both conditions

(namely, a high Reynolds number and a high Peoclet number) coincide.

Following Karman we can give a jiffferent formulation to the condition of a high

Reynolds number. We use the molecular expression for the viscosity coefficient

9 = *= &14(1-9)

where I os the length of the free path of the molecules in the gas, c' is the velocity of

moleculos, a quantity equal in magnitude to the speed of soun4, and P is kinematic

viscosity (cm 2/s).

If we substitute the expression for viscosity into the Reynolds number formula,

we get

"ReU = 3- -10)

where d if. the characteristic size, U is the chatacteristic velocity of the motion in-

- vestigated.

The relation between the speed of motion and the speed of sound is known as the

•- Barstow criterion

•---DB. (I-11)

In the field of "_5 dynamics interestug us, where the speed of motion is of the

8



same order of magnitude as the speed of sound Ba '- 1, the Reynolds number turns out to

be of the same order of magnitude as the ratio of the dimensions of system d to the

length of the molecule path 1.

The condition stated above according to which Re •, I, and according to which it

is possible to ignore dissipation forces (viscosity and thermal conduction), leads to the

requirement that the dimensions of the system be considerably greater than the length

of the free path of molecules.

We see further, however, that the fulfillment of that condition, i. e., a system

of large size, does in reality not always ensure small dissipation forces and the possibility

of studying adiabatic preiesses only. We shall see jin the following that in the presence

of shock waves in a flow there occur exceedingly large gradients of all the quantities

studied; the magitude of these gradients does no longer depend upon the dimension of

the system, and also does not drop as the dimensions of the system increase. In these

cases, we will have to consider the possibility of changing entropy no matter how large

the Reynolds number is.

Generally speaking, the possibility of an increase in entropy does, in principle, de-

pend upon the dissipation forces; all the observed large-size properties of the flow, how-

ever. and, specifically, the numerical value of entropy increase in a shock wave, do not

depend upon the magnitude of viscosity and thermal conductivity (they are self-modeling

with respect to thermal conductivity and viscosity); the laws of the change of state in a

shock wave can thus be derived without investigating the structure of its front from the

equations of conservation of matter, the amount of motion and energy, applied to the

states prior and after the passage of the wave.

In the case of high Reynolds numbers, we could expect a considerable effect of

turbulence. In matter of fact, however, studies of the simultaneous effect of turbu-

lence and extremely high (of the order of the speed of sound) velocities are very few.

To some extent, this lack appears to be due to the complexity of such a comparatively

9



far-out field. On the other hand, in most typical problems of gas dynamics we are faced

with short pipes and nozzles, short bodies to be flowed around; in a short pipe turbulence

has no time to develop, even if the Re number is high. Finally, in the hydrodynamics of

small velocities, with Ba < 1, the formation of eddies and turbulence is the only resistance

mechanism for Re >%; their consideration is absolutely neceassry for studying the forces

affecting a body mov- 1z" ia fluia. In the case of supersonic speeds there occurs what is

known as wave resistance and the possibility of irreversible dissipation of energy in

steaudy-state shock waves; a resistance different from 0 may be found also without studying

turbulence.
SAppendi

In order to determine the applicability of Eq. (I-1) - (1-6), let us take the general

form of gas dynamic equations (see, for instance, 123, 271).

The equation of motion, has the form:

A ON ([-12)
where the quantities X, Y, Z are components of volumetric force applied to a unit of mass,

and the quantities Txx, TXY, and so forth, are components of the tensor of stresses due

to the effect of viscosity. The effect of viscosity depends on the relative motion of neigh-

boring fluid particles. From the conditions of tensor symmetry, confining ourselves to

terms proportional to the first derivatives of velocity with respect to the coordinate,

taking the invariant sum of normal stresses on three mutually perpendicular platforms

to be equalled to the three-fold pressure, and isolating pressure from the stress tensor,

as this already has been done in formula (1-12), we arrive at the following expression for

the stress tensor:

.+ )
The equations of motionwith respect to the two other coordinates are found from (1-12)

and (E-13) by a cyclic shifting of indices.

10



The coefficients In (1-13) have been chosen such that

All

In the one-dimensional case

=U (x), uF =a,,=(), B11l

and the equation of motion (1-12) can be simplified to

ea. ax- 'P #- (J-14)

If viscosity and thermal conduction are taken into consideration, additional terms

appear also in the equation of energy: !n the general case of three-dimensional motion

(X is thermal conduction)

de e• (a.,X+-1a, Y- -a. )--
(-•. P .4 a,, U. .4 [us,

~ua~s~g~g,+-•[g•,(----~)+*...H
S .aT 0.0T * .r.

is x adx ay as ~.as (11s

We remind the reader that T without indices is absolute temperature. By using the con-

tinuity equation, the equations of motion in the form (1-12) and the thermodynamic re-

lation dE = - pdv + TdS, we can transform (1-15) to the following form:

:vd* a dx aVd 00
Sr. -' (1.16)

r* dl, I U

as as of (1-16)

By substituting the expressions (1-13) of the components of the tensor of viscous stresses,

we reduce the expression for the work performed by viscosity, irreversibly trans-

forming itself into heat In (1-16), t, a form which shows that this quantity is essentially

positive:

3L rl 5I 4 d)1 doi dli jj"

Axa s s i Ias (1-17)

1 1



In the case of one-dimensional motion
a T-'- (1(l • "a -18)

We introduce the dimensionless variables: coordinates referred to the characteristic

dimension of system d, velocity referred to the characteristic velocity (mean velocity

or velocity in terms of a random but definite point of the system) U, and timo referred

to the quantity d/U. We denote the dimeneionless variables with a prime:

d-=-4d; se=t4L t=h f d. (1-19)

We refer eutropy to thermal conductivity of the gas: 8' = S/cp. If we switch to the

dimensionless variables, we find:

at' QUU V ffd, ... 0I
Xd 1 a# 1-4'
A iasr i• ori

(1-20)

The external forces are comprised in the dimensionless equations as terms multiplied

by a characteristic dimension.. They can be disregarded If the motion occurs at a

high speed in terms of time but Is not emceedingly long in terms of space; the study of the motions

of a compressible fluid in the field of gravity 12 the subject of dynamic meteorology and will not

betouched uponin thisbook. The terms which describe the effect of viscosity and thermal

conductivity accozdug to the statement on page 9 (7)-(8) have the coefficients

S1 I IWd7== W and • '(-•

where Re and Pe are the Reynolds number and the Pecle* number.

The assumption according to which the Invariant sam of normal stresses on three

mutually perpendicular platforms is not different from threefold pressure contains

certain arbitrary elements. Of course, we can always determine pressure p precisely

in that fashion, namely, as one-third of the sum of three normal stresses, but In tatual

fact we are taking a further step and make a physical assumption according to which

pressure so determined for a given state of matter (definable by its composition, density,

wiergy, entropy and temperature) does not differ in magnitude from pressure

12



Pt measured under static conditions in a motionless gas. However, with the require-

ct1

ment of invariantness of the physical laws with respect to the transformation of -oordinates

we can readily associate the more general assumption according to which the invariant i

sum of stresses depends on the invariant consisting of derivatives from velocity components

with respect to the coordinates. Such an invariant is the expression for velocity diver-

gence

di u an, any, ad,,,

~ ~-4

Assuming that we can confine ourselves to the highest term (as this has already been dones
when setting up the expression for viscous stresses) we get o i n a

p- p,(e, E)c:ý,div-L. (1-22)

For a complete characteristic of the behavior of matter it is therefore necessary to

assign two independent viscosity coefficients 11 and

In its most general form compatible with the invariantness of the equations, the

expression for the tensor stresses is

MP.P_,_ LISE-I- dia ). (1-23)

where i1' ts the magnitude of dimensionality of viscosity which, as i1, must be determined

experimentally.

Assuming arbitrarily that il' = 11. 2/3, we got (1-13). In the general case, without

making this assumption, we obtain from (1-23) and (1-22)

-•-3.='- -2q. (I-23a)

The molecular kinetic theory readily describes and computes the first viscosity

coefficient (?I), which is equally essential in the presence or in the absence of com-

pressibility. The quantity is introduced on accouat of a "cut-off" stress in the flow,

in which Uy = uz = 0, ux = a + by. This stress is due to an exchange in motion between

the layers which slide one on top of the other with a different velocity on account of the

chaotic transverse motion of molecules from one layer into the other. On the basis of

these considerations, considering the layers which are at a distance equalling the length

13



of the free path 1, so that the average velocity (the velocity of mass motion ux) differs

by the quantity (8uX/ey) 1, calculating the number of molecules passing during a time

unit from One layer to the other, and the amount of motion carried with themn, we readily

find [see (1-9)).

where n is the number of molecules !n a volume unit, m is the mass of an individual

molecule, c' is the rate of mole'ule motion.

Which is the significance of the second viscosity coefficient ? (is a factor

for the quantity div u, which by the contnuity equation is identically connected with the

rate of density change of a substance:

-- a (1-25)

Thus, (describes the dependence of pressure upon the rate of change in density, i. e.,

it describes the fact that when the volume changes the static value of pressure iq not

determined immediately. The case where the second viscosity coefficient ( is of the

same order of magnitude as tj needs no particular explauation: such a case corresponds

to the determination of static pressure of the same order of magnitude as the time of

free path of molecules between two collisions, t?c.

There are some cases, however, in which abnormally high values of ( are

encountered.

In Chapter 2 we shall investigate in detail the extremely important example of

the molecular mechanism of a similar h~Iavilor of matter: in the presence of internal

degrees of freedom which yield additional thermal conductivity and are excitable at

a comparatively slow rate, pressure at a given density and a given energy of the gas

depends upon the degree of excitation of the internal stages of freedom. In the case

of compression (increased energy) pressmai. is somewhat greater, in the case of rapW

expansion it is somewhat smaller than the static values (which corresponds to

equilibrium excitation). The effect of this phenomenon with slow processes can be

described by formula (1-22,; the more difficult it is to excite the internal degrees

14
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of freedom, and the longer their time of relaxation, the more noticeable is the effect

under study at slower rates of change of state, and the larger will be the second viscosity

coefficient .

However, in the cas6 of fast processes conditions are attained according to which

the use of linear formulas (1-22, 23) is already inadmissible since the time for a change

in state becomes comparable to or even smaller than the time of relaxation of the internal

degreeb of freedom. It is necessary to introduce ;.ie energy of excitation of the inter.lAl

degrees of freedom in its explicit form and find its dependence on time by solving die

differential equation of the kinetics of extablished equilibriunm without the simplifying

assumption (admissible only in the case of a slow rate of change in parameters) according

to whici, the deviation from equilibrium is proportional to the rat# of parameter variation,

These problems are investigated in Chapter II (acoustics? and Chapter XIII (shock waves

in a gas with delayed excit~lion). Treatment of the second viscosity coefficient has been

performed by Leontovich and Mandel'shtam [16, 171.

15
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Chapter 2

Principles of Acoustics. The Speed of Sound

In the introduction as well as in the preceding Chapter we have several times re-

ferred to a characteristic value of velocity, namely, the speed of sound. As we study

the propagation of small turbu'ences, we shall show hoy from the equztions r4 gas dynamics

we obtain, at the limit, the equations of acoustics, and how In the equatioas of gas dyna-

mice is comprised the speed of sound.

We transform the equations of gas dynamics given above taking the rate of motion u

and the change in density to be small. The rate of motion is taken to be small as com-

pared with the speed of sound, u/c < < 1, and the changes in density and pressure are

taken to be small ap compared with the mean values of density and pressure, << 1.

The fluctuations of temperature in the wave in the gas are of the same order.
Furthermore, in the equations of motion we ignore the terms of an order higher

than the fire, one in the expansion of the equation of state of matter by powers of AQ or

Ap (they refer to the left out ones such as Alp); we also disregard u2 as compared with

uc ( the ratio of eliminated terms to the remaining ones is equal to u/c).

The values of the amplitude of pressure in a sound of a certain intensity, given below,

show irrefutably that these omissions are fully permissible in acouztics.

Density is written as follows:

Q0Q"-8*+' (11-l)

where Q.,initial density, is taken to be a constant quantity, and the change in density C,

connected with the propagation of sound or, generally. perturbations (turbulence) in the

ps, we take to be a small quantity.

The equation of conservation of matter can be rewritten in the following form:

1-(n-2)
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If we disregard quantities of a higher order of smallness, i.e., the products of two

small quantities, we get

-•., • - e+•--. •(11-3)

If we disregard, in the same fashion, terms of a higher order of smallness in the

equation of motion, we get

0| S__ __ = a, ae _ a,a.,

By differentiatiog the equation of conservation of matter with respect to time, and

the equation of motion with respect to the coordinate, we obtain a final fundamental

acoustics equation:

PC = ap PC.

We write

(U-Sa)

and see that this equation may have two groups of solutions: a first group

s=e(x--cI); Q=Q(x-cI); u=----,(.--d); (11-6)
Sp'-i~tx -- cO)

and a second group

0 1?x=-) =(X -,I- ct); U = U(V-,-•,) (H-6a)
P =p (X -4- CO.

which differs from the first in that under the function sign there is x + ct, instead of

x - ct, everywhere. We understand c to be everywhere the positive root of--, -c - lo

The first group of solutions in which all the quantities depend upon the combination

x - ct, represents turbulance Which expands toward the right, i. e., in the direction of in-

creasing values of the coordinate x. In fact, if at an instant t there occurred a certain
17
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state (PI, pz u1) at a point xi, then at the following instant t2 this same state will occur at

that point x2 where the variable x -ct (upon which depend all the quantities Qi, PI, a, of the

solution under investigation) has the same value

-x*. - xc •- ,) (H-7)

The assigned state propagates in the direction of increasing x at a velocity c, q. e. d.

By substituting this type of solution into the fundamental equations, we can readily

find for this wave from (1I[ 3 )3a

-- •' --0,',(n1-9)

where the prime denotes the differentiation of function (11-6) with respect to the variable

x - ct. If we assume at high values of x, i. e., way ahead in an unperturbed (nonturbulent)

pas, u = 0, ( = 0, and Q = go we find for a wave propagating to the right.

(n-10)

The imstant pressure value is also linearly connected with density and velocity:

Let us point out specifically that pressure is proportional to the first degree of velocity in

sound; according to Bernoulli's theorem, in a steady flow we ehould have a considerably

smaller change in pressure:

P "-P.- • "(11-12)

Thus we draw e.-tremely important conclusions from formulas (H-10) and (H1-11): In a

wave which propagates to the right, i. e., in the directioa of increasing values of the co-

ordinate x, the mass rate of motion u is positive whore the substance is compressed, and

18
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is negative where the substance is diluted or rarefied and its density is less than normal.

Likewiee, for the second wave in which all the quantities depend upon the combination

x + ct, that-is, for cr wale propagatting to the left, in the direction of decreasing x, we get

(11-13)

In both cases the velocity o! motion is directed towards the direction of wave pro-

pagation where the substance is compressed.

If at an initial instant there is assigned an arbitary distribution of density and an

arbitrary distribution of velocity of motion in space

1=0; Q=Q(x); 8=4(x)=Q(x)-Q U=U(x), (11-14)

then for the two waves looked for: the firstit1 -81 (r - ct), a, = ul (x-c-) and the second

82-'el (x -i- ct), at = at (x-1- c), we obtain two equations

#I (x) -1- 2 (x)= ). (x)-- 5, (x)- (11-16)

The second equation, (11-16), is obtained by applying (11-10) to C1 and ul, and (11-13)

to C2 and u2. Then we immediately obtain

#I(-'))(-iO- 2 u!!a(x-cO. (l-?

2 2*

a, (x - ct) -I- e (x - cO 4 1- U (x-- c#;es, (x - =f c-1 E O (x "- ,, -IL;v

1

It is not difficult also to study the reflection of an arbitrary perturbation from a

motionless (stationary) wall. To find a solution for the propagating perturbatio--

F, (A - 't), is, (x - :I:), we dd a wave which seemingly arrives from the other side of tVe wall

and propagates in the inverse direction, that is, a counterwave v2 (x - cd), u2 (x -,- cl).
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The form of function i2 ts determined from the condition of impermeability of the

reflecting wall u = 0 for x = xst, whence

a's (x= f) O-.- u2 (,, ) 0, (1'-18)

and If we apply (HI-10) and (11-13) we find

s2 (x,, t)'--e1 (x.,, O. (II-19)

( =#, (x. -- 2 x- /, •--o)

As should have been expected, density and velocity in the reflec-ed wave (index 2)

S at the given point at the given instant of time depend upon the values of density and

velocity in the dropping wave atthis same point at an earlier instant of time, the interval

being equal to the time required for covering the distance from the given point to the re-

flecting surface and back at the speed of sound.

Figure 1 shows the transformation of the assigned instant into the initial instant of

an arbitrary distribution of density and velocity into two waves which move in opposing

directions, and the reflection of one of them by a stationary (motionless) wall; We select,

as an instant, an initial condition in which in a certain region there is an increased pressure,

but otherwise the substance is at rest everywhere.

The consecutive series of graphs a0 6o, a, b,, a2, b,..., corresponds to the instants

1=0, ifs,- Grapha a represent the instant distribution of density (the abscissa axis

Q = ee), and grsphs b show the distribution of velocity (abscissa axis u = 0).

The theory of the propagation of spherical waves in three-dimensional space is nearly

as simple as the one-dimensional theory, as given in equations (1I-1)-(H-20). The coordinate

20
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x will be replaced now by r, the radius, i.e., the distance measured from the symmetry

center of motion. We Investigate only spherical-symmetric motions in which each quantity

(velocity, density and pressure) depends only on time and on the distance r from the sym-

metry center and is constant on the sphere of radius r, i. e., does not depend on the radius-

vector angle drawn from the symmetry center with the coordinate axes. The motion of gas

particles occurs only along the radii plotted from the symmetry center. For this reason

there is no need to use vectorial designations.

/1

Lij

•.• ______r--Z

95

a, •- . /J

Fig. 1. Proagtion
and reflection of a
rectilnsar pressure
pulse along one co-
ordinate in linear

acoustics.

'4 4

The equation of conservation of matter takes the form4

•(H-21)
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The equation of motion does not change:

By means of simple transformations we find

(11-23)

In this form the equation differs fromthe simple equation (11-5). We substitute

(11-24)

Then. foz function 71, we obtain after appropriate reductions the wave equation for

one-dimensional motion

i

- Cl , (11-25)

* the solutions for which are already known

) =-1%r I I, (r--- c., (11-26)

Thus, the general solution for the amplitude of change of density in a spherical

wave takes the following form:

• • (11-27)

By substituting expression (R1-27) into Eq. (11-23), we can readily see that it

satisfies the equatiorA for arbitrary functions ill, 172" The first highly important dif-

ference between spherical waves and plane waves (i. e., one-dimensional waves in which

all the quantitieb depend only on one coordinate x, (see above)) consists in that the wave

amplitude during propagation from the center drops in an inversely proportional fashion t&

the distance from the center, see (11-27); the amplitude of a wave converging toward the
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center increases according to the same law. A drop in amplitude as the wave moves away

from the center is perfectly natural; let us take a function i11 such that it be different from

zero only within a given interval of the change of quantity r - ct, a <r- ctb. This means

that only the substance comprised in the spherical layer of constant thickness b -a, a -4-

ct <,r<a-s- c--i-(b-a), is turbulent, involved in wave motion at any instant of time. As r

increases with increasing time, the amount of substance involved in the motion increases

proportionally to the layer volume, i. e., proportionally to r 2 .

The sound energy of a volume unit is proportional to the square of the amplitude.

Thus, in the absence of absorption (the transformation of sound energy into thermal energy)

the law of matter conservation leads to condition f 2r 2 = const, C- r 1 , i.e., to a decrease

in the amplitude in accordance with the law mentioned above.

The second difference between spherical waves and plane waves consists in that the

simple expression (11-27) is true for the amplitude of change in density and pressure, but

not for velocity. Pressure and density are related by Poisson's adiabatic equation; for small

amplitudes this yields

P~ ~ khe 00

which is exactly the same as in a plane wave. However, the simple proportionality of the

speed of motion and density or pressure does not take place in the case of spherical waves

(see Eq. (H-10)).

Let us substitute into (1I-22) the expression of density in a spherical wave moving

away from the center

8 1=n, (r-cf) r.

Then w•, find

am 0 (Iufr -d) -upd~.))

- -i • (1-28)
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In the expression for velocity there appears an additional term which disrupts the

simple proportionality of (lI-10) which takes place in the propagation of plane waves. This

fact leads to significant consequences which were first noted by Stokes.

Let us investigate a wave of finite width, which moves in a specific direction, namely,

towards increasing coordinates; after the passage of the wave, the substance returns to its

initial values of density, and then rests.

In the case of a plane wave, the dependence o! density on the coordinate inside the wave

(inside the region of turbulence) is not subject to any restrictions; owing to the simple re-

lation (11-10), at the point where density returns to its initial value, velocity likewise be-

comes zero.

However, in the spherical case, condition (= 0 is not sufficient: In order that velocity

become zero after the passage of the wave, it is necessary that also the second term in

(11-28) become zero

~,c4.J Jq (04d=JIre d=0.

(11-29)
The integral in (11-29) is taken with respect to the entire width of the wave, i. e.,

with respect to the entire region In which C A 0. In formula (11-29) we .%an see that in. a

spherical wave with a finite width the change in density is bound to occur with changing

signs: the integral in (11-29) will become zero only if In one of the portions of the integration

region i is positive and in the other it is negative. The same applies also to a change in

pressure In the wave owing to a linear relation between small changes in density and

pressure.

How can we represent in an elementary fashion the impossibility for a spherical

wave of finite width to have compressed matter over its entire amplitude, and the causes

for it ? The additional amount of matter 5 comprised in the wave Is equal to f 8 dr.
-1

Amplitude ( drops asr ; thus, the additional amount of matter in a wave, in which 4 > 0

everywhere, must increase proportionally to r as the wave propagates. It is the amount of

matter that increases as the wave of higher density propagates which causes a wave of lower

density to follow it.
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A closer examination reveals that on the borders of the wave, 1. e., where both u and

( are very small, the quantity C is even smaller so that the relation between u and ( within

the boundaries of the borders of the wave is the same as in a plane wave. Finally, it can be

shown that not only a change in density but also the speed of motion u must change its sign

inside the wave: there can be no spherical wave of finite width over the entire extension

of which the substance would be moving in the direction of increasing radius. Inside the

wave, however, the point at which the sign changes is somewhat shifted toward the symmetry

center as compared with the point at which the sign of ( changes (Fig. 2).

(

Fig. 2. Distribution of density
and velocity in a spherical wave.

All this is of the greatest importance for the theory of the propagation of waves caused

by an explosion, with which we shall deal in the last Chapter of this monograph.

In order to characterize the absolute values of pressure and velocities with which

we have to deal in acoustics, let us give a few figures. LoudLess is measured on a

logarithmic scale ii decibels (after the name of the inventor of the telephone, Graham Bell).

An increase in loudness by n decibels (abbreviated db) means that the sound intensity increases

10n/10 times; this corresponds to an increase in the amplitude of pressure, density and velocity

* by on/20 times. Zero corresponds to the sensitivity threshold of the ear of an average person.

The rustle of leaves, or whispering have a loudness of approximately 10 db, an orchestra

playing fortissimo approximately 80 db (the sound intensity is 10, 000,000 times greater).

An extremely loud sound of 130 db produces in the air a change in density up to 0.4%, which

corresponds to a pressure amplitude p - p =0.4*4,• 1.4 p. 0.56f10, pa - 56. t of the water

25
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column. The amplitude of the speed of motion of air particles attains 0. 4% of the speed of

sound, i.e., 1.3 m/cec. The amplitude of particle displacement amounts to x-x*=Io 0.40/,- =0.0Wiq !', i.e., 0.060/, of the sound wavelength jp, about 0. 036 cm for a sound

with a frequency of 500 Hertz. Radiation energy equals 0. 1 w/cm2. Sound travels 330 m

during m I sec, so that the sound energy of a volume unit at a loudness of 130 db amounts

to 0.1/330. 100 w sec/cm 2 . cm= 3 10 6 J/cm3 = 0.7 • 106 cal/cm3.

We point out as a comparison that the thermal energy of air under normal conditions

amounts to 0.07 cal/cm 3, that is, 105 times greater.

Thus, not only whispering but also the fortissimo of an orchestra or the roar of a lion

represent a very small shift and change in the state of the air.

The sounds perceptible to the human ear have a frequency between 20 and 20,000

Hertz (oscillations per second), i.e., a wave length from 15 m to 1.5 cm.

The speed of sound is defined by formula (1H-5a).

Sir Isaac Newton in 1687 was the first to compute the absolute value of the speed of

sound from the values of elasticity and density of air already known at the time, and showed

the independence of the speed of sound from its amplitude and frequency. Taking the Boyle-

Mariotte law for the relation between presrire and density p =- const, p -

const k nint T= const, Newton found

C= 1P * 3 /P=:9 l6 fekt= 28 0 ma
r~~ 17 see sece1-0

Direct measurements soon showed, however, that the speed of sound in the air

is almost 20% higher than the value computed by Newton. It was Laplace who explained

this discrepancy in the following way: in a sound wave compression and rarefaction occur

adiabatically, according to Poisson's adiabatic curve. Heating duriug compression and

cooling during expansion enhance the changes in pressure in a sound wave, and increase its

velocity
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(rl1-31)

where k c /cp v
We bring here a table compiled by Richardscn in 1939 [801 in which are juxtaposed

the values of the speed of sound (in meters per secondl in various media, measured ex-

perimentally and computed from the isothermic and adiabatic compressibility.

Table 1

Substance State TK c observed c computed k
(m/sec) (m/see)

abiabatic isothermic

Argon Gas 303.1 324.6 324.2 251.2 1.667
Nitrogen Gas 273.1 33I. 3 336.7 284.5 1.400
Benzol Fluid 293.1 1324 1319 1095 1.450
Teluin Flui,! 293.1 1328 1317 1138 1.340
CC14  Fluid 293.1 935 931 774 1.46

Water Fluid 27? 1407.0 - - 1.000*
Water I-luid 313 1530.3 - - 1.026

,
At 40C, maxium density of water.

The excellent agreement with Laplace's formula proves that the change of statx in a

wave is strictly adiabatic. From the speed of sound Laplace found the thermal conductivity

of air with constant pressure and with constant volume. Meyer ascribed the difference be-

twcen o0, and c, of the air to the work performed by the air when it expands with heating and

with constant pressure. Proceeding from these consideraticns and from quite imprecise

experimental data, Meyer approached for the first time the definition of the relationshi?

mechanical work and heat, the "mechanical heat equivalent", the numerical basis of the

law of energy conservation. Only later, under Meyer's influence, Joule performed, direct

experimentE which confirmed the traneformation of work into heat; he also found a more

accurate vah-e for the equivalent. Proceeding from the measurements of the speed of sound,
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Rankine computed the thermal conductivialy of air in 1850, three years before the exact

measurements by Ren'o (Reignaud? ?).

Particular meption ahould be made of the considerable difference between isothermic

ait sdiabatic speeds of sound in a number of fluids. In this case the difference between

cp and cv is no longer connected with the performance of work; instead it ii connected with

the increase of internal energy, with the overcoming of the cohesion of the flaid molk(.ules

with thermal expansion under constant prassure. 6

Today the method of measuring the speed of sound is completely different from the one

used at Laplace's times. His contemporaries measured with a chronograph (or a timing

device) the time during which sound travels a certain distance of several kilometers. At

hýe nrft"=: Uime, instead, one works with short waves of strictly determined frequency mc

w is measured by an electric circuit. At a given frequency, we will find the speed of

sound by determining the wavelength ju in the ' substance by the formula c = L w.

The wavelength is found by placing in front of the sound radiator i sound-reflecting

plate which is slowly moved away from the source by means of a micrometric screw.

Sound intensity reaches a maximum each time that the distance between the radiator and

the reflector is travelled by an integral number of half-waves. Another maximum is

reached at the same time by the consumption of energy by the radiator, recorded by

electric devices.

Of great significance for physicists and chemists is the principle (thoroughly in-

vestigated in recent years) according to which the speed of sound depends on its frequency.

If sound propagates in a gas in which a part olthe degrees of freedom is excited at a

slower rate, so that the thermal capacity of the gas depends on the rate at which the tem-

perature changes, then we have to distinguish two critical regions. In the first region,

with low vibration frequencies and a comparatively slow change in temperature, complete

equilibrium has a chance to establish Itself while a change in state occurs In the acoustic

wave, all the degrees of freedom are excited and thermal capacity attains maximum values.

In the second region, with a sufficiently rapid excitation, i. e., with a higher sound
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frequency, some internal degrees of freedom have 0o time to become excited. The change

of state in the gas occurs as if its thermal capacity were smaller.

The expression for the speed of sound in a gas is (

O•z- ?; k•=•' 1••, (11-31a)

We see from this equation that for maximum values of thermal capacity the adiabatic index

k has a minimum value, hence we obtain a minimum value for the speed of sound.

Thus, delayed excitation of the internal degrees of freedom, or of any part of thermal

capacity, results in the dependence of the speed of sound on frequency, i. e., in dispersion

[501.
In the case of carbon dioxide with a linear molecale (the three atoms 0, C, 0, are

alined in equilibrium on a straight line), thermal capacity at room temperature c isv

3.3 R. This thermal capacity is made up of progressive heat capacity 1.5 R, rotational

heat capacity R and oscillatory heat capacity 0. 8 R, R being the gas constant (R = 1.985

cal/degrees x mole).

Kneserts [621 measurements have shown that with frequency changing in an interval

from 104 1i/sec (10 kH) to 106 1/sec (1000kH), the speed of sound changes from 260 m/sec

to 270 m/sec, or about 4% in accordance with the change of thermal capacity c from 3.3 Rv

to 2.5 R, and the change of k from 1.3 to 1.4. It follows from these measurements that

the time for establishing equilibrium in the excitation of oscillations of a CO2 molecule

is 10 - sec. Oscillation is usually excited by one of 600,000 collisions, the oscillating

molecule releases its energy during one of 50,000 collisions with other molecules. 7

Analogous phenomena will take place in a system in which Additional thermal

capacity, excited comparatively slowly, is responsible for some reversible chemical re-

actions.

As an example we cite nitrogen dioxide which at room temperature is in equilibrium

with nitrogen tetroxide

2NO, ± NIO,.

29



In this case, If compres~aon time exceeds the time of the reversible reaction, we must
take into account "chemical heat capacity" which arises from cffset disrupted equilibrium

and the release or absorption of reaction heat with cbinglng pressure and temperature.

At high frequencies, instead, equilibrium "freezes" and the system behaves as a mixture

of noninert-reacting gases if the converaion of NO2 into N20 4 cannot occur during an

oscillation period. In 1920 Albert Einstein [501 was the first to develop the theory of

sound dispersion applicable to these systems.

Simultaneously with sound dispersion, i. e., the dependence of the speed of sound on

frequency, there also takes place an appreciable increase in sound absorption.

The mechanism of sound absorption can in this case be readily clarified by examining

how expansion and contraction take place in the plane p, v (Fig. 3). Two adiabatic curves,

BAB' and CAC', intersect at the initial point A. The first curve corresponds to rapid

changes of state with a frozen part of thermal capacity, 9nd the second one corresponds

to slow equilibrium processes. If we rapidly burn the gas, it will change to state B. If we

hold, with constant vohlne, the time required to excite the entire heat capacity, we will

get to point C. In the case of rapid expansion, we will follow line CA', parallel to BA, and

only after exposure for a aufficient amount of Mac we will again get to the initial point.

Thus, the area ABCA' describes the work which, in such a cycle, has been irreversibly

expended and changed Into heat. 8 This work is proportional to the square of the amplitude.

Here we studied a simplifiad cycle consisting of rapid changes of state with protracted hold-

ing in the interval. The change of state in a sinusoidal sound wave with delayed excitation

of the internal degrees of freedom is described by ellipses In the plane p, v. The center of

the ellipses is the point corresponding to the unperturbed state. Figure 4 shows three such

ellipses. Ellipse corresponds to low frequency and slow oscillations. Motion is close to

adiabatic curve CAC' (cfr. Fig. 3). The width of the ellipse, which denotes maximum

deviation from equilibrium, is proportional to the rate of change of state, I. e., it is

proportional to frequency w. Consequently, also the area of the ellipse, as well as the

portion of energy irreversibly converted to heat during one oscillation, are proportional
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Fig. 3. Cyclic process in a
gas with delayed excitation of
a part of thermal capacity.
Area ABCA' determines

energy losses.

1z
Fig. 4. Change of state with gas
oscillations at delayed excitation
of part of thermal capacity.

Oscillations of different frequencies:
1 - low frequency; 2 - high frequency;
3 - average frequency, oscillation
period is of the same order of mag-
nitude as thermal capacity excitation
time. Ellipse area and losses per
one cycle are maximal for average

frequency.

to w, hence sound absorption at a distance equal to wavelength #A is also proportional to

w. Here the behavior of matter can be described by the second viscosity coeffieient

(Chapter 1, Appendix). Sound absorption referred to a unit of time or a unit of length is

2
proportional to W2, since oscillation time and wavelength are proportional to 1/w.
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In the second limiting case of extremely rapid oscillations we obtain ellipse 2; the

energy of the internal degrees of freewdom manages to change only by a very small value,

and the entire ellipse is very close to adiabatic curve BAB'. The width of the ellipse is

proportional to the amplitude of the change of energy of the internal degrees of freedom, Uad

the amplitude, in turn, is proportional to the time during which this energy is accunmulated,

i. e., it is proportional to t•-he oscillation period, and also to w

The highest values of energy absorption during one oscillation are obtained with such

oscillations the period of which is close to the time required for establishing equilibrium,

i. e., when sound dispersion is greatest. In Fig. 4 this case is represented by ellipse 3,

the width of which is of the same order of magnitude as the distance between the adiabatic

curves BAB' and CAC' for maximum pressure amplitude. With slower oscillations the

change of state approaches equilibrium state, and the losses during the cycle drop like

w does. With faster oscillations, the system is nearly all the time far away from the

equilibrium state, excitation of internal energy occurs irreversibly, but because of the

rate of the cycle it exceeds the cycle only slightly, and the losses per cycle are -'- .

In the second region (high frequencies), the losses referred to a unit of time tend

toward a constant value. If the thermal capacity of the internal degrees of freedom is of

the same order of magnitude as the entire thermal capacity, sound intensity fades to l/e

during a time equivalent to the time required to excite the internal degrees of freedom r.

Maximum absorption and the behavior of matter at these high frequencies in the

second region, where o) ,> cannot be described by the second viscosity coefficient;

they require, instead, practical concepts regarding the presence and properties of the

internal degrees of freedom. A vast literature regarding dispersion and absorption of

sound has become avviilable over the recent years; in this book we can only refer to the

thorough review by Richards [801.

In a system which has no delayed excitation of the internal degrees of freedom, the

fundamental reasons for sound absorption are viscosity and thermal conductivity of the

substance. The absorption factor on one wavelength (during one oscillation) is
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proportional to the frequency and inversely proportional to the wavelength p. In the case

of gases it approaches 1 as an order of magnitude, when the length of the wave approaches

the length of the molecule path in the gas 1, so that we can write it as I 11A. This expression

can be obtained from the exact formulas developed by Stokes [90, 911 and Kirchhoff [611 if we

substitute into them the molecular-kinetic expression for viscosity (1-9) and thermal

conductivity of a gas. That sounds with a wavelength smaller than the free path cannot

propagate is obvious.

The effect of thermal conductivity on the propagation of sou d can be explained by

examining in the p, v plane the adiabatic and isothermal curves in the same way as we

have examined two adiabatic curves (with and without excitation of the internal degrees of

freedom). If compression occurs so rapidly that heat .ransfer has no chance to take place,

then the change of state occurs adiabatically; in the case of slow oscillations, we can expect

an isothermal change of state to take place; the transition will be accompanied by dispersion

(dependence of velocity on frequency) and sound absorption.

This applies to the case of heat transfer with the outside medium, for instance, when

sound propagates along a rod or in a gas enclosed in a small tube with heat-conducting walls.

If we are talking about heat transfer in a sinusoidal wave that propagates in an un-

limited medium, between sections where the matter is compressed and heated and such where

it is rarefied and cold, then we must bear in mind that the time of compression and expansion

(the period of oscillation) is associated identically with the length of the wave.

The levelling time of the sinusoidal temperature distribution is proportional to the

square of the distance, the square of the wavelength, i.e., the square of compression.

Hence the apparently paradoxical conclusion according to which the signficance of heat

transfer is the greater, the faster compression occurs, since by accelerating compression

2n times heat transfer is accelerated even more (n times) and becomes considerably more

substantial than in the case of slow compression.

Transition to isothermal sound propagation cannot be observed in gases, since that

transition would occur at wavelengths of the order of magnitude of the free path -- where
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the propagation of sound is impossible; in gases, moreover, viscosity always exercises a

much stronger effect than tbermal conductivity.

According to Zener's most recent works [100], the levelling of thermoelastic tem-

perature 6 fferences and the transition to isothermal propagation represent an extremely

important mechanism of sound absorption in metal with a very high electron thermal con-

ductivity. Since in a crystal the thermoelastic properties depend upon its orientation,

additional losses cccb'r in polycrystals.

It is interesting to note that in the case of the reflection by a solid wall of a sound

that propagates in a gas, the temperature and velocity gradients are considerably greater

than in a sinusoidal wave propagating in an unlimited space, the ratio is the greater, the

smaller are viscosity and thermal conductivity, since with decreasing t) and X the depth

of penetration into the gas created by the turbulence wall also decreases. !n expanding

these concepts, B. P. Konstantinov showed that the absorption of a sound reflected once

by a ,wall is of the order of s/JI'(I being the molecule path, and 14 is the length of the

a sound wave), i.e., it is greater by several orders of magnitude than absorption on a

wavelength in the case of propagation in unlimited space [131.

Finally, let us mention the peculiar difficulties that arise in the theory of sound

when examining the second approximation without neglecting compression in the wave

as opposed to initial density, without neglecting mass velocity of matter motion asI opposed to the velocity of sound propagation.

In this case it appears that the wave crests, i.e., the spots where density is maximal,

propagate faster than the troughs, i. e., the spots where density is minimal (to the point of

rarefaction). This happens for two reasons. First, in a compressed gas the speed of

sound is greater because the gas temperature is higher. Second, the compressed gas has

also a mass motion moving in the same d'rection as sound propagation; the velocity of this

motion has to be added to the velocity of sound propagation. This difficulty, which is

implicitly contained in Poisson's studies [75J, was first noticed by Stokes in his investigations

on sound propagation [92J.
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We can readily see from Fig. 5 that tne propagating sinusoidal sound wave (a) will

have to continuously change its ahape.

~i

Fig. 5. Deformation of a sinusoidal sound wave as a function
of propagation

a - sinusoidal wave; b - deformed wave, contains overtones;
c - acoutstics equations yielded a solution devoid of physical
significance, with three values for pressure of velocity at •ne
point; in reality, however, c does not occur, shock waves are
formed, dissipation forces nust be calculated.

The portions of pressure increase become shorter and steeper, while the portions

of pressure drop expand (b). 9 Acoustics formuls s of the secot-.J approximation lead

eventually to an absurd wave form (c), where at one and the same point we have three

different values for density and pressure.

