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Abstract

A procedure is described for developing simple

approximate equations of state of liquids from Hugoniot P-V

relations determined in shock wave measurements. This is

applied to a number of liquids and a table of coefficients is

given.

The formalism of irreversible thermodynamics is

applied to time-dependent phase transitions in iron and an

approximate set of constitutive relations is obtained in a

form suitable for numerical integration with the equations of

continuum dynamics. These are applied in an approximate form

to study the development of the two-wave structure in iron

caused by the a-e phase transition.

Finite strain theory is applied to the analysis of

shock wave data for quartz, and the results supply enough

information to estimate some of the fourth-order elastic

constants.
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Foreword

The work reported here represents the results and the

state of understanding which had been achieved in December,

1966. Since that time some furt'.er progress has been made,

and it will be described in later reports of this series.

Particular attention is drawn to the approximate temperature

calculation described in Section 4.1. The basis of this approx-

imation is now thought to be unsound, so some skepticism should

be maintained concerning temperature effects reported. For-

tunately these are few and slight, and the general conclusions

of the report are not affected by possible errors here.

A major shortcoming of the theory, but one which is very

hard to evaluate, is the complete reliance on equilibrium

thermodynamics to describe the static behavior. It is quite

likely that metallurgical considerations govern the true pro-

gress of the a-c transition in iron; consequently the static

reference states to which dynamic effects are referred may be

metastable and very different from the thermodynamic states.

This is suggested by recent static pressure measurements by

Bassett and co-workers (J. Appl. Phys., Jan. 1967) and by shock

de-magnetization experiments by R. A. Graham of Sandia Corpora-

tion (private communication). Satisfactory metallurgical

models for such processes are not presently available; it is

hoped that shock wave measurements will help to stimulate the

development of such models.

February, 1968
xi



I. INTRODUCTION

Numerical methods for the integratior )f the equations

of finite amplitude wave propagation have reached such a stage

of development that the principal limitation on predictions of

wave effects is more apt to be uncertaiuty in the constitutive

relations of the material than inability to perform the inte-

grations. The complete constitutive relations for a real solid

may at present be regarded as unknowable. Practically useful

relations can be obtained from a succession of approximations,

to each of which is attached some uncertainty. For high ampli-

tude compressive waves the predominant relation is the hydro-

static one between pressure, volume and temperature. To this

may be added the effects of finite shear atrength, which makes

the pressure tensor anisotropic, strain-rate effects which cause

deviations from equilibrium, and partition of internal energy

among thermal, surface, and inhomogeneous effects.

In the present work the primary emphasis is on the

effects of phase transitions on compressive wave forms, partic-

ularly when the rate of transition is too slow to evactly follow

the changes in pressure, temperature, and density associated

with the compressive wave which initiates the transition. In

order to study these effects it has been necessary to develop

computer programs for integration of the flow equations for the

appropriate constitutive relations. In the course of this
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development other useful results on equations of state have been

produced, and these are described in the following sections.

r



II. CONSTITUTIVE RELATIONS

2.1 General Considerations

The term "constitutive relations" is used in a generic

sense to encompass all material properties which must be combined

with the equations of continuity, motion, and energy conserva-

tion to supply a complete set of flow equations. Constitutive

relations in practice usually reduce to an equation of state

relating pressure, volume, and temperature or internal energy.

This simplification is partially enforced by ignorance of other

material relations; it often yields, in addition, quite a good

description of wave prcpagation over a wide range of parameters.

The eauation of state is necessarily accompanied by a statement

about the variation of specific heat with pressure and tempera-

ture. It may on occasion include information about rigidity and

yield or even rate effects. For the present we consider the

eauation of state as defined above. These considerations are

themselves useful and they will provide insight into the require-

ments which must be satisfied by more general constitutive rela-

tions. The following remarks are necessarily limited in their

scope. More detailed Information will be found in various review

articles (1,2).

2.2 Equations of State for Fluids (3)

A "complete" equation of state for a fluid is a rela-

tion betw2en thermodynamic variables which is sufficient for

3
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calculating any thermodynamic parameter of the material, given

two. For example, if specific internal energy, E, is given as

a function of specific entropy, S, and specific volume v,

E = E(S,v), then

p =-(e/Av)s

T =('e/AS)v

H = E +pv

etc.,

where p, T, H are pressure, temperature and specific enthalpy.

On the other hand, if pressure is given as a function of T and

v, as usually occurs, then neither internal energy nor enthalpy

can be calculated without specifying the specific heat.

When partial equations of state are given, as in the

last example, then certain limitations are placed on other

thermodynamic quantities if all are to be compatible. This is

illustrated by the following example. Suppose that specific

heat at constant pressure is known as a function of temperature

and assumed to be a function of temperature alone: Cp = Cp(T).

Then by the following argument we can see that the relation be-

tween p, v, and T must be that of Eq. (2.1) below:

(AH/AT)p = Cp(T) by definition. (2.1)

If H =H(p,T), then

dH= C pdT + (H/;p)T dp

or

H C C(T r)dT + f(p)



WTe may thus write that

(H/p)T = f'(p) = (H/Ap) S + (AH/AS)p(S/p)T

= v - T (Av/AT)p.

2
Dividing by T we find that

f'(p)/T = ((v/T)/ T)p.

,hen integrated thi- yields the implied form for the equation

of state:

v = f'(p) + Tg(p) (2.2)

where g(p) =(v/T)p

In a similar way it can be shown that if specific heat at con-

stant volume, Cv, is a function of T alone, Cv = Cv (T), then

it must follow that p, T, and v are related by a Grineisen

equation:

p f(v) + Th(v) (2.3)

Both Eqs. (2.2) and (2.3) are remarkably simple. The

(p, v, T) surfaces that can be represented by either of these

can be constructed from a "bamboo-place-mat." In the first

case the straight sticks lie ir planes of constant p; in the

second they lie in planes of constant v.

Eq. (2.3) has the same form as the Mie-Grtneisen equation:

p = Pk(v) + rc v (T-To)/v (2-4,

where Pk is pressure on the isotherm T = To . With the assumption
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that C, = cv(T), Eqs. (2.2) and (2.3) then imply that

( (rc v)T) = 0.

This condition implies that (Ar/T)v # 0 unless Cv = const.

While it is very likely true that r does depend upon T (4),

the only available theories of any generality suppose that

r = F(v) (1). Fowles has obtained a more general compatibility

relation for and Cv (5):

(ACv /lnv)T = ( (rCv)/ InT)

It turns out that this is satisfied by the Debye theory of

specific heats. However, any dependence of Debye temperature

on temperature violates the condition.

Despite these difficulties, Eq. (2.3) has been commonly

used to excend pressure-volume data determined from shock

studies into off-Hugoniot regions (1). Doran (6) has gone even

farther to show that quite reasonable representations of the

equations of state of solids can be obtained with F/v = constant.

In view of the limitations on r and Cv, it is unlikely

that the zero degree isotherms calculated using Eq. (2.4) and the

Slater or Dugdale-McDonald relation for r are physically reli-

able. Their principal virtue is that they provide a consistent

and reproducible procedure for determining a reference curve.

An alternative procedure is to calculate the isotherm passing

through the initial state of the Hugoniot. This avoids some of

the difficulties associated with extrapolating to 00K. It in-

troduces some new ones inasmuch as there is now no theory for
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calculating r. However, since the low temperature region is

eliminated, the assumption F/v = constant may be a reasonable

one. Then Eq. (2.4) becomes

P =Pi + b (E-Ei) (2.5)

EH= Eo + PH (vo-v) (2.6)

dEi (T o (Ap/T)v - pi)dv (2.7)

(bCvT o - pi)dv

where b = r/v = constant, Cv = constant, pi(v) and Ei(v) are

pressure and internal energy, respectively, on the T0 isotherm,

and subscript "H" refers to the Hugoniot curve. Setting p and

E in Eq. (2.5) equal to PH and E H and combining with Eqs. (2.6)

and (2.7) yields a differential equation for pi:

(dpi/dv) + bpi (1 - b(vo-v)/2)(dPH /dv)

+ bPH/2 + b 2 CvTo (2.8)

The solution of this equation is

pi(v) A exp (-bv) + bCvToB (2.9)

A f (v) - 4jI f0v)

B 1 - exp (b(v o-v))

f(v) (1- (b/2)(vo-v)) PH exp (by).
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Experience has shown that Hugoniot data for liquids and solids

can be fitted quite well by curves of the form

3
Ph(v) x n axn (2.10)

n-l

where x pv o - 1.

Equations of the form (2.10) have been fitted to shock

data on liquids and used to calculate pi(v) and Ei(v) from Eqs.

(2.9) and (2.7), respectively. The numerical results are used

in a least squares procedure to calculate the coefficients bn

in the equation for isothermal pressure:

3
p i =  b bn xn

n=l

where x = Pv0 -1 as in Eq. (2.10). The coefficients a n and bn

are given in Table I.
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2.3 Elastic Solids (G. R. Fowles)

The shock compression of quartz is of particular interest

because of its importance to geophysics, its wide-spread use in

shock wave studies as a pressure transducer, and because it rep-

resents a different class of materials from the more thoroughly

studied metals. In this paper we describe measurements similar

to those reported by Tackerle (15). The d,ta are in substantial

agreement; however, the recording techniques were somewhat dif-

ferent so that the present results* provide independent corrob-

oration, in most respects, of Wackerle's data.

In addition to describing the experiments and the results,

we examine the agreement between the uniaxial stress-strain data

derived from shock experiments and predictions based on finite

strain theory and the second and third-order elastic constants

measured by McSkimin, et al. (39), and Thurston, et al. (40).

From this comparison it is clear that shock-wave measuremexits and

low pressure acoustic measurements .are complementary methods for

evaluating higher order elastic coefficients.

In Section 2.31 we describe the experimental technique

and the experimental results; Section 2.32 gives a brief outline

of finite strain theory and its application to the shock experi-

ments. Conclusions are discussed in Section 2.33.

*These data were reported originally in the author's Ph.D.

thesis (48).
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2.31 Experiments

A. Experimental Method

In the experiments shock propagation velocities and associated free

surface velocities were measured in alpha quartz crystals oriented as X, Y,

or Z-cuts.* Shock waves of varying intensity were generated by plane-wave

explosive le.ses with or without additional explosive pads.

The experimental arrangement is shown schematically in Fig. 2.1. A

four-inch diameter explosive lens (and in some cases an explosive pad) was

cemented to one surface of a 1/2-inch thick, 5-inch diameter Dural plate. The

quartz specinens (usually two) were cemented to the opposite, lapped surface

of the plate. The specimens were accurately flat and polished; the tolerance

on crystallographic orientation was ± 10. The faces of the specimens in

contact with the plate were vapor-plated with aluminum to yield a reflecting

surface. Lucite mirrors, also aluminized on their inside faces were cemented

to the outer surfaces of the specimens at angles of 3 to 80. The edge of the

lucite mirror in contact with the specimen was, in each case, set back from

the edge of the specimen at least one specimen thickness to avoid interference

from edge effects. The X, Y, or Z orientation refers to the smallest linear

dimension and also designates the direction of shock propagation. The X-cut

crystals were measured in both the + and - orientations because of the large

differences observed in electrical experiments (41).

In some of the experiments an inclined lucite mirror was cemented

directly to the aluminum plate. Its function was to measure the free-surface

velocity of the aluminum to permit impedance-match solutions to the final

shocked statas (1).

*Synthetic crystals supplied by Valpey Corporation.
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~ALUM I NUM
QUARTZ PLATE
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Fig,2.1 Diagram of experimental asembly
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Th., angles of the inclined mirrors with respect to the quartz surfaces

-e mieas.,red after assembly by mounting the assembly on a mill table and

c;servir.J with a telescope the superposition of a cross-hair and its image
.ef:ected alternately in the quartz and lucite surfaces. The angles could

t'.L be nzasured to a precision ef 0.1%. Some aifficulzy was encountered in

keeping t..a lucite mirrors extremely flat. It was necessary to allow angular

deviations of up to ± one minute of arc. In each case this amounted to less

than 1/2.; of the total angle.

In order to obtain the desired accuracy in shock velocity, t 1%,

;ood contz"ct (0.0002 inch) between the inside edge of the inclined mirror and

trie outer quartz surface was required. A c)ntact such that no transmitted

light was visible was considered satisfactory.

,n order to avoid complications due to air shocks the assembly was

evacuated prior to firing to a pressure of less than 0.05 torr. A hemicylindr

section o: "ucite tubing cemented to the aluminum plate served as a vacuum

chamber.

A pF otograph of an assembly, without explosive, prior to firing is

shown as Fig. 2.2.

The assembly was viewed through a slit of a rotating mirror streak

camara aligned along the centers of the inclined mirrors in the direction of

maximum inclination (i.e., the direction in which the mirror angles were

previously measured). The slit width was 0.05 mm; the time resolution,

dezermine from the slit width and the camera writing speed (3-.41 uph3s), was

approximately 0.01 1s.

ll.minacion was provided by an explosive argon light source consisting

of a 4-inca diameter, 18-inch long cardboard tube with a one-inch pad of

comr.ssiticn C-3 explosive at ene end. A ground glass diffusing screen was

placed over the other end and argon was flowed through the tube continuously.
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VACUUM CHAMBER\ LUCITE MIRRORS

Ca

QUARTZ PELLETS \ ALUMINUM DRIVIER PLATE

Fig. 2.2.--Photograph of Experimental Assemnbly



The light source explosive was initiated simultaneously with the plane wave

lens of the experimental assembly; the resulting strongly luminuous shock in

the argon produced a bright reflection from the aluminized surfaces a few

microseconds before the first arrival to be recorded in the quartz.

A drawing of the complete arrangement as it appeared before firing is

shown as Fi.,. 2.3.

An abrupt change in intensity of the light reflected from the aluminized

surfaces of the assembly showed arrival times of the shock fronts and free

surfaces upon impact with the mirrors.

A streak camera photograph taken in this manner is shown in Fig. 2.4.

The two specimens in this shot were Z-cut; the upper one was 1/8-inch thick

and the lower 1/4-inch thick. The final pressure was approximately 200 kbar.

At time, To , the reflection from the rear (aluminized) face of the quartz

extinguishes abruptly as the shock arrives at the quartz-aluminum interface.

At time, TI , the first shock arrives at the quartz free surface. The traces

are relatively smooth until the change in slope caused by the arrival of the

second shock at time T2 ; thereafter the traces are slightly irregular. A

slight curvature to the trace of the first shock can be detected. This slowing

up of the free-surface is due to stress-relaxation effects, as was pointed out

by Wackerle(15).

For reliable results the point of collision of the quartz free surface

with the inside surface of the mirror must travel with supersonic velocity

with respect to both quartz and lucite (non-jetting configuration). Consequently,

the initial mirror angle must be less than approximately

a max = sin "1 uf

where uf is the quartz free-surface velocity and Us is the larger of the two

shock wave velocities in quartz and lucite. This criterion restricted the

usable mirror angles to less than about 8*.
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CARDBOARD TUBE EXPLOSIVE LENS
EXPLOSIVE GROUND

L I G H T /A L U M IN U M Q U A R T Z
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SL IT D IRECTIO N 

G -L R O 3 S -Z
RECTIONGA-PLTR-O361-42A

Fig. 2.3.--Diagram Showing Relation of Experimental
Assembly, Light Source and Camera.
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B. Data Reduction

The shock velocities were determined from distances measured on the

film and the known writing speed of the camera. The velocity of the second

shock requires corrections because of the motion of the free surface and

because of the interaction of the second shock with the reflection of the

first shock. The first of these is straightforward and a simple derivation

gives:
d + Ufl(T 2 - TI) (2.11)

U2  T2 - To

where d is .he initial specimen thickness, ufl is the free-surface velocity

due to the first shock, and TO, TI , and T2 are the arrival times of the shock

fronts as shown in Fig. 2.4.

