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ABSTRACT

A simplified analysis is performed of the turbulent mixing

[HHHHECHI]

of a trace chemical species with the bulk chemical species., The

general relationship between the mixing on a molecular scale and

the concentration fluctuation intensity of the trace species is given.
This is then applied to a turbulent wake, to determine the axial length
that it takes for injested gas to becomre mixed. The results are
sensitive to the assumed turbulent dissipation rate; giving values

of the mixing length from the order of to twe crdexrs of magnitude

largex than the wake radius.
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LIST OF SYMBOLS

ke = energy-containing wave number

m = 1 (planar wakes), 2 (axisymmetric wakes)
12 o

54 turbulent kinetic energy

R, = drag radius, W

r = radius

S, = Schmidt number

t = time

u = axial wake velocity

X = axial distance behind body

€ = rate of dissipation of turbulent kinetic energy
¢ = turbulent mixing parameter

13 = x/Rn

Af = non-dimensional mixing length

Subscripts and superscripts

cross-sectional average
A, B = species

turbulent front

LY
1l

fluctuation

—
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point of entrainment
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Introduction

In performing calculations of chemical reactions in turbulent wakes,
it is necessary to account for the rate at which the gas ingested by the
turbulent front becomes mixed on a molecular scale with the gas on the
interior of the turbulent wake. One proposed method uses a "mixing lag
length'" L, which is deduced on the basis of isotropic turbulence theory;1
another method uses a transport equation for the electron density fluctua-
ticns to determine the mixing rate.2 In this note, it is shown that the latter

equation can be used to determine the mixing length.

Analysis
The model for determining this length is a one-dimensioral wake
of uniform properties of species A which ingests a small amount of species

B at a distance x, behind the body. The flow field exterior of the

1
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wake is also assumed to consist only of species A,

A mixing parameter ¢ is defined as follows:
$ - C, Cg/Ty Ty (1)

where CA and Cp are the mass concenivations of species A and B
respectively, and the overbar refers to a time average at a particular sta-
tion in body-fixed coordinates. if the gas is urmixed, then either C, =1,
Cg=0,0rCy =0, Cg=1; so that_(:m = 0; that is ¢ = 0. If species B
is intimately mixed with A, then Cgy (t)/CA (t) = constant = Cg/Cp, but since
then CA (t) = EA' ¢ = 1. Thus ¢ is 1 measurement of mixing on a

molecular scale, Also, since there are only two species in this model
Calt) +Cp(t) =C, +Cp=1 (2)

If we decompose each concentration into a mean value and a fluctuating

component ( )', from eq. (2)

C,+C, =0 (3)
Combination of egs. (1, ¢, 3) yields:
—

$=1-Cqg /EACB (4)

If B is a trace species, CAN 1, and eq. (4) can ke rewritten as:

cl ) Tylx)  Cpt (x)
¢(x) =1 - == — . (5)
CBZ (x,) Ty (x) Ty (x))




where x is the distance downstream and x is the poini of ingestion of
species B which is initially unmixed at the point of ingestion; hence
¢ (xl) = 0 so that the last factor in eq. (5) is equal to unity, e.g.

—>

Cp” (x)) =Ty (x)) (6)

The second factor in eq. (5) is determined only by dilution. Thus the
problem is reduced to that of determining the decay of mean square fluctua-
tions of species B, for which Lin's equation (14)2 can be used, e.g.:
(@/d §) (r[ T gz) TP ud (r%)/dg = - R RYE kez/?’r?‘ (;;7 (7)

where m = 1 for plane wakes and 2 for axially symmetric wakes; r; (x)
is the mean distance from the axis tc the wake turbulent front; £ = x/Rn;
Rn is the wake drag or momentum defect radius, u is the mean wake
speed, € 1is the rate of dissipation ol turbulent kinetic energy and Kk, is
the turbulent energy-containing wave number. The dissipation rate given
in eq. (7) can be deduced from eqgs. (7, 11, 20, and 23) of ref, 3, for a
Schmidt S number of unity., This form is also applicable for S_ < 1, if
multiplied by % (3 - S ).