Analysis of this difficulty led Riemann [811 and Rankine [78] to far-reaching con-

clusions (see Chapter 7 and ff.)
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Chapter 3

Gas Flow Through Nozzles

Let us now investigate the motion of gas in a duct with varying diameters. We will

confine ourselves to a one-dimensional study of the phenomenon; we will therefore dis-

regard the velocity components directed perpendicularly to the duct's axis, and consider

all quantities (density, velocity and pressure) to be dependent only on the distance measured

along the duct, but equal in any normal cross section of the duct and independent of time.

We write for the entire flow the equation of conservation of matter, which, in the case

of steady flow interesting us, leads to the simple condition according to which the same amount

of matter must flow during a unit of time through any cross section of the duct.

We denote by F the cross section's area and write the equation of conservation of matter

in the form

euF= const. (MI-1)

In the same fashion we writ s the equation of energy conservation which expresses

the constant amount of energy flowing through a certain cross section, and the work

performed there by pressure, for any cross section

( )2 F4 ,nF= const (M-2)

The expression in parentheses is the energy of unit of mass, the entire first term

is the energy of a unit of mass miltiplied by the amount of matter flowing during a unit

of time through the entire cross section of the duct. The second term is the work per-

formed there by pressure during a unit of time.

With the aid of the first equation, wu transform the second equation to the following

form:

const,10  (11l3)

where I, known as enthalpy
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(M1-4)

is one of the fundamental functions of thermodynamics. By dividing (M-2) by (M-i) we

get (M-3).

We can find the distribution of velocity and density along the pipe from the two

equations above, and from the adiabatic law for the change of state of matter in a flow.

To determine the constant in Eq. (111-3), we write its value for the inlet of the

pipe, i. e., for that spot where the cross section F is very large and where, accor'..ngly,

velocity u may be regarded as very low. All the quantities belonging to that cross section

will be denoted by the subscript 0:

u t - / . .( 1 1 -5 )

We add to this the cendition of adiabaticity of the flow, the absence of heat transfer to the

walls and losses from hydraulic resistance. This yields for the specific entropy of matter

S=const= S'. (11-6)

Now we write the thermodynamic expression

dl--1 TdS-t- vdp. (M-7)

For constant entropy

t o (11-8)

which together with (M-5) yields the velocity

to f (111-9)

If the change in pressure is small, we neglect the change in the integrand

U2 PO r -- ,(---P) -12--- o- •
A -- O - (M-)0)
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Equation (MII-10) is then the Bernoulli law of the flow of an incompressible liquid.

af p is close to p0 . we can disregard the change in density and, as in the case of an

incompressible liquid, we find that the amount of gas ell, that flows during a unit of time

through a unit cross section is proportional to the square root of the pressure difference.

However, in the case of large pressure differentials, and with small pressure in

the jet, the dr.op in density of the outflowing gas causes an increasing effect. Whereas the

velocity increase is liiuted by the quantity

u=a17i (=n-il)

for I = 0, gas density may drop to values as close to zero as might be desired,

Then the product Qu becomes zero.

For a given pO the amount of matter flowing through a unit area of the cross section

attains a maximum with a certain value of the pressure in the flow p less than pO; it then

drops again as p drops further.

We will show that maximum flow rate per unit area of cross section is attained

precisely when velocity equals the speed of sound in the outflowing gas.

We seek the maximum value of the product

We take a logarithmic derivative with respect to pressure of expression (M11-12) and

set it equal to zero (all derivatives for S const):

i depi-'

dip~r [dP - 1-€'- d a4dp= o-1 ; 2(to,--/) -- u,

So=~~.. C,_
(M1-15)

q. e. d.
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In un ideal gas with constar. thermal capacity, the dependence of flow rate on

pressure can be readily worked out analytically.

In this case the relation

holds. In an adiabatic flow

I h-I h-_I

C2 - k.=pýc.2(jh (fl-7

We introduce dimensionless variables and refer the corresponding quantities to

their values at rest; the speed is referred to the speed of sound in the original gas. We

denote dimensionless density by r==e/e,) pressure by x= p/pu, the speed of sound by

y = -c 0c, velocity by T == u/'cw the rate of low per 1 cm2 of cross section by p r p

Then we obtain the following equations:

Figure 6 shows the curves r, y, 0, $, as functions of I9 for a diatomic gas (e. g.,

air) for which

k=f= =1.4.
C, -- S A

if Iv changes from 1 to 0, r drops from 1 to 0, 0 monotonically increases from 0 to

/5--= 2.24; 7 drops from 1 to 0. The quantity 0 reaches the maximum of 0. 58 for 1r= 0. 53;

= 0 for ir= 0 and f=1. At the maximum point of 0 for :r=-0.53, y•-ý-'-0.90.

Using the example of air at room temperature and atmospheric pressure flowing

into space with lower pressure, we will show how to use the chart in Fig. 6 plotted from
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dimensionless quantities. For 170C, p0 = 1 atm absolute, I0 of air 1.2 kg/m$, c = 340

m/sec. We find the outflow conditions for p = 0.7 atm absolute, W = 0.7. On the chart we

find r= 0.785, wbence e = 0.785x 1.2 = 0.93kg/m3; 4P = 0.67, whence u = 0.67 X 340=

227 m/sec; y = 0. 94; c = 324 m/sec. The drop in the speed of sound during cutalow is

the result of cooling during adiabatic expansion. Finally, • = 0.54, to which corresponds

a flow rate per second of 0.54 x 1.2 x 340 =220 kg/m2 x sec.

v l----

/S

14

13 -

as

3.

J$

Fig. C. Deper-dence of dimension-
less density (r). velocity ()
speed of sound (y) aid flow rate
(@) on dimensionless pressure
(V9) in a diatomic gas with con-
"stantthermalcapacity, k 1.4

in the case of steady adiabatic
outflow.
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Maximum velocity of steady flow into a vacuum attains 340/5 760 m/sec.

For maximum 0 the velocity attains 360 m/sec, and the flow rate is 230. kg/mr x

sec.

The quantities relating to the state of the gas in which maximum flow rate per unit

of cross section is attained (maximum (m, maximum 0) will be termed critical quantities

and will be denoted by the subscript kp.

Figure 7 shows the diagram of an experimental gas flow.

Fig. 7. Diagram of
an experimental gas
flow from a tapering
cap (nozzle).

The vessel on the left contains a gas under pressure p0 and is provided with a

simple tapering cap (a nozzle). As the counterpressure P. decreases in the vessel on the

right into which the gas flows, the amount of outflowilg gas increases according to the

formula of Wentzel-St. -Venant (M. 12, M1-18). But if one were to follow that formula

for all conditions for 'ich the pressure in the outlet cross section of the nozzel p is

taken to be equal to the pressure in the vessel on the right pn , aen, beginning with a given

counterpressure, any further drop of the latter should result in a decrease of the amount

of ou•tflowing gas; specifically, for the flow into a vaccum one would reach the absurd con-

clusion that the rate of gas flow per second equals zero,

The faet that when the volume of outflowing substance reaches a maximum, the flow

speed is exactly equal to the speed of sound (see Eq. 111-15), helps explain this paradox

and makes it possible to predict what will actually happen when pn is less than p critical

(i. e., pn smaller than 0.53 p0 for air). 11
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In fact, as soon as critical flow is attained, no signals can be transmitted back to the

outflowing gas through the layer of gas moving at the speed of sound. It p3 is less that

Pkp , the pressure and velocity in the nozzle will no longer change, and it will stay equal to

critical pressure and critical velocity.

The amount of outflowing substance, having reached a maximum, will no longer change

with smaller counterpressure values (dashed Ihne in Fig. 6).

With a counterpressure p. such that P.> P.> P.0, there will be an outflow regime in

which the pressure p in the jet at the nozzle outlet is exactly equal to the pressure p. in

that medium into which the gas flows. The values for velocity and flow rate can be taken

from Fig. 6 by substituting it = pn/p0"

At an appreciable distance (several nozzle diameters), the outflowing Jet maintains

a constant velocity along the axis, the gas particles move parallel to it at an identical

speed (Fig. 8); further on the jet gradually widens and slows downas it mixes with the

surrounding medium. 12

Fig. S. Jet flow at a counter-
pressure exceedirg critical
pressure. Subcritical (subsonic)
jet in free space. Pressure at
jet ottlet equals the pressure
in surrounding medium, Speed
gradually fades as jet widens due
to inflow of surrounding substance.

Uf the c Aunterpressure in the medium into which the gas jet flows, p n is smaller

t.han critical pressure Pkp' the outflow conditions in the nozzle are independent of pn"
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The pressure in the nozzle's outlet cross section is equal to Pkp and represents a certain

portion of pressure p0 in the reservoir (slightly over one-half po), irrespective of the

magnitude of pn. In this case, however, the outflowing jet is not in equilibrium with the

surrounding medium; the preseure difference Pkp - Pn determines the acceleration of

jet; together with velocity components directed along the aoxis of the nozzle, there are

also radial velocity components which cause the expansion of the jet (Fig. 9). The energy

of the radial velocity components cannot be exploited, hence the efficiency of the jet turns

out to be less than expected with an assigned pressure differential.

Fig. 9. Outflow of a jet
from a nozzle in the pre-
sence of counterpressure
less than critical. Pres-
sure inside the jet at the
outlet cross section is
critical, but as the jet
leaves the nozzle the
pressure drops, the ve-
locity increases and
the jet expands.

The Swedish engineer Laval 13 was the first to achieve an experiment with a nozzle

in which the outflow velocity of the jet exceeded the speed of sound and the jet itself had

an assignefi direction. In accordance with the formulas written above, when the outflow

speed exceeds the critical value corresponding to the speed of sound, the flow rate per area

unit eu drops and, consiquently, in order to maintain the flow rate of substance, the cross

section of nozzle has to be increased (see Eq. (III-i)).
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hiws Laval designed a nozzle to which his name was given, and which is shown in

Fig. 10.

Yig. 10. Laval nozzle for obtaining directed
jets at supersonic speeds

We give now another nmerical example for air flow. We have a nozzle with a flow

rate of 1 kg/sec at a speed of 527 m/sec. We remind ourselves of the determination of

dimensionless quantities and find with the aid of Eqs. (111-18) or the diagram in Fig. 6 that

for

S- - -�2"3..1') = 1.55

the required counterpressure E .-- O.I.

Thus, when atmospheric air flows in at p0 = 1 atm abs, counterpressure is 0. 1 atm

ase. Then = 0. 3, and the flow rate per area unit is

o.n.c:=:o. 3 x 1.2 kg/m 3 x 30 m/sec = 4 kg/m2 x sec.

A assigned general flow rate of 1 kg/sec requires a cross section of the nozzle outlet

l 1: 124 = 0.608 OO -- )6 cm', and a diameter of the circular opening of 101 mm. In the

critical, narrower cross section 0 = 0.58, the flow rate is 240 kg/m2 x sec, the cross

aectiomal area is 42 cm2, and the diameter is 73 nm.

We assign a specific state to the gas in the vessel whence it flows out, and then

plot all the possible outflow conditions (Figs. 10 and 11) which differ by the magnitude of

the gas flow rate per second A. This can be done with the aid of curve 0 from Fig. 6. For

each value of the abscissa x we find in Fig. 10 the nozzlc;, ross section F, compute the
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Fig. 11. Various conditions of steady
adiabatic outflow in a Laval nozzle.

quantity * equal to Ahoe€o, and, finally, knowing 0, we seek the corresponding values of

dimJnsionless pressure. Since curve 0 from Fig. 6 has a maximum, then at an arbitrarily

assigned value of 0 we will have, as a rule, either two values of r.', or none.

If we choose a small flow rate A such that A <F.e ij,ý, e.r we obtain a pair of curves,

for instance, 1 and 8, or 2 and 7. The bottom curves 7 and 8 can be plotted only If a gas jet

already moving at suporsonic speed enters the nozzle on the left, which contradicts the

assigned steady-state condition for x = 0.

The top curves 1 and 2 are perfectly reasonable solutions which can actually be

obtained when counterpressure ranges in the interval P0 - P4 . Qualitatively there is no

difference between this motion and the one in a Venturi tube; the wider part of the Laval

nozzle acts as a diffusor that restores a part of the kinetic head of the fluid. Attempts to

plot conditions with a flow rate greater than critical, A > F,, v.,. ea co lead to no solution

in the middle of thE tube. The corresponding pairs of curves, 10 and 11, 9 and 12, do not

reflect any real motion of a fluid.

Finally, in the case of critical flow rateA - F., 'P, Q*oe the segment of curve 3

issuing from the initial point pO, xo hits at the critical cross section the ramification

point. With a counterpressure p = p4 , there will be curve 3-4 which is very close to the

subsonic conditions 1 and 2.

With a counterpressure pn = p5 , we have line 3-5, and the Laval nozzle yields a

supersonic flow.
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A further decrease in pressure cannot change the motion in the nozzle. If P. < Ps

we have again line 3-5 in the nozzle and consequent expansion at the outlet.

We are unable to say, however, what happens if counterpressure ranges in the interval

between p4 and p5 . To find the answer we have first to investigate the theory of shock

waves (see Chapter 18). One-dimensional theory no longer includes the design of a

nozzle that would give a strictly uniform flow. For this problem, see, e. g., Busemann's

paper [401.
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Chapter 4

Properties of Supersonic Jets

In the preceding chapter we dealt with the theory of the Laval nozzle which makes it

possible to obtain a steady parallel gas flow that moves at a supersonic spef

Since the time Laval invented his nozzle, a considerable number of investigations

were conducted into the properties of supersonic flows, which, in many respects, differ

appreciably from gas flows that move at subsonic speeds.

According to a remark by Prandtl, the supersonic flow blindly runs into an obstacle.

This means that the turbulence caused by an obstacle has no time to expand forward, has no

time to warn the fluid particles that move toward the obstacle of what is going to happen

to them; thus, the nature of the flow around obstacles, the nature of the cm supersonic flows

is completely different from the customary picture of the motion of an incompressible fluid. 14

To explain the above, let us first conduct the following simple test: beginning at a

specific instant of time, we shall at specific, identical intervals produce at a given point in

a flow a certain minor disturbance; in a gas at rest, this disturbance would generate spherical

waves which would propagate at a speed equal to that of sound; in a gas flow, to the pro-

pagation speed of the spherical waves there will be added the speedof the flow as a whole,

in other words, the spherical areas of turbulence are levelled by the flow; however, there

will arise two completely different situations depending on whether the flow moes at a

supersonic or subsonic speed.

In Fig. 12 (a and b) turbulence is produced at identical time intervals T at point 0 of

each diagram. In Fig. 12b, during the time T the flow covers a distance uT = 2.5 cm; in

Fig. 12a, where the flow velocity is less, the distance uT = 1. 5 cm. The speed of sound
15

c is in both cases identical nind such that cr = 2 cm. In a gas at rest we would have

obtained a number of concentric spheres R 1, R2 , R3 ; the radius of each subsequent sphere

is larger than the radius of the preceding one by 2 cm. Figs. 12a and b showhow these spherical

surfaces are levelled by the flow.
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Fig. 12. Propagation of turbulence from a source
in a flow moving at subsonic speed (a), and at super-

in a flow moving at a subsonic speed, turbulence may move against the directi on

of the flow and, thus, the whole fnow will gradually become turbulent: turbulence in-

volves the entire area in which the fluid moves (Fig. 12a).

From Fig. 12b it can be seen that in a supersonic flow, turbulence envelops only a

portion of the space enclosed within the cone of revolution. The angle of this cone can he

readily found. As can be seen from the diagram, sin Ot (where of is the central angle of the

cone) is equal to c/u. If the source of turbulence is an object polaced within the pa flow

moving at subsonic velocity, we have the usual picture of a flow around the obstacle;

the velocity of the entire flow obv~ously differs -"ro tb,- fiwv v~l_•.ety %hat wacMl have

existed had there been no obstacle. The turbulence caused by the obstacle expands

gradkiy to the entire flow, and then fades out to become zero at a considerable distance

from the obstacle. In a supersonic flow, the turbulence caused by the obstacle differs

from zero only within the cone with the central angle found above (for the motion in the

immediate vicinity of the nlow around body, where turbualence cannot be crvmidered

uegl~ible, see Chapter 17).

I•s we obtain a picture (characteristic for supersonic flows) of steady sound waves

moving from any obstacle placed into or turbulence occurring within a supersonic flow.
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These waves, known as Mach waves (from the name of the famous Viennese physicist

who investigated them) make it possible to readily determine the velocity of a flow or,

conversely, to determine the velocity of a body in a vtationary gas by measuring the

angle formed by the wave with the direction of motion (known as the Mach angle), Speaking

generally, if the speed of sound of the gas investigated is unknown, then, in any event, the

observation of the Mach waves and the measurement of the angle between then will make

it possible to find at least one relationship, namely, the ratio of the vetocity of the gas in-

vestigated to the spvcd of sound.

In these cases, however, where the state of the gas at a given point in the flow is

unknown, one usually knows its "state at rest", i. e., the state in the vessel whence the

gas flows out and where the gas velocity is small or negligible. The Bernoulli equation

and the Mach angle equation are sufficient for determining two quantities, viz., sound

velocity and flow velocity

(IV-1) 16

whence

__ 1) A11% 2 i;-

2
it =- 0. k.,2czz

With the aid of formulas (1MI-18) we find the pressure and the density of the gas in the

flow (assuming that entropy is constant, which is true in the absence of shock waves and in

the case of a short nozzle).

There is a remarkably deep analogy between the phenomena observed iL gas dynamics

and the flow of a heavq, imcompressible fluid in a duct open at the top [7, 22, 73]. This

analogy makes it easy to reproduce a "supersonic" fluid flow with an open surface, to perform

sophisticated demonstrative tests and, in particular, demonstrate the steady propagation of

waves along the surface of a fluid in the case when the fluid moves at "supersonic" speeds.

The above-mentioned analogy .between a fluid with a free surface and a compressible

gas is based on a simple physical phenomenon. We examine a duct open at the top into which
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a liquid is poured. By changing the pressure of the liquid in the duct we can change the

liquid's level and thus change the amount of liquid per unit of duct bottom area, or per uvit

of duct length. The process of pushing upward the liquid in the duct is analogous to the

process of compressing a gas contained in a pipe closed on all sides. Thuis, for instance,

a duct with a reciangular cross-section is equivalent to a gas governed by the Boyle-

Mariette law, because in a duct with a rectangular cross-section the amount of liquid

per unit of duct bottom area, i. e., what may be called density (referred to a unit of

msrface), is proportional to the pressure on the bottom. In the case of the moson of a

liquid with an open surface, the role of sound velocity in gas dynamics is played by Wae

propagation on the surface of a liquid of gravitational waves.

Aq in gas dynamics, it is possible under specific conditions to achieve a "supersonic"

flow o liquid, i. e. . a flow in wh.ch the speed of the liquid is greater than the propagation

speed of waves over its open. aurface. Such a flow can be observed if we direct a water

jet from a height of several tens of centimeters on a polished plane surface. Near the

impact point of the jet with the surface, within a circle with a diameter of several

centimeters, the layer (film) of the liquid is very thin; the liquid moves at a very high

speed. If at that point we place an object, for instance, a needle, we can observe the

characteristic picture of E'rsady surface waves proceedirg from the needle under a

specific angle; these waves are very similar to the Mach waves in the case of a super-

sonic gas flow. Beyond this circle with a diameter of several centimeters, the thickness

of the liquid layer abruptly increases for several millimeters; this is accompanied by a drop

in the velocity of the liquid, and is in analogy with the shock wave phenomenon which x

will be discussee! Liow. In this second region, where the liquid layer is comparatively

thick while the velocity of the liquid is comparatively low (less than the propagation speed

of acilations over the liquid surface), the properties of the flow are completely different.

The frequently used poetic simile of a wide river, lazily flowing along, and a moun-

tain brook, furiously swirling over rocks and stones, is much deeper and much more

significant than could be suspected. In fact, in these cases we are faced not only with a
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quantitative difference in the velocity of the flow. Because of the existence of a specific Al

characteristic velocity, the velocity of wave propagation on the interface between the

water and the air, the two flows (the wide river and the furious mountain brook) are

also qualitiatively different.

Measuring the temperature of a supersonic flow in a Laval nozzle has yielded very 2

interesting results. Unlike the computatiors from the formulas in the preceding chapter,

the gas temperature measured by a thermometer or a thermocoiple placed into the flow

drops negligibly, and is found to be quite close to the temperature of the gas in the reservoir

from which it flows out. Thus, air flowing from a reservoir in which its temperature was J
3000K, must have a temperature of 250°K in the critical cross-section, and a temperature of

1670K = -1060 C in the cross-section in which the flow speed is twice the speed of sound

(2c). However, the temperature at this spot measured by a thermocouple is approximately

2800K. Such a result is, as a matter of fact, quite natural, because the temperature

measurement with a thermometer or a thermocouple does not give the difference between

thermal motion, i. e., the chaotic motion of the molecules, and mass motion of thL gas,

i. e., the well-organized flow. It is therefore obvious that the temperature measured by a

thermometer or a thermocouple is, in reality, a gauge for the total energy of the gas, a gauge

for the sum of the thermal and kinetic energy of the gas, i. e., it is the gauge for a quantity

which virtually does not change in the flow. If we examine a plate placed into a flow normal

to its direction, then, in examining the flow line near the plate we can see that as we

approach the plate, the moving gas in experiencing a braking effect; with this, according to

Bernoulli's theorem, is connected tte inverse increase in pressure and, in the case of a

gas, the corresponding rise in temperature to values which pressure and temperature had

in the gas at rest in the reservoir from which it flows through the nozzle. 17 It is therefore

obvious that the plate placed in a normal position to the flow direction, acquires not the

real temperature of the moving gas, but the temperature of the slowed-down gas near the

plate, which coincides with the initial temperature of the gas before it started to flow

(known as its temperature at rest).
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If we take a plate placed tangentially to the flow lines, then we find another reason

for the increase in temperature in it; in the thin boundary layer near the plate where flow

velocity changes considerably over a short distance, there occurs the release of significant

amounts of heat due to internal friction in the gas. From the molecular-kinetic gas theory

we can work out a ratio between the internal friction factor and the thermal conduction of

the gas. The relation between effective viscosity and effective thermal conduction in a

*. turbulent flow also satisfies that equation. Owing to this ratio it becomes possible to

obtain in the general form relation between release and the removal of heat in a boundary

"layer.

Pehlhausen's computations [74] show, in complete agreement with the experiment,

that a tangentially placed plate will also acquire a temperature in the gas which will be quite

close to its temperature at rest (see also [6, 31]). Some 85% to 100% of thekinetic

j• energy will be converted to thermal energy in the boundary layer of the gas near the plate.

Accordingly, the temperature of the plate oscillates between the temperature at rest and

S0.85 of that temperature plus 0. 15 of the real temperature of the gas18

rrest > Tpate> 0.85Trest*-1-0.15 Tg. (lV-3)

To measure the real temperature of a gas moving at sonic or near-sonic speeds,

we must resort to a method in which the thermometer moves with the gas at the same speed.

i A practically convenient method is the one developed recently, which measures the temperature

i by inverting the spectral lines. This method, however, is applicable only at comparatively

high temperatures, in any event higher than 1000°C.

I[ The problem of the temperature acquired by a surface around which flows a gas moving

j at a high speed, is of great technical significance since the performance and efficiency of

gas turbines are today determined by the maximum temperatures io which the blades canI! -

resist. We can see that it is inadmissible to equate the temperature of the blades to that of the

gas. The temperature of the blades will always be somewhat higher because of the kinetic

energy of the moving gas.
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Chapter 5

Gas Flow In a Long. Cylindrical Pipe a

We iavestigate the motion of a gas in a long, cylindrical pipe provided externally with

thermal insulation. Thermal insulation was introduced so that we could take the total

energy of the flow to be constant in all cross-sections. However, unlike what we did

when investigating the Laval nozzle, short nozzles and attachments here we shall no

longer ignore the friction of the gas against the walls, i. e., the resistance to the gas flow.

The joivt effect of heat release, friction near the walls and heat transfer between the walls

and the gas will be that the temperature of the walls does not differ from the initial gas

temperature in the reservoir from which gas flows (see the preceding chapter), and, con-

sequently, there will be no need for thermal insulation in the particular case where the gas

temperature in the reservoir is room temperature.

If we introduce hydraulic resistance to gas flow, i. e., if we introduce an irreversible

process of internal friction, we can no longer take the entropy of the flow to be constant,

hence our results and methods will somewhat differ from the results and methods dealt

with in chapter 3.

We set up the equations for the mclion under study, aseuming Vhe cross-section of the

pipe to be constant. We take the completo gas flow through any cross-sc tion of the pipe

to be constant and obtain tfe first equation:

eu - -•-f const. (V-i)

Also constant is the complete energy flow (plus the work of pressure forces) referred

to a unit of pipe cross-section,

pu -i-- ouE-#- --- - consL (V-2)

2

But since the amount of substance flowing through is also constant, then by dividing the

second equation by the first one we obtain the constancy of the sum of enthalpy I

and the kinetic energy of a unit of mass in the flow:
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! T = const4 (V-3)

Here, as before, we denote by 10 the enthalpy of the gas before entering the pipe,

i. e., in the reservoir, where gas velocity is very low.

It is worth noting that from two equations, the equation of conservation of matter &nd

the equation of conservation of energy, we can eliminate velocity and thus obtain a specific

relation between the quantities characterizing the state of the gas, (pressure and volume);

this relation is such that it does not depend upon the mechanism and the magnitude of friction

[51, 891. This can be represented graphically by curves in the plane p, v or by curves in the

plane 1, S, known as Fanno lines (Fig. 14).

Only the velocity of a point that represents the state of the substance moving along a

Fanne line will depend on the pipe resistance, i. e., on the magnitude of dissipation forces.

I .J

Fig. 13. An alementary
cylinder cut from a long
pipe. The Gubstance flows
f a and out at the ends, where
pressure forces are active;
the lateral surface experiences
the effect of friction against

the pipe wall.

Let us take a portion of a long pipe Ax (Fig. 13) ard clarify how over the entire

hstretch of Ax gas velocity and pressure change on account of resistance. The total amount

of substance flowing through the pipe cross-section in a unit of time is QuF- MF-= const.

The amount of motion carried by the flow in a unit of time is AFa =- auF.

According to NowtOn's second law, the change in the amount of motion when covering

a distance Ax between two control planev 1 and 2 is equal to the momentum of pressure
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Fig. 14. Fanno lines in the

entropy -- enthalpy (S, 1) plane.
Along these lines the state of gas
flowing through a pipe with a
constant cross-section changes
without heat transfer, but in the
presence of resistancn. The lines
are found from the conditions of
substance flow conservation and
energy flow conservation in the

pipe.

force (friction) 0, acting on the lateral surface 3 of the cylinder cut by planes 1 and 2 from

the pipe:

MYF (it,_ -- uj = (p, -- p.,) F+•,r Ax (V-4)

We introduce the resistance factor in the usual way accepted by the hydrodynamics of

incompressible fluids, and write for a round cylindrical pipe of diameter d the force of re-

sistance 0 per unit of lateral surface

We find from Eq. (V-4), bymaking a transition to finitesimals and to the unit of cross-

section, the equation for the amount of motion, which includes the pipes resistance. Unlike

the first two equations, we cannot write it immediately in its integral form. The differential
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F! equation takes the following form

d dx ` -7 ':-"( )

The form of the last term is somewhat different form the usual; this is due to the

fact that the sign of the force of resistance depends upon the sign of velocity. The force of

resistance is always directed against the direction of gas flow, and this fact is lost in the

dp-usual writing •- or 4, =y 2 j.

In the I, S plane, the Fanno lines corresponding to various vabies of flow rate M(see

Eq. (V-i)), take the form shown in Fig. 14. For an ideal gas, enthalpy I coincides to an

accuracy of one factor with the temperature. The I - S diagram differs from the T - S

diagram only by its scale.

The quantity M is constant along each line and is a parameter that changes only from

one Fanno line to the other, and decreases from left to right since for a given temperature

density drops as entropy increases.

Let us now determine how a point representing the state of the gas moves along a

Fanne line under the effect of resistance as the gas moves in the pipe. With the aid of the

well-known thermodynamic expression for the enthalpy differential, we write the equatio-

of conservation of energy in its differential form

d q.: d u d ,vdp TdS u du
A T) x d- d -- -2-;= (V-7)

I dp .TdS a du.
dx dx dx

We substitute the value od velocity determined by the law of conservation of matter

(V-i) and expressed by the quantity M constant along the entire pipe, and obtain for entropy

the following equation

d S 1 (•,Mdu,9 (- !-P -4 ;- • / " v -
dv dX dx(V-8)

With the aid of Eq. (V-6) we finally find
UJS= -L Iu a u dx.

2d ('9)
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If the sign of dx coincides with the sign of flow velocity u, i.e., if, changing x, we

follow the flow direction of the fluid, entropy increase is always positive since the producc

of udx is also positive.

The motion of substance in the presence of friction is accompanied by the conversion

of mechanical energy into thermal energy; in a thermally ir-sniatcd pipe, in the absence of

heat take-off, this process is accompanied by an increase in the entropy of the substance

flowing through tVe pipe.

The right-hand side of Eq. (V-9) is nothing but the work performed by the forces of

resistance on an element of length dx: referred to a unit of mass of the flowing fluid.

Above the entropy maximum, on the segment AB of the Fanno line (in the subsonic

region, as we shall see now), motion is accompanied by a pressure Irop as in an incompressible

fluid, as can be seen from juxtaposing the slope of the Fanno line -. 1d line p = const in the

right-hand side of Fig. 14. Conversely, below points B, R, T, in the case of supersonic

flow, resistance causes an increase in pressure a'-ng the flow; the force (,f resistance and the

increase in pressure are overcome by the flow by means of the kinetic head, and by means of a

d.op in velocity due to increase in density and compression of the gas from increased pres-

sure.

Accordingly, in a subsonic flow, u increases in the flow direction while I drops. In a

supersonic flow, u drops and I grows.

Let us show that at point B of maximnum entropy the flow velocity is equal to the speed

of sound. -This can be readily shown in Fig. 14 if we plot through B a vertical tangent. We

notice that at point B, where S = maximum for M = const (motion along the Fanno line), there

also takes place M = maximum fcr S = const (motion along the tangent). The latter condition

leads to an equality between flow rate and speed of sound, as was shown in Chapter 3 (Eqs.

(111-12 -- m-v)).

Incidentally, the proof can easilybe given directly: near point B, it is obvious that
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From the countinuity equation (V-1) it follows that

d.. ' ddo

In Eq. (V-7), if we pass from differentiating with respect to coordinate x to differentiating

wIth respect to density 0 we get at the point of tangency

1 dp -d Is U1 ut=O;

u'--€', (V-12)

q.e.d.

Now we can easily plot a physical dialram of gas flowing through long pipes. Figure

15 shows the flow rate M of gas during a unit of time as a function of pressure at the end

of the pipe p, with an assigned pre-sure p0 in the reservoir from which the gas is flowing

out.

7A-1

Fig. 15. Dependence of flow rate
(M) on counterpressure (p) for pipes
of varying length with a given pressure
at the inlet (pn). The top curve is for
a short nozzlg, and the bottom curve
is for the longest pipe. The straight
line divides on the left the region of
critical outflow at a velocit~y e~jaal
to the speed of sound at the outlet;

Sif counterpressiltre is less than
• critical, M does not depend on p.
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The various curves are referred to pipes of different lengths. The top curve re-

presents the case of a short nozzle as dealt with at the beginning of Chapter 3. The

longer the pipe, the smaller the amount of gas flowing through it (for a given pressure

difference). In all cases, a pressure drop below a certain critical value no longer

causes an increase in gas flow. However, this critical pressure itself is all the

smaller, the longer the pipe. For critical outflow at the outlet of the pipe, in all cases

the velocity is equal to the speed of sound; the relation between the temperature of the gas

and its initial temperature in the reservoir, as well as the relationship between gas velocity

and sound velocity in the initial gas in the reservoir are also invariable, irrespective of

the length of the pipe. However, the density of the outflowing gas, which, for a given gas

temperature is proportional to the pressure, varies in accordance with the length of the

pipe. Thus, the critical points for various pipes on Fig. 3 can be connected by a straight

lines issuing from the origin of the coordinates. According to Stodola, for usual values of the

resistance factor of commercial pipes, the critical (maximum) M when changing from shaort

nozzles to pipes of a length of 360 diameters drops by one-half, for pipes 1000 diameters

long it drops by one-third, and for pipes 5000 diameters long, it drops by one-sixth.

No matter how much we reduce pressure at the outlet from a cylindrical pipe, we will

never be able to achieve supersonic speeds in the pipe. In order to accomplish this, the

gas must enter the pipe already at a supersonic speed.

In the I-S diagram in Fig. 14, the inflow of the gas from the reservoir into the pipe

through a short connecting nozzle AB19 (Fig. 16a) is not described by a Fanne line but by an

adiabatic curve which slopes vertically fi'om point N (Fig. 14) and describes the initial state

of the substance. In a simple tapering nozzle, the state of the substance at the inlet to the

pipe is represented by any point on segment NB, for instance, F or F 1. The state of the

substance at the outlet from the pipe is determined by the assigned counter-pressure p; the

point representing it must be on the isobar EE 1. The selection of the Fanne line along

which we change from the adiabatic curve NB to the isobar, and that corresponding to the
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magnitude of the gas flow for given P0 and p, depends on the length of the pipe, and

also depends oru the increase of entropy along the pipe. If we increase the length of the

pipe, we change from mode NF 1 E1 to mode NFE, and the flow decreases.

b)

Fig. 16. Connection of the pipe
with a tapering nozzle (a) and with
a Laval nozzle (b). A supersonic
flow inside the pipe can be obtained
only in the latter case.

If counterpressure at the pipe outlet is less than critical, there will be a critical

outflow, the mode described by segments NF 1E 1R or NFET (depending on the length of

the pipe), with the subsequent expansion of the gas, see Chapter 3, Fig. 9.

If at the pipe inlet we place a Laval nozzle (Fig. 16b), then at the inlet we will

achieve supersonic. speed, we will achieve the state represented by a point on segment BD,

Fig. 14, for instance, L.

In obtaining a supersonic flow, there are in the Laval nozzle outflow conditions with

a fully established flow rate M (see Chapter 3); the position of point L on the segment BD

can be readily determined by means of design data, viz., the cross-section of the nozzle

at its narrowest point i .I the cross-section of the pipe.

Thon, along the pipe there occurs a motion from point L to the right following the

Fanno line. In the case of supersonic flow, the outflow conditions •re independent of

cwnterpressure p.
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The supersonic flow conditions as shown in Fig. 16b require a sufficiently low

counterpressure. However, in a long pke it Is possible that the increase of entropy 4

along the line LQR will run into the cr11 "1l plnt R.

Thus, in the case of a long pipe with coupiderable counter pr'ssure, provided with

a Iaval nozzle at the inlet, we will never achieve supersonic bpJeeds at the outlet of the

pipe irrespective of the magnitude of counterpressare. A close investigation of the out-

flow conditions shows that in the pipe or in the nozzle there occurs what is known as a

"densification jump", i. e., a shock wave, the theory of which will be discussed below.

The description of the various flow conditions in the pipe m the presence of shock waves

is analogous to the Laval nozzle theory (see Chapter 19). Here we can refer only to

Rusemann's paper [411. A detailed bibliography, complete through 1958, can be found

in Frankl, Khristianovich apd Alekseyeva [271.

.1
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Chapter 6

Motion that Depends on the Relation Between Coordinates and Time

It was mentioned in the Introduction that in gas dynamics a fundamental constant

of a substance in motion is a certain velocity, the velocity of propagation of turbulence,

the speed of sound, etc. If we neglect the dissipation processes, matter has neither

a characteristic length nor a characteristic time. From the molecular-kinetic gas theory

it follows that by introducing dissipative forces, such as viscosity or thermal conduction,

in combination with the characteristic values for the speed of sound, one obtains for the

characteristic values of length and time the length of the free path of molecules and the

time of the free path, i. e., exceedingly small (infintcsimal) values for length and time.

Whence it followd that if one is not interested in infinitely small processes occurring over

distances and during a tihe of the order of magnitude of the length and the time of the free

A path of molecules; if, further on, we assign initial and boundary conditions for motion that

contain neither a characteristic length nor a characteristic time, then one will deal with a

special, extremely important class of motion. Since the equations of motion, and the initial

and boundary conditions contain only the characteristic values of velocity, but not of length

or time, the independent variables themselves -- the coordimte and the time -- can appear

in the solution of the equations only in a combination of dimensional velocity x/t. In other

words, we expect solutions that will change but still remain self-similar (self-modelling).

With the increase of time counted from the instant motion begins, the character of motion

as such will not change, but there will be an increase in the scale and the size of the

region involved in the motion, which will be proportional to time. Accordingly, we expect

that all quantities depend only on one combination of variables x/t, so that from the study of

differential equations with partial derivatives for functions with two variables (coordinates

n and timo) we can rvitch to ordinary differential equations in the case ei motion along one

coordi- -ts. 20

We write these equations; we denote -- xJt and immediately set up the transformation

formulas for the new viariable:
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a -1 d i

A

d 0 a I d 'VI-1)•~~ ~z -F, , t v-):,

As is customary in hydrodynamics, _ is the notation for a local derivative with

respect to time, d/dt is a substantial (that is, for a given volume moving at a speed u)

derivative.

If a certain quantity f interesting us is a function of the new variable 1, i.e.,

f=(x, ()= ) =4), (VI-2) I
then we obtain the following formulas

aFit f- T f •--- dl (VI-3)

We transform with the aid of these formulas our fundamental equations (Chapter 1),

and obtain the equation of conservation of matLer and the equation of motion in the following

form:

do d, ,o. d-i --e ,--P (U -- ) '- --- o- ,
A -(VI-4)

',X •--P-(u--• - - -•- -j (VI-5)

The quantities x and t can be completely eliminated from the equations, as should

have been expected.

The above equations can be satisfied following the assumption that all the quantities,

u, p, and L are functions only of the combination t = x4t, but not of x and t individually.

Let us now show an example of initial and boundary conditions which do not contain

the quantities x, t separately. We imagine an infinite plane which begins to move at an instant

I==0 at a steady velocity w, so that the plane coordinate xn = wt, Xnft = w, where w<O

(which means that the plane moves to the left). The gas under study is to the right of the

plane and expands as the plane moves (see Fig. 18).
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We are looking for a solution for our equations assuming that until the instant -=O

the gas has been at rest and had identical constant values for density and pressure. After

the piston begins to move, when t>O we set the condition according to which the gas

particles adhering to the piston must move at the same speed as the piston does.

Regarding the space filled with gas in which there occurs the propagation of the

turbulence caused by the piston, we assume that it is unlimited toward x > 0 the initial

conditions involve no initial value for length, and the boundo:y conditions are formulated

only on surface of the piston where they contain only an assigned piston velocity w.

At the end of this Chapter we shall investigate separately the problem regarding

the extent to which the solution that depends on x/t, which we are seeking, can be used

for problems involving a finite (limited) gas-filled space.

We juxtapose the equations for the conservation of matter and the conservation

of motion as written above, and obtain

- 4- (vi-6)

whence

(VI-7)

The latter equation makes it possible to construct two forms of solntion: the first,

a completely trivial one, r = const, corresponds to p, c, p, u = const. i. e., to the motion

of the gas as a whole; the second form requires that

V -(VI-8)

where c is the speed of sound.

We select in the latter formula the sign u - - c; t = c + u, which corresponds to

motion on the right of the piston, i. e., to turblence propagating towards the right.

The value of 4, and consequently, all the values of p, o, u, which depend on

alone, are constant on the lines c =--4-u, x= (c-4--u)f, on the so-called characteristic
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equations of gas dynamics. In the problem under study all the characteristics are

straight lines issuing from the origin of the coordinates x = 0, t = 0, i. e., from the

point at which turbulence was started (Fig. 17).