The correction due to the interaction of the second shock with the

reflection of the first requires knowledge of the state (and constitutive

relation) of the quartz in the region between the two fronts and cannot be

made unequivocally. However, the assumption that the material is stressed and

relieved only elastically by the first wave leads to a large correction and

unreasonably high compression for the state behind the second shock in shot

No. 7394 (Table II) The results from that shot are the most sensitive to this

correction because the second shock was relatively slow with respect to the

first. For the other experiments the correction is smaller and does not

appreciably affect the conclusions.

It should be emphasized, however, that the result for shot 7394 implies

that an irreversible change in the material properties occurs between the two

shock fronts. This conclusion is consistent with the observed relaxation of

the state of the first shock. It is not consistent with an assumption of

conventional elastic-plastic behavior.

Because of the arbitrariness regarding the interaction correction the data

are here reported without such a correction. The correction used by WACKERLE (15),

is plausible, but does not significantly change the data of this paper.



Fig. 2.4.--Streak Camera Photograph Showing Shock
Arrival Times and Free-Surface Traces. Shock No. 7394.



19

w Nl 0% -4 m W OUa .4C '

I- (.4 %'C0 C (4 '44 * '

fU I- t'. r. .- .~ .O . . . CO

-4 t - o 0 CA" .h ci CW 0! 0%
0 0- t-t m0 ing t0 m' C

-q~c 4 4 - .4 .4 . 4(4 C4 en cr 4-

0 o0
U) - a

0f NO CO COl..4 I O
*UC4. 0 It9 9' M C - -.4 r-' %~. C. 0

%.> tf > -00 w

a4 W %! n W-1 in' - t

m2 CO a, o% 0 In) %0 -4 (n OC4 vd) 0 VU %n 0% C 0'4

~ -f ('4 en -I - (4 .4 C4C m O VOC 0 m -e c'

0n U) ,40U. 0

M * n- C (4 'a C14 -I' ('4o coC 'a -.a-
2 I.It C 0% R S V 1 8! -)*

-.l -! l -!
I-I~% U% V'0C 4s-C O t Ol h . O .

(n co C ') 4 It) -4

U C V) ~ It) C O C O 4 C O ' C >/ It) - ) C

w U!.00 o! Ci 'It 0 Ci % L9 Ui . V, C C1
C. C; ) C> 0n It) 'a o o- 'at o'at- C ; t- C- 0

E4'

-1 0 co .o 04 0) at m. 0.4 . .. 4 - UM 00

00
Cl '0 0l C.,~% V CO! .4! Ci' 'a! li CO

V) t- 04 CO) %nC %n t- %0( - 0 %

4. oi C4 Il I C

'S -I_ -c

It)~V C-4V !) '



20

T:.e free-surface velocities were calculated from the measurao slopes

of the traces by means of the relation:

U tan ' (2.12)
uf: F tan y'J

%,here c' is the effective angle of the inclined mirror with respect to the

qLartz s.rface, y' is the angle of the trace on the film wi' n respect to the

space ax;s, M is the magnification or ratio of distance on "The film to the

correspo.-ding distance on the shot, and F is the writing spaed of the camera.

.he para.eters, ' and y', of this relation are not identical to their nominal

values, -- and y because of ilt of th.e incident shock and s.; t departures

from ort.ogonaiity of the slit and sweep directions. The corrections are

civen by

tan c' = tan a (I + G'/tan y)

and

tan y' = tan y sec 6 (0 - tan y tan s)

where c is the angle of the iiiclined mirror with respect to the qua.%z surface,

61 is the angle of shock tilt as mtasured on the film, 4 is the angle of the

slit wit*. respect to the normal to the sweep direction, and y is the angle of

the trac-; wit6h respect to the slit direction (Fig. 2.5).

The observed shock wave velocities and associated fr.e-surface

velCocitis are given in Table If,along with the initial conditions for each

experiment ad ucher quantities derived from the measured velocities.

T..e experimental precision, based on assembly tolerances, camera

rasoluti.;n, and film reazding errors is estimated to be 11% in shock

ve~ociTy and ±5% in free-surface velocity. Most of the error in free-

surface velocity is due to uncertainty in reading the angle y'(- l).
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MIRROR

SHOCK
ARRIVAL

a TRACE FREE-SURFACE
TRACE

SHOCK z SWEEP z
FRONT j DIRECTION

U e
TIME

SHOT FILM
GA-PLTR-003.61-44A

Fig. 2.5.--Definition of Parameters Used in Adjusting
Streak Camera Data.
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C. Experi-antal Results

The observed shock velocities are plotted as functions 3f the shock

particle vocities (taken to be one half the free-surface velocities) in

Fig.2.6. Data by WACKERLE (15) and GREGSON (42) are also shown. The

data of Wackerle are his "average" values, shown for compariscn because they

were determined or the same basis as the present results. The solid curves

are predic*.ad from finite strain theory, tobe discussedinSection 2.33.

The agreement among the experimental data is seen to be gener.lly

satisfactory. The only significant disagreement occurs for Z-cuz crystals

at a particle velocity of 1.23 nm/ls. The source of this discrepancy is

unknown. A shot fired by Gregson to remeasure this state acrees better with

tre present data*. However, if the present data are correct (rather than

W'ackerle's', some anomalous behavior is noted in the pressure-volume plane,

as discusscd below.

The stress-compression states were caiculated from the measured

velocities by means of the Rankine-Hugoniot jump conditions (1):

uI - u0
V/V0 = 1  -

aI - C0 = Po(UI - Uo)(Ul " UO)

In these equations, V is specific volume, u is partic,. velocity,

U is shock velocity, a is stress normal to the shock front, and p is

density. Subscripts 0 refer to the state ahead of the shock; subscripts I

refer to t.:e state behind the shock. Velocities are with respect to

laboratory coordinates. Figs. 2.7, 2.8, and 2.9 showthe results inthe stress,

specific-volume plane for X, Y, and Z crystals respectively. Bridman's

4 *Shown in .ig. 2.9.
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Fig. 2.6.--Shock Velocity as Function of Particle
Velocity. Curves labelled 3rd, £;th, are fits based on zero-
pressure elastic constants up to 3rd and 4th order respec-
tively for X and Z-cut crystals.
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Fig. 2.7.--Stress-Volume States Resulting From Shock
Compression of X-cut Quartz. Solid curve is Bridgman's
Hydrostatic Data. Curves Labelled 3rd, 4th, are fits
based on zero-pressure elastic constants to 3rd and 4th
order.
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Fig. 2.8.--Stress-Volume States Resulting From Shock
Compression of Y-cut Quartz. Solid curve is Bridgman's
Hydrostatic Data.
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Fig. 2.9.--Stress-Volume States Resulting From Shock
Compression of Z-cut Quartz. Solid curve is Bridgman's
Hydrostatic Data. Curves labelled 3rd, 4th, are fits based
on zero-pressure elastic constants to 3rd and 4th order.
The curve labelled X represents the tangential stresses,
calculated from constants up to and including 3rd order.
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hydrostatic curve based on measurements to 98 kbar is shown for comparison

(43). The curves l belled 3rd, 4th, are fits based on low

pressure acoustic measurements and finite elastic strain theory (Section 2.33).

These plots show clearly the important features of the compression,

namely:

(0) extremely high amplitude elastic waves, up to 150 kbar

in Z-cut quartz

(2) loss of rigidity above the elastic limit, as shown by

the agreement of the higher pressure shock data with

extrapolation of the hydrostatic data

(L) lack of a unique value for the Hugoniot elastic limit.

This behavior implies that yielding is not due to dislocation motion

as in a r.tal, but is analogous (or identical) to fracture. It is shown

below thaz; the shear stresses behind the elastic shocks approach the theo-

retical sear strength of the crystal lat .ce.

T,.e range of the present data is not sufficient to show clearly the

transformation to stishovite, as indicated by Wackerle's higher pressure

e.aasuremants.

2.33 Finite Strain Theory

Because the strains behind the elastic shocks are relatively large,

it is of interest to examine the agreement ot the data with predictions of

finite szrain theory. Predictions are made possible by the work of

THURSTON (40) and McSKIMIN (39) and their co-workers on the third-order

elastic constants of quartz. Such comparisons should indicate the extent

to which third-order constants are sufficient to describe the stress-strain

behavior at strains of the order .f 5 - 10%. The constants are determined

from precise acoustic measurements at strains of less than 0.1%. ANDERSON (44)
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has already shown that the second and third-order constants alcne give

reasonably good predictions for hydrostatic compressions of up to about

:5fo in quartz, provided the constants ara used in the Murnaghan logarithmic

equation or the Birch equation of state.

Discrepancies between the observed a;,d predicted stress-strain

curves can ze used alternativeiy to evaluate fourch and higher order con-

stants, or :o examine the effects of adopting alternate definizions of

strain, as suggested by KNOPOFF (45). Finally, to the exten' that the

third-order constants give adequate predictions the stresses tangential to

the shock fronts can be calcuiated from the observed stresses -.ormal to the

fronts and, hence, the shear stresses sustained (momentarily) by the crystal

can be deduced.

A. Finite Strain Fundamentals*

Denote the coordinates of a mass element in an initial (unstrained)

coordinate system by ai, and the coordinates in a final (strained) system

by xi , with the transformation given by,

x i = xi(t, a1 , a2 , a3 ), i - , 2, 3

where (2.13)

a. = x.(t O, a1, a2, a3

and t0 is a reference time. The xi are thus Eulerian, or spatial, coordinates

and the ai Lagrangian, or material, coordinates.
For i--h- transfomation o- can derive an expressin fur the ratio of

specific volumes:
axi

V/V0 = J = !- (2.14)

*This section is a summary of portions of the theory as presented by

THURSTON (46).
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J is thus the determinant of the Jacobian of the transformation, or the

"functional determinant."

The strain, Njk, is defined, somewhat arbitrarily, from the difference

in the squares of the lengths of line elements by:

2Njk da. dak = dxi dxi - dai da.

(2.15)
ax xi

Njk = 1/2 (ax a - 6jk)

Here and in the following the Einstein summation conven'ion for

repeated subscripts applies. 6jk is the Kronecker delta.

Expanding the internal (strain) energy in a power series in the

strains, one obtains (at constant entropy):

Po[E(N,S) - E(O,S)] = 1/2 csjkl N N + 1/6 c N N NCijk NijNkl ijklmn Ni kl Nmn

(2.16)
+ 1/24 Cijklmnpq i Nkl Nmn Npq +

In this expression the c . . represent the second and higher

order isentropic elastic stiffness coefficients. The first-order term is

missing since the reference state is considered to be one of zero stress and

strain.

We now define quantities, called thermodynamic tensions, by

( aE (2.17)
13 s

In terms of these quantities the elastic constants ire

C s  (!Li) = 32E
ijkl 3Nkl s 3Nij 3Nkl

w k

. _
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and similar*y for the higher order coefficients. Consequently.

PO dE = tij dNij (dS = 0)

Finally, the equilibrium (non-dissipative) components of the stress

are obtainec. from the thermodynamic tens". j the relations,

xk axm
caj a ti  " (2.18)

The above fzrmulas provide iS-tropic constitutive relations in terms of

the elastic stiffness coefficients. Other forms C constitutive relations

can, of course, be derived in a similar fashion.

Low pressure acou.stic measurements yield a mixed third-order constant

of the form:
BCS.

Cijkmpq 
aNpq T

where the sLbscript T means the derivative is taken at constant temperature.

The corresponding purely isentropic constant is given by:

cijkmpq kmpq + 0 t) Ckmpq 'uv[Cijkmrs 'rs - (3T)t (2.19)

where C t is the specific heat at constant tension and the auv are thermal

expansion coefficients,
(aNuv%:v (

In view of the symmetry of the stress and strain tensors, the number

of subscripts can be reduced by adopting the following convention:

11 1 32 4

22 2 31 5

33 3 21 6

This convention is employed in the following.
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S. Application to Uniaxial Strain in Quartz

We assume the deformation to occur in the X direction only. The

coerdinate transformation is accordingly,

x= (I -y)a

x 2  a a2

x3 =a 3

Formulas (2.14X.,r (2.13) then give:

J vI'. : 1 - y.

N1  y( - 1)

[E - E0 ] 1/2 c, N,2 + 1/6c 1 NI3 + 1/24 cI  N 4 +

tk = Clp N1 + 1/2 Cllk NI2 + 1/6 Clllk NI3 + . . . (k = 1, 2 . . . 6)

or writing out the components:

t i = cll N1 + 1/2 cllI NI2 + 1/6 clll NI3 +

t2 = c12 N 1 + 1/2 c1 12 NI2 +.

t 3 = c13 N1 + 1/2 c113 NJ2 +

t 4 = c14 N1 + 1/2 c114 N12 + .

t 5 = c15 N1 + 1/2 c115 N1
2 + .

t6 = c16 N1 + 1/2 c11 6 N1
2 + .
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The stress components are then:

al = I- Y)tI  04 = (1 -y)-I t 4

a2 = ( -Y)-I t2  5 = t 5  (2.20)

a3 =( - y)-: t3  6 = t 6

For alpha cuartz compressea in the X-direction the above formLlas are correct

as they stz.nd. For compression in other directions the proper translation

of subscripts must, of course, be made to indicate the correct constants.

The above fo'nuas have been applied to uniaxial compression of X

and Z-cut c uartz, using the second and third order constants determined by

McSKIMIN, ct al.(39) and THURSTON, et al. (40). Values of these con-

stants arp shown in Table III.

The resulting curves are plotted inFigs. 2.6, 2.7 and 2.9. Thevaluesof

shock velocity, Us and particle velocity, up, of Fig. 2.6 were obtainedfrom

the Hugonict relations:

a 1/2
Us = VO(V)

and

up = [G(VoV)]
I/2

The predictions are seen to fall outside the estimated error of the

shock daza, indicating that the fourth-order term contributes significantly

.Y k U 61 L' 1 . 1t

be thought that the discrepancy is due in part to the use of isentropic

second-or-'.r moduli and mixed isentropic-isothermal third-order moda." to
predict Huoniot states, for which internal energy is greater than for

isentropic compression, a straightforward calculation shows that the errors
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TABLE III

Elastic Moduli of Quartz*

Value
Modul us (1011 dyne/cm2) Rcference

2nd-order

Cll 8.757 (39)

cl12 0.704 "

c13 1.191

c14 -1.804 "

c33 10.575

3rd-order

Cill -21.0 (40)

C112 -34.5 "

C11 3  1.2

C11 4  -16.3

c133 -31.2

c3 33  -81.5

4th-order

C11 11  1705 Present Work

c3333 1849

*T.-e second-order constants are isentropic, the third-order

are mixed isothermal, isentropic constants, and the fourth-
order ae Hugoniot constants, (see text).

constant use d is appropriate for open circuit com-

pression, i.e., at constant electric displacement, D.
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tnus producc.. are negligible.

