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Abstract

A procedure 1is described for developing simple
approximate equations of state of liquids from Hugoniot P-V
relations determined in shock wave measurements. This is
applied to a number of liquids and a table of coefficlents is
given.

The formalism of irreversible thermodynamics is
applied to time-dependent phase transitions in iron and an
approximate set of constitutive relations is obtained in a
form suitable for numerical integration with the equations of
continuum dynamics. These are applied in an approximate form
to study the development cf the two-wave structure in iron
caused by the o-¢ phase transition.

Finite strain theory is applied to the analysis of
shock wave data for quartz, and the results supply enough
information to estimate some of the fourth-order elastic

constants.
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Foreword

The work reported here represents the results and the
state of understanding which had been achieved in December,
1966. Since that time some furtl.er progress has been made,
and it will be described in later reports of this series.
Particular attention is drawn to the approximate temperature
calculation described in Section 4.1. The basis of this approx-~
imation is now thought to be unsound, so some skepticism should
be maintained concerning temperature effects reported. For-
tunately these are few and slight, and the general conclusions
of the report are not affected by possible errors here.

A major shortcoming of the theory, but one which is very
hard to evaluate, is the complete reliance on equilibrium
thermodynamics to describe the static behavior. It is quite
likely that metallurgical considerations govern the true pro-
gress of the @-¢ transition in iron; consequently the static
reference states to which dynamic effects are referred may be
metastable and very different from the thermodynamic states.
This is suggested by recent static pressure measurements by
Bassett and co-workers (J. Appl. Phys., Jan. 1967) and by shock
de-magnetization experiments by R. A. Graham of Sandia Corpora-
tion (private communication). Satisfactory metallurgical
models for such processes are not presently available; it is
hoped that shock wave measurements will help to stimulate the

development of such models.

February, 1968

xi
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I. INTRODUCTION

Numerical methods for the integratior >f the equatioms
of finite amplitude wave propagation have reached such a stage
of develcpment that the principal limitation on predictions of
wave effects is more apt to be uncertainty in the constitutive
relations of the material thanm inability to perform the inte-
grations. The complete constitutive relations for a real solid
may at present be regarded as unknowable. Practically useful
relations can be obtained from a succession of approximations,
to each of which is attached some uncertainty. Fox high ampli-
tude compressive waves the predominant relation is the hydro-
static one between pressure, volume and temperature. To this
may be added the effects of finite shear strength, which makes
the pressure tensor anisotropic, strain-rate effects which cause
deviations from equilibrium, and partition of internal energy
among thermal, surface, and inhomogeneous effects.

In the present work the primary emphasis is on the
effects of phase transitions on compressive wave forms, partic-
ularly when the rate of transition is too slow to eractly follow
the changes in pressure, temperature, and density associated
with the compressive wave which initiates the tramsition. 1In
order to study these effects it has been necessary to develop
computer programs for integration of the flow equations for the

appropriate constitutive relations. 1In the course of this

1
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development other useful results on equations of state have been

produced, and these arz described in the following sections.




II. CONSTITUTIVE RELATIONS

2.1 General Consideratioms

The term 'constitutive relations'" is used in a generic
sense to encompass all material properties which must be combined
with the equations of continuity, motion, and energy conserva-
tion to supply a complete set of flow equations. Constitutive
relations in practice usually reduce to an equation of state
relating pressure, volume, and temperature or interanal energy.
This simplification is partially enforced by ignorance of other
material relations; it often yields, in addition, quite a good
description of wave prcpagation over a wide range of parameters.
The eauation of state is necessarily accompénied by a statement
about the variation of specific heat with pressure and tempera-
ture. It may on occasion include information about rigidity and
yield or even rate effects. For the present we consider the
equation of state as defined above. These considerations are
themselves useful and they will provide insight into the require-
ments which must be satisfied by more general constitutive rela-
tions. The following remarks are neczssarily limited in their
scope. More detailed information will be found in various review

articles (1,2).

2.2 Equations of State for Fluids (3)
A "complete" equation of state for a fluid is a rela-
tion betwz2en thermodynamic variables which is sufficient for

3
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calculating any thermodynamic parameter of the material, given
two. For example, if specific internal energy, E, is given as
a function of specific entropy, S, and specific volume v,

E = E(S,v), then

P = -~(Re/Av)g
= A A

T (e/ S)v

H = E 4+ pv

etc.,

where p, T, H are pressure, temperature and specific enthalpy.
On the other hand, if pressure is given as a function of T and
v, as usually occurs, then neither internal energy nor enthalpy
can be calculated without specifying the specific heat.

When partial equations of state are given, as in the
last example, then certain limitations are placed on other
thermodynamic quantities if all are to be compatible. This is
illustrated by the following example. Suppose that specific
heat at constant pressure is known as a function of temperature
and assumed to be a function of temperature alcme: Cp = Cp(T).
Then by the following argument we can see that the relation be-

tween p, v, and T must be that of Eq. (2.1) below:
(al/3T)p = Cp(T) by definition. (2.1)
T£ H = H(p,T), then

= 8
dH deT + (3H/ p)T dp

or

H = f Cp(T)ET + £(p) .




We may thus write that

(AR/3p)p £'(p) = (H/Ap)g + (AH/38),(3S/3p)T

v - T (Av/aT)p.
2 .
Dividing by T we find that
' 2
£'(p)/T" = -(Q(V/T)/3T)p .

Vhen integrated thi. yields the implied form for the equation

of state:

v = £'(p) + Tg(p) (2.2)
where g(p) = (RV/RT)p

In a similar way it can be shown that if specific heat at con-
stant volume, C;, is a function of T alone, C; = C, (T), then
it must followy that p, T, and v are related by a Griineisen
equation:

p = £f(v) + Th(v) {2.3)

3oth Eqs. (2.2) and (2.3) are remarkably simple. The
(p, v, T) surfaces that can be represented by either of these
can be constructed from a "bamboo-place-mat."” In the first
case the straight sticks lie ir planes of constant p; in the

second they lie in planes of constant v.

Eq. (2.3) has the same form as the Mie-Grineisen equation:
p = p (V) +r1C, (T-T )/v (2.4,

where py is pressure on the isotherm T = T,. With the assumption
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that C, = C,(T), Egs. (2.2) and (2.3) then imply that
(a(rc ) /ATy, = O.

This condition implies that (AT/AT), # 0 unless C, = const.
While it is very likely true that TI' does depend upon T (4),
the only available theories of any generality suppose that
I = I'(v) (1). Fowles has obtained a more general compatibility

relation for T and Cy (5):
(3C,/alnv), = (A(TC,)/3InT),

It turns out that this is satisfied by the Debye theory of
specific heats. However, any dependence of Debye temperature
on temperature violates the condition.
pDespite these difficulties, Eq. (2.3) has been commonly
used to excend pressure-volume data determined from shock
studies into off-Hugoniot regions (l). Doran (6) has gone even
farther to show that quite reasonable representations of the
equations of state of solids can be obtained with I'/v = constant.
In view of the limitations on T and C,,, it is unlikely
that the zero degree isotherms calculated using Eq. (2.4) and the
Slater cr Dugdale-McDonald relation for I are physically reli-
able. Their principal virtue is that they provide a consistent
and reproduzcible procedure for determining a reference curve.
ve procedure is to calculate the isotherm passing
through the initial state of the Hugoniot. This avoids some of
the difficulties associated with extrapolating to OOK. It in-

troduces some new ones inasmuch as there is now no fheory for
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calculating I'. However, since the low temperature region is
eliminated, the assumption I'/v = constant may be a reasonable

one. Then Eq. (2.4) becomes

P = py +b (E-Ey) (2.5)
Ey = By +3%py (vyv) (2.6)
dE; = (T, (Ap/3T)v =~ p;)dv (2.7)

where b = I'/v = constant, C, = conmstant, pi(v) and Ei(v) are
pressure and internal energy, respectively, on the T, isotherm,
and subscript "H'" refers to the Hugoniot curve. Setting p and
E in Eq. (2.5) equal to Py and Ey and combining with Eqs. (2.6)
and (2.7) yields a differential equation for Py

(dpy/dv) + bp; = (L - b(v-v)/2)(dp,/dv)

2

+ pr/z + b7C T (2.8)
The solution of this equation is
p;(v) = A exp (-bv) +bC T B (2.9)
v
A = £(v) - b £(v)dv
lv,
B = 1 - exp (b(vo-v))

£(v) = (1 - (b/2)(v,-v)) py exp (bv).
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Experience has shown that Hugoniot data for liquids and solids
can be fitted quite well by curves of the form

3
p(v) = z a x" (2.10)
n=1

where x = PV, - 1.

Equations of the form (2.10) have been fitted to shock
data on liquids and used to calculate pi(v} and Ei(v) frem Egs.
(2.9) and (2.7), respectively. The numerical results are used
in a least squares procedure to calculate the coefficients bn

in the equation for isothermal pressure:
3
Py © E: bnxn
n=1

where x = on-l as in Eq. (2.10). The coefficients a, and bn

are given in Table I.
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2.3 Elastic Solids (G. R. Fowles)

The shock compression of quartz is of particular incerest
because of its importance to geophysics, its wide-spread use in
shock wave studies as a pressure transducer, and because it rep-
resents a different class of materials from the more thoroughly
studied metals. In this paper we describe measurements similax
to those reported by Wackerle (15). The dcta are in substantial
agreement; however, the recording techniques were somewhat dif-
ferent so that the present results* provide independent corrob-
oration, in most respects, of Wackerle's data.

In addition to describing the experiments and the results,
we examine the agreement between the uniaxial stress-strain data
derived from shock experiments and predictions based on finite
strain theory and the second and third-order elastic constants
measuxed by McSkimin, et al. (39), and Thurston, et al. (40).
From this comparison it is clear that shock-wave measuremeuts and
low pressure acoustic measurements .are complementary methods for
evaluating higher order elastic coefficients.

In Section 2.31 we describe the experimental technique
and the experimental results; Section 2.32 gives a brief outline
of finite strain theory and its application to the shock experi-

ments. Conclusions are discussed in Section 2.33.

*These data were reported originally in the author's Ph.D.
thesis (48).
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2.31 Experiments

A. Experimental Method

In the experiments shock propagation velocities and associated free
surface velccities were measurec in alpha quartz crystals oriented as X, Y,
or Z-cuts.™ Shock waves of varying intensity were generated by plane-wave
explosive lenses with or without additional explosive pads.

The experimental arrangement is shown schematically in Fig.2.1. A
four-inch dizmeter explosive lens (and in some cases an explosive pad) was
cemented to one surface of a 1/2-inch thick, 5-inch diameter Dural plate. The
quartz specizens (usually two) were cemented to the opposite, lapped surface
of the plate. The specimens were accurately flat and polished; the tolerancs
on crystallographic orientation was ¢ 1°. The faces of the specimens in
contact with the plate were vapor-plated with aluminum to yield a reflecting
surface. Lucite mirrors, also aluminized on their inside faces were cemented
to the outer surfaces of the specimens at angles of 3 to 8°. The edge of the
lucite mirror in contact with the specimen was, in each case, set back from
the edge of the specimen at least one specimen thickness to avoid interference
from edge efiects. The X, Y, or Z orientation refers to the smallest linear
dimension and also designates the direction of sheck propagation. The X-cut
crystals were measured in beth the + and - orientations because of the large
differences observed in electrical experiments (41).

In some of the experiments an inclined lucite mirror was cemented
directly to the aluminum plate. Its function was to measure the free-surface
velocity of the aluminum to permit impedance-match solutions to the final

shocked statas (1}.

*Synthetic crystals supplied by Valpey Corporation.
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Fig.2.1 Diagram of experimental assembly
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Tmae angles of the inclined mirrors with respect to the quartz surfaces
wee measured after assembly by mounting the assembly on a mill table and
ciservirg with a telescope the superposition of a cross-hair and its image

raT.ected alternately in the quartz and lucite surfaces. The angles could

tnus be mzasured to a precision of 0.1%. Some cifficulty was encountered in
aeaping t.2 lucite mirrors extremely flat. It was necessary to allow angular
daviations of up to * one minute of arc. In each case this zmounted to less
than 1/2% of the total angle.

In order to obtain the desired accuracy in shock velocity, * 1%,
5ood contict (0.0002 inch) between the inside edge of the inciined wirror and |
tne outer quartz surface was requirad. A ¢ontact such that ro transmitted
1ight was visible was considered saztisfactory.

In order to avoid complications due to air shocks the zssembly was
evacuated prior to firing to a pres,ure of less than 0.05 torr. A hemicylindr
section o7 ‘ucite tubing cemented to the aluminum plate served as a vacuum
cnamber.

A paotograph of an assembly, without explosive, prior to firing is
shown as Fig. 2. 2.

The assembly was viewed through a s1it of a rotating mirror streak
camara aliyned along the centers of the inclined mirrors in the direction of
meximum inclination (i.e., the direction in which the mirror angles were
previously measured). The slit width was 0.05 mm; the time resolution,
determinec from the sTit widih and the camera writing speed {3.81 mm/us), was
approximately 0.01 ps.

IT.uminacion was provided by an explosive argan light source conrsisting
of 2 Z-inca diameter, 18-inch Tong cardboard tude with a one-inch pad of
comzositicn C-3 explosive at cne end. A ground glass diffusing screen was

placed over the other end and argon was flowed through the tube continuously.
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Fig. 2.2.--Photograph of Experimental Asseinbly
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“he light source explosive was initiated simultaneously with the plane wave
lens of the experimental assembly; the resulting strongly luminuous shock in
the argon produced a bright reflection from the aluminized surfaces a few
microseconds before the first arrival %o be racorded in the quartz.

A drcowing of the complete arrangement as it appearad before firing is
shown as Fic. 2.3.

An abrupt change in intensity of the light reflected frcm the aluminized
surfaces of the assembly showed arrival times of the shock fronts and free
surfaces upon impact with the mirrors.

A streak camera photograph taken in this manner is shown in Fig. 2.4.
The two specimens in this shot were Z-cut; the upper one was 1/8-inch thick
and the lower 1/4-inch thick. The final pressure was approximately 200 kbar.
At time, Ty, the reflection from the rear (aluminized) face of the quartz
extinguishes abruptly as the shock arrives at the quartz-aluminum interface.

At time, Ty, the first shock arrives at the quartz free surface. The traces
are relatively smooth until the change in slope caused by the arrival of the
second shock at time T,; thereafter the traces are slightly irregular. A
slight curvature to the trace of the first shock can be detected. This slowing
up of the free-surface is due to stress-relaxation effects, as was pointed out
by Wackerle(15),

For reliable results the point of collision of the quartz free surface
with the inside surface of the mirror must travel with supersonic velocity
with respect to both quartz and Tucite (non-jetting configuration). Consequently,

the initial mirror angle must be less than approximately

« max = sin”) us

U

where ug is the quartz free-surface velocity and 1§ is the larger of the two

shock wave velocities in quartz and lucite. This criterion restricted the

usable mirror angles to less than about 8°.
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GA-PLTR-003-61-42A

Fig. 2.3.--Diagram Showing Relation of Experimental

Assembly, Light Source and Camera.
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B. Data Reduction

The shock velocities were determined from distances measuved on the
film and the known writing speed of the camera. The velocity of the second
shock requires corrections because of the motion of the free surface and
because of the interaction of the second shock with the reflection of the
first shock. The first of these is straightforwerd and a simple derivation
gives: .

