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SUNMARY

Some of the techniques in current use for measuring dynamic stability
derivatives in wind tunnels are described, with emphasis given to the
important features of balance system design, data reduction methods,
instrumentation and typical balance systems. The use of gas bearings
for dynamic stability and roll damping balances is treated and a thre:-
degree-of-frecedom balance system employing a spherical gas bearing is
described.

RESUME

Quelques-unes des techniques courantes pour la mesure des dérivées
de la stabilité dynamique dans les tunnels aérodynamiques sont décrivées
en soulignant les particularités importantes du dessin des systémes de
compensation, des méthodes pour la réduction de données, 1’ instrumenta-
tion et des systémes de compensation typiques. On trait 1’emploi des
paliers & gaz afin d'obtenir de stabilit€é dynamique et des compensateurs
pour 1’ amortissement de roulis ainsi qu'ua systéme de compensation en
trois degrés de liberté avec 1’utilisation d’un palier & gaz.

629.7.017.2:629.7.018.08
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NOTATION AND ABBREVIATIONS

Notation

A reference area or general constant
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Cir 9C;/9(rd/2v,)

Cip 3¢, /38

€15 3c, /3Bd/2v,)

Cpsw ac,/a8*

Cy pitching moment coefficient of a model which has triagonal or greater
symmetry, 2Mg/ApVZAd

Cupa = Capa = Capg

CHQ = CIJ!' = CIIQ

Cuax = Cag = -Cpg

Cus = Cag = -Cpp

Ca pitching moment coefficient, 2My OpVZAd

Capr = 9%,/3(Pd/2v,)3(rd/2v,)

Caps = 9%Cy/3(Pd/2V,) 3B
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Cas = 3Cy/3(4d/2v,)

cy (-C,) normal force coefficient, -2F,/0, VA
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f frequency of oscillation
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SECTION 1

INTRODUCTION

Analysis of aircraft and missile aerodynamic performance and stability requires
knowledge of the forces and moments which act under conditions of steady and unsteady
flight. One of the first studies of aircraft stability was that of Lanchester®' around
1900, fullowed later by more complete and rigorous analysis by Bryan?, which is still
the basis for much of the dynamic stability work today.

Requirements for supplying aerodynamic characteristics for performance analysis
have been met, to some extent, by relying on theories supported by experimental measure-
ments to establish the validity of the theories. In some cases, the theory has only
limited application especially when viscous flow has a pronounced influence on the
flow field, as in the case of high speed flow (hypersonic speeds and above) and low
Reynol7s numbers. There are some situations for which the phenomena cannot be described
adequ .tely by theory. In other cases theory is not applicable because the configuration
and flow field are so complex that the many approximations required invalidate a wholly
theoretical approach. Thus, in practice, strong reliance is placed on experimental
results for use in analyzing the modes of motion of the aircraft or missile.

Early experimental techniques making use of oscillating models to dynamically simulate
rigid modes of motion for determining stability derivatives are well summarized by
Jones®. It is of interest to note that no fundamental changes in the basic experimental
methods have taken place since that time, 1934, although much work nas been done toward
refinement of the methods, equipment and instrumentation. Little emphasis was placed
on dynamic stability experiments until about 1940, and from that time to 1945 experi-
mentation was primarily concerned with sul:sonic flow and tests were made for small
perturbations. Wind tunnel experiments und flight tests within the early forties were
directed more toward static stability and control problems. With the advent of high
speed aircraft, missiles, rockets, and re-entry vehicles, increased emphasis has been
placed on performance and dynamic stability problems since missions demand precise
control not only in small disturbances from level flight, but also in large scale
maneuvers. As a result, dynamic stability measurements have become increasingly important
at supersonic, hypers=onic and hypervelocity speeds and at large perturbations. The
experimental methods suggested by earlier experiments have been used in different forms,
and sany improvements have been made in the experimental techniques since about 1950
These improvements have been in the areas of balance system, model and support systes
design, instrumentation, data acquisition, and data reduction.

In 1954 Valensi' presented a review of the techniques primarily in use in Europe for
measuring oscillatory szerodynamic forces and moments on models oscillating in wind
tunnels. The following year AGARDograph 11 (Ref.5) by Arn.ld was published on the
subject of dynamic measurements in wind tunnels. The most recent summary of techniques




for measuring oscillatory derivatives in wind tunnels was published by Bratt® in 1963

as a part of the AGARD Manual on Aeroelasticity. The paper discusses the basic principles
employed in measuring derivatives and gives some account of the associatuvd instrumentation.
Much of the report deals with the methods and instrumentation employed in England.

Since theose earlier works, the emphasis on dynamic stability testing has increased,
and many reports have veen prepared on the subject, so there exists a need for a review
and summary of the current dynamic stability testing techniques in use at supersonic
speeds and above.