The c fferences bttween the purely isentropic third-order moduli and

tr.e mixed n..uli given in Table IIIcan be calculaLed fror" Eq. (2.19)

The teimperature cc-fficierits of expansion, as given by XSON (47)

are:

LA3 = 7.8 x 10-6, al = 02 = 14.3 x 10- 6

and the expr.;ssion, due to Westrum, reported by McSKIMIN (39) for the

specific hea: is:

C (T) = Cp (Tc) + (T - T c)Cl + (T + TC) 2 C2 + (T- TC) 3 C3Cpp

(77.4°K < T < 298°K)

w~here

C = 1900K

Cp (Tc) = 5.189 x 1O6 erg/g*K

C1 = 2.444 x 1O4 erg/g°K

C2 = -4.126 x 101 erg/gK

C3 = 5.327 x 1O"2 erg/g0K

taking

T = 25°C, Po = 2.6485 g/cm3 , Cp = 7.42 x 106 erg/g°K,

and estimatirng (-) from McSkimin's data taken at 25C and -195.8 0 C to be

of the order of -1 x 108 dyne/cm2 °K we find the difffcrence give.n by Eq. (2.19)

for the c3 3 3 constant, for example, to be of the order of 5 x ..3 dyne/ct2.
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T.his is four orders of magnitude 16ss than c333. Hence, although the above

calculation is hardly accurate for the cases under consideration, only

Pathologicl behavior of some of the thermodynamic variables, a, Cp or
S

(-T--) cc.'ld significantly influence the results.

The difference between Hugoniot and isentropic compressions can also

be showa t3 be negligible. For compression in the Z direction to a relative

volme of 3.9 the strain er.ergy given by Eq.(2.16)to terms of third-order

is 2.5 x 139 erg/gm. The internal energy on the Hugoniot is 2.8 x 109 erg/gm.

*aking GrL..aisen's ratio, r, to be approximately 1*, the stre.s diffarence

due to this difference in thermal energy is less than 1 kbar--very much less

than the c.served stress difference, and within the experimen-al scatter.

C. Fourth-Order Constants

ThE discrepancies between the oberved data and the pr.dictions based

oni low pressure data can be used to evaluate fourth-order coefficients. This

was done fOr X and Z-cut crystals to yield the values of clll- and c.- 3 3 shown

in Table J:. The procedure followed was to f.t differences between the data

and the third-order predictions with a straight line. Because of the large

differences in pressure range and experimental precision, this method proved

to give an adequate fit to both the high and low pressure data. No adjust-

ment of the second or third-order constants was necessary.

The fits obtained using the constants up to fourth-order are shown in

Figs.z6,27, and9. Note that for X-cut crystals the slope of the curve in

+tc shc velo d t-artile- o plane (Fg.6) is always negative when

constants only up to and including third-order are used. This would imply

lE RSON (44) gives a value of 0.746 for hydrostatic co.p.,ession. Calcu-lated for tne individual components with the assumption Cp = Cv gives
,11 := r22 = 1.17; r33 = 0.53.
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:m;- a Thock wive in -i.Ms air- tion is uns-cable an~d Ipreads as i-c t&..

iiithe a..ditiol of ~afourth-or~er constant, howaver, the slope is always

sligjhtly positciva. Thus, the addition o-F -he -Couith-order terml resules ir. a

quelitativt! difference in pradicted behavior.

The J. - U pplot for Z-cut crystals is nearly a straight line; hVc4:-ever

it is easi .j show..n t~- a stra4i-t line doa-s not accurazeiy fi c the slope a;

zero, particle velocity. Thus the straight Ior,-- rel-ion often assurni.d in

shock stud-las is only an app.-aximation for quartz shocked in elthe~rl the X or

Z directiof.

It -*s also easily shown that the Murnaghaz form of equation of szzte,

i ,e fi ttec 'co the correct slope and c-urv..ture of'te V curve, (utilizing

second and third-order constantCs), does not accurately fit the higher prassure

data and is therefore an approximation only.

These statements can be illustrated by examaining the derivatives of

each functi*on. Expanding the relation for o, in Eq. 2.20 in terms of y

yields:

a cl, y[i - 1/2 (3 + .~-ly+ 1/6 (3 + 6 ily + )(2.21)

A linear relation between shock and particle velocity of the form

V5  a + bu

Can he wrirten, hy meanq of the Rankinp-Huoorsiot jumrrp conditions, al;

where p0is initial density, and can be expanded to give

a=P0 a2 Y[l +2by +3b2 v2 + j(.2
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Finally, the one-dimensional-strai, analogue of the 1urnaghan equation

A (Vo/V) B - I]

can be expanced to give

: A y[l + 1/2 (3 + l)y + 1/6 (B + 1)(B + 2)y2  (2.23)

Equating the derivatives up to second-order, we have

C = Po a2 = A (Ist order)

CI-
-(3 + -C-' ) = 4b = (B + 1) (2nd order)

C1l

Evaluating t.e parameters A, b, and B from these equations gives

X-cuz: A = p0a
2 = C1 = 8.68 x I011

b = -0.15

B = 1.6

Z-cut: A = pa 2 = c33 = 10.575 x IO11

b = 1.177

B = 3.71

With these vlues all three expressions have the same slope and curvature at

zero stress. The predicted stresses for various compressions are shown in

Table IV.

That the closed form expressions are approximate is hardly surprising

inasnuch as zhey are both empirical with no known physical basis. Their

value is tha; they both are two-parameter functions that have physically

reasunable snapes, and they are therefore convenient for interpolation and

extrapolation when experimental information is lacking.
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Kno-off's suagestior, that, because of te arbitrariness in the

" $dcefinition cf strain, =ternative definitions may prove more suicabe for

:aprasenti:- constitutive r~lations would seem zo bt worthy of further

consicara:ion. However, scme guidance from physical reasoninc, is necessary

to provide any degree of generality to a given definition.

TABLE IV

S tress-,\bar

x zI, Z

V/Vo t Lir.er Finite Lc;.1 ar FitE
:rnaghar. LS - p Strain Miur'nahan ' U p -p n

0.99 8.6 8.8 8.7 fl 10.7 1C.8 10.8

0.98 17.2 17.5 17.5 21.8 2:z.2 22.3

0.97 25.8 26.3 26.5 32.0 3.0 345

0.96 J 34.4 S5.0 35.9 47.1 45.5 -7.

0.95 42.7 43.7 45.7 60.3 5S.7 61.5

0.94 51.2 52.5 56.1 1 73.9 {7:.5 73.5

0.93 59.0 61.3 67.1 87.9 86.0 92.6

0.92 67.9 70.0 78.9 103.4 I0$,.0 11.7
T rI "-

0.91 76.2 78.8 91.4 ! 119.2 119.0 127.9

0.90 84.4 87.6 104.7 136.4 137.8 147.3
__________ ___________ I _______________ ________.__
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2.34 Conclusions

The b.havior of quartz under shock loading conditions is very much

i-ferent from that of mctals, as was pointed out by Wackerle. The elastic

precursor waves are an order of magnitude higher and, corresponingyj, so

a-e t',e shez..- stresses. The curve labelled X in Fig. 2.9is the stress co-

Ponent (base- on constants to third-order) parallel to the shock front wvhen

the shock propagates in the Z direction. The maximum stress di-=ference is

seen to exceed 100 kbar. This is of the same order of magnitude as the

effective sh.:r modulus; consequently, it appears that quartz m3mentarily

exhibits theoretical yield strength under dynamic conditions.

That cohesion of the material is destroyed ui-zn yielding is incdicate

by the close agreemen he second shocked states wi'zh 3ridgm-n's hydro-

static data. There is no indication of a residual shear stress, in contrast

to the case for metals (49).

The pronounced stress relaxation shown by the observed variation in

amplitude of the elastic waves and the apparent dependence on tne final

pressure is quantitatively larger than for metals, although similar quali-

tatively.

Evidently shock wave methods provide a valuable supplement to low

pressure accjstic measurements in determining higher order elastic constants,

at least for ceramic type materials which sustain large amplitude elastic

waves. Shoc. waves are inherently more suitable for higher pressure

measuremeits than are acoustic methods, but are iess suiLdble f'r the hi,'"

precision, "?w pressure measurements required to evaluate second-order con-

stants. To what extent shock wave techniques are capable of measurir.2

coefficients other than the principal coefficients, i.e., those directions

for which the elastic wave is purely longitudinal, requires additional study.



III. PHASE TRANSITIONS

3.1 Introduction

Solid-solid phase transitions are classified as first

order if a volume discontinuity exists at constant temperature

and as second or higher order if discontinuities exist only in

various thermodynamic derivatives. We are concerned here only

with first order changes. If such a change occurs reversibly,

the transition region is characterized by the equality of the

Gibbs energies of the two phases. This leads to the Clausius-

0lapeyron equation which relates changes in pressure and tem-

perature in the mixed-phase region:

dp/dT = AS/Av (3.1)

The consequences of this relation to shock wave propa-

gation have been developed in some detail in Reference (7). One

of the important results is a relation between dp/dT and the

slope of the Hugoniot in the coexistence region (8):

(dp/dT)2 + A(dp/dT) + B = 0 (3.2)

where

A =2al/o-0 I )

B = Cpl/TvI(OM-0 1 )

0 = - (i/v)(dv/dp)M = Hugoniot

compressibility in mixed phase

41
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= isothermal compressibility

I = volume expansion coefficient at

constant pressure

Cpl= specific heat at constant pressure

Subscript "1" denotes evaluation in phase one

at the phase boundary.

Measurements made on bismuth, iron and quartz allow

dp/dT to be estimated from Eq. (2.2). results are entered in

Table V where static values are also given for comparison.

Values of a, and Cp, at atmospheric pressure and room tempera-

ture were used in the estimates, and I was estimated from

shock measurements.

TABLE V

The Coefficient dp/dT from Static and
Shock Wave Experiments

Sample

Type of Experiment
Bismuth Iron Quartz

Static measurements -.05 (9)* -.065 Q.Q* .018 (l)*

Shock wave measurements
(calculated from
Eq. (3.2)) -. 067 ±.045(7Y -. 29 ±.115(7)* .225 (7)*

*Pefer to sources in "Literature Cited."

From the table it is apparent that shock wave data for iron and

quartz do not agree with those of static experiments. The

errors in shock measurements shown in the table are estimated

upper bounds based on rors in measurements of 0M" Therefore
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it is very difficult to attribute the discrepancies for iron and

quartz to experimental errors in determining the slope of the

Hugoniot at the phase boundary. Conceivable reasons

for the discrepancies are:

1. Inaccuracies in thermodynamic data (N and Cpl) at

high pressures. Values used in the preceding table

are those at atmospheric pressures.

2. The experimental Hugoniot curve in the coexistence

region is not at equilibrium. There may be some non-

equilibrium rate-dependent effects influencing the

measurements.

In order to explain the discrepancies of Table II,

either of the coefficients el or Cpl must exhibit a two- to

four-fold difference between its value at high pressure and that

at atmospheric pressure. Information for estimating such dif-

ferences is not generally available. Measurements by Bridgman

below 20 kb show changes of not more than 20 per cent (12). It

seems unlikely that changes of the required magnitude will occur

at these higher pressures.

If there exist rate dependent effects in phase transition,

we should be able to observe other dynamic evidence in wave prop-

agation. For example, if the phase transition exhibits a relax-

ation process, then we expect a decay of the first shock wave

with travel distance. This arises because the delay in transi-

tion allows a mass in the first phase to momentarily support a

higher pressure than its transition pressure; i.e., the mass

exists in the extended metastable region (Fig. 3.1). This is

similar to stress relaxation of an elastic precursor.
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Extended region
for phase 1

p

Extended region
for phase 2

T = constant

V

Fig. 3.i.--Extended Metastable Region
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There are two experimental observations of the decay of

the first wave for iron (13,14).

For e-quartz Wackerle (15) did not observe v two-wave

structure corresponding to the stishovite transformation. This

may indicate that the transition is neither rapid nor complete.

In order to study transient effects in shock wave prop-

agation, we must solve the flow equations. In Lagrange coordi-

nates for plane, one-dimensional, time-dependent flow these are:

1. Newton's second law

po(bu/?t)h + (B(p+q)/ h)t =3 (3.3)

where h = Lagrangian space coordinate

t = time

P0  initial density I/v

q = viscous stress

Introduction of q makes the flow continuous through

the shock front and the jump conditions unnecessary.

2. Continuity equation

po(bv/t) - bukh 0 (3.4)

3. Energy conservation

Elt + (p+q) (v/at) = 0 (3.5)

4. Constitutive relation

In order to solP.e the above ditferential equations in

tour independent variables (p, v, u, E), constitutive

relations are required. Ignoring solid rigiaity, which
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should play a secondary role in the problems considered

here, these will consist of an equation of state, p =

p(v,E), an expression for q, and, in the mixed phase,

a statement of the kinetics of transition.

3.2 General Constitutive Relations
for Two-Phase Flow

We assume the following conditions to apply n a small

mass element when both phases coexist:

1. Equal pressure exists in both phases.

2. Temperatures of thetwo phases areequal, i.e., the
heat released by the transition is instantly re-
distributed.

3. Particle velocities are the same for each phase.

4. No surface energy is associated with the interface
between the two phases.

5. No heat is transferred between mass elements by
conduction.

Conditions 1 and 3 insure that Eqs. (3.3)-(3.5) apply

for the coexistence region as well as for a single phase. The

only change needed is a reinterpretation of v and E. This can

be done as follows:

Regardless of phase transition, the total mass of a

given Lagrangian volume is conserved. Therefore, if

we denote by v the total specific volume of the mix-

ture of two phases, then from condition 3 above, v

satisfies Eq. (3.4) on p. 3.4. But the variable v must

also satisfy the following relation in the coexistence

region:

v(p,T) = (l-1) vl(p,T) + av2(PT )  (3.6)

1 ~ v2 (pT
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where a is defined as the mass fraction of the second

phase and vi is specific volume of the i-th phase at

p and T.

Conditions 4 and 5 imply that the total internal energy

of a mass element is the sum of the internal energies of the two

phases:

E -- (1-a)E 1 + ctE 2  (3.7)

where Ei is specific internal energy of the i-th phase

at p and T.

In order to obtain a suitable constitutive relation when

the phase transition has a finite reaction rate, we assume first

that the p,v,E surfaces in each phase can be extended smoothly

into metastable regions overlapping the equilibrium region of

mixed phase, as in Fig. 3.1.

Then we have the following functional forms:

v I = vl(p,T)

v 2 = v 2 (P,T)

El = IEI(p,T)

E 2 = E 2 (P,T). (3.8)

Then from Eqs. (3.6) and (3.7) we have

dv = (l-c)dvI + cdv 2 + (v 2 -vl)doe (3.9)

dE = (l-)dE I + cdE2 + (E 2 -El)di. (3.10)

From Eq. (3.8):

dvi = (vi/AT) pdT + (8vi/ P)Tdp (3.11)

i = 1 or 2.
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With E a function of T and p we have:

dE i = (Ei/;T) pdT + (Ei/AP)Tdp

= (Cpi - p(;vi/T) p)dT - (T(;vi/T)p + p(Bi/ P)T)dP

(3.12)

i 1 or 2

where Cpi= specific heat of i-th phase at constant pressure.

Substituting (3.11) and (3.12) into (3.9) and (3.10), we get

dv = 1 dp + mldT + nlda (3.13)

dE = £2 dp + m2 dT + n 2d a (3.14)

where

1= (1-a) (vl/?p)T + i( v 2 /' 1))T (3.15)

m = (1-a) (Av]/T)p + a(Av 2 /AT)p  (3.16)

n = v2 - v, (3.17)

12 = -(i-,y) (T(Av 1 /lT) + p(Avl /p)T)

- a (T( v 2 /AT)p + p(Av2/AP)T) (3.18)

m2 = ('-a) (Cpl - p()vl/AT) p ) + a(C p2- p(?v 2 / T) p )

(3.19)

n 2 = E 2 - E1  (3.20)

and

dE -(p+q)dv from Eq. (3.5). (3.21)

Therefore, in principle, (3.13) and (3.14) can be solved for dp

and dT if da' is given.

