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FOREWORD 

This report describes the use of an algebraic language in constructing 
a simple compiler.    It was written by The MITRE Corporation, Bedford, 
Massachusetts, in partial fulfillment of Project 512B under contract number 
AF 19(628)-5165. 

REVIEW AND APPROVAL 

Publication of this technical report does not constitute Air Force approval 
of the report's findings or conclusions.   It is published only for the exchange 
and stimulation of ideas. 

WILLIAM F.  HEISLER, Colonel,  USAF 
Chief,  Command Systems Division 
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ABSTRACT 

The use of algebraic command languages for things other than 
preparing numerical algorithms has become somewhat popular, in 
particular for writing compilers.  The author feels that the 
technique of using an algebraic command language, for implementing 
a compiler is a good solid practical idea deserving some additional 
attention.  He feels that this technique will be found particularly 
useful by organizations not in the business of building commercial 
compilers, but interested in the implementation of a small special- 
purpose language, such as a query language for a model of a command 
system.  The purpose of this paper is to describe this technique 
to such an audience and to comment on the extent of its applicability. 
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SECTION I 

INTRODUCTION 

Six years ago, Robert W. Floyd remarked in his article "A 
Descriptive Language for Symbol Manipulation:" "The algebraic 
command languages (ALGOL, IT, FORTRAN, UNICODE), although useful 
in preparing numerical algorithms, have not in the author's opinion 
proven themselves useful for symbol manipulation algorithms, 
particularly compilers."W Robert W. Floyd would probably not say 
that today, for the use of algebraic command languages for things 
other than preparing numerical algorithms has become somewhat 
popular, in particular for writing compilers.  For example, the 
Burroughs Corporation has programmed large portions of the software 
for the B5000 and B8500 systems using a dialect of ALGOL, MITRE has 
programmed FORSIM IV in FORTRAN IV, and according to the recruitment 
ads in Datamation (at the date of this writing), United Airlines 
intends to program most of its passenger reservation system in 
Univac's FORTRAN V.  The author feels that the technique of using 
an algebraic command language for implementing a compiler is a good 
solid practical idea deserving some additional attention.  He feels 
that this technique will be found particularly useful by organizations 
not in the business of building commercial compilers, but interested 
in the implementation of a small special-purpose language, such as 
a query language for a model of a command system.  The purpose of 
this paper is to describe this technique to such an audience and to 
comment on the extent of its applicability. 

Using a tool for a purpose other than the one for which it was 
intended requires an explanation.  Usually the substitution of one 
tool for another takes place when the proper tool is not available, 
and its fabrication is a non-trivial process.  In our case, the tool 
is a compiler builder. 

To say that compiler builders do not exist or are not available 
would not be quite accurate, for work on such tools and the theory 
behind them has been going on at a large number of places for quite 
some time.  This work has not been without significant results: 
certain classes of ALGOL-like (phase structure) languages have been 
identified as being unambiguous; algorithms have been devised which 
will accept a definition of the syntax of a language and determine 
if the language is in such a class; and algorithms have been devised 
for these classes of language that mechanically generate other 
algorithms capable of scanning source text and producing representa- 
tions of the source text syntax in a variety of formats.  Around 
these basic principles have been built a variety of systems for 



programming compilers that are indeed compiler builders or "compiler 
compilers." But at the present time these systems are by no means as 
readily available as conventional software, in particular the algebraic 
languages.  Furthermore, despite the progress that has been made, the 
advent of the instant compiler is still quite a way off.  A large 
amount of the work of implementing a compiler is still conventional 
programming and debugging. 

This paper suggests that in the absence of a readily available 
compiler building tool that the available algebraic language be 
adapted to such a purpose, as has been done already at several places. 
It sketches an approach to such an adaptation, and it shows that 
while this approach has the disadvantage of being relatively informal 
(in the sense of taking strict advantage of the available theory), 
it has the advantage that a compiler constructed as we are about to 
describe can be maintained and modified by programmers with no special 
training or experience.  It also shows how this scheme lends itself 
readily to what we have come to call "creative adhocery" and has the 
audacity to suggest that such an adaptation of an algebraic language 
has a usefulness as great as many of the fancier compiler compilers 
of recent derivation. 

GENERAL APPROACH 

Our general approach in making a compiler building tool out of 
an algebraic language is to augment the algebraic language and its 
operating environment with a small set of tightly coded machine 
language subroutines.  These machine language subroutines provide 
the data manipulating capabilities that are necessary for the con- 
struction of a simple compiler and are not found in the algebraic 
language.  Communication between the algebraic language and the 
machine language subroutines is facilitated by defining the interface 
between them entirely in terms of integers.  That is, every symbolic 
datum that need be manipulated by a program in the algebraic language 
is represented as an integer.  The extra machine language programs 
are not, however, a general-purpose symbol manipulation capability. 
Such a task could become quite, complex, and that would subvert our 
basic goal of providing an economical base for constructing a simple 
compiler. 

