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ABSTRACT 

A simplified analysis is performed of the turbulent mixing 

of a trace chemical species with the bulk chemical species.    The 

general relationship between the mixing on a molecular scale and 

the concentration fluctuation intensity of the trace species is given. 

This is then applied to a turbulent wake,  to determine the axial length 

that it takes for injested gas to becorre mixed.    The results are 

sensitive to the assumed turbulent dissipation rate;   giving values 

of the mixing length from the order of to two srders of magnitude 

larger than the wake radius. 
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LIST OF SYMBOLS 

k - energy-containing wave number 

m = 1  (planar wakes),   2 (axisymmetric wakes) 

1    ' 2 — q = turbulent kinetic energy 

Rn       = drag radius,  •ycZA/jr 

r = radius 

S = Schmidt number c 

t = time 

u = axial wake velocity 

x = axial distance behind body 

e = rate of dissipation of turbulent kinetic energy 

4» = turbulent mixing parameter 

i       - x/R„ 
A4       = non-dimensional mixing length 

Subscripts and superscripts 

= cross-sectional average 

A,   B =   species 

f = turbulent front 

= fluctuation 

1 = point of entrainment 
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Introduction 

In performing calculations of chemical reactions in turbulent wakes, 

it is necessary to account for the rate at which the gas ingested by the 

turbulent front becomes mixed on a molecular scale with the gas on the 

interior of the turbulent wake.    One proposed method uses a "mixing lag 

length" L,  which is deduced on the basis of Isotropie turbulence theory; 

another method uses a transport equation for the electron density fluctua- 

tions to determine the mixing rate.      In this note,  it is shown that the latter 

equation can be used to determine the mixing length. 

Analysis 

The model for determining this length is a one-dimensional wake 

of uniform properties of species A which ingests a small amount of species 

B at a distance  x.   behind the body.      The flow field exterior   of the 



wake is also assumed to consist only of species   A, 

A mixing parameter  <^ is defined as follows; 

0.CAcB/CA-CB (1) 

where   CÄ   and  Cn   are the mass conccnU ations of species   A and B 

respectively,   and the overbar refers to a time average at a particular sta- 

tion in body-fixed coordinates.    If the gas is ur.mixed,  then either CA  = 1, 

Cg = 0,  or CA = 0,   CB =  1,   so that Ü.   CB = 0;   that is 0 = 0.    If species B 

is intimately mixed vji'ch A,  then CR(t)/CA (t) = constant = Üg/C^,   but since 

then  C.  (t) = CA.  0-1.    Thus   0  is a measurement of mixing on a 

molecular scale.     Also,   since there are only two species in this model 

CA(t)   + CB{t) =ü, +ÜB= 1 (2) 

If we decompose each concentration into a mean value and a fluctuating 

i 
component   (     ) ,  from eq.   (2) 

CA +  Cg    =  0 (3) 

Combination of eqs.   (1,  2,   3) yields; 

<Ml-^7/üAüB (4) 

If B is a trace species,   ^A
w 1,  and eq.  (4) can be rewritten as: 

"cT1 (x)        -C    (x,)       cl2   (x  ) 
0(x) = 1 -   ^A    • -P-    ■ -£ L_ (5) 

CB2(X1)        CB  (X) ÜB  ^P 



where   x  is the distance downstream and  x,   is the poinv of ingestion of 

species   B  which is initially unmixed at the point of ingestion;   hence 

?) (x,) = 0 so that the last factoi in eq.  (5) is equal to unity,  e.g. 

TT 
CB      ^P =T:B ^ (6) 

The second factor in eq.   (5) is determined only by dilution.    Thus the 

problem is reduced to that of determining ihe decay of mean square fluctua- 

2 
tions of species B,   for which Lin's equation (14)    can be used,  e.g.: 

(d/d |) (rf
m Ü ^T) ^B

2   uf d (r{
m)/de = -  Rn €1/3 k//3 rf

m ^      (7) 

where   m =  1 for plane wakes and 2 for axially symmetric wakes;   r£ (x) 

is the mean distance from the axis to the wake turbulent front;    ^ = x/R   ; 

R    is the wake drag or momentum defect radius,   u is the mean wake 

speed,    e is the rate of dissipation Ox turbulent kinetic energy and  k    is 

the turbulent energy-containing wave number.    The dissipation rate given 

in eq.  (7) can be deduced from eqs.   (7,   11,   20,  and 23) of ref.  3,  for a 

Schmidt Sc number of unity.    This form is also applicable for Sc <  1,  if 

1 2 multiplied by   -j (3 - S    ). 