Now we assume the following relaxation
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relation whose derivation is the subject of the next section,

da = f(v,T,a)dt. (3.22)

Then substiLuting Eqs. (3.21) and (3.22) into (3.13) and (3.14)

and solving for dp and dT, we get

dp = F/G (3.23)

dT = -M/G (3.24)

where

F = Lm2 + ml(piq~dv + (mln2 -m2nl) f(v,T,of)dt

M [ 2 + Al(p+q)Jdv + ( 1in2- 12nl) f(v,T,o)dt

G = Zim2 - mlA 2

In Eq. (3.8) it is assumed that El and E2 are known

functions of p and T. These can be calculated by integrating Eq.

(3.12) along two paths, provided specific heats are known:

1. Integrate over T at p = 0

2. Integrate over p at constant temperature, T.

Then

T d 0

where

Q = T(vi/ T)p + p(;vi/ p)T

i = 1, 2

Ei = specific internal energy at absolute zero
3. Kelvin and p = 0 (this is zero-point energy),
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and

C 0 - specific heat capacity at zero pressure.

In summary, the generalized constitutive relations now

consist of:

I. Equations of state

v i = vi(pT)

2. Specific heat capacities

C pi = Cpi(p,T)

3. Zero-point energy difference

E00 E00

1  2

4. Relaxation relation

dc/dt f(v,T,a)

5. Artificial viscosity, q.

To complete the above description we must find a relaxation

relation and an expression for q.

3.3 Irreversible Thermodynamics and

Phase Relaxation

This section is concerned with the mechanism of phase

transformations in the solid state. It should be possible to

describe the mechanism of phase change in solids in terms o -
4Y%.-eratC4 forccs .by use of: kinec theory. AcLually, because

of the problem's complexity, no such quantitative description

has been achieved. However, very successful phenomenological

theories for the kinetics of phase change have been devel-

oped (16,17,13,19). Such theories are of two kinds, known as

I -- -r . ... .



51

nucleation and growth processes and martensitic transtormations.

This nomenclature is rather unfortunate, as pointed out by

Christian,because growth trom nuclei also occurs during mar-

tensicic reactions.

In nucleation and growth processes a new phase grows

from critical nuclei at the expense of the old phase. The re-

action proceeds to completion by a slow migration of the inter-

phase boundary, the velocity of which varies markedly with tem-

perature. Most atoms have different neighbors in a new phase.

On the other hand in martensitic transformation the reaction

takes place by coordinated atom movements (e.g., shear-like),

and atoms have the same naighbors after transformation. The

latter is often observed in rapid cooling of alloys.

The basic model for describing nucleation and growth

phenomena is based on the following conditions:

1. Steady state reaction

2. Isothermal and isobaric process

3. Thermal fluctuations as driving force

4. Boltzman's law for the relative probability of

different energy states.

The expression of this theory is:

1. Nucleation

I (nucleation frequency)a exp(-AG*/kT)

where AG* is defined to be the critical net free

energy cThange on forming the nucleus of the new

phase.
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2. Growth

There are many expressions for the growth law. An

often used form is:

x = 1 - exp(-ktn)

where x = the volume fraction transformed

k = a complicated function of the nucleation
frequency I

t = time

n = constant of magnitude 3 to 4.

The principal difficulties in applying this model to the shock-

induced transition are the conditions imposed in deriving the

rate equation. In a shock front the situation is neither iso-

thermal nor isobaric, nor is it steady state.

A description of the nucleation of martensitic trans-

formation is given (20) for an athermal case (e.g., quenching),

but the result is less conclusive than that for a nucleation

and growth process. This transformation has a negligible free

energy barrier (21) and proceeds very rapidly to completion.

Therefore at present the quantitative information obtained is

mainly concerned with the amount of transformation with respect

to the cooling rate but not with time.

It is tempting to use the martensitic transformation in

describing shock-induced transformations because of its hig.

speed. There are some who suggest the martensitic transition

for iron (a - e) in shocks (22.23). However, a quantitative

description of the rate equation is not yet available for inclu-

sion in the constitutive relations.
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As more and better ddta on shock-induced transition be-

come available, it will become important to develop some of the

above models to describe the kinetics of phase transformation in

shock waves. At present it is barely established that rate

effects in shock-induced transformation exist, and we seek no

,ore tha a qualitative description of the effects of kinetics

on the wave structure and some rough numbers for the magnitude

of the reaction rate involved in the observed processes.

To this end we select a quite different approach, which

is in some sense better founded, though formally limited to

small deviations from equilibrium, in irreversible thermodyna-

mics. In this approach there exist none of the conditions im-

posed in the above models, and it suggests a simple relaxation

law for the transformation.

do/dt (aeq - )/T (3.26)

where

aeq = equilibrium value of , or a completely

relaxed value

= relaxation time.

The derivation of the above relation from irreversible thermo-

dynamics follows.

When a solid-soLid transition occurs revarsibly (or in

equilibrium) by adiabatic compression, the entropy of a given

system is constant and the process is called isentropic. If the

transition is not reversible, the entropy will increase. How-

ever, ordinary thermodynamics does not give the precise amount
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of increase; rather, it tells only the direction of increase:

ds z0
irreversible

Basically, the idea of irreversible thermodynamics is to

replace the inequality by an equality so that we can determine

the increase of entropy caused by irreversible processes.

To establish the desired equality we assume that, al-

though the total system is not in equilibrium, there exists

within a small mass element a state of local equilibrium for

which the total entropy change per unit mass, ds, Is expressed

by the Gibb's relation (24).

n

Tds = de + pdv - idi (3.27)

i=l

where

= partial specific Gibb's function

Ci= mass fraction of the i-th component.

This means, for the case of a single-component phase transition,

that when two phases are not in equilibrium with one another, we

interpret them as if they are two different components with dif-

ferent specific Gibbs functions and each is in local equilibrium

satisfying Eq. (3.27).

There is an additional constraint on Eq. (3.27) for a

single-component system from total mass conservation. Since

the total mass is constant:

dal + da 2 = 0. (3.28)
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We redefine a2 = = 1 - a and use a hereafter as the sole

reaction variable. Then from Eqs. (3.27) and (3.28) we get:

Tds de + pdv - (p 2 - .do (3.29)

So far we have been looking at an isolated element of

mass. But if we assume that this mass element is part of a

continuous medium which is in a state of non-uniform stress,

strain and motion, then the variables e and v must satisfy the

energy and mass conservation equations, (3.4) and (3.5). Sub-

stituting these equations into Eq. (3.29) we get:

T(ds/dt) irrev" -vq(?u/Ax) - ( l2 -pi)dY/dt (3.30)

We assume no heat to be deposited from the outside, so the

entropy change is entirely due to the internal irreversible

process. It should be noted that the Lagrangian derivative used

in Eqs. (3.4) and (3.5) is identical to the convective deriva-

tive impiied in Eq. (3.30). If we look closely at Eq. (3.30),

we can see the sources of irreversibility. These are a chemical

affinity (2-I), (25), and a velocity gradient. These quan-

tities are called "forces" in irreversible thermodynamics and are

denoted by Xi(i=1,2...). The phenomena caused by these forces,

such as phase changes, are called "fluxes" and are described byIi(i=l,2... Then Eq. (3.30) becomes:

2
T(ds/dT) irrev. = I JXi1 (3.31)

i=l

where

XI = -iu/X (3.32)

X2 = (3.33)
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= qv (.34)

J2 = da/dt. (3.35)

There is some arbitrariness in the choice of terms for forces

and fluxes. The above choice is taken from Hirschfelder

et al. (26). Another possible combination is:

X, -qv

x2 =-(P2-PI )

T, = u/Ix

J2= da/dt.

When the irreversible entropy change is expressed in

terms of forces and fluxes, there are two basic assumptions made.

The first is called the linear phenomenological law and the

second the Onsager reciprocal relation:

1. Phenomenological law
n

i = I giXj (3.36)

j=l

where gij are constant.

2. Onsager's reciprocal relation

gij= ji" (3.37)

Then from Eqs. (3.32) through (3.35):

da/dt g 1 1 (t' 2 -1 1 ) + g 1 2(0u/; x) (3.38)

vq g 2 1 (P 2 -4 1 ) + g 2 2(0u/;x) (3.39)

where 12= g21
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Furthermore, from Eqs. (3.36) and (3.37) we get:

2 2
T(ds/dt)irrev" = glXl + (g 1 2 +g 2 1 )XiX 2 + g2 2X2

•

The second law of thermodynamics requires that the left-hand

side is always positive or zero, so we must have the following

relations for the constants gij:

gll 0, g2 2 2 0

2 !gllg 2 2  2 1g 1 2 + g211"

But this is all we get from thermodynamics; it will not give us

the magnitudes of the coefficients, because they are character-

istic numbers which depend upon materials. A complete under-

standing of the reaction mechanisms would provide a foundation

for calculating the gij. For the present we assume the reaction

rate to be independent of shear stress and set g1 2 = 0. gll and

922 are chosen from available data and for computational con-

venience, respectively. Then Eqs. (3.38) and (3.39) reduce to:

dc/dt = g 1 1 (12-1 1 ) (3.40)

q = g 2 2 (i/v)( u/?x). (3.41)

Since we know the chemical affinity (P2-Pl) is zero at

the equilibrium state, we can find the equilibrium value aeq of

a as a function of two independent thermodynamic parameters.

For example:

eq eq (v, T).
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Then for a small deviation from equilibrium, we can expand the

affinity in a Taylor's series:

I 2 pi eq

= (L2-Pi)eq + (2 ) (,T- "eq) ...?k? v,T

Neglecting the higher-order terms:

-, 2 -P ) e q

2 ( 1 v,T eq). (3.42)

Equations (3.40) and (3.42) give:

dv,/dt = (. -eq)/, (.42)

17here T is a new constant to be determined from comparisons of

calculations with experiments.

Eq. (3.41) shows that q has the character of a viscous

force, as stated earlier. It is necessarily proportional to

the first power of the strain rate because of the use of the

linear phenomenological law. This first-power dependence is

retained in the computations, but since its primary purpose is

to smooth the shock transition it will be artificially modified

after the manner described by Richtmyer and von Neumann (27):

The coefficient 922 is made proportional to the cell thickness

used in the computation.

Then

q = CL(Ax/v) Iu/AxI (3.44)

where CL constant.
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This completes our general description of non-equilibrium

two-phase flow. In the following section we approximate the

coistitutive relations in order to apply them in numerical cal-

culations.

. . .. . . . . . . . .



IV. CONSTITUTIVE RELATIONS FOR IRON

4.1 Approximations for Two-Phase Flow

Three approximations were made in order to simplify the

application of the principles of Section III to the q - e tran-

sition in iron. First, the equilibrium volume change at con-

stant p was assumed constant in the coexistence region. This

approxima-ion is supported by compressibility measurements at

room temperature which result in the following values (10,28):

02 (at 192 Kb) = 4.94 x 10-(Mb)
-I

0, (at 132 Kb) = 5.1 x 10"l(Mb) "I

where $i is the compressibility of the i-th phase.

Then

v2(P,T) - vl(p,T) = -.004 cc/g at every p and T. (4.1)

Then from Eqs. (3.6), (3.26) and (4.1) we get:

dvI  dv - (v2-vl)da (4.2)

di = (aeq-e)dt/ (4.3)

Then v, can be calculated from the above equations provided

v and a eq are known. In the computation process v is given by

the continuity equation and aeq by Eq. (3.6).

61
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eq =eq eq T) /(4.4)eq

((1v i( 2 vp v-v 1 (T))/(v 2 -v1  44
= ~((V-Vl) /(v2-vl)) e  44

Since (v2-vl)eq is constant, the temperature dependence of eq

is in veq(T). Our second approximation is to replace vl(T) by

the value vl(To) at room temperature (TO). Since the tempera-

ture is only slightly greater than room temperature, the error

involved in this approximation is negligible except in the

immediate vicinity of the transition pressure, 130 Kb.

Since vI can be determined from Eqs. (4.2) and (4.3) we

can use the form p = p(vj,T) to calculate pressure if we know

the temperature. The third approximation we made is the tem-

perature calculation.

If the phase transition is made at equilibrium, pressure

and temperature in the coexistence region must satisfy the rela-

tion:

dp/dT =constant at fixed p or T.

Over a wide range of tempeiatures the coefficient is practically

constant (10). But if we assume that the coefficient dp/dT is

constant even in the non-equilibrium coexistence region, we

shall see presently that the energy conservation law alone is

then sufficient to determine the temperature change. Since E is
given by Eq. (3.7) the internal energy Is a function of p, T and

a. On replacing a by Eq. (3.6), it is a function of p, T and v.

But if we assume that dp/dT is constant, p and T are no longer

independent and E is a function of T and v only. The
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error resulting from this approximation has not yet been

evaluated. It should be small since AT is small. From

this assumption we relate changes in temperature to changes in

specific volume as follows:

dE (bE/BT)vdT + (BE/Bv)Tdv

Substituting into this relation from Eq. (3.21), we find in the

mixed phase region:

(BE/BT) vdT - -(p+q)dv - (BE/v)Tdv.

Defining (BE/aT) v as CV m and using the. following identity,

T(bp/bT)v = p + (BE/BT) v

this becomes

dT - (T(Bp/BT)v + q)dv/Cv,m . (4.4)

The calculation of Cv,m in the coexistence region is given in

Appendix I. It should be noted that in the coexistence region

(Bp/BT) v is equal to dp/dT because of the assumed dependence of

p and T.

Our assumption or internal energy depenence (E(v,T))

is certainly true for a single phase, sc the form of Eq. (4.4)

is valid, and if wc knew, the talues of C and (Bn/BT)_- in
V V

either a single phase or a mixed phase, the temperature cal-

culation is only a matter of substituting different values of

these parameters, depending on the phase region.
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4.2 Review of Experimental Information

There are three main static experiments on the equation

of state (12,10,29) and the isothermal p-v relations are in

close agreement, within the range ot experimental errors, with

shock wave measurements ot the Hugoniot at low pressures. Ve

use the equations of state determined from shock experiments.

There are tour major measurements on shock wave propaga-

tion in iron. The one by Bancroft et al. (28), is on the

Hugoniot pressure-volume relations above the transition pressure

and it reveals a discrepancy in the magnitude ot the gradient

dp/dT comparea with the static vaLue (i). The other three are

concerned with transient effects and the thickness of the

second shock:

1. Bancroft et al. observed the two-wave structure and

determined the pressure-volume relation in the second

shock by juwp conditions.

2. Smith measured the thickness (.02 mm) of the second

shock front in recovery experiments by hardness methods

and concluded that the duration of the transition zone

is in the order of .001 psec (30).

3. Novikov et al. observed the two-wave structure in iron

b- a ca--- tance method (14). They concluded, from the

rise time of the second shock, that the duration of the

transition region is .2 - .3 psec. This duration is

not exactly equal to the relaxation time r, but as it

is essentially governed by the relaxation of the phase

transition, it should be of the same order of magni-

tude. They also observed a pressure drop behind the



65

first shock for thinner samples (no information is

given about the thickness), and explain that it is due

to relaxation processes.

4. Minshall observed, by a pin technique, decay of the

first shock over a distance of 5 cm (.8 cm - 5.8 ..m) (13).