We use the relation u = = - c, in which c is fully determined by the state of the

substance, and transform the equations of motion (VI-4) and (VI-5) to

cd-= -- du; .cdua=dp. (V!-9)

Both equations are equivalent, since dp-= c de. The connection between u, p, p, is the

same as in an acoustic (weak) wave in Chapter 2, that propagates in a positive direction.

From here we can immediately find the connection between the velocity acquired by the

gas and its state

(VI-IO)

For an ideal gas with a constant thermal capacity, we write c p/C = k and readily

compute the integrals

P pO (h)'; k --cg ( (VI-11)

Ck--(• eo° I go I

The follcwing solution is remarkable: bearing in mind that

In C-- In o -- const, dc -Id-2 C (VI-12)

we get

(VI-13)

In order to find the distribution in space of the quantities interesting us, i. e., the

structure of the wave, we must use the algebraic relation which contains the spatial

coordinate u, --!=---c.
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In t.e case of a more complex relation between p and p, we differentiate the latter

relation with respect to •:

4--4- I,(VI-14)

and, substituting u = u (p), c = c(p), we get an expression for dp/dg (we might, just as

well, have immediately looked for an equation for another parameter, for instance, p or c).

Fig. 17. Characteristics of
gas-dynamic equations: the
lines in the plane coordinate
(x) - time (t) are OA, OK, OL,
and OB. Along them are con-
served all the quantities that
characterize the motion and the
state of a gas in the presently
investigated case of turbulence
caused by the movement of a
piston. The pistons' move-
ment is represented by lEne
nI, and the motion of single
"gas particles is represented
by the dashed lines.

In the present case of an ideal gas with a constant thermal capacity, the equations

are extremely simple.

We substitute into (VI-14) da k-2 ¢ca and find

d 2 d k--l.
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The velocity of motion and the speed of sound in the wave linearly connected with the

quantity C, which is the state propagation velocity.

With an assigned piston speed, the entire motion (Fig. 18) consists cf two trivial

regions: the unperturbed gas (1), and the gas that adheres to the piston and moves at a

velocity which is constant in the entire region (II), and a turbulence region (11), which

may be called a wave, in which all the quantities change their values in one trivial region

until they reach the values in another trivial region. In each trivial (I). (MI) region

d=d .--- =-dr.-=, u-=kc. Conversely, in the turbulence wave u - = - c, and the

formulas (VI-8), (VI-14), and (VI-15) apply. We can readily design a mode for any piston

velocity in the case where that velocity is negative.

The distribution of velocity and pressure in space as shown in Fig. 18 corresponds to

the distribution in terms of variables t, x in Fig. 17.

• i

Fig. 18. Expansion wave: instant
distribution of pressure p and velocity
u as a function of coordinate x. As
time t increases from the instant the
piston begins to move, the entire dis-
tribution stretches proportionally
along the abscissa. The hatched
area on the left is the piston II.

All the values along the x-axis in Fig. 18 gradually grow in accordance with the

solution that depends on the ratio x/t. The wave proper is contained in the region AB(IT.

To the right of A we have the unperturbed gas in the state in Which it was before the piston
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began to move (I). Between the piston and point B there is a region in which the gas moves

with the same speed as the piston, the pressure and speed in the interval - B being constant

("trivial region?? III). Point A moves to the right at a speed c0. Point B moves to the right

at a speed c + w, where w is the speed of the piston, that is equal to gas velocity at point

B; we remind the reader that < 0, and c is the speed of sound in the gas. If the piston

moves at a very high speed, the quantity c - w may become negative (in the case of an ideal

gas this will happen when 1wI>--c.), and point B will appear on the left of the ordinate.

At points A and B the values for velocity and pressure are continuous. Their derivatives,

however, appear to be discontinuous. Hence points A and B are sometimes known as points

(surface in a three-dimensional space) of weak discontinuity, or acceleration waves.

Figure 17 shows in the plane t, x the movement of the piston and the lines along

which a constant value for pressure and velocity is maintained, which are known as the

characteristics of the problem; these lines include such which correspond to the displace-

ment of points A and B depending on time. Finally. the dashed lines show the trajectories of

single gas particles.

in the regime under study, in which all the quantities depend on the ratio xjt alone,

we proceeded from the assumption that the problem does not contain any dimensional

quantities of length or time. In particular, one of the main assumptions was the unlimited

stretching of the gas into the region x•>0.

The character of the solution found makes it possible to make this requirenwent less

strict. If we are interested in the movement of the gas during the first to seconds following

the leginning of the pistorn's movement, turbulence (the extreme point A) will have had a

change to propagate only over a distance c0t0 ; for our solution to be acceptable, the second

wall, the one that confines the gas on the right, be at a distance greater than c0 t0.

Thus, under any geometrical conditions, our solution is of interest for the description

of the initial condition of the motion of the gas. The relation between gas velocity and pressure,

and the rectilfnearity of the characteristics are maintained even in the more generai case
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involving any motion of the pision towards x <0 (to the left, if the gas is to the right of the

piston, see Chapter 14) at a nonuniform velocity; in the case of that movement, acceleration

has the same direction, d'x.Idi'< 0. This can be shown by a method of characteristics which

cannot be discussed here. Equation (VI-11) is true until as a result of reflection from another

wall or another tu.-bulence the waves do not begin to propagate in the opposite direction, for

which (see Formulas above, or Chapter 2) there appears another sign in expression

The value found by us for maximum gas velocity durirg its expansion is quite interesting.

For an ideal gas, from our formula - u = V-(c _.c) , we see that the speed cannot exceed

2 !•u..--•_ 1€ pressure on the piston at a speed less than critical is given by

For a diatomic gas (c~jc,= 1.4) maximum velocity is equal to five times the speed of

sound in the initially unperturbed gas. We can readily see that at such a speed of the piston,

pressure on it is precisely equal to zero; in other words, this describes the outflow of a gas

into a vacuum formerly sealed off by a partition that has been removed at a given instant

(Fig. 19). For air we findpp. (I -P0.2 )

Fig. 19. Test diagram for
a turbulent inflow of gas into

a vacuum.

It is interesting to compare the trend of the velocity and state curves in a steady flow

(Chapter 3) with those in a rarefaction wave that expands with time. In both cases the
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expansion of each volumetric element occurs with constuat entropy, so that the relation

between various quantities that characterize the state of the gas is identical:

1K ~ ~~S=conmt;~.=~CO To

for k= 7 •

As a variable that characterizes the state of the matter we conveniently choose the

quantity 2- = c0. Velocity 9--= ujc referred to the initial speed of sound is expressed in the

rarefaction wave (see VI-13) by the equation

2•=••(1-•,k=1.4 9)=5(1--7). (VI-16)

in a steady flow (see Eqs. (111-12 and I11-18))

-- ) (VI-17)

In Fig. 20, the last two equations for K = 1. 4 are shown in solid lines. In the cabe of small

changes of the speed of sound (for y close to 1), i. e., in the case of slight changes of

pressure, velocity in a steady flow is considerably higher than in an expansion wave. This

ratio is inverted if v is small and if pressure is small. The highest speed is obtained if

steady and turbulent flow are combined, as shown by the dashed line in Fig. 20. At the

point of tangency A the critical conditions for steady flow are attained, and p = -/. If instead

of the experiment shown in Fig. 19, we take out the plug that seals the end of the evacuated

tube (Fig. 21), then at the inlet cross-section DDW there will very soon be a stationary flow

(se-&aent MA in Fig. 20), and the expansion wave (dashed line in Fig. 20) expands along

the tube. Thus, under the conditions as shown in Fig. 21, it is possible to attain an even
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higher speed of flow into the vacuum than in the experiment shown in Fig 19. In the case of

a diatomic gas, we get 5. 5c instead of 5c0

'I !J7KV -!

-i- /Ph_
7 212 OJ ZU0 05 $ iZ 0? 012 Ii;

Fig. 20. Dependence of dimension-
less velocity 0 on dimensionless
speed of sound y for diatomic gas,
k = 1.4; Eqs. (VI-17) applicable to
steady flow; Eq. (VI-16) applicable
to inflow as per test in Fig. 19;
MA and dashed line, for inflow as
per test in Fig. 21.

ptI atm. abe

Fig. 21. Experiment of
turbulent inflow of gas into
a vacuum. A rounded inlet
permits to obtain a higher
speed than that in the exper-
iment show in Fig. 19.

Thus, Schardin's computations 1841 referred to the experiments by Craz and Schardin

144] must be corrected since he used a rounded inlet as shown in Fig. 21, whereas his
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computations leading to the boundary value 5c0 were derived from conditions as shown in

Fig. 19.

Earnshaw (491 in 1863 found for the first time the numerical value for maximum flow

velocity (5c 0). Seventeen years later it was independently found by Hugoniot in his well-

known memoirs on the propagation of turbulence in a fluid [561. In this work he points to

the significance of this computation for internal ballistics. The quantity 2c 0 (k - 1) represents

obviously the maximum value of the speed of a projectile expelled by gunpowder gases in the

case where the gunpowder burns up instantly and at the initial instant of the projectile's motion

the gases are at rest and the speed of sound in them equals co [851.

Yu. B. Kharitou and this author performed detailed computations of the motion of a

projectile in a gun-barrel, computed the mass of the projectile that is required to obtain an

assigned speed with minimal length of the gun-barrel, taking account of the fact that gun-

powder combustion products are non-ideal.

It is interesting to note that maximum flow velocity in a steady flow in considerably less

-- it does not exceed

g4 a= ~u=4-CO

which, in the case that k = 1.4, yields umax== c0 V5S 2.2c0, instead of 5c0 in a turbulent flow.

There are erroneous attempts in the literature to identify the maximum velocity of a pro-

jectile with the quantity u' max which is considerably less than the actual value (Langweiler

4651).

In the attempt to find from x/t the conditions that.describe the compression of gas by

a piston (w > 0), we run into a major difficulty. Our equation leads to a condition in which

- = three values at once for velocity and pressure correspond to a number of coordinate values.

In fact, as before, the equations yield L >0 ; Formally, following the same procedure as the

one when studying the expansion wave, we arrive at the distribution of pressure and velocity

- shown in Fig. 22.
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Fig. 22. Distribution of pressure
and velocity having no physical
significance, obtained in solving
equations withct dissipative forces
in the case of the compression of
a gas by a piston (see Fig. 18).

It is obvious that. such conditions cannot be realized physically. This difficulty has

inspired the theory of the shock wave which will be dealt with below.
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Chapter 7

Theory of Shock Waves. Introduction

In the preceding chapters we dealt with the cases where classic gas dynamics which

operates with the concept of a continuous pressure distribution and uses differential

equations to describe certain phenomena, but ignores viscosity and thermal conduction,

runs into certain difficulties. Lct us remind the reader of the nature of these difficulties.

In the chapter on sound propagation we established that the sound wave is subject to

deformation as it propagates. The "wave crests", i. e., the places where the substance is

compressed and moves in the direction of wave propagation, run ahead. Conversely, the

"troughs", i. e., the expansion regions where the substance moves in a direction opposite to

the pfopagation of sound, fall behind the wave as a whole. Thus, the sound wave, as it is

deformed, lashes itself -- a phenomenon similar to the one observed when sea waves run on

a shallow beach.

We have mentioned several times .hat the analogy between gas dynamics and phenomena

occurring in liquids with a free surface has a very deep and far-reaching significance. In

both cases there is a tendency towards a spontaneous increase in the gradients, toward a

spontaneous formation of discontinuities during compression.

In the theory of outflow from a Laval nozzle we established that it is impossible to

describe a number of intermediate regimes in a specific large region of counterpressure

vplues by means of only the equations of continuous flow with constant entropy.

Finally, in the last problem investigated by us, namely, in the case of the motion of a gas

caused by the sudden movement of a piston, this limitation of classical gas dynamics became

particularly obvious. Thus we have seen that if the piston moves in the same direction of

the gas, w> 0, and the differential equations of gas dynamics lead to absurd trivalent solutions,

that is, solutions according to which in one and the same spot there must simultaneously exist

three values for density, three values for temperature and three values for velocity.

All these cases indicate that there must be other forms of solution in gas dynamics which

are not directly derived from the equations of ideal gases (ideal here refers to the absence

of viscosity and thermal conduction).
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It can be expected that tor the conditions sought for a large value of gradients will be

characteristic, so that in a given approximation they may be treated as the propagation of
- I

the discontlnuity surfaces of velocity, pressure and density -- the so-called shock waves.

Before we go into the history of the problem of shock waves, we shall derive in an

elementary form the equations of a shock wave, approximately in the same way as Hugoniot
in his well-known book "On the Propagation of Discontinuities" [56). We shall postulate the

existence of a discontinunity (explosion), and shall not investigate how it was achieved,

whether it is steady, and so on.

I
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Chapter 8

Hugonoit's Adiabatic Curve. Its Derivation From the Equations of Conservation

We investigate a shock wave that propagates in a gas. We are not interested here in the

precise structure of the shock wave front. We only assume that even if there is no discontinuity

in the strictest acceptation of that term (Fig. 23a), the changes in pressure, density, etc.,

do take place in a very narrow region (Fig. 23b).

a b

Fig. 23. The ideal (a) and
A actual (b) structure of a shock

wave.

In our elementary derivation we shall confine ourselves to investigating the state of the

substance before and after the passage of a shock wave through it. We apply the conservation

equations to these states. We assume that the region proper of the wave A-B (Fig. 23b) does

AA t

not increase in time. The values of pressure, density and other quantities inside the

"discontinuity" itself, extended over the entire length of the segment AB, must drop out when

setting up the conservation equations because although the wave travels, the amounts of matter,

of energy and of motion contained in the wave between plane A and plane B are small and their

change can be disregarded.

For the sake of simplicity we take a system of coordinates that travels along with the

shock wave. In other words, we shall investigate a wave at rest into which through plane

A there flows in matter in a state denoted by subscript i (on the left),,and from which on the

right there is an outflow of matter the parameters of which are denoted by subscript 2. We
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set up the conservation equations for the assigned control surfaces. We also assume that j
the motion of the substance occurs normal to the wave's surface. 21

Velocity ul, that is, the velocity at which the substance flows into the stationary

shock wave, coincides obviously with the velocity at which the wave propagates with

respect to the noncompressed initial substance, which is frequently denoted by D. Velocity

u2 is the wave velocity with respect to the substance compressed in the wave. Finally, the

difference uI -u2, which is independent of the choice of a moving or stationary system of

coordinates, is equal to the change in gas velocity at the passage of the shock wave. In

particular, in the system in which the initial substance (index 1) is at rest, the velocity

after the passage of the wave

jUjzu1- 1 - U2; u -jaj. (yin-la)

If we equate the amount of substance flowing in during a unit of time to the amount

of substance flowing out, we obtain the first conservation equation:

el U1 -- U1. (VIII- 1)

Then, for the volume enclosed between A and B we set up an expression according

to Newton's second law, and equate the change in the amount of motion during a unit of time

to the impulse of pressure momentum. The amount of substance p1 ul flowing in during a

unit of time has a velocity ul, r, that the amount of motion flowing in during a time is equal

2 2to PIu1 . The difference between the amount of motion of outflowing fluid p 2u 2 and the

amount of motion of inflowing fluid (i. e., the increaze in momentum) must be equal to the

pressure momentum which, referred to a unit of surface, amounts to p1 - P2. Thus we get

the second conservation equation

P, f e. U1P=p -- .2 us. (VHI-2)

Finaiy, we set up the equation of eaergy conservation. In it we will have to consider

three pairs of quantities, viz., intrinsic energy cf the inflowing and outflowing substance,

77



,II

its kinetic energy, and the work performed by pressure on the control surfaces A and B.

Thus, in its d&.finitive form, the amount of inflowing energy together with the work to-

gether with the work performed by pressure on surface A is

This expression must be equated to an identical equation with index 2, which will

give us the amount of energy carried away by the outflowing substance during a unit of

time, and the work performed by the gas against the pressure on the control surface B.

By cancelling the obtained equation by the quantity p ull = p 2 u2 , i.e., by referring all

the quantities not to a unit of shock wave surface and a unit of time, as we did before,

but to a unit of mass of the substance flowing through, we obtain the third fundamental

equation in the following form

liii (V III-3 )

Here we have again Introduced enthalpy -- E-+-pu--E.+.L. All the equations are
9

syrmmetrical with respect to the permutation of the subscripts I and 2. From the three

equations we can readily eliminate the two velocities u and u in order to obtain the relation
1 2

between pressure and density before and after the passage of the wave, which is known as

the Hugoniot adiabatic equation.

From the two first equations, without using the equation of energy conservation, we

find

U-,; 2 (o Li . ,-01 1-92-VI02QJ- 02'

We substitute these expressions into the last equation and obtain the Hugoniot adiabatic

-_ equation sought
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(o , - p (Vm-5)

To obtain the relation between pressure and density after compression in the wave

in an explicity form, we muct express enthalpy or energy in terms of pressure and density.

For an ideal gas, the thermal capacity of which we take to be constant in the temperature

interval between T 1 and T 2 interesting us,

R T= k p 2 2

-R- -- k -1 e'

we obtain by means of simple transformations the relation between density and pressure for

a substance passing through a discontinuity, the Hugoniot adiabatic equation

!t (k -l)p 2 -- (k--O)pt pE g (k•i)@ 2 -- (k--l)gj
9 k, (k-- #)p2 •)+(k* )p,' p - (k 1) 9-- (k - 1) 2 (VIII-7)

The equations can be simplified if instead of density we introduce everywhere the

inverse quantity of specific volume

As - 1 . a,2 ..- = P--Ps U12 = P-PS.. • .

Its t?2' 1 V 91-9p2 VS ;::;- 9

U--U = Us --p (VA-- VN

U1
2 

- Us" (V, -t- ,j (P, - PA, (Vm-8)

I

11 -I4 1(S--V)(IP-E,-,,=IT(,,,- ,)(pi -p);
2 (VIII-9)

!L2 = (k--I)ps (/-#- I)p . E ___ (k--I-I)vj -- (k•- I)v2

"i (k-p 2 (k -1) p, I p, (k ÷-)rs - (k -- 1)w (VIII-lO)

A logically simpler derivation of Hugoniot's adiabatic equation (though physically

completely equivalent to the preceding one) is the one where we proceed directly from the

79



problem of the motion of a piston in a gas, dealt with earlier. In this case we need not

operate wiih the concepts of energy flow and momentum flow, which may represent certain

advantages for the inexperienced reader.

Let us investigate a pipe with a 1-cm2 cross-section, closed by a piston at the origin

of the coordinates. At the time instant t = 0 we begin to move the piston at a constant

velocity w. We, shall seek a motion pattern, shown in Fig. 24, where the discontinuity of

all the quantities, density, velocity and pressure, propagates in front of the piston at a constant

velocity D. On the right, in front of the discontinuity, the substance is completely undisturbed,

and maintains its initial pressure pl' its initial density pis and is also motionless. In the

interval between the piston and the discontinuity, the substance has some other values of

density p2 and pressure P2 1 constant over the entire interval between the piston and the

discontinuity. It also moves at a velocity equal to the velocity of the piston u = w.

Fig. 24. Distribution of pres-
sure in space during the passage
of a shock wave caused by the
compression of a gas by a piston.

We investigate the state that arises after a time t. The discontinuity moves away at

a distance Dt. The amount of substance compressed during that time is p1 Dt. It has to be

equated to the amount of substance found in a gas compressed to density P2 between the piston

that has moved the distance ut and the discontinuity

q Dt- Q, (D0- u) f. (VI-11)
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This amount of substance has acquired a velocity equal to the velocity of the piston.

The total velocity acquired by the gas enclosed in the pipe during the time t is P2 Dut. We

must now equate the increase in momentum to the pressure momentum, i.e., the product

of the force equal to the difference between the pressure produced by the piston and the

counterpressure of the unperturbed gas during the time the force is active

Q1Duf=(p 2-pjf. (VIII-12)

Finally, we equate the energy increase in the substance to the work performed by the I

piston, i. e., the work performed by the external force that moves the piston during time t.

Numerically the force for a piston area of 1 cm 2 is equal to P2 1 the path travelled by the

piston is ut, and the work performed is p2ut.

Thus we obtain the last equation, the energy equation

t --- )pu (VIII-13)

It is obvious that these equations are completely identical with those derived earlier,

from which they can be obtained by switching.to a system of coordinates having a uniform

motion with respect to the system selected now. The discontinuity propagation velocity

D was denoted earlier by ul, so that now D = ul, and piston velocity u = u1 - u2 . The proof

that the last three equations (VM-11, VIII-12, and VIfI-13) lead to the same expression for

Hugoniot's adiabatic curve (VIII-5, VIII-6), is left to the reader.

81
81



Ij

Chapter 9

'Properties of Hugoniot's Adiabatic Curve. Shock Waves in Air and Water.

Hugoniot's adiabatic equation derived above has a number of extreme'y interesting

properties. First of all we can readily see that with an unbounded increase of compression

pressure P21 the density of an ideal gas with constant thermal capacity will not increase ad

infinitum but will tend to a specific limit equal to 02 = '-- Qi- For a diatomic gas with

unexcited oscillations inside the molecule cv = 5 cal/mole x degree; c = 7 cal/mole x degree;

k = 1.4 and the li-Int value of density does not exceed initial density times 6. For a monoatomic

gas the limit value for volume compression is 4.

Thus we see that in the case (f strong compression, density increases rather slowly.

* * To this corresponds a slow decrease in volume and a correspondingly rapid increase of

factor pv which determines the gas temperature.

Numerical computations fully corroborate the conclusion regarding the rapid increase

of gas temperature with increasing pressure in a shock wave.

Figures 25 and 26 show the curves plotted by Leypunskiy which, depending on the

pressure ratio p2 /pl, give us all the quantities interesting us -- density after compression,

all the velocities ur, u 1 - u2 and sound velocity in the compressed gas. All velocities are

referred to sound velocity in the initial, unperturbed gas. The temperature of the compressed

gas can readily be found from the sonic velocity curve T2/T 1 = (c2 /cl) 2 . The computations have

been performed assuming a constant thermal capacity cv = 5 cal/mole x degree, cp = 7 cal/mole

x degree, independent of temperature. Becker [381 gives us a table of tie state of air com-

pressed by a shock wave.

Becker conducied his computations assuming that thermal capacity is linearly de-

pendent upon temperature. Mean thermal capacity in the interval from 2730 to T is ex-

pressed by the formula

4.78-

+0.45 - 10-3 T.(-l
(IX-1)
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Fig. 25. Dependence of wave
propagation velocity D, the
velocity of compressed sub-
stance u and wave velocity
with respect to compressed
substance D - 11, on pressure
amplitude in b shock wave in
a diatomic gas with constant

thermal capacity.

Check computations show that in the interval from room temperature to 3000°K this

simple formula coincides with an accuracy up to 3% with the modern exact value for the

thermai capacity of air calculated on the basis of spectroscopic data. In his table Becker,

as a comparison, gives the temperature that can be attained with adiabatic compression

(along Poisson's adiabatic curve with constant entropy) up to the same pressure.

It can be ieen from the Table that compression of the shock wave leads with an equal

pressure increase to a considerably higher compression temperature.

Direct calculations for an ideal gas with constant thermal capacity show that with

compression in the shock wave, i. e., when Ps> Qj; Pt> P; .< VA; u• >0; u> 0,
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the following relationships take place

ag,> C1; u < SA>4S. (IX-2)

JVV

Fig. 26. Depcndence of density
p and sound velocity c in a com-
pressed medium, on pressure,
under the same conditions as in

Fig. 25.

Inanexpansionwave, if it propagated in the form of a discontinuity, in an ideal gas

u,•>0; az2 >0; • <Q <; p, <pls; the relationships would be inverted

U,<Cý; U,,>C-4. S,<Sr.(X3

In the case of absence of heat transfer to the outside, a drop in entropy is impossible,

hence it follows that a expansion wave cannot propagate in the form of a discontinuity (the

so-called Zemplen theorem [99, 55 . Below, as we will go deeper into the theory of shock

waves, we will show the mechanism of entropy increase in a compression wave and its con-

nection with inequalities which refer to wave velocity ul, u2 and sound velocity C c2.

For an ideal gas with constant thermal capacity and a large shock wave amplitude

pi Pi, the formulas become considerably simpler. We have already noticed that density
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after compression has a specific relation (k + Ilk - 1) to density before compression. The

relations between quantities that characterize the state achieved after compression, approach

a specific limit for & -. (sic)

D : k •=1 -i- 1 2 2k (k• (/- I). (IX=4) 'i

"The limit formulas include initial density but not initial pressure or temperature, upon

which the final state does not depend in the case of a large amiplitude

D PIM ~ T k--.lp 2v1  k-I pl-

Table 2

P2f 1PI 02/9. r. K IT(p.*3=const) D u/ccKI mdce
______ _____ _ I ,.a) a)

1 1 273 273 330 0
2 1.63 336 330 452 175
5 2.84 482 426 698 452

1 3.88 705 515 978 725
50 6.04 2260 794 2150 1795

100 7.66 3 860 950 3020 2590

500 11.HS 12200 1433 6570 5980
1000 14.3 19103 1710 9210 8 560
2000 18.8 29000 2070 12900 12210
3000 22.3 36700 2180 15750 15050

Figures below the line are unreliable.

CODE: a) Sec

The propagation of shock waves in fluids has been scantily investigated. In his

monograph on shock waves, Becker cites data on shock wnves in alcohol and ether. He

performed his computations with the aid of Tamman's approximate equation of state.

Considering the importance of the study of shock waves in water with regard to under-

water explosions of mines and torpedoes, the evaluation of the fundamental parameters of

a shock wave as a function of pressure appears to be interesting.
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The next Table give3 the results of the computation of the propagation of a shock

wave in water performed by Leypunskiy and this author (125].

Unlike Becker, we vsed in our calculaticns the tabular data for compressibility, the

expansion factor and the thermal capacity of the water, without resorting to the unreliable

equations of state.

Bridgeman's meaburements reached extremely high pressures, hence in the computations

-..here was no need to use extrapolation. For the sake of ccnvenievze, the initial conditions

were so chosen that the final temperature of the water compressed in the wave be 400C. At

this temperature, according to Bridgeman, the coefficient of thermal expans'on of water O

does not depend on pressure. This, of course, facilitates computations.

The energy equation (VIII-6) comprises the energy of water at very high pressures.

We computed with the aid of the thermodynamic relations

IasN as

dE- c, dT-•t'Tv dp -- pdv.

By integrating the last equation with respect to the path leading from a state with a certain

energy to a state with energy to be determined, we find E.

Table 3

P3  ý C '. I 'ýI . 1r'.o 0 W2 D~ v JI

1 40 1.008 1530 140 1503 rn0 1530 40
1 31.5 1.005 1500 3000 40 0.914 1890 150 1820 31.2
1 22.5 1.002 1470 6000 40 0.859 2520 280 2070 24.2
1 1.8 1.000 1410 12000 40 10.793,3200 490 2410 11
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In the first four columns of Table 3 we find qtmntities which characterize the initial

state of the substance (prior to compression), and in the following four columns we find the

state of the substance after compression. Then follows the propagation velocity of the shock

wave in uncompressed water, D = u1 , and the velocity acquired by water during compression,

U = u1 -u 2 (see notations in Chapter 8).

The last column of the Table contains the quantity that characterizes dissipation processes

and the damping of the shock wave in water. The quantity T'ls represents the initial tern-

perature which is necessary so that by means of isentropic compression from p1 to P2 one
can reach the state P9 , T 2, v2 shown in the Table. The difference between T'I and T1, re-

preaents the increased temperature reached on account of the •rreversibie processes in the

shock wave front. Imagine a shock compression with p1to P2 , followed by isentropic expansion

to pressure pl. After the passage of a shock wave of assigned pressure amplitude (p2 9 fifth

column in the Table) and of the expansion wave following At, the water temperature will rise

from T1 to T'ls,

This increase in water temperature occurred on account of an irreversible consumption

of mechanical (kinetic and potential) energy of the shock wave and, consequently, is directly

connected with the damping of the wave. The ratio 7;= 7 1 can be used as a standard for

this damping.

We can readily see that also in this practical case the general relations are satisfied;

wave propagation velocity is greater than sonic velocity in unperturbed water, D > c; wave

propagation velocity with respect to compressed water is smaller than sound velocity in

compressed water, D - u < c-.

Let us now look into some formal properties of Hugoniot's adiabatic curve.

Quite interesting and significant is the fact that the Hugoniot adiabatic equation cannot

written in the form
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In this respect Hugoniot's adiabatic curve appears to differ from such simple curves as the

isothermal or Poisson's adiabatic curve. The equation of the latter is

S=S(p, e)=const, (DX-7)

which, for instance, for an ideal gas yields

--a

S=C, lnp--c, Ine-.- const; e- =-const- ee. (.X-8)

To exhaust all the Poisson curves it suffices to go through the one-dimensional

series of value for entropy S. But to exhaust all of Hugoniot's adiabatic cirves we must

plo' an "infinity squared" of curves that correspond to every possibltu value of p1 and o

That Hugoniot's adiabatic equation cannot be represented in the form f(p, 0) = const

can be seen from the fact that by compressing, for example, a diatomic gas two times by

two shock waves, one of which propagates along the other, we can increase density up to

36-fold, whereas in the case of a single compression density cannot be, inci eased more tha'i

6-fold. "fhus, double or, general' y spcaking, multiple compression by shock waves leads to

a state that cannot be attained by single compression. However, in the case of isentropic

compression, final pressure fully determines the final density of the substance, no matter

how many stages were needed to reach the given final pressure, which follows from the

possibility of representing Poisson's adiabatic curve in the form (IX-6%.

In the p, p plane or in the p, v plane, Poission's adiabatic curve is a curve in which

all the points are equivalent. None of the points is a singular point. With Hugoniot's

adiabatic curve, however., this is not the case. The initial point o~, P1 (or v,, pl) is a

singular point of Hugoniot's adiabatic curve. The nature of this singularity will be determined

in the next Chapter by studyingthe neighborhood of point p1. v1 that describes the initial

state of the substance prior to compression.

We write Hugoniot's adiabatic equation

- (p r,). (iOX-9)
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From the symmetry of the conservation equations lrom which Hugoniot's adiabatic

equation was derived, it follows that if

ps --- H(e-.5 pl. ol) .- O

then, conversely,

plýý H0•; Pit Q-.) (IX-11)

(see Fig. 28).

8
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Chapter 10

The History of the Shock Wave Problem

The equation of the connection between pressure and density in a substance subjected

to the action of a shock wave, which was derived from elemrnztary considerations and from

the study of the conservations laws, led to an unexpected result, namely, the increase in

entropy with compression of the ideal gas in a shock wave. Entropy increase follows directly

from juxtaposing the initial and final state of the substance, which are associated with one

another by the conservation equations. We did not investigate the processes that occurred

between the control surfaces A and B (Fig. 23b) which led to entropy increase. Formally, as

already mentioned, only the conservation equations are symmetrical with respect to 01, p1

and p2 1 P2. We could also satisfy the conservation equations by investigating the inverse

motion, viz., a expansion wave in which expansion occurs within a small interval AB (which

we shall not investigate closer) in accordance with the Hugoniot equation. In actual fact,

however, such a motion is impossible since entropy would drop in it (this is the so-called

Zemplen theorem [991 mentioned earlier). This particulur feature of the result of Chapter 9

where, without considering dissipation processes, we came to a change in entropy, creates

specific difficulties in the understanding of the theory of shock waves which can be overcome

only if we observe the processes inside the region of the change of state proper (between the

control surfaces A and B, (Fig. 23b). This has held up considerably the evolution of the

theory of shock waves.

It is remarkable that the first three most important works on the theory of shock waves

were produced at different time periods but, apparently, completely independently from one

another. We shall therefore investigate them not in their chronological order.

Riemann [811 set up for the first time two equations, one for the conservation of matter

and one for the conservation of momentum. As a third equation he took Poisson's equation,

i. e., he preassigns the conservation of entropy in a shock wave, similarly to the conservation

of entropy in non-shock waves in which the effect of dissipation forces, viscosity and thermal

conduction, is not considered. The relation between pressure and density obtained by him is
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pretty close to the real one, and so is the general picture of motion which he discovered.

However, Riemann's equations do not fully satisfy the law of energy conservation. Hence we

have to regard them as erroneous.

It is interesting that in the 1925 edition of the well-known book "Partial Differential

Equations in Mathematical Physics", compiled by Weber on the basis of Riemann's lectures

[971, even after the problem had been entirely clarified, he (Weber) expresses peculiar

doubts as to whether or not Riemann's equations may still hold when considering turbulence.

The conclusion by Hugoniot [561, with whose name Eq. (VIE-7) is usually associated, has

been dealt with in the preceding Chapter.

We shall now take a look at Rankine's book [78], which is most interesting from the

viewpoint of physical gas dynamics because the author has a deep understanding of the

phenomena occurring in a shock wave.

Rankine examines a motion which could propagate ad infinitum without changing its

form, i. e., he studies a turbulence that propagates steadily in a gas. He establishes two

control planes (like we did when deriving Hugoniot's adiabatic curve) and sets up the law of

conservation of matter and the law of conservation of momentum. Rankine studies a substance

which has thermal conductivity but no viscosity. He formulates principles of self-modelling

which are of the utmost importance for shock waves. Specifically, he emphasizes that

numerically the coefficient of thermal conductivity of a substance may be infinitesimal, but

we may not neglect it in a shock wave because the width of a shock wave as well as the magni-

tude of the gradients are not pre-assigned. The smaller the coefficient of thermal conductivity,

the greater we may expect the gradients to be in a shock wave, so that the product of the tem-

perature gradient times the coefficient of thermal conductivity (equal to the amount of heat

transferred by thermal conductivity in a unit of time) can remain finite as the coefficient itself

approaches zero. This makes us thoroughly understand when we can ignore dissipation forces,

in particular thermal conductivity, which is when the magnitude of the gradients is pre-

assigned by the equations of motion without thermal conductivity. It also makes us thoroughly

understand why we cannot ignore thermal conductivity when the magnitude of the gradient
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is not pre-assinged or predetermined. An example of the first case is a expansion wave for

which we have plotted a solution assuming the absence of thermal conductivity. We found

that the width of a expansion wave is of the same order as the distance covered by tur-

bulance. The width of a expansion wave increases linearly in time, and in order of magni-

tude is equal to

4x =P- cf.

It we take this to be the first approximation since in the plottinf of the expansion wave

thermal conductivity and viscosity were not considered, and if we want to consider in the

following approximation the effect of thermal conductivity and viscosity on the temperature

and velocity fields found in the first approximation, then we will see that all the gradients

will rapidly grow so small that thermal conductivity and viscosity will have virtually no

effect on the result. This, however, is not the case in a shock wave. Should we take as a

first approximation an infinitely steep discontinuity, obtained when thermal conductivity and

visconsity are equal to zero, then in the next approximation, introducing thermal conductivity

and viscosity, we obtain infinite heat flow and an infinitely great increase in entropy. In the

case of a shock wave where the equations of motion without thermal conductivity and viscosity

do not give any specific value for wave width, the gradients and the wave width connected with

them can only be obtained from the consideration of dissipative forces. The width turns out

to be precisely such that it gives the increase in entropy required by the conservation equations.

Conversely, if in a expansion wave with a finite width commensurable with the dimensions of

tVie system we could disregard the effect of dissipative forces, then in a shock wave, in order

that dissipative forces could give a finite increase in entropy, it is necessary that tae width

of the shock wave should be very small as compared with the dimensions of the system.

Owing to this we can disregard dissipative forces every-here except on the surface of shock

waves. These relations have been well explained by Ranicune qualitatively for the particular

case when the only dissipative factor is the thermal conductivity of the substance.

Rankine's further explauations suffer from excessive complexity. He does set up the

energy equation quite correctly, but in the general case of an arbitary sutstance he does not
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express intrinsic energy in an explicit form as a function of pressure and density. Instead

he uses general thermodynamic formulas which include entropy.

On the processes of heat transfer within the discontinuity, he imposes a condition,

ITdS"0-, the physical significance of this condition is that in a shock wave there occurs

only an exchange of heat between neighboring layers, so that the amount of heat removed

from one layer is equal to the amount of heat received by the other one, which means that

there are no exterior heat sources.

It takes Rankine some effort to derive a system of equations equivalent to that in

Chapter 8 from the combination with the general thermodynamic formulas, and he then

writes the equations for an ideal gas. Thus, Hugoniot's adiabatic equation in its customary

form (Eq. (VHII-10)), could be derived from the formulas contained in Rankine's work by

means of elementary algebraic transformations. Let uE; remind the reader, however, that

Rankine preceded Hugoniot's work by F,ome fifteen years.

Rayleigh summarized in 1910 the evolution of the history of shock waves [79). He

particularly emphasizes the unfairness involved in the term "Hugoniot's adiabatic curve".

Among the occasional papers it Ls interesting to note that as early as 1858 the

English priest Earnshaw (491 came quite close to creating a theory of shock waves. Like

Riemann he proceeded from the investigation of a compression wave of finite width in which

(see Chapter 2) the wave crest overtakes the region of low pressure thus resulting in a

discontinuity. However, the Reverend Earnsbaw all of a sudden makes the surprising

inference that nature does not suffer discontinuities or jumps. He makes some obscure

statements on reflections, and implies that nature will somehow manage to prevent the

formation of a shock wave or of a discontinuity. This is an educational example of the

bad influence exerted by an erroneous philosphy on scientific research.

In a latter time, already after the discoveries of Riemann, Rankine and Hugoniot, the

French scientist Pierre Duhem (one of the leaders of the "energetics" movement fashionable

at the beginning of the twentieth century) denied the existence of shock waves on the assumption

thnt in equations of gas dynamics involving viscosity and thermal conductivity there can be no
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strict discontinuity [46, 47]. Emile Jouguet, a pupil of Duhem, followed Rankine and pointed

out that dissipation forces result in an exceedingly small width. If one disregards it,

then one can speak of a discontinuity or a shock wave. Not only did Jouguet clarify

Duhem's error, but he greatly contributed to an advance in the theory of shock waves and

detonation waves [58, 59, 601. Yet, to this day French authors, probably on account of

Duhem's remarks, frequently speak of "quasi-waves", with a view on the finite width of

the front.

Essentially we are dealing here with the general problem of the value and significance

of approximate methods or approximate solutions in physics (see the remarkable paper by

V. A. Foch [291). This involves also the question as to when as approximate realization of

some formulas or relations justifies the creation of new qualitative concepts.