] d + up(Ty - )
2 T2 - To
where d is ne initial specimen thickness, Uf is the free-surface velocity

U (2.11)

due to the first shock, and Tp» T], and T2 are the arrival times of the shock
fronts as shown in Fig. 2.4.

The correction due to the interaction of the second shock with the
reflection of the first requires knowledge of the state (and constitutive
relation) of the quartz in the region between the two fronts and cannot be
made unequivocally. However, the assumption that the material is stressed and
relieved only elastically by the first wave leads to a large correction and
unreasonably high compression for the state behind the second shock in shot
No. 7394 (Table II) The results from that shot are the most sensitive to this
correction bacause the second shock was retatively slow with respect to the
first. For the other experiments the correction is smaller and does not
appreciably affect the conclusions.

It should be emphasized, however, that the result for shot 7394 implies
that an irreversible change in the material properties occurs between the twe
shock fronts. This conclusion is consistent with the observed relaxation of
the state of the first shock. It is not consistent with an assumption of
conventional elastic-plastic behavior.

Because of the arbitrariness regarding the interaction correction the data
are here reported without such a correction. The correction used by WACKERLE (15),

is plausible, but does not significantly change the data of this paper.




-

il

’:
551
0.
(O
Pz
Sl
ot
<.
w
b=
<
'—.
ur
(@)

18

Fig. 2.4.--Streak Camera Photograph Showing Shock

Arrival Times and Free-Surface Traces.

Shock No.

7394,
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T.e free-surface veiocities were calcuiated from the measurca sicpes

oT the traces by means of the relation:

.= _ tan o' (2.12)
u —tal &
T NF tan o

vhere o' is the effective angle of the inclined mirror with respect to the
quartz surface, y' is the engle ¢F the trace on the film witwn respact to the
space ax:s, M is the magnification or ratio of distance on the film to the
correspo.ding distance on the shot, and F is the writing speed of the camera.
“he paraueters, o', and y', of this relation are not identical to their nominal
velues, a and y bacause of tilt of the incident shock and s”ight devartures

froa orthogonality of the sl1it and sweep divections. The corrections are

givan by

Ind
[2)
=
=]
i

tan o« (1 + 6'/tan v)

tan y sec § (1 - tan vy tan &)

ct
o))
=
<
[}

where ¢ is the angle of the iuclined mirror with respect to the quer.z surface,
6' is the angle of shock tilt as measured on the film, § is the angle of the
slit with respect to the normal to the sweep direction, and y is the angle of
the tracz with respect to the slit direction (Fig. 2.5).

Tm2 observed shock wave velocities and associated froe-surface
izs are guven in Table 1T,along with the initial concitions for each
expariment and ucher quantities derived from the measured velocities.

Tae experimental precision, based on assembly tolerances, camera
rasolution, and film rezding errors is estimated to be 21% in shock
ve ocity and 5% in free-suriece velocity. Most of the ervor in free-

surface velocity is due to uncertainty in reading the angle y'(* 1°).
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¢. Experimantal Results

Tne observed shock velocities are plotted as functions 5f the shock
particle vilocities (tecken to be one half the free-surface veiocities) 1n
Fig.2.6. Data by WACKZRLE (15) and GREGSON (42) are also shown. The
data ot Wackerle are his "average" values, shown for comparisca because they
ware deterriined or the same basis as the present results. The solid curves
are predic.ad from finite strain theory, tobe discussedinSection 2. 33,

Tne agreement among the experimental data is seen to be generally
satisfactory. The only significent disagreement occurs vor Z-cut crystals
at a particle velocity of 1.23 mm/ps. The source of this discrepancy is
unknown. A shot fired by Gregson to remeasure this state agreas better with
e prasenc data*. However, if the present data are correct (rather than
Wackerle's, some anomalous behavior is noted in the pressure-volume plane,
as ciscusscd below.

The stress-compression states were caiculated srom the measured
velocities by means of the Rankine-Hugoniot jump conditions (1):

ur - ug
Wy = 1 -
/O UI"UO

O'I - 0'0 = po(UI - UO)(UI - Uo)

In these equations, V is specitic velume, u is particic velocity,
U is shock velocity, o is stress normal to the shock front, and p is
density. Subscripts O refer to the state ahead of the shock; subscripts I
reTer to t.2 state behind tne shock. Velocities are with respect to
lchoratory coordinates. Figs. 2.7, 2.8, and 2,9 show the results inthe stress,

specific-vclume plane for X, Y, and Z crystals respectively. B8ridsmen's

*Shown in Fig. 2.9,
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hydrestaiic curve based on measurements to 98 kbar is shown Tor comparison
(43). The curves 1zbelled 3rd, 4th, are fits based on low
pressure acoustic measurements and finite elastic strain theory (Section 2.33).
Tr.ase plots show clearly the important features ¢f tha compression,
nemaly:
(1) extremely high amplitude elastic waves, up to 150 kbar
in Z-cut quartz
(2) loss of rigidity above the elastic 1imit, as shown by
the agreement of the higher prassure shock data with
extrapolation of the hydrostatic data
(%) Tack of a unique value for the Hugoniot elastic Timit.
Tr.is behavior implies that yielding is not due to dislocation motion
&s in a retal, but is analogous (or identical) to fracture. It is shown
below thzt the shear stresses behind the elastic shocks approach the theo-
retical caear strength of the crystal latiice.
T2 range of the present data is not sufficient to show clearly the
transformation to stishovite, as indicated by Wackerle's higher pressure

measurements.

2.33 Finite Strain Theory

Because the strains behind the elastic shocks are relatively large,
it is of interest to examine the agreement of the data with predictions of
finite strain theory. Predictions a2re made possible by the work of
THURSTON (40) and McSKIMIN (39) and their co-workers on the third-order
elastic constants of quartz. Such comparisons should indicate the extent
to which third-order constants are sufficient to describe the stress-strain
behavior at strains of the order ¢¥ 5 - 10%. The coastants are determined

from precise acoustic measurements at strains of less than 0.1%. ANDERSON (44)
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has alraady snown that the second and third-order constants alcne give
recsonably good predictions for hydrostatic compressions of up to about

155 in quav:iz, provided tiae constants are used in the Murnaghan logarithmic
equation or the Birch ecuation of state.

Disc~epancies between the observed &:.d predicted stress-strain
curves can s2 used alternatively to evaluate fourch and higher order con-
stants, or <o examine the effects of adopting alternate dzfinitions of
strain, as suggested by KNOPOFF (45), Finally, to the extent that the
tﬁird-order constants give adequate pradictions, the stresses tangential to
the shock fronts can be calcutated from the obsarved stresses rormal to the
fronts and, hence, the shear stresses sustained (momentarily) by the crystal

can be deduced.

A. Finite Strain Fundamentals*®
Denoze the coordinates of a mass element in an initial (unstrained)
coordinate system by aj, and the coordinates in a final (strained) system

by xj, with the transformation given by,

Xj = xi(t, ays ap, a3), i=1,2, 3
where (2.13)

a, = xi(tO’ a1, 2, a3)

and t, is a reference time. The x; are thus Eulerian, or spatial, ccordinates
and the 3 Lagrangian, or material, coordinates.
For this transformation one can derive an expression for the ratio of

specific vclumes:

V/V0=J = a3 (2.14)

*This section is a summary of portions of the theory as pre<ented by
THURSTON (46) .
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J is thus tne determinant of the Jacobian of the transformation, or the
“functional determinant."
The strain, Njk’ is definad, somewhat arbitrarily, from the difference

in the squaves of the lengths of 1ine elements by:
2Njk daj dak = dxi dxi - dai dai

(2.15)
_ ax.i X4
Njk =172 (aaj CE éjk)

Here and in the following the Einstein summation convention for
repeated subscripts applies. ij is the Kronecker delta.

Expanding the internal (strain) energy in a power series in the

strains, ore obtains (at constant entropy):
- - s
POLE(NS) = E(0,5)] = 172 ci59 Ny Mg * 176 Sy Ny Ny Ny

(2.16)

+ 1/24 3 N

1jk1mnpq Nij Nkl Nmn Pg T

In this expression the C?jk . . . , represent the second and higher
order isentropic elastic stiffness coefficients. The first-order term is
missing since the reference state is considered to be one of zero stress and
strain.

ke now define quantities, called thermodynamic tansions, by

= 3E
t'ij = po(aNij)s : (2.17)

In terms of these quantities the elastic constants 3re

S - (3tij _ 32F
ijky N1’ aNij Ny
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and similar.y for the higher order coefficients. Consequently,

dE = ty5 dN;, (dS = 0)

Fina'ly, the equilibrium (non-dissipative) components of the stress

are obtainec from the thermodynamic tensi--. s the relations,
. 3Xk axm
wam M)t 5 (2.18)

The above fsormulas provide isc=~iropic constiiutive relations in terms of
the elastic stiffness coefficients. Other forms «° constitutive relations
can, of course, be derived in a similar fashion.

Low pressure acoustic measurements yield a mixed third-order constant

of the form:
ac?jkm)

Ciskmpq = ( MNyg 7

wnere the subscript T means the derivative is taken at constant temperature.
The corresponding purely isentropic constant is given by: s
aCY 5
$ = S S-ijkm
¢3skmpq = Cigkmpg ¥ (/e Ct) Cmpq “uvlCijkmes ps = (3T )t (2.19)
where Ct is the specific heat at constant tension and the a,, are thermal

expansion ccefficients,
3N

= (=)
Syv T VTET t

In view of the symmetry ef the stress and strain tensors, the number

of subscripts caﬁ be reduced by adopting the following convention:

11 +1 32 +4
22 + 2 31+5
33+ 3 21 + 6

This convention is employed in the following.
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5. Application to Uniaxial Strain in Quartz

We assume the deformation tu occur in the X direction only.

cocrdinate transformation is accordingly,

xp = (0 - vla,
x2=a2
X3 7 a3

Formulas (2.14)..rcuga(2.18) then give:

J = V/I‘.O = ] - Y.
Ny = v(v/2 - 1)

[E =23 =1/2 g N2+ 1/6 Cpqe N3+ 1728 oo NY 4
polE = =5 nMN mMN M1 N

= 2 3 =
tk = Cyx N] +1/2 11k N] + 1/6 111k N] +...0k=1,2...

or writing cut the components:

b= ey # 1/2 oy NP # 16 oy g3 4
t, = Cpp Ny + 172 c1]é N]Z ...
%=cmN]+u2qBNf+...

t4 = Cia N1 + 1/2 €114 N]2 + .

t5 = C15 N1 + 1/2 115 N]2 ...

- 2
ts = C]s N.l + ]/2 C-I]G N-i + .

The
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The stress components are then:

o = (1 - Y)t] Op F (1- Y)_] t4
0y = (1 - Y)'] t, o = tg (2.20)
og = 1 -y ts og = t6

For alpha cuartz compressea in the X-direction the above formu.las are correct
as they stind. For compression in other directions the proper transiation
of subscricts must, of course, be made to indicate the correct constants.

The zbove fonmulas have been applied to unjaxial compression of X
and Z-cut cuartz, using the second and third order constants ceterminad by
MCSKIMIN, ¢t al.(39) and THURSTON, et al. (40). Values of these con-
stants ares shown in Table TII.

The rasulting curves are plotted inFigs. 2.6, 2.7 and 2. 9. The values of
shock velocity, Us and particle velocity, Uy of Fig, 2.6 were obtained from

the Hugonict relations:

o 172
Us = Volvgv)

and

172

u

5 = [s(VgW)]

The predictions are seen to fall outside the estimated error of the

shock data, indicating that the fourth-order term contributes significantly

5=

: . + duvanal ad Tauwma saTiinn Al adiand A Ll ciomle 24 ad ol d
to the energy the stress) at 1arger vaiues 01 swuraini. Aiunougn i might

(<8

~n
aill

~~

be thought that the discrepancy is due in part to the use of isentropic
second-or . '.» moduli and mixed isentropic-isothermzl third-ordzy modu’: to
predict Hu:oniot states, for which internal energy is greater than for

isentropic compression, a straightforward calculation shows that the errors
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TABLE IIX

Elastic Moduli of Quartz*

Value

Modulus (1017 dyne/cm?@) Reference
Z2nd-order

Cr1** 8.757 (39)

C]z 0.704 "

Cy3 1.191 "

C]4 “].804 "

33 10.575 "
3rd-order

C]]z -34.5 "

113 1.2 "

C-”4 "]6.3 "

C133 “3].2 "

C333 -81.5 "
4th-order

SERE 1705 Present Work

C3333 1849 i

N Ep—

*Tse second-order constants are isentropic, the third-order
are mixed isothermal, isentropic constants, and the fourth-
o~der are Hugoniot constants, (see text).

**T:".

Tne constant us
’

u propriate for open circuit com-
i.e., at e

O Mo
~11 fos "
pression lectric displacement, D.
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trys producc. are negligible.

Tne ¢.fferences between the purely isentropic third-order moduli &nd
t the mixed mceuli given in Table IITcan be calculaied Tror £g. (2.19)

The temperature ccoificients of expansion, as given by HAaSON (47)
are:

Gy = 7.8 % 10-6, oy = oy = 14.3 x 10-6

ard the exprussion, due to Westrum, reported by McSKIMIN (39) for the

Ly

spacific heat is:
= _ 2 _ 3
Cp (T) =€ (T + (T-TOC + (TH T (T - TGy e o

(77.4°K < T < 298°K)

whare
T, = 190°K
Cp (Tc) = 5.189 x 10° erg/g°K
C, = 2.444 x 10% erg/g°K
C, = -4.126 x 10! erg/g°K
E Cy = 5.327 & 1072 erg/g°K
taking

T = 25°C, p, = 2.6485 g/cm3, C_ = 7.42 x 10° erg/g°K,

P

:mS_
and estimating ( 233) from McSkimin's data taken at 25°C and -165.8°C to be
-

of the order of -1 x 108 dyne/cm2 °K we find the difference givea by Eq. (2.19)

for the c333 constant, for exampla, to be of the orcer of 5 x 123 dyne/cmz.
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Tats is four orders of magnitude less than cg33. Hence, although the above
caiculatics is hardly accurate for the cases under consideration, only
natnolog1cu1 behavior of some of the thermodynamic variables, «, C or

( 33) ccild significantly influence the results.

The difference between Hugoniot and isentropic compressions can also
be shown to be negligible. For compression in the Z direction to a relative
volume of 3.9 the strain energy given by Eq.(2.16)to terms of third-ordar
is 2.5 x 197 erg/gm. The internal energy on the Hugoniot is 2.8 x 109 erg/gm.
Teking Gruieisen's ratio, T, to be approximately 1%, the strecs diffarence
due to this difference in thermzl energy is less than 1 kbar--very much less

than the c.served stress differance, and within the experimen:al scatter.