A compiler to be implemented in this environment is structured as 
follows:  Each syntactic element in the source language is represented 
by a procedure in the algebraic language, which is entirely responsible 
for the translation of an instance of that syntactic element into some 
object language.  In performing its job of translation, this procedure 
may appeal to other procedures representing syntactic elements; 



procedures which build and manipulate symbol tables, procedures which 
generate code, and so forth.  Thus at the highest level there is a 
procedure named PROGRAM which, when appealed to, compiles an entire 
program.  At a lower level a procedure named BOOLEAN is responsible 
for translating a Boolean expression and returning the translation 
as its value.  This way of structuring translation, "top-to-bottom" 
analysis, is frequently employed in syntax-directed compilers, where 
the rules of syntax are stored explicitly in a specially formatted 
table.  The difference here is that each syntactic element, rather 
than being represented in a table» is represented by a procedure. 
The advantage of doing it this way can be seen by studying the design 
of syntax directed translators employing the table method.  Although 
the syntax definition is usually neatly packaged, the algorithm which 
generates the object code (or the output to the next stage of trans- 
lation) is usually specified by a series of "actions" attached to 
the syntax definition which are as ad hoc as the syntax definition 
is general.  But the algorithm which generates the object code is 
the non-trivial part of translation.  Representing syntax by procedure 
structure allows the translation algorithms to be expressed in a 
general-purpose programming language rather than in a set of ad hoc 
"actions."  The formal structuring of a compiler in a way that, is 
rigidly tied to syntax is the contribution of the syntax directed 
compiler.  But it is the author's experience that the dream of 
feeding a language specification as data to a general-purpose program 
can lead the design of a compiler astray. 

Looking through the literature the author notes that both Lietzke^J 
and Irwin PI have suggested basically what is suggested here.  The 
difference is that we are pushing the idea further.  Lietzke was 
interested in employing a set of procedures that paralleled language 
syntax only for the purpose of diagnostics (in the Share ALGOL compiler) 
and Irwin only in generating random sentences of a grammar; we are 
suggesting that nearly the whole compilation job can be done in such 
an environment. 

In constructing the examples in the sections that follow we have 
assumed that the algebraic language which is to be used as a simple 
compiler environment is ALGOL.  Hereafter the term "ALGOL procedure" 
will be used interchangeably with "algebraic language procedure." 



SECTION II 

UTILITY PROCEDURES 

The utility procedures used to augment the normal ALGOL operating 
environment are described in this section.  They include an editor 
for segmenting a source string, two elementary list operators, two 
procedures for composing an object string, and one procedure for 
generating identifiers.  Unless otherwise specified, it is intended 
that they be programmed in machine language. 

editor 

As any compiler writer will tell you, a large percentage of 
compilation time in a typical compiler is spent in the simple process 
of examining the source string one character at a time, breaking it 
I~

T
.O "atoms.," and reducing each atom to its internal representation. 

This aspect of compilation is usually separated off as a tightly 
coded subroutine, and ro exception is made here.  The machine language 
subrout ine which we postulate to do this job is known as the editor. 
Its input arguments could include such things as the source or 
location of a string in the source language, a list of characters 
which are to serve as separators, and other information regarding 
the editing of the source text into atoms.  But for our purposes 
here we will assume the editor itself bears the full responsibility 
for knowing or finding out these details, and consequently has no 
input arguments  Its output value, is an integer which may be 
thought of as a pointer to the first atom of the edited source 
string.  We shall see how to use this pointer shortly. 

For the purpose of our examples below we will assume that 
the editor segments source strings according to the. following rules: 

(i) All characters except A,B,C,...,Z,0,1,2,...9 
are separators. 

(2) All separators except blank (b) are atoms. 

(3) Any sequence of non-separators between two 
separators is an atom. 

Example"  The editor segments the source string 

A+T(ANQ;7)-F ;IFbbbANY 

into the atoms 

A + T  ( AN£  ;  7  )  -  F  ;  IF AN^ 



nextatom and test 

Two machine language subroutines are used to scan along an 
edited source string. 

nextatom fetches the next atom in a source string.  nextatom 
has one argument, an integer serving as a pointer to an atom of an 
edired string,  nextatom returns as an output value, an integer 
serving as a pointer to the next atom in the edited string,  ne« tatom 
returns a special terminal integer, say A, if there is no next atom. 

Example:  Assume the source string 

ANS + 47*B 

is ready at an input source when the following segment of 
code is executed: 

integer X; 

X : = nextatom (nextatorn(editor)) 

The contents of the variable X will be replaced by an integer 
serving as a pointer to the atom 47. 