Rankine also touches upon the problem of expansion waves, .nd refers to an oral

communication by Thomson according to which an expansion wave must be mechanically

unsteady. In point of fact, however, Rankine already implies the impossibility of a expansion

wave (and not its unsteadiness or instability). In fact, if we study the processes of thermal

conductivity inside the wave then, besides the conservation equation written by Rankine,

JTdS=-0, which states that in a process of thermal conductivity the amount of heat received

by one layer 4s equal to the amount of heat released by other layers, we must take account,

at least qualitatively, of the elementary fact according to which in the process of thermal

conductivity heat always passes from a hotter body to a cooler one. Hence, of course, we

get that in a shock wave entropy can only increase. Thus, were we to type to plot a

expansion wave by inverting in a shock wave all the velocities, then inside the shock

wave front, inside the "discontinuity" we would also run into the necessity of inverting the

heat flow and achieve a transfer of heat from cooler gas layers to hotter ones -- which is

impossible.' We cannot but regret that these elementary considerations are sometimes

ignored even in the contemporary literature (see Chapter I of Vlasov's book [3], which is

otherwise quite valuable).
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Chapter 11

Graphical Methods of Shock Wave Theory. Waves Near a Critical Point

A very convenient aid for a simple investigation of shock wave theory is the re-

presentation of processes and states on a diagram in which specific volume v is shown

on the abscissa and pressure p is shown on the ordinate. We have already mentioned that an

assigned initial point (point A, pl' v1, in Fig. 27) corresponds to one specific Hugoniot

curve. Figure 27 sh,.wn how to find on a diagr'am the propagation velocity of a shock

wave. We use a tormula which gave us the shock wave velocity as a frnction of pressure

and specific volumes before and after compression

-V--. (XI-1)

For the given initial state of the substance pl', Vl the facto"- preceding the fraction
-= 2.

v is a constant quantity, and the propagation velocities of shock waves corresponding to

various compression stages, various final states, etc., depend on the ratio P2 - Pl/v 2 - v1,

i. e., on the tangent of the dip angle of the corresponding straight lines connecting the initial

point pl, V, with the points representing the state of the substance after compression P2, v2 .

Thus, it is obvious from the diagram, that point C where pressure is greater than at point

B, corresponds to a shock wave that propagates at a greater velocity because the angle of

inclination of the straight line AC is greater than that of the straight line AB. It is quite

important that Eq. (XI-1) was derived by us only from the first two equations, the equation

of conservation of matter and the equation of conservation of momentum, independently of the

equation of energy conservation. Hence it will hold true in all cases where the equation of

momentum conservation is not disrupted, i. e., when there is no interference from

external forces of the kind of gas friction against walls. In all these cases and in particular

also in the presence of a chemical reaction or in the presence of external heat sources or

energy sources, which change only the energy equation but not the momentuam equation, the

relation between density and pressure in the initial and final state, and the propagation
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velocity remaip 3 in force. In particular Eq. (XI-1) refers aIso to the speed of propagation

of a detonation in explosive gas mixture [8, 59, 60].

Fig. 27. Shock wave propagation
velocity is determined by the slope
of the chord, for example, AC, AB,
AE. Sornd velocity is determined
by the slope of the tangent.

CODE: a) Sound.

Special interest should be placed on the fact that Eq. (XI-1) is obtained from compiling

the equations of the conservation of matter and momentum only for the initial and final

state of the gas in the wave. Use of the straight lines AC or AB for computing the velocity

does not mean that it has been assumed that the intermediate states (see Fig. 23b) are re-

presented by points on these lines.

Should we be interested in the intermediate state through which passes the compression

inside a thin shock wave front, or inside the front of a detonation wave, or any o~her wave

that propagates steadily in a gas, then, along with the external forces which may violate the

law of momentum conservation, we mvist also consider the possible effects of internal forces

of gas viscosity which are omitted in the Juxtaposition of the initial and final states. If for

any reason we can disregard the effect of viscosity or the effect of internal friction, Eq.

(XI-1) can be applied to all those intermediate states through which the substance
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passes on its way from its initial state to its final state. This is precisely the situation in

a detonation wave where the wave width depends on the velocity of the chemical reaction

and, gene:7,lly speaking, is quite considerable, so that the effect of viscosity is small. A

detailed discussion of the problem and a complete bibliography can be found in [8, 103J.

In Fig. 27 we can also readily find the graphic representation of sound velocity.

Sound propagation is obtained as an extreme case of the propagation of very weak shock waves.

Thus, sound propagation velocity on the diagram in fig. 27 is given by the extreme

inclination of the secant, when the second point representing the final state of the substance,

approaches the first point to an infinitely small distance, i. e., it will be given by the

inclinat.on of the tangent to Hugotdot's adiabatic curve at the point representing the initial

state of the substance under investigation.

We juxtapose Eq. (XI-1) for P2 - p, and the expression fer sound velocity 0-- - ot-

and conclude that at the initial point Hugoniot's adiabatic curve touches the line of constant

entropy (Poisson's adiabatic curve).

We can see that for an ideal gas with constant thermal capacity, for which Hugoniot's

adiabatic curve has the form shown in Fig. 27, the shock wave propagation velocity is

greater than sound velocity in the initial gas D - u, > cl. By increasing ad infinitum the

shock wave pressure we can, in the limit, obtain an arbitrarily great shock wave propagation

velocity. Conversely, for a expansion wave in which the final state E in Fi6 . 27 lies below

the initial state, the propagation velocity would be smaller than sound velocity. If at the

final state of the compressed gas in a shock wave, for instance, at point B we plot Poisson's

adiabatic curve or Pugoniot's adiabatic curve touching the latter at this point, we can like-

wise determine the relation between shock wave velocity and sound velocity in a compressed

gas. For wave' propagation velocity with respect to compressed gas we have

.•'-(D- -)'vp'•-p2.
u2•-- 1t, (XI-2)

an expression which is completely symmetrical with the expression for wave velocity with
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respect to the initial gas. In Fig. 28 we have plotted through B Hugoniot's adiabatic curve

HB, for which state B has been taken as the initial one. According to the symmetry of

equations, if B is on HA, then HB passes through point A (see Eqs. (IX-10, 11)).23 At

point B, curve HB touches Poisson's adiabatic curve. From the position of lines H and

straight line BA in Fig. 28 it follows that Cs> u.-- D- u, and sound velocity in a gas com-

pressed by the wave exceeds the wave velocity with respect to the compressed gas.

Fig. 28. The relation be-
tween wave propagation
velocity with respect to
initial state A and sound
velocity in state A is given
by the relation of the incli-
nation of the chord AB and
the tangent to curve HA at
point A. The relation of
wave velocity with respect
to the compressed substance
in state B and soun.d velocity
in state B is given by the
relation of the inclination
of AB and the tangent to
curve HB at point B. A
direct comparison of
velocities with respect to
the various states is inad-
niissible since the coeffi-
cient introduced in the
transition from inclination
to velocity depends upon

specific volume v
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In the pv diagram we can analyze the problem of eDtropy increase in a shock wave.

We correlate the expression for the change in intrinsic gas energy in a shock wave with

the general thermodynamic expression for energy dKfferential. In a shockwhve

- , (, (XI-3)_ 2

But in the general form dE = T dS - p dv. Along Poisson's adiabatic curve (the isentropic

line) we would have with a change in volume within the same limits

E2 E_ = fE_ - pddV. (XI-4)

We correlate the expression for the change of energy along Poisson's adiabatic curve (P)

with the expression for the change of energy for shock compression along Hugoniot's

adiabatic curve (H) and obtain the equation for the quantity A - of entropy change for shock

compression

Ot

? S=12 (v, -- vJ) P dv.
(XI-5)

Integrals (XI-4) and (XI-5) are taken along Poisson's adiabatic curve.

We investigate the relation between two terms of the last formula in Fig. 29.

P7

Fig. 29. Entropy increase withi
compression, in a shock wave AB
depends en the sign and the size
of area AFBCPA. AHP is Hugoijot's
adiabatic curve, and APC is Poisson's
adiabatic curve.
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in this Figure, APC is Poisson's adiabatic curve (the isentropic line), AHB is

Huboniot's adiabatic curve, the change in entropy during compression by the shock wave

is Ss-,SA-=-S, -Sc and, according to Eq. (XM-5), it depends upon the difference between

the area of the trapezium AFBNM and the area limited by Poisson's adiabatic curve APCNM.

25
The product of absolute temperature times entropy increase is equal to the difference

between these areas, i.e., the area of APCBF.

We divide this area into two parts by the straight line AC. The first part is a segment

the extreme points of which A and C are enclosed by segment APC of Poisson's adiabatic

curve chord AC. The second part i, the triangle ABC.

We write the equation in the followin-g form, and denote by F the area of the Figures

T1 S=Fsegm. An-f-Ftrj. ARC. (XI-6)

The area of the trinagle is easy to find. If segment BC is the base of the triangle,

then its height is v1 - v2 . The length of BC in the p, v plane is Jg AS, and the area of

the trinagle is

By substituting this into the initial equation, we find

AS =Seg,,.-t- -L- I ) (M-7)

T-- a (XI-8)

where a=! ( L)(-v 2 .

In the case of slight volume changes, virtually TAS-Fsegm. and the correction

for the triangle area is small. If AS- (v -- vy,, then the triangle area - AS (i -- v-

-(vI V).,-)"I is of higher infinitesimal order as compared with AS and, consequently, also

of a higher infinitesimal order as compared with the area of the segment.

It follows that the sign of the change of entropy is fully determined by the sign of the

segment area, i. e., by the reciprocal position of Poisson's adiabatic curve and its

100



secant, which, iTk turn, depends on the convexity or concavity of Poisson's adiabatic curve,

that is, on the sign of the second derivative \ If a approaches T, then AS approaches

infinity, which actually takes place in an ideal gas with v2 -• , when on Hugoniot's

adiabatic curve p approaches infinity. T< a corresponds to negative pressure and

similar conditions which in the given case are devoid of any physical significaa,-.e.

For weak waves we can now easily find the extreme laws of entropy chang e in a shock

wave. We expand all the expressions in a power series v -- v - v1 and leave everywhere only

the senior term which gives us a final result different from zero.

Poisson's adiabatic equation is

I p ,;Q)JpI AV--K M . (,4v)9.

The second subscript shows that the values of the derivatives are taken at state 1

(point A, Fig. 29).

We write AV,--= v- v- = , find26 pressure p' 2 at point C (Fig. 29), omit the sub-

script of the derivatives and get

p• - p•-- • o+ -" •(XI-10)

We write the expression for entropy change, disregarding the area of triangle ABC

in Eqs. (XI-5, XI-6, and XI-7)

OaP (v,, _ o•)%
"12 dW2 (XI-11)

By correlating Hugoniot's adiabatic equation in the form

with the expression DI = T dS + v dp, we can interchange p and v in all the preceding
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considerations. Thus we get2 7

In a weak shock wave, entropy change is proportional to the cube of the amplitude.

At the initial point Hugoniot's adiabatic curve touches Poisson's adiabatic curve. At that

point these curves have a mutual tangent and a mutual curvature center (second order

tangency). Tangency is accompanied by intersection (see continuation of curves for V>v1

in Fig. 29).

Jouguet [581 obtained these results for the first time without resorting to the simpler,

geometric treatment. Since Jouguet's more complete work was published before Zemplen's

communication [991 (in the second note in the 142nd volume, Zemplen remarks that he should

have quoted Jouguet) the generally accepted custom of calling the proof of the impossibility

of discontinuous expansion waves the "Zemplen theorem" is totally incorrect and unfair.

In studying Eq. (XI-11) we establish that for an ideal g',s Poisson's adiabatic curve is
28

everywhere convex toward the abscissa. This leads us to the conclusion that entropy

increases in a compression shock wave. Conversely, in a sharp expansion wave to which

the conservation equations were applicable, entropy would drop, ehence we immediately

see that in an ideal gas the propagation of a expansion wave with a thin front, similar to

a compression shock wave, is impossible.

For weak waves, Fig. 29 makes it possible in a completely general form, that is,

for an arbitrary equation of state of the substance, to conclude that there is a relation

between shock wave propagation velocity and sound velocity in t&e substance before and

after compression. For compression to propagate in a gas in the form of a shock wave

with an extremely steep front, it is necessary that Poisson's adiabatic curve by convex

downward, i.e., have the form shown in Fig. 29. In this case, however, it is geometrically

obvious that the inclination of the tangent toward the adiabatic curve at point A must be

smaller than the inclination of the secant AB. Conversely, the slope of the tangent at

point B, which represents the final state, or the slope of the tangent at point C (which iE
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extremely close to B) is greater than the slope of the secant. 29 Thus, we obtain the

elementary conclusion of the relation found for the first time by Jouguet, according to

which compression propagates in the form of a shock wave if sound velocity before

compression is smaller than the propagation velocity of the shock wave found from the

conservation laws, and sound velocity in the substance after compression is greater than

shock wave velocity with respect to the compressed substance. in the case of Poisson's

adiabatic curve, which has an in-erted concavity (Fig. 30, section AB), compression in the

shock wave would be accompanied by a drop in entropy since the area bounded by Poisson's

adiabatic curve is greater than the area bounded by the secant, the verticals and the

abscissa. In a substance in which Poisson's adiabatic curves have an inverted sign of

concavity, the compression waves willnotbe strouger. For instance, a compression caused

in any portion of the substance by the movement of a piston propagates in the form of a wave

that gradually expands like the expansion waves in an ideal gas discussed earlier. Conversely,

in such a substance an expansion wave propagates with an extremely steep front, the steepness

of which does not decrease in time and is determined by the small values of thermal con-

ductivity and viscosity. This corresponds to an inverse relation ratio of between shock

wave velocity and to sound velocity. In fact in an expansion wave in which the original state

is represented by point A, and the final state by point B (Fig. 30), the propagation velocity

AB with respect to the substance at state A is determined by the slope of the straight line

AB and exeeds sound velocity at state A. This canbe seen from the nature of the intersection

of the adiabatic curve and the secant at point A, where the tangent to Poisson's adiabatic

curve has a flatter slope that straight line AB. Conversely, at point B, that describes the

state of the substance after the passage of a steep expansion wave the speed of sound exceeds

the speed of propagation of the final disturbance.

Are there such substances in nature in which, at least In some portion of the p, v

plane, Poisson's adiabatic curves have a convexity directed upward? We may expect to

find such a state near the critical point of a fluid, which is a gas. In fact, long before that

critical point, the isothermal curves have an inflection (at the very critical point, the inflection of
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an isothermal curve becomes horizontal); for a substance with a sufficiently high molecular

heat, in which the isothermal and adiabatic curves differ but slightly, we can expect

that outside the region of biphase systems, in a state in wli",h the substance is steadily in

one phase, the adiabatic curve will also have an inverted sign of the second derivative. The

relation between the structure of a compression wave and an expansion wave will become

inverted as compared with the relation between a sharply outlined compression shock wave

and a blurred expansion wave in conventional gases far away from the critical point.

p

Fig. 30. Poisson's adiabatic
curve with an anomalous con-
vexity directed upward. In
that section, expansion shock
waves are possible.

In Fig. 31, in the plane p, v, for the case cv = 40 cal/degree mole, we have

plotted line 11 that divides the region with 0the adiabatic cu-ve passing through

this region, and line I that divides the hatched area of biphase systems (the latter does not

depend on the quantity c). Computations have been performed with the aid of F. Ye. Yudin

(Combustion Laboratory IKhF.)

In the Van der Vaals equation, thermal capacity with constant volume depends only

on temperature in the entire region of monophase systems; the energy of a homogeneous

substance given by the Van der Vaals equation, can be written in the form of a sum
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of two terms

E--ET-,- E.)~=JcLdT---- "

"This considerably facilitates computations since the entropy of a Van der Vaals gas

can also be represented in the form of the sum of the temperature function and the specific

volume function. It would be very interesting to study experimentally the shock waves and

expansion waves in a gas with great thermal capacity in the region where we may expect the

existence of the aforementioned anomalies.

For this purpose one can take a high-molecular organic crompound that does not de-

compose at critical temperatures.

Y(

-4- '4-

I .. l ¶- I !

i. b) Ib

Fig. 31. Adiabatic curves with anomalous
convexity in a Van der Vaals gas with thermal
capacity c. = 40. The hatched area re-

ps.isents the biphase systems; curve II limits
this area of anomalous convexities. Belowcur,v e 1ý 2 < 0.
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CODE: a) Adiabatic curve, b) biphase fluids and vapor.

The esteblishmentina general form of a relation between sound velocity in a substance

before and after the passage of shock wave, and the change of entropy in a shock wave is

quite satisfying since it is obvious (see Thomson's remark quoted in Rankine's paper [781)

that the relation between shock wave velocity and sound velocity determines the mechanical

steadiness of the wave. It is essential that the shock wave propagate at a velocity exceeding

sonic velocity in the gas subjected to its effect, in order that the disturbance caused by the

shock wave does not precede it at a velocity equal to that of sound. It is also essential

that the shock wave propagate with respect to compressed gas at a velocity less than sonic

velocity iu the compressed gas, because only in this case can we imagine a causative relation

between the motion of a piston producing a shock wave and the propagation of the shock wave

since the disturbance is transferred from the piston to the shock wave front across a layer

of compressed gas. The same criteria ci <U ,, c,> u2 will be encountered when studying

the onset of shock -waves. It is very significant that these perceptible criteria of the me-

chanical steadiness of a shock wave can be strictly associated with the sign of entropy

change in a shock wave, In general terms this determines the possibility or impossibility

of the propagation of a shock wave that satisfies the laws of the conservation of matter, the

conservation of momentum and energy.

The relation between the sign of AS and the inequalities regarding sound velocities

wili be violated only in the case -where in the pressure change interval under study there

occur both signs of o)pldo', so that Poisson's adiabatic curve has more than two points of

intersection with the otraight line. Study of the complex conditions under which there

occur simulatneously discontinuities and dissipated waves adjoirAng them exceeds the scope of

the present monograph.
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Chapter 12

Structure of Shock Wave Front

We shall now investigate the thin layer of a shock wave inside which there occurs the

transition from one state to another, i. e., the layer between control surfaces A and B in

Fig. 23b. We have not yet discussed the processes taking place inside that layer bccause

its thickness, determined by dissipation forces, is extremely small and the results of the

processes occurring there can be determined from the conservation equations without a

thorough study of the processes proper.

Here, however, we are specifically interested in the processes occurring inside the

layer, and also the thickness of that layer. We shall study separately two extreme cases:

Case 1, of extremely small viscosity, and case 2, of very small thermal c,-'ductivity.

The mathematically (but not physically) more complex case of a simultaneous effect of

viscosity and thermal conductivity will not be investigated. For it we will give only the

final expression for the thickness of the transition layer.

The first case is remarkable in that Eq. (X[-1)

D? = • S P-PI I

which combines the change of density, the change of pressure and wave propagation velocity,

turns out to be applicable not only for the final state attained during compression, but also

to all the intermediate states within the layer.

As a matter of fact, this equation is the consequence of the first two conservation

equations, namely, the conservation of matter and momentum.

The equation of conservation of matter in a simple form (VII-1)

QU =-=const

is always satisfied for the propagation of a plane wave. When the wave travels in a pipe, the

cross-section of the pipe must be constant. Moreover, the pipe walls must not absorb or
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eliminate matter. To satisfy the momentum equation for the initial and final state in the

simple form (VMI-2)

p -i- Qu1 . const

the substance must not be affected by external forces. During propagation in the pipe, we

must disregard friction against the pipe walls. Finally, in studying the intermediate states

inte1esting us here, Eq. (VMI-2) can only be satisfied if the forces of internal friction

""(viscosity) are small.

In a shock wave travelling through a me-lium in which there only occur processes

considered by the energy equation, for instance, energy release from a chemir(al reaction

(detonationwave, see [8, 59, 601) or thermal conductivity, Eq. (XI-1) can be applied to all

intermediate states. Taking the propagation of a shock wave as a whole, the speed at

which each intermediate state moves with respect to the initial state is identicpa. In Eq.

(X[-1), the quantity D must be considered constant. Thus, this equation leads to a linear

relationship between pressure and volume

DI
- -- (XII-1)

In the p, v plane (Fig. 32) the state changes along the straight line that connects

the points describing the initial (A) and the final (B) states of the substance.

If we know the relation between pressure and density that is valid for the entire shock

wave front, we can find its width by means of elementary integration.

It can be shown that along straight line AB entropy attains maximum somewhere in the

middle (point M, Fig. 32) between the initial and the final states of the substance.

As a matter of fact, at point A the speed of the wave with respect to the substance

is greater than sound velocity, and at point B the speed of the wave is less than sonic speed.

At some point Al wave velocity equals sound velocity. At this point the straight line AB

touches Poisson's adiabatic curve, and, consequently, entropy is maximal. 31
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If we assume that there is no viscosity,

Af .entropy changes only on account of thermal con-

\ A•.
%\ ductivity. Under steady-state conditions, in a

P system of coordinates in which the shock wave

"itself is at rest, we can readily change from

Fig. 32. A and B are the initial and the the substantial derivative with respect to time
final state of the gas compressed by a
shock wave. The solid lines are to the derivative with respect to the coordinate.
Poisson's adiabatic curves, i.e., lines
of constant entropy that increases from In this case the sign of the partial derivative is
SA to SB and SM. In the absence of

viscosity, but in the presence of ther- superfluous since the process under study is
mal conductivity, the state changes stationary in the system selected, and does
along straight line AB on which entropy
attains maximum at point M. In the
absence of thermal conductivity, but
in the presence of viscosity, the state
changes along the dashed curve AB, on dS d
which entropy monotonically increases .oTa -= A= -A d r I-
from A to B. Hugoniot's adiabatic dx dz dx - I' (XH-2)
curve is not plotted here (it also runsthrog s andoBt plotedores nt csoirnce where X is thermal conductivity of the sub-through A and B but does not coincide

with the dashed line), stance. The temperature, at least in a weak

shock wave, changes monotonically along straight line AB.

The solution sought, the distribution of temperature and entropy as functions of the

coordinate, takes the form shown in Fig. 33. The point at which entropy attains maximum

values coiucides exactly with the inflection point of the dependence of temperature on the

coordinate.

Fig. 33. Internal structure of a
shock wave of small amplitude 4n
the presence of thermal conductivity,
but without viscosity. Notations are
the same as in Fig. 32.
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From the preceding chapter we can readily find the order of magnitude (considering the

change in volume during compression a quantity of first order of smallness) Ap. ,7'

first order, proportional to dz; S"-SA -Sx-S, second order, proportional to

(Av),2 S h -SA-third order, proportional to jAv)3. It is easy to evaluate the width of

the shock wave front by integrating (XI-2) up to point M

-Ta d -- y i" (XHI-3)

For our evaluations it follows that

4T 4,

SI-SA P4u2YDr7 *(XIU-3a)

For the determination of 41 x, in accordance with the last formulas, see Fig. 33. We

establish the order of magnitude of the coefficient from

AX R-c-t, (XH-4)

where R, the gas constant, is in cal/degree x gram, v and c are selected to give the

length.

Figure 33 is a concrete representation of Rankine's ideas [78].

It is interesting to note that in the case of very strong compression, there arises a

rather peculiar fundamental difficulty, which consists in that on line AB between points A

and B maximum temperature is attained only if pressure in the shock wave PB exceeds

1. 5 PA (with c /c = 7/5 for a diatomic gas). Maximum temperature is reached at

higher pressures than maximum entropy.

In the presence of maximum temperature it turns out to be impossible to plot a

continuous distribution of temperature and entropy in space that could satisfy the funda-

mental equation (XH-1).

Rayleigh [791 has shown that because of this difficulty it becomes necessary to con-

sider also viscosity. However, the effect of molec-ilar viscosity changes not only the
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energy equation, but also the equation of motion (our Eq. (VIR-2)). Thus, in this case the

line of the system in the p, v plane deviates from line AB. Becker [38] made the same

considerations at a later date, but without mentioning Rayleigh (referring, however, to a

private communication by Prandtl, see also [76]).

In the second extreme case, in the absence of thermal conductivity and the effect of

viscosity alone, entropy in the wave changes only on account of the conversion into heat

of work performed against viscosity (see Eq. (1-18)),

de eT • -- • W] "(x II-5)

According to this last equation, entropy under the effect of viscosity increases

monotonizally. The change in state on the p, v diagram is shown by a curve enclosed be-

tween Poisson's adiabatic curves which pass through the initial and final points (dashed

line in Fig. 32). We introduce again the concept of effective width

7 1-- = -- I (XII-6)

as as S& - A
-- •-- d (XII-7)

From Eq. (XII-5) we readily find (we identify D and c by their order of magnitude)

Jx .w- (XII-8)

and note that us -u -D - dIvl,

Deviatica from straight line AB occurs because of viscosity moment-ma. The equation

of stea4,y moticn for one coordinate is

dua = ap - -(I Iu

A dx dx -3 d w)" (XH-9)

We integrate and find3'"

2 2 w daDp -Iu- . • ;- 4- p• AU -A A-- , (X.-1O)
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but from the continuity equation we find

up-- M =const; dz A

PJ d3 (XHI-11)
)i:2 dv _

o p - Mv,-t- -•-j J A ~ U ~i ~, cnt (XII-.12)

2

without the term 2 dv , the equation yields the straight line AB.

If in accordance with Fig. 32 )- > 8>0, then the dashed line enclosed between adiabatic

curve S = SA and S = SB, runs entirely below the straight line, so that in the wave

p --- A, < APA (XII-13)

In this case from the equati-: we find PjM ! K 0, v in the wave decreases, and compression

occurs. An expansion wave would require negative viscosity. By investigating the structure

of the wave front under the effect of viscosity we came to the same conclusions regarding

the possibility of compression or expansion waves with the sign -- ), which we reached

earlier by following another method.

In the case of complete absence of thermal conductivity, a decrease in the viscosity

factor leads only to a decrease in the front width, so that there is an increase in derivative
do

du/dx, j- remains constant, and the line in the p, v plane does not change.

With thermal conductivity the decrease in front width and the increase in the derivatives

with respect to x with decreasing viscosity will be limited. With a sufficiently snull 71, the

entire term 17 du/dx will be small, and we approach the satisfaction p + Mv = const, i. e.,

the equation of straight line AB (see, incidentally, our earlier remarks concerning strong

shock waves in which on a segment of straight lin. AB maximum temperature occurs. In

this case in a specific portion of the wave front it is viscosity, no matter how small it may

be, that determines the magntude of the derivatives).

To evaluate the order of magnitude of fro.it width, we use the molecular-kinetic

expresfion for the coefficient of thermal conductivity and the viscosity factor. In both
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extreme cases we readily find

AP (XII- 14)

where 1 is the length of the free path of the molecules in the ga6. 33

For air at atmospheric pressure, taking the Pandtl number (the ratio of kinematic

viscosity to thermal diffusivity) to be equal to 1, Taylor [93, 24! with the aid of diffusion

coefficient B gives the following expression for the width of the shock wave front

4.45
"a,-- , (XHI-15)

For air at atmospheric pressure B = 0. 18 cm 2/sec,

A.X , =4.10-5 1 (Ax-cm, za-cmsec, A,-arx). (XH-16)
ni nas-a 4P

All the estimates unanimously indicate that in shock waves in which AV _ v and Ap - p

the width of the front is of the order of the length of the free path. Under such conditions,

detailed computations of the structure and the application of the differential equations of

hydrodynamics become meaningless.
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Chapter 13

Propagation of Shock Waves in a Gas with Delayed Excitation of

Internal Degree of Freedom

In Chapter 2 we Investigated the propagation of sound in a gas with delayed excitation

of the internal degree of freedom, i. e., in a gas in which thermal capacity, with extremely

rapid changes in state, is conoiderably less than with slow changes in state or with slow

changes in temperature. This dependence of thernmal capacity on the rate of the change

of state, this delayed excitation of thermal capacity may be due either to a dtfficuit transfer

of energy to the internal degree of freedcn, or to -i :eve-:sible chemical reaction. Li thermo-

cynamics, additional thermal capacity due to a reversible chemical reaction whose

equilibrium shifts with changes in temperature or pressure, is equivalent to a delayed.

excitation of the internal degrees of freedom. Conversely, the case of a reversible

chemical reaction has nothing whatsoever in coimmon with the irrevers'bie flow oi a

chemical reaction in a shock wave, I. e., with the phenomenon of detonation, which will not

be discussed here.

As mentioned in Chapter 2, the delayed excitation of a portion of thermal capacity

leads to two fundamental peculiarities of the acoustic behavior of a substance. First, it

leads to sound dispersion, i. e., to the dependence of sournd v-elocity on frequency. High-

frequency sound propagates as if thermal capacity were small. In low-froquency sound with

a long wavelength, the state changes very slowly. Thermal capacity has time to be fully

excited and, consequently, sound velocity is decieased. Simultaneously with sound dis-

persion, there may occur an exceedingly powerful sound absorption. As one researcher

oc* s&ld, in a specific frequency range the gas develops an "opacity" to sound. There

occurs absorption due to the fact that the intrinsic energy of the gas does not change in

phase with its pressure or specific volume, i. e., it changes all the time in a state wtich

it far from being in equilibrium, it changes irreversibly. The delayed excitation of a

portion of thermal capacity is one of the possible mechansims of disuipation (dispersion)

of energy.
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We investigate the propagation of a shock wave in a gas with a delayed excitation of

a portion of thermal capacity. In the p, v plane (Fig. 34), we can trace through a given

point A(p 0v 0) which describes the initial state of the substance prior to compression, two

Poisson adiabatic curves, i. e., two insentropic curves, one of which occurs with an

extremely rapid compression (dashed line, w = co), and the other, steeper one, occurs

with slow compression and full excitation of the entire equilibrium thermal capacity of the

substance (dashed lRne, o = 0). If we are interested in the propagaticn of shock waves

over long distances (we shall see later what is the natural scale of this problem and with

respect to what distance may be considered great), the control plane on which we fix the

s-ýate of the gas subjected to compression, can always be set at a sufficient distance from

the spot where compression began, so that there will always exist a region in which all

internal degree of freedom and the entire intrinsic thermal capacity are fully excited. As

we place the control plane, Fig. 23b, in that spot, we obtain from the conservation equation

a HugoniAt adiabatic curve with full excitation of the internal degrees of freedom (solid line

AMC, W = 0). Consequently, this curve at point A touches at point A the flat Poisson

curve which corresponds to low frequency, and only farther, at considerable compression

values, moves away from it and runs steeper.

It can be seen from Fig. 34 there can be different cases depending on pressure from

compression in a shock wave. A weak shock 1 (in which the final state after compression,

after complete excitation of all the internal degree of freedom, is described by point M on

Hugoniot's adiabatic curve, w. = 0) must propagate with a velocity that is less than sound

velocity at high frequencies. Which will be the structure of such a shock wave.

if in the comparatively wfak shock wave I under study there occ-rrWi in some section

of the front an extremely rapid and abrupt change in state, then to this change we could

also apply the conservation laws. However, in the case of a rapid change of state, the

excitation of external degrees of freedom has no time to occur. Such a change of state may

be called "a shozk wave wVithout excitation".
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A Hugoniot adiabatic curve plotted without consideration of the internal degrees of

freedom, i. e., for an extremely rapid compression, must lie higher than the corresponding

Poisson's adiabatic curve (the solid line AB, W = wo in Fig. 34). The propagation velocity

of this "shock wave without excitation" is obviously greater than sound velocity at a high

frequency, and, consequently, it exceeds all the more low-frequency sound velocity, and

even exceeds the velocity of sufficiently weak shock waves with excitation.

Thus, in the mode sought for, in order

that it be stationary (if it is stationary), if all

the parts of the front move at the same velocity

with respect to the gas and conserve the distance

with respect to one another at a constant front

\ \ •structure, there can be no abrupt pressure increase

or abrupt changes in volume in a weak wave. We

may say that from a slowly propagati,-g distur-

bance, a slowly moving shock wave, there will

continuously emanate high-frequency sound waves
Fig. 34. Propagation of a shock wave in
a gas with delayed excitation of a part the velocity of which will exceed the velocity
of thermal capacity. Hugoniot's adiabatic
curve (solid line) and Poisson's adiabatic of the shock wave owing to sound dispersion. These
curves (dashed line) are plotted on the
basis of two assumptions, the absence waves, however, dampen very quickly, indeed they
of. excitation (w = co) of a porti•oi of
thermal capacity, and total excitation, dampen exponentially ahead o. the shoek wave. Th6
The chord of Hugoniot's adiabatic
curve ix = 0 intersects or does not accumulation cf an infinite amount of damping
intersect the adiabatic curve ou = de-
pending on amplitude, sound waves forms a "washed-out" front of a weak

shock wave, We can find the exact structure of

the front by ignoring in this case the effect of viscosity and thermal conductivity. The state

of the substance changes along straight line AM. The rate of this change depends on the

excitation rate of the internal degrees of freedom. It is qualitativciy obvious (and it can be
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corroborated by fairly simple computations) that the effective front width of such a shock

wave which propagates at a velocity less than the velocity of high-frequency sound, depends

on the excitation rate of the internal degrees of freedom. In order of magnitude, the front

width is equal to the product of sound velocity times the excitation rate of thermal capacity

(see Fig. 35a). This width may exceed many times the width of the front obtained from the

effect of viscosity and thermal conductivity. Thus, in the case of carbon dioxide, total

thermal capacity with slow excitation amounts to 3.3. cal/mole x degree, of which 2.5

cal/mol x d:ýgree represents the thermal capacity of rotational and progressive molecule

motion, excited instantly, virtually with every collision between molecules. The remaining

0.8 cal/mole x degree is oscillatory thermal capacity excited, as an average, once every

600,000 collisons [62]. At high frequencies, sound velocity 3xceeds by 4% sonic velocity at

low frequencies. In carbon dioxide, a shock wave caused by the motion of a piston at a

velocity of approximately 13/sec, in which a compression by 5% is attained (pressure

increases by 7%), propagates in the gas at a velocity which is still 1% less than high-frequency

sound velocity. By computing from Prandtl's [76], Rayleigh's [79], Taylor's [931 and

Becker's [381 formulas (Chapter 12) the width of such a shock wave In air, where it depends

on thermal conductivity and viscosity, we get at atmospheric pressure 8 x 10-3 mm, and

0.4 mm at a pressure 15 mm Hg. In carbon dioxide these values would be even smaller.

However, the width of a shock wave in carbon dioxide, where it depends or. delayed excitation,

amounts according to a rough computation to 12 mm at atmospheric pressure. At a pressure

of 150 mm Hg, the width reaches 60 mm. Such a sharp charge in the width of the shock wave

can be noticed when studying the front structure by means of Topler photography when com-

paring photographb in gases, such as air, in which there are no such effects, and photo-

graphs in carbon dioxide.

In the case of a strong shock wave (2 in Fig. 34) we must expect more complex modes

(see Fig. 35b). Discontinuity AB, the width of which is determined by vicosity and thermai

conductivity, and Is therefore extremely small, propagates without a noticeable excitation

of the internal degrees of freedom, point B lies on the corresponding Hugoniot adiabatic
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Fig. 35a. Structure of a shock wave of
small amplitude (AM) in a gas with de- Fig. 35b. Structure of shock wave of great
layed excitation (see Fig. 34). T is amplitude (AC) in a gas with delayed e-.citation
excitation time. (see Fig. 34).

curve (sign w = co). The excitztion behind the diacontinuity is accompanied by a smooth

(in length of the order D r) increase in pressure and compression up to point C. Figures

35a and 35b show the distribution of pressure in the shock wave front which may be expected

in these two cases. The distributions of temperature, density and velocity, not shown here,

are quite similar. The photographic study of the form of a shock wave must, we feel,

become an expedient direct method of investigating delayed excitation of internal degree of

freedom.

The increase in the front width becomes a natural phenomenon if we remind ourselves

of the fact that delayed excitation yields a large second viscosity factor (Chapter 1). However,

substitution of actual concepts by the formal introduction of the secnrd vis-jsitv factor is

possible only in a limited extent and, in particular, does not permit the finding of the more

complex mode in Fig, 3,5b (see Ch•pter 2, G -114). Detailed coinputatlkr.s can Ibc found

in a paper by this author to be published in Zhurn. eksper. teor. fiziki (Journal of

Exoprimental and Theoretical Physics).
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Chapter 14

Formation of Shock Waves

We discussed the theory of shock waves proceeding from the motion resulting from

the compression of a gas by a piston that at a specific instant (t = 0) begins to move to a

constant velocity. We arrived at a mode at which the shock wave is formed as soon as the

piston begins to move, and propagates with constant intensity. With a finite piston mass,

such a motion would require that an inertia of infinite magnitude be overcome at the initial

instant with an instantaneous change in piston velocity.

Let us study the motion of a gas caused by the gradual accleration of a piston compressing

the gas, which is at rest when motion begins. We can easily plot this motion by substituting

continuous acceleration by a large number of minimal velocity jumps, i.e., by substituting

the smooth curve in the x - t plane by a broken line consisting of chords of that curve. 3 4

We thoroughly investigate the first stages of this motion. The piston begins to move,

and it moves during a time t1 at a small constant velocity w1.

During that time a shock wave of constant intensity propagates in the gas. The velocity

of the substance affected by the shock wave is constant and equals the velocity of the piston

w1. In other words, the piston is at rest with respectto the gas immediately adhering to

it. The same is repeated until the next velocity jump to w2 takes place, and a second shock

wave, characterized by the velocity jump w. - w1 travels in the gas adjoining the piston

and compreesed by the first shock wave, etc.

Figure 36 shows velocity distribution in space after three such jumps. The distribution

curves for pressure and density at the same instant have an analogous shape.

A fundamental significance is acquired now by the properties of shock waves, shown

in their general outlines by Jouguet (158, 601, see also Duhem [481). The propagation

velocity of wave 1 with respect to the gas compressed in it in segment 2-1 is smaller than

sound velocity at state I.
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Conversely, the velocity of wave 2 with re-

LgL, 3 spect to state I, which for this wave is the initial

lJ .? velocity, must be greater than sonic velocity at

_____ y state I and, according to Jouguet, all the more

exceeds the velocity of wave 1.
Fig. 36. Propagation of a series of
subsequent momenta. In time, point Hence we see that the waves catch one
3 catches point 2, and both points
catch point 1. The ordinate shows gas another, tend to accumulate and combine into

velocity. a powerful shock wave. Hugx-.iot attributes to

this phenomenon the stability of shock waves [561. Hadamard [541 and Pecker [38] compute the

moment and place at which accumulation begins as a function of the acceleration of the piston.

In the x, t plane, accumulation corresponds to the intersection of characteristics

(lines represer.ting the motion of individual shock waves) ahead of the piston.

Tn the case of exhaustion (piston movement away from the gas) the characteristics

spread in a fan-]ike fashion without intersecting, and the solution found (see Chapter 6)

remains correct for an unlimited amount of time. By decreasing the individual velocity

jumps and by increasing their number we come to a continuous, smooth curve of piston

motion and to a continuous distribution of del qity, pressure, and velocity in the gas ahead

of the piston, instead of steps.

In the case of compression, however, such a solution will be correct only until the

characteristics intersect, i. e., until such time when one wave catches the preceding one.

As the magnitude of the velocity jump wn - wn- 1 decreases and the time interval be-

tween two consecutive velocity jumps also decreases proportionally, the time and the place

at which two waves join (the Intersection point in the x - t plane) approach a fully determined

limit. Let us find that limit. The propagation velocity of a very weak waves does not differ

from sound velocity. In a gas in motion, to sound velocity there is added the motion of the

gas proper which is equal to the speed of the piston, so that the propagation velocity of a weak

wave in space is equal to c + w. During a time At the wave covers a distance (c+w) At.
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IN during that time the speed of the piston has changed by A w, and the compression

caused by the change in piston speed changed sound velocity by Ac, the propagation velocity

has increased by Aw + bc. This is the velocity at which one wave catches the other (the

difference between their velocities), so that the waves will meet after a time t . "A

By using the laws of change of state in weak waves applied to acoustics (we could

obtain them also by an ultimate transition from the shock wave equations), we can readily

compute the latter quantity

C4 A C-9-tv 46_ 1(Tee-- 4-,d. Ad•-- I Av- (XIV- 1)

After transition to limit we obtain

Ag 1 1
(XIV-2)

Aiw dw. dt g

where g is the acceleration of the piston.