C. Fourth-Order Constants

The discrepancies between the obcerved data and the prodictions based
ca Tow pressure data can be used to evaiuate fourth-order coe?ficients. This
was dore for X and Z-cut crystals to yield the values of cyyy; and Ca-a3 shovn
in Table I.. The procedure followed was to fit differences batween the data
and the third-order predictions with a straight line. Becausz of the large
differences in pressure range and experimental precision, this method proved
to give an adequate fit to both the high and low pressure data. No adjust-
ment of the second or third-order constants was necessary. .

The fits obtained using the constants up to fourth-orcar are shown in
Figs.26,17, and”3. Note that for X-cut crystals the slope of the curve in
the shock velocity-particle-velocity plane (Fig:zﬁ) is always negative when

constants only up to and including third-order are used. Thic would imply

AhD:RSOh (44) gives a value of 0.745 for hydrosuatlc comnrassion. Calcu-
lated .o. tne individual components with the assumption Cp Cy gives
13 = Tgp = 1.17; Tgq = 0.53.
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1wt a shock wave in tnis airection is unsteble and sgreads as 1t treveis.
ditn the a.dition of the fourth-orcer constant, howcver, the siope is always
slightly positive. Thus, the addition o7 the Tourth-order term resulis in a
qualitative difierence in pradicted behavior.

The U; - U, plot for Z-cut crystals is nearly a straight line; however

P
it is easi.s shown thet a straight line coes not accurately fic the slope at
zerc particie velocity. Tnus the straight line relacion often assumed in
shock studizs is only an app.roximation for quartz shocked in either the X or

L diractiorn.

It s also easily shown thaet the Murnaghan foym of equation o7 state,
uhen fittec ©o the corract slope and curv.ture of the ¢ - V curve, (utilizing
second and third-order constants), does not accurately fit the higher prassure
deta and ic therefore an approximation only.

These statements can be illustratad by examining tne derivatives of

each functicn. Expanding the relation for ¢, in Eq. 2,20 in terms of y

yields:

C C
c=cpyll-1/2(3+ c::])y +1/6 (3+6 -E-:‘L:—]--yz 0] (2.21)

A linear relation between shock and particle velocity oF the form
V.=a+bu,
Y

S

can be written, by means of the Rankine-Hugoniot jump conditioas, as

where o is initial density, and can be expanded to give

g = poaz y[1+ 2by + 362 +2 + . . .] (2.22)
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Finally, the one-dimensionzl-strairn analogue of the Murnaghan equation
o = & [yr¥® - 13
can be expanced to give
s=Ay[1+1/2 (3+ 1)y +1/6 (B+1)(B+2)42 . ..] (2.23)

Equating the derivatives up to second-order, we have

1y = oy a = A (1st order)

c--
-(3 +;E?§lo =4b= (B +1) (2nd ordar)

Evaluating t-e parameters A, b, and B from these equations gives

. - 2 . - 1N

X-cut: A Pyl €11 8.68 x 10
b= -0.15
B=1.6

- . = 2: = ]-l

Z-cut: A poa C33 10.575 x 10
b =1.177
B =3.7

dith these vzlues all three expressions have the same slope and curvature at
zero stress. The predicted stresses for various comprassions are shown in
Table IV.

That the closed form expressions are approximate is hardly surprising
inasmuch as they are both empirical with no known physical basis. Their
value is tha: they both zre two-parameter functions that have physically
reasunable shapes, and they are therefore convenient for interpolation and

extrapolation when experimental information is lacking.
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Kno:off's suggestion that, because of the arbitrariness in tne
N cefinition c¢f strain, diternative definitions may prove more suitab.e for
i reprasenticng constitutive rclations would seem T be worthy of further
consiaeration. Howaver, scme guidance from physical reasoning is necessary
to provide any degree ¢f generality to a given definition.
’ TABLE IV
, Stress-Kbar
- | X ' z
o ~ Lirear | Finite i Liczer | Fiait
| L.arnaghan L, - dp i Strain | Muragghan i U - Up i St.oal
| 0.99 | &3 8.5 8.7 ! 0.7 1.8 1.2
0.98 | 17.2 ws o 1S 218 2¢.2 22.3
: 0.97 | 25.8 26.3 26.5 ||  32.0 34.0 3.5
E 0.95 34.4 | 35.0 35.9 47.1 £3.5 ~7.%
6.9 | «2.7 43.7 45.7 ¢0.3 8%.7 61.5
‘ 0.04 | stz | 525 1 s || 739 70.5 75.3
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2.34 Conclusions

The banavior of quartz under shock loading conditions is very much
ciferent frum that of mctals, as was pointed out by Wackerle. The elastic
precursor waves are an oriir of magnitude higher and, corresponcing.y, SO
are the sheir~ stresses. The curve labelled X in Fig. 2.9is the stress con-
monent (base. on cunstants to third-order) parallel to the shock front when
the shock propagates in the Z direction. The maximum stress di-*ference is
scen to exce:d 100 kbar. This is of the same order of magnitude as the
efrfective shear modulus; consequently, it appears ihat quartz momentarily
exnidits thesretical yield strength under dynamic conditions.

That cohesion of the material is destroyed uscn yielding is incdicated
by the close agreemen fie second shocked states with 3ridgm.n's hydro-
static data. There is no indication of a residua1'shear stress, in contrast
to the case Tor metals (49).

Tne pronounced stress relaxation shown by the observed variation in
eriplitude of the elastic waves and the apparent dependence on tae final
pressure is guantitatively larger than for metals, although similar quali-
tatively.

Evideatly shock wave methods provide a valuable supplement to low
pressure accuJstic measurements in determining higher order elastic constants,
at teast for ceramic iype materials which sustain large amplitude elastic
waves. Shock waves are inherently more suitable for higher pressure
s

1

measureme.ats than are acoustic methods, but are iess suitable for the hi

(9]

precision, .ow pressure measurements required to evaluate second-order con-
stants. To what extent shock wave techniques are capapie of measuring
coefficients other than the principal coefficients, i.e., those directions

for which tha elastic wava is purely longitudinal, requires additional stucy.




III. PHASE TRANSITIONS

X 3.1 Introduction

; Solid-solid phase transitions are classified as first

order if a volume discontinuity exists at constant temperature
and as second or higher order if discontinuities exist only in
various thermodynamic derivatives. We are concerned here only
with first orxrder changes. 1If such a change occurs reversibly,
the transition region is characterized by the equality of the

Gibbs energies of the two phases. This leads to the Clausius-
Nlapeyron equation which relates changes in pressure and tem-

{ perature in the mixed-phase region:

dp/dT = aS/av (3.1)

The consequences of this relation to shock wave propa-
gation have been developed in some detail in Reference (7). One
of the important results is a relation between dp/dT and the

slope of the Hugoniot in the coexistence region (8):

(dp/dT)? + A(dp/dT) + B = O (3.2)
[ where
]
! A = 20./8y"87)

By = - (1/v)(dv/dp)M = Hugoniot

compressibility in mixed phase
41
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By = 1isothermal compressibility

@y = volume expansicn coefficient at
constant pressure

Cpl = specific heat at constant pressure

Subscript "1" denotes evaluation in phase one
at the phase boundary.

Measurements made on bismuth, iron and quartz allow
dp/dT to be estimated from Eq. (7.2). Results are entered in
Table V whexe static values are also given for comparison.
Values of @y and Cpl at atmospheric pressure and rooin tempera-
ture were used in the estimates, and B, was estimated from

shock measurements.

TABLE V

The Coefficient dp/dT from Static and
Shock Vave Experiments

Sample
Type of Experiment
Bismuth Iron Quartz
Static measurements -.05 (9)=* -.065 QO)* |.018 (QL)=*
Shock wave measurements
(calculated from
Eq. (2.2)) -.067 $.045 (7| -.29 +,115(7)¢|.225 (7)*

*pefer to sources in "Literature Cited."

From the table it is apparent that shock wave data for iron and
quartz do not agree with those of static experiments. The
errors in shock measurements shown in the table are estimated

upper bounds based on rors in measurements of By Therefore
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it is very difficult to attribute the discrepancies for iron and
quartz to experimental errors in determining the slope of the
Hugoniot at the phase boundary. Conceivable reasons

for the discrepancies are:

1. Inaccuracies in thermodynamic data (al and Cpl) at
high pressures. Values used in the preceding table
are those at atmospheric pressures.

2. The experimental Hugoniot curve in the coexistence
region is not at equilibrium. There may be some non-
equilibrium rate-dependent effacts influencing the
measurements.

In order to explain the discrepancies of Table II,
either of the coefficients @) or Cp1 must exhibit a two- to
four-fold difference between its value at high pressure and rhat
at atmospheric pressure. Information for estimating such dif-
ferences is not generally available. Measurements by Bridgman
below 20 kb show changes of not more than 20 per cent (12). It
seems unlikely that changes of the required magnitude will occur
at these higher pressures.

If there exist rate dependent effects in phase transition,
we should be able to observe other dynamic evidence in wave prop-
agation. For example, if the phase transition exhibits a relax-
ation process, then we expect a decay of the first shock wave
with travel distance. This arises because the delay in trangi-
tion allows a mass in the first phase to momentarily support a

higher pressure than its transition pressure; i.e., the mass

v

exists in the extended metastable region (Fig. 3.1). This is

similar to stress relaxation of an elastic precursor.
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Extended region
for phase 1

Extended region
for pnase 2

= constant

Fig. 3.1~-Extended Metastable Region

e
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There are two experimental observations of the decay of
the first wave for iron (13,14).

For o-quartz Wackerle (15) did not observe & two-wave
structure corresponding to the stishovite transformation. This
may indicate that the transition is neither rapid nor complete.

In order to study transient effects in shock wave prop-
agation, we must solve the flow equations. In Lagrange coordi-
nates for plane, one-dimensional, time-dependent flow these are:

1. Newton's second law

p,(du/at), + R(ptg)/3h), = I (3.3)
where h = Lagrangian space coordinate

t = time

po = initial demsity = 1/v,

g = viscous stress

Introduction of q makes the flow continuous through
the shock front and the jump conditions unnecessary.

2. Continuity equation
po(dv/at) - 3u/ah = 0 (3.4)

Energy conservation

(63

3E/at + (p+q) (av/dt) = 0 (3.5)

4, Constitutive relation
In order to solve the above ditferential equations in
tour independent vaxriables (p, v, u, E), constitutive

relations are required. Ignoring solid rigiaity, which
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should play a secondary role in the problems considered
here, these will consist of an equation of state, p =
p(v,E), an expression for q, and, in the mixed phase,

a statement of the kinetics of transition.

3.2 General Constitutive Relations
for Two-Phase Flow

We assume the following conditions to apply in a small

mass element when both phases coexist:

1.
20

Equal pressure exists in both phases.
Temperatures of the two phases gre equal, i.e., the
heat released by the transition is instantly re-
distributed.

Particle velocities are the same for each phase.

No surface energy is associated with the interface
between the two phases.

No heat is transferred between mass elements by
conduction.

Conditions 1 and 3 insure that Eqs. (3.3)-(3.5) apply

for the coexistence region as well as for a single phase. The

only change needed is a reinterpretation of v and E. This can

be done as follows:

Regardless of phase transition, the total mass of a
given Lagrangian volume is conserved. Therefore, if
we denote by v the total specific volume of the mix-
ture of two phases, then from condition 3 above, v
satisfies Eq. (3.4) on p. 3.4. But the variable v must
also satisfy the following relation in the coexistence
region:

v(p,1) = (1) v (p,T) + av,(p,T) (3.6)
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where « is defined as the mass fraction of the second

phase and v, is specific volume of the i-th phase at

p and T.

Conditions 4 and 5 imply that the total internal. energy
of a mass element is the sum of the internal energies of the two
phases:

E = (1~a)El + aEZ (3.7)
where E; is specific internal energy of the i-th phase

at p and T.

In order to obtain a suitable constitutive relation when
the phase transition has a finite reaction rate, we assume first
that the p,v,E surfaces in each phase can be extended smoothly

into metastable regions overlapping the equilibrium region of

mixed phase, as in Fig. 3.1.

Then we have the following functional forms:
vi = vi(p,T)
Vo = Vo(p,T)
Eq = ,El(P’T)
E, Eo(p,T). (3.8)

Then from Egqs. (3.6) and (3.7) we have

dv = (l"d)dvl + dd‘.’z + (v2~v1)dot (3.9)

dE = (1‘d)dE]_ + ddEQ + (Ez-El)d&. (3.10)
From Eq. (3.8):

dv, = (avi/ar)pdr + (3vy/3p) pdp (3.11)

i = 1 or 2.
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With E a function of T and p we have:

dE; (RE{/AT) ,dT + (AE;/3P)pdp

(30
i = 1lor 2

where C_. = specific heat of i-th phase at constant pressure.

pi
Substituting (3.11) and (3.12) into (3.9) and (3.10), we get

dv = zldp + m,dT + nlda (3.
dE = dep + mydT + n,de (3.
where
g1 = (l-o) (Bvl/ap)T + a(avz/?u)T (3.
m = (l-a) (AV]/AT)p + a(AVZ/AT)p (3.
Ly = -(l-a) (T(avl/BT)p + p(avl/Ap)T)
- o (T(a3va/aT)p + p(Ava/3p)p) (3.
m, = (l-a) (cpl - p(av1/AT)p) + a(sz - p(avz/aT)p)
(3.
ng = Eg - Ej (3.
and
& = =-(ptq)dv from Eq. (3.5). (3.

Therefore, in principle, (3.13) and (3.14) can be solved for
and dT if do is given.

Now we assume the following relaxation

(Cyy = PV/AT) AT - (T(Avy/aT) + p(avy/2p)p)dp

12)

13)

14)

15)

16)

.17)

18)

19)
20)

21)
dp
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relation whose derivation is the subject of the next section,

de = £(v,T,x)dt. (3.22)

Then substituting Eqs. (3.21) and (3.22) into (3.13) and (3.14)

and solving for dp and dT, we get

dp = F/G (3.23)

dr = -M/G (3.24)

where

F = Lmz + ml(p+q3dv + (m1n2~m2n1) f(v,T,a)dt
Moo= [4, + 4 (pra)dv + (4)np-£n;) E(v,T,0)dt
G = 4ymy - méy

In Eq. (3.8) it is assumed that Ey and E) are known

functions of p and T. These can be calculated by integrating Eq.

(3.12) along two paths, provided specific heats are known:
1. Integrate over T at »p =0

2. Integrate over p at constant temperature, T.

Then
T P
= R0 0 -
E, = Eg + Io CoydT Io Qdp (3.25)
where
= Q= T(v;/AT), + p(3vy/ap)y
i = 1,2
Ego = gpecific internal energy at absolute zero

Kelvin and p = 0 (this is zero-point energy),
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and

C;i = specific heat capacity at zero pressure.

In summary, the generalized constitutive relations now

consist of:

1, Equations of state
vi = v(p,T)
2, Specific heat capacities
Cpi = Cpi(p’T)
3. Zero-point energy difference
£ - §3°
4, Relaxation relation
de/dt = £(v,T,a)
5. Artificial viscosity, q.

-t

To complete the above description we must find a relaxation
relation and an expression for q.
3.5 Irreversible Thermodynamics and
Phase Relaxation

This section is concerned with the mechanism of phase
transformations in the solid state. It should be possible to
describe the mechanism of phase change in solids in terms of ..
heory. Actually, because

of the problem's complexity, no such quantitative description

has been achieved. However, very successful phenomenological

theories for the kinetics of phase change have been devel-

oped (16,17,1%8,19). Such theories are of twn kinds, known as
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nucleation and growth processes and martensitic transtormations.
This nomenclature 1s rather unfortunate, as pointed out by
Christian,because growth trom nuclei also occurs during mar-
tensitic reactionms.