The phrase "integer serving as a pointer" occurs so frequently 
that we will use in its place simply the word "pointer." Thus we 
will say "the contents of the variable X will be replaced by a 
pointer to the atom 4?." 

test is a logical valued procedure used to compare an 
arbitrary string to an atom in an edited source string, and on the 
basis of the comparison advance a pointer pointing to the edited 
source string.  Thus test requires two arguments:  a string and a 
pointer* and test^ returns two values:  true or false, and a pointer 
to the next atom in the source string when the comparison yields 
true.  To make the. use of the function test as natural as possible, 
the following conventions have been adopted regarding the input 
arguments to test and the values it returns.  test is defined to 
have, one explicit argument, the string to be compared; and one 
implicit: argument, the name of a variable containing a pointer to 
an atom in an edited source string.  The implicit argument is 
always the name of the global variable input (where it is not 
possible for external machine language subroutines to reference 
variables in the algebraic language programs, the procedure test 
can be redefined to have two explicit arguments).  If the value of 



the comparison is true, test returns the value true and replaces the. 
pointer in the variabTe named by the second argument (in our case, 
the implicit argument "input") by the value of the procedure nextatom 
operated on that pointer.  Otherwise, test returns false.  Using 
these conventions the function test appears to have one "input argument, 
a string, and one resultant value, either true or false. 

Example: Assume the variable input has been declared 
appropriately and tiha^ it contains a pointer to the 
beginning of the following edited source string: 

Then if the statement 

r:est{°+a) 

is executed, the variable input will subsequently contain a pointer 
to tne atom 1.  If, with input pointing to the atom 1, 

tesfci'*1) 

is executed, the variable input will not be changed. 

Assuming the same edited string is pointed to from the 
variable input, the value of the following expression will be false 
(and input will subsequently point to the atom *): 

if test(c+°) and not test('l') then true else test( '1') 
r\*\j ' r\*>jrj    r * ^^,    ——^- «WiW    *V^-**>^V»    r\xv^-«*x<    ^~~~~~ 

gather and scatter 

gather and scatter are two very simple list processing 
procedures.  gather accepts two integer arguments and returns a 
single integer as a value.  The integer which gather returns as a 
value can be thought of as a list whose elements are the two integers 
supplied as arguments.  scatter does just the opposite,  scatter 
accepts three arguments, the. first of which is an integer previously 
returned by a gather operation, the other two arguments are the names 
of variables which are to receive the two integers represented by 
the first argument. 

Example: 

integer a,b,c^ 



£ := ^ther (2,4); 

b := gather (7,a); 

scatter (b,a,c) ; 

scatter (c_,£,.a) 

After this sequence of code has been executed, the variable 
a  contains the integer 4, and the variable £ the integer 2. 

gather and scatter are readily programmed in ALGOL, and are 
shown below.  gatherarray and other undefined identifiers are assumed 
declared in a higher level procedure and will be discussed later. 

Note that for debugging purposes it is convenient to be able 
to distinguish the integers manipulated by gather and scatter from 
the ones being manipulated by editor, nextatom and test. 

integer £rjDcedure gather (argj,arg2) ; vaj-uj- argl, arg2; 

intege:r ar&l, ar&2 ; 

begin integer workl; 

if nextavailable = 9999999999 then 

error (0) 

else 

begin 

workl := nextavailable; 

nextavailable := gatherarray [workl] ; 

gatherarray [workl] :* argl; 

gatherarray fworkl+i] :■ arg2; 

gather := workl 

end 

end gather 
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procedure scatter (from, tol, to2) ; value from; 

integer from, tol, to2; 
r^r^*^jr^K*\s^,     —————    ——      —— 

begin 

tol :- gatherarray [from]; 

to2 := gatherarray [from +1] *, 

gatherarray [from] := nextavailable; 

nextavailable := from 

end scatter 

join and unwind 

join and unwind comprise a mechanism for generating object 
code,  .join is used during translation to tie together pieces of 
code as they are generated, and unwind is used subsequent to 
translation to tidy up the final string of object code. 

j oin, like test, is defined with special conventions that 
make its use as natural as possible.  In fact, as we are about to 
define it, join violates two of the rules of ALGOL.  First, it has 
a variable number of arguments; and second, it allows any of its 
arguments to be either strings or integers.  Both of these conver 
niences can be dropped, if necessary.  join can be defined as a 
procedure with two arguments (and then applied repetitively); and 
since the set of string arguments that are normally given to it is 
small« they can easily be represented as integers (in particular, 
we could define a simple function which mapped the strings of 
interest into integer representations).  But it has been our 
experience that ALGOL compilers are quite permissive about the 
ways in which external (machine language) procedures are called, 
and that in fact the join statements as they are defined are 
permitted. 