—rZ" 
From eq.   (6), Ü« is of the order of CR   .    Since Ü., « 1, 

_ 2 ~r2 
C-,   « C,,     and the second term in eq.   (7) can be neglected.    In addition, 

B b 

one may approximate   U£ as  u.    Then eq.   (7) can De integrated to: 

k  [r™ ^/r™ ^)^^)]- - RJ*'1^^^ (8) 

xl 
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Now,   from conservation of specie a   B,    r"     ü,, **   r,      (x.)   C,-, (x.),   and 
1 13 i. i r)       1 

use of eq.   (6) in eq.   (8) yields: 

; <x) = 1 - exp (-RK J     ü"    c1/3ke
2/3de) (9) 

*] 

\Ve will next apply eq.  (9) to throd cases:   (i) self-preserving wake;   (2) the 

2 
turbulence parameters v alcilated by Lin   ;   and (3) the turbulence parameters 

4 
deduced by Schapker    from turbulent front measurements. 

^elf Preserving Wake 

The rate of destruction of turbulent kinetic energy for a   vake can be 

estimated from the generalized form of eq.   (8.4) of ic£.   5 for an incompressible 

wake: oo 

drm (10) 

o 

- 1   ^~ 
where   A u is the mean velocity defect and   y q       is the turbulent kinetic 

_____ ^ 
energy.    For a self preserving wake,   q        ~   (Au)   .    Also,  fron^ conserva- 

tion of mass, 

m 
Au   - U^d^/rj) (10a) 

where   U     rs the free stream velocity.    Thus, 

3 
e(x) -   U^ (Rn/r£]mx'1 (11) 

Since the self preserving wake is also geometrically similai,  the energy- 

cont   ining vf.ve number is "iversely proportional  to the wake  radius. 
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given by 
1 

m + 1 
(rf/Rn)   -   I (12) 

and the mean wake  velocity is taken as approximately   U^.      Use of 

eqs.   (11,   12) in (9) yields: 

^   =   1   - (^A) (13) 

v\here   c  is the constant representing the numerical constants of propor- 

tionality in eqs,  (11,   1Z) and between  ko   and   l/rf.    The important conclusion 

from (13) is that th ; distance required to achieve a given amount of mixing 

depends linearly on   I,,  the distance at which the species was initially 

ingested:   th?t is,  the further downstream the Ingestion,  the In ^er the 

length to become weU-mixed.    From eq.  (13) the length  A| - | - ^i»  to 

achieve a certain degree of mixing is 

-1/c 
^i/il = (i-*)       -1 (i4) 

From eq.  (14),   A^ —  °o as  (^ ^  1    but for finite values of <j)  and c'   in(l- 0)« 1 

M e  »-C-1 ^jgn  (1-0) (15) 

In general,  the integrand of eq.  (9) can be represented as: 

R    a"'   ^K^-ci'" (16) 
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and eq.   (9) can be integrated as follows; 

l-n       1-n "I 

'i 'S     >J ^ = I - exp 

For either  c  large   or   ^ small,  eq.   (17) becomes 

c (n-l)"1 (e, -1)1 (17) 

%!** 
A4^  - c   Ml.       In  (1-^) (18) 

which is the general;., ation of eq.  (15).    In order for the mixing length  A | 

to be a constant multiple of the distance from the axis to the turbulent front 

from eq.   (12)  n = (m + 1)     ;   e.g.    1/Z for plane wakes and l/3 for axially 
4 

symmetric wakes.    This condition is almost fulfilled for Schapker's data 
3 

for    4 "^ 6 x 10  ,  where n = 0.43,  as shown below. 