In nucleation and growth processes a new phase grows
from critical nuclei at the expense of the old phase. The re-
action proceeds to completion by a slow migration of the inter-
phase boundary, the velocity of which varies markedly with tem-
perature. Most atoms have different neighbors in a new phase.
On the other hand in martensitic transformation the reaction
takes place by coordinated atom movements (e.g., shear-like),
and atoms have the same necighbors after transformation. The
latter is often observed in rapid cooling of alloys.

The basic model for describing nucleation and growth
phenomena is based on the following conditions:

1. Steady state reaction
2. 1Isothermal and isobaric process
3. Thermal fluctuations as driving force
4. Boltzman's law for the relative probability of
different energy states.
The expression of this theory is:
1. Nucleation

I (nucleation frequency)e« exp(-aG*/kT)

where AG* 1s defined to be the critical net free

energy change on forming the nucleus of the new

phase.
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2. Growth

There are many expressions for the growth law. An

often used form is:

x = 1- exp(-ktn)
where x = the volume fraction transformed
= a complicated function of the nucleation
frequency I
t = time

n = constant of magnitude 3 to 4.
The principal difficulties in applying this mecdel to the shock-
induced transition are the conditions imposed in deriving the
rate equation. In a shock front the situation is neither iso-
thermal nor isobaric, nor is it steady state.

A description of the nucleation of martensitic trans-
formation is given (23) for an athermal case (e.g., quenching),
but the result is less conclusive than that for a nucleation
and growth process. This transformation has a negligible free
energy barrier (21) and proceeds very rapidly to completion.
Therefore at present the quantitative information obtained is
mainly concerned with the amount of transformation with respect
to the cooling rate but not with time.

It is tempting to use the martensitic transformation in
describing shock-induced transformations because of its higi.
speed. There are some who suggest the martensitic transition
for iron (¢ - ¢) in shocks (22 23). However, a quantitative
description of the rate equation is not yet available for inclu-

sion in the constitutive relations.
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As more and better data on sheck-induced transition be-
come available, it will become important to develop some of the
above models to describe the kinetics of phase transformation in
shock waves. At present it is barely established that rate
effects in shock-induced transformation exist, and we seek no
ore thar a qualitative description of the effects of kinetics
on the wave structure and some rough numbers for the magnitude
of the reaction rate involved in the observed processes.

To this end we select a quite different approach, which
is in some sense better founded, though formally limited to
small deviations from equilibrium, in irreversible thermodyma-
mics. In this approach there exist none of the conditions im-
posed in the above models, and it suggests a simple relaxation

law for the transformationm.

de/dt = (a3 - &)/t (3.26)
where

oo = equilibrium value of &, or a completely

relaxed value

v = relaxation time.

The derivation of the above relation from irreversible thermo-
dynamics follows.

When a solid~sorid transition occurs revarsibly (or in
equilibrium) by adiabatic compression, the entropy of a given
system 1s constant and the process is called isentropic. If the
transition is not reversible, the entropy will increase. How-

ever, ordinary thermodynamics does not give the precise amount
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of increase; rather, it tells only the direction of increase:

ds =0
irreversible .

Basically, the idea of irreversible thermodynamics is to
replace the inequality by an equality so that we can determine
the increase of entropy caused by irreversible processes.

To establish the desired equality we assume that, al-
though the total system iIs not in equilibrium, there exists
within a small mass element a state of local equilibrium for
which the total entropy change per unit mass, ds, 1s expressed

by the Gibb's relation (24).

n
Tds = de + pdv - 2 bydoy (3.27)
i=1

where

by = partial specific Gibb's function

oy = mass fraction of the i-th component.

This means, for the case of a single-component phase transition,
that when two phases are not in equilibrium with one another, we
interpret them as if they are two different components with dif-
ferent specific Gibb’s functions and each is in local equilibrium
satisfying Eq. (3.27).

There is an additional constraint on Eq. (3.27) for a
single-component system from total mass conservation. Since

the total mass is constant:

deg + dag = 0. (3.28)

e e e e e —— —— e ot 3 A e i o . e, e e =
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We redefine g =, oy = 1 - o and use o hereafter as the sole

reaction variable. Then from Egs. (3.27) and (3.28) we get:

Tds = de + pdv - (p.z-ul)da° (3.29)

So far we have been looking at an isolated element of
mass. But if we assume that this mass element is part of a
continucus medium which is in a state of non-uniform stress,
strain and motion, then the variables e and v must satisfy the
energy and mass conservation egquations, (3.4) and (3.5). Sub-

stituting these equations into Eq. (3.29) we get:
T(dsldt)irrev. = -yq(au/ax) - (uz-pl)da/dt (3.30)

We assume no heat to be deposited from the outside, so the
entropy change is entirely due to the internal irreversible
process. It should be noted that the Lagrangian derivative used
in Eqs. (3.4) and (3.5) is identical to the convective deriva-
tive impiied in Eq. (3.30). If we look closely at Eq. (3.30),

we can see the sources of irreversibility. These are a chemical
affinity {(pj-p1), (25), and a velocity gradient. These quan-
tities are called 'forces' in irreversible thermodynamics and are
densted by Xi(i=1,2...). The phenomena caused by these forces,
such as phase changes, are called "fluxes'" and are described by

Ji(i=l,2...). Then Eq. (3.30) becomes:

2
(/D) gy, = ) J4Xg (3.31)
i=1
where
Xy = -au/3x (3.32)
Xy = ={po=pq) (3.33)
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Jl = qv

do/dt.

I

Iy

(2.34)

(3.35)

There 1s some arbitrariness in thie choice of terms for forces

and fluxes. The above choice is taken from Hirschfelder

et al. (26). Another possible combination is:
Xl = -qV
X2 = '(UZ'ul)
J. = 3u/ax

J2 = dd/dt.

When the irreversible entropy change is expressed in

terms of forces and fluxes, there are two basic assumptions made.

The first is called the linear phenomenological law and the

second the Onsager reciprocal relation:

1. Phenomenoleogical law
n

It ) ey
j=1

where gij are constant.

2. Onsager's reciprocal relation

Bij Byi”

Then from Egs. (3.32) through (3.35):
dd/dt = gll(uz'ul) + glz(au/EX)

vqg = goqluympy) + 822(3u/3x)

Where 812 = 821 .

(3.36)

(3.37)

(3.38)

(3.39)
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Furthermore, from Eqs. (3.36) and (3.37) we get:
ds/ = 2 2
T(ds/dt) jrrev. = 811%1 T (8127821)% Xy *+ 899Xy-

The second law of thermodynamics vequires that the left-hand
side is always pcsitive or zero, so we mu;t have the following

relations for the constants gj:

gll 2 0, 822 2 0
2/811892 = 812 t 821

But this is all we get from thermodynamics; it will nct give us
the magnitudes of the coefficients, because they are character-
istic numbers which depend upon materials. A complete under-
standing of the reaction mechanisms would provide a foundation
for calculating the gij’ For the present we assume the reaction
rate to be independent of shear stress and set 819 = 0. 811 and
gyy are chosen from available data and for computational con-

venience, respectively. Then Eqs. (3.38) and (3.39) reduce to:
de/dt = g1q(ng=nq) (3.40)

g = gzz(l/v)(au/ax). (3.41)

Since we know the chemical affinity (u9-ny) is zero at
the equilibrium state, we can find the equilibrium value deq of
a as a function of two independent thermodynamic parameters.
For example:

€q

o aeq(v, T).
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Then for a small deviation from equilibrium, we can expand the

affinity in a Taylor's series:

IR
Wo By T (uz‘ul)eq + 0—-—%;—1—)V’T(d-~eq) cee
Neglecting the higher-order terms:
- eq
BoTwy = <:Ei§-;il)-)v’T (a=®%) . (3.42)
Equations (3.40) and (3.42) give:
do/dt = (a-0®3)/r (3.42)

"here r is a new constant to be determined from comparisons of
calculations with experiments.

Eq. (3.41) shows that q has the character of a viscous
force, as stated earliex. It is necessarily proportional to
the first power of the strain rate because of the use of the
linear phencmenological law. This first-power dependence is
retained in the computations, but since its primary purpose is
to smooth the shock transition it will be artificially modified
after the manner described by Richtmyer and von Neumann (27):
The coefficient 899 is made proportional to the cell thickness
used in the computation.

Then

0
1

CL(Ax/v) lau/ax| (3.44)

where CL = gonstant.




Ll asaic " '!;m

59
This completes our general description of non~equilibrium
two-phase flow. In the following section we approximate the

constitutive relations in order to apply them in numerical cal-

W,

culations.

T [ p—"




IV. CONSTITUTIVE RELATIONS FOR IRON

4.1 Approximations for Two-Phase Flow

Three approximations were made in order to simplify the

application of the principles of Section III to ihe o = ¢ tran-

sition in iron. First, the equilibrium volume change at con-

stant p was assumed constant in the coexisterce region.

This

approximation is supported by compressibility measurements at

room temperature which result in the following values (10,28):

5, (at 192 Kb) 4.94 x 10" L)L

5.1 x 10"ty "L

By (at 132 Kb)

where 8; is the compressibility of the i-th phase.
Then

v2(p,T) - vl(p,T) = «,004 cc/g at every p and T.

Then from Egs. (3.6), (3.26) and (4.1) we get:
dv1 = dy - (v2-v1)da

doe = (aeq-a)dt/T

(4.1)

(4.2)

(4.3)

Then vy can be calculated from the above equations provided

v and ¢®9 are known. In the computation process v is given by

the continuity equation and «®9 by Eq. {3.6).

61
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3 = ((v-vl)/(vz-vl))eq = (v-viq(T))/(vz-vl)eq (4.4)

Since (vz-vl)eq is constant, the temperature dependence of «%9
is in v?q(T). Our second approximation is to replace vl(T) by
the value vl(To) at room temperature (To). Since the tempera-
ture is only slightly greater than room temperature, the error
involved in this approximation is negligible except in the
immediate vicinity of the transition pressure, 139 Kb.

Since vy can be determined from Eqs. (4.2) and (4.3) we
can use the form p = p(v;,T) to calculate pressure if we know
the temperature. The third approximation we made is the tem=-
perature calculation.

If the phase transition is made at equilibrium, pressure
and temperature in the coexistence region must satisfy the rela-

tion:
dp/dT = constant at fixed p or T.

Over a wide range of temperatures the coefficient is practically
constant (10). But if we assume that the coefficient dp/dT is
constant even in the non-equilibrium coexistence region, we
shall see presently that the energy conservation law alone is
then sufficient to determine the temperature change. Since E is
given by Eq. (3.7) the internal energy is a functiom of p, T and
«. On replacing « by Eq. (3.6), it is a function of p, T and v.
But if we assume that dp/dT is constant, p and T are no longer

independent and E is a function of T and v only. The
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error resulting from this approximation has not yet been
evaluated. It should be small since AT is small. From
this assumption we relate changes in temperature to changes in

specific volume as follows:
dE = (BE/BT)vdT + (aE/Bv)Tdv

Substituting into this relation from Eq. (3.21), we find in the

mixed phase region:
(aE/BT)vdT = -(ptq)dv - (RE/3v) dv,

Defining (BE/BT)v as C, _ and using the following identity,

]

T(3p/?T), = p + (3E/3T), ,

this becomes

dT = - ('r(ap/a'r)v + q)dv/Cv’m . (4.4)

The calculation of Cv,m in the coexistence region is given in
Appendix I. It should be noted that in the coexistence region
(ap/aT)v is equal to dp/dT because of the assumed dependence of
p and T.

Our assumption or internal energy depencence (E(v,T))
is certainly true for a singlie phase, sc the form of Eq. (4.4)
is valid, and if we know the values of C and (Bp/aT)v in
either a single phase or a mixed phase, the tempcrature cal-

culation is only a matter of substituting different values of

these parameters, depending on the phase region,
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4,2 Review of Experimental Information

There are three main static experiments on the equation
of state (12,10,29) and the isothermal p-v relations are in
close agreement, within the range ot experimental errors, with
shock wave measurements ot the Hugoniot at low pressures. Ve
use the equations of state determined from shock experiments.

There are tour major measurements on shock wave propaga-
tion in iron. The one by Bancroft et al. (28), is on the
Hugoniot pressure-volume relations above the transition pressure
and ic reveals a discrepancy in the magnitude ot the gradient
dp/dT compared with the static vatue (/). The other three are
concerned with transient effects and the thickness of the
second shock:

1. Bancroft et al. observed the two-wave structure and
determined the pressure-volume relation in the second
shock by jump conditious.

2. Smith measured the thickness (.02 mm) of the second
shock front in recovery experiments by hardness methods
and concluded that the duration of the transition zone
is in the order of .001 psec (30).

3. Novikov et al. observed the two-wave structure in iron
by a capacitance method (14). They concluded, from the
rise time of the second shock, that the duration of the
transition region is .2 - .3 psec. This duration is
not exactly equal to the relaxatien time 1, but as it
is essentially governed by the relaxation of the phase
transition, it should be of the same order of magni-

tude. They also observed a pressure drop behind the
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first shock for thinner samples (no information is

given about the thickness), and explain that it is due

to relaxation processes.
4., Minshall observed, by a pin technique, decay of the

first shock over a distance of 5 em (.8 cm - 5.8 <m) (13).

No estimation of transformation time is given, nor is

the explanaticn of the decay. However, if we assume

this decay to be due to the relaxation, the order of
relaxation time must be about 5-10 psec.

All of the above reports agree about the existence of
the transition, but as far as the relaxation time is concerned,
they make no suggestion of a particular value to be used in the
calculation.

In numerical procedures we can use any relaxation time
to study the effect of phase change on shock wave propagation,
but we made an arbitrary choice of 1/3 psec for most of the
calculations, based on consideratinn of the experiments by
Novikov. In the study of the decaying precursor we used three

relaxation times, .1, 1/3, and 1 psec.

4.3 Equation of State of Iron

The equation of state of the first phase is taken to be:

-~ -~ 3 - -~ 2 -~ -~ 3 ~ ] ™
p(Vl ’T) - dl( ll-l)T 2(I|1-1) {‘a3<|11“1) ':'\Jv].(T“rio)l/.Vl (4.5)
where
c 1 specific heat at constant volume, phase 1,
v assumed constant
T, = some temperature above which is constant,

taken as room temperature here.
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ai = constants

I' = Gruneisen function, assumed constant
Ny = volvl.

This is a form of the Mie-Griineisen equation used by Al'tshuler
et al. (31).

The coefficients a; can be determined from the poly-
nomial fits of the Hugoniot curve (1) or from static measure-
ments. However, for the case of iron there is no appreciable
difference, below 290 Kb, between the isotherm and the Hugoniot
centered at room temperature. For example, the temperature rise
along the Hugoniot from 0 to 130 Kb is 20°c (28), which contrib-
utes only about 1.3 Kb to the total pressure. This difference
is less than experimental error for static and shock measure-
ments in general (29). Therefore, we can substitute the Hugoniot
as a room temperature isotherm in the equation of state. These
and other equation of state parameters are given in Tablza VI.
The values of ay listed in Table VI are determined from the
least square fit of existing data below 130 Kb (32). Since
errors in the experiments are larger than the thermal pressure,
this will not give any inconsistency in the equation of state.
When we speak of the temperature-independent equation of state,
we mean the isotherm at T,.