As stated above, join accepts a variable number of arguments, 
Each argument may be either a string, which represents itself, or 
an integer.  No integer argument to loin represents itself.  Zero 
represents the null argument and is ignored.  A non-zero integer 
may represent either: 



(1) an atom in an edited source string; 

(2) a field in a symbol table (to by discussed 
below); or 

(3) the result of a previous join operation 

join returns as its output value an integer which represents the 
concatenation of its arguments.  In this way join is similar to 
gather.  join and gather are used in different ways, however.  gather 
is used whenever a temporary compression of data is called for, 
whereas join permanently associates data until the end of translation 
and is intended primarily for the construction of object code. 

unwind is used at the end of translation for the final 
construction of object code.  Whether or not unwind is actually 
needed depends on how join is implemented.  The suggested imple- 
mentation is as follows:  join examines its arguments in the sequence 
in which they are supplied.  If an argument, is a string, or an 
integer representing the result, of a previous join operation, the 
argument is written on "tape" without any further evaluation.  If the 
argument is an integer representing an atom in an edited source 
string, or a field in a symbol table, then the actual atom or value 
of the field is fetched and written on the tape. When the arguments 
have been exhausted a terminal mark is written on the tape, «ASiS 
returns as its value the integer address of the first value it wrote 
on the tape. 

The function of unwind is:  given an integer address to the 
join tape, construct a single string consisting of the orderly con- 
catenation of all the values written at that place on the tape.  Where. 
a pointer to another place on the tape occurs, appeal to unwind re- 
cursively to fetch the string consisting of the orderly concatenation 
of all the values written at that place on the taper and so forth. 
Thus unwind has one argument, an integer address to the \oin tape, 
and returns as its value a pointer to an orderly concatenated string 
which is the object, code of a translation.  By orderly concatenation 
we mean concatenation according to some simple rules that mak^ stnse 
for whatever object code (or class of object codes) is being generated. 
If, for example, ALGOL is the object code being generated, then it: 
would make sense to form the concatenation by inserting a space between 
values■ 

join is used throughout, the translation process to form 
pieces of the object code, which may then be manipulated as simple 
integers regardless of their length.  unwind is used only at the 
end of translation to unravel the join tape and produce the. final 



version of the object code.  Clearly the integers which represent 
the result of join operations must be distinguishable from other 
integer representations. 

Example: 

integer a_,b.,c_; 

a :- join (?R{
: 'SS'T'); 

b :- loin ('P'.sQ'}a,'0«); 

c   :» join (b.b) ; 

a :- unwind (c.) \ 

After this string of code has been executed, the variable a will 
contain a pointer to the object code "P Q R S T U P Q R S T U". 

generatedname 

When generating object code it becomes necessary on occasion 
to invent an identifier for use as the name of a label or a variable, 
generatPdname is a procedure with no arguments that returns an 
integer representing an identifier,  generatedname returns a unique 
value each rime it 13 called. 

Example: 

integer a.b: 

a_ := genera'tedname; 

b :- join (a, ' :GO',a; ';') 

After the execution of the above code, the variable b contains a 
representation of the object code: 

GN1 : GO GN1; 

where GNi is an identifier that might be generated by generatedname. 
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error 

error is a procedure that generates diagnostic messages   In 
a full blown system error would normally have a full set of input 
parameters.  These might specify an index to a standard error message 
stored in a catalog of error messages, parameters to be substituted in 
the standard message, specification of where the message is to appear, 
and so forth.  For our purposes here error will accept just one input 
parameter, an integer designating a standard error message 

Example: 

error (67) 

Other Utility Procedures 

The utility procedures that have been outlined above form 
the basis of any complete set that would be required for the imple- 
mentation of a simple language, and are sufficient for all the 
examples that have been included in this article.  Depending on 
exactly what language is to be implemented, some additional utility 
procedures may be required.  In the informal framework we've described, 
they can be added ad infinitum according to the whim of the designer. 
The basic idea is to separate into a machine language utility procedure 
those algorithms which either consume a large amount of space or time, 
or cannot otherwise be conveniently programmed in ALGOL.  The general 
appearance of the complete compiler is that while the majority of the 
logic of translation is in ALGOL, the majority of time-consuming work 
is done in the machine language utility procedures, 

One set of utility procedures that are conspicuously missing 
in the discussion above are symbol table manipulation procedures.  They 
have been left out in part because they are not essential for the 
examples to be employed below (and certainly not essential to the 
concepts discussed), but also because we feel the design of symbol 
tables should be tailored to each individual language, even to the 
extent of their interface with the procedures that use them. 

11 



SECTION III 

GLOBAL VARIABLES AND THE COMPILER PROCEDURE 

The general approach to the structuring of a simple compiler that 
is being delineated here is to represent each syntactic element in the 
source language with a procedure, in ALGOL (or other algebraic language) 
which is entirely responsible for the translation of an instance of 
that syntactic element into object, language.  At the top of a hierarchy 
of such procedures there is, of course, one "main" procedure.  This main 
procedure has the responsibility of declaring all global quantities 
(simple variables, arrays, and procedures), and performing any 
initialization and finalization that may need to be done. 

An example of a main procedure for a simple compiler, which is 
named compiler, is shown in Figure 1  compiler is quite trans par-. 
except (alas) when it comes to its parameters  Because the most 
important of its parameters are not acceptable ALGOL data types. 
and because the integer representation scheme applies only inside 
the compiler itself, it is necessary to go underground and specify 
the communication of parameters to and from compiler with conventions 
that lie outside the scope of the ALGOL language. 