AC dc de dXI.2'- == -'- == - •-" (XrV-3)

In acoustics we found that

du - d,; c W,

Since gas velocity u is equal to piston velocity w, we obtain

dn o do di' - d c _dI.ac-- = --" - " -- dc.=- J 11- ,"

dw c' ,,C,- W.In, t (XIV-4)

For an ideal gas we readily find
A-1

dinc _k-I 
XQdi 

k1

t'-"W €1, ýo =' -2 ct ) (XIV-6)
1~n 2

T 71 2C-I 1) XV6

2

In the case of a ., arbitrary equation of state we transform the denominator in Eq.

(XIV-1) in the following fashion

dc- 1-=Qdc-iI -i 2 (2&.-+2 ) 7=
dw C "- 2o; d

1 d A d A. (XV-'•)
2c p2- - dQ * 4"
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We switch to a more convenient variable, the specific volume 1nd f i2

V-, and find

d' = V-- )SX-8)

and within the limit when w -. 0

3 (,r- ) (XLV-9)

Thus, the possibility of one wave to catch the preceding one, and the possibility of

a shock wave being formed are connected with the sign of (; , the role of which in

thermodynamic theory has already been noted in Chapter 11.

A comprehensive study of all the aspects of motion in the case of arbitrarily

assigned piston motion runs into great difficulties [54, 38). There arise shock waves

of a finite but variable amplitude, and after their passage the entropy of the gas changes.

Oj ly very recently Kibel, Frankl and Khristlanovich succeeded in developing effective

graphical computation methods which, however, are much too complicated for our course

(see [111]). Analytical methods have hitherto been found only for the motion prior to the

formation of a discontinuity [37].

I0. is obviously much easier to find such a motion of the piston whereby all the

= characteristics "ntersect at one point, i. e., all the waves catch one another simul-

taneously and at one single spot.

Let us assign the place and time of the formation cf a shock wave (the conjunction

of all the weak waves), which are interconnected by the condition 'b = cOtb, found from

the study of the first weak wave that propagates in an unperturbed and still motionless

gas. We transpose the origin of the coordinates in the x, t plane to that point (and we

get new coordinates xV, t') and find that the state of the gas is constant along the

straight lines (characteristics) which go through the origin of the new system of coordi-

35
nates. In other words, the state of the gzs depends only on the ratio x'/t'. In

particular, gas velocity and piston velocity equal to it also depend only on x'/t'.

Thus, the differential equation of piston motion is homogeneous
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and can be readily integrated (see SmIrnov, Course of Higher Mathematics. Vol. 2,
p. 80).

The form of function f can be found by noting that the 3lope of the characteristic
is •

The relation between u and c in the case of the change of the gas caused by waves

propagating in one direction (see Chapter 6) in the absense of shock waves (with constant

entropy) -.an occasionally be found in its explicit form [ ideal gas u This

relation can always be found for a given adiabatic equation p p (pS const) in a pa.ametric

form [u = u (p), c = c (p)], see Eqs. (VI-10).

We transform it to

u=-- ,,. -12) "

where f is precisely the function f of Eq. (XIV-10).

Thus, for an ideal gas in the case that k = c/C = 1.4 there takes placep v

A__i(C___)=

dx, __ S/ ,, (XIV-14)
_dF' 6 CO) 4

We introduce the dimensionless parameter y
X., . - oty -'- coy (XIV-15)

Accordingto Eq. (XIV-14), we get
cc• C.Y -6 (co -j.(XI'V-1 6)

The variables split up as follows

t,1_=__ LYI S (XIV-17)

The initial conditions are

•o=-- X,; 1 •'.- x- -- C ), fol.' Yo=1. (Xw-18)

The solution has the following form

I - _ (XIV-19)
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We revert to the system of coordinates In which at an initial instant the piston

was at the origin of the coordinates, and obtain the following equation for piston motion

in its parametric form

xS'__X6 6(XV-20)

J= - (XIV-21)

In its explicit form the equation is quite clumsy.

The curve of Eqs. (XIV-20) - (XIV-21) is plotted precisely in Fig. 37. The piston

velocities are marked at various points. The dashed line represents the first charac-

tersitic.

The amplitude of the discontinuity in density, velocity and pressure at the inter-

section point depends on the instant at which the motion of the piston deviates from the

law just established.

Fig. 37. Piston motion (solid line)
for which all the characteristics
intersect silnultaneously at one point
A in the upper right-hand angle of
ihe drawing. Piston velocity is

" marked at individuall points. co0 is

sound velocity in the gas before com-
pression.

A final discontinuity occurs at the intersection point the moment all the waves join.

One can readily see, however, that this discontinuity cannot propagate further as one
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whole without any change, since in a discontinuity propagating without change (a shock

wave) there exist other relptlons between density, pressure and ve!ocity. Thus, until

the occurrence of the discontinuity the gradients everywhere were small, the effect of

dissipative forces could be disregarded, entropy did not change, and the relation be-

tween pressure and density satisfied Poisson's adiabatic equation. In a shock wave,

Hugoniot's equation is satisfied, and entropy increases.

"The motion that arises when the discontinity occurs will be investiated in

Chapter 16. In the next chapter, Chapter 15, we give some experimental data on the

occurrence of shock waves.

12
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Chapter 15

Shock Waves in the Case of Oscillations of Large Amplitude

Around 1860 it was noticed that strong electric sparks from a Leyden jar formed

strange lines on a smoked plate. The electric origin of these lines was suspected.

Mach et al. [66, 67, 68, 69, 821 showed in a series of ingenious experiments that these

lines are the trace of a collision of waves which propagate from individual sparks and

are reflected at the borders of the plate. By placing at the plate two spark inteivals of

different lengths connected in series, Mach noted that the point where the waves meet

is always closer to the weak spark. Thus he showed the dependence of the propagation

velocity of strong disturbances on their amplitude. By using the shadow method for

observing the propagation of waves, stroboscopy and instant photogrraphy with light from

an individual spark, Mach showed the supersonic propagation ve!ncity and the sharpness

of the distrubance front. He also noted that a disturbance that propagates in (three-

dimensional) space fades out much quicker than a disturbance forced to propagate in

one dimension only, such as in a narrow tube.

Vleille around 1900 performed experiments aimed at indicating shock waves that

arise in a pipe when a partition dividing gases of different pressure was ruptured [961.

Vautier investigated the propagation of the momentum caused by a shot from a pistol

[123]. In the first case, the relation between pressure (wave amplit"'i and its propa-

gation velocity that follows from Hugoniot's equations, was proved with sufficient

accuracy. In the second case, the waves were relatively weak, ard had at their origin

a "washed-out" front without a discontinuity. However, over a stretch of several kilom-

eters (Vautier used z. recently built but not yet operating water supply line) one could

note a gradual, characteristic increase in steepness, and the formation of a discontinuity

in the wave front.

We shall now briefly dwell upon the last tests [87, 701 which wa.re conducted with

particular care. Gas vibrations were studied in an inlet and exhaust pibe of an internal

combustion engine [87] according to the following characteristics A pipe 12 m long with an
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inner diameter ot i cm was attached to the cylinder of a smali piston engine having the

same diametev (7 cm) and a piston travel of 6. 8 cm. At fve different points inside the

pipe devices measuring gas pressure and velocity were placed. Pressure was measured

with a piozo-electric crystal, and velocity was meae-red with a 2 x 3 mm disk attached

to the axis of the pipe. •

The disk moves along the pipe axis w~th the motion of the gas, and turns a rod.

The rotation of the rod is recorded through a small window with the aid of a mirror

attached to the rod. Particular attention was paid-to the high proper frequency (low

inertness) of the measuring instruments, and the satisfactory damping of proper

vibrations.

An electric motor imparted the piston a harmonic alternating motion. The ampli-

tude of the oscillations was small at frequency values far away from resonance values.

The change in pressure and velocity in each cross section of the pipe also occurred

according to harmonic law, in complete accordance with the conventional concepts of

acoustics.

In the case of resonance, however, the type of motion changed abruptly. Figures

38a and 38b show schematically the recordings of the devices in the case of excitation

of the fundamental tore of the pipe. Piston oscillation frequency is 14.4 hertz (14.4

oscillations per second). The amplitude of gas motion is extremely wide, as should

have been expected. At a frequency of 14.4 hertz, piston velocity does not exceed r

14.4 h, where h is piston travel, I.e., 3.14 x 14.4 x 6.8 cm/sec = 3. 1 m/sec. In the

case of resonance, gas velocity attains 25 m/sec, that Is, about 10 times more. Of

particular interest to us is the ahape ef the curves for the change of vehrcity and pressure,

which e-idences the occurrence of shock waves of considerable amplitude in the case of

harmonic excitation by a comparatively slow moving piston.

The theory of shock waves permits us to reach approximate though extremely im-

portant conclusions regarding the amplitude of waves with resonance under Schmidt's

test conditions. Energy dissipation from friction and heat transfer from the gas near the
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Fig. 38a. Diagram o~f test (On the extreme
left, the pipe) aud record of changes in pres-
sure (left) and gas velocity (right) in 7 cross
sections of the pipe depending on time with
oscillation excitation by piston motion with a
fundamental proper frequency of the pipe of

14.4 hertz.

CODZ: atm; b) hertz; c) rn/sec.

lateral walls of the pipe (Kirchhoff [611), in the case of reflection from the end of the

pip3 and the piston (Konstantinov [131) all these causes for sound absorption, common

for acoustics, are very small under conditions of experiments of this type. The amount

of energy dissipated during a unit of time grows proportionally with the square of the

amplitude (i. e. , proportionally with oscillation energy) and at great amplitudes, when

discontinuities occur, it may even become secondary as compared wiih other mechanisms

of energy dissipation.

We established in Chapter 11 that in a shock wave there occurs an increare in

entropy proportional to the third power of the amplitude of pressure, density or velocity

in the wave. Under steady-state conditions, this increase in entropy must be compen-

sated by an automatically occurring transfer of heat from the gas into the pipe walls.
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The entrrpy increase describes the irreversible transformation of mechanical

energy into thermal energy; It describes the damping of waves negligible in the case

of small amplitudes, and the rapidly increasing (by the cube rather than by the square

as in linear acoustics) absorption. We introduce the effective value of pressure

amplitude Ap, denote frequency by w, the pipe length by 1, piston travel by h, piston

velocity by w, piston area. equal to the pipe's cross section by F and we find, approxi-

mately, the work performed by the piston during a unit of time£

A~lf FApwck. (XV-1)37
In the case of resonance we approximately evaluate A, and note that w approxi-

mately equals hW.

r A- p) LOF. (XV-2)

foa) d?: b) dGRc•

Ta

• LI...•

Fig. 38b. Instantaneous distributions
of pressure and velocity lengthwise in
tho pipe at various instants of time (pro-
cessing of the recordings in Fig. 38a).

CODE: a) atm; b) m/sec.
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We find energy absorption by setting up the expression

AI .DQFTAS, $XV-3)

where DeF is the amount of substance subjected to shock compression during a unit of

time; D, shock wave propagation rate, is substituted approximately by sound velocity

c; AS is increase of specific (per gram) entropy; T is absolute temperature; TAS is

work per gram of substance irreversibly transformed into heat.

According to Eq. (XI-13),

-12 ( li"

For air k= 1.4;
1 1 2A

TAS ~- - (Ap)5;

A-=ce FTAS=4 0 J*, (Ap)3/, p -!-T (XV-4)

We equate the work performed by the piston to energy absorption and obtain

In the case under study of excitation of the pipe's fundamental tone, piston oscillation

frequency in resonance is connected with pipe length w= c/21 (the length is of the half-wave

equal to pipe length). By substitution we £1nd the simple formula

I * (XV-6)

In Schmidt's experiment, h= 6.8 cm and 1 = 12 m, we find

V 12 fl7
-" 5- -'2- 0.17, A.p - OA7atm abs.

which is in a reasonable relation with the observed order of magnitude (Figs. 38a and 38b) if

we take into account the approximate nature of the computation and the existence of

other types of absorption. Let us note that for overtones, alongside the change in

the relation between wand 1, we muat also consider the presence at every instant of

several discontinuity surfaces (shock waves), which increases E 1 .
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C-impter 16
Propagation of an Arbitrary Discortinuity

In Chapter 14 we have come v o.r close to considering the problem of the subse-

quent fate of a discontinuity that arises E t:e junction spot of several weak shock waves,

a discontinuity that is not governed by Hugoniot'a equation. We generalize that problem

and formulate the problem of the behavior of an arbitrary discontinuity as follows.

At an initial instant of time t = 0 there is given a plane (located at the origin of

the coordinate x = 0) in Which all the quantities p, v, T, u, which characterize the

state and the motion of the gas, are subject to a jump. On both sides of the discon-

tinuity plane, all these quantities are constant. The greater the distance at which all of

these quantities can still be considered constant, the longer (in terms of duration) will

the solution to which we come be correct.

Since the conditions of the problem do not contain either a characteristic length

or a characteristic time, analysis of Chapter 6 shows that one must seek a motion that

depends only on the relationship x/t. In Chapter 6 this motion was found analytically

for the propagation of an expansion wave in a gas. For a compression wave the analytic

solution led to an absurd conclusion, namely, to the necessity of realizing at one and

the same point in space simultaneusly three different values for pressure and volume.

Precisely this absurdity became the starting point for the development of shock wave

theory. The knowledge of shock wa'e theory enables us to solve both particular problems

for piston motion that begins at the time instant t = 0, which leads either to an expansion

wave or to a shock wave. Now we can also solve the general problem of the propagation

of arbitrary discontinuities. We sill set up the solution from expansion waves and com-

pression waves studied earlier.

Let us flist note a specific difficulty. The expansion wave propagates in a gas at

a velocity equalling that of sound, whereas the compression wave, as we have seen,

propagates at a velocity exceeding that -of sound. However, with respect to the already
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compressed gas, the compressed shock wave propagates at a velocity less tUan that of

sound. Thus, we have only two waves. One wave, either the expansion or the compression

wave, propagates in one direction, for instance, to the left of the plane in which occurred

the discontinuity at an initial instant of time, and the other wave propagates in the opposite

direction, namely, to the right. We cannot direct more than one wave in one direction.

In fact, if, for instance, a shock wave propagates to the right, then the exparsion

wave and, all the more, the shock wave that travels in the gas subject to compression

in the same direction, are bound to catchup with the original shock wave. But since both

waves must proceed from one point x = 0 simultaneously at the instant t = 0, when the

discontinuity occurred (in other words, the entire phenomenon must depend only on the

coordinate x/t, and in this case it is inconceivable that one wave catch up with the other),

then there can be no more than one wave travelling in one direction. However, a wave

that propagates in a gas the state of which is assigned (it may be either a shock wave or

an expansion wave) can be fully determined by one parameter. Thus, for example, if

we determine the density ratio before and after the passage of a shock wave, the density

will determine the pressure of the shock wave (according to Hugonilo's adiabatic curve),
S the propagation speed of the shock wave, entropy and all the other quantities of the substance

subjected to compression. And in order that it be precisely a shock wave with which we

deal, It is necessary that the density off the substance exceed its initial density since

we are dealing with gases far away from the critical point. Conversely, if we establish

that the density of the substance after the passage of the wave be less than its density

prior to the passage of the wave, then on the basis of thermodynamic considerations we

can immediately conclude that we are dealing here not with a shock wave but with a

constantly expanding expansion wave. For an expansion wave the change in density again

fully determines the change in pressure in the wave, the gas Pntropy in the wave does

not change, while the velocity of the wave is equal at any point to sound velocity,

Thus, at first siht It would appear that we have only two parameters by which

can be selected the change in density in two waves that propagate in two different
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directions. We need, however, also a third parameter in order to describe the propa-

gation of an arbitrary discontinuity. On one side of the discontinuity, for example, on

the right, we were assigned three quantities, namely, pressure, density and velocity

in an unperturbed gas. For each wave we have one parameter. There are two waves,

which gives us two parameters. We must, however, get to the arbitrarily assigned

three quantities which characterize the state of the gas on the left (for instance, pres-

sure, density and velocity on the other side of the discontinuity). Thus we necessarily

conclude that there must exist another discontinuity, or another wave. However, that

discontinuity or wave must have a peculiar property, namely, the discontinuity in

question must not propagate at sonic velocity with respect to the gas. We can imagine

such a discontinuity only if pressure and velocity on both sides of the discontinuity are

identical. Only in this case there will be no sound waves proceeding from the discon-

tinuity towards both sides. The fact that velocity and pressure are equal, a fact which

guarantees the mechanical equilibrium in the discontinuity of a special kind, does noc

interfere with the fact that on both sides of that discontinuity temperature, density and

gas entropy are different. With the aid of such a third discontinuity (a discontinuity of

a special kind) it becomes possible to satisfy all the equations, ie., it becomes

possible to find a full solution to the problem of the further fate of an arbitrary discon-

tinuity assigned at an initial instant of time.

Let us first of all assign specific values to the pressure and specific volume of the

substance.

In the p, v diagram of Fig. 39, let point A represent the state of the gas left of

the discontinuity (pressure pa), and 'oint B be the state of the gas right of the arbitrary

discontinuity (pressure pO) at the initial instant t = 0. We now follow all the motions

which result for different values of velocity with respect to the motion of the substance

right and left of the discontinuity plane assigned at thc initial instant. Through each

point A and B we plot upwards Hugoniot's adiabatic curve along which compression in

133



•i Fig. 39. Propagation of an
• •arbitrary discontinuity..T.o

--initial states on both s-;'des of

• the discontinuity are described
j• by points A and B. Hugoniot's

adiabatic curves HA and HB

A

are plotted above A and B,
aPoisson's adabatic curves PA

Sand PB are plotted below.

I the shock wave proceeds, and downward we plot Poisson's adiabatic curve along which the

state of the substance changes with, ,=pansion in the expansion wave.

With a change in relative velocity, there is s change in pressure p in waves pro-

S • pagating in the first and the second gas, the pressure being equal on both sides of the

discontinuity of a special kind. However, instead of assigning a relative velocity and

finding pressure p, it i, more expedient to proceed in a different way, and, establishing

various values of p, plot a corresponding regime and determine which should be the relative

motion of the gases at the initial instant in the states represented by points A and B in

order that . ?asigned pressure p can be attained.

We select pressure p0 which exceeds both pressure Pa and Pb (Fig. 40a). In this

case expansion waves will travel right and left of the arbitrary discontinuity. The

substances in states a0 and b0 border on one another. They are divided by the dis-

continuity of a special kind in which pressure on both sides is equal to p 0 and the

velocities of the substance must be equal to one another. But since the substance in
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a .b

C pp6
c

Fig. 40. Characteristic cases of the propagation of an arbi-
trary discontinuity with assigned pressure and density on
both sides of the discontinuity, but different relative veloci-
ties ties.

a-collision of two gas masses; there arise two shock waves;
b-gas masses moving at different velocities; in the high-
pressure gas there arises an expansion wave which pushes the
shock wave in the lou -pressure gas; c-scattering of two gas
masses; there occur two expansion waves; d-scattering of
two gas masses at a velocity exceeding the sum of outflow
velocities; there occur two expansion waves, with vacuum in

in the center.

The arrows showing gas velocities are given in the system of
coordinates in which rest the gases occurring in the waves in
the center of the diagrams (a0 , b 0, al, bl, a2 , b2 ).

state au moves to the left with respect to the initial substance A, and substance b., as

in the ahock wave, moves to the right of its initial substance B, i.e., in the direction

of the p.-pagation of the shock wave BbM then, in order that the velocities in states

a0 and b0 be e~ual to one another, it is necessary that at the initial state, at the instant

t = 0, substances A and B move toward each other crl. 3.-ng at high speed. We will

obtain shock waves propagating on both sides of the discontinuity in the case of a

collision of two masses of substance moving towards ore another at high speed. The

smaller the velocity at which substances A and B collide, the smaller must be pressure

P0 in the shock waves. Finally, at a sufficiently small collision velocity we go over to

another regime (Fig. 40b). In this regime, pressure p1 is greater than Pa buL smaller
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thb.n pressure pb. Along substance A a shock wave moves and along substance B an

expansion wave moves. Such a regime can be realized, In particular, also if at the

initial instant t = 0 the velocities of substance A and substance B are equal to one

another, so that at the initial instant we have only a pressure discontinuity. It is

obvious that in this case, between substances A and B, there arises an area with a pressure

intermediate between Pa and Pb. In this case the substance moves from the higher pres-

sure B toward the lower pressure A. The shock wave travels in the substance in which

pressure is lower. Conversely, the expansion wave travels in the substance in which

the pressure is higher. This case is examined in detail below.

Let us now return to Fig. 39 and continue the analysis of the various cases that

may occur. Selecting P2 smaller than pa and Pb' we obtain expansion waves which

travel on both sides of the initial discontinuity (Fig. 40c). Such a regime will be

realized if at the initial instant the substance in state A and the substance in state B move

in different directions from the discontinuity at a sufficient speed. Finally, if

andwhenibe relative velocity at which the substance in state A and the substance in

0 0 33
state B move away from each other at the initial instant exceeds 5 (c! + cB), where

0 0cA and cB denote sound velocity in state A and in state B, i.e., if the relative velocity

of substance A and substance B exceeds the sum of maximum outflow velocities of sub-

stance A and substance B, then between substance A and substance B a vacuum will be

formed (Pig. 40d).

In a paper by Shchelkin and this author [9], and in an earlier paper by Shar'in [84],

detailed numerical computations are given that refer to the case of initial pressure dis-

continuity without velocity discontinuity (the case in Fig. 40b). It is interesting that if

the compressed substance is hydrogen, in which sound velocity is greater than

in the second substance of low pressure(e. g., air), the shock wave is considerably

more powerful than if the tompressed substance also were air. Let us take a numerical

example from [9]. Figures 41a and b show the distribution of pressure and temperature
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111

Fig. 41a. Propagation of a dis-
continuity that arises when air "
at rest compressed to 100 atmo-
spheres absolute and air at rest at
I atmosphere absolute touch one

another. At the initial instant
temperature everywhere is 20°C.
The diagram shows the pressure-:
curves (above) and temperature

curves (below).

in the case of a sudden rapture of the screen that divides the gas compressed to .100

atmospheres and the gas under atmospheric pressure, The compressed gas in both

cases is placed on the left. The abscisas shows ;he relation between the coor-dinate

and time x/cot, where co0 is sound velocity in the air at initial temperature independent

of pressure. The screen was placed at x = 0.

In Fig. 41a (where air is on both sides) we see that on the left at a distavce greater

than unity the compressed. air is still unperturbed. Between x/t=-co and x/t=0.9co

0 0

there is an expansion wave which at its last points borders on air expanding to a pres-

sure of about six atmospheres. The discontinuity of a speciad kind is at restwith respect

to the air on both sides of the discontinuity, but in our system of coordinates it moves

together with the air surrounding ita abs velocity 1.a7 times that of sound in the initial
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Fig. 41b. Compression of air by hydrogen with
an initial pressure of 100 atmospheres absolute.

CODE: a, Hydrogen; b) Air.

stage (i.e., at about 580 m/sec). To the right of the discontinuity of a special kind

there is air under shock compression from atmospheric pressure up to a pressure of

about 6 atmospheres. In the expansion wave the air temperature dosfrom 200C (at

100 atmospheres) to -1409C (at 6 atmospheres) in accordance with Poisson's adiabatic

equation. To the right of the shock wave, gas compression from I to 6 atmospheres is

S accompanied by a temperature increase from 200C to 300L'C, which appreciably exceeds

the temperature increase according to Poisson's adiabatic equation (220°C). Ile com-

pre~esion shock wave from 1 to 6 atmospheres propagates at a velocity equal to 2.3

times the speed of sound. Only for x greater than 2. 3 co0t, on the right there is unper-

turbed air at atmospheric pressure.

Figure 41b shows a similar case where toe compressed gas is h~irogen.

Because of higher sound velocity, hydrogen is capable of giving a considerably higher

outflow velocity for a given pressure differential. Hence hydrogen compresses arir

considerably more, althoughl hydrogen itself expands much less. Pressure in the
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expansion wave in hydrogen and in the shock wave propagating in the air amounts to

about 25 atmospheres, Accordingly, the shock wave reaches considerably higher
39 •

velocities, approximately 4.6 c0 . The temperature in the shock wave is extremely

high, 11750C. One miy assume that such a high temperature c'uring the outflow of hydrogen

into air may, under certain conditions, lead to the ignition of hydrogen. If the outflow of

hydrogen into air occurs in a closed container, the subsequent repeated reflection of

shock waves may lead to a further increase in temperature.

Which of the cases shown in Figs. 40a, b, c, and d will occur if the discontinuity

at the initial instant is formed by the application of a large number of small compression

shock waves which simultaneously join at one and the same instant in a point in space?

Plhysically this case can be achieved by pushing into a gas a piston at a variable velocity.

In Chapter 13 we found such a curve for the piston motion at which all the waves joined

simultaneously. At that instant, on the right of the spot where the waves joined, we have

unperturbed gas. On the left we have a gas subjected to repeated compression by weak

shock waves.

We have noted several times, however, that the subsequent compression by two

shock waves is not equivalent to a one-time shock compression. In particular, entropy

3
increase in each wave. if the waves are sufficiently small, is proprotional to (Ap) . By

chooaing a sufficiently large number of sufficiently weak shock waves we can achieve

compression to any assigned p-essure with any small entropy increase, since if we

subdivide the entire assigned pressure change between n waves, then pressure increase

in each wave is proportional to 1/n, entropy increase in eacI wave is proportional to

1/n3, and total entropy increase :n n waves is proportional to I/n 2. Thus, in the case

of an accumulation of a large number of weak compression waves we will have a nearly

adiabatic change of state.

At the instant of accumulation of individual waves as shown in Fig. 36 (Chapter 13),

on the right of the accumulation spot we have an unperturbed gas in the initial state A,

and on the left we have a gas in state B which was virtually subjsccted to adiabatic
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compression. It is obvious that point B does not lie on Hugoniot's adiabatic curve HA.

Accordingly, the discontinuity cannot propagate further as one whole. We must apply

to its propagation the general theory of propagation of arbitrary discontinuities. It can

be shown that the velocity acquired by a gas during consecutive compression by a

large number of shock waves is smaller than the velocity which the gas would acquire

were it compressed to the same pressure by one shock wave. Hence it follows that

during propagation of a discontinuity that occurred from thz accumulation of many

weak shock waves, we will have the case in Fig. 40b. Pressure p1 will be lower than

the pressure produced by the piston (pressure pB). An e--.,ansion wave will travel in

the compressed gas in the direction toward the piston, and to the right into the unper-

turbed gas will travel the compression shock wave created by the discontinuity. Figure

41c shows the distribution of pressure and temperature obtained after a time t following

the conjunction of waves formed by the compression of air by a piston the velocity of

which gradually reached 4.44 c = 1500 m/sec, so that pressure at the piston PB

attained 5 0 PA' i.e., 50 atmospheres absolute. Pressure in the compression shock

wave will be less than pressure PB reached earlier at the piston. However, because of

entropy increase, this lower pressure corresponds to a higher temperature. Tempera-

ture discontinuity in a relatively unperturbed gas is shown in the diagram only for this

case (dashed line, Fig. 41c). Let us note that in this figure the coordinate and time are

calculated repsectively from the place and the instant of accumulation, i.e., from the

occurrence of the discontinuity. In the system of coordinates in which A is motionless,

the expansion wave moves to the right; however, it moves to the left with respect to the

gas in state B which moves at a great speed, and with respect to the piston, not shown

in Fig. 41c4

The case examined above is of considerable interest for the theory of detonations,

because the result obtained explains how a flame acting on a gas like a piston can, by

gradual c-.,pression, produce a shock wave at a great distance from the piston (or the

flame). By graudally compreseing the gas to a comparatively low temperature (6300C,
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Fig. 41c), we can achieve an abrupt increase in temperature (14500C, Fig. 41c) at a

considerable distance at the instant of accumulation, or achieve a "remote ignition"

of the gas. Apparently the mechanism of the occurrence of a detonation in gases must

be imagined precisely in this way in a number of cases.

" •-"" I p a)

o 1 3 4f S, c. I

Fig. 41c. Propagation of a discontinuity that
occurred after the collision of compression
waves in Fig. 36. The pressure in the arising
shock wave is lower (the expansion wave moves
toward the comprestsion waves), but the tem-
perature in the shock wave is considerably
higher than the maximmn temperature reached
by the accumulation of small compression waves.
The solid line is the distribution of pressure, the
dashed line represents the distribution of temperature.

CODE: a) p/atm abs.

Having determined the character of the motions obtained during the propagation

of an aAbtrary discontinuity, we can verify the initial assumption according to which

motion depends only on the relation x/t.

In Chapter 6, in the case of an expansion wave, this solution depended on the

absence of dimendicnal values of time or length in the initial and boundary conditions

of the problem, and also on the fact that dissipative forces were ignored. The latter

is necessary, since in the* rmbination with sound velocity, from vi3cosity or thermal

conduction we can plot the characteristic length and the characteristic time, for

example % and O.-" In an expansion wave, dissipative forces were neglected be-

cause the equations of gas dynamics led us to a "wabsed-out" wave of great width
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(increasing linearly with time), with exceedingly small values of the velocity gradient

and the temperature gradienW.

Is it possible to neglect dissipative forces in the case of a shock wave in which a

considerable entropy increase occurs? A positive answer to that question is associated

with the fact that the numerical value of entropy increases in a shock wave (due, in the

last analysis, to the effect of viscosity and thermal conductivity) is fully determined

by the conservation equations and does not depend on the magnitude of thermal con-

ductivity and -viscosity. The latter determine only the final width of the shock wave

front. But the dimensional value for l.ength (the width of the shock wave front) thus obtained

is extremely small. It is of the order of the length of the path of a molecule in the case

of a strong shock-wave.

Also small is the width of the discontinuity of a special kind. The equilization of

temperature on both sides of this discontinuity, and the mutual penetration of gases by

diffusion lead, after a time t, to a width of the order of .S' - -=ýri Vb1T, where z is

thermal diffusivity; B is the diffusion coefficient. We use the molecular-kinetic

expressions r and B, and find • - 'li, where I is the molecule path length, and c is

sound velocity. But the distance x covered by shock waves or expansion waves during

a time t, is of the order of ct, so that •--/•

Thus, the relationship of the dimensions of the area in which dissipative forces

are substantial to the dimension of the entire area covered by motion, is equal to I /x

for a shock wave, and for the discontinuity of a special kind. Both quarfities are

extremely small in any large-size motion in which x is absolutely greater than 1.

Very interesting is the histo.,y of the investigatioD of the propagation of an arbi-

trary discontinuity, which reflects the different viewpoints of the investigators of

various countries characteristic of the study of the theory of shock waves. The above

theory had been expounded by Hugoniot as he was formulating the theory of shock

waves [56]. Hugoniot's theory of the propagation of an arbitrary discontinuity was well
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known to other French authors. It is mentioned by Crussard 1451, and it is also found

in Hadamard's book [541 on the propagationi of waves. As a matter of fact, Hadamard's

exposition is somewhat distorted by the absence of a clear explanation as to when one 4

should use Hugoniot's adiabatic curve, and when one should resort to Poisson's adiabatic

curve (entropy increase in compression shock waves, and the impossibility from a

thermodynamical viewpoint of the existence of expansion shock waves 'were proved later

by Jouguet and Zemplen), and also by his attempt to arrive at closed formulas. However, i
the theory of propagation of an arbitrary discontinuity appears to be unknown to German

authors. Thus, Weber [97] discusses only the case of a collision of two shock waves of J
equal amplitude, i.e., precisely the case when both initial states A and B of our drawing

identically coincide and, consequently, all the Hugoniot adiabatic curves plotted from

them also coincide. In this particular case, as can be seen from the symmetry, the

discontinuity of a special kind becomes zero. On both sides of it rot only pressure and

velocity are identical, but also temperature, entropy and density are equal to one

another. In the 1925 edition ol his book, Weber writes that"... it is not -et known what

will happen in the general case of a collision of twio a bitrary shock waves."

The problem of the accumulation of shock waves was formulated by Bscker in his

well-known book "On the theory of detonation and shock waves" [381. In 1920 he correctly

predicted the fundamental qualitative result of the accumulation of shock waves, namely,

the termplerature increase at the instant they coincide. Then he writes: "No one knows

yet what will happen when the steepness of the rise will become infinite after a certain

time." The solution of this problem is given above. It must be mentioned that in his

paper Becker mentions Hugoniot's memoir as well as Hadamard's book. A precise and very

general investigation into all the cases of the propagation of an arbitrary discontinuity

that may be encountered, is given by Kotchine [64).
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Chapter 17

Supersonic Flow Around a Body

Above, in Chapter 4, we clarified some propertiea of a flow around a body at super-

sonic speeds, inherent in flows at a great distance from a body. First of all we established

a fact, according to which the turbulence caused by the presence of a body in a supa-mnic

flow, invol\ es not the entire flow but only a cone with an axis parallel to the direction of

the flow, a-d the angle of iperture the sine of which is equal to the ratio of sound velocity

to flow velocity (this is known as the Mach angle). However, these statements referred

only to flows at a great distance from the body. In particular, only at a great distance

from a body, where we can regard turbulence to be small, we may state that the turbulence

propagation rate will be equal to sound velocity. Close to the body itself, where the

turbulence caused by the presence of the body can no longer be regarded as small, this

turbulence can steadily spread with respect to the flow in the form of a shock wave at a

velocity in excess of that of sound, in an unperturbed gas, The knowledge of shonk wave

theory makes it possible for us to establish c:ertain properties of flow around a body by

a supersonic flow, which refer to the immediate neighborhood of the body flowed around

and, which, consequently have a certain importance for the problem of the resistance

of a body moving at supersonic speed, which is a problem of paramount importance in

modern ballistics.

In the following we will study separately two cases. The first case is the flow

around a body with a blunt profile. We can readily imagine the general character of the

flow (Fig. 42).

As we have rlready mentioned, at a great distance from the body, perturbation (or

turbulence) is small. The dolid line shows the position of the stationary shock wave, the

dashed lines represent the flow lines. At a great distance from the body, where the

shock wave amplitude is small, its velocity does not differ from sound velocity, and the

dip angle of the solid line is equal to the Mach angle. There is no doubt, however, that

at some point (and this point can readily be found for any symmetrical profile), the shock
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Fig. 42. Diagram of super-
sonic flow around a bodywith

a blunt profile.

wave eurface must run normal to the direction of flow (Fig. 42, point a,). At that

point, gas velocity with respect to the shcck wave is maximum, the amplitude of pres-

sure charge in the shock wave is greatest and can be readily computed if we know the

flow velocity (or, conversely, the velocity of our projectile, or any other body under in-

vestigation with respect to the motionless gas). In the case of compression in the shock

wave, gas velocity changes from supersonic to subsonic. Thus, in the immediate vi-

cinity of the body, near its blunt front part, we deal with a subsonic flow. Any further

slowing-down of the gas on the segment from the shock wave to the body surface, al-a2

(Fig. 42), takes place adiabatically, and pressure increase can be computed with the

aid of Bernoulli's theorem.

Rayleigh [791 pointed out a very substantial fact, according to which such a con-

secutive compression first of the shock wave and then the adiabatic compression in the

resulting subsonic fHow leads, in the case of high velocities, to a considerably lower

pressure than a purely adiabatic (isentropic) compression from supersonic velocity to

a state of rest achievad at the point where the flow lines branch off in the front part of

the blunt profile being flowed around. The fact that pressure in the case of total slow-

down will be lower in the presence of a shock wave can be readily proved thermodynami-

cally. Both in the presence and in the absence of a shock wave, along a flow line, the

law of energy conservation holds, i. e., Beraoulli's theorem holds in its integral form

145



Il

I + u2/2 = const, which fully determines the enthalpy of the gas at the point where it

2/2will be "stopped dead", known as enthaply at rest I0 = I + u2/2. If compression occurs

adiabatically, then condition S = const is added. The value of enthalpy I and entropy S

fully determine the state of the substance. If a shock wave occurs, then entropy is no

longer conserved.

Computation of the exact value of pressure and the computation of the state of the

substance ensuing from deceleration in the case where this occurs partially in the

shock wave, is far more complex. We can state, however, that entropy in the shock

w-ave increases, and that an entropy increase for a given enthalpy always means a

41drop in pressure. Thus, the presence of a shock wave ahead of the body moving at

a supersonic velocity leads to a decrease in pressure in the front part of the body's

blunt profile, leads to a decrease in the resistance to the body's motion, and thus re-

moves (as shown by Rayleigh) the considerable disagreement between experimental data

on the resistance of projectiles and the magnitude of resistance as computed by formulas

based on adiabatic (isentropic) compression. This is of considerable importance also

when measuring supersonic velocities by means of a Pitot tube. In this case it is also

necessary to take into account the occurrence of a shock wave in front of the outlet of

the tube.

Let us imagine a reservoir fillew with a compressed gas that flows out with super-

sonic velocity, and a body placed into the supersonic flow (Fig. 43). In the reservior

the gas is at rest, in the nozzle it gains momentum and, approaching point a2 on the

surface of the body flowed around, it is again slowed down. The comparison between the

state of the gas in the reservior and at point a2 is quite instructive. If the change in

the state of the gas during deceleration follows the same law as in the case of acceleration,

then at point a2 the gas should return to the same state in which it was in the reservior,
gas pressure and temperature at point a2 should not differ from pressure and

temperature in the reservoir. This is so in the case of subsonic flow, but in the case

of supersonic flow, acceleration and expansion in the nozzle occur isentropically,
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whereas deceleration and compression of the gas in the shock wave are accompanied by an

increase in entropy. We apply the law of energy conservation to the motion of an

element of the gas volume and obtain Eq. (M1-5), Chapter 3,

I- const. (M1-5) • I

This equation holds true, and the value of the constant is maintained, also in the

case of shock compression of the gas, i.e., when the flow line inte',sects the shock

42wave surface during steady motion. In the reservoir and a point a2 , velocity u = 0,

hence Eq. (11-5) leads to the conclusion that enthalpy in the gas at the branching point

and in the reservoir is the same. Enthalpy in gases depends only on temperature.

Hence, in the experiment shown in Fig. 43, the gas in the reservoir cools off during

outflow and is heated again during deceleration to reach the same temperature it had in the

reservoir (az this has been the case in a subsonic flow). However, the irreversible

increase in entropy at the deceleration stage leads to the fact that density and pressure in

the gas at point a2 are lower than in the reservoir, and, unlike in subsonik flows, pres-

sure is not fully restored. This fact is of

considerable importance for the resistance of air

to the motion of bodies flying at supersonic

speeds, and it has been thoroughly investigated
Fig. 43. by Rayleigh (Table 4).

Table 4

at A'en a)1 330o 660 990 1320

CA I1 2 3 4
"P(aA). a-,r b) 1.,9 5.75 12.32 21.6
T(aA, -C 80 250 550 950

P (S=Cons1.1 1.89 7.1 36.6 150.2
P(a1 ) 1.00 4.5 103 lM5

CODE: a) m/sec; b) atm abs.
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The first line of the table gives the velocity of the body (for motion in the air), the

second line gives the ratio of body velocity to sound velocity, the third line gives the

pressure developed during motion at point a2 , the fourth line gives gus temperature at

that point (P0 = 1 atmosphere absolute, To = 20%, the fifth line gives the pressure that

could be developed in the case of isentropic deceleration of the gas or, in other words, the

pressure that should have been developed in the reserroir in order to achieve the assigned

outflow velocity of the gas. Finally, the last line in the table gives the pressure at point

a of Fig. 42, after compression in the shock wave, btý' prior to deceleration inthe subsonic flow.