There are many experimental techniques which are suitable for measuring dynamic
stability derivatives; however, only those techniques that are in most common use in
wind tunnels will be described. In addition, many different systems exist for measuring
the same quantities and, since they differ primarily in the specific application, no
attempt will be made to describe all systems; only systems considered to be representa-
tive and those having unique features will be discussced. The report is organized
primarily around the aspects of dynamic stability testing in wind tunnels at supersonic
speeds and above, although much of the report is pertinent to aspects of testing at
transonic and subsonic speeds. Although free-flight testing in ground test facilities
encompasses the use of the wind tunnel and aeroballistic range for measurements of
dynanic stability derivatives, these techniques are not included as a part of this
AGARDograph because other publications on these subjects have been published and are
in preparation’:®.




SECTIO:/N 2

STATEMENT OF T1HE PROBLEM

2.1 DEVELOPMENT TRENDS

Aircraft or missiles in high speed flight are free to respond to disturbances with
motions involving many degrees of freedom. During various stages of aerodynamic design
of a vehicle, as the configuration is developed. dynamic characteristics must be known
and progressively refined to a high degree for the final configuration performance
specification. The designer must necessarily be concerned with the interpretation of
aerodynamic stubility data and with the evaluation of the influence of their accuracy
on an integrated system design.

There are three methods of obtaining stability data:
(1) Theory and empiriccl data.
(ii) Wwind tunnel and aeroballistic range model testing.

(1ii) Sub- or full-scale flight testing.

During the preliminary design stage, it is most ~xpedient to rely primarily on theory
and empirical data for performance evaluation whereas, in the later stages, design
concepts inevitably require evaluation through the use of some scale model tests. As
a final phase in the design development. sub- or full-scale flight tests are reguired
to verify performance and obtain in-flight measuremeints for verification of theory and
prediction methods.

There are certain speed regimes where theoreticai results may be inaccurate due to
insufficient or inaccurate basic data. For example, in the transonic speed regime
(0.9 < M, < 1.5) theoretical methods for determining dynamic stability derivatives are
very limited, and, therefore, reliance is placed on methods involving the use of
empirical data on similar configurations and correlation plots showing the manner in
which the stability derivatives vary with Mach number for similsr configurations.

within the supersonic and hypersonic region (15 < M_ < 10), theoretical methods
are available for estimating derivatives for bodies of revolution and relatively simple
lifting configurations. At Mach numbers above 10 in the nypervelocity speed regime,
theories generally fail to predict the derivatives because viscous effects have a
strong influence on the vehicle aerodynamic characteristics

In order to improve the accuracy of aerodynamic derivatives that are used in per-
formance predictions and to validate theoretical estimates, model tests in ground test
facilities are recognized as being essential to the development of aircraft, missiles
and re-entry vehicles.




Study of vehicle motions in flight involves consideration of many degrees of freedom.
When the vehicle is considered as a rigid body, six degrees of freedom are required.
Since the vehicle is not a rigid structure, additional relative motions of components
such as aeroelastic deflection of lifting surfaces and movable controls constitute
additional degrees of freedom.

The vehicle motions may be separated into high frequency and low frequency motions,
where high frequency motions studies such as flutter are primarily concerned with
structural elasticity and unsteady aerodynamics. At low frequencies the motions involve
rigid body mtions and are studied as dynamic stability using quasi-static aerodynamics
The mode of model testing discussed in the present AGARDograph is concerned with this
latter type motion and the determination of rotary damping derivatives

In scaling down a vehicle for model tests the paraaeter that must be considered in
addition to the Mach number and Reynolds number is the angular velocity or frequency
of model oscillation in relation to full-scale conditions. The scaling parameter,
called the reduced frequency, in the form «d/2V, contains the frequency of oscillation
and represents the ratio of some characteristic dimension cof the vehicle to the wave
length of the oscillation. This type of scaling parameter also applies to dynamic roll
tests and has the form Pd/2V_

Exper)mental techniques for measuring dynamic stability derivatives in ground test
facilities may be classified in many different ways. The classification that will be
followed here is presented in Figure 1. The two major classifications are derived on
the basis of whether the model is free to move in all basic degrees of freedom or
whether it is restricted in several degrees of freedom. The subtopics shown in Figure 1
for discussion were selected as those methods currently being employed for most high
speed testing; however, it should be emphasized that the outline does not show the case
of the model fixed in the test section with perturbations generated in the flow. As
noted in the Introduction, only those methods which epply to captive model testing
techniques will be discussed in this AGARDograph since free-flight tests in the wind
tunnel and range are the subject of AGARDographs published and now in preparation”?
Additional general information on methods not described herein may be found in Reference 9

2.2 EQUATIONS OF MOTION

In order to place the role of dynamic stability testing in perspective, it is helpful
to examine the equations of motion. Although the mathematical treatment of vehicle
dynamics is well known and found in many tests'® !2, a brief derivation of the equations
of motion is included to illustrate the basis for the experimental techniques used in
the study of dynamic. stability.