Fig. 4.1 shows the isctherm at T, iv terms of relative
volume. Bridgman's data at room temperature, extrapolated to
high pressures, are drawn for comparison. The difference at
high pressures is mainly due to inaccuracies encountered in

extending Bridgman's data to such high pressures. Since the
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volume change is constant at fixed p and T, the isotherm of

the second phase (¢ - phase) can be easily found by shifting

the first phase by the amount of the volume change (vp-vy).

TABLE VI

Physical Data for « - iron

Parameter Values Dimension [Reference
Vo (initial volume) .1275 cc/g (33)
@y (thermal expansion -6 o -1

coefficient) 36.3 x 10 1/K” (degk) (33)
C,1 (heat capacity) G447%107° Mbee/g°K (33)
Py (transition pressure) .130 Mb (10)
(dp/dT)_ (equilibrium) | =-.000065 Mb/K® (10)
av (volume difference) -.004 ccl/g (10)
a; 1.667 Mb (32)
a, 3.4 Mb (32)
aq 0 Mb (32)
r 1.6 (34)
Cy.m 46x107° Mbee/g®K *
T, 300°k °k

*See Appendix III.

Once the eyuation of state is known, the expression for

eq

o ' can be easily found from Ea. (4.4), which includes the room

temperature approximation for vy (T).

Suppose we specify the

room temperature transformation by the isotherm AB in Fig. 4.1;

AR
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o9 is given by the relations:
eq = if
o v > Va
eq = (y- - .6
o (v VA)/(VB VA) if vp < V<V, (4.6)
«®d = 1 if v < Vg

The graph of «®9 is given in Fig. 4.1.

As seen in Table VI, we assume the constancy of physical
data, such as Cvl’ I' and so on, regardless of pressure. Ve use
the equilibrium value (-.065 Kb/9K) for dp/dT in the coexistence

region unless othexwise stated.




V. SHOCK PROPAGATION IN IRON

5.1 Difference Equations

The system of difference equations used here is based
on one described by Wilkins (35), with the yield stress set to
zero. Space is divided into points and cells as in Fig. 5.1.
The particle velocity and the current position of the Lagrangian
coordinate are defined on the points with integer label j, and
other variables are assigned to the cells with half-integer

labels j+%, etc.

Point Point

. ..3

ity i+ .
Cell Cell
x(3) x(j+1)

Fig. 5.1l.--Difference Scheme in Space

Time differences are also staggered. Particle velocity
and q are defined at half-integer times, n+%, and other vari-
ables are defined at integer times, n.

The computational sequence for gemeral interior points

and cells is given in Fig. 5.2.
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0 New calculations
° 0ld calculations
«--  First step
n+l \;lf
AN AN +«- Second step
~ |7 N (volume only)
ntl L fuqbe 9 7
s p./
2 //; \\ .4 Q\\ < Third step
P 77 \ \p// / \ \\ P
n La /l‘— \\ 7 \\4
/ \ / \ (  Fourth step (p,T)
n-+ | J \/ "
2 q q q
L 1 1

s 1 N .+l s
-5 1 % Jjtl

Fig.5.2.--Computaticnal Seguence

The flow equations and the constituiive relations are approx-
imated according to the above difference scheme. The difference
equations are given in the order of -~omputation. The subscript

or superscript "o'" refers to the initial state (p=0) of the

first phase.

1. Equation of motion, Eq. (3.3):

., T o= u, - N . 5.1
3 i T Gy T By S
where

)j+% (5.2)

I

total stress in the x~direction.




——

L -0
n X3+ i ‘J -1
= Mg )] (5.3)
Vit J ~%
= average mass at j.
At the left boundary
= (%) (xq-xg) /v, (5.4)
The new coordinate is given by:
= R+ T e (5.5)
Continuity equation:
o+l _ n+y n+%
VJ.+\,1-2( v+%+£‘t(m)3+35(u3+1 ., ) (5.6)
where
m. = p? (x9 -x?) = mass in the cell j+%, (5.7)
i+s AR AN b T ’
¢o = initial density.

Linear viscosity:

oty CL pJ+% nJiz |uj:% - u?+%|for{

i

%

0 otherwise.

n?+% = 2vo/(vgié + vg*%).

(5.9)




-,

4.

74

Constitutive relations:

The relaxation equation:

n+l n aeq-a n
. a = Fy . 010
Q'_]—ri; Q’J_’_% + ( - )j*‘;iAt (5 )

v is the characteristic relaxation time and
is assumed to be constant.

The specific volume of the first phase is:

bl _ ool _ . Lo 4 OH
V* ,J"‘% Vj-!_%z, (V2 Vl)fl’j-}_% (5-11)

Temperature calculation:

+1 +1
Tirs = Tisgp + [CT5a05 Vi
0 \
('_") #5( J"JE I;*_;.) (5.12)
where C = -(1/C,)(3p/AT), (convenient for a

mixed phase)
or C = -T/v (convenient for a single phase),
and I is the Gruneisen coefficient. The value

ot C,, depends on the phase region as described

in the last section. The formula for Cv,m in
a mixed phase is given in Appendix II.
Equation of state:
T S (5.13)

where p(vl,T) is given by Eq. (4.5).

The boundary between a single and a two-phase
region is distinguished by the transition
pressure py, at which the relative volume of

the first phase is given by v,.
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5.2. FORTRAN Program

The FORTRAN IV program used for the calculations is given
in Appendix IIX. This program is set up specifically for the
problem of a constant driving pressure and a semi-infinite slab
of material suv it does not treat an unloading rarefaction prob-
lem nor the reflection of a shock wave.

The heart of the program, insofar as we are concerned,
is in the calculation of o, p and T, following that of v and g
(Egs. (5.10) through (5.13) above); therefore we consider it in
detail. -

When the material of cell j is in the region of phase 1,
as determincd by a test on p, the numerical computation proceeds
to Egs. (5.12) and (5.13) from Eq. (5.8). Vhen the pressure in
cell | reaches the transition value Py and overshoots it, tem-
perature and the relative specific volume of phase 1 must be re-
adjusted by use of Eqs. (5.11) and (5.12). At this time the
special program parameter NSA(J) is set equal to 2 for the cell
j and kept at that value until the material is all converted to
phase 2. Calculation of pressure is accomplished by substituting

v, and T from Egs. (5.11) and (5.12) into (5.13). Once the

1
given cell becomes pure phase 2, NSA(J) is set equal to 3, and

the calculation again proceeds as for phase 1. However, as long
as we use the relaxaticn relation (Eq. (3.26)), with the approx-

imation (v2-v1 = constant), we always have:

a < 1

vy = vo- a(vz - vl). (5.14)
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If we are reminded that pressure is essentially calculated from
vy, then from Eq. (5.14), regardless of whether we set « to
unity when it is close to unity, the value of vy is practically
the same. Therefore we can, for the present case, discard the
case for NSA(J) = 3, which is enclosed by the dotted lines in
the flow chart.

The expanded flow chart for this part of the program is

given in Fig. 5.3.
5.3. Numerical Results

5.31 Transient Case

The particular concern here is with development of the
double wave structure associated with the phase transition. A
uniform pressui2 is applied at time t = 0 to the surface of a
half space, x = 0, and maintained constant as the plane wavefront
develops and propagates inward. For an applied pressure of
0.200 Mbar*, Figs 5.4 and 5.5 show pressure profiles of the de-
veloping wave at times measured from the first application of
pressure. Fig. 5.4 illustrates the development and decay of the
first wave caused by the ¢ - ¢ phase transition. After about
ten relaxation times the profile has the clear double-wave struc-
ture shown in Fig. 5.5.

The thickness of the first wave front is determined by
g and by the choice of space increment, ax (Fig. 5.1). The width
ot the second front is controlled by the relaxation time of the

phase transition. W%hen it is well separated from the first wave,

*1 Megabar = 1012 dynes/cm2
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the relative magnitude of q in the second tront is negligible,
as shown in Fig. 5.6. The coefricients CL are varied to deter-
mine effects of q on the transient wave profiles.

Richtmyer (36) has shown,using quadratic q, that a small
coefficient of pseudo~-viscosity produces an ocillatory ocutput
even when the stability condition (ax/at) is satisfied. Figs. 5.7
thxough 5.9 show similar changes in profiles for various Cp,:
Figs. 5.10 and 5.11 give the profile at fixed times for three
different values of C - From these it is quite clear that the
shock profile converges to the same form after about three
relaxation times. Details of the relaxation process at early
times can be obscured by oscillations when CL is too small as
these figures show. A very large CL produces so much damping
that sudden changes in profile are prevented. This can allow ¢
to control the profile of the second shock as well as the first.
A value of C_ = 0.1 was found satisfactory for most of the cal-

L
culations described here.

Novikov observed a drop in pressure behind the first
shock. These calculations sometimes show such a drop, but it
is more likely due to oscillations in the output than te a

physical effect.
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Both pressure and @ are shown in Fig. 5.12 as functions

of time at .01 cm from the surface for 3 values of CL. The be-

havior of ¢®? {s sensitive to C; it reflects the fluctuations
in p. o, on the other hand, is relatively independent of CL;
its behavicr is controlled by the relaxation time 7. This
suggests that the decay in amplitude of the first wave is esse
tially independent of the artificial viscosity.

The decay of the precursor is shown in Fig. 5.13. The
rate of decay at early times is closely related to a simple
exponential, as shown.

This behavior is plausible on the basis of the follow-
ing model. Eg. (3.23) can be written

dp/dt = a2 de/dt + (mln2 - mznl)f(vlf,a)/c

This is the analog of Eq. (9) in reference (50). By the same
arguments used there, we can arrive at the analog of Eq. (19)

of ref. (50):
dplfdt = - (mln2 - mznl)(oreq - o) /1G

providing the path of the number one shock lies along a
characteristic, which is nearly true. Here P1 is pressure at
the peak of the first shock, assumed to be a discontinuity,
hence it lies on the metastable surface v,(p,T). With this
condition, @ = 0. Now with the sweeping approximations that
Vi“Vy = Av = constant, that the entire process is temperature
independent, and that Cpl = sz, we obtain for the decay
equation:

dpl/dt = (&v Oleq/?.'r)dp/dv1 .

n-

~ — e .
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i
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~Analytic Approximation
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\
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Fig. 5.13.--Decay of First Shock in Iron Resulting

from Phiase Transition.
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If vl(p) is linear, then
—~
1 3 Vl s Vm"AV
%q T 1 (v ~vy)/dv = (p-py)(dv,/dp)/bv ,
vm-Av $vy s v
— 0 ’ Vm < Vl

Here v and p, are pressure and volume where the Hugoniot first

enters the mixed phase. These expressions yield

p; = ppt+ (x 8 v/207) dp/dv; , vy S v -bv

P, + (Pp-Ey) exp(-x/20T) ,

'AVSVISV

vm m

]
o
<

A

m Vi

where x = Ut. Figure (5.17) shows that in the present case

(pD = driving pressure = 200 kbar), the central formula applies,
therefore we should expect to find that

py - 130 = 70 exp (-x/2U7)

The difference between this curve and the numerical results,
shown in Fig. 5.13, is due to non-linear effects.

In Figs. 5.5 and 5.11 there are arrows labelled A and B.
These indicate the shock front positien which would be predicted
at the indicated times from the Rankine-Hugoniot jump conditions:
A for the first shock, B for the second. The difference be-

tween this predicted arrival time and the oae obtained in the
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numerical integration arises because the shock profile has not
reached its steady state or permanent regime. For the permanent
regime, to which jump conditions apply, the locus of p+q vs v
lies along two straight lines, OM and MC in Fig. 5.14, M repre-
sents the break in pressure between the first wave and the
second, and the velocities of the first and second waves are
pronportional to the square roots of the slopes of these two
lines. ‘/hen the pressure is applied suddenly and the relaxation
time is long, the state of an element will rise to a point on
the extended metastable curve of phase 1, say C'in Fig. 5.14,
and then proceed toward the equilibrium point © along an isobar.
During the process of precursor decay, the locus will lie along
intermediate curves such as 0abC. In fact then the leading wave
and the developing profile behind it propagate at “irst with a
velocity proportional to the square root of the slope of the
chord 0C', only gradually approaching the smaller steady state
velocities. Consequently the wave front position calculated by
integration of the flow equations should always lie ahead of the
position predicted by the jump conditions whenever the constitu-
tive relations include rate or time dep2ndent processes. Loci
for p+q obtained in the calculations for severa. positions and
two values of C; are shown in Fig. 5.15. They do indeed dis-
play the behavior described in Fig. 5.14; moreover the locus is
relatively independent of ;.

It is possible to calculate the equilibrium Hugoniot
curve for a material undergoing a phase change using only the

an
jump conditions and,equation of state (17). However, once a
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ptq

Fig. 5.14. --Pressure Profile and Total Stress
] with Respect to the Rayleigh Line.
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Fig. 5.15-- Total Stress (p+q) and Rayleigh Line




P4

94

program is available for integrating the flow equations, as in
this case, it turns out to be easier to run the program with a
uniform driving pressure and tabulate p and v in the uniform
region far behind the shock fronts than to do the equilibrium
computation. That has been done and the results are shown in
Fig. 5.16.