It is interesting to note that if a body with a blunt profile is flowed around by a gas

at subsonic velocity, near the body's surface there may occur an area of supersonic

velocity. Thus, if a round cylinder is in a cross flow, supersonic velocity on the side is

-• obtained beginning from the Barstow number Ba-0.45 (Taylor [251).

i In the case of supersonic flow around a body with a sharp extremity, the subsonic

gas jets forming after compression Ln the shock wave will easily flow around the sharp

edge, and the stationary shock wave will be closer to the sharp edge than in the case of

flow around a blunt profile. In the case of a sufficiently small angle of aperture of the

sharp edge we may expect the occurrence of the phenomenon shown in Fig. 44a, in which

the shock vave touches the sharp edge. If this is the case, then by changing the scale (for

example, if we switch to a projectile, the linear dimensions of which are greater by a

specific factor than the bullet shown in Fig. 44a) we hardly change, if at all, the condi-

tions at the very vertex. If we take the boundary case of an infinitely large body, we see

that to find the motion near its vertex we have not, in this case, either a characteristic

length or a characteristic time, and the entire mbtion may depend only upon the angle

between the radius vector plotted at a given point from the vertex of the cone and the axis

of the cone. We seek a solution in which all the quantities depend on this angle alone,

i. e., are constant along each cone surface having a common axis and a common vertex,

the cone being flowe.' arou•nd belonging to this very family of cones.
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The stationary shock wave near the vertex also acquires the form of one of these

cones the vertex of which coincides with the vertex of the body, and the angle of aperture

depends on the angle of aperture of the conical vertex of the body. In which case can this

result, which refers initially to the neighborhood of the edge of an infinitely large cone, be

applied to a real projectile in which the conical head is connected (in the simplified case

shown in Fig. 44a) with the cylindrical portion and the bottom of the projectile?

If the cone flowed around is sufficiently tapered and the flow moves at a sufficiently

high velocity, one may expect that also after compression in the shock wave the gas velocity

with respect to the surface of the cone will exceed sonic velocity. In this case, if gas

velocity in the region GFABCD (Fig. 44a) exceeds sonic velocity, the change in the nature

of the motion that occurs at points D, C and further (due to the fact tht.I at these points the

surface of the projectile noticeably differs from the continuation of the conical surface AB)

will not affect the motion near AB, and will not move against the direction of flow. Thus,

one can apply the partial solution for an infinitely large cone that depends only on one angle

and is not too difficult to be computed, to plotting the motion on the entire conical section

near the vertex of the projectile, on condition that this vertex be sufficiently tapered so

that velocity after compression in the shock wave still exceeds sonic velocity.

On the shock wave surface we have a refraction of the flow lines. In the case of

a so-called strong discontinuity, i.e., in a shock wave, only the normal velocity com-

ponent undergoes a sudden change, while the velocity components tangential to the shock

wave surface remain unchanged. From this follows the refraction of the flow line in the

shock wave shown in Figs. 44a, b. The essential angle of the cone formed by the shock

wave surface is calculated from the condition according to which after refraction in the

shock wave and the subsequent bending, according to the equations of motion, the flow

lines near the surface of the projectile must be parallel to the generatrices of the cone

flowed around.

We shall not dwell on the details of the design, and we refer to motion and to the

design diagram not. so much because of the numerical results, which are far from the
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Fig. 44a.

b) e)

Fig. 44b.

CODE: a) Shock wave; b) expansion wave; c) plate;
d) expansion wave; 3) shock wave; f) flow line; g)

sliding surface.
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area of appication interesting ua, but; rater an. an eiunpie oi woute nathematiCal

stimpliflcations which are specific precisely for supersoidc flow and are closely related

with the application of similarity theory (42]. At the present time Franki' has developed

methods for computing the distribution of pressure on the surface of pointed bodies of -4!

revolution also in those cases where they differ from a cone [26, 27].

Another, even simpler case is that of the supersonic flow about a thin plate

slightly inclined in the direction of the flow (Fig. 44b).

At the front edge two waves are formed, a shock wave below the plate, in which

the flow lines are suddenly refracted and following the wave move parallel to the plate,

and an expansion wave above the plate, in which there gradually occurs the same bending

of the flow lines.

Regar the front edge the state also depends only on the ratio y/x (if the origin of the

coordinates is placed at that point), as in the problem on the motion of a piston

at a constant velocity the motion only depended on x/t.

The phenomena at the rear edge are similar to the propagation of an arbitrarj

discontinuity, since at that point two ficw-s join, the pressures of which are different.

Behind the rear edge there arise a shock wave, an expansion wave and a discontinuity

of special kind (dashed line) on which now there occurs the discontinuity also of the

tangential velocity component (eddy surface) . However, with sufficient flow velocity

and a slight inclination of tl-e plate the flow along the plate continues to move at super-

sonic velocity, and the phenomena at the rear edge have not an adverse effect on the pro-

perties of the flow near the surface of the plate. Pressure on the upper surface of the

plate is less, while pressure on the bottom surface is greater than pressure in an unper-

turbed flow. This results, in the appearance of a force that acts in a normal direction to the

the plate surface in the direction upward and b.:ck. To calculate drug and lift it
suffices to calculate the waves which touch the front edge.

It is characteristic that in gas dynamics of supersonic flow d'Alambert's paradox

(the absence of resistance ir. a nonturbulent flow around a body by an ideal fluid) does not
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take place. There arises what we term as wave resistance, associated with the presence

of steady waves which carry away the work performed by a moving body against resistance

forces.

At the same time, at high velocities the irreversible heating of the substance sub-

jected to shock compression becomes quite significant, and it remains in the form of a

"trace" after the passage of the body.

The flow around a wing is thus designed from thu solution of the problem of the flow

around an angle formed by the wing and the Alow line hitting the front edge. The flow around

an angle was studied by Prandtl [77] and Meyer [71]. Graphic methods for the solution of

equations t.at determine the parameters of oblique shock waves can be found in the

general manuals [27, 23, 35, 39].

By compressing a gas that flows around a body which moves at supersonic velocity

one can achieve a rapid heating of the gas to extremely high temperatures. Leypunskiy and

this author tested an aluminum bullet flying at a velocity of 3, 300 m/sec which crossed an

area of mercury vapor where it provoked an increase in temperature up to several tens of

thousands of degrees (computation, assuming constant thermal capacity, yields 45,000

degrees). An extremely strong thermal luminescence of mercury vapor on the bullet's

path was also observed [125].

By shooting bullets through gases and gas mixtures subject to chemical reactions we

can study the velocity of reaction at a temperature up to 4,0000 and a reaction time of
-5

approximately 10 sec [104].
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Chapter 18

Theory of Jet Propulsion

Modern military technology is interested in jet-propelled missiles. By complicat-

ing the design f the missile and reducing the efficiency of gunpowder as compared with

conventional artillery systems one attains the substitution of the heavy gunbarrel by a

light guiding rod. One also eliminates recoil. According to a course by Serebryakov t1121,

published before World War 11, these properties of jet-propelled missiles may turn out to

be useful for military operations in the mountains or for landing operations. They may also

be useful for installing missiles on airplanes, motor cars, small ships, etc.

The diagram of a jet-propelled missile

(Fig. 45) is taken from M Rua [1111. The

~gunpowder is containecý in a chamber, and the
a)/ combustion products escape under high pres-

sure (Rua gives calculations for pressures

Fig. 45. up to 500 atmospheres) from a Laval nozzle.

CODE: a) Gunpowder. Computation of jet propulsion under these

conditions is based on the gas dynamic theory

of outflow (Chapter 3). However, in order to better acquaint ourselves with the problem

and the particular features of suparsonic outflow, we being with studying the simpler

case of an incompressible fluid.

Let us imagine an apparatus (Fig. 46) consisting of a chamber with a simple,

tapering nozzle. Pressure in the chamber is denoted by p, pressure in the ambient

medium (atmosphere) is denoted by pl and the area of the nozzle outlet is denoted by F.

Both theory and experiments show that in a short nozzle with a smooth outline,

outflow velocity satisfies very precisely Bernoulli's law and the jet fills the entire cross

section. Thus

:- jQf, (XVlI- 1)
where G is the weight rate of the fluid.
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I P sure in the outlet cross section

of the jet does not differ from p,. We

- -- -- 8 surround the apparatus with a control surface.

The momentum acquired by the fluid during

Fig. 46. a time t is equal to the product of the out-

flowed amount of fluid times velocity.

According to Newton's second law, the acquired momentum is equal to the momentum

acting on the fluid. According to Newton's third law, the force acting from the side of

the apparatus on the fluid is identical with the reaction force R experienced by the

apparattza.

We assume that the direction of the force towards the left is positive (Fig. 46),

and the direction of velocity to the right is positive, and obtain the equation for the

momentum I

=R -C-trr11U OW11- a)

We substitute the velocity expression derived from Bernoulli's law and find

R=2F(p -pi). (XVffl-4)

The result is remarkable in that from this formula there have been eliminated

the quantities characterizing the properties of the fluid. The jet power is proportional

to the difference in the pressure that causes outflow.

Now we approach the computation of R from another angle, and determine the

resultant of pressure forces on the inner and outer surfaces of the apparatus. Let us

assume that the nozzle is closed by a plug. Pressure p is acting on the inner surface

of the apparatus and on the surface oi' "e plug, while pressure p, is acting on the outer

surface. The resultant force for a sealed apparatus (i. e., the apparatus, the nozzle,

and the plug takan as a whole) is equal to zero. The force acting on plug R 3 is R3 =

= -F(p - pl). It is obvious that the resultant force acting on the entire surface of the

apparatus, but without the plug, is = F(p - pl) since R3 + R1 = 0. However, the
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expression for R given above is twice as large. This paradox is due to the fact that by

removing the plug from the nozzle, force R that acts on the apparatus increases two-

fold as compared with force R at the instant when the plug has already been removed

from the apparatus but is still inside the nozzle. As the plug is removed the fluid begins

to flow out. The fluid acquires momentum gradually in the tapering nozzle. According

to Bernoulli's law, the motion of the fluid is accompaniedby a drou in presstre. The drop !-

in the pressure on the surface portions abutting with the opening (AB, CD) givvs resul-
tant R2' which is equal to R1, so tbat

tat wh=" 1'-E -:.ýR

We shall not go here into determining R2 . The result R 2= R11 R 2R1 holds for

any smooth nozzle profile that ensures a rate coefficient equal to 1.

In evaluating the quality of the performance of the jet-propelled apparatus, it

would be pointless to use the energy efficiency, i.e., the ratio of the work performed

by jet power to the thermal energy of the burnt fuel or gunpowder. As a matter of fact.

jet power depends on the design of the apparatus and the nozzle, and on the regime of

the processes that take place in the apparatus, whereas the work performed by that

force depends on the velocity of the apparatus as a whole. Hence the energy efficiency

also depends on the velocity of the apparatus. With an assigned constant degree of per-

fection of all the internal processes, efficiencywill change with the change in the velocity

of the apparatus so that energy efficiency in this case is not a standard for determining

the perfection of the apparatus.

An extremely important index for the quality of performance of the jet-powered

device is momentum I1, known as unit momentum, i.e., the jet momentum developed

by the outflow of a unit of mass. Unit momentum is equal to the ratio of force to rate

From the above formulas we get for an incompressible fluid

I =U =%2- (XVIII-6)
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Unit momentum is equal to outflow velocity when measuring all the quantities by

the absolute (physical) CGS system. In an actual system the dimension of 11 is kg of

f, rce x sec/kg of mass or, numerically, I = u/g, where g is gravity acceleration

For an incn-,pressible fluid, outflow velocity and unit momentum are proportional

to the square root of the diffcorence in pressures in the chamber and in the surrounding

medium. To achieve optimum effect it is desirable to increr.se outflow velocity by in-

creasing the pressure differential. In the case of outflow of gas-llke gunpowder com-

bustion products under increased pressure, we ruvi into the effect of incompressibility,

into te need of using an expanding Laval nozzle and into phenomena of critical and

supersonic outflow.

A Laval nozzle is characterized by two cross sections, namely, a minimal one

(critical) Fk and an outlet one Fa > F k. In the following we denote Fa/F = 8. In

the critical cross section we attain critical pressure which represents a specific por-

tion of the pressure in the chamber (about 55%). Pressure pa' attained in the outlet

crorb section Fa, depends on 0. Below we investigate an ideal gas having constant

thermal capacity. in this case

(xvm-7)

The outflow velocity attained at the outlet of the no:. Jle, according to the

St. -Venant-Wenttzel formula, depends on pressure. As we did it in Chapter 3 (see

Fig. 6), we refer outflow velocity to sound velocity at the initial state

" W- = g)-(0). (XvM-8)
Ca

If the nozzle is so chosen that it agrees with pressure p, which exists in the

chamber, then pressure in the jet in the outlet cross section p a does not differ from

atmospheric pressure p,.
P.=Pl; 0=--Oi() (XMII-9)

In this case, the jet as it leaves the nozzle is in a mechanical equilibrium with

the surrounding medium, and the velocity of the jet as it leaves the nozzle does not

change (ua = u1, for the notation of u see below).
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We surround the apparatus with a control surface (see Fig. 46). Pressure on the

control surface is equal to atmospheric pressure everywhere, including those spots

where the surface intersects with the outlet crcss section of the jet since, as stipulated,

Pa = p1 . In this case the resultant of the pressure on the control surface is equal to zero.

Jet power is equal to the product of the rate times the velocity at the outlet cross section

of the nozzle

R-- CU.- (XVIU-O)1

Unit momentum is equal to outlet velocity, exactly as in the case of ot•flow of an incom- I

pressible fluid. The differences from an incompressible fluid amount to the following:

1) a more complex dependenee of outflow velocity on pressure, and 2) the fact that to

achieve the regime under investigation, for which pa = pi, we must have a specific

widening of the Laval nozzle that depends on the ratio pI/p. In an incompressible fluid

the equality pa = p1 was obtained automatically, at the outflow from any nozzle, including

the simplest tapering nozzle which gives the smallest losses from friction and turbulence.

%-,- --- - IT- 4 1 3 2S

-1 1_ _- iI

Fig. 47a.
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The results from computations by the St. -Venant-Wenttzel formula for an ideal

gas with an adiabatic index of 1.25 are given graphically in Figs. 47a and 47b. The

value K = 1.25 was obtained by D.A. Frank-Kamenetskiy for the combustion products

of smokeless gunpowder. On the ordinate (Figs. 47a and 47b) are marked the val'xes

for T = and on the abscissa we find the values for the ratio p,/p. The correspondingV CO
values for 0 and p/p1 are also marked on the abscissa.

I -V:

Fig. 47b.

With assigned p1 (atmospheric pressure) and pressure p in the chamber we set up

the ratio ?i/p, find on the upper scale the corresponding abscissa value, and on the

bottom scale we find 0. Outflow velocity and unit momentum are read on the heavy

line P. Thus
-(XI- 11)

According to internal ballistics it is customary to characterize the state of gun-

powder combustion products by gunpowder pxower f We neglect the deviations
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from the laws of an ideal gas and find

c,~vY~J. (VIII- 12)

so that

We go over to technical units and write

/"kg. sec

and, substituting k = 1.25, g = 981 cm/sec , we find

Thus, for smokeless gunpowder with f = 1,000, 000 kg/dmi2/kg/dm3 at a pressure

2 2
in the chamber p = 100 kg/cm and atmospheric p, = 1 kg/cm , we find

432.2z, 11 = 0.11. 2.2. 1000 = 250 -kg/•.
kg

The value of (P is read on the diagram in Fig. 47b in which the region p 1/p most

interesting from a practical point of view, ranging from 0 to 0. 05 (p from 20 kg/cm2 up), is

magnified.

By substituting the expression of flow rate for critical outflow we express jzt

power by the critical cross section and pressure in the chamber (the subscript k refers

to the quantities in the critical cross section)

2k _.C .k !L, C

R G .=FA 0, U U. 000 CO COR~u.P~•,u=FoF. po., -,!Lk

k . CO, (Xvm-15)p co c3

R- =const p" Fj p = 0.74 i,.Fj p. (XVIII- 16)

The numerical coefficient is found for the adiabatic exponent 1.25, for which

Figs. 47a and 47b have been plotted. As in the case of an incompressible fluid, the last

expression does not contain gas density, gas temperature and similar quantities. In

the French literature the dimensionless ratio R/FkP is termed "coefficient de propulsion"

(propulsion coefficient) (Serebryakov, Greten, Oppokov [1121).
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In the example given

(9) 2.2, R= 0.74.2.2. F p =1.63 F, p)

this coefficient reaches 1.63. In the case of outflow of an incompressible fluid referred

to the pressure differential p - pl' the coefficient was equal to 2.

What is the nature of the motion and how to compute jet power in the case where

the widening of the nozzle e does not correspond to the pressure ratio? The gas jet

flows out at supersonic velocity into the surrounding medium at a. pressure in the jet

in the outlet cross section pa' that differs from atmospheric pressure p1 . At the point

of contact, on the edge of the outlet cross section, the flow becomes perturbed. It

widens, accompanied by an increase in velocity in the case of pa > pl, or it is com-

pressed, accompanied by a decrease in velocity in the case of pa<P1 . The progressive

motion of the gas in the jet is addea to the propagation of pertubations from the edge of

the cross section to the axis of the jet. Owing to this, the surface on which individual

flow lines are subject to disturbance, acquires the shape of a cone that leans on the

outlet cross section and extends in the direction of the jet (see Fig. 49 below).

In the outlet cross section proper, the flow is unperturbed, pressure is equal to Pa every-

where and outflow velocity is ua everywhere. The state of the flow in the outlet cross

section depends on the state of the gas in the chamber and the widening of nozzle 0,

according to the formulas. The state of the flow, and, in particular, the quantities Pa

aa
and Ua, are completely independent of atmospheric pressure P1 . This is obvious from
the fact that the perturbation caused by the di.fference between Pa and P1 does not

propagate into the outlet cross section.

Again we surround the apparatus by a

2 control surface which passes through the

- outlet cross section (surface 2, Fig. 48).

,.. . R I Everywhere except at the outlet cross section

of the nozzle Fa pressure is equal to pI biut

Fig. 48. in Fa pressure is equal top a. The resultant
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pressure force is equal to Fa(Pa - Pl). In calculating jet power we must add this

quantity

F -(XVIII-7)

We substitute

GI ~ P , (XVIH-18)

and transform

R --- Gt•--- -P-•)"-Gu,, (XVHI-19)
Qa Us

We introduce the quantity u1 which we define as follows:

-U .- (XVEII-20)

This quantity represents the mean value of axial velocity of the jet where the

pressure in the jet has become equal to atmospheric pressure. This can be proved

by setting up the momentum equation for the control surface 1, Fig. 48, which is

entered by the jet at pressure Pa and velocity ua, and which the jet leaves at a pressure

p, and the velocity uI sought.

It follows from this equation that unit momentum for p, 7 PA is precisely de-

termined by velocity u1 and not by outflow velocity ua*

It can be shown in a general form that for a given initial state of the gas in the

chamber and a given pit u1 reaches a maximum when pa = p1. In other words, the most

expedient case is precisely the one examined by us earlier which involves a complete

widening of the nozzle until pressure reaches atmospheric pressure.

To prove this we set up the derivative of Eq. (XVIII-20)

du1 du, =U -4- P.,-P1 dr(Q"1 u) (XV1II-21)
dp4  dP4  Q* U. (Q4 U4)

t 2 d4P

According to Bernoulli's law (see Chapter 3), by differentiating Eq. (111-9) we find

dp - (XVmI-22)
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For Pa P - 0; We can readily show, be determining the sign of

dd-

that here we are precisely dealing with a maximum of u 1.

This result is perfectly natural. By examining the pressure on the conical surface

of the widening portion of the Laval nozzle, we satisfy ourselves that when P.>Pi the

lengthening of the cone (together with an increase of F and a decrease of p ) yieldsa a

an additional term that increases jet power. When p. <P, the lengthening of the

cone yields a term that reduces jet power. We remind the reader of the remark "M

Chapter 3. In all cases the jet, sooner or later after its outflow, acquires a pressure

P1 . However, in the case of p.oP/ip a portion of the pressure differential is expended

for radial velocity components which do not create jet power.

From a practical point of view, a careful adjustment and control of the nozzle,

especially in processes involving varying pressure in the chamber, for the purpose of

continuously upholding Pa = plare extremely complex. Of practicalinterest is the study

of the performance of a jet-powered apparatus with an assigned constant nozzie, i. e., an

assigned e with variable pressures p and pl.

Equations (XVIII-13) and (XVMI-16), set up earlier, will keep their validity if,

instead of velocity at the outflow of the jet ua, we substitute the effective velocity

ul, given by Eq. (XVmI-20). Instead of dimensionless velocity )=- ,Jco one should use

-The quantity 1 is a function with two variables 6 and fI, wheren, = pl/p

= , (0, 171). (XVM-23)

Function (p1 is closely connected with function 0. From the foregoing we can

establish the following properties ef 401:

1) If e is constant, function 01 is linearly dependent on n1;
2) If e = e(l1i), i.e., in the case of a widened nozzle, corresponding to the ratio

of atmospheric pressure to pressure in the chamber, 401 = 0 by definition.
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3) If ~ 0 11) , v. 17)p 1J

From this it follows that in the plane as shown in Figs. 47, a, b (see above) the

dependence of 0 onn is given, for an assigned constant e, by a straight line that

touches the curve at that value of I 1 which corresponds to the given 0.

Figure 47 a, b shows a number of lines 9', (O-=const, 17) for 0 = 1, 2, 4. and 10.

In order to find, for example, •01 (2; 0.05), we look for e = 2 on the bottom scale of

e, below the abscissa. The 0 - scale has been plotted in accordance with the Laval

nozzle theory, so that every e is placed under the corresponding nip; 71(0-=2)=0.115.

On the curve 0 we find the corresponding point N and plot the tangent MRNQ (the tangent

is labelled e = 2). I
This tangent represents the function •01 (2, n1). For U'1 = 0.05 we find the point

R, P, (2; 0.05) = 1.84. It is interesting to compare this value with the value of p for an

optimal widening of the nozzle for the given 171:01 (0.05)-=3.5; -(0.05)=-1.9I. The optimal

nozzle yields a gain of 3.7%. Conversely, if one takes a nozzle without diffuser, e = 1,

one would obtain with fl- =0.05, 9s (1; 0.05) = 1.63 (point S), a quantity that would be 15% less

than optimal. As we see from the foregoing, the jet momentum is proportional to the

quantities of 01 ((Eqs. (XVII-13), (XVIII-16)).

For the sake of convenience the diagrams give also the scales for I/U1 = P/P 1.

This quantity represents pressure in the chamber in the case in which pl = 1 atmosphere

absolute.

Let us now take a closer look at the outflow from the nozzle with P.o'-pi.

If P.>pi,the conical expansion wave (Fig. 49, lines a and b) at the edge of the

nozzle is similar to the expansion wave at the edge of a thin plate placed into a super-

sonic flow (see Fig. 44b, top left or bottom right portion). The surface a, on which

pressure begin.m tc drop, propagates at sonic velocity c along the gas that moves P.o a

velocity ua. Hence the generatrix of cone a forms with the flow direction the Mach angle,

sin m- Sound velocity and the direction of flow after expansion are such that the
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subsequent characteristics form a more elongated external cone (b, Fig. 49). Pressure

drop and change in velocity occur in the layer between surfaces a and b.

If p. <•P•, the gas flowing out from the

- - - -nozzle is subjected to compression by a shock

•- bwave which also has the shape of a cone. Since

the velocity of the shock wave is greater than

iound velocity and depends on its amplitude,
Fig. 49.

the Mach angle of the wave is the greater and the

cone the lower, the higher is pressure p1.

Finally, for some p, the wave velocity is comparable to outflow velocity D = ua. In the

outlet cross section of the nozzle a plane shock wave is formed. At an even higher

pressure p1 at the outlet, the shock wave "Ihides" inside the diffuser of the Lavel nozzle.

In the shock wave, the supersonic flow changes into a subsonic flow. Pressure in a

subsonic flow in the wide part of the nozzle increases as the gas moves, since velocity

decreases and, in the terminology of hydraulic engineers, the kinetic head changes into

pressure. Beginning with that value of p1 at which the shock wave moves inside the nozzle

and changes the distribution of pressure on the surface of the nozzle, the equations and

nomograms derived above for determining jet power are no longer valid. 44

Figure 50 shows experimental pressure distribution curves on the axis of a Laval

nozzle through which water vapor is blown at varying counter-pressure at the nozzle

outlet.

The curves have been taken from the turbine designer Stodoli, who also investigated

and treated the abrupt increase in pressure as a Riemann-Hugoniot-Rankine shack

wave.

By combining the laws of adiabatic flow (Chapter 3) with the concept of a shock

wave inside or at the outlet of a nozzle, it became possible for us to determine the

164



outflow regime for any pressureat the nozzle outlet between p4 and P5 (Fig. 11,

Chapter 3).

*. "-'. ...*

a) ii F__1"I-I- [• [ -T -l'
T;o

14

-PffMI9 *1U R0 XU- C00,79 vov0 b)

Fig. 50.

CODE: a) Absolute pressure in the
center of the Jet; b) distance along
the nozzle axis, in mm.
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Chapter 19

Reflection of a Shock Wave

Let us imagine a solid placed in a space in which a shock wave propagates. At the

instant when the wave front reaches the solid, motion changes in comparison with the

motion involved in the propagation of a shock wave in free space. Let us clarify the

pecuhar features of that motion, which determine the forces acting upon the solid.

Belyayev [2] at the Institute of Chemical Physics studied experimentally the conditions

that arise when shock waves are reflected or collide. He evaluated the pressure increase

from the reflected of a wave by comparing the buckling of two lead membranes, one of

which was placed tangentially and the other normally to the direction of the wave caused in

the air by the detonation of a TNT charge. In Fig. 51a the memhbrane disrupts only slightly

the conditions of propagation of a shock wave, and the magnitude of pressure p can be measured

by its buckling. Conversely, it is obvious that the force acting on the membrane placed normally

to the wave direction (Fig. 51b) depends also on the velocity of the gases in the shock wave. Becker

[381 following Riidenberg [83], kept this fact in mind and introduced the sum F = p + ( u2 as the

characteristic of the wave momentum.

&7~a.e•z e,,•/a) 3p7b)

Fig. 51a. Fig. 51b.

CODE: a) Membrane; b) direction of COEa)Mman;)chre
wave; c) charge.

Riidenberg takes pressuro to be 2F in the case of a normal impact against an obstacle.

However, the introduction of 2F Is, strictly speaking, not justified. Vlasov [31 correctly

notes that this quantity differs by 3u% from the true value of pressure.
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Let us investigate the conditions at the instant when in the terst shown in Fig. 51b

the shock wave reaches the membrane. By changing the reading system, we may say

that at this instant the membrane begins to move at a velocity u with respect to the gas

compressed in the shock wave. This motion of the membrane produces a second shock

wave which propagates toward the first shock wave in the gas compressed by the first

S~wave.
The first effect of the shock wave on the surface of the obstacle, which is perpen-

dicular to the direction of the wave, is determined precisely by pressure p, in the counter-

wave which stops gas motion near the obstacle.

Izmaylov (we quote from Belyayev's paper 12]4 whence we have also taken Figs.

51-53) devised a general formula for pressure p1 at an arbitrary amplitude of pressure

p in a incident (first) shock wave and an initial atmospheric pressure p0

P P(3k- lip-(k- )p,1  XX1
DP(k-I)p -. (k -.- )pO

and fo.- k = 1.4

8 P-po (X)X-2)
PI ý -:- 6p,0

In the case of a small amplitude we get an acoustic result

P--Po = 2 (p-P-). (XIX-3)

In tha, case of a very large amplitude, p:'> p... we reach the limit value

3k- -1i
PI -- k- II" P;with k - 1.4, p, = Sp. (XIX-4)

Belyayev points out that the conditions in a case of coflksion of two identical shock

waves (Pee Fig. 52) do not differ from those under which a shock wave is reflected by a

wall.

Within the precision ilmits of the test, Beleyayev's experiments corroborate I Eq.

(XIX-2) for both reflecdon and collision. The re•t1ts of the tests are compared to

Eq. (XIX-2) in Fig. 53.

167



t. . . . . . .. . - • ., --

Fig. 52. Measurement of pressure upon tuo

collision of two shock waves. -

live by the ~ mebae drn h first in- ig

32

s n thea aarse reflected of that

moves away from the membrane. In Lhe ab- - , c)
€ . .•,.•,o--'-.:d)

sence of lateral walls this moving away of the

wave atust lead to its veakening, and
Fig. 53. Dependence of pressure during

during a time of the order of d/c, where reflection and pairwise collison of shock
waves on the amplitude of the shock wave

d is the diameter of the membrane, we (Measurements by A. F. Belyayev).

must get a transition to a steady flow CODE: a) p1 atmospheres absolute; b) p0 =

I atmosphere absolut'e; c) reflection; d) col-
around the obstacle at a velocity u. We absol-lision.

have to poi-nt out a very significant fact,

namely, that the velocit, of the gas com-

pressed by a powerful shock wave exceeds sound velocity in the compressed gas. Thus,

in "he case of a steady air flow around a body caused by a powerful shock wave we will

obutin a transition similar to the one described earlier in Chapter 17, with a stationary

shock wave in front of the obstacle (Fig. 54). However, the amplitude of the stationary

shock wave is less than the initial value of the amplitude of the reflected wave, since in

the stationary wave D1 = u, whereas in the reflected wave u1 = u; Steady pressure

on the membrane surface in the limit case of an extremely powerful wave in a diatomic

gae is

p,.-- 5.21 A, (XIX-5)

instead of the initial value equal to Pl = 8p of Eq. (XMX-4).
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If the inzident shock wave is weak, then, as before, at the instant of incidence there

is formed a reflected wave. In the case of small amplitude, Eq. (XIX-3) yields

Pj-pu--2 --p,)-p " Ouc, (X!X-6)

but after that the reflected wave rapidly weakens and fades into infinity. Steady

pressure is computed by Bernoulli's formula

J@1 (XIX-7)

Computations show that if k = 1.4, to attain sonic velocity in a shock wave p must

equal 4.5 P0.

With pip0 < 4.5, u < c a spherical wave is formed (Fig. 55) which separates from the

obstacle. The amplitude of the shock wave can be determined by means of flash photo-

graphy (Fig. 55). We shall not dwell here on the details of the computation.

N'. Li

IR

Fig. 54. Front of an acoustic wave ABC, Fig. 55. Spherical front of an acoustic wave
that arises in a compressed gas during generated in a compressed gas by a weak shock
the passage of an extremely powerful wave MN past an obstacle A. The amplitude
shock wave MN past a small otstacle. of wave MN is not sufficient to attain super-
In the shock wave MN supersonic velocity sonic velocity (see Fig. 12).
of the compressed substance is achieved.
Segment AB is the cross section of a
Mach cone (see Fig. 12b).

In the pressure interval in the wave from

5 p0 to 10 - 15 p0 the measurement of the dip

angle of Mach waves on a flash photograph (see Fig. 54) may serve for a precise determi-

nation of the instant parameters o,€ an incident shock wave.

Let us note, finally, that supersonic velocity of a compressed gas does by no means

contradict the general theory which requires that D <•c ÷ u. In powerful shock waves,
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beginning with p/p 0 = 4. 5 upward, perturbation is not transmitted against the direction of flow

of the gas, but any perturbation in the back is transmitted to the wave frout.

Duhem [481 made it a point to note that in a shock wave in which density increases

more than 2/(k - 1) times (which corresponds to a pressure increase p > (g---1J o

i.e., p> 15.25p, for k = 1.4), the propagation velocity of the shock wave with respect

to tLe unperturbed gas is greater than sound velocity in the compressed gas, D> C.

However, so far as we know, during a passage through D = c, there arise no special

features in the behavior of the wave.
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Chapter 20

The Effect of Explosives. Introduction

One of the most important areas of application for the theory of shock waves are

explosives, explosions and their effects.

An explosion is a quick chemical reaction during which the explosive is entirely

or partially converted into a gas of more or less high temperature.

Depending on the composition and the state of the substance, on the condition•s

under which the explosion takes place and on the conditions that cause the explosion,

the chemical reaction takes place in different wtys at varying velocities.

Only an extremely fast chemical reaction leads ,o extremely wide differences in

pressure and propagation of shock waves, which represents a particular feature of the

explosion.46 For this reason we are particularly interested in the problem concerning

the speed of the chemical reaction.

Any practically applicable explosive is chemically inert at rzoom temperature. The

chemical reaction, the explosion, occurs only after ignition (priming) of the explosive.

As a rule, the explosive is ignited at one spot only. The complex processes

under investigation result in the fact that the chemical reaction in one layer provokes

a chemical reaction in the neighboring layer, and so on. As a result we have the pro-

pagation of the chemical reaction at a specific linear velocity (the dimension of that

velocity is length x time- 1 ) in the space covered by the explosive. 47

TheIr arise two problems : one concerning the conditions and propagation rate of

the reaction, and the other the di.tribution of pressure and other quantities in space at

the instant the reaction is completed. The theoretical investigation of these problems

exceeds the scope of the present monograph. Experience shows that in high explosives

produced by modern technology, the propagation rate of the reaction reaches several

thousands of meters per second and exceeds sound velocity in these substances. For

this reason, in the case of central ignition, the outer portions of a high-explosive charge
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have no time to move from their places until the explosion is over. Mean density of

explosion gases is equal to initial density of high explosives. Mean temperature of

explosion products ranges from 1500 to 40000K, depending on the type of high explosive.

According to Clapeyron's law, mean density 1. 3, mean temperature 30000K and

mean molecular weight of the explosion product 25 should correspond to a pressure

1.3- 3000. 22400 13000 atmS 273-•2,

In actual fact (because the gas is not ideal), however, mean pressure is several

times higher. Moreover, reaction propagation results in an irregular distribution of

pressure in the volume taken up by the explosion product. A part of the explosion pro-

duct is in motion. The !rregularity and the motion of the explosion product can be under-

stood if one considers that different particles of the explosive react at different times.

Taking this into consideration, maximum pressure in an explosion product attains

100, 000 to 400, 000 atmospheres.

As the reaction is complected, the explosion products, the state which is described

above, are surrounded by an unperturbed atmosphere. The expmnsion of the explosion

products is accompanied by the formation of a powerful shock wave.

During expansion, the explosion products cool off close to room temperature. They

cover a volume which, as an average, exceeds 1000 times the volume of the explosive.

Objects placed at a distance up to 10 radii of the charge are subject not only to the

effect of the shock wave propagating in the air, but also to the effect of the expanding

explosion products. 48

Near the charge, while expansion is negligible and temperature and density of the

explosion products are therefore great, a considerable thermal effect on the surface of

the obstacle is quite characteristic.

Frequently explosion products contain carbon monoxide and hydrogen, especially in

the case of explosives with a negative oxygenbalance: the combination of carbon monoxide and
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hydrogen of the explosion products with the oxygen from the air is not only poss•ble,

but probable. In the case of TNT, combustion temperature of the explosion products

(carbon monoxide and hydrogen of the explosion products) in air oxygen attains 220% of

explosion heat (the heat generated by the conversion of the explosive into explosion

products).
4 9

At the present time it is not understood how and when there occurs a reaction of

CO and H2 contained in the exrloion products with air oxygen, and to which extent the

energy from the reaction is used as the mechanical energy oi the explosion. 50

As they expand, the explosion products act as a piston and push the air in front

of them. A good (close to 1) efficiency in utilization of chemical explosion energy during

the first stage of the process, corresponds to the considerable expansion of explosion

products.

The propagation of the shock wave due to the irreversible nature of compression

in the wave is accompanied by the dissipation of mechanical energy and its conversion

into thermal energy. For this reason, it also accounts for the fact that as the wave

propagates its surface and the amount of substance involved in the motion increase, and

the wave's amplitude drops with distance.

Finally the wave reaches the obstacle. On the one hand, the wave is reflected and

moves around the obstacle. This is a phenomenon that occurs in air and determines the

force acting upon the obstacle. On the other hand, this causes the displacement and de-

formation of the obstacle, i.e., it causes those processes which, in the final analysis,

determine th, toppling or destruction of the obstacle.

We are facing here two typical cases. In the first case the action is determined

by peak pressure; if peak. pressure is not sufficient to destroy the obstacle, the subsequent

effect of weaker pressure will not change anything. This occurs when maximum force and

deformation are attained very rapidly in the system to be destroyed, during a time less

than the time during which pressure drops. An an example we can take the destruction

of a solid steel plate by a charge placed on its surface.
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Destruction depends on maximum prossure, i.e., on the type of explosive and the
51

distance (gap) between the charge and the surface.

In the second case (which occurs more frequently), the shock wave action time is

short as compared with destruction time. For example, we take the toppling of a brick

wall 1.5 meters high and 0.25 m wide (Fig. 56). To achieve this one must impart a

velocity of about 0. 5 m/sec to the wall's gravity center. At such a velocity it will take

about 0.25 sec for the gravity center to reach the highest point (which corresponds to the

position of the wall shown by the dashed line).

... -. It is obvious that the action time of the
/

shock wave is considerably less than 0. 25 sec.

>..--- In fact the wave covers about 100 m duringI /
0. 25 sec. Consequently, during the shock

----- wave action time the displacement of the wall

Fig. 56. is negligible, the wall only gathers velocity

and with that velocity motion continues by

inertia until the final action of the wave. The acquired velocity does not depend on the

magnitude of peak pressure, but on the area of the pressure-time curve, i. e., on the

pressure momentum, which determines whether or not the wall be toppled.

If an elastic structure, e.g., one consisting of long metallic rods, is to be destroyed,

then, compared with destruction time (the time of deformation required for destruction), the

action time of the wave will also be small as will the shifts and displacements occurring

during that time. The maximum deformations dangerous for the structure arise later,

after a time equal to one-fourth of the peri-d of the system's proper oscillation. Shock

wave pressure at that time no longer acts on the system, and deformation occurs by inertia

on account of the velocity gathered from the beginning.

Later on, when investigating the propagation of shock waves from the detonation of

explosives, we will have to study the change of both parameters that characterize a shock
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wave, namely, maximum pressure and general momentum. Ilie ratio of the momentum

to maximum pressure characterizes the actual action time of shock wave pressure.

Of great importance is the interaction between wave and object when measuring

pressure and momentum, or the effect of a shock wave on an object. We have seen

above (Chapter 19), that due to reflection, pressure on a surface placed normally to

the wave front exceeds several times that exerted on a surface placed tangentially to

it. Furthermore, the force momentum depends on how the air compressed

in the wave flows around the object. Hence the relationship between the pressure

momentum of the wave 5 2 and the force momentum experienced by the object also depends

on the ratio of the action time of shock wave pressure to the time the wave flows around

the object.
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Chapter 21

Simulation of an Explosion a-d of the Propagation of Blast Waves

The complexity of analytic computation of even the simplest symmetric and

schematic problems requires the establishment of a method of simulating explosions

and their effect on a small scale, and the determination of laws governing the application

on a large scale of the results obtained on a small scale. In other words, it becomes

necessary to establish laws of similarity.

In Chapters 6 and 16 we have seen that gas dynamics equations contain only a

specific characteristic velocity (sound velocity) but do not contain either length [distance] or time.

In Chapter 16 we showed that in the propagation of shock waves the introduction of dissipa-

tive quantities does not introduce a characteristic length. Hence there is the possibility of

setting an arbitrary scale in the case of simulation. Similarity will be ensured if all the

dimensions are changed in accordance with the rules of geometric similarity.

If we investigate the problem of the propagation of explosion pressure, for reasons

of similarity, it is also necessary that the properties of Lhe explosion products be in a

certain relationship with the corresponding quantities characterizing the properties of

- air. This refers to sound velocity, the density the pressure of explosion products and of the

air.