No estimation of transformation time is given, nor is

the explanation of the decay. However, if we assume

this decay to be due to the relaxation, the order of

relaxation time must be about 5-10 psec.

All of the above reports agree about the existence of

the transition, but as far as the relaxation time is concerned,

they make no suggestion of a particular value to be used in the

calculation.

In numerical procedures we can use any relaxation time

to study the effect of phase change on shock wave propagation,

but we made an arbitrary choice of 1/3 psec for most of the

calculations, based on consideration of the experiments by

Novikov. In the study of the decaying precursor we used three

relaxation times, .1, 1/3, and 1 psec.

4.3 Equation of State of Iron

The equation of state oi the first phase is taken to be:

p(vI,T) = la , 1 - -L 4-a ,'.vl. o .i. 3

where

v V, specific heat at constant volume, phase 1,
assumed constant

To = some temperature above which ,1 is constant,
taken as room temperature he e.
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a, = constants

r = Grtneisen function, assumed constant

qi = vo/vl.

This is a form of the Mie-Gruneisen equation used by Al'tshuler

et al. (31).

The coefficients ai can be determined from the poly-

nomial fits of the Hugoniot curve (1) or from static measure-

ments. However, for the case of iron there is no appreciable

difference, below 200 Kb, between the isotherm and the Hugoniot

centered at room temperature. For example, the temperature rise

along the Hugoniot from 0 to 130 Kb is 200C (28), which contrib-

utes only about 1.3 Kb to the total pressure. This difference

is less than experimental error for static and shock measure-

ments in general (29). Therefore, we can substitute the Hugoniot

as a room temperature isotherm in the equation of state. These

and other equation of state parameters are given in Table VI.

The values of ai listed in Table VI are determined from the

least square fit of existing data below 130 Kb (32). Since

errors in the experiments are larger than the thermal pressure,

this will not give any inconsistency in the equation of state.

When we speak of the temperature-independent equation of state,

we mean the isotherm at To .

Fig. 4.1 shows the isotherm at T. in terms of relative

volume. Bridgman's data at room temperature, extrapolated to

high pressures, are drawn for comparison. The difference at

high pressures is mainly due to inaccuracies encountered in

extending Bridgman's data to such high pressures. Since the
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volume change is constant at fixed p and T, the isotherm of

the second phase (e - phase) can be easily found by shifting

the first phase by the amount of the volume change (v2-vl).

TABLE VI

Physical Data for N - iron

Parameter Values Dimension Peference

vo (initial volume) .1275 cc/g (33)

al (thermal expansion (33)

coefficient) 36.3 x 10 -  /K°(degK)- (33)

Cv, (heat capacity) .4447xi0-5  Mbcc/g0K (33)

PM (transition pressure) .130 Mb (10)

(dp/dT)m (equilibrium) -.000065 Mb/K°  (10)

Av (volume difference) -.004 cc/g (10)

a, 1.667 Mb (32)

a2  3.4 Mb (32)

a3  0 Mb (32)

r 1.6 . . . (34)

Cv,m .46xi0-5  Mbcc/gK *

To  3000K 0K

*See Appendix III.

Once the e~uation of state is known, the expression for
Neq can be easily found from Eq. (4.4), which includes the room

temperature approximation for vl(T). Suppose we specify the

room temperature transformation by the isotherm AB in Fig. 4.1;
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eq is given by the relations:

eq = 0 if v > v
A

eq = (v-vA)/(vB-vA) if vB < v < vA  (4.6)

eq = 1 if v < vB.

The graph of aeq is given in Fig. 4.1.

As seen in Table VI, we assume the constancy of physical

data, such as Cv!, r and so on, regardless of pressure. We use

the equilibrium value (-.065 Kb/°K) for dp/dT in the coexistence

region unless otherwise stated.



V. SHOCK PROPAGATION IN IRON

3.1 Difference Equations

The system of difference equations used here is based

on one described by Wilkins (35), with the yield stress set to

zero. Space is divided into points and cells as in Fig. 5.1.

The particle velocity and the current position of the Lagrangian

coordinate are defined on the points with integer label j, and

other variables are assigned to the cells with half-integer

labels j+ , etc.

Point Point

3
. . .jA 7  . . .

Cell Cell

x(j ) x(j+l)

Fig. 5.l.--Difference Scheme in Space

Time differences are also staggered. Particle velocity

and q are defined at half-integer times, n+ , and other vari-

ables are defined at integer times, n.

The computational sequence for general interior points

and cells is given in Fig. 5.2.

71
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0 New calculations

Old calculations

First step

n+l __ p
SV \.-- Second step

n+\ /u (volume only)

•u-4* 4/- Third step

n - - 1 \\in P/ \ "\' P// \ \\ 'p

" /- \ -/ \

/ \ \ Fourth step (p,T)

2 q q

". j+! j+l
2 2

Fig.5.2.--Computaticnal Sequence

The flow equations and the constitutive relations are approx-

imated according to the above difference scheme. The difference

equations are given in the order of -omputation. The subscript

or superscript "o" refers to the initial state (p=O) of the

first phase.

1. Equation of motion, Eq. (3.3):

n+ n- At n
u - = u. + (- (5.1)

where

E n =  (Pn + qn-k). (5.2)

= total stress in the x-direction.

I
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n n n n

k +Ln : (5.3)

= average mass at j.

At the left boundary

n = ((5.4

The new coordinate is given by:

xn+l = x + u., at. (5.5)

2. Continuity equation:

n +l n + POo ,u.+).+ =u'?' ) (5.6)

where

m = pj.+ x 0)  =mass in the cell j+, (5.7)

po = initial density.

3. Linear viscosity:

n+ o _n+ n+ n+ (5.8)
qj+ A CL pj+ TIj+ luj+l - u for( n+!  n

0 otherwise.

Here

n+' = 2v nr+l + n (5.9)
JA 0j+ = 2 4o-k~ vjA).
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4. Constitutive relations:

The relaxation equation:

n+ eq n At (5.10)+ --F -- + -

T is the characteristic relaxation time and

is assumed to be constant.

The specific volume of the first phase is:

n+l n+l . n+l
vIj (v 2 "vl)rYj+ (5.11)

Temperature calculation:

n+l n n n+l nT+ Tj+A + [CT]j+A(vj+,,-vjj )

q n+ nl n
- ( ,n(vn. j vn ) (5.12)jv "-i-J

where C = -(l/Cv)(Qp/AT)v (convenient for a

mixed phase)

or C = -r/v (convenient for a single phase),

and r is the Gri'neisen coefficient. The value

Of Cv depends on the phase region as described

in the last section. The formula for Cv,m in

a mixed phase is given in Appendix II.

Equation of state:

n+l n+l
PjA = p(vlT)]j+ (5.13)

where p(vl,T) is given by Eq. (4.5).

The boundary betwF.en a single and a two-phase

region is distinguished by the transition

pressure PM' at which the relative volume of

the first phase is given by vA.
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5.2. FORTRAN Program

The FORTRAN IV program used for the calculations is given

in Appendix III. This program is set up specifically for the

problem of a constant driving pressure and a semi-infinite slab

of material so it does not treat an unloading rarefaction prob-

lem nor the reflection of a shock wave.

The heart of the program, insofar as we are concerned,

is in the calculation of a, p and T, following that of v and q

(Eqs. (5.10) through (5.13) above); therefore we consider it in

detail. -

When the material of cell j is in the region of phase 1,

as determincd by a test on p, the numerical computation proceeds

to Eqs. (5.12) and (5.13) from Eq. (5.8). When the pressure in

cell i reaches the transition value p. and overshoots it, tem-

perature and the relative specific volume of phase 1 must be re-

adjusted by use of Eqs. (5.11) and (5.12). At this time the

special program parameter NSA(J) is set equal to 2 for the cell

j and kept at that value until the material is all converted to

phase 2. Calculation of pressure is accomplished by substituting

v and T from Eqs. (5.11) and (5.12) into (5.13). Once the

given cell becomes pure phase 2, NSA(J) is set equal to 3, and

the calculation again proceeds as for phase I. However, as long

as we use Ihe relaxation relation (Eq. (3.26)), with the approx-

imation (v 2 -v I = constant), we always have:

< (

v, v - (v 2 -vl). (5.14)
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If we are reminded that pressure is essentially calculated from

vl, then from Eq. (5.14), regardless of whether we set a to

unity when it is close to unity, the value of v, is ptactically

the same. Therefore we can, for the present case, discard the

case for NSA(J) = 3, which is enclosed by the dotted lines in

the flow chart.

The expanded flow chart for this part of the program is

given in Fig. 5.3.

5.3. Numerical results

5.31 Transient Case

The particular concern here is with development of the

double wave structure associated with the phase transition. A

uniform pressuie is applied at time t = 0 to the surface of a

half space, x = 0, and maintained constant as the plane wavefront

develops and propagates inward. For an applied pressure of

0.200 Mbar*, Figs 5.4 and 5.5 show pressure profiles of the de-

veloping wave at times measured from the first application of

pressure. Fig. 5.4 illustrates the development and decay of the

first wave caused by the a, - e phase transition. After about

ten relaxation times the profile has the clear double-wave struc-

ture shown in Fig. 5.5.

The thickness of the first wave front is determined by

q and by the choice of space increment, Ax (Fig. J.l). The width

ot the second front is controlled by the relaxation time of the

phase transition. T.When it is well separated from the first wave,

*1 Megabar = 1012 dynes/cm
2
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Subroutine MIX I
Mixed phase I iNSA=-31--

calculation of I Test I
pand T. -L L

(5.12), (5.13).
T -set NSA=2 I

F2
Subroutine
PHASE 1 Test (p,T)

Computation Single phase End
fTest C SpCrossed

ofAQ, NSA(J calculation the of
Uo Q V of (p,T) by boundary Cycle

(5.12 andr
(5.13).

13,

r-------------------------------1I I --------------------------------------------

L.... ), Second phase subroutine I -

New cycle

Fig. 5.3,--Flow Chart for the Constitutive Relation
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the relative magnitude of q in the second front is negligible,

as shown in Fig. 5.6. The coefticients C are varied to deter-
L

mine effects of q on the transient wave profiles.

Richtmyer (36) has shown, using quadratic q, that a small

coefficient of pseudo-viscosity produces an ocillatory output

even when the stability condition (Ax/At) is satisfied. Figs. 5.7

through 5.9 show similar changes in profiles for various CL.

Figs. 5.10 and 5.11 give the profile at fixed times for three

different values of CL. From these it is quite clear that the

shock profile converges to the same form after about three

relaxation times. Details of the relaxation process at early

times can be obscured by oscillations when CL is too small as

these figures show. A very large CL produces so much damping

that sudden changes in profile are prevented. This can allow q

to control the profile of the second shock as well as the first.

A value of CL = 0.1 was found satisfactory for most of the cal-

culations described here.

Novikov observed a drop in pressure behind the first

shock. These calculations sometimes show such a drop, but it

is more likely due to oscillations in the output than to a

physical effect.
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Both pressure and a are shown in Fig. 5.12 as functions

of time at .01 cm from the surface for 3 values of CL. The be-

havior of aeq is sensitive to CL; it reflects the fluctuations

in p. , on the other hand, is relatively independent of CL;

its behavicr is controlled by the relaxation time 1. This

suggests that the decay in amplitude of the first wave is essen-

tially independent of the artificial viscosity.

The decay of the precursor is shown in Fig. 5.13. The

rate of decay at early times is closely related to a simple

exponential, as shown.

This behavior is plausible on the basis of the follow-

ing model. Eq. (3.23) can be written

dp/dt - a2 dp/dt + (mln 2 - m2 nl)f(vl ,(x)/G

This is the analog of Eq. (9) in reference (50). By the same

arguments used there, we can arrive at the analog of Eq. (19)

of ref. (50):

dpl/dt = - (mln 2 - m2nl)(eq - )/G

providing the path of the number one shock lies along a

characteristic, which is nearly true. Here p1 is pressure at

the peak of the first shock, assumed to be a discontinuity,

hence it lies on the metastable surface vl(p,T). With this

condition, a i 0. Now with the sweeping approximations that

vl-v 2 = Av - constant, that the entire process is temperature

independent, and that Cpl = C p2 , we obtain for the decay

equation:

dpl/dt (Av a eq /2)dp/dvl
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80 0 Precursor amplitudes

L r = .17 cm

60 T 1/3 microsec

No temperature dependence

40 U I  .51 cm/hsec

0
=20

0 0
o\

a. \
-Analytic Approximation

0 \ -4 Oexp. (-x/2Ui')

8-

G) 6-68 exp (-x/.45)
EL \

04- 
0

1.0 2.0 3.0
Position of First Shock, x, cm.

Fig. 5.13.--Decay of First Shock in Iron Resulting
from Phase Transition.



90

If Vl(p) is linear, then

1 , vI: V m-AV

1eq (vm-vl)/Av = (pm-Pl)(dvl/dp)/Av

Vm-AV " v I : vm

0 , v m : v

Here vm and pm are pressure and volume where the Hugoniot first

enters the mixed phase. These expressions yield

PI ' PD + (x A v/2U ) dp/dvI , V t V -AV

= Pm + (PD- pm) exp(-x/2U),

V m- AV :9 v I  v m

= 0 v m 
< v I

where x = Ut. Figure (5.17) shows that in the present case

(PD - driving pressure = 200 kbar), the central formula applies,

therefore we should expect to find that

pl - 130 = 70 exp (-x/2UT)

The difference between this curve and the numerical results,

shown in Fig. 5.13, is due to non-linear effects.

In Figs. 5.5 and 5.11 there are arrows labelled A and B.

These indicate the shock front position which would be predicted

at the indicated times from the Rankine-Hugoniot jump conditions:

A for the first shock, B for the second. The difference be-

tween this predicted arrival time and the oie obtained in the
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numerical integration arises because the shock profile has not

reached its steady state or permanent regime. For the permanent

regime, to which jump conditions apply, the locus of p+q vs v

lies along two straight lines, OM and MC in Fig. 5.14. M repre-

sents the break in pressure between the first wave and the

second, and the velocities of the first and second waves are

proportional to the square roots of the slopes of these two

lines. 1lhen the pressure is applied suddenly and the relaxation

time is long, the state of an element will rise to a point on

the extended metastable curve of phase 1, say C'in Fig. 5.14,

and then proceed toward the equilibrium point C along an isobar.

During the process of precursor decay, the locus will lie along

intermediate curves such as OabC. In fact then the leading wave

and the developing profile behind it propagate at 'irst with a

velocity proportional to the square root of the slope of the

chord OC', only gradually approaching the smaller steady state

volocities. Consequently the wave front position calculated by

integration of the flow equations should always lie ahead of the

position predicted by the jump conditions whenever the constitu-

tive relations include rate or time dependent processes. Loci

for p+q obtained in the calculations for severaL positions and

two values of CL are shown in Fig. 5.15. They do indeed dis-

play the behavior described in Fig. 5.14; moreover the locus is

relatively independent of CL.

It is possible to calculate the equilibrium Hugoniot

curve for a material undergoing a phase change using only the
an

jump conditions andequation of state (17). However, once a



92

C C1

P

p+q M

Rayleigh

Line

0
V

Fig. 5.14.--Pressure Profile and Total Stress
with Respect to the Rayleigh Line.
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x 1.2 mm

20C - (CL = .1)

t (CL = .2)

180-x =2.0 mm

' (CL = .2)
O( CL .)16o- ,x = 5.0 mm

% %L

140- x = 30 mm
0 E- phase). 0 (c L =.i

~M

c 12 -

100

M Rayleigh Line
02

80

60

40

90 .92 .94 .96 .98 10

Relative Volume, v/vo

Fig. 5.15-- Total Stress (p+q) and Rayleigh 
Line



94

program is available for integrating the flow equations, as in

this case, it turns out to be easier to run the program with a

uniform driving pressure and tabulate p and v in the uniform

region far behind the shock fronts than to do the aquilibrium

computation. That has been done and the results are shown in

Fig. 5.16.