TI is the temperature independent solution (which is on
the second phase isotherm), and TDL and TD2 are temperature de-
pendent solutions with different isothermal compressibilities
(az = 3.4 and a, = 2.4, respectively). The difference between
TI and TDl is due only to the temperature dependence in the
equation of state. The reason TI lies above TDl can be explained
as follows: since dp/dT is negative in the coexistence region,
the transition produces a temperature decrease. This decrease
is found to be larger, except near the transition point, than
the temperature rise in the first shock (about 200), hence it
gives a slight pressure drop for the temperature-dependent
equation of state. Experimental values measured by Minshall (13)
are indicated by crosses. The differences between these and
the calculated curves are substantial. It is quite possible
that a curve passing through points B and C can be developed by
zllowing vy-v; to vary with p. Point 4, however, appeats to be
unattainable within what are here believed to be reasonable

limits of the thermodynamic and transition parameters.
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Fig. 5.16.--The Hugoniot Curve in and beyond
the Coexistence Region.
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5.32 Permanent Repime

After the shock of the last section has propagated far
into the medium, the profiles of the first and second shocks
are expected to become unchanging, though they continue to sep-
arate because of differing velocities. When this happens, these
profiles should be descr.bed by a permanent regime solutien to
the flow equations (37). Such a solution is obtained here in
order to determine how far the wave must travel to closely
approach the permanent regime and to provide an independent
check on the numerical integration for the transient case. We
proceed by setting (3/>t)x = 0 for all variables in Egs. (3.3)-
(3.5) and (3.43). The resulting equations are, for the temper-

ature independent case:

pu du/dx = -dp/dx (5.15)
d(pu)/dx = 0; pu =m (5.16)
ude/dx = («®3-a)/7 (5.17)

v o= vy + (vmvyde (5.18)
vy(p) - v{(p) = const (5.19)
p = p(vy) (5.20)

Combining Eqs. (5.16) and (5.15) yields the Earnshaw relation:
2.2 2
- = - = - .21
PP, p U (vo v) m (vo v) (5.21)

where U is shock velocity. Combining Eqs. (5.17), (5.18), (5.19)

and (5.21) yields an equation for dp/dx in the tramsition region

dp/dx = m (v,-v,)(@®%-a)/r(Lim’dv /dp)v . (5.22)
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From the definition of deq we have

3 = 0, ps P,
= (v=v )/ (vy=v,), p, s P sp, (5.23)

= 1, PaSP

where p,, Pyy Vy» V, are defined in Fig. 5.18. Combining

o
Eq. (5.23) with (5.18), (5.21), and (5.22) yields the following

expressions for dp/dx:

dp/dx = m3(vo-vl)/¢(1+m2dvl/dp)(WZVO‘P*PO) ’

P, P <P, (5.24)

dp/dx = m(mz(Zvo-vl-va) + po-p)/1(1+m2dv1/dp) :
' (mzvo-p+po) » P, SP S Pg (5.25)

Here vy is a known function of p, Eq. (5.20). Examination of
Egs. (5.24) and (5.25) shows that dp/dx = 0 at p = p, and

P = P In Eq. (5.22), m < 0 for a forward-facing shock,

«®3 - « > 0, v;-v, > 0, and 1 + n’dv,/dp > 0, from Fig. 5.18.
Therefore dp/dx < 0 throughout the transition. The qualitative
features of dp/dx are shown in Fig. 5.18.

Egs. (5.24) and (5.25) have been integrated for the
iron transition, assuming that no temperature changes occur in
the shock. The results are compared with the temperature-
independent transient case in Fig. 5.19 for a driving pressure
of .200 Mbar. The shock width, defined as ax =Ap/|1dp/dx|max,
is for this case about .3 cm. The steady velocity of the
second shock with respect to the material ahead of it is U,, =

11
0.37 cm/psec. The relaxation time assumed for the calculation
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(p,,v,)

2(p)

Fig. 5.17~-Path of the Permanent Regime Solution

Fig. 5.18r~dp/dx for Permanent Regime Solution
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Fig. 5.19.-~Comparison of

- ermanent regime with transient
200 °Q96A grofile of sgcond shock.
oa O Run #67108-2, ax = .01,
O At = .0025 nsec, t = 157
- & Run #67108-3, Ax = .001,
!S;() ot = 0005 wsec, t = 2.257
- Permansnt regime profile
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Fig.5.19, --Comgarison of Permanent Regime with Transient

Profile of Second Shock.
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is T = 1/3 psec, so Ax =~ 2.4 Ury7. Profiles obtained from
the transient calculation at t = 2.25r, 157, 22.57 are shown
for comparison. The agreement is very good at 15t. This
agreement is additional evidence of the validity of the inte-

gration procedure for the transient case.
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APPENDIX I
HEAT CAPACITY OF MIXTURE
Equation (31) of Reference (7) gives
Cpy = - T(3V/3P)g, (d/dm)? (1)

where (BV/BP)SM is the slope of an equilibrium adiabat in the

mixed phase region. Equation (16) of the same reference gives
(V/3P) gy = dv,/dP - (dSlldT)(dT/dP)z
- (v - V))(d1/dp)? a®p/ar? . (2)

Using the identities

T dslldT = Cy; *+ 'r(ap/a'r)v1 dVlldT

and

dV1/dT = (BVI/BT)P + (avl/aP)T dp/dT ,

£a

(1) and {(2) can be transformed to yield

Cpy = Cyy - TQR/V). (v /an)? + T(v-v,) a®p/ar®  (3)

The first two terms of Equaticn (3) correspond to Equation (85)
of Reference (38). The third term may be important if the state

point is not near the boundary of phase I.
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APPENDIX II

PROGRAM FOR CALCULATING WAVE FLOW IN ONE SPACE
DIMENSION FOR PLANE, CYLIMDRICAL, OR
SPFHERICAL GEOMETRY

A. Program Name: BURN
B. Program Description

This program is an adaptation of one written by John O.
Erkman at Stanford Research Institute. It integrates the equa-
tions of flow through one space and one time dimension for ar-
bitrary initial and boundary conditions. Integration is carried
through shock fronts by means of an artificial viscosity.
Initial and boundazy conditions, input parameters and output
statements are contained in subroutines so they may be readily
altered.

Subroutine DECIDE contains the input parameters which
define the problem. Comments in the Listing (Section C) should
make this subroutine self-explanatory, except perhaps for the
following:

S is an integer index used to label the various regions
in the problem, S = 2,51

BURN(S) is an index which dcfines the material in region S;
for example if the geometry is spherical and the problem
consists of a sphere of explosive surrounded by an Al
shell, Sl = 3, BURN(2) = 1, BURN(3) = 4. Other values

of BURN(S) are defined in the program listing.
PPTIPN is an index defining the driving system for the

problem. @PTIPN = 1,2,3, or 4 for a pressure pulse
applied to the left boundary.
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TAU 1is a characteristic time parameter for the applied
pressure. For its exact meaning, consult the listing
of the MAIN program. It's units are microseconds.

LEFTP is in Megabars (Mb)

TQUIT, microseconds

Values of zZ@N(S) and L(S) need be given for S = 2, S1.

The primary output consists of tables of values of particle

velocity, pressure, etc., vs J for each time and cycle
indicated in DESCRIBE.

Program Listing and Sample QOutput
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DUVALL PAGE

//RURM EXEC FORTGCLG
//FORT ,SYSIN DD *

C

NAOAOOOD

Oo0N

OO0

357

THIS IS A JINE-NIMFNSIONAL Q~CODE ADAPTEDN FROM ONE WRITTEN BY
JOHN Q. ERXMAW (f SRI, WHO MODFLED AFTER ONF WRITTEN BY

YARK WILKINS OF LRL. AN APPRIXIMATE DESCRIPTION CAN BE FOUND
IN "COMPUTATIONAL PHYSICS. VOL. III," EDITED BY ALDER AND
FERNBACH AND RODTENBERG

THE PROBLEM IS SET UP IN SUBROUTINE "DECIDE.®

THE MEANING OF KFY SYMBOLS IS NMESCRIBED THFRE.

COMMON /CLZON/ H(9),BURN{S)},L(5),0X(9),S1,R40(9)

COMMON /C2TIME/ TIMES,CYCLE.DELT,DTN,DTMX,TLIMA(300) ,JCRIT,

1 TQUIT, TAY

COMMON /C3CTRL/ COUNTS,JSTARLJPE,JPRyJQUIT,LAST,CYCLES

COMMON /C4FLIW/ J1300),V(300),X(300),Q(200),P(300),E(300),Q4,VN,
1MASS(300),CSP{300)

COMMAN /CTGNRL/ ALP,OPTION,CONA,CQ,LEFTP

INTFGER HyBURN,S+S1yZONyCYCLEyCOUNTS,CYCLESyALP, NPT IONyH2+HS1 4+ HS)

1 RURNS, HS?2
REAL LsMASS,LINEAR,LEFTP

CALL DECIDE

THE FOLLNOWING BN LONPS FNDING AT STATEMFNT 9 CALCULATE THE
PASITION OF THE J'TH CELL IN CM AND [ITS MASS [N GRAMS. RHA{S)=
DENSITY AF RFGION S IN GRAMS/CC.

nno 9 $=2,S1

HS1=H(S-1)+1

HS2=H(S)

DO 9 J=HS1,HS2

X{Jd+1)=X{J)+0X{S)

MASS(J)=(X{J+1)*xALP~X{J} %xcAL P} *RHO(S)

THE VARTABLES IN THE FOLLOWINS F3UR WRITE STATFMENTS HAVE BEEN
NEFINED IN SUBROQUTINE DECIDE.
WRITE{6,951)ALP,DELT,DTMX,CONA,CQ
WRITF(6,952)CYCLES,COUNTS ,,JQUIT

FORMAT( 0%y *CYCLES" 16 Xe "COUNTS "y 6Xs 'JQUIT'/1644X41646X9. 5]
WRITE(6,957)S51, (3URN{S),5=2,51)
WRITE(6,961)TAU,LFFTP,U{1),0OPTION

IF (DPTIONJEQ.6i CALL FLIER
IF (OPTIONJNE.6) JSTAR=S

CALL WRITEL

CASQ=CQ**%2

CQSQ4=4.0%CQS0

L INCAR=1,0¢CONA+CONA

"TIMES"=T, THE TIME VARIABLE, MFASUREN FROM ZERD.

TIMES=0.0

CYCLE=0

*“JCRIT"=ND, OF SPACE CELL FOR WHICH TLIMA(J) HAD ITS MINIMUM
VALUE (N THE PREVIOUS CYCLE.

JCRIT=0
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C "LAST™ IS AN INTEGER CONTROL PARAMETER WHICH DIRECTS THE
C SUBRQUTINE “WRITE™ TO PERFORM A TERMINAL CDOMPUTATION AFTER THE
C INTEGRATION HAS BEFN COMPLETED.
LAST=0
c "DTN" IS THE VALUE OF ®“DELT® CALCULATED IN THE CYCLE BEFORF LAST.
DTN=DELY
DELTI=DELT+DELY
Cooome START OF TIME LOQP
C PPEAK=MAX{MUM VALUE OF PRESSURE CALCULATED IN PREVIJUS CYCLF.
40 PPEAK=0.0
c TLIMB=TLIMA(JCRIT)=MININUM WALUE OF TLEMA(I) .
TLIMB=1,0
TIRES=TIMES+NELT
CYCLF=CYCLE+]
50 J=1
S=2
J1=2
JT=2
PLEFT=0.0
C COMMENT EVALUAYF P FOR FIRSY CELL AND U ANND X ON LEFT BOUNDARY
S0 70 (519524153,54460,60),0PTION
51 [F(TIMES .LE. TAU) PLEFT=LEFTP
GO T2 60
S? IF(TIMES .LE. ray) PLEFT=({-TIMES/TAU) +1.0) *LEFTD
GO TC 60
53 PLEFT=LEFTP*FXP(-0,46*TIHES)
5¢ CONTINUE
60 IF(ALP.EQ.I)U(ll=~((P(I)OQ(I)-PLEFT)/(X(?)-K(1))i*V(l)*OELTI*U(l)
XA=U(1I«DELT+X(1)
R START NF J-L0OP
70 TF(J.GTLHIS)) S=S+]
78 DENU=(X(JT)-X(JI))/V(JI)O(X(J])-X(J))IV(J)
79 U(Jl)t(DELTl*(P(J)DP(JII*Q(J)~Q(J1)l)/DENU*U(Jl)
RO X(Jy=XxA
XA=DELT®U(J1)+XtJ1)
TFUJ +EQe H(S1)) X(J1)=XA
TF{ABSIU(JL)) oLT. 5.0E-5) U(J1)=0.0
VN= (XARRALP=X{J )& #ALP) /MASS( )
NELU=U(J1I-U(J)
DELX=XA-X(J)
C
e GET ¢ FOR $HOCK
c "QA"=NEW VALUE OF ARTIFICIAL VISCIUS STRESS: QUJ) IS m0LDO™ VALUE.
a7 QA=-DELU*(CQSO°ABS(DELUl+CONA‘CSP(J)3/VN
IF(QA .LT. 0.0) QA=0.0
c "TLIMA(JI=Y TAE PARAMETER USED I CALCULATING THE VALUE OF DELT
c FNR THE NEXT TIKE STEP, AT THIS POINT VN, THE NEW VALUE OF
c SPECIFIC V3ILUME, AND QA ARE AVAILABLE, SO THE INFGRMAT{ON REQUIRED
c FOR CALCULATING PRESSURE IN CELL JyPUJ),ENERGY,F(J), ETC, [S AT
c HAND, THESE CALCULATIONS ARE MADE IN SUBROUTINES B_EQST(S,J),
c WHICH ARE ENTRY PQINTS IN B_INIT{S). CONTROL IS TRANSFERRED TN
c SUBROUTINE EQSTIS5,4)y AND FROM THIS 1T IS TRANSFERRED TQ THE
c APPROPRIATE B_EQSY{S,J}.

TLIHA(J)=DELXI(LINEAR*CSP(J)*CQSQG#ABS!DELU))
CALL EQST(S.J)

o
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IF{ABS(P({J)) LE. L. OE-~5}) P{JIV=1.0134E-6
VIJ)=VN
Q{J1=0A
IF{TLIMA({J).GE.TLIMB) GO TO 129
JCRIT=J
TLIMB=TLIMA(J)
129 IFIP(JI+Q(J).LELPPEAK) GO TO 131
PPEAK={P(J)+Q{I N
C “JPMAX®™ [S THE VALUE OF J FOR WHICH PPEAK TAKES ITS MAXIMUM VALUE.
JPMAX=Y
131 J=J+l
Jl=J+1
sT=J1+1
C WJSTARY IS A VALUE OF J AHEAD OF THF WAVE FRONT AT WHICH COMPUTING
¢ STOPS PREPARATORY TO ADVANCING TIME BY ANOTHER INCREMENT, JSTAR
C 1S ADVANCED BY UNITY WHENEVER PARTICLE VELJOZITY, U(CJSTAR},
C BECOMES NON-NEGLIGIBLE.
IF{J.LE.JSTAR+]1) GO TO T0
C-~~-=~TEST TO ADVANCE JSTAR
IFLABSIUCJISTAR2L1).GT . 1. 0E~5) JSTAR=JSTAR+]
IF({CYCLE.EQ.CYCLT JeOR{TIMES.ZE.TQUITI OR.(J.EQ.JQUITIIGO TO 169
IF(CYCLE.GT.10)C0 « 20
(o T0O CHANGE FREQUENCY UF P1 NT-0OUT, A STATEMENT CAN BE INSERTED
o HERE: "“IF (CYCLE.GT. K) COUNTS=MN" WHERE ®K"™ AND ®MN" ARE
c INTEGERS TD BE CHOSEN BY THE PROGRAMMER,
IF{MOD(CYCLE,COUNTS).NE.O) GO TO 180
60 70 170
169 LAST=1
170 JPB=1
JPEF=JSTAR+2
CALL WRITE
180 DTNH1=0.6*TLIMR
IF{DTNH1/DELT+GT+1e1) DTNHI=1,1%DELT
TF(DTNHL.GT.DTMX} DTNH1=DTMX .
OTN=DELT
DELT=DTNHI
DELTI=DTN+NFLT
GO T0O 40
c
951 FORMAT(1H1,6Xe3HALP 99X, 4HDELTs 11Xy 4HDTM Xy 11Xy 4RCONA, 12X 42HCQ/TX, 11
-9 4F15.6)
957 FORMAT(1HO¢8Xy2HSY e SXyBHBURNI )44 /78X, 1249X,915/2X}
961 FORMAT{1HO,5X, "HTAJy 16X, SHLEFTP,16X,44U{1},415X,6HOPTIDN/3F19.8,18)
END
SUBROUTINE DECIDE