Since the properties of air under atmospheric pressure are known and constant,

similarity will be maintained if we maintain the properties of the explosion products.

In order to maintain the properties of the explosion products it is necessary to

fulfill two conditions, the first of which is the conservation of the properties of the

explosive.

This is a very simple condition. During simulation one must use the same

explosive with the same charge density as if it were the case of an actual explosion.

This t;ondition is necessary but not sufficient. It is also aecessary that this similarity

not be violated during the explosion process, i. e., during the process of the chemical

reaction.
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It cannot be expected that the similarity will be maintained in full. A chemical

reaction is characterized by a specific rate, i.e., by a specific time required for its

completion. However, it has been mentioned many times that gas dynamic phenomena

have a charactersitic propagation velocity in cm/sec. For this reason, as we change

the geometric scale of the test, all the times change proportionally. For instance, if a

model is one-tenth the size of the actual charge, then the time for the passage of the shock

wave from the charge to the obstacle is one-tenth that of the actual one. As we change

the scale, there occurs a change in the ratio between the reaction time and other times

which depend on the motion of the gas. This, generally speaking, violates similarity.

It has been known for a long time that blast velocity measured for explosives

of small-diameter shells, turns out to be reduced with respect to normal values measured

in large-diameter shells. Blast velocity depends on the size (as this is required by

similarity), only beginning with a specific, sufficiently large diameter.

A striking expression of the violation of similarity is encountered in an investi-

gation performed by Yu. B. Khariton et al. [116], who studied the phenomenon of a

critical diameter (for the blast): charges of liquid nitroglycerin enclosed in pipes of a

large diameter detonate (with due priming), but in very narrow pipes detonation "dies off"

Sand therefore does not propagate.

it is obvious that as we measure shock waves of charges with varying diameters,

even if all the other conditions (of geometric similarity) are kept, we will get completely

different results if the critical diameter of the pipe is exceeded.

As the blast propagates, new layers of the explosive are involved by the layers

transformed earlier into explosion products by the chemical reaction. At the present

time, the part played by various factors (the effect of high pressure on the reaction rate,

heating from compression, heating of the explosive from contact and mixing with explo-

sion products, etc.) is not quite understood. All we know is that the layer involved in

the reaction is subjected to the effects of high pressure. Explosives contained in a

fragile glass tube or any other thin shell tend to fly apart in all directions under high

pressure.
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iAccording to Yu. B."Khariton, the damping of the blast of an explosive having a

small diameter is due precisely to the fact that the scattering time of the charge be-

comes less than the chemical reaction time. The explosive is scattered, and pressure

drops before the actual reaction has a chance to take place. With a larger diameter,

scattering time of the charge increases, too. If it exceeds the chemical reaction trme,

a nondar-p,.d blast becomes possible.

'he existence of a critical diameter violates the similarity of the explosion of

charges of various sizes. On the other hand, it gives us a criterion by which to de-

termine the conditions in the region in which the similarity is to occur.

To obtain similrity it is necessary that the reaction rate be low as compared

with other charactristic times. From Yu. B. Khariton's critical diameter theory we

can conclude that the explosion of two cha.rges of the same shape but different size will

be similar to one another if all the dimensions of the smaller charge (and, therefore,

the dimensions of the larger charge) exceed several times the critical diamete,.

It must be attempted to obtain a complete blast both in the larger and smaller

charges. Similarity is violated where completeness of the reaction increases with an

increasing charge. But the completeness of a reaction cannot exceed 100%, hence we

can assume that starting with a certain suffic-ently large dimension similarity will be

maintained.

Suppose that similarity is maintained. How do we project the data gathered from

a model on events taking place in nature? All geometric dimensions are reduced to scale.

We select as a characteristic dimension a charge with a radius R. Similarity points,

I. e., those where all phenomena evolve in a similar fashion, will be points the distance

of which, from the center of the charge, are in the same relation to the radii of the

charges, that is, points at which are equal the ratios x./R, y/R, x/R or (in the case of

spherical symmetry) r/R, where r is the distance of the point from the center of

symmetry.
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Pressure in similar systems is identical since atmospheric pressure of the air

is identical, and maximum pressure of the explosion products is identical, which follows

from the identity of explosion product density and explosion temperature. As already

mentioned, the time in similar syEtems is proprotional to their dimensions. Hence,

if we compare the cirves of the dependence of pressure on time, we will find that they

are transtormed

"R-R"•mcml PL-/'' k"R)" (XI- 1)

In order to deal with a dimensionless function, we write the above formula as follows

P(for- t airI p an R-2)

where p0 is characteristic pressure (for instance, atmospheric pressure), cO is

characteristic -velocity (for instance, sound velocity in the air).

We are interested above all in two quantities, maximum pressure and total pres-

sure momentum. We find for these quantities

R R---p11--P (R-=-);

R )

Maximum pressure at similar points is identical, and pressure momentum at

similar points is proportional to the scale of R. Completely analogous formulas also

hold for the motion of gases. At similar points maximum gas velocity is identical, the

curves of velocity change with time are similar, and the displacement of particles is

proprotional to the scale of R.

Pres•ure on the surtace of the obstacle differs from pressure in the shock wave

and depends on reftectan and the flow around the obstacle by the wave. If the obstacles

are similar, these phenomena will also be similar. Maximum pressure on the surface

of the obstacle differs from maximum pressure in the shock wave by a factor that depends

on the amplitude of the wave (see Chapter 19), that is, on p/p 0 . Thus, maximum pressure
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of a reflected wave depends only on the ratio of the lengths of r/R. A formula like the

one for pressure momeatum refers in exactly the same way to the momentum acting on

a unit of surface of the obstacle, so Oat the momentum per unit area on similar sur-

faces is proportioral to the dimension of the charge.

It is the task of experimental and theoretical investigation to determine pressure

as a function of two variables off (tc0 //R, rIR). This is an extremely complex problem,

hence it is expedient to determine first of all two functions of dimensionless distance

rq, whic]. ciiaracterize maximum pressure and total momentum, We try to deterirn'

them in a freely propagating wave, and we also seek these functions in the presence ,

a specific, standar. type of reflection and flowing around. Thus, Sadovskiy used

instruments built into a high, solid wall. In this case, obviously, we are dealing with

the reflection of a shock wave without flow around the obstacle.

For a substance with a specific density, the radius simply depends on the

weight of the charge. The investigators give their data in the form of a dependence of

pressure and momt.ntum on the distance r and the mass of the charge m. Since m -

R3 , simi.arity theory leads to the following dependences

3/7- (XXI-.4)53

Finally, in a moderately wide pressure change interval, it is natural to seek the

definition of the quantities to be determined as povwer f•nctions of the weight of the charge

and the distance

p,. =c Cnst •r em'; i= const, r 'm.

The similarity ]h,,ws connect the exponents. From Eq. (XXI-4) it follows that

a -t-250; c-i- $d-- QM (X-5)

The formulaR given in the literature for maximum pressure in a shock wave satisfy the

requirements of similarity theory. For instance, for great distances, the formula

3.- 
=6

p,,,=const. (XLp-6)
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is adopted. However, when processing experimental data, one for the momentum,

frequently resorts to the formula

i - cot, •-. (XXI-7)

wtich contradicts Eq. (XXI-5). Such a deviation may depend on the nonobservance of

similarity conditions when measuring the momentum, especially in the case of powerful

charges and great distances. Vlasov [31 and Savich [113] give formulas for the momentum

which are completely correct from the viewpoint of similarity theory, i

It was noted abo,"e that one of the similarity conddtions is the constancy of explosive

density. Sadovskiy established experimentally that with > I (m, kg) the parameters

of a shock wave depend only on the weight of the charge but not on its density, in which

case Eq. (XXl..4) rather than (XXI-2) holds. These experiments compared the effect of

the explosion of pressed TNT and powder TNT of varying density (from 1.6 to 0.3), where

decrease in pressure and momentum did not exceed 2 to 3%.

On the other hand, a low-density charge explcded in normal atmosphere can be
54

regarded as being similar to a high-density charge exploded in air under high pressure.

Under this assumption, Sadovskiy's results permit us to predict, with the aid of

similarity theory, the dependence of the quantities characterizing the wave on the density

of air. We give here, without their derivation, the final formulas in which air density is

expressed by its pressure p0 and temperature T0

P., = Pof )'1i0 7-- h 7'

or, for power functions, the realtionship between the exponents of distance r, ch3rge

mass m, and atmospheric pressure p0 and temperature To, which we do not regard as

constant here,

p.•const - r 8-6mn 4 pa1- 6 T0
6; i=constr1-3 mdi, --d To'.

Exaclty the same relationship between exponents can be obtained assuming that

PM - PO depends on the parameters according to the exponential law. At a great distance,
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the dampimg of pressure change amplitude and momenhm is inversely proportional to the

distance. Let us take here this limit law as a result of the experiment. In that case we

get

P., =Po 4- const- r-- .n"sp.Ih T0 'Ij; i= coast • r-1 mIu,;:'/ To',.

It would be interesting to study experimentally the problem of the effect of atmospheric

conditions on the propagation of shock waves. A change in the temperature from 440 tW -40°C

changes T1/0 by 10%, 0 by 22%.

Although spherical propagation of shock waves is much more important, cylindric

and one-dimensional propagation are also of some interest. Cylindric propagation

occurs when a long charge explodes, and the shock wave is radiated at a distance from

the charge which is less than the length of the charge. One-dimensional propagation occurs

when a shock wave propagates in a pipe. The extremal laws derived above 'for spherical

propagation can be readily changed for the latter two cases. Thus, in the one-dimensional

case

where m 1 is the mass of explosive per unit of cross section.

Motion at a short (or small as compared with the dimensions of the charge) distance

from the surface of the charge can also be regarded as one-dimensional motion. In this

case, however, particular care must be used on account of the dependence of the distri-

bution of the pressure and motion of explosion products on the character of blast wave

propagation, which is spherical with central primi ng of the charge, or plane with

simultaneous priming along a plane parallel to the surface of the charge ([8], 2nd paper).

Simulation is particularly valuable when studying the propagation of waves under

difficult or complex geometric conditions, for instance w-en studying various methods

for protecting ventilation ducts from blast waves, the difraction laws of a shock wave

at the obstacle, and so on [117). It is obvious that in these cases it is essential to

maintain similarity both in the position of the surfaces reflecting the shock waves and in

the position of the measruing instruments. The resulta of measurements depend not
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only on the distance of the instrument from the charge, but also on its position with

respect to the obstacles, etc.

1
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Chapter 22

Simulation and Similarity of Destructions Caused by Shock Waves

Destruction occurs when the stress in a material reaches limit values. Similarity

will therefore be achieved if we use the same material in the model as in the actual

case, and, of course, if the raodel is geometrically similar to the actual object.

By using the same material we will be sure to have a similarity in the propagation

of the shock wave, in its transition from one medium to the other, and so on. We have

seen that the cLaracteristic pressure amplitude is comtant. In similar explosions the

2 pressures are identical st similar poiats.

The regions in which the stresses caused by the explosion exceed the permissible

ralues and bring about the destruction of the material will also be similar.

Destruction requires that a specific deformation be reached, i. e., that certain

particles of the body be shifted with respect to other particles. Inertial forces and

elasticity prevent deformation and destruction from occurring instantly. Could it be

that the existence of a specific deformation time will lead to a violation of similarity?

But we can easily see that cimilarity will be maintained. It is precisely the inertia

of the substance, which depends on density, and its elasticity that determine the speed of

sound in the substance. It can be formally shown by means of analysis that from density

and elasticity we can plot deformation time only on the basis of the dimensions nf the

body, and this will be the time required by the wave to pass through the body. Th-_ time

will turn out to be proportional to the size of the body. If we change the scale, defor-

mation time changes following the same law as the one governing the shock wave action

time, and the relationship between the times will remain constant. This ensures

similarity of the phenomena.

Similarity is also applicable to the more complex type of destruction, in which

the shock wave momentum is decisive (see Chapter 20) rather than peak Dcessure.

Let us take an elastic beam, the oscillation period of which exceeds shock wave

action time.
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By reducing the dimensions of the charge, the beam and the distance between them by

a factor of n, the oscillation period of the beam will decrease by a factor of n, and the

frequency will increase by a factor of n. This can readily be verified with the aid of

elasticity theory for any specidic peactical method of securing the beam.

The mass has decreased by a factor of U3 , at a similar point the shock wave

nwomentum per unit of surface has decreased by a factor of n on account of a decrease

of thb shock wave width and a decrease in shock wave action time at a constant peak

pressure, and the surface receiving the pressure has decreased by a factor of n2 . Thus

linear velocity reached by the beam as a result of the effect of pressure momentum will

be independent of th. size of the beam. The amplitude of the oscillations will be of the

order of the product of velocity x period, i. e., it will be proportional to the size of the

beam. Hence we see that the relative deformation and density of elastic energy proportional

to the square of initial velocity are identical in the model and in actuality. The result will

also be identical, namoly, the presence or the absence of destruction. Let us note that

similarity will no, be violated by friction which depends on velocity and on the load in the case

when the load is also assigned in the fundamental shock wave action, since velocity amd pres-

sure are the same in similar systems.

A less trivial case is the one frequently encountered in structural mechanics. It

is the case in which the stability of the structure and the effort required for its destruction

depend on the structure's weight. The simplest instance of this kind is the sapdy area

witho.•t cohesion. Another instance is a stack of bricks, the solidity of whicb depends on

the weighi v,! the bricks and on the friction produced by the pressure of one brick on the

other. Khariton emphasizes that such a type of stabiltiy very frequently determines the

resistance of a structure to destruction. The stack of bricks represents one extreme

example in which the weight determines internal cohesion. A solid sieel box, which

is easier to topple as a whole than to destory, is another extreme example in which

the explosion works against the force of gravity.
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Here the impossibility of a strict similarity is obvious. The theory now includes

acceleration of gravity g expressed in terms of length/time. Together with the cheracteristic

velocities of the explosion process, e. g., Cot the presence of g permits the plotting of

the length, e.g., c0
2 /g and time co/g. The absence of similarity Is obvious: if we

compare two charges of different size buried in the sand at an appropriate depth, we can

see that the pressure of the soil at the level of the charge is proportional to the depth,

and to the size of the charge. Likewise, minimum pressure required for the toppling

of a wall in the second example is also proportional to the size. However, atmospheric

pressure and blast pressure do not depend on the size.

LThus, with a change in size there is also a change in the ratio of soil pressure or

the pressure required for the beginning of destruction to blast pressure, and similarity

is therefore violated.

An excellent simulation method was proposed by Pokrovskiy [1091. To obtain

similarity as we change the scale of the experiment, we must also change the length

proportionalty. Pokrovskiy obtains this by ciianging acceleration, and replacing gravity

with centrifugal force. The model is exploded on a centrifuge and the dimensions are

reduced with respect to nature at the same ratio of centripetal acceleration to acceleration

of gravity. We can readily verify that soil pressure at similar depths will be similar.I Pokrcvskiy made extensive use of his method for the purpose of modeling large-

scale. explosions for excavation, and also for the purpose of studying the effect of various

soils and different positions of the charge on the result of explosions. The linear modeling

scale in his experiments reached 29, i. e., all the dimensions of the model were reduced

bya factor of 29 as compared *with the dimensions of the real object. The weight of the

charge, which characterized the cost of the experiment, was reduced by a iactor of
I ~25, ow•.

Zel'dovich and Khariton proposed an approximate method for simulating the work

of explosives against the forces of gravity. It is based on the fact that the new criterion
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on which depends the absence of similarity in the case of a change in scale, liffers

appreciably from unity. Thus, if we write this criterion as a ratio of characteristic

length c0
2 /g to the size of the charge R, then for a charge weighing 1 kg we get c 02 /gR-

52 x 10 . The ratio of static soil pressure to blast pressure yields, at a crater depth of

several meters, a quanity of the order of 10-4 - 10 -5. Thus, the c- *terion in the most

varied formulations turns out to be sharply different from unity. This means that we

are dealing here with the case in which not all the quantities are of the same order. It

is obvious that we find ourselves in the domain of extreme or critical laws, in a domain,

that is, in which we may expect self-simulation in the same way as self-simulation

arises in hydrodynamics at very high or very lov, Reynolds Numbers.

We now have to find the physical nature of this self-simulation.

Let us give a closer look to the toppling of a wall (see Fig. 56). At the beginning

of the preceding chapter we brought it up as an instance for a process which lasts con-

siderably longer than the action of the shock wave (in this case the time ratio yields

another criterion which sharply differs from unity), i. e., a process in which the

decisive role is played by the general wave momentum. We divided the process into

two stages: 1) the action of the wave on the object which determines its momentum, and

2) themotion of the object by inertia, which overcomes the force of gravity, ane we

readily find the conditions for similarity.

In fact, the object's momentum K, equal tothe force momentum. (for a geometrically

similar change of the system, in which the dimensions of the cbject and the distance be-

tween the object and the charge change proportionally to the dimension of charge R) is

proportional to

K -- Fi - R--P~ R - !ý` R, (XXlI-1)
CO C4 XH1

where F is the area on which the wave acts, i is the pressure momentum per unit of

sarface. The momentum of the object sufficient for its toppling will be determined as
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follows. The object's kinetic energy is ecuated to the work required for lifting the

gravity center of the object to a height proportional to the size of the object,

E Mg R. (XXH-2)

Into K of Eq. (XXII-1) we substitute the expression of the object's mass M by the char-

acteristic dimension R and the object's density (, and get

Oe ipR3  P gl (XXII-3)

The sign idem adopted in similarity theory signifies that similarity will take place

if the term on the left remains constant. For all explosions in the air under normal

conditions co = const, p0 = const, the criterion is simplified and 01g!-- idem.

This criterion also cincludes exact simulation- the change in accleration g is

inversely proportional to the size R (centrifugal simulation). But on the basis of the

approximations made earlier we obtained a criterion which also admits another solution:

the change in density is inversely proportional to the root of its dimensions. This method

was proposed by Khariton and this author [105). This method allows for a sufficiently

wide change in the scale. By substituting a material with density 2 (Ctone) with a

material with density 11 (lead) it becomes possible to reduce R by a factor of 30, which

correeponds to the reduction of the charge by a factor of 27, 000, i. e., it is possible

to simulate the explosion of 1 ton of explosive by the explociIor of 499 of tI.e same. sab-

stance.

In Khariton's many experiments, the edgewise standing bricks turned out to be con-

venient indices for the distance at which the momentum of a shock wave drops to a specific

value.

It is obvious that centrifugal simulation is necessary in more complex cases in which,

along with a rigid structure, the soil also plays a role. The approximate simulation by

changing density, as proposed by Khariton and this author, is considerably narrower in

scope and the advantage of this method is only the simplicity of experimentation.
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Chapter 23

Phenomena Occurring in the Immediate Vicinity of the Charge

Similarity theory makes it possible tc, reduce the relation between the quantities

tLat characterize the effect of an explosion and the charge mass and the distance to two

dimensionless functions with one dimensionless variable. By determining the form of

these functions we will get a clear idea of the explosion phenomenon and the ensuing

propagation of the shock wave. Here we are not going to study the explosion proper,

i. e., the propagation of the blast wave along the explosive accomapnied by a chemi nal

reaction which transforms the explosive into an explosion product or products. Our

investigation will begin when the blast wave reaches the surface of the ýharge. We

assume that the wall of the charge is very thin and hence ignore its effect. At a given

instant of time the following will be abutting: on the one hand the unpe'turbed air or the

material to be destroyed, and on the other hand the explosion products which have just

been formed as a result of chemical reaction.

Computations relating to degeneration theory show that these explosion products

move in the direction of the propagation of the blast wave. Their density is higher than

mean density of explosion products so that pressure is twice as high as mean pressure.

If the explosive is bordering on the obstacle, then at the instant when the blast wave

reaches the boundary, the moving explosion products collide with the obstacle and

are abruptly inhibited or stopped. At the pressures with which we are dealing, any

traterial is plastic. The velocity acquired by the material of the obstacle under the

effect of the explosive products is bounded not so much by the strength of the material

as by its inertia, i. e., density and compressibility (the latter determines the velocity

at which the disturbance propagates and, hence, the amount of ..iaterial involved in the

motion per unit of time).

When explosion products hit steel or iron (density 7.8, whereas the explosion

products density does not exceed 2. 5) we can say that the motion of the explosion
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products is virtually stopped. At this instant a shock wave begins to move from the

boundary into the charge, which stops and compresses the explosion products. Qualitatively

this phenomenon is analogous to the reflection of a shock wa-.e (Chapter 19). Quantitatively

there is a certain difference, and computations show that the pressure of the explosion

products increases approximately twice when the shock wave hits an obstacle.

If the explosive is of low density, and if the explosion products can be considered

and ideal gas, then in the shock wave front the velocity of the explosion products amounts

to about 45% of detonation velocity, density in the wave frort attains 180% of the initial

one, and the temperature rises 10% as compared to mean temperature. Pressure there-

fore increases by a factor of 2 as ccmpared with mean pressure p or the pressure which

:s developed by a slow adiabiatic reaction of an explosive with constant volume. ixmaylov

showed "bat this pressure is almost tripled (and thus reaches 5-6 p ) when the explosion

products are slowed down by an absolutely hard (rigid) obstacle placed in the path of the blast

wave. However, the explosion of commerical explosives deviates considerably from

ideal conditions. The ratio of explosion product velocity to blast velocity decreases.

The ratio of explosion product density in the wave front to the mean density of explosion

products also decreases. But, at the same time, the compressibility of explosion pro-

ducts also decreases. An identical change in density causes a change in pressure greater

than in an ideal gas; sound velocity also increases; hence the impact against the obstacle

becomes harder. The pressure ratio, of mean p, maximum Pdet in a detonation wave, the

pressure of reflection of a shock wave by a rigid obstacle prefl found for an ideal gas,

changes somewhat in dease explosion products with considerable deviations from ideal

conditions.

Table 5 shows the fundamental constants for some characteristic explosion products.

These are explosion heat Q kcal/kg, the volume taken up by the explosion products under

normal conditions (00C, 1 atmosphere), V0 liter/kg; explosion product temperature in the
o

blast wave front Tid K, detonation velocity at low density Didm/sec, and explosion
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product velocity in the wave front uidm/sec computed according to detonation theory

without taking into account any deviation from ideal conditions, initial density of ex-

3
plosives 00 g/cm or kg/liter, and detonation velocity D m/sec measured at this

density. The difference between D and Did characterizes the deviation of the state of

the explosion products from ideal conditions. In the following columns we have computed

the density of explosion products 0 and explosion product velocity in the direction of the

propagation of the wave u. Pdet is the pressure of explosion products in the detonation

wave computed considering the deviation from ideal conditions and compression of explosion

products in the wave. The column Prefl shows the pressure developed by an abrupt declaration of

explosion products, whereas their velocity and state are determined in the preceding columns.

Table 5

Q____T___.__,_U;,f90

Tporui*. a) b). 1085 685 3630 1930 j8901
Hnrpouewr*apsT(k4T . . 1530 768 5000 2400 1090 1.619
HITporAtsUctuc) . . 1517 i 716 5200 2360 1080 I60
AJvA cmsRUad) .... 200-- 2701 28o0 1250 570 4.70

______________ 3252 230? _ _I I__

D U
I - u _ e)- P° tf

ITpoT..A a). .. .... 6900 2.10 1700 f193 000 43)00500
.H4AroUeHTa29PBRub) 7900 2.12 2000 250000 560000
HI r.or~si epxu . .. 7900 2.12 2000 250000 5600C00

SA •cmm•ad5 6.30 1500 oo 00ooo 900W00

1Computed for lead in vapor form.
2 Computed for liquid lead.

CODE: a) TNT, b) nitropentaerythritol; c) nitroglycerine;
d) lead azide; e) det; f) refl; g) id.

Computations based on detonation theory (considering ideal expiosion products),

were performed by Dautriche (1191, Schmidt [1241, and Vlasov 131. The computations

were based on the assumption that we can apply the equation of state to explosion products
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with constant b, or a vlaue of b that depends on specific volume v (Schmidt). Landau

showed that in reality this equation of state is not applicable to the density attained in

explosion products. Molecules cannot be considered incompressible. In the fire, approxi-

mation explosion product pressure depends on the density of explosion products (pro-

portional to the cube of the density), but does not depend on temperature, Landau's and

Stanyukovich's computations [107), performed in 1944, show that the measured detonation

rate corresponds to a smaller specific volume and a higher pressvre as compared with

earlier computations. Khariton noted that the equation of state adopted by Landau re-

quires an appreciable amount of blast energy to perform the compression of explosion

products, and the temperature of explosion products (with a high initial density of the

explosive) is considerably l--wer than the one given in the tabie under Tid.

The scrucLure of a detonation wave is characterized by the fact that at the instant

it is formed the explosion products have maximum density, velocity and pressure.

Behind the wave front there follows a more or less rapid deceleration and expansion of

explosion products [8, 108]. All the values for pressure given here are referred to the

wave crest. Immediately after the collision between the wave and the obstacle, i.e.,

after a tremendous pressure Prefl has been developed, pressure begins to drop quite

rapidly. Below, when we study the pressure momentum of an explosive, we shall see

how the time during which pressure drops is determined. In order to magnitude this

time is equal to R x 10-6 sec, if R is the effective radius of the charge expressed in

centimeters. For a charge of 1 kg this time is of the order of 5 x 1076 sec.

To compute the time we juxtapose the force momentum and maximum pressure.

Let us imagine a charge of 1 kg TNT in the form of a cylinder 10 cm in dtameter and

8 cm high. The area of the cylinder base is 80 cm 2. Assuming maximum pressure

developed at the reflection of the wave to be 430,000 atmospheres, we get the maximum

force that acts on the obstacle on which the charge is placed, namely, 3.5 x 107 kg.
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The momentum vlue of 100 kg x sec/kg found experimentally (Kudryavtsev's expert-

ments, quoted here from Sadovskiy) corresponds to the effective action time of the force

computed above, namely, 3 x 10 sec. For sound velocity in explosion products of the

order of 5 x 105 cm/sec (we find this value from the measured detonation rate) the time

during which an expansion wave covers a distance of 5 cm amounts of 10 x 10-6 sec.

It is obvious that in reality pressure drops gradually and attains atmospheric values

during a considerably longer time. The quantities 3 x 10-6 or 10 x 10-6 sec are

only effective values, i. ,., they are the time during which pressure drops several

times.

What happens when the detonation wave reaches the free charge surface which

borders on the air? When the explosive is exhausted, the incandescent explosion pro- (

* ducts (in motion and under high pressure) are in contact with the unperturbed air. The

surface of the charge becomes the surface of pressure discontinuity, and of the dis-

continuity of velocity and gas tmeperature (Fig. 57). Thus, we are dealing here with

the problem discussed in Chapter 16. The expanded and accelerated explosion products

speed forward in the direction in which the blast wave propagated, pushing the air in t

front of them and compressing it (Fig. 58). The motion of ihe boundary of the expanded

explosion products and of the compressed air is determined from the condition of pressure

equality on both sides of this boundary. The only new element as compared with Chapter

16 is the fact that on the discontinuity surface there also occurs a change in chemical

composition (exp'osion prcdicts - air). As the discontinutij propagates, the surface

of the change of composition coincides identically with the surface of the discontinuity of

special kind on which there occurs the change in temperature and entropy without changes

in pressure and velocity. AU the results of Chapter 16 remain valid.

Emile Jouguet [1201 applied the theory of propagation of an arbitrary discontinuity

to the computation of a shock wave arising on the surface of a detonating explosive. He

performted his computations in connection with the experiments carried out by Perrota and

1
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Fig. 57. Fig. 58.

CODE: a) Explosion productz; b) air. CODE: a) Explosion products; b) air.

Gathrop [1221. The same problem was studie4 later by Landau and Stanyukovich 11081.

The results agree with the experimental data, in particuiar in the problem con-

cerning the effect of the composition of the atmosphere surrounding the charge on the

expansion rate. The velocity obtained by the shock wave in the air and the velocity of

the interface between explosion products and the air are very high and may exceed the

detonation rate of the explosive with which they are not directly connected. In corres-

pondence with the high velocity of the explosion products that compress the air, there

occurs in the shock wave a pressure which is high compared with atmospheric presEare,

but which amounts to a niakor portion of the initial pressure of the explosion products.

If the air is enclosed as a thin layer between the explosive charge and the obstacle,

then the shock wave, onco it reaches the surface of the obstacle, will be reflected and

Aill cbonge its direction. When the reflected wave will reach the interface between the

explosion products and the air, there will be a partial passage through the explosion

products, and so on. The layer of air between the explosive and the obstacle delays the

increase in pressure acting on the wall and, hence, delays the instant when maximum

pressure is attained. If the explosion products were able to exert continuous pressure,

the presence of the layer of air would not change the final pressure exerted on the wall,

as a soft pad does not reduce the pressure of a load on the base. In reality, the structure

of a detonation wave determines a rapid pressure drop which depends on the levelling of the

pressure and the expansion of explosion products in a direction opposite to the direction

of detonation propagation (i.e., toward the center of the charge). The delay in the trans-

mission of explosion product pressure to the obstacle (due to the presence of the air gap)
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results in that during that delay the explosion product pressure drops and maximum

pressure actizg on the obstacle also decreases. The extremely sharp dependence of the

disruptive force of an explosion on the distance between the charge and the armor plate is

well-kzown,

The instructions of the engineering carps for demolition work (Voyenizdat NKO

[National Commisariat of Defense], 1941) gives the following rule. To penetrate a steel I

sheet, the weight of the charge must be given in terms of 25 grams of normal explosive

per 1 cm 2 of the cross section to be penetrated. The cross section is computed as the 11

product of the length of the line along which penetration o~curs, and the thickness of the

sheet.

In the case of an air gap between armor plate and charge, or if the armor plate

consists of steel sheets with air gaps in between, the "Instructions" require that the air

gap be added to the calculated thickness of the sheet.

Thus, according to the rule (which, of course, is approximate) one must conclude

that a charge which, for example, can penetrate a 5 cm thick steel sheet if tightly

attached to it, will penetrate an armor plate only 3 cm thick if it is placed at a distance

of 2 cm from it.

The pattern will be different if at some distance from the charge there is a body

the dimensions of which are small as compared with the distance from the charge. Such

a body will first be subjected to the effect of an air shock wave. Soon after the reflection

of the shock wave by the surface of the body, the shock wave travels further around the

bodt,. After this the force acting on the body bucomes the drag of the body in a

flow of air compressed by the shock wave, and depends on the density and air velc-.ity

and the resistivity factor of the body. Then the interface between the explusion pr 'duct

reaches the body, and further on the body is flowed around by the expanded explosion

products rather than by air. On the interface the explosion product pressure does not

differ from air pressure. How does the force change that acts upon the body? To
f

195



answer this question we must compare the density of explosion products and that of air,

The expansion of explosion products occurs isentropicaily and is accompanied by

a temperature drop in the explosion products. "lTe compression of Air by the shock wave

following Hugoniot's adiabatic curve causes an increase in temperature.

A rough, approximate computation performed for TNT (for the initial data see

table) detonated in the air yields the following results. The velocity of expanded explkbion

products, equal to the velocity of compressed air, is 4700 m/sec; the pressure of expanded

explosion products and of compressed air is 250 atmospheres. The temperature of ex-

plosion products drops to 1100 *K (830'C), the density of explosion products is 0. 1 g/cm3 ;

in the air the shock wave propagates at a velocity of 5250 m/sec, air temperature reaches

3
76000K and density is 0. 012 g/cm . The, absolute value of wave velocity agrees sufficiently

well with the data of Perrota and Gawthrop, who recorded a wave velocity of 4600 m/sec

in air, and 5560 r/sec in hydrogen in the case of a weaker explosive (density 1.32,

55
detonation rate 4600 m/sec).

Let us note that as a result of the expansion of explosion products there occurs a

temperature inversion: the tewperature of compressed air turns out to be considerably

higher than that of the explosion products in contact with it. There is no contradiction

with the principles of thermodynamics here. We have only isentropic processes (expansion)

and these are accompanied by entropy increase (compression in the shock wave). The first

prinicple also is not violated: the amount of air compressed in a unit of time is con-

siderably smaller than the amount of expanding explosion products.

The molecular weight of air and the explosion products in the c.-se of explosion of

organic substances only differ slightly from one another. With equal pressure, the density

ratio is inverse to the temperature ratio. 56 The density of expanded explosion products

is considerably greater than the density of compressed air. The lorce acting on the body

grows approximately proportionally to the density at the i ztant when Uhr explosion pro-

ducts expand and reach the body. At the same time (and this seems surprising) the thermal
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effect on tte body's surface also increases. The temperaturt of explcqion ptoducts is

lower than the tOmperature of compressed air, but in the case of supersonic flow one

must take into account both the thermal and the kinetic energy of the moving gas (see

Chapter 4, "temperature at rest").

The velocity of explosion products and of the air are identical, and the conversion

of kinetic energy into thermal energy increases the temperature by an identical quantity.

Thus, the difference in the "temperature at rest" of the air and of explosion products is

relatively smaller than the difference in the true temperatures of the air and of explosion

products. In the example given above, where the true temperatures of air (76000) and of

ex.losion products (11000) are in a 7 : 1 ratio, the temperature at rest of air (240000) and

of explosion products (170000) are in a 1. 4 : I ratio. 57 The intensity of the thermal effect

depends not only on the temperature of the gas surrounding the bcdy, but also on other

factors which determine the intensity of tl,e heat flow. in the case under stAly, the heat

flow and the thermal effect increase on account of an explosion product density increased

eight-fold as compared with the density of air.

Experiments confirming the above were performed by Michel-Levy and Muraour [1211

in 1934-1936. They studied the problem of the nature of the luminescence of the explosion

of lead azide crystals. Photographs show that this luminescence is varticularly intense

where the shock waves collide. The iptensity of luminescence and its spectrum depend

essentially on the atmosphere surrounding the crystals. The most intense luminescence

occurs in-argon, and the least intensive one in butane, in accordance with the thermal

capacity of the substances. With a given gas composition (argon), increased pressure

reduces the intensity of luminescence In accordance with the change in shock wave amplitude.

An exquistie experiment is the one in which a metal (barium) was introduced into the ex-

plosive and the gas. When a barium compound was added to an azide charge, barium lines

could not be detected in the luminescence spectrum. In other experiments, barium was

introduced into the gaseous phase by burning prior to the experiment a smnall amount of a

1
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pyrotechnic compound which yields a finely divided, slowly settling smoke that contains

-• barium oxide and carbonate. In the latter case, after explosion, the luninescance

spectrum abunded with barium lines. Together with excited barium atoms, the spectrum

reveals the existence of excited barium ions, and thus reminds us of a spark spectrum

rather than an arc spectrum. Michel-Levy's and Muraour's tests show that at blast in

the atmosphere surrounding the explosive there arise shock waves of a wide amplitude

which heat the gas to tremendGus temperatures, exceeding many times the temperatur6

of explosion products. These temperatures are particularly high owing to the low thermal

capacity of argon. All the facts observed agree with this.

In a theoretical paper, Jouguet [120] compares the propagation of shock waves from

an explosion in gases of different molecular veight (hydrogen, air, and carbon dioxide).

The velocity of waves caused in various me .iLa is in good agreement with test data.

Jouguet does not perform a direct computation of absolute values, and thus avoids tile

problem of detonation theory of explosives and the state of explosion products of high

density. Instead, Jouguet uses the velocity of a shock wave in toe air to characterize

the state of explosion products, and from there computes the velocity of waves in other

media.

Vlasov [31 goes many steps further. He overcomes great difficulties which depend

on the fact that he is dealing with non-ideal media, and computes the parameters of a

shock wave in air and its velocity. His results are in good agreement with tests data

(nitromannite: Vlasov computed 6100 m/sec, andByurlo observed 6430 m/sec). 58 To

characterize the state of explosion products Vlasov uses the measured detonation rate.

We must also mention here the extremely interesting and exhaustive computatioas

performed by A. A. Grib.on the surface of explosives, contained in his dissertation [102]

(Leningrad Mining Institute, 1940). The problem is solved under the assumption of a

distribution of pressure and motion which correspond to an instant chemical reaction of

the entire expiosive, condensed or gaseous.
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Finally, let us dwell on the second possi,;ity of interpreting the explosive momentum.

According to computations mentioned above, a charge weighing m kg placed on a surface,

dovelops at blast at a force momentum I = 100 m kg/sec. According to Chapter 18, such

a momentum corresponds to n mean value of the velocity component of explosion products,

a normal surface Un= 100 g = 1000 m/sec.

The force momentum turns out to be cue-half to one-third of the force momentum

developed by an ordered outflow of explosion products from a Laval nozzle of a jet engine

in which all the explosicn products move in one direction. We can readily see that at

the explosion of an open charge the explosion, products expand uniformly in all directions

of the hemisphere. We denote mean velocity intheradialdirectionbyitr, andfindur = 2un=

2000 m/sec. Half the momentum is lost as a result of the expansion of explosion pro-

ducts not only in the direction normal to the wall but also in other directions.

1
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Chapter 24

Laws Governing the Propagation of a Shock Wave at a

Great Distance from the Charge

In the preceding chapter we studied the phenomena that occur in the immediate

vicinity of the charge. For the quantitative estimates we proceeded from The idea that

detonation theory determines the state c explosion products in the blast wa-e front

independently of the shape of the charge, the position of the primer and similar factors.

All these factors are very important for the pressure distribution. Owing to the fact,

however, that detonation rate is exactly equal to the rate of disturbance propagation

along the explosion products, these factors do not effect the detonation rate and the state

in the wave front.

However, after the first contact between explosion products and the air (or the

material to be destroyed) the motion will be affected by pressure distribution in the

deeper layers of the explosion products. To determine the motion at this stage requires

extremely laborious and complex computations, all the less attractive since the result is

different for each case.

Only at the next stage can we expect that at a sufficient distance from the charge

the dependence on the actual geometry of' the explosion will subside and a specific form

of the shock wave will appear which depends only on the total amount of explosive but

not on specific features of the given charge such as the position of the primer or the

presence of a shell, or the shape of the charge, which are extremely important at a

close distance. The condition imperative for the formation of such a steady wave form

lies in the fact that motion involves a certain amount of air that must exceed the amount

of explosive by at least several times.

'When energy is transferred from the explosion products to the nearest layer of air,

and from that layer to the next one, and so on, the wave becomes independent of the

peculiar features specific for each single charge. We may expect the existence of two
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limit regions in accordance with the satmplifications to which the laws of shock wave

theory are subjected in two limit cases; 1) powerful shock waves, p > po, and 2) weak

shock waves p - p.,-C r,. which qualitiatively approach the characteristics of sound

(see Chapter 3).

L- the first case, according to Landau, there will be a transit'on to limit if we

neglect p0 with respect to p. We may obviously disregard in this case the initial tem- t
perature and energy of air with respect to its temperature and energy after compression

by the shock wave. In such an approximation the distribution of pressure and temperature

changes in time but remains similar to itself. I
The critical laws of powerful shock waves provide for a constant relationship be-

tween kinetic and thermal energy of the compressed substance. Total energy of all the

substance involved in the motion is also constant during the motion time. In the case

of the above simplifications, the involvment of new layers of air is not accompanied by

any appreciable increase in total energy which is read from the absolute temperature

zero.

Mean eD~rgy density drops inversely proportionally to the volume covered by the

wave, i. e., inversely proportionally to the third power of the path travelled by the wave.