The input values supplied to a compiler normally include 

(1) a source text 

(2) a list of resources available 

(3) rules to be followed during translation (ranging from 
the specification of an end of text symbol to a 
complete language syntax specification) 

(4) indicators of operating mode (on-line or off-line, 
debugging or production, etc.) 

(5) designation of the disposition of output values 

The output values produced by a compiler normally include: 

(1) an object text 

(2) diagnostics 

(3) listings of the source and object texts 

12 



The conventions that have been assumed by compiler and its sub 
structure of procedures in the acquisition and disposition of input 
and output values are as follows: 

(1) the procedure editor has the responsibility for obtaining 
the source text and delivering a listing of the source 
text. 

(2) resources available are listed as explicit parameters 
(only one is listed in Figure 1) 

(3) the procedure unwind has the responsibility for delivering 
the object program 

(4) the procedure error has the responsibility fot disposing 
of diagnostics. 

Presumably editor, unwind, and error are machine language 
procedures that have been programmed to agree on the acquisition 
and disposition of input and output values. 

For the purpose of the examples which follow, the reader 
should keep in mind the following things about global variables 
and the compiler procedure: 

(1) the variable input contains a pointer to the current 
atom of the source string. 

(2) the variable translation is used to communicate the 
translation of a syntactic element from the procedure 
that translates it to the procedure calling for the 
translation. 

(3) a procedure for each syntactic element is declared in 
the procedure heading of compiler; each procedure that 
corresponds to a syntactic element returns a value of 
true when it successfully scans and translates an 
instance of the syntactic element it represents, and 
a value of false otherwise. 

13 



SECTION   IV 

A SIMPLE  EXAMPLE 

[4] 
The syntactic element <program> from the Revised ALGOL 60 report 

has been chosen as a simple example.  A program is defined in Panini 
Backus Form[5] as follows: 

<prqgram> ::= <block>|<compound statement> 

An ALGOL procedure for translating this syntactic element is: 

Boolean procedure program; 

begin 

program := if block then true else compoundstatemenL 

end 

w 



Boolean procedure compiler (eatherarraylimit); value gatherarraylimit, 

integer gatherarraylimit; 

comment other appropriate arguments are inserted in place above, 

begin 

ijjteger array gatherarray [1 : gatherarraylimi 11 • 

integer input, nextavailable, translation; 

procedure initializegatherarray 

begin integer i; 

for i ;■ step 2 until gatherarraylimit - 3 do 

gatherarray [i]   :» i+2; 

gatherarray [if gatherarray limit/2 = gatherarraylimi t-H) fl 

then gatherarraylimit-2 else gatherarraylimit-11 :■ 

9999999999; 

nextavailable := 1 

end 

comment all other global array, simple variable and 

procedure declarations are inserted here; 

initializegatherarray; 

input := editor; 

translation : = 0; 

comment all other initialization steps are inserted here 

compiler :■ program; 

unwind (translation); 

comment all other finalization steps are inserted here; 

end compiler 

Figure 1 . The Main Procedure compiler 
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SECTION V 

FLOYD»S EXAMPLE 

The example chosen by Floyd in    is a simple assignment 
statement defined by these Panini Backus expressions: 

assignment statement> : := <left part list > <arithmetic expression> 

<left part list> ::= <variable> :=|<left part list> <variable> := 

"^arithmetic expression> : := <term>|<adding operator> <term>| 

<arithmetic expression> <adding operator> <term> 

<term> ::= <factor>|<term> <multiplying operator> <factor> 

<factor> ::= <primary>|<factor>t<primary> 

<primary> ::= <procedure identifier>(<arithmetic expression>)| 

(<arithmetic expression^)|<variable> 

The object language into which simple assignment statements are tu be 
translated is a simplified ALGOL in which only one operation is 
permitted to the right of ":=", and only one variable to the left. 

One way in which this example is more difficult than the 
preceding one is that some actual translation will have to be done, 
and the utility procedures will need to be employed  Another wav 
in which this example is more difficult is that left recursion is 
used in four of the six definitions.  In top-to-bottom analysis, 
left recursion is a problem that has to be handled as a special case 
To see the problem, consider the definition: 

<A> : : = <A> B | C 

A procedure A is constructed with the responsibility for translating 
syntactic elements of type A.  But the first step A takes is to 
appeal to A in order to check out the first alternative of the 
definition of A. An endless sequence of operations results.  This 
difficulty is overcome in this way: 

The alternative definitions for a syntactic element are 
grouped into two categories:  those which begin with an instance of 
the syntactic element being defined, and those which do not.  Each 
of the definitions that do not so begin are attempted first   [£ 
none of those definitions can be satisfied, then there is no hope 
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for scanning and translating an instance of the syntactic element 
being attempted, and the attempt is given up.  If one of those 
definitions is successful, then instead of being satisfied with 
success, the left recursive definitions are examined.  The first 
element of each left recursive definition is deleted (the recursive 
mention of the syntactic element being translated) and the remaining 
definition segments are matched against the source string repetitively 
until no more scanning can be done. 