&

COMMON /C1ZON/ HU9) 4BURN(9) 4L{9),DX(9)+S1,RHO(9}

COMMON /C2TIME/ TIMESCYCLE.DELT4DTHN,DTHX: YTLIMAL300)4JCRIT,
1 7QUIT,TAU

COMMON /C3CTRL/ COUNTSyJSTARJPE,JPBoJQUIT,LAST,CYCLES

COMMON 7C4FLNW/ UL200),V(306),X(200),Q1300)4P{3001,E(300)+QA:VN,
1 MASS(300),C5P(300)

COMMON /CTGNRL/ ALP,OPTION,CONA,CQ,LEFTP
DIMENSION ION(9)

3
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INTEGER HyBURNyS,S1,20N,CYCLE:COUNTS,CYCLES,ALP,OPTIONyH2,HS1,HS,
1  BURNS,HS2

REAL L,MASS,LINEAR,LEFTP

c
c CHOOSE GEOMETRY. ALP IS AN INTEGER LABEL WHICH IS TO BE SET
c ACCORDING TO THE GEOMETRY OF YHE PROBLEM.
c X 1S THE EULERIAN SPACE COORDINATE, THE INITIAL VALUE AT T=0
C JF THE LEFT BOUNDARY OF CELL 1 IS SET HERE. THE POSITIONS OF
c JTHER CELL BOUNDARIES ARE CALCULATED IN MAIN FROY THE NUMBER 0OF
C IONES AND THE DIMENSIONS OF THE PROBLEM.
c FOR CYLINDRICAL AND SPHERICAL PROBLEMS, LEFT BOUNDARY IS
c INTERPRETED AS INNER BOUNDARY.
G ALP
C ALP
C ALP
ALP=1
C-~-~--CHOOSE COORDINATES OF FIRST CELL
X(1)=0.0
----- NUMBER OF REGIONS PLUS ONE (NOT TO EXCEEFD 9)
THIS PROGRAM CAN BE RUN WITH SEVERAL REGIONS OF GIFFERENT
MATFRIALS. THE NUMBER OF SUCH REGIONS IS DENOTED BY AN INTEGER
Sl~1. THIS PECULIAR CONVENTION ARISES BECAUSE 0OF A CHARACTERISTIC
OF FORTRAN--ZERQO INDICES ARE NOT ALLOWED. EACH DiSTINCT REGION IS
NENDTED BY AN INTEGER LABEL S. S=2 IS THE LEFT-MOST REGION, S=3
THE NEXT TD THE RIGHY, ETC. UP 7O Sl.
EACH REGION IS DIVIDED INTO A NUMBER OF SPACE ZONES OR CELLS,
ION{S): THE NUMBER OF CELLS UP TO AND INCLUDING REGION S
(STARTING WITH THE LEFTMOST REGION) IS H(S)=SUM{ZION(K)},
K=2 TO S, INCLUSIVE.
Sl=2
-—--~-MATERTAL IN REGIONS
“BURN({SI" IS AN INTEGER LABEL WHICH DEFINES THE MATERIAL OF
REGION S.
BURN(S)
BURNL(S)
BURM( S?
BURN(S)
BURN(S)
BURN(2}=5
C-=m—- SET OPTION
WOPTION"™ IS AN INTEGER LABEL WHKICH DFSCRIBES THE TYPE OF PROBLFM
TO BE SOLVED. IF OPTION=1,2, OR 3, T-HE PROBLEM IS ONE IN WHICH
A SPECIFIED PRESSURE IS APPLIED TO THE LEFT HAND BOUNDARY., IF
OPTION=5, AR EXPLOSIVE REGION IS INCLUDED AND ITS DETONATION
PROVIDES THE DRIVING FORCE. ODPTION=6 MEANS THAT THE FIRST REGION
{S=2) IS A FLYER P*ATE WHICH HAS JUST CGLLIDED WITH THE SECOND
REGION (S=3) AT THE START OF THE PROBLEM. WHEN THIS HAPPENS,
€aLd CELL IN REGION 1 (3=2i 15 GIVEN THE FLYER PLATE VELOCITY
U{l}, EXCEPT THE ONE ADJACENT TO REGION 2(S=3) THIS CFLL AND THE
FIRST CELL IN REGION 2 (S=3) ARE GIVEN VELJCITIES Ull)/2 FOR
SMODTHING PURPOSES. WHEN OPTION=1, THE TIME DURATION, TAU, OF
THE APPLIFD PRESSURE MUST BE SET, FOR A CONSTANT PRESSURE APPLIFED
AT T7=0y SET TAU EQUAL TD A LARGE NUMBER, SAY 500 (MICROSECONDS).
FOR OPTION=2, TIME TAU IS THE TIME AT WHICH THE APPLIED PRESSURE
EQUALS ZERO IN A LINEAR RAMP. OPTION=3 HAS A BUILLT-IN TIME

1 FOR PLANE GEOMETRY
2 FOR CYLENDRICAL GEOMETRY
3 FOR SPHERICAL GEQOMETRY

laXsXalsXaizisEaXaBaEnl

FOR EXPLNSIVE

FOR vOID

FOR LIQUID

FOR SOLID

FOR PHASE TRANSITION

Ao al N
[T T T T I ]
[ 2R VU o

OO OOOOOOOO0O0N0
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CONSTANT, THE PEAK APPLIED PRESSURE IN EACH CASE IS "LEFTP"™ IN
MEGABARS,
OPTION
OPTION

C

C

C GIVES SQUARE PULSE
c

C OPTION

C

c

c

GIVES LINEAR PULSE

GIVES EXPONENTIAL

UNASSIGNED

GIVES NO PULSE {FOR EXPLNSION)
GIVES NO PULSE (FOR FLYER PLATE)

OPTION
OPTION
QPTION
PTION=1
C----~1F OPTION
TAU=500.0
C---—- IF QPTION
U{11=0.0
C--=-- IF OPTION = 142, OR 3, SET LEFTP (PRESSURE IN LEFT BOUNDARY)
LEFTP=0,200
C=~=~- VISCOS{TY COEFFICIENT {CQ FOR QUADRAYIC AND CONA FOR LINEAR)
CONA=0Q.1
CQ=2.0
“““ LENGTH OF RUN MAY BE DETERMINED BY SETTING ANY OR ALL OF NEXT
WHEN CYCLE=CYZLES OR TIMES=TQUIT OR J=JQUiT, COMPUTATION WILL
STOP, WHICH EVER OUCURS FIRST,.
J IS THE INTEGER LABEL OF THE SPACE CELLS. J=1 AT THF LEFTMOST
CELL OF THE LEFTY0ST REGION AND RUNS TO H(S1), THE RIGHTMDST CELL
NF THE RIGHTMOST REGION.
CYCLES= NUMBER OF INCREMENTS IN TIME
TQUIT (PROPAGATION TIME)
JQUIT {NUMBER OF LAST CELL)
CYCLFS=100
TQUIT=260
JQulIT=25
JQUIT=250
(===~ THE NUMBER OF ZONES IN REGION K IS ZON(K}
ION(2) =50
C-—=-- THF THICKNESS OF REGION K IN CM, IS L(K)
L(2)=5,0
C--=-- DELT IS STARTING VALUE FOR DELTAT
c "DELTAT® IS THE TIME~INCREMENT FROM UNE CYCLE TO THE NEXT,
C MICROSECONDS. .
DELT=.05
C-~—--=-DTMX IS UPPER LIMIT FOR DELTAT
DTMX=,05
C--—-- PRINTOUTS OF CYCLES IS MODULD COUNTS
c “COUNTS™ CONTROLS PRINTINC, [IF COUNTS=5, THE STANDARD FLOW
C VARTABLES UyPQ+E4V, ETC. ARE PRINTED OUT EVERY FIFTH CYCLE, ETC.
< FREQUENTLY ®COUNTS™ 15 SET =1 IN SDECIDE®y THEN AFTER THE FIRST
c FEW CYCLES INCREMENTED TO 10 OR 20.
C
C

oo o

O NS WN

1 OR 2, SET VAU

6y SET U(1) (FOR FLYER PLATE)

OO0

COUNTS=1
H(S) IS AN INTEGER LABEL EQUAL TO THE NUMBER QF SPACE CELLS TO
THF LEFT OF AND TNCLUDING REGIDN S.
H(1) = 0
DO 12 S$=2,S1
DX(S) = L(S)/FLOAVIZONI(S))
12 H(S}=H(S-1} + ZON(S)
C---~-CALL ROUTINES TO SET IN{TIAL REGIONS
c AY THIS PDINT CONTROL IS TRANSFERRED TO B_INIT(S) FOR S=2 TQ S1,
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102
906
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101
102
103

104
105
106
107

108
109
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WHERE _ IS AN INTEGER FROM 1 TO 5, CORRESPONDING TOQ THE VALUE

(OF BURN{S). FOR EXAMPLF IF S1=4 AND BURN{2)=1, BURN{3)=4, AND
BURN(4}=3, THEN BLINIT(2), B4INIT(3), B3INIT(4)} ARE CALLED IN
TURN? 1.E.y THE NEXT THREE STATEMENTS WOULD BE: "CALL BLINIT(2)",
WCALL B&4INIT(3)%", “CALL R3INIT{4)",

CALL B5INIT(2)

RETURN

FORMAT (1014)
FORMAT(2313)
FORMAT(TU14F5.2/7))
END

SUBRNAUTINE EQST(S,J)

COMMON /C1ZON/ HUG),BURN(9),L(9},0X(9),S1,RHO(9)

COMMNN /C2TIME/ TIMES,CYCLE.DELTyDTN,DTMX, TLIMKA(300) 4 JCRIT,

1 TQUIT, TAU

COMMON /C4FLOW/ U{300),V(300),X(300),Q4300),P{300),F(300),QA,VN,
1 MASS(300),CSP(300)

INTEGER  HyBURN,S+S1420N,CYCLE,COUNTS,CYCLESyALPOPTION,H? HS1HS,
1 BURNS, HS2

BURNS=BURN(S)

6O 1O (101,102,103,104,105,1064107,108,+109) yBURNS
CALL BLEAQST(S,J)
RETURN

CALL B3EQST(S,J)
RETURN

CALL B4EQSTI(S,J)
RETURN

CALL BSEQST(S,J)
RETURN

RETURN

RETURN

RETURN

RETURN

END

SUBROUTINE FLIER

COMMON /C1ZON/ H(9),BURN(9j,L(9),DX(9),S1,RHO(9}

COMMON /C3CTRL/ COUNTSyJSTAR, JPE,JPB,JQUIT,LAST,CYCLES

COMMON /C4FLOW/ U(300},Vv(300),X(300),2(300),P(300),E(300),0A,VN,
1 MASS(300),CSP(300)

INTEGER HsBURNy»S+S1+Z0ON,CYCLE+COUNTS.CYCL FS, ALP . OPTTON.H2 HS
1  BURNS,HSZ

Pt

s HS;

REAL LyMASS,LINEAR,LEFTP

JSTAR=H(2}+2
H2=H( 2)

DO 43 J=1,H2
U(Jeld=u(l)
U(H2413=0.5%U(H2¢+1)
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RETURN

END

SUBROUTINE BLINIT (S)

THIS SUBROUTINE IS A NUMMY WHICH ALLOWS FOR FUTURE EXPANSION
GO TC 12

EMTRY BLEQST(S,J)

GO0 T0 101

CONTINUF

CONTINUE

RETURN

END

SURROUTINE B3INIT (S)

THIS SUBROUTINE [S A DUMMY WHICH ALLOWS FOR FUTURE EXPAKRSION
GO TO 14

FNTRY B3EQST(S,Jd)

GO 70 121

CONT [NUE

CONT INUE

RETURN

END

SUBRNUTINF B&4INIT (S)

THIS SUBRDUTINE IS A DUMMY WHICH ALLOWS FOR FUTURE EXPANSION
GO TO 13

ENTRY B4EQST(S,J)

60 TQ 90

CONT INUE

CONTINUE

RETURN

END

SURRQUTINE BSINIT(S)

THIS SURROUTINE IS WRITTEN SPECIFICALLY FOR [RON WITH A SHNCK-
INDUCED PHASE TRANSITION,

THE PARAMETERS ARE DEFINED IN APPENDIX Il OF "EQUATION OF STATE
IN SOLIDS,"™ BY G. E. DUVALL, G« R. FOWLES, AND Y, HORIE, SUMMARY
REPORT ON CONTRACT NO. DA-04-200-AMC-1702(X), BALLISTICS RESEARCH
LABORATIRY, ABERDEFN PROVING GROUND, MD., FEB.y 1967,

COMMON /C1ZON/ H(9),BURN(9)4L(9):DX{9),3),RHO(9}

COMMON /C2TIME/ TIMES,CYCLE,DELTyDTN,DYMX,TLIMA(300) . JCRIT,

1 TOQUIT,TAU

CNM4ON /C4FLOW/ U(200),V(300),X(300},2(300),P(300),E(300),QA,VN,
1 MASS(300),CSP(300)

COMMON /CSTHER/ TMP(300),ENT{300}

COMMON /C6TEMP/ ET,PYV

COMMNN /BSDATA/ VOU9) +AlsA20A3,DV(9)»TAUDyNSA(300) 4P ,GAMKL 9],
1 FRACT24300),v1{300),XEQ(300),VP,V2

VP = SPRECIFIC VILUME AT WHICH HUGONIDOY INTERSE PHASE BOKRY

w

(9]

INTEGER HyBURN¢S,S1yZON,CYCLE+COUNTS,CYCLESyALP,OPTINONyH2,HS, HS,
1 BURNS,HS2
REAL L,MyLINEAR,LEFTP

GO TD 14
ENTRY BSEQST{S,J)
Gn 1O 121

7
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ENTRY POINT TO INITIALIZE BURN SEkskXxdext akkkg vk rkrpxtkkxbkE k&

14 RHO(S)=7.84
Al=1,667
A2=3,.4
A3=0,0
DVI(SI==,004
PM=,130
CV1=,45E-05
CVMIX=,46E-05
GAMM1(S)=1.6
F0=0.0
T0=300.0
DPDTMX==-6,5E-05
TAUD=3,0

VtS)=1.0/RHO(S)

VP=VO(S)/(1.04{-A14SQRT{AL1%%2,¢4,0%A2%PM))/(2.0%A2))

V2=VP+DV(S])

WRITE(6,960) RHD(S) A1,A2,A3,DV(S),PMCV]1,0X{S}),CVMIX,GAMM] {S}),ED,

1 TO,0PDTMX, TAUDLHI{S),L(S)

CSPS=.5

HS1={H(S-1)+1)

HS2=H(S) +2

DO 39 J=HS1,HS2

V{J)=vOoL(Ss)
33 yi{J+11=0.0

Q(J4)=0.0

P(J)=1.0134E-6

TUIMA(JS)=DELT

CSP(J)=CSPS

V1(J)=vO(Ss)