Enuation (18) can also be written as 

-1 

Al = -in   (l-^Kü     el/3ke
2/'3j (19) 

1 

which could have been obtained directly from eq.  (9) by taking the integrand 

constant at its value at   |..    If one defines a characieristic decay time   T   as 

-1/3       -2/3 
T «  € k (20) 

and a non-dimensional decay length   A =   U     T/R   ,  then eq.   (19) becomes 

A| = - A in (1 -4.) (21) 



which yields the expected exponential decay of  <f>.    The use of a definite 

mixing lag is obviously somewhat arbitrary,   since   A^    depends on the 

criteria for   0.    To compare various theories,   an arbitrary value of 0 

equal to  l/2 has been chosen. 

Hypersonic Turbulence  Parameters 

Lin    assumed  k   as   r anc e n 
^ 1 

those   -esults for    |  >   10^ is   c   = 0.465,  n = 2/3,   «o that for   <f) - -^ 

2 _ 1 
Lin    assumed  k   as   r and also calculated  e,    A good match to en ^ e 

A | «    1.49  1/ (22) 

which is shown in Fig.   1  in comparison to the wake radius.    It is seen that 

the mixing is between one and two orders of magnitude larger than the 

mean radius of the turbulent front,   which is primarily a consequence of 

4 
the low values of   e.    Schapker's results    can be represented as follows 

--1     1/3     2/3 5/6        ,       0.4 -0.25-0.43       . „ 
RNU.       € ke       =86-5f3        ^^^ ^d«, ^ ;e^2000 

-5 0  4     5 A        -0.25       i 
- b.TSxlO3 (Tf/T«) *     ß ^    Red |     :e>2000 

where   ß = Uf/ü^ *  1 and  T is temperature.    Neglecting the factor Tf/T,», 

the mixing length for   ^ =  y is then given by: 

-2    /. 0.25       0.43 ^ 7 
Ae =  1. 15 x 10       (in 2) Redoo      Ij i^ Z x 10* 

~-   1.48 x 10'4 (In 2) Red'       ^ Ij  > 2 x iO' 

(24) 
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Schapker' s    turbulence parameters for Re ,     =  10   ,  compared 

with the wake radius and previous estimates. 1 
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and is also shown in Fig.   1.    These values result  in a short mixing length, 

approximately equal to the wake  radius within about a factor of 7..    These 

short mixing lengths are caused primarily by the large values of both   e   and 

4 
k     deduced by Schapker. 

Proudian and Feldman's analysis     results in; 

A = ijl -exp- (p/pj^3  n"1! (26) 

1 
7 . whers   p is mass density and n    is the exponent d the defect velocity decay. 

For a self similar wake   n = 4/3,   and for  p = p^,    $ =   y, 

AS = 0.37 ei (26) 

also shown in Fig.   1.    Here it is seen that this mixing length is much 

larger than any of the others,   with a considerably larger slope.    The values 

recommended in ref.   1 are also shown in Fig.   1,   adjusted for   4» =  y. 

which has an even larger average slope.    (For   % > 600,   a constant mixing 

time of 2 msec ".s recommended.) 

Discussion 

The mixing length,   is deduced from various theoretical calculations 

and measurements are obviously in wide disagreement by as much as two 

orders of magnitude.    Unfortunately,  direct measurements are not avail- 

able,  but calculations have been performed cf the effect of various mixing 

lengths on electron densities in wakes.      The calculations shown in Fig.   10 

of ref.  6 indicate that the results art. insensitive to the mixing length for 

^< 2500,   but becomes very sensitive beyond that. 



Furthermore,   Figs.   3 and 10 of ref.   6 which compares the calcu- 

7 
lations with experiments    indicate that the mixing length is quite short, 

e. g. Al/i'f   S 10 for x/Rj, <  4000.    These valves are less than those 

predicted by Lin by only a factor of about 3 at x/R^ = 4000.    The small 

values predicted by Schapker may be implausible.    Additional experimental 

evidence would be desirable to resolve these differences. 
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