TI is the temperature independent solution (which is on

the second phase isotherm), and TDI and TD2 are temperature de-

pendent solutions with different isothermal compressibilities

(a2 = 3.4 and a2 ' 2.4, respectively). The difference between

TI and TDI is due only to the temperature dependence in the

equation o.E state. The reason TI lies above TDI can be explained

as follows: since dp/dT is negative in the coexistence region,

the transition produces a temperature decrease. This decrease

is found to be larger, except near the transition point, than

the temperature rise in the first shock (about 200), hence it

gives a slight pressure drop for the temperature-dependent

equation of state. Experimental values measured by Minshall (13)

are indicated by crosses. The differences between these and

the calculated curves are substantial. It is quite possible

that a curve passing through points B and C can be developed by

allowing v2 -vi to vary -4fh p. Poin A hwever, appears to be

unattainable within what are here believed to be reasonable

limits of the thermodynamic and transition parameters.
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x Bancroft et al.
(Experiments)

a Temperature Independent
o Temperature Dependent

(a 2 = 3.4)

e Temperature Dependent
(a2 2.4)

-- Equilibrium Calculation

200-

180 TD I

TD2

16o
0

140

m 120
Temperature
Independent
Equation
of State

lOO (o<-phase)

[ I I I I I I

.86.90 .92 .94 .96
Relative volume, v/v o

Fig. 5.16.--The Hugoniot Curve in and beyond
the Coexistence Region.
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5.32 Permanent Regime

After the shock of the last section has propagated far

into the medium, the profiles of the first and second shocks

are expected to become unchanging, though they continue to sep-

arate because of differing velocities. When this happens, these

profiles should be desci.Lbed by a permanent regime solution to

the flow equations (37). Such a solution is obtained here in

order to determine how far the wave must travel to closely

approach the permanent regime and to provide an independent

check on the numerical integration for the transient case. We

proceed by setting (A/'t)x = 0 for all variables in Eqs. (3.3)-

(3.5) and (3.43). The resulting equations are, for the temper-

ature independent case:

pu du/dx -dp/dx (5.15)

d(pu)/dx = 0; pu = m (5.16)

udcy/dx = (eqa)/r (5o17)

v = vI + (v2-vl)oy (5.18)

v2(P) - vl(P) = const (5.19)

p = p(v!) (5.20)

Combining Eqs. (5.16) and (5.15) yields the Earnshaw relation:

p-p = P2U2 (v -v) = m 2(v -v) (5.21)
0 0 00

where U is shock velocity. Combining Eqs. (5.17), (5.18), (5.19)

and (5.21) yields an equation for dp/dx in the transition region

dp/dx = m (vl-v2) (eq- )/l-hn2dvl/dP)v . (5.22)
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From the definition of aeq we have

eq _ 0, P ! P

= (V-V 0 )/(va-Vo), Po & p ! Pa (5.23)

I paep

where po, pa' Va' vo are defined in Fig. 5.18. Combining

Eq. (5.23) with (5.18), (5.21), and (5.22) yields the following

expressions for dp/dx:

dp/dx = m3(Vo-Vl)/(l14M 2 dvl/dp)(m2v o-p+p0 )

Po " P ' Pa (5.24)

dp/dx = m(m2(2vo-Vl-Va ) + Do-p)/T(lfm 2dv 1 /dp)

(m 2 vo-P+po) , a p ! Pf (5.25)

Here v1 is a known function of p, Eq. (5.20). Examination of

Eqs. (5.24) and (5.25) shows that dp/dx = 0 at p = p0 and

p = pf* In Eq. (5.22), m < 0 for a forward-facing shock,

0eq _ a > 0, vl- 2 > 0, and 1 + m2 dv 1/dp > 0, from Fig. 5.18.

Therefore dp/dx < 0 throughout the transition. The qualitative

features of dp/dx are shown in Fig. 5.18.

Eqs. (5.24) and (5.25) have been inte!grated for the

iron transition, assuming that no temperature changes occur in

the shock. The results are compared with the temperature-

independent transient case in Fig. 5.19 for a driving pressure

of .200 Mbar. The shock width, defined as 6x =W/ldp/dxmax)

is for this case about .3 cm. The steady velocity of the

second shock with respect to the material ahead of it is U1 1 =

0.37 cm/psec. The relaxation time assumed for the calculation
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Fig. 5.17.!--Path of the Permanent Regime Solution
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X 0ao
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Fig. 5. 18r-dp/dx for Permanent Regime Solution
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Fig. 5.19.--Comparison of

200 permanent regime with transient
Q 06profile of second shock.

04 0 Run #67108-2, ax - .01,
0P At - .0025 Lsec, t - 15r

190 6 Run #67108-3, Ax - .001,

4t - .0005 Ixsec, t - 2.25T

Permanent regime profile

180

160-

0
o 1706

= 160-

0i.
150-

140-

0
0

00

1301 I I I

.2 0 .2 .4 .6 .8
X-cm

Fig. 5.19. --Comparison of Permanent Regime with Transient
Profile of Second Shock.
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is T - 1/3 Psec, so Ax s 2.4 U11 T. Profiles obtained from

the transient calculation at t - 2.25T, 15T, 22.5T are shown

for comparison. The agreement is very good at 15T. This

agreement is additional evidence of the validity of the inte-

gration procedure for the transient case.
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APPENDIX I

HEAT CAPACITY OF MIXTURE

Equation (31) of Reference (7) gives

C-VM T(BV/BP)sM (dP/dT)2  (1)

where (BV/BP)sM is the slope of an equilibrium adiabat in the

mixed phase region. Equation (16) of the same reference gives

(BV/BP)sM  = dVl/dP - (dSl/dT)(dT/dP)
2

- (V - Vl)(dT/dP)2 d2 P/dT2 . (2)

Using the identities

T dSI/dT CV,1 + T(BP/BT)vI dVl/dT

and

dVI/dT = (BVI/BT)P + (@VI/BP)T dP/dT

Equations (1) nd (2), n be transformed to yield

CVM= CVI - T (P/BVl)T (dVl/dT) 2 + T(V-VI) d2P/dT2 (3)

The first two terms of Equation (3) correspond to Equation (85)

of Reference (38). The third term may be important if the state

point is not near the boundary of phase I.
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APPENDIX II

PROGRAM FOR CALCULATING WAVE FLOW IN ONE SPACE

DIMENSION FOR PLANE, CYLINDRICAL, OR

SPHERICAL GEOMETRY

A. Program Name: BURN

B. Program Description

This program is an adaptation of one written by John 0.

Erkman at Stanford Research Institute. It integrates the equa-

tions of flow through one space and one time dimension for ar-

bitrary initial and boundary conditions. Integration is carried

through shock fronts by means of an artificial viSCOSit,,

Initial and boundsry conditions, input parameters and output

statements are contained in subroutines so they may be readily

altered.

Subroutine DECIDE contains the input parameters which

define the problem. Comments in the Listing (Section C) should

make this subroutine self-explanatory, except perhaps for the

following:

S is an integer index used to label the various regions
in the problem, S = 2,SI

BURN(S) is an index which& %Acf.A.= ih ntr n reio S;
for example if the geometry is spherical and the problem
consists of a sphere of explosive surrounded by an Al
shell, Si - 3, BURN(2) = 1, BURN(3) = 4. Other values
of BURN(S) are defined in the program listing.

OPTION is an index defining the driving system for the
problem. OPTION = 1,2,3, or 4 for a pressure pulse
applied to the left boundary.
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TAU is a characteristic time parameter for the applied
pressure. For its exact meaning, consult the listing
of the MAIN program. It's units are microseconds.

LEFTP is in Megabars (Mb)

TQUIT, microseconds

Values of ZON(S) and L(S) need be given for S = 2, Sl.

The primary output consists of tables of values of particle
velocity, pressure, etc., vs J for each time and cycle
indicated in DESCRIBE.

C. Program Listing and Sample Output

.1
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//911011 EXEC FORTGCLG
//FOPT.SYSIN DO *
C THIS IS A INE-11IMNSION4L Q-CnnE ADAPTED FROM ONE WRITTEN BY
C JOHN 0. ERK(MANJ OF SRI, WHO MlDELED AFTER ONP WRITTEN BY
C M4ARK WILKINS OF LRL. AN APPRIXI4ATF DESCRIPTION CAN BE FOUND
C IN "COM4PUTATIO1NAL PHYSICS. VOL. 1119" EDITED BY ALDER AND
C FFPNBACH AND ROTENBERG
C THE PROBLEM IS SET UP IN SUBROUTINE "DECIDE."
c THE MEANING OF KFY SYMBOLS IS roESCRIBED THERE.

COM4ON ICIN/ H(9I,BURN{),L('4),DX(9),S1,R1iO(9)
COMMON /C2TIME/ TIMESCYCLE,DELT,DTN,OTMX,TLIMA(300),JCRIT,

I TQUIT,TAU
COMMO'4N /C3CTRL/ COUNTS,JSTAR,JPEJPB,JQUIT,LAST,CYCLES
COMMON /C4FL04/ J(300),V(300),X(300),Q(300),P(300) ,E(300) ,OA,VN,

IMASS( 300) ,CSP( 300)
COMMON /C7GNRL/ ALP, OPTION,CONA,CQ,LEF TP

C
INTFGER H,BLJRN,S,SI, ZON,CYCLECOUNTS,CYCLES,ALPOPTION,H2,HSI,HS,

C
I. RURNS,HS2

REAL L,'4AS5,LINEAR,LEFTP

CALL DECIDE
c THE FOLLOWING DOf fLOOPS ENDING AT STATEmENT 9 CALCULATE THE
C PnSITION OF THE J'TH CELL IN CM AND ITS MASS IN GRAMS. RHn(S)=
c DENSITY OF REGION S IN GRAMS/CC.

DO 9 S=2,Sl
HSI=HC S-11+1
HS2=H( 5)
DO 9 J=HS1,HS?
X(J+l )=XtJ) +DX(SI

0 MASS( Jk(X(J-1 )**ALP-X(J)**ALP)*RHO(S)
C
C THF VARIABLES IN THE FOLLOWIN! F3UR WRITE STATFMENTS HAVE 9EEN
C DEFINED IN SUBROUTINE DECIDE.

WRITE( 6,951) ALP , ELT, DTMX,CONA, CQ
WRITF(6, 952)CYCLFSCnUNTS,JQUIT

P5 FORMAT('O','CYCLES',6X,'COUNTS't6X,'JQUIT'/16,4X,I6,SX,& '))
WRITE(6,957) Si, ('URN(5) ,S=2,St)
WRITE(6,q61 )TAU,LFFTP,U(1),OPTION

C
IF (OPTION*EQ.61 CALL FLIERI. IF COPTIONNE.6) JSTAR=5

C

CQSQ=CQ**2
CQS04=4. O*CQSO
L INEAP=1 .O+CONA+CONA

C "TIMES"1=T, THE TIME VARIABLE, MEASUREO FROM ZEROo
T IMES=O.0
CYCI E=O

C "JCRIT"=NO. OF SPACE CELL FOR WHICH TLIMA(J) HAD ITS MINIMUM
C VALUE IN THE PREVIOUS CYCLE.

JCR 1T0
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C "LAST" IS AN INTEGER CONTROL PARAMETER WHICH DIRECTS THEC SUBROUTINE VlWRITE"l TO PERFORM A TERM14AL CV4PUTATION AFTER THEC INTEGRAT ION HAS F3EFN COMPLETED*
LAST=o

C "DTNI" IS THE VALUE OF "DELT" CALCULATED IN THE CYCLE BEFORF LAST.n)TN=DEL T
DEL TI=DELT*DELT

C -- TART OF TIME L03P
C. PPEAK=MAXIMU4 VALUE OF PRESSURE CALCULATED IN PREV13US CYCLF.4n PPEAK=0.0
C TLI 9B=TLIMA(JCRwT)=MINIMU4f IALUE OF TLIMA(J).

TLIMB=1.0
T INES=TIMES+r)ELT
CYCL F=CYCLE*,l

50 J=1
S=2~
Jl=2
JT=3
PLFFT=0.0

c COMMENT EVALUATF P FOR FIRST CELL AND U ANf) X ON LEFT BIOUNDARY30 Tn (5lS2t53,54,6060)OPTION
51 tF(TIMES .LE, TAU) PLEFT=LEFTP

GO T3 60
r,? IF(TIMES .LE, rAWi PLEFT=((-TIMES/TAU)4.1.O)*LEFTP

GO TO 60
53 PLFFT=LEFTP*FXP(.0.46*TIMES)
94 CONTINUE
60 IF(ALP.EQ.)ut( 11=-C (PCI)+QC1)-PLEFT;/C X(2)-X( 1))*V(I)*ELTI*J)(1

XA=U( I *OELT+X( 13
C-----START OF J-LOOP

7n1 IFIJ.GT*H(S)) S=S+l
78 O)ENU=(X(JT)-X(J1))/V(jl)+(X(j1).X(j))/VIj)
79 U(Jl),C(DELTI*(PIJ)-P(Jl)tQ(J)..Q(Jl1)/)DENU

4 UCJIROt XCJY=XA
XA=DELT*U(Jl )+X(J 1)
IFIJ .EQ. HISI)) X(Jl)=XA
1F(ABSIU(J1)) .LT. 5.OE-5) U(Jl)=0.0
VNr(XA**ALP-X(J )**ALP)/MASS(J)
DEL U=UIJ 1 1-U J)
DELX=XA-X(J I

C
C----GET Q FOR SHOCK
C "QA"=NEW VALUE OF ARTIFICIAL VISCUS STRESS; Q(Jl IS "OLD" VALUE.87 QA2-DELU*(CQSQOA8S(DELU)+CONA*CSP(J),/VN

IF(QA .LT. 0.0) QA=0.O
C 6lTLIMA(Jl=vrtAF PAQAAg:Tr-o USED~ ILI G~CILATNG, THE VALUE OF DELTC FnR THE NEXT TIME STEP ATTI POINT VN, THE NEW VALUJE OFC SPECIFIC V3(LUME, AND QA ARE AVAILABLE, SO THE INFORMATION REQUIREDC FOR CALCULATING PRFSSURE IN CELL JtP(Jl,ENERGY,F(J), ETC. IS ATc HAND. THESE CALCULATIONS ARE MADE IN SUBROJUTINES B.EQST(StJ),C WHICH ARE ENTRY POINTS IN B-INIT(S)o CONTROL IS TRANSFERRED TnC SUBROUTINE EOST(SJj, AND FROM THIS IT IS TRANSFERRED TO THEC APPROPRIATE B-EQST(5,j).