Thus, if the string 

BCDBECFD 

is tested against the definition 

<A> : :*= <A> B | C 

it would be rejected because it does not satisfy the definition C. 

The string 

CBBBBBCDBCFB 

would,   on  the  other  hand,   yield an instance  of A,   namely, 

C  B B  B  B  B. 

The non-recursive definition (C) being satisfied, the 
remaining definition segment of the left recursive definition (B) 
is successfully matched against the source string five times. 

ALGOL procedures for translating assignment statements as 
defined above are shown in Figures 2 through 8.  Note the definition 

of gather 1 to extend the usefulness of the utility procedures. 

The reader will probably find it useful to consider an example. 
For the source string 

P := Q := A * sin(B)/C t (-D) 

the object string 

XI • = sin(B); 

11 :• A*T1; 

13 • = C   t   -D; 
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Boolean procedure assignmentstatement; 

begin integer vorkl, wprk2, work3, work4; 

if left part list then 

begin 

scatter (translation, workl, work2); 

arithmeticexpression; 

scatter (translation, work.3, work4) ; 

translation : = join (work.3 , ' ; ', work!, work4, ' ; * , work2) ; 

assignmentstatement := true 

end 

else 

assignmentstatement :■ false 

end assignmentstatement 

Figure 2.   Translating   < assignment statement > 
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Boolean procedure leftpartlist; 

begin integer saveinput, workl, work2; 

saveinput := input; 

if variable then 

begin 

if test (■:=') then 

begin 

workl := translation; 

work2 := 0; 

go to leftrecursivealternate 
KX^J    <-\x-\> ——————_—————_—-——-————-_——-——_————— 

end 

end 

input :■ saveinput; 

leftpartlist := false; 

go to end; 

leftrecursivealternate: 

saveinput := input; 

if variable then 

)egm 

if test (':=') then 

Figure 3.   Translating <left part list> 
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begin 

work2   :=  join   (workl,    ':=',   translation, 

' ; ',  work2); 

workl   :=  translation; 

go  to  leftrecursivealternate 

end 

end 

input   :«■ saveinput; 

translation   := gather   (join   (workl,   ':='),  work2); 

leftpartlist   := true; 

end:     end   leftpartlist 

Figure 3.   Translating    <left part list >   (concluded) 
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Boolean procedure arithmeticexpression; 

begin integer work}., work2; 

if term then 

egm 

workl := translation; 

go to leftrecursivealternate 

end; 

if test ('+') then 

begin 

term; 

workl :■ translation; 

go to leftrecursivealternate 
A&\s r*ji**j    ^——^—^—————————————— 

end; 

if test ('-') then 

egin 

term; 

workl   := gather 1   (gather   (0,0),   join   ('-'),   translation) ; 

&£ ££ leftrecursivealternate 

end; 

arithmeticexpression   :■  false; 

go  to end; 

leftrecursivealternate 

if addingoperator  then 

Figure 4.   Translating   <arithmetic expression > 
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begin 

work.2 := translation; 

term; 

workl   := gather 1   (workl,  work2,   translation) ; 

go to  leftrecursivealternate 

end; 

arithmeticexpression   :■  true: 

translation   := workl; 

end:     end arithmeticexpression 

Figure 4.   Translating   <arithmetic expression >   (concluded) 
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Boolean procedure term; 

begin integer workl, vork2; 

if factor then workl :■ translation 

else begin term := false; go to end end; 

leftrecursivealternate*. 

if multiplyingoperator then 

begin 

work2 :■ translation; 

factor; 

workl := gather 1 (workl, work2, translation) ; 

go to leftrecursivealternate 

end; 

term := true; 

translation := workl; 

end:  end term 

Figure 5. Translating <term> 
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Boolean procedure factor; 

begin integer workl; 

if primary then workl := translation 

else begin factor := false; go to end end; 

leftrecursivealternate: 

if test ('t ») then 

egin 

primary; 

workl   :=  gatherl   (workl,   join   ('t'),   translation); 

go  tjo  leftrecursivealternate 

end; 

factor   :=  true; 

translation   := workl; 

end:     end   factor 

Figure 6.   Translating <factor> 
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Boolean procedure primary; 