In the case of similar distribution, the local values of energy density drop in the same

fashion. According to the laws of an ideal gas with constant thermal capacity, pressure

depends only on energy density c, but not on the density of substance ,j

p.--c=-(-l (XxIV-1)

where R is the gas constant, lower R is the charge radius, r is the distance from the

charge center.

Thus, in the extreme case mentioned above, Landau arrives at the following simple

formulas

a- (k1) VAI, T i) 7 I,,"! C'Af " '. A (XXIV-2)
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where and are mean pressure and temperature, Q is explosion heat of the explosive,

M is charge mass, M is the mass of air involved in the motion, Q, is initial air density.

In reality, however, there is hardly a region in which this extreme law is strictly applied.

For it to the applied, the follwoing two conditions must be satistied at the same time

!AfL

(XXIV-3)

According to the formulas mentioned above

A! T Texpl

ifi*�; To"-"-" * (XXIV-4)

However, for explosion products and air at room temperature the ratio T expl/T0 does

not exceed 10-15. The entire interval from -0¶•: 0cxpl To-2 is covered while the

shock wave radius changes by 2 to 2.5 times.

In reality, however, for a small r we must take into account the effect of the

initial distribution of pressure and density in explosion products. The ratio W/M 1 (the

mass of the air involved in the motion to the mass of explosion products) reaches unity

at a value -3 L- -- 0.6 -3, i.e., at a distance equal to 11 charge radii. This same
Vkg

quantity gives the distance of the direct effect of explosion products on the obstacle.

However, already at - = 1.5, at a distance equal to 27 charge radii, the amount of

heat introduced by the air involved in the motion becomes equal to the explosion energy

(all figures are given far typical explosives).

Mean pressure at this instant is twice that computed by the limit formula according

to which the drop of p is inversely proportional to r 3 . The descrepancy increases further
0

on. Vlasov [3] feels that there is a good agreement between experimental data and the

formula for pressure on the obstacle normal to t;he direction of wave propagation

{,•2.6 Afo.R
:ý=1120 kg,Zj: O 2003 (1'r) 120 ( g,-. '

which be applies to the entire interval from r/R =1 (pressure on the body in contact
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With the explosive) to r/R 300. The theoretical conclusion of this formula is not

convincing. It is impossible to descirbe with one single formula all the various different

processes which depend on different factors (non-ideal condition of explosion products

with r/R close to 1, effect of explosion products with r/R up to 10, a powerful shock

wave with r/R from 10 to 100, etc.). It must be noted that in the interval between corn-

puted values for r/R = 1 and systematic measurements beginning withc •.there is

only one experimental point.

Thus, if we take Vlasov's formula to be empirical, then we cannot consider it

verified in the entire interval for which it is recommended. We must admit, however,

that in the interval in which measurements are made, their agreement with Vlasov's

formula is satisfactory, whence the formula's practical applicability.

Let us now study the second extreme case, the propagation of a blast wave at a

considerable distance from the charge, where its amplitude is small. At limit the

propagation laws must, obviously, coincide with acoustic laws with which we already

familiarized ourselves at the beginning of this monograph (Chapter 3). The acoustic

laws provide for the propagation of a wave with an amplitude constant in the linear case

and dropping, as 1/r, in the spherical case, but without change in the wave width and

form. Consequently, acoustic laws cannot be used to determine the form and the width

of a wave even in the first approximation. Hence in the following we will have to pay

particular attention of the deviations from acoustic laws, which decrease as the amplitude

drops, ani to experimental data regarding the amplitude and form of blast waves.

Figure 59 shows the curves of pressure change with time at different distances from

the explosive charge, taken from the paper by Bernal' [1011. We note that the unperturbed

air is subjected initially to a sharp compression which is followed by a pressure drop that

passes through a minimum and returns to atmospheric values. Obviously, the instant

distribution of pressure in space reminds us of the curves of pressure change with time,

2 to 3 milliseconds corresponding to a wave width of about 1 m.

203



Thus, the front of a blast wave represents a shock wave which iz followed by a

rarefaction (expansion) wave. To predict the law cf blast wave change, we have to

remember the kinematic and thermodynamic relationships between a shock wave and

a continuous expansion wave.

V In a continuous wave in which neighboring

"~ d) . c,,,-- " -states differ infinites.mally, each propagates in

a) _ space at a velocity equal to the sum of sound

103 velocity and substance velocity.

• .The velocity of shock wacre propagation

-A) ". .. •". (is less than the sums of motion velocity and

.. sound velocity in the substance compressed by

S1. r• the wave within the region covered by motion.

Pressure drop inside the regions through which

£ 6 .J the wave has passed is transmitted to the shock

wave surface and weakens the wave. Hence the

b) Jfu,•?.'cef//'Jh, amplitude of a shock wave drops faster than

drops the amplitude of a weak sound wave.

Fig. 59. Another peculiar feature of the shock

CODE: a) Pressure, feet/square inches; wave propagation investigated here consists
b) milliseconds; c) pressure, kg/cm2 ;
d) 10 feet from charge (3. 0 in); e) 20 feet in the fact that entropy changes with shock
from charge (6. 1 m); f) 30 feet from
charge (9.15 m); g) 40 feet from charge compression. As a consequence, after the
(12.2 m); h) 50 feet from charge

(15.25m). passage of the wave the air does not return

to a state ecrivalent or identical to its initial

state (prior to the disturbance).

In an acoustic wave, the energy of wave motion is fully transmitted from the layers

involved earlier in the disturbance, to the layers which are involved in the motion as the
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wave propagates. In the case of a fhock wave, a part of the energy of wave motion gets

stuck forever in those layers through which the wave has passed, where it is irreversibly

consumed for their heating. This circumstance causes a gradual decrease in the energy

of wave motion in the case of a shock wave, and it also causes a drop in shock wave

amplitude under conditions in which the amplitude of an acoustic wave is constant or

increases the drop in the amplitude of a shock wave as compared with that of an acoustic

wave under conditions in which the amplitude of an acoustic wave drops.

Finally, the need for the expansion of a wave of finite amplitude can be seen immediately.

Let us call a "wave" as before the entire region covered by the disturbance in which

velocity -nd excess pressure (as compared with atmospheric) are different from zero, The

front edge (with respect to the direction) of the wave represents a shock wave that com-

presses the air. The velocity of this wave is greater than sound velocity in unperturbed

air. The back edge of the wave represents either a continuous wave (as in Fig. 591, or a

shock wave which returns the gas to its initial state. 59 The velocity of the back edge

is equal to or smaller than sound velocity in air in its initial state. Consequently, the

front edge of the wave moves faster, whi ih leads in time to an increase in the distance

between the front a.id the back edge of the wave, i. e., to an increase in the width of the

wave.

In Chapter 11 we have proven in detail and in general the reciprocal connection

of the three peculiar features: the fact that shock wave velocity is greater than sound

velocity at the initial state; the fact that shock wave velocity is less than sound velocity

in a compressed gas; the fact that the passage of a shock wave is accompanied by an

increase in entropy, i.e., by an irreversible conversicn of energy into heat.

In view of the fact that these three characteristics are very closely connected,

it is natural that the use of any one among them to determine the law of the change in

amplitude and width of a wave as it propagates must lead to identical results.
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Before studying spherical propagation which interests us because of its association

with the theory of explosives, we shall look into the simpler case of linear propagation.

Linear (one-dimensional) motion occurs when a gas moves through a straigit pipe

wi~h a constant cross section. In s~udying this case we ignore the loss,•s due to the

interaction of the gas with the lateral walls of the pipe.

Crussard [1181 established for the first time in 1918 the limit law of such a motion.

According to Crussard, we study a triangular wave shown in Fig, 60. As time goes

by the distance between each pair of points a, b, which correspond to different pressures,

increases so that propagation speed (equal to the sum of gas velocity and sound velocity)

increases aspressure increases. As a whole, the wave represents a totality of shock

wave U in which there occurs a rapid compression, and an ex)ansion wave UP following

it, in which gas pressure drops.

a b
P

Fig. 60.

We write the equation of propagation of state a

, = .. ,-(-- -,- . •. (XXIV-6)

According to the laws of acoustics

21.. •,u-- ¢- o (XXIV-7)

we write and find

X, C -4- CO 2k- CJ CF 1 (XXIV-8)
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If at the initial instant there was a linear distribution of pressure depending on the
60

coordinate, then it also remains linear later.

t=0x> xA, (XXIV-9)

x(r, t) =x 0 (yr) +. cot + -• J*41 •t=xo• :,c; cut :k-e--l cu':I; (XXIV-10)

XTI - cat
k -.- 1

2k- "(XX W-11)

Given an initial linear distribution, Eq. (XXIV-9), at the instant t = 0, we obtain

at an arbitrary instant t also a linear pressure distribution, Eq. (XXIV-11).

The velocity of shock wave D, the amplitude of which we denote by V*, is equal

to the arithmetic mean of c0 and propagation velocity c + u of the state obtained after

compression but prior to pressure 7r*.

-2 =L---c' 2 -- 4L (XXIV-.12)

We write tho expression for the change in the amplitude in the shock wave as it

propagates

d;,t* a: ).I
di W (XXIV-"-1,)

The expression differs from zero on account of the fact that D differs from c + u.

Using the expression 7r(x, t), Eq. (XXlV-11), we find

d.€ C k-- I ." (XXIV-14)

2k c,,t

ln. = :In I I--.1I
Ai 2k. 1XXlV-15)
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A

• ,2•-Cot (XXI~V-16)

where A is an intergration constant and depends on the initial conditions.

If we know the relation between 77, x and t, we find the wave width Ax, i. e., the

distance from the point at which at a given instant 77= 0, to the point at which shock

wave pressure 7r* is attained

2k (XXIV-17)

Thus Crussard could establish that in the one-dimensional case the amplitude of the shock

wave drops with respect to its propagation, as 11%7, and the •ave width increases pro-

portionally with V; 61 Crussard's original paper, written in 1912 - 1913, also contains

an analysis which shows that this law applies to the case of small amplitude, that is

an extreme law for a long propagation time.

In 1938, Shmushkevich [115] derived the same law in the following way. Assuming

that the distribution of pressure in the wave remains mimilar with respect to propagation,

(at least within the limit, with large t, after the wave has covered a long path), Shmushkevich

writes the equation of the rate of wave width change Ax and compares it with the equation

of wave momentum constancy

7 ': 4: k,"T -- =-• •,-•-' IV-18)

-c. . =- , :i*. const -- eon.t. (XXIV-19)

In setting up the second equation (the momentum equation) we use the linear relation

between velocity and pressure known from acoustics, and also use the assumption according

to which the distribution remains similar to itself, so that 7;- co,,=t • :,. The two equations

mentioned above can be readily solved

-7 = -4t-" (XXIV-20)
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21f

(IJX).• 2/1t 4-. co:'If

A n .. • (XXIV-21)

where B, Bit B2 and B3 are constants.

Both Crussaid and Shmushkevich assume that after the passage of the wave the

substance returns to it.- initial state, with initial sound velocity c0 and initial pressure

r' -PO, -T :--. We disregard here the effects that depend on entropy change, which are

proportional to the cube of the amplitude. This is permissible because we deal with

equations that contain greater terms.

Instead of the change in wave width (Shmushkevich's investigations), we could also

study the change of its free energy which depeiids on the conversion of energy into heat,

i. e., on the increase in entropy proportional to .n13

dt d
( )(XXIV-22)

Se~~on•t -;I* - Ar= ,,,. (XXIV-19)

whence we get

d.a°
1- (XXIV-23)

Integration of Eq. (XXIV-23) gives a result which is identical with Eq. (XXIV-21).

Thus, by using the various properties of a shock wave (the fact that velocity

D <c-- u (Crussard), the fact that D > co (Shmushkevich), and the increase of entropy in

the wave) we obtain an identical extreme law. This result depends on the inner connection

between the properties of the wave mentioned above (see Chapter 11).

The experimental study of one-dimensional propagation of a shock wave was per-

formed by Vieille [861, and later by Vautier 11231, whose experiments are briefly de-

scribed in Chapter 15.

Considerably more complex is the problem of limit laws of the propagation of

spherical waves (over great distances). This problem is particularly interesting for

studying the theory of brisance of explosives.

209

1i

,2



F We shall begin the study of spherical shock waves by going back to the analogy of

spherical acoustic waves.

The fundamental property of the latter is the decrease in amplitude which is inversely

proprotional to the distance from the symmetry pressure. This decrease is not connected

with a decrease in the total reserve of acoustic energy. The decrease in amplitude de-

pends ov the fact that as a spherical wave propagates, the amount of substance involved

in its motion increases proportionally to the volume of the spherical layer.

The second property of spherical waves consists in that a compression wave is

necessarily followed by a rarefaction (expansion) wave. LA at the initial instant the center

was surrounded by a compressed substance (Fig. 61a), its expansion causes a com-

pression wave which is followed by a rarefaction wave (Fig. 61b, ABC and CDE). We

also have two regions where pressure increases (AB and DE) and one region where

pressure drops (BCD).

a

II

a '
I /7

Fig. 61.

The dependence of propagation rate on amplitude causes a decrease in distances

AB and DE, and an increase in distance BD. Landau [1281 notes that at limit, after a

sufilciert amount time has elapsed (and after a sufficiently long path has been covered)

the w-, ve takes on a form that is shown in the bottom part of Fig. 61c with two shock

waves AB and DE.
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From the instant the shock wave has been formed, further propagation is accompanied

by dissipation of acoustic energy, and by its conversion into thermal energy. The amplitude

of maximum pressure drops faster than before, faster than according to the 1/r law.

Let us now find the quantitative rules, conserving tie acoustic formula in Chapter 3

(- (XXIV-24)

as a zero approximation. In the next approximation, instead of co we substitute pro-

pagation rate c + u which corresponds to a given state. We determine the change in

distance between a pair of points, e. g., m and n. to which correspond specific values

of I m and jBn as the wave propagates

(: 1..= - 1c -),',, -- ('; 1"") -CO I- - .- CO

CO ko -- 1-- - '(XI•• (XXIV-25)

- • .. . . .. , (XXIV-26)
'r c0 2..62

k--• •o (XXIV-27)6 2

We study the segment AB, and idenmify mi A, n = B, since l.j > 'i Segment AB

grows smaller with the motion of the wave. At a distance r such that

ln-r • • 2:

S) •. (XXIV-28)

the length of segment rAB becomes zero, i.e., a shock wave is formed. This also

applies to DE.

Conversely, the length of segment BCD, on which pressurt. drops, increases as the

wave propagates, so that the derivative •,:r decreases as t Gnd r increase,

" 2 --. 0(XXIV-29)
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where

Or Ir!0 - 2 k2

Let us now study the law grverning the change in shock wave ampEtude. The

quantity ja* in the shock wave front drops because the shock wave propagation velocity

is smaller than the state propagation velocity wit' constant value cf u. In analogywith the

one-dimensional case we find

--- . - (C -4- it - D) o
Or

dr -a- I I III 1

~ - 2k r(XXIV-30)

This equation can be readily integrated

Q--2k Ir

F •--2k _ (XXIV-31)

As we compare this result with one-dimensional propagation, we find a curious

formal analogy: the dependence of 7r on x in the one-dimensional case has the same

form as the dependence of p= 7rr on In r in the spherical case.

C3mputations for the spherical case lead to the follkwing conclusions:

1. The additional drop in amplitude, specific for shock waves, turns out to be

very small at great distances, as (Ia,)-I,, as compared with the acoustic drop (r- ).

2. The limit form of the wave to which it tends when r-a co,becomes determined

when In r becomes sufficiently great. This requirement is much more stringent than

the one according to which r must be large. A high value of In r can be attained for such

large r for which the absolute value of the wave amplitude becomes so small that its

propagation loses interest altogether. New factors may be involved in the case of long

propagation time.
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The applictiot, of limit laws requires therefore great care. More than in any other

case one has to rebort to experimental data despite their incompleteness.

Figure 59 showed the curves of the change of pressure with time measured at

varying distances from the explosion site, These curves are taken from the paper of

the well-known English physicist Bernal, "The Physics of Air Raids", published in 1941

r1011. At the right-hand side of this figure we also give the metric measurements. The[101].

transition from curves IT(t) for r = const to the instant propagation of pressure in space

iT (r) for t = const is quite complex since the propagation velocity and the amplitude are

not constant.

To give an approximate idea of the thickness of the layer involved at each single

instant by the distubance, in addition to the time scale we also give the C0t scale, which

is the product of time by sound velocity co in unperturbed air.

What can we learn from Fig. 59? Tests confirm the existence of an expansion

wave which follows the compression wave. At great distances the product ol mean

amplitude times expansion wave width approaches an identical value of the compression

wave. The force momentum acting over a w-d'- time interval (0. 015 - 0.020 sec, as

can be seen from the drawing) represents the difference in the effect of the compression

wave and that of the expansion wave running in an opposite direction. This is why the

force momentum drops faster than the wave amplitude.

In the theoretical portion, following Landau, we established that the limit form

of the wave is distinguished by two pressure discontinuities, one in front anen one in the

back (see Fig. 60c). Bernal's curves do not show the formation of a pressure discontinuity

in the back. By the shape of the last part of the expansion wave we shall precalculat? the

the distance at which this discontinuity has to take place.

We choose a curve with a well-expressed expansion wave recorded at a distance of

20 feet from the charge (second from the top, Fig. 59).
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For r =6 m minimum pressure amounts to ni -0. 04, and the distance o*

the minimum pressure m from point n at which pressure is restored amounts te about

rn 0 = 3 m,

0.-O.04 • 6- 0.24, it.-0.

•.•-r~ -2k (U.-1Q.In!--=3-- . 0.241In•a ) , ,T (XXIV-32)

Assuming that rm = 0, we find the distance r at which the discontinutiy is formed:

3.7
o.4 r, =- -T-14.5; r =re -el" =-12. W m•.

The wave will take on its extreme shape at a distance of 12,000 km. it is obvious

that in this case all the statements referrir~g to extreme shape have no realistic

importance. The calculation leads us to conclude that in the case of spherical pro-

pagation, the formation of a shock wave on account of the dependence of propagation

velocity on amplitude occurs very slowly. The front shock wave, in which pressure

increases with a jump up to maximum values, is not formed in this fashion. Rather,

it is formed at the instant when the detonation of the charge is terminated and there

occurs a contact of the explosion producttW with the surrounding air. At this instant

(at a distance from the center equal to the charge radius, about 6 cm for the charge to

which Fig. 5P refers) its amplitude attains enormous vwlues (see Chapter 23). With

further propagation the amplitude drops, but the increase in pressure maintains the

character of a shock wave.

There exists an extensive literature on the subject of pressure amplitude in a

shock wave following an explosion. Older data, however, must be used with great cir-

cumspection since for a correct measurement of a rapidly changing pressure sufficiently

inertialess devices are required.

In most cases the surface of the device receiving the presswre was placed in a

directbn facing the propagation of the wave. When the wave reached the surface, it was
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reflected by it. Peak pres3ure increases two-fold in the case of weak waves, and em

more in the iase of great amplitudes (see Chapter 19). After processing the data of

many authe rs, Viasov derived the dependence

SPo - (XXIV-33)

where p is the pressure developed at the reflection of the blast wave,

P0 is atmospheric pressure,

r is the distance from the explosion center, expressed in meters,

R is the effective charge radius (in m),

M is the weight of the charge (in kg); this formula holds true for explosives of the

TNT types: ciier explosives, varying considerably in their power, require the

introduction or corrections.

Vlasov limits the applicability of his formula by the condition r > 85 R, r•> 4.4 M

(the dependence is stronger than Eq. (XXIV-33) in the case of smaller distances). For

the entire interval investigated by him, Sadovskiy gives the following expression for

amaximum pressure

p,-pm-i-l 2 T -22 -4-147-W" (XXIV-34)

Thus, at great distances Sadovskiy's formula63 gives pressure amplitude which is

five times greater than the one yielded by Vlasov's formula: the coefficient for the

highest term is 12 instead of 2.4. To clarify the real value of the amplitude we refer

first of all to Bernal's data (Table 6).

The first four columns show the data from Bernal's experiments. According to

maximum pressure p1 measured by him (read from the diagrams), pressure pm is

computed according to the formula of shock wave reflection, Eq. (XIX-2). We see from

the table that beginning with pI-pXO.l1, virtually p. - p•-=2(p•-•-p,). Great distances

do confirm Vlasov's formula.
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Table 6

i .- Po P-3-To ,ý'-I---

10 3.05 I.s5 6.9 (- .7
20 6.10 C.:' 0..1) 0.1.0 1.
39 9.-' (' 15 0.: .; Q "' ; !..

<3 " " v( .; C.,: { ")
['•) ~ ~~ I'.. (: 0.6 0 , .,

CODE: a) Feet; b) kg; c) Bernal; d) Vlasov;
e) Sadovskiy.

Could it be that the high pressures recorded by Sadovskiy are of very short duration,

hence they have not been recorded by other authors using other methods? The best way

to verify this is to set up a comparison with the propagation velocity of a shock wave that

depends on amplitude (Table 7).

Table 7

IIC-ocal Izq C)a Czopax* Id) [In.)
474.3 t 4•2. 470-

8.6 414 35t 3-.)12.9 [ 3.13 1A, 35"/

CODE: a) Wave velocity; b) Sadovskiy; c) Bernal;
Experiment [113].

If we assign a specific value to the dependence of pressure on distance, we can

find the values for velocity at any point. Computation of mean velocity requires a more

complex procedure. In the table these values are compared with experimental data of

French researchers taken from Savich [1131, which determine the velocity of the wave.

This comparison is also unfavorable for Eq. (XXIV-34).
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Let us finally note that the assumption of a sharp pressure peak contradicts 5e

theoretical concepts. Such a peak should be subjected to an exceedingly rapid weakening

and expansion. From Bernal's curves we can find determine the rate of pressure change

after shock compression and hence the law of amplitude change of the shock wave proper.

If for distances of 10 - 40 - 200 m (for a charge of 1 kg) we approximate the real

law governing amplitude drop by the power function :-= cous r', then the value of

exponent V within these limits drops from 1.4 to 1.25. At great distances the simple J
formula ;L• = A r -. gives a satisfactory approximation to the true law.

We noted in Chapter 21 that the duration of the effect of blast wave pressure is

proportional to the linear dimensions (e. g., the radius) of the charge. The magnitude

of the time involved will be obtained by setting up the ratio of the charge radius to

sound velocity R/c 0 .

Bernal's data show that the action time of a compression wave T amounts to from

0.03 to 0.05 sec, whereas R/c for his charge amounts to 0.06/330 = 0.0002". Thus,
0

the dimensionless ratio ": - varies from 15 to 25 and thus differs noticeably from
CO

unity. The long duration and, consequently, the considerable expanse of the blast wave

are quite natural. Wave width and duration of effect are maintained during propagation
R

of a weak acoustic wave. We would have i : i--I in the case where the initial distnrbance

could be regarded as weak, i. e., if the change in pressure in the region taken by the ex-

plosive were small.

In reality, however, during the first stages of propagation the pressure amplitude is

huge, hence the acoustic approximation is completely inapplicable. It can be regarded as

approximately correct only from the instant when mean pressure in the region covered by

the disturbance drops to 1 atmosphere. For conventional explosives the volume of this

region reaches 10 n3 per 1 kg, to which corresponds a radius R'-= L.'- I'/I(m, kg). The

radius RI of the regivn in which mean pressure equals 1 atmosphere (2 atmospheres absolute)

is 22 times greater than the charge radius. In accordance with our ideas the magnitude of

r: - is actually of the order of unity.
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Because of the great width and long duration of the wave, the momentum of the

pressure acting oa the body's surface normal to the wave devends to a great extent on

the conditions of wave reflection and of the flow around the body of the air set in motion

by the wa-,e. Apparently this is why there are so many c3ntradictions in the scientific

and experimental literature on this subject.

Bernal's curves make it possible to find (even though with poor accuracy) the

efficiency of the conversion of explosive energy into blast wave energy. Blast wave

energy consists of the kinetic energy of air motion and potential energy (equal to the

work performed by the change in air pressure). It is obvious that both compression and

expansion of air under atmospheric pressure require an output of energy and increases

the system's potential energy.

Total energy of a unit of volume is approximately equal to 25 (Ap/p)2 kcal/m 3 .

Calculations for a distribution that corresponds to Bernal's curves yields an efficiency

of about 30 - 40%. The energy of the compression wave and that of the expansion wave

are at an approximate ratio of 3 : 1.

Thus, the energy of an explosive is converted into blast wave energy and is trans-

ferred over a distance exceeding hundred and thousand-fold the size of the charge, with

an efficiency of the same order as the one for the conversion of gunpowder energy into

motion energy of the projectile in the gun or combustion energy of the fuel into mechanical

energy in the engine.
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FOOTNOTES

p. 7. This equation refers to a specific combination of molecules of a fluid (Lag~ange
representation). According to Euler's representation for a specific volume
fixed in space, the energy equation has a more complex form.

p. 7. 2 This equation is applied by us to a substance the state of which is fully determined

by a specific volume v and specific entropy S. It is not applicable, for instance,
to a system which is not in chemical equilibrium, in which during motion there
occurs an irreversible chemical reacticn.

p. 7. 3The general gas dynamics equt ions that take account of viscosity and thermal
conduction are given in the Ap,,endix at the end of the present Chapter. The
reader can skip this Appendix withut impairing his understanding of what follows,
if he takes for granted the statement regarding the applicability of Eqs. (I-1) -
(1-6).

p. 18. 3aWe use the transformations

a -L
.• ./0 _ ) of (X,224
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p. 2 1. 4The flow of a substance through a spherical surface with radius r is 4n2U.
The difference in the flows of substance that have crossed spheres with radii
r and r + dr, is the amount of substance that remains in a spherical layer with
a volume equal to 4 7r r 2 dr, and it changes the density of the substance
enclosed in that layer.

p. 24. 5Over and above the amount contained in a given volume with a nonturbulent
density value.

p. 28. The relation )r'-/s ( )I in its general form can be derived from the

-Ifundamental hydrodynamic relations for any system, and not only for an ideal

gas in which cp and c v depend only on T (see Landau and Lifshits [15, p. 48,

problem]. The direct measurement of lap), or c is extremely d--fficult in the

case of liquids. For the computation one uses the thermodynamic relation

C--c.. -T O

(ibid., problem No. 11), whence

Finally, the quantity (--,) can be expressed by means of isothermic com-

pressibility and the coefficient of thermal expansion-a relation common to any
three quantities connected by one equation-by the equation of state p = p(v, T)
in the given case

(UP) (-I) (O=-

(Max Planck, Thermodynamics, Chap. 1), so that

The connection between the derivatives with respect to density in (11-30, U1-31)
and ,the derivatives with respect to volume is elementary

p. 29. 7Later measurements by Wallmann [1261 yielded a second, smaller number of
collisions.

p. 30. 8To return precisely to point A, this heat should be marked on BC or A'A.
However, the heat sampled during the cycle and, accordingly, the shift of the
initial point in the case of absence of heat sampling, are of a smaller order of
magnitude than shifts AB, AAI, AC and BC in Fig. 3. We have disregarded
them in the text and in Fig. 3.
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p. 35. 9 The beginning of the process-the change of the form of wave b-is taken as a
change in the spectral anmposition of sound, as the appearance ol overtones
(which can be proved by expanding curve b in a Fourier series) and the change
in tone when sound propagates over great distances (see Thuras, Jenkins &
O'Neil [94, 52, 5KI and also a similar paper by Eykhenval'd [341).

p. 36. 1 0See Landau and Lifshits [15], pp. 41-42, Chap. 13 "Steady Flow".

p. 41. 1 1The history of the problem is brilliantly expounded in Qodola's manual [89).

p. 42. 12The process of mixing and slowing down a jet was investigated by G. N.
Abramovich (TsAGI) and S.N. Syrkin and Lyakhovskiy (TsKTI).

p. 43. 13To obtain a satisfactory thermal efficiency in his steam turbine, Laval had to

operate with a very wide pressure differential P0 - Pnthat exceeded the
critical one. In order to use it without losses, the switch to cupersonic speed
became necessary.

p. 47. 14We can see from the formulas of Chapter 2 that in an incompressible liquid,- o. tp_
�- d9 - the speed of sound is infinite, motions remains
"subsonic" for any speed.

15
p. 47. Figure 12 had been done at a reduced scale.

p. 49. 16To write Eq. (IV-1) we use (11-5) and (M1-16).

p. 51. 17We will see in Chapter 17 th'.t inthe presence of a shock wave pressure is not
entirely restored; the temperature, however, is completely restored up to
the magnitude of "temperature at rest" in the case of deceleration.

p. 52. 18We investigate heat transfer of the plate only with the gas. ileat transfer into
the plate or radiation from the plate's surface reduce surface temperature
(see Kibel's [101).

-19
p. 59. The letters AB in Fig. 16a, b are totally unrelated to points A and B in Fig. 14.

p. 62. 20The velocity tangential to surfaces A and B must be maintained in terms of
magnitude and direction when the substance passes through the wave.
Consequently, a tangential motion can be totally excluded from the investiga-
tion by a corresponding choice of a uniformly moving system of coordinates.

j p. 77. 22The constant addend that appears in I if the thermal capacity below T 1 differs

from the thermal capacity in the interval from T to T 1 contained in the
formulas, can be eliminated by choosing correspondingly the energy reading
point. In any event, the constantaddent disappears from equations of the form
(VIII-5) and (VM-6).

p. 98. 23HA and HB are the accepted abbreviations for Hugoniot's adiabatic curves, for

which the subscripts A and B denote the initial point.

p. 100. 24Eq. (M-3) caza be derived frvm Eq. (VII-6) if from density we switch to
specific volume.
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p. 100. 25T in Eq. (M-5) is enclosed between TC and T . To prove this we pass

from state A to B (Fig. 29) by isentropic compression (AC) and subsequent
heating of the compressed gas in a constant volume (CB)

p. 101. 26We note that v2 is smaller than v1 so that c < 0.

p. 102. 27It may be useful to point out another time that the calculation of the area of
the trapezium limited by straight line AFB (Fig. 29) is based on the expres-
sion of H'goniot's adiabatic curve which follows from the conservation laws
applied to the state before and after the passage of the wave. This calcula-
tion ib not connected in any way with the problem of the shape of the line
along which in actual fact the state in the wave changes (see Chapter 12).

p.- 102. 28An incredibily rapid increase in thermal capacity is required for the

absolute quantity - - - to drop with increasing temperature on account

of a drop in k = Cp/cv

p. 103. 29 he change in the quantity a- I). on which depends sound velocity when

changipg from A to C or from A to B, is of the first order in v1 - v2 . The
cn in (a-) when passing from C to B is of the third order.

p. 103. 30D, c1 and c2 with small amplitude differ by a quantity proportional to the

amplitude. Velocity u is also proportional to the amplitude. With an
accuracy up to quantities proportional to the square of the amplitude, shock
wave velocity is equal to the arithmetic mean of soand velocity at initial
state c 1 and disturbance propagation velocity in the direction of the wave in

a compressed, moving gas c2 + u

D=1 -- C2 -#- N
2

p. 108. 31In Fig. 32, Poisson's adiabatic curves passing through points A, B, and M
are denoted by I•A' PB "d PM_

p. 111. 32In states A and B, obviously du/dx = 0. When integrating it must be borne
in mind that v-'- const according to the equation of conservation of matter.

p. 113. 33In all computations referred to above we took an ideal &as for which (at
least in order of magnitude) there take place the following estimates

In the general case we can readily establish that, all other conditions being

equal, the width of the front is inversely proportional to -depending

on the role played by this quantity in shock wae theory.
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p. 119. We confine ourselves here to referring to Kanlyar who investigated motion
writh a small amplitude. Unlike other authors, he studied from the beginning
those equations of motion that contain terms expressing viscosity so that his
calculations cover not only the formation of shock waves, but also thes steady-
state structure of the wave front. There is little physical interest in such a
study since the effect of viscosity prior to the formation of a shock wave is
negligible, and the steady-state otructure is found easier by direct methodz-
which proceed from the assumption of a stationary wave.

p.123. 35All computations are referred to the state prior to the occurrence of the
shock wave t < th, i. e. , tI<O0. Motion occurs in the region x < Xb, where
x <0.

36p. 125. For t- th Eq9. (XlV-20) - (XIV-21) lead to xn -xb, which corresponds to
infinite compression (a finite amount of substance from segment 0 - Xb is
compressed into an interval between x nandx htapoce eoifnt
pressure and velocity. nn , htapoce eoifnt

p. 130. 37Far away from resonance, 4p and w change with an appreziable phase shift,
hence Eq. (X-2) would be incorrect (too high).

p. 137. 38For a diatomic gas with c /c = 1.4. In the general case, one will need for
this a velocity in excess of -.- - wherauthere Ktd and KB are the adianatic
exponents of gases A and B.A o- i Ko-1

p. 140. styis sound n locity in the airo Sound vesp city In hydrogen is equal to 4c 0*

p. 141. 40A and B are not shown in Fig. 36, but thay are uscd 'Jelovi in Fig. 41c. See
also Figs. 39and 40b.

p. 147. 41 f h = of a sainr fIve.

"" p. 148. 2 q. (11-5) is true only for that system of coordinates in which the body and the
shock wave rest. In the system of coordinates in which the unperturbed gas
rests while the body moves, as the body comes closer the gas particles are
subject to compression (gas enthalpy increases) and start moving. They also
acquire a kinetic energy so that the sum I + u2 /2 increases. Eq. ( fte-5)
cannot be applied in this system of coordinates.

p. 160. 438Fn a jet-propelled missile the gunpowder burns under constant pressure, and
develops a temperature that is lower than during combustion in a sealed con-
tainer. Hence the power of gunpowder f, contained in Eqs. (XVII- 1ld) -
(XVI- 14) must be reduced with respect to thermal capacity, L. e. , by
K = 1. 25 times as compared with the power off the same gunpowder measuredin i sealed container.

p 165 According to a remark by Landau, the abrupt increase in pressure in a shock
wave causes simultaneously the separation of the boundary layer.

45

p. 168. Belyayev defended his thesis in .1935. Similar calculations were performed
independently by Vlasc v 13].
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p. 172. 4,Here we do not investigate the case when the reacting substance is enclosed
in a hermetically sealed shell. Under such conditions, even a slow chemical
reaction accompanied by liberation of gas, develops a very high pressure
contained by the solid vessel. The rupture of a high-pressure ve3sel
recalls an explosi(n in many ways, but the details of this process which
depend on the properties of the material of the container, and on its
design, do not isitreet us.

p. 172. 4 7This veiociy is differmnL from the rate of the chemical reacton of a specific
particle of the se.bstance characterized by i eaction time. As in the case of
the propagation of ihe reaction, we must disting7&isn between reaction time
of the entire charge (which, in the simplest case of constant velocity, is
proportional to the size of the charge) and reaction time of individual
particles of substances; reaction time of individual particles obviously
represents only a portion of the former, since in an explosion the various
particles do not react simuitanvously, and in the afore-mentioned simplest
case do not depend on the size of the charge.

p. 173. 48 In the case of *L nonsyinmetric propagation of the detonation, the distance
covered by the explosion products and the power of the explosion is greater
in some directions (mainly in the direction of detonation wave propagation)
and smaller in others. Here we will not touch upon the extremely interest-
ing and important problem regarding cunmulative charges characterized by
an extremely powerful concentration of energy in an assigned direction.
This problem is studied by specialized literature [1101.

p. 174. 49The heat of TNT combustion in a calori-etric bomb with excess oxygen
amounts to 3.592 kcal/kg (with formation of water); combustion with forma-
tic- of water vapor yields about 3480 kcal/kg. The heat of a TNT explosion
with a high-density charge, according to Schmidt, equals 1085 kcal/kg. W'e
find the heat of explosion products combustion by subtracting the explosion
heat (3480 - 1085 = 2395) from TNT combustion heat.

p. 174. 50The phenomenon of the barrel flame is well known. After the projectile has
left the barrel, the gunpowder combustion products flow out and mix with
the surrounding air. If they contain a sufficient amount of combustible and
if the temperature is sufficiently high, the mixture burns up (explodes) with
an *ntense flare.

In connection with the location of guns by the sound -ranging method,
Esclangon 11141, followed by other authors, investigated the sound of a
gunshot and discovered the existence of two separate sound waves: one
produced by the expansion of the gunpowder combustion products, and
another one produced by the barrel flames. At a great distance from the guns,
the latter is more intense than the former and has a long wave length.

p. 175. 51However, in this case it has to borne in mind that the magnitude of destruction,
if it occurs, depends on the size of the charge (-Which determines the length
of the action exerted by pressure). The independence if the presence or the
absence of destruction from the duration of the effect exerted by pressure, as
can be seen from what was said above, takes place even with a specific
minimal reaction time, i.e., with a specific minimal charge.
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p. 176. 52The wave pressure momentum is denoted as f (- P-o)' where p0 is atmospheric

pressure (a constant quantity), p = p(t) is pressure at the point under study at
the passage of a shock wave which is unperturbed by obstacles or measuring
devices.

p. 181. 53If r is expressed in meters, and m in kilograms, then for a spherical charge

of density 1.6, the value I1 corresponds to the ratio r/R = 19. For a

point lying on the surface of the charge, computed in technical units ,- 0.053.
t/m-

p. 182. 54The similarity is not exact since in explosion products with initial density
there occur great deviations f'rom the equation of state for an ideal gas, which
depend on density. The proper volume of the molecules in explosion products
gives a characteristic density. One can assume, however, that this circum-
stance is of no significance at the moment when the shock wave has travelled
to reach a considerable distance from the charge, and the explosion products
have expanded considerably.

p. 197. 55See footnote 60.

p. 197. 56In the case of an explosion of heavy metal compounds (lead azide, mercury
fulminate) the high molecular weight of explosion products additionally
increases density.

p. 198. 5 7Temperature at rest of explosion products turns out to be higher than the
initial temperature of explosion products (detonation temperature). This is
characteristic for an unsteady expansion wave in which energy is being
redistributed. kinetic energy of explosion products rushing ahead is
generated in part from potential energy (expansion) in deeper layers. These
relationships are shown in Fig. 20 where we can compare the relation
between velocity (which determines kinetic energy) and pressure (which
determines potential energy) for a steady flow in the nozzle for which the
sum of enthalpy and kinetic energy is constant, and for unsteady expansion.

p. 199. 58 Vlasov's paper reflects incorrect views regarding the possibility of inter-
mittent expansion waves. Fortunately this error has no practical effect on
the numerical results. He also ignores the remark by Landau [1-7, 1081
regarding the form of the equation of state.

Correction note: Computations by Landau and Stanyukovich [108] give for
TNT a velocity of explosion products and air of 7800 m/sec, a shock wave
pressure of 750 kg/cm2 and an explosion product temperature of 1 2000K.

p. 206. 59More precisely to the state which differs from the initial one only by the
quantities proportional, in the case of small amplitude, to the cube of the
amplitude because of a change in entropy from compression in the wave.

p. 208. 60We can readily see that initial distribution with constant sign dp/dx > 0
monotonically approaches linear distribution in time, since the linear term
in pressure proportional to co0 r t increases.

2F0
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p. 209. 6 1We have simplified the relationship by taking k #- cet to be greater than a
or appropriately changing the instant when theQtime count begins.

p. 212. 6 2In deriving Eq. (XXIV-27), in Eq. (XXIV-25) we assumed a simple relation-
ship between c l u and ir, and ignored the terms - r- 2 . In Eq. (XXIV-26)
we substituted c + u for co, assuming the amplitude to be small.

p. 210. 63Proofer's remark: The formula was communicated by M. A. Sadovskiy in a
paper in 1942. He found later [1271 that all the factors have to be decreased
by a factor of 1.92.
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