TLIMA(J)=DELX/(LINEAR*CSP(J).CQSQ4*AeSIDELU))
CALL EQST(S,J)
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IFIABS(P(J)) .LE. 1.0E-51 P(JI=1*0134E-6
V J )-VN
Q(J)=QA
IF(TLIMA(J).GEoTLIMB) GO TO 129
JCRIT=J
TLIMB=T1ItMA(J)

129 IF(P(J)+Q(J).LE.PPEAK) GO To 131
PPFAK=(P(J)*Q(J)l

C "JPMAX" IS THE VALUE OF J FOR WHICH PPEAK TAKES ITS MAXIMUM VALUE.
JPMAX=J

131 J=J+1
J1=J+1
;T=Jl+l

C :IJSTARI IS A VALUE OF J AHEAD OF THE WAVE FRONT AT WHICH COMPUTING
r STOPS PREPARATORY TO ADVANCING TIME BY ANOTHER INCREMENT. JSTAR
C IS ADVANCED BY UNITY WHE4EVER PARTICLE VEL0D[TY, U(JSTARI,
C BECOMES NON-NEGLIGIBLE.[ IF(J.LE.JSTAR-1) GOJ TO 70
C--TEST TO ADVANCE JSTAR

IF(ABS(U(JSTAR4IU).GT.1.0E-5) JSTAR=JSTAR.1F IF((CYCLE.EQ.CYCLr ).OR.(TIMES.' E.TQUIT).OR.(J.EQ.JQIT)IGO To 169
IF(CYCLE.GT*10)CO 2

C TO CHANGE FREQUENCY LiF Pi NT-OUIT, A STATEMENT CAN BE INSERTED
C HERE: "IF (CYCLE.GT. K) COUNTS=MN" W&iERE "K" AND "MN" ARE
C INTEGERS TO BE CHOSEN BY THE PROGRAMMER.

IFV400(CYCLECOUNTS).NE.0) GO TO 180
GO TO 170

169 LAST~i
170 JPB=1

J PF=J STAR+2
CALL WRITE

190ODTNH1=0.6*TL!MB
IFfDTNH1/DELT.GT.1. 1) DTNH1=1*14DELT
IF([OTNHI.GT.DTMXI DTNH1=DTMX
DTN=DELT
DELT=DTNH1
DELTI=DTN+D)FLT
GO TO 40

C
91 FORMAT(1H1,6X,3HALP,9X,4HDELT, 1IX,4HDTMXIlX,4HCONA,12X,2HCQ/7XI1

-, 4F15.61
957 FnRMATIIHOBX,2HSI.*5X,8HBURN( )../8XI2,9X,9I5/2XJ
961 FORMAT(IHO,5X1 .HTAd,16X,5HLEFTP,14X,44U(1),15X,6HOPTION/3El9.8,18)

FND
SUBROUTINE DECIDE

COMMON /C1ZON/ H(9) ,BURN(9),L1,DX(9) ,S1,RIIO(91
COMMON /C2TIME/ TIMES,CYCLE,DELT,DTN,DTMXJTLIMAt300),JCRIT,
I TQUIT,TAU*1 COMMON IC3CTRL/ COUNTS,1STAPJPEJPB,JQUIT,LASTtCYCLES
COMMON /C'tFLflWt U(300),V(300),X(30Cj),Q(300),P(300),E(300) ,QAVN,
1 MASS(300),CSP(300)
COMMON /C7GNRL/ ALPOPTIONtCONA,CQLEFTP
DIMENSION ZON(9)

C
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INTEGER HBURN,S,SliZONCYCLEtCOUNTSCYCLEStALOOPTION,H2,HS1,HS,
1 BURNS, HS2
REAL LMASSLINEAR,LEFTP

C
C CHOOSE GEOMETRY. ALP IS AN INTEGER LABEL WHICH IS TO BE SET
C ACCORDING TO THE GEOMETRY OF THE PROBLEM.
C X IS THE EULERIA4 SPACE COORDINATE. THE INITIAL VALUE AT T=O
C OF THE LEFT BOUNDARY OF CELL I IS SET HERE. THE POSITIONS OF
r OTHER CELL BOUNDARIES ARE CALCULATED IN MAIN FROM THE NUMBER OF
C ZONES AND THE DIMENSIONS OF T4E PROBLEM.
C FOR CYLINDRICAL AND SPHERICAL PROBLEMS, LEFT BOUNDARY IS
C INTERPRETED AS INNER BOUNDARY.
C ALP = 1 FOR PLANE GEOMETRY
C ALP = 2 FOR CYLENDRICAL GEOMETRY
C ALP = 3 FOR SPHERICAL GEOMETRY

ALP=l
C.-----CHOOSE COORDINATES OF FIRST CELL

X(I)=O.O
C-.NUMBER OF REGIONS PLUS ONE (NOT TO EX'EFn 9)
C THIS PROGRAM CAN BE RUN WITH SEVERAL REGIONS OF DIFFERENT
C MATFRIALS. THE NUMBER OF SUCH REGIONS IS DENOTED BY AN INTEGER
C SI-1. THIS PECULIAR CONVENTION ARISES BECAUSE OF & CHARACTERISTIC
C OF FORTRAN--ZERO INDICES ARE NOT ALLOWED. EACH DISTINCT REGION IS
C DENOTED BY AN INTEGER LABEL S. S=2 IS THE LEFT-MOST REGION, S=3
C THE NEXT TO THE RIGHT, ETC. UP TO SI.
C EACH REGION IS DIVIDED INTO A NUMBER OF SPACE ZONES OR CELLS,
C ZON(S), THE NUMBER OF CELLS UP TO AND INCLUDING REGION S
C (STARTING WITH THE LEFTMOST REGION) IS H(S)=SUM(ZON(K)),
C K=2 TO S, INCLUSIVE.

S1=2
C ~---MATERIAL IN REGIONS

'BURN(S)" IS AN INTEGER LABEL WHICH DEFINES THE MATERIAL OF

C REGION S.
C BURNiS) = 1 FOR EXPLOSIVE
C BURN(S) = 2 FOR VOiD
C BURN(S) = 3 FOR LIQUID
C BURN(S) = 4 FOR SOLID

BURN(S) = 5 FOR PHASE TRANSITION
BURN(2)=5

C-.SET OPTION
C "OPTION" IS AN INTEGER LABEL WHICH DESCRIBES THE TYPE OF PROBLEM
C TO BE SOLVED. IF OPTION=192, OR 3, T4E PROBLEM IS ONE IN WHICH
C A SPECIFIED PRESSURE IS APPLIED TO THE LEFT HAND BOUNDARY. IF
C OPTION=S AN EXPLOSIVE REGION IS INCLUDED AND ITS DETONATION
C PROVIDES THE DRIVING FORCE. OPTION=6 MEANS THAT THE FIRST REGION
C (S=21 IS A FLYER P'ATE WHICH HAS JUST CGLLIDED WITH THE SECOND
C REGION (S=3) AT THE START OF THE PROBLEM. WHEN THIS HAPPENS,
C EAL* CELL IN REGION 1 (S=2i IS GIVEN THE FLYER PLATE VELOCITY

C U(I), EXCEPT THE ONE ADJACENT TO REGION 2(S=3) THIS CELL AND THE
C FIRST CELL IN REGION 2 (S-3) ARE GIVEN VEL3CITIES U(l)/2 FOR
C SMOOTHING PURPOSES. WHEN OPTIONwl, THE TIME DURATION, TAU, OF
C THE APPLIED PRESSURE MUST BE SET. FOR A CONSTANT PRESSURE APPLIED
C AT T=Ot SET TAU EQUAL TO A LARGE NUMBER, SAY 500 (MICROSECONDS).
C FOR OPTION=2, TIME TAU IS THE TIME AT WHICH THE APPLIED PRESSURE
C EQUALS ZERO IN A LINEAR RAMP. OPTION=3 HAS A BU:LT-IN TIME
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C CONSTANT. THE PEAK APPLIED PRESSURE IN EAC4 CASE IS "LEFTP" IN

C MEGABARS,
C OPTION = 1 GIVES SQUARE PULSE
C OPTION = 2 GIVES LINEAR PULSE
C OPTION = 3 GIVES EXPONENTIAL
C OPTION = 4 UNASSIGNED
C OPTION = 5 GIVES NO PULSE (FOR EXPLOSION)
C OPTION = 6 GIVES NO PULSE (FOR FLYER PLATE)

PTION=l

C-.IF OPTION = 1 OR 2, SET TAU
TAU=500.

C-.IF OPTION = 6, SET U(1) (FOR FLYER PLATE)
U(1)=O.0

C --- IF OPTION = 1,2, OR 3, SET LEFTP (PRESSURE IN LEFT BOUNDARY)
LEFTP=O.200

C-.VISCOSiTY COEFFICIFNT (CQ FOR QUADRATIC AND CONA FOR LINEAR)
CONA=O.1

CQ=2. 0
C-.LENGTH OF RUN MAY BE DETERMINED BY SETTING ANY OR ALL OF NEXT

C WHEN CYCLE=CYZL.ES OR TIMES=TQUIT OR J=JQUIT, COMPUTATION WILL
C STPP, WHICH EVER OCCURS FIRST.

C J IS THE INTEGER LABEL OF THE SPACE CELLS. J=l AT THF LEFTMOST

C CELL OF THE LEFT4OST REGION AND RUNS TO H(Sl), THE RIGHTMOST CELL
C OF THE RIGHTMOST REGION.
C CYCLES= NUMBER OF INCREMENTS IN TIME
C TQUIT (PROPAGATION TIME)
C JQUIT (NUMBER OF LAST CELL)

CYCLFS=100
TQUIT=260

JQUIT=25
JQUIT=250

C-.THE NUMBER OF ZONES IN REGION K IS ZON(K)
ZON(2) =50

C-.THF THICKNESS OF REGION K IN CM. IS L(K)
L(2)=5.0

C-.DELT IS STARTING VALUE FOR DELTAT
C "DELTATt IS THE TIME-INCREMENT FROM ONE CYCLE TO THE NEXT,
C MICROSECONDS.

DELT=.05
C-.DTMX IS UPPER LIMIT FOR DELTAT

DTMX=.05
C-.PRINTOUTS OF CYCLES IS MODULO COUNTS
C "COUNTS" CONTROLS PRINTING, IF COUNTS=5, THE STANDARD FLOW
C VARIABLES U,PtQ,E,V, ETC. ARE PRINTED OUT EVERY FIFTH CYCLE, ETC.
C FREQUENTLY "COUNTS" iS SET =j iN ;;DECiDE~, THIEN AFTf-R THE FIRST
C FEW CYCLES INCREMENTED TO 10 OR 20.

COUNTS=1
C H(S) IS AN INTEGER LABEL EQUAL TO THE NUMBER OF SPACE CELLS TO
C THE LEFT OF AND INCLUDING REGION S.

H(I) = 0
DO 12 S=2,Sl
DX(S) = L(S)lFLOAt(ZON(S))

12 H(S)=H(S-11 + ZON(S)
C-.CALL ROUTINES TO SET INITIAL REGIONS
C AT THIS POINT CONTROL IS TRANSFERRED TO BINIT(S) FOR S=2 TO Si,
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C WHERE -IS AN INTEGER FROM 1 TO 5, CORRESPONDING TO THE VALUE
C OlF BURN(S). FOR EXAMPLF IF SI=4 AND BURN(2)=1, BURN!31=4, AND
C BUR4l(4)=3, THEN 8IINIT(2), 841NIT(3)t 831NIT(4) ARE CALLED IN
C TURN; I.E., THE NEXT THREE STATEMENTS WOULD BE: "CALL 91INIT(2)"P
C "CALL 84INIT(3)", "CALL B3INIT(4)",

CALL B51NIT(2)
C

RETURN
10? FORMAT (10141
906 FORMAT(23131
907 FORMAT(7(14F5.21)

END
SUEBRnUTINE EQST(S,J)

5 C
COMMON /ClZON/ H(9),BURN(9h*L(9),DX(9),S1,RHO(9I
COMMOlN /C2TIMF/ TTMES,CYCLEDELTDTNDTMXTLIMA(300),JCR!T,
1 TQUIT,TAU
COMMON /C4FLOW/ U(300),V(300),X(300),Q(300),P(300bF(300bQAVNI
I MASS(300),CSP(300)

INTEGER H,BURN,S,S1, ZON,CYCLE,COUNTS,CYCLES,ALP,OPTinN,H?,HS1,HS,
I BURNS,HS2

BURNS =BU RN ( )
GO TO (101,102,103, 104,105,106,107,108,109) ,BURNS

101 CALL BlEQST(SlJJ
102 RETURN
103 CALL B3EQST(S,J)

RETURN
104 CALL B4EQST(SJ)

RFTURN
105 CALL B5EQST(SJ)

RETURN
106 RETURN
107 RETURN
108 RETURN
109 RETURN

END
SUBROUTINE FLIER

c
COMMON /C1ZQN/ H(9),BLRN(9btL(9),DX(9),Sl,RHO(9)
COMMON IC3CTRL/ COUNTS,JSTARJPEJPB,JQUIT,LAST,CYCLES
COMMON /C4FLOW/ U(300)tV(300),X(300), (300),P(3001,E(300) ,QAtVN,
1 MASS(300),CSP(300)

C
;NTEGFR HtBURN,SS1,ZON,CYCLE.COUNTS.CYCZFS.?ALP%0PTQIJ;H2;HSI;HSi

1 BURNS,HSZ
C

REAL L,MASS,LTNEAR,LEFTP
C

JSTAR=H( 2)42
H2=H( 2)
DO 43 J=1,H2

43 U(j41)U(1)
U(H2+1)=O. 5*U( H2+11
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RETURN
END
SUBROUTINE BlINIT (S)

C THIS SUBROUTINE IS A OUMMY WHICH ALLOWS FOR FUTURE EXPANSION
GO TO 12
ENTRY BlEQST(S,J)
GO TO 101

12 CONTINUF
101 CONTINUE

RETURN
END
SUBROUTINE B31NIT (S)

C THIS SUBROUTINE IS A DUMMY WHICH ALLOWS FOR FUTURE EXPANSION
GO TO 14
FNTRY B3EQST(StJ)
GO TO 121

14 CONTINUE

121 CONTINUE
R ETURN
ENO
SUBRnUTINF B4INIT (S)

C THIS SUBROUTINE IS A DUMMY WHICH ALLOWS FOR FUTURE EXPANSION
GO TO 13
ENTRY B4EQST(StJ)
GO TO 90

13 CONTINUE
90 CONTINUE

RETURN
END
SUBROUTINE B5INIT(S)

C THIS SUBROUTINE IS WRITTEN SPECIFICALLY FOR IRON WITH A SHOCK-
C INDUCED PHASE TRANSITION.
C THE PARAMETERS ARE DEFINED IN APPENDIX IT OF "EQUATION OF STATE
C IN SOLIDS," BY G. E. DUVALL, G. R. FOWLES, AND Y. HORIE, SUMMARY
C REPORT ON CONTRACT NO. DA-04-200-AMC-1702(X)t BALLISTICS RESEARCH
c LABORATORY, ABEROEFN PROVING GROUND, MD., FEB., 1967.
C

COMMON ICIZON/ H(q),BURN(9bL(9)tDX(9) StRHO(9I
COMMON /C2TIME/ TI4ESCYCLEDELTvDTN,DTMXTLIMA(300)JCRIT,
1 TOUITTAU
COMMON /C4FLOW/ U(3O0),V(30O),X(3O0),ts300),P(300),E(30O),QA,VN,
I MASS(300)tCSP(3001
COMMON /C5THER/ TMP(300),ENT1300)
COMMON /C6TEMP/ ET,PT
COMMON /B5DATA/ VO(9)tAlA2,A3tDV(9)tTAUONSA(300)tP',GAMMIq),