äS&JJ! iÜiS^J- Ü2lis^» work.2, work3, temp; 

primary :■ true; 

if procedureidentifier then 

begin 

workl := translation; 

test (»('); 

arithmeticexpression; 

test (»)•>; 

scatter (translation, work2, work3); 

temp := generatedtemp; 

translation := gather (join (work2, ';', temp., ': = ' 

workl, '(', work.3, ')'), temp) 

end 

else 

if test ('(') then 

begin 

arithmeticexpression; 

test (")') 

end 

else 

if variable then translation := gather (0, translation) 

else 

primary := false 

end primary 

Figure 7. Translating <primary> 

25 



integer procedure gather 1 (leftoperand, operator, rightoperand) ; 

value leftoperand, operator, rightoperand: 

integer leftoperand, operator, rightoperand; 

begin integer leftcode, leftvalue, rightcode, rightvalue, temp 

scatter (leftoperand, leftcode. leftvalue) ; 

scatter (rightoperand. rightcode, rightvalue) , 

temp := generatedtemp; 

gather 1 := gather (join (leftcode, ';*, rightcode, ' , . 

temp, ' :■', leftvalue, operator, right value) .. temp) 

end gather 1 

Figure 8. gather 1 : an Extension of the Utility Procedures 
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T4  := T2/T3; 

Q  :« T4; 

P   := Q; 

will be  generated. 

A comparison of Figures  2-8 with Floyd's  original example 
will  show  the   former   to be   far   lengthier,   but no  less   lucid   for  it: 
and  if  the  utility procedures  have been  implemented cleverly,  no   less 
efficient. 
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SECTION VI 

TRANSLATING PANINI BACKUS FORM 

The regularity of Figures 2 through 8 suggests that the procedures 
there may themselves be generated mechanically.  Considering Panini 
Backus Form as a source language, its definition in Panini Backus Form 
looks like this (circles are used to distinguish constants in the 
language being defined from constants in the metalanguage): 

<statement> ::= <variable> \jj  <alternate list> 

<alternate list> : := <alternate>|<alternate list>Qj<alternate> 

<alternate> : := <factor>|<alternate> <factor> 

<factor> ::= <variable>|<basic symbol string> 

<variable> ::=(<)<identifier>(>) 

A set of ALGOL procedures for translating this language into an 
ALGOL equivalent are shown in Figures 9 through 13. Two simplifying 
assumptions have been made: 

(1) that it is valid to accept the first alternative in a 
definition that matches without checking to see if there 
is a longer one that matches; and 

(2) that no definition has more than one left recursive 
alternate. 

The object code that is produced from a source string of Panini 
Backus Form is sufficient for scanning instances of the language 
defined, but additions must be made by hand before translations can 
be made. 

An example of a source string in Panini Backus Form that has 
been translated by the procedures in Figures 9 through 13 is the 
five lines above.  The object code, suitably doctored so that a 
translation is made to ALGOL, is shown in Figures 9 through 1.3. 

„ 
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SECTION VII 

ERROR HANDLING AND CREATIVE ADHOCERY 

Unfortunately, this compiler scheme has no facility for the 
automatic detection and reporting of errors in the source text.  The 
algorithms generated from Panini Backus Form by the procedures of 
the preceding section simply back up when the source text is not 
syntactically well-formed.  This means that when the slightest error 
is embedded in the source text, the highest level procedure simply 
returns ,£&£&£, with no indication as to how many errors were found, 
what kind of errors were found, or whether or not the errors found 
would have prevented meaningful execution.  But although there is 
no automatic facility for error handling, there are no obstacles 
barring the implementation of a well formulated error policy. 
With simple modifications to the algorithms mechanically generated 
by the procedures of preceding section, the procedure representing 
a syntactic element can be made to: 

(1) generate an error message, back up (the source 
text), and return ff&l&g,, 

(2) generate an error message, scan forward to an 
appropriate point, and return ,£ajj5£, 

(3) generate an error message, scan forward 
to an appropriate point, set up a default 
piece of object code in translation, and return 

(4) generate an error message, back up, and wait 
for the source text to be modified on line, or 

(5) almost anything else along these lines. 

Distinctions can be made between "hard" errors and "soft" errors, 
and fancy listings that include a snapshot of the segment of the 
source text containing the error can toe produced.  The important 
thing is that the designer specify an error policy that is con- 
sistent, and relates well to the nature of the source language, 
and the environment(s) in which the compiler is to operate. 
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Boolean procedure statement; 

bej^iii integer saveinput, workl, work2; 

saveinput := input; 

if variable then 

begin 

workl := translation; 

if test ('::-') then 

^ alternatelist (workl) then 

begin 

scatter (translation, translation, work2) ; 

translation := join ( 'J^äI^Ä £&&£&&&*> 

workl,'; begin integer saveinput, 

saveinput :* input;', translation, 

' ;input := saveinput; ' , workl, ' : = 

false: go to end: leftrecursivealternate : ', 

work2,';',workl,'  := true; end: end', 

workl) ; 

go to leftrecursivealternate 
A^, «XA< -———_——————_--—-———_—————-—— 

end 
«MM 

end 
«_>xv> 

end; 

input := saveinput; 

statement := false; 