From eq. (€), EB is of the order of (-3;? Since CB << 1,
E'BZ << EBTZ and the second term in eq. (7) can be neglected. In addition,
one may approximate uyas u. Then eq. (7) can be integrated to:

p
In [rfm CB' ‘/rfrn (x,) (i)rz(xl)]z - R fﬁ-l el/zkez/?’dg (8)

*1
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Now, from conservation of species B, e C—BN T (xl) CB (xl), and

use of eq. (h) in eq. (8) yields:

~

S
] — -1 / 2
,;lx):l—exp(—eru el’3k /3 d¢) (9)

51

We will next apply eq. (9) to throe cases: (i) self-preserving wake; (2) the
turbulence parameters \ alcalated by Linz; and (3) the turbulence parameters

deduced by Sc:hapker4 irom turbulent front measurements.

“elf Preserving Wake

The rate of destruction of turbulent kinetic energy for 2 vake can be

estimated from the generalized form of eq. (8.4) of :of. 5 for an incompressible

1

[} 2 _
fedrm=-21- ad; f"u‘ [(AE) +q2]drm (10)
o

o]

wake:

- . . | A C s
where Au is the mean velocity defect and > q is the turbulent kinetic

energy. For a self preserving wake, q'2 ~ (Aﬁ)h. Also, from conserva-

tion of mass,
- m
Au ~U_ (Rn/rf) (10a)

where U _ is the free stream velocity. Thus,

3
et)~ U_ (R /r ™ 7! (11)

Since the self preserving wake is also geometrically similar, the energy-

cont’ ining v~ve number is “1versely proportional to the wake radius,




given by
1
m + 1

(rg/R) ~ & (12)
and the mean wake velocity is taken as approximately U_. Use of
eqs. (11, 12) in (9) yields:

~c
¢ = 1 -(&,/6) (13)

vwhere ¢ is the constant representing the numerical constants of propor-
tionality in eqs, (11, 12) and between k_ and l/rf. The important conclusion
from (13) is that t- . distance required to achieve a given amount of mixing
depends linearly ou El, the distance at which the species was initia.ly
ingested: that is, the further downstream the ingestion, the lc: zer the

length to become well-mixed., From eq. {13) the length Af = § - El, to

achieve a certain degree of mixing is

-1/c

ag/E, = (1-4) L (14)
From eq. (14), Af — = as ¢ — | but for finite values of ¢ and c-lﬂn(l- $) << 1
ag ®-c7l gy fn (1-9) (15)
In general, the integrand of eq. (9) can be represented as:

-1 -n
R u 1/3k2/3=c§ (16)




and eq. (9) can be integrated as follows:

-1 l-n l-n ‘
¢=1-exp[-:<n-1> (6, -&) (17)

For either ¢ large or ¢ small, eq, (17) becomes:

1 wn
At m - ¢ (&.1) In (1-9) (18)

which is the general:. ation of eq. (15). In order for the mixing length A §
to be a constant multiple of the distance from the axis to the turbulent front
from eq. (12) n = (m +1)'l; e.g. 1/2 for plane wakes and 1/3 for axially
symmetric wakes. This condition is almost fulfilled for Schapker's data4

for £ <6 x 103, where n = 0,43, as shown below,

8
Equation (18) can also be written as
1 -1 ,‘
= 1/3, 2/3
AE = - fn (1-¢)[Rnu e/ ke/] (19)
gl
which could have been obtained directly from eq. (9) by taking the integrand
constant at its value at ?,1. If one defines a characieristic decay time 7 as
-1/3  -2/3
TR € ke (20}
and a non-dimensional decay length A = U_ T/Rn, then eq. (19) becomes -
AL = -Afn(1-9) (21)




which yields the expected exponential decay of ¢. The use of a definite
mixing lag is obviously somewhat arbitrary, since A§ depends on the
criteria for ¢. To compare various theories, an arbitrary value of ¢

equal to 1/2 has been chosen.