I FRACT2{300l,VI(300)tXEQ(300),VPVZ
C VP = SPECIFIC VOLUME AT WHICH HUGONiOT iNTFRSECTS PHASE BORY

INTEGER HBURNS,Sl tZONCYCLECOUNTS,CYCLESALP,OPTIONH2HSlHS,

1 BURNS, HS2
REAL LtMtLINEARLEFTP

C
GO TO 14
ENTRY B5EQST(SJ)
GO TO 121
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C
C FNTRY POINT TO INITIALIZE BURN 5*****s**~*********
C

14 RHO(S)=7.84
A 1=1. 667
A2=3.4
A 3=0.*0
DVI S)=-.004
PM=. 130
CVI=.45E-05
CVMIX=.46E-05
GAMMi (S)=1.6
FO=0.0
TO= 300.0
DPDTMX=-6. 5E-05
TAUO=3.0

C
VO(S 1=1.0/RHO(S)
VP=VO(S)/(1.O+(-A1+SQRT(Al**2..+4.0*A2*PM))/(2.0*A2))
V2=VP+OV( S)
WRITE(6,960) RH0( S)sAlA2,A3,DVIS),PMCV1,DX(SI ,CVMIXGAMM1(Sh ED,
1 TODPDTN)XtTAun,H(S)tL(S)
CSPS=.5
HS1=(H(S-1)+ll
HS2=H(5) +2
DO 39 J=HS1,HS2
V(J)=VO( Sl

31 U(J*1)=0.o
Q(J)=0.0
P(J)=1.0134F-6
TLIMA(J)=DELT
CSP(J )=CSPS
Vl(J)=VO(S)
FRACT2(J 1=0.0
E(J)=0.0
ENT(J 1=0.0
TMP(J)=TO
NSA(J 1=l
XEO(J)=0.0

39 CONTINUE
RETURN

C
C ENTRY POINT TO SET EQUATIONS OF STATE FOR BR5**********
C

121 NSW='NSA(J)
GO TO (220,22?),MSW

C--MATFRIAL IS IN c4~ASE 1
220 FTAM1=(vn(S)/VNI-1.0

PT=Al*ETAM1+A2*ETAM 1**2
CSP(J)=(Al*VO(S)+2.*A2*Vj,'S)4r(VO(S1/VN-1.).*3.*A3*VO(Sis(vn(S)/VN-

ET=E(JJ-0.5*(P(J)+PT+QA+QIJ))*(VN-V(J))
IFfABS(PT) .LT.1,OE-5)PT=O0
IF(PT.GE.PM)CALLZ4TX( S,)
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P(J)=PT
E(J)=ET
RETURN

222 CALL ZYIX(SJ?
E(J)=ET
P(J)=PT
RETURN

C
960 FORMAT(lHO,5X,3HRHO,12X,2HA1,12X,2HA2, 12X,2HA3,12Xt2HDV,12X,2HPM,

1 llX,3HCV1,12X,5HDX(S ), /lX,8El4.6,/lHO,4X,5HCVMIX,9X,5HGAMMI,11X,
2 2HEO,12X,2HTO,10X,6HDPD)TMX,11X,4HTAUO,11X,4HH(SI,11X,4HL(S),,
3 6Fl4.6,4X,I7,3XFI4.6)
END
SUBROUTINE ZMIX(S,J)

C
C THIS SUBROUTINE SUITABLE FOR COMPRESSION PHASE ONLY
C

CnM4ON /CIZON/ H(9),BURN(9),L(9),n)X(9),SlRHO(9I
COMN)ON /C2TIME/ TIMESCYCLE,DELTtDTN,DTMX,TLIMA(300) ,JCRIT,
I. TQUI',TAU
COM4MON /C4FLOWI U(300),V(300)tX(300),Q(300),P(300),E(300),QAlVN,

* 1 MASS(300),CSP(300)
COmMON /C6TEMP/ ET,PT
COMMON /B5DATA/ vnO(9bA1,A2,A3tDV(9)tTAUO,NSAf300),PM,GAMMI(9),
I FRACT2(3001V(300),XFQ(300),VP,V2

C
INTEGER H,BURN,SS1, ZONCYCLECOUNTS,CYCLES, ALP,OPTION,H2,HSlHS,
I BURNS,HS2
REAL L,MASSLINEARLEFTP

C
C

NSA(JI=2
XO=FRACT2( J)
XEQO=XEQ(J)
CA=TAUO*DELT
IF(VN.GT.VP) GO TO 2
IF (VN.GT.V2) GO TO 3
XFQN= 1.0
GO TO 6

2 XEQN=O*O
GO TO 6

3 XEQN=1.O+(VN-V2)/DV(S)
6 CONTINUE

XN=(XO*I1.0-CA/2.01+0.5*(XEQO+XEQN)*CA)I/1.fCA/2.0)
IF(XN.LT.O.O) XN'O
Vl= VN-XN*DV(S)
EMU=(VO(S)/VT)-1.O
PT=±Al*EMU1+42*EMUI**2.
CSP(J)=(Al*VO(S)4.2.*A2*VO(S)*(VO(S)/VN-1.)43.*A3*VO(S)*(VuI(S)/VN-

ET=(JI-0.,5*(PT+P(J)4QA4Q(J))*(VN-V(J))
Vl(J)=VT
FRACT2(J)=XN
XEQ( J)=XEQN
RETURN
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END
SUBROU'TNE WRITE
COMMON4 /CIlZON/ H(9),BURNI9),L(9b#DX(9),S1,RHO(9)
COMMON /C2TIME/ TIMESCYCLEDELTDTN,DTMX,TLIMA(300),JCRIT,
I TQUITTAU
COMMON /C3CTRL/ COUNTSJSTARJPEJPRJQUITLASTCYCLES
COMMON /C4FLOW/ U(300),V(300b*X(300),Q(300),P(300),E(3003 ,QAVN9
I 'ASS(300),CSP(300)
COMMON /C5TlIFRI TMP(300liENT(300)
COMMON /C7GNRL/ ALP90PTIONCONAtCQ,LEFTP
COMMON /B5DATA/ VD(9),AIA2,A3,DV(9),TAUO,NSA(300),PM,GAMM1(9),

1 FRACT2(300),Vl(300),XEO(300),VP,V2

INTEGER H,BURN,SSI , ONCYCLE,COUNTSCYCLESALP,OPTTONH2,HSIHS,
I RURNStHS2

C.
REAL LtMASS, L INEAR, LEFTP

C
GO TO 14
ENTRY WRITE1
GO TO 121

14 WRITE(69302)
WRIT E(69 304)T IMES, DEL T,DTNtCYCLE,JCR IT
WRITE (6, 306)
S=2
IF( JPB.EQ.1 .ANO. JSTAR.GT.'i(2)41O ) JPB=H(2)
DO 330 J=JPB,JPE
IF(J.GT.HIS)) S=S+l

110 WRITE(6,318)JUtJ),V(J),P(J3 ,E(J) ,QIJ) ,FRACT2(JbVl(J) ,X(J),TMP(J)
1, TLIMA( J

330 CONTINUE
C--NEXT TWO STATEMENTS (COMMENTS) ARE TO BE USED IF GRAPHING IS DESIRED

CALL MANUAL I .25*LEFTP,O.l
CALL GRAPH1(PtJPE)
IF(L4ST.EQ.1)CALL EXIT
RETURN

121 WRITE(6,862)
DO 46 J =192

46 WRITE(6,962)J,U(J)tV(J)fP(J)vE(JI,QtJ),FRAC'T2(J),V1(J) ,X(J), T
-MP(.1i) TLIMA(Jl

DO 57 S=2,Sl
HSI=H( S)-1
HS2u:H(S)+2
DO 57 J=HSlHS2

57 T
-4P(J),TLIMA(J)
RETURN

302 FORMAT(IHI)
304t FORHATI IX,6HTIME= ,El4.B,4Xt6HDELT= ,E14.8,4X,5HOTN= ,El4.894X,7H

-CYCLE= 15,4X97HJCRIT= 915/5X)
306 FORMAT(2X,1HJ,6X, lHU,9X,IHV,9X,lHP,9X,IHE,9X, 1HQ,7X,6HFRACT2,6X,

1 2HiVlb9X,IHX,9Xt'HTMPq6X,5HTLIU4A//5X)
318 FORMAT(48F0.6,F7.1,E13.51
q62 FOR'4AT(2X,lHJt6X, 1HU,9X,IHV,9X,lHP,9X,lHEt9XIHQTX,6HFRACT2,6X,

I 2HVl,9X,IHX,9X,3HTMP,6X,5HTLIMA/12XI
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q62 FORMAT11I4,8F10.6,F7 .1,E13.5)
I FORMAT(lHO,2X,6HT IMF= ,E14.8,4Xt5HUFS= ,Fl4.8,4XtSHXFS= ,El4.814X,
-7HCYCLE= ,14,3X,7HJPMAX= *1493X,7HJCRIT= ,14/2X)
END)
SUBROUITINE GRAPH4(A,B,C,DtN)

C
COMMON /C3CTRL/ CO3UNTS, JSTAP ,JPE,JP!,JQUTTLAST,LYCLES
COMMON /C4FLOW/ U(3OO),V(3OO),X(30o),0(3oo),P(30o),Ec3oo),QAgVN,
I MASS(300),CSP(300)
COMMON /C7GNRL/ ALP,OPTION,CONACQvLEFTP

C
REAL L,MASS,LINEAR,LEFTP
DIMENSION A(N), B(N), C(N), 0(N), Pn!NT(4), GRAPH(1221
DATA POINT/1!AIHB,lHC,lHn/
nATA MSWTCH,BLANK,PERIOD/o,1H ,1H.1
M=4
IF(MSWTCH.EQ.1) GO TO 50
AMAX=Dtl)
AMIN=D(I)
DO I 1=1,N
IF(AMAX.Lr.Ocii) AMAX=D(I)

1 IF(AMIN.GT.D(I)) AMIN=D(I)
GO TO 2
ENTRY GRAPH3(ABCtN)
M4=3
IF(MSWTCH.EQ.1) GO TO 50
AMAX=C(l)
AMIN=C( 1)

2 DO 3 1=1,N
IF(AMAX.LT.C(I)) AMAX=C(I)

3 IF(AMIN.GT.C(rl AMIN=C(I)
GO TO 4
ENTRY GRAPHZ(A,B,N)
M=2
IF(MSWTCH.EQ'11 GO TO 50
AMAX=B(1)
AMIN=B( 1)

4 DO 5 I=ltN
IF(AMAX.LT.8(I)) AMAX=B(I)

5 IF(AMIN.GT.B(l)) AMIN=B(I)
GO TO 6

ENTRY GRAPH1(AvN)
14=1I IF(MSWTCH.EQ.1) GO TO 50
AMAX=A( 1)
AMIN=A( 1)

6~ DO 7 I11N
IF(AMAX.LT.A(!)) AMAX=A(I)

7 IF(AMIN.GT.A(I)) AMIN=A(I)
50 SC=(AMAX-AMIN)/120.

WPITE(6, 100) AMINAMAX,SC,(PERIOD,1=1,121)
100 FORMAT(lHl,17HRANGE OF GRAPH IStFl5.8,BH THROUGHjF15.3/IIXtl7ISCAL

I ING FACTOR ISF15.B/1105X,21HI1I11LI11111III/~ISX,lllHl11I1Il
21 11222222222233333333334444444444555555555566666666667777777777888
3 8 8 88 9 9 9 9 9 9Q9 9q9OOO0OOOO1l1111112/6X,12OH1234567891234.)67890
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41?34567890123'r5678901 23456789012345678901234567%390123456T890123456
5789012345678901 2345678901234567890/5X, 121A11
n0 8 I=1,N
D0 17 J=19121

17 GRAPHIJI=BLANK
GO Tn (9,1O,11,12),M

IF(K4.LT.0.OR.K4.GT.122) K4=122

10 K2=(CI(I)-AMIN)/SC+1.
IF(K3.LT.O.OR.K3.GT:122) K3=122

IF(KI .LT.O.OR.K2.GT.122) K2=122

16 GRAH(K)-PINT)/S
15GR(K3)=PoOINT(3) 1)K112

14 GRAPH(K4)=POINT(2)

13 GRAPH(Kl)=POINT(l)
IF(GRAPH(121).NE.RLANKI G~kAPH(120)=GRAPH( 121)
WRITEt6*101) !,(GRAPH(!1) ,11=1,120)

101 FORMAT(2X,13,1H.,120A1)
8 CONTINUE

MSWI CH=0
RETURN
ENTRY 'ANUAL(A1,AZ)
AMAX=Al
AM1N=A2
MSWTCH=l
RETURN
END
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For numerical output of this problem, refer to Vol. II of

this report filed in the Document Library of Ballistics

Research Laboratories.
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D. List of Labels

DECIDE

DX(S) = Eulerian space interval in region S at t =0

= L(S)/ZON(S)

H(S) = no. of cells from left boundary through region S

S

- ZON(L)

L=2

B51NIT(S)

RHO(S) = density at zero pressure in region S

Al,A2,A3 coefficients in Eq. (4.5)

DV(S) = v2 (P,T) - vl(p,T)

PM pressure at which the Hugoniot in phase I intercepts

the phase boundary

CVI = Cvl

CVMIX = Cvm

GA10Il(S) = r

EO = internal energy at the foot of the Hugoniot

TO = To

DPDTMX = (AP/T)v,m

TAUO = l/T, Eq. (5.11)

VP = specific volume in phase I at p = PM = vl(pM,T)

V2 = v2 (pM,T)

CSPS = starting value for sound speed

J = index for space grid

V(J) = v

U(J) = U.

Q(J) = qj
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p(J) = P

TLITIA(J) = value of Atj fot next time step

CSP(J) = sound speed in cell J

E(J) =E

ENT(J) = s

TMP(J) = T.
3

NSA(J) = switching index

1 1, phase I

2, mixed phase

3, phase II

MAIN

X(J) = xj (Fig. 5.2)

MASS(J) = mass of cell J

JSTAR cell label just ahead of shock front at which

computation stops for each time cycle

TIMES t

CYCLE = number of times t has been incremented

JCRIT = value of J for which TLIMA is minimum

LAST = switching index for halting program after

writing last output.

PPEAK = maximum computed pressure in each cycle

TLIMB = TLIMA(JCRIT)

PLEFT pressure applied to left boundary

DFNU = mass in cell J+l

XA = x(t+At)

VN = v(t +At)

QA = Q(t + At)

JPMAX = value of J at which p is maximum
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FRACT (J) = /

XE', (J) = q

Vl(j) =vlj(p,T)
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DECIDE--problem is B--INIT(S)
defined: geometry, Material constants
materials, zoning, are entered and some
etc. See listing for <._ initial calculations
comments. performed for each

region

FT~ t initial data

Set conditions at Set JSTAR. Set
right boundary U for flierplate(subroutine)

Write field variables

at interfaces

Zero various Control)
Variables

CYCLE = 0

TIMES = 0

Fstrtime loo

TIMES = TIMES + DELT
CYCLE CYCLE + 1

Fig. 1. -- FLOW CHART FOR BURN



EvlaePfor first13j left boundary.

SSet S
Calculate U(J+l),
X(J), VN, QA

F EQST(S,J)--Cali for B--EQST(S,J)
the subroutine which P and E aredetermines P & E for determined from
r-egoS VN, QA and'old

-- zion Svariables.

V(J) =VN
Q(J) = QN

j =J+1
70

Fig. 1. (b)



131

JSTAR =FSTAR + 1I____

CYCLE =CYCLES

or TIMES TQUIT D
or J = JQUIT

LAST =i

PRINT FLOW VARIAB-LES

n LAST =1 y

Return CALL
40 toEXIT

Reset.DELT

Go to 40 for

new cycle

Fig. 1. (c)
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