2.2.1 Axes Systems

The equations of motion will be developed using the axes systems shown in Figurzs 2
and 3. ‘lodel orientation is determined relative to the tunnel fixed axes X;Y,Z,
(inertial reference). The XY¥Z &xes are fixed in the model with the X and Z axes
in the model’s plane of symretry. When the origin of this system lies at the center
of gravity, these axes are then defined as the body axes. The angular orientation of
the XYZ system with respect to the )(TYTZ.r system and inertial space is given by the




Euler angles ¥, @, and ?. Sometimes it is convenient to use the nonrolling axes
system (XYZ). These are special body axes whose angular orientation in space relative
to the X, Y,Z. system is determined by the angles ¥ and © . This axis system can
be used even though the model is rotating about the X axis. The origins of all
systems arc assumed to occupy the same point in space (Fig.3).

2.2.2 Inertial Moments

The angular momentum of the model may be expressed as

A= [6«7)a, (D

where T 1is the radius vector from the origin of the rotating XYZ axes to the particle
p of mass dm and Vp is the velocity of the particle p relative to inertial space.

The radius vector T 1is measured relative to the body fixed XYZ axes; therefore,
in order to evaluate the velocity of p relative to inertial space, it is necessary
to use the well-known transformation for the rate of change of any vector from fixed
to rotating axes as follows:

dr dadr _ _
Vp = - = — +axrT
dt |, dt

= Pl +Q +Rk.

£l

where

Assuming the model is a rigid body, the equation reduces to

V, = &af,

since T is then not a function of time.

Substititing this equation into Equation (1) yields

H :IFx(axF)dm.

This expression is then integrated over the vehicle to obtain

H o= 1L},

(3] = [A7K]
Plx “Jxyy  Ixz
I N R
:sz “Jxy Iy
P
{} = |Q
(R




The moment acting on the vehicle is equal to the rate of change of angular momentum

dH

dH _
—_ = —+DxH = 2ZNM
dt|,  dt

This vector equation can be reduced to the following scalar forms:

I + (I; - IRQ - Jyp (R + @) + I, (RP - Q +J,,(R? - Q) = (M)
I,Q + (I, - IPR - 3y (P + @) + Jy,(PQ - R) + J,,(P* - R®) = (Em) (2)
IR + (I, - 1,)QP - Jy,(Q + PR) + J,, (@R - P) + 3,,(Q* - P?) = (3n,).

Roll pitch and yaw rates for the XYZ system may be obtained from Figure 3 as
follows:

P = b-Vsin0®
Q = Ocosd+ ¥ cos © sin ®
R = Yecos ®cosd-0sind.

In order to simplify the nonlinear differential equations given above to a form
which facilitates analysis of the motion, vehicle symmetry will be assumed, and the
motion will be restricted to small disturbances from a reference condition. Let
P=p,+p, Y= ¢0 + 1y, etc., where the zero subscripted quantities are the reference
conditions and the unsubscripted lower case quantities are perturbations from this
reference condition.

For the following discussion, the reference condition is selected such that
qQ, =Ty = 90 = wo = 0 and the reference quantities Po and ¢5 are not necessarily
small. Considering vehicles having symmetry about the XZ plane (ny = J,z = 0) and
neglecting products of perturbation quantities, the equations of motion become

ILP - J,,(F + QP) = M)y
I,d + (Iy - I)Pr + 3PP = (M), (s
It + (I, - I,)PQ - J,,p = (EM), .

The roll, pitch and yaw rates at this condition are given as

\

Py = éo
p = ¢ = ¢ sin 6
. . p 4
q = fcosd+Ycos 6sind
r = ¢ cos 6 cos ® - 6 sin d .




For models having triagonal or greater symmetry, the nonrolling coordinate system
XYz may be conveniently used when these axes correspond to the models' principal
inertia axes. Since the body is moving with respect to the Y and Z axes (rotating
about the X axis), the restriction of symmetry is necessary, otherwise the moments of
inertia with respect to the XYZ system will be time varying. For the above case,

the angular momentum expression is given as

A= P+ I1Q + Ifk |

vhere
15 % o= O
@ = qecos ¥ -rsind
F = rcosd+qsind

t s .
b ~ fo Ptydt , |¥ > |-y sin 8] .

Note that, even though ¢ = 0 for the nonrolling coordinates: its XY plane is
rotating with respect to the XTYT plane at the angular rate -\ sin & .

The equations of motion referenced to the nonrolling coordinates are given as

dH
—+Dxﬁ = EM,
dt

where

0 = ol +q + 7k

These equations of motion reduce to

LP = (EM)y
Iq + ILPF = (Mg (5)
Lf - 1P = (IM)g .

2.2.3 Aerodynamic Moments

The general procedure for expanding the aerodynamic moment relations is that deve-
loped by Bryan®’. It is assumed that the moments are functions of the steady- state
reference conditions and the instantaneous vaiues of the disturbance velocities, con-
trol angles, and their time derivatives. A Taylor series expansion of an aerodynamic
reaction yields this form. For example, the aerodynamic reaction A = A(U,V, ...) is
expressed as




8
A(U,V ) = A( ) A (U )
N, .. = u,,V L) 4 |— -u,) +
0 au o 0
A %A .
+$°(V-Vo)+ a—uzo(u-uo) +
+ oA (U )V )
— - - +
Juov /. Yo Yo
IE’A\
t =] (V=¥ +...
avi o 0
where
U = u, +u, etc.
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