FRACT2(J1=0,.0

E{J)=0.0

ENT(J)=0.0

TMP(J¥=TO

NSA(J) =1

XEQ(J)=0.0
39 CONTINUE

RETURN

ENTRY PDINT TO 3ET EQUATIONS OF STATE FOR BURNS ® &k kR kkrkir ke kb ks

121 NSw=NSA(J)
GO TO (220,222),MSK
----- MATERIAL IS IN 4ASE 1
220 FTAMI=(VO(S)/V¥NI-1.C

PT=AL*ETAM] +A2%ETAM]I%*2
CSPUJ)I={ALxVO(S)+2.%A2%xVO{S)*(VO(S) /VN=1,)+3 . %A32VO(Six(VO(S)/VN-
1 1,)%%2, )1%%,5

ET=E(J)~0.5%(PlJ)+PT+QA+Q{J) ) =(VN-V(JI))
lF(ABS(pT’oLTolQOE“S!PT=OOO

IF(PT.GEPM)CALLIMIX(S,y )

8
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PLJI=FT
E(J)=ET
RETURN

222 CALL 7MIX(S,J!
E(J)=ET
P{J)=PT
RETURN

960 FORMAT{1HO,SXy3HRHO 12Xy 2HALy 12Xy 2HA2,12X42HA3,12X,2HOV 412X 42HPM,
1 11Xy3HCV1 12Xy SHDXUS )y /1XyB8EL14e&y/1HOy Xy SHC VMIX 49X y SHGAMML 4 11 X,
2 2HED, 12X9 2HTO 1Ny 6HDPDTMX 4 11X 9 4HTAUD s 11 X9 4HH{S) y 11 Xy &HL (S) 4/
3 6F14.604Xy 174 3X,%1 4, 6)
END
SUBROUTINE ZMIX(S,J)

THIS SUBROUTINE SUITABLE FOR COMPRESSION PHASE ONLY

COMMON /CLION/ HU9),BURN{9)L(9},DX{(9)4S1,RHO(9)

COMMON /C2TIME/ TIMES.CYCLE,DELT,DTN,DTMX,TLIMA(300),JCRIT,

1 TQUI., TAU

COWMNN /CAFLOW/ U(3003,v(300),X(300),Q(300},P(300),E{300),QA,VN,
1 MASS(300),CSP(300)

COMMON /C6TEMP/ ET,PT

COMMON /B5DATA/ V0O(9),A1,A2,A3,DV{9),TAUO,NSA{300),PM,GAMML(9),
1  FRACT2(300),Vv1(300),XEQ(300),VP,V2

INTEGER HyBURNySyS1y20N,CYCLE,COUNTS,CYCLES, ALP,OPTION,H2,HSL,HS,
1 BURNS,HS2
REAL Ly+MASS,LINEAR,LEFTP

NSA(JI=2

X0=FRACT2(J)
XEQND=XEQ(J)
CA=TAUOX*DELTY
IFLYN.GT,.VP) GO TO 2
IF (VN.GT.V2) GO TO 3
XEQON=1.0

GO T0 6

2 XEQN=0.0
GO TO &

3 XEQN=1.04(VN-V21/DV(S)

6 CONTINUE
XN={X0*{1.0-CA/2.0) +0.5%({ XEQD+XEQN) *CA) /{1.+CA/2.0}
IF{XN.LT.0.0} XN=0.0
Viz= VYN=-XN=®DV{S)

EMUL=(VO(S)/VT)-1.0

PT=A1*EMUL +A2%EMU 1%%2,
CSP{J)=LA1*VO(S)+2, %A2xVD{S)I*(VO{S) /VN=1.)43, *A3%VO{S) *(VU{S)/VN-
1 1.)%%2,1%%,5

ET=E(J)~0.5%(PT+P(J)+QA+Q(J) ) ¢ {VN=-V(J))

Vi(Jd)=vY

FRACT2{J)=XN

XEQ(J)I=XEQN

RETURN
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END

SUBROUTINE WRITE

COMMON /C1ZUN/ H(9) ,BURNIG),L19)4DX(9)4S1,RHO(9)

COMMON /C2TIME/ TIMES.CYCLE,DELT4DTN,DTM}X,TLIMA{300),JCRIT,

! TQUIT, TAU

COMMON /C3CTRL/ COUNTS,JSTAR,JPE,JPR,JQUIT,LAST,CYCLES

COMMON /C4FLOW/ U(200),V(300),X(3001,Q{300),P{(300),E(300}.:QA,VN,
1 MASS(300),CSP{300)

COMMON /CSTHER/ TMP(300),ENT{300}

COMMON /CTGNRL/ ALP,OPTION,CONA,CQsLEFTP

COMMON /BSDATA/ VO(97,A1,A2,A3,DV(9},TAUO,NSA(300),PM,GAMML(9),
1 FRACT2(300),V1{300),XEQ{300),VP,V2

c
INTEGER HyBURN¢S,S1,70N,CYCLE,COUNTS,CYCLES,ALP,OPTIONsH2,HS14HS,
1 BURNS,HS2
C
REAL L,MASS,LINEAR,LEFTP
C
60 TO 14
ENTRY WRITEL
GO 70 121

14 WRITE(6,302)
WRITE(69304) TIMES+DELT+DTN,CYCLE,JCRIT
WRITE(6+306)
§$=2
[F{ JPB.EQel AND. JSTARLGT.H(2)+10 ) JPB=H(2)
DO 330 J=JPB,JPE
IF(J-GTH{S)) S=S+1
310 WRITE(69318)JsULIN,VIGYyPLI)SELI} 2 QUINFRACT2(I) 4 VL) o XU, THPLI)
1. TLIXALY) -
330 CONTINUE
Commmm NEXT TWO STATEMENTS (COMMENTS) ARE TD BE USED IF GRAPHING IS DESIRED
CALL MANUAL(1.25%LEFTP,0.)
CALL GRAPH1(P,JPE)
IF(LAST.EC.1)CALL EXIT
RETURN
121 WRITE(6,4862)
D0 46 J =1,2
46 WRITE(6:9262)1J5U(J), VI PUIIECI)QUI) o FRACT2(IDyVLILY) o XC DY, T
-MP(J), TLIMACY)
DO 57 $=2,51
HS1=H{Si-1
HS2=H(S) +2
DO 57 J=HS1,HS2
57 WRITEIG5025 4 U3, VIS
“MP{Ji,TLIMA(Y)
RETURN
302 FORMAT!1HL)
306 FORMAT(LOXsAHTIME= ,E144844Xy6HDELT= 4E1448:4XySHDTN= ,E1448964X,TH
-CYCLE= ,{5+4X,THICRIT= ,15/5X)
306 FORMAT(2Xs1HJ 36Xy LHUs IXe LHV 39X e LHP 1 9%y LHE 49X, LHQ, 7X 4 6HFRACT 2,6X,
1 ZHVIo9Xs LHK s 99Xy AHTMP 4 6 Xy SHTLIHA/ /5X)
318 FORMAT(14,8F10.61FT7.1,E13.5!
262 FORMAT{Z2Xs1HI»6X9 LHU» Xy 1HV 49X 1HP 99Xy LHE 29Xy 1HQ, TX; 6HFRACT 2,6 X,
1 2HV1,9Xs LHX, 9Xy IHTMP, 6 Xy SHTLIMA//2X)

yPLSY,ELSY 00 0) FRACT200), VYL Y, X( U}, T
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FORMAT(1498F10o69F7.1'E13‘5)

FORMAT(LHOy 2X, 6HT IMF= ,E14,894XySHUFS= ,F14,8,4XsSHXFS= ,E14.8,4X,
=THCYCLE= ,14,3X, THIPMAX= ,14,3X, THICRIT= ,14/2X)

END

SUBRDUTINE GRAPH4(A,4B,C,D4N)

COMMON /C3CTRL/ COUNTS,JSTARJPE,JPB,JQUIT,LAST,LYCLES

COMMON /T4FLOW/ U(3001,V(300),X(300),2(300),P(300),E{3N0),QA,VN,
1 MASS(300),CSP(300)

COMMON /CTGNRL/ ALP,OPYION,CONA,CQ.LEFTF

REAL L,MASS,LINEAR,LEFTP

DIMENSION A(N), BIN), C(N), DI(N), POINT(4), GRAPH(122}
DATA POINT/1'iAs 1HBy 1HC,1HD/

NATA MSWYCH,BLANK,PERIOD/0,1H ,1H,/

M=4

IF(MSWTCH.EQ.1) GO TO SO

AMAX=D(1)

AMIN=0(1}

DO 1 I=1,N

IFOAMAXLY.D(1)) AMAX=D(T1)

TF(AMINSGTD( 1)) AMIN=D(I)

GO 70 2

ENTRY GRAPH3I(A,ByCeN)

M=13

IF{MSKTCH.EQ.1) GO YD 50

AMAX=C({1)}

AMIN=C(1)

DO 3 I=1,N

IFLAMAXLTLCUI)) AMAX=C(T1}

[IF(AMINGGT.C{I}) AMIN=CI(I)

GO 10 4

ENTRY GRAPH2({A,8,N)

M=2

IF(MSWTCH.EQ./1)} GD TN 50

AMAX=8(1)}

AMIN=B(1)

DO 5 I=19N

TFLAMAX LT .B(I)) AMAX=B(T1)

TF(AMINJ.GT.B{I)) AMIN=B(1)

GN 10 6

ENTRY GRAPH1(A,N)

M=1

IF(MSWTCH.EQ.1) GO YO SO

AMAX=A(1)

AMIN=ALL)

DO 7 I=1,N

IF{AMAXLTLA(TI)) AMAX=A(T)

TF(AMINSGT.A(T)) AMIN=A(T)

SC={ AMAX~AMIN'/120.

WRITE(6:100) AMIN,AMAX,SC,{PERIOD,I=1,121)
FORMAT(1H1417THRANGE OF GRAPH IS,F15.8,8H THROUGH,F15,837/71%X,1 THSCAL
1ING FACYOR IS.FlS.B//IOSX,ZIHlll111111111111111111/15X.111H1111111
211122222222223333333333444444544@555555555566666666667777777777888
38888888999999999900000000001ll11111112/6x'120H12345678901234567890
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41234567890123456T7890123456785901234567859012345679901234567890123456

57890123456789012345678901234567890/5X,121A1)
DO 8 I=1l.N

DO 17 J=1,121

GRAPH(J)}=BLANK

GO TN (9410,411,121),M
K&e=(D(I}-=AMIN)/SC+1l.,

TF{KG .LTos0,0R.K4.6T.122) Ké&=122
K3=(C{I}-AMIN)/SC+].
XK2=(8(1)-AMIN)/SC+1.,
Kl=(A(I)-AMIN)/SC+i.
IF(KlsLT40,0RK1.6T,122) K1=122

GO TO (13,14415,16),M
GRAPH({K4)=POINT({4)
GRAPH{K3)=POINT(3)
GRAPH(K2)=POINT(2)
GRAPH(K1)=PQINT(1)
TF(GRAPH(121).NE.ALANK) GRAFH{120)=GRAPH(121)
WRITE{64101) 1,{GRAPH(I1),11=1,1201)
FORMAT({2X,12,1H.y 120A1)

CONT INUE

MSWICH=0

RETURN

ENTRY MANUAL(AL1,A2)

AMAX=A1

AMIN=A2

MSWTCH=1

RETURN

END
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For numerical output of this problem, refer to Vol. II of
this report filed in the Document Library of Ballistics

Research Laboratories.
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D. List of Labels

DECIDE
DX(S) = Eulerian space interval in region S at t = 9
= L(8)/Z8N(S)
H(S) = no. of cells from left boundary through region S
S
= Y zen(L)
L=2
BSINIT(S)
RHA(S) = density at zero pressure in xregion S
Al,A2,A3 = coefficients in Eq. (4.5)
DV(S) = vy(p,T) - v{(p,T)
PM = pressure at which the Hugoniot in phase I intevcepts
the phase boundary
cvl = Cvl
CVMIX = Cv,m

GAMMLI(S) = T

E6 = internal energy at the foot of the Hugoniot
™ = T,
DPDTMX = (ap/%T)v’m

TAUP = 1/7, Eq. (5.11)

VP = specific volume in phase I at p = PM = v,(pM,T)
VZ = v,(pM,T)

CSPS = starting value for sound speed

J = dindex for space grid

V() = V3

uJ = 1u
Q) = 4,

—— e ®e =




LA A B

P(J) =
TLIMA(J)
CSP(J) =
E(J) =
ENT(J)
TMP(J)
NSA(J)

MAIN
() =
MASS(J)
JSTAR =

TIMES =
CYCLE =

]

JCRIT
LAST =

127

P
value of Atj for next time step

sound speed in cell J
%

S

N

T.
J

switching index

= 1, phase 1

2, mixed phase
3, phase II

X; {(rig. 5.2)
= mass of cell J

cell label just ahead of shock front at which
computation stops for each time cycle

t

number of times t has been incremented

value of J for which TLIMA is minimum

switching index for halting program after

writing last output.

PPEAK

TLIMB
PLEFT

It

DFNU =

S

x(
v(
QA Q(
JPMAX =

2

maximum computed pressure in each cycle
TLIMA(JCRIT)

pressure applied to left boundary

mass in cell J+1

L+ At)

t + At)

t + At)

value of J at which p is maximump
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MIX
FRACT(J) = « 3
XEQ(J) = «,%¢

]
Vi) = vyy(e.)
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DECIDE--problem is
defined: geometry,
materials, zoning,
etc., See listing for
comments.

\'4

N

B--INIT(S)

Material constants
are entered and some
initial calculations
performed for each
region

y

Wri initial data

l

Set conditions at
right boundary

J

\ 4

Set JSTAR. Set
U for flierplate
(subroutine)

Write field variabies
at interfaces

Y

Zero various Control
Variables

d

CYCLE =0
TIMES = 0

Y

Start time loop

v

CYCLE = CYCLE + 1

TIMES = TIMES + DELT

Fig. 1.--FLOW CHART FOR BURN
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Evaluate P for first
celland U & X en
left boundary.
Start J loop
N/
Set S
Calculate U(J+1),
X(J), VN, QA
\/
EQST(S,J)-~Call for | 3 B--EQST(S,J)
the subroutine which P and E are
determines P & E for ¢—————— determined from
region S VN, QA and old
variables.

70

:

V(J) = VN
Q(J) = QN
J=TJ+1

}

J sJSTAR +1

n

Fig, 1. (b)
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—Q{ UESTAR +1)> 107 [B) ,
JSTAR = FSTAR + 1 >
CYCLE = CYCLES
— >| or TIMES = TQUIT
or J = JQUIT
QV
' LAST =1 |
MOD {CYCLE, COUNTS) = 0 [) l “—I"_’J
WRITE
PRINT FLOW VARIABLES
n LAST =1 y
Return
? : it
p MAIN

|

e e e e E——— - =

N

5 Resei DELT
Co to 40 for
new cycle
Fig. 1. (c)
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"y ANSIRACQY

"A procedure is described for developing simple approximate equations of state
of liquids from Hugoniot P-V relations determined in shock wave measurements.
This is applied to a number of liquids and a table of coefficients is given.

The formaiism of irreversible thermodynamics is applied to time-dependent
phase transitions in iron and an approximate set of constitutive relations is
obtained in a form suitable for numerical integration with the equations of
continuum dynamics. These are applied in an approximate form to study fie
development of the two-wave structure in iron caused by the a-e phuse transition.

Finite strain theory is applied to the analysis of shock wave data for quartz,
and the results supply enough information to estimate some of the fourth-order
elastic constants.
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