Hypersonic Turbulence Parameters

I_,'m2 assumed k = rn-l and also calculated €. A good match to

those -esults for £ > 102 is ¢ = 0.465, n = 2/3, =o that for ¢ = -é-

2/
AL R 1.49 51/ (22)

which is shown in Fig. 1 in comparison to the wake radius. It is seen that
the mixing is between one and two orders of magnitude larger than the
mean radius of the turbulent front, which is primarily a consequence of

the low values of ¢. Schapker's re sults4 can be represented as follows

. : 5 0.4 -0.25-0.43
Ry u ! el/J k 2/3= 86.58 /6 (T¢/Tw) Re £ : £<2000
. e deo
) (23)
.4 -0.25 _
- 6.75x 103 (T(/Tw) 5 5/6 Rey & L ¢ 2000

where f = uf/U.,o & ] and T is temperature, Neglecting the factor Tf/Too,

the mixing length for ¢ = %— is then given by:

- 0.25 _ 0.43
A§:1.15x102(£n2)Redw 3 gls2x103
{24)
-4 0.25
= 148 x 107 (fn2) Ry £, £, >2x 10
o0
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2 A eq (26)

DIMENSIONLESS WAKE RADIUS, rf/RN

W (BASED
d - ON PROUDIAN =
- AND FELDMAN!')
o Aéeq(22)
< (LIN2) |
Q -
=
X 102 —io
s
) -
(7p)
i
‘i’ Afeq(24) -
o (SCHAPKER)
7))
<
Ll -
= PROUDIAN
fa) AND
FELDMAN'
10 1 1 - | 1 1 I
02 103 04
DIMENSIONLESS DISTANCE BEHIND BODY, f,-.-.X,/R'N
Fig. 1 Present mixing length calculations based on Lin! s2 and

Schapker!’ s4 turbulence parameters for Red = 106, compared
an

with the wake radius and previous estimates. !
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and is alse shown in Fig. 1. These values result in a short mixing length,
approximately equal to the wake radius within about a factor of 2. These
short mixing lengths are caused primarily by the large values of both ¢ and
ke deduced by Schapker. 4

Proudian and Feldman's analysisl results in:

A= 5y [1 - exp - (p/loc,o)z/3 n'l] (25)
1

where p is mass density and n~ is the exponent o: the defect velocity decay.

For a self si-nilar wake n = 4/3, and for p = Por &= 21-,

Ag = 0.37 §1 (26)

also shown in Fig. 1. Here it is seen that this mixing length is much
larger than any of the others, with a considerably larger slope. The values
recommended in ref. | are also shown in Fig. 1, adjustzd for ¢ = -;_-,
which has an even larger average slene. (For § > 600, a constant mixing

time of 2 msec ‘s recommended.)

Discussion

The mixing length, is deduced from various theoretical calculations
and measurements are obviously in wide disagreement by as much as two
orders of magnitude. Unfortunately, direct measurements are not avail-
able, but calculations have been performed cf the effect of various mixing
lengths on electron densities in wak(,s.6 The calculations shown in Fig, 10
of ref. 6 indicate that the results are insensitive to the mixing length for

£ < 2500, but becomes very sensitive beyond that,

il
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Furthermore, Figs. 3 and 10 of ref. 6 which compares the calcu-

lations with experirnents7 indicate that the mixing length is quite short,

e.g. Ag/rf = 10 for x/RN < 4000. These valves are less than those
predicted by Lin by only a factor of about 3 at x/RyN = 4000. The small
values predicted by Schapker may be implausible, Additional experimental

evidence would be desirable to resolve these differences.

-10-
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