Figure 9.   Translating statement > 
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go to end; 

leftrecursivealternate: 

statement := true; 

end:  end statement 

Figure 9.   Translating < statement> (concluded) 
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Boolean procedure alternatelist (categoryname); value categoryname; 

integer categoryname; 

begin integer saveinput, workl, work2, work3; 

saveinput :■ input; 

if alternate (categoryname) then 

begin 

scatter (translation, workl, work2); 

go to leftrecursivealternate 

end; 

input := saveinput; 

alternatelist := false; 

go to end; 

leftrecursivealternate: 

saveinput := input; 

if alternate (categoryname) then 

begin 

scatter (translation, translation. work3) ; 

if not work3 = 0 and not work2 = 0 then error 

(integer ('more than one left recursive 

alternate')) ; 

workl := join (workl, ';', translation); 

work2 := join (work2, work3); 

go to leftrecursivealternate 

end 

Figure 10. Translating < alternatelist> 
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input   :s saveinput; 

translation   :a gather  (workl, work2); 

alternatelist   :■ true; 

end:     end alternatelist 

Figure 10.   Translating < alternateIist>   (concluded) 
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Boolean procedure alternate (categoryname); value categoryname; 

integer categoryname; 

begin ijiteger saveinput, workl, work2, work.3; 

saveinput := input; 

if  factor   then 
*»*V    —————     «Vf^g^xN* 

begin 

workl := translation; 

work.2 := work3 := 0; 

gjD Vo  leftrecursivealternate 

end; 

input := saveinput; 

alternate :=Jalsej 

go to end; 

leftrecursivealternate: 

saveinput := input; 

if factor then 

begin 

vork2   :=   join   (work2,   'if,   translation, 

'then begin'); 

work3   :=  join   ('end',  work3) ; 

go  to  leftrecursivealternate 

end; 

Figure 11.   Translating <alremate> 
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input :■ saveinput; 

work2 :■ join (work2, 'go to leftrecursivealternate', work.3) , 

if compare (workl, categorvname) then 

translation :■ gather (03 join ('saveinput :■ input; ' , 

work2, '; input :■ saveinput')) 

else 

translation := gather (join ('if, workl, 'then begin', 

work2, 'ena'),0); 

alternate := true: 

end: end alternate 

Figure 11. Translating < alternate > (concluded) 
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Boolean procedure factor; 

begin integer saveinput; 

saveinput :■ input; 

if variable then 

begin 

go to leftrecursivealternate 

end; 

if basicsvmbolstring then 

begin 

translation := join ('test(',trans lation,')'); 

go to leftrecursivealternate 

end; 

input := saveinput; 

factor := false; 

go to end; 

leftrecursivealternate: 

factor := true; 

end:  end factor 

Figure 12.   Translating   <factor > 
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Boolean Pjrocedu*^ variable; 

begin integer saveinput; 

saveinput :~ input; 

i^f test ('<*) then 

begin 

if identifier then 

3egm 

if test ('>') then 

Degin 

go to leftrecursivealternate 

end 

end 

end 

input :■ saveinput; 

variable := false; 

go to end; 

leftrecursivealternate: 

variable := true; 

end:  end variable 

Figure 13.   Translating < variable > 
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To illustrate one solution to an error handling problem, and 
also to show what we mean by creative adhocery, the remainder of 
this section is devoted to the implementation of the syntactic 
element in ALGOL 60, compound tail. 

The definition of compound tail occurs in Section 4.1 of the 
Revised ALGOL 60 report, part of which is printed below: 

<program> ::= <block>|<compound statement> 

<block> ::= <unlabeled block>|<label> : <block> 

<unlabeled block> ::■ <block head> ; <compound tai1> 

<block head> : := b.egin <declaration>|<block head> ; <declaration> 

<compound tail> : : = <statement>end|<statement> ; <compound tai1> 

<compound statement> ::= <unlabeled compound>|<label> : <compound statemenc> 

One gross error strategy for ALGOL 60 is to allow each syntactic 
element at the level of statement or below to either generate error 
messages, back up and return false; or simply back up and return false. 
The choice of these two actions~are'pends on whether the failure to^ 
scan off an instance of a syntactic element is deemed to be an error 
or not.  Responsibility for scanning forward to an appropriate point 
for the resumption of normal processing is centralized in compound 
tail. 

Figure 14 shows the results of processing the Panini Backus 
definition of compound tail with the programs of the previous section. 

Figure 15 shows the same procedure after some preliminary 
modifications have taken place.  The appeal to the procedure statement 
has been "factored out," and some unnecessary begin end pairs have 
been removed. 

In Figure 16 the necessary code to perform a simple translation 
to object code has been added.  This additional code defines the 
translation of a compound tail to be the concatenation of the trans- 
lations of its components.  But to make things not quite so trivial 
the procedure super join has been defined to perform the concatenation, 
and the following convention assumed:  a translation in the context 
of any of the syntactic elements of Section III of the ALGOL 60 
report consists of two halves, a left half and a right half, which 
have been gathered.  The procedure super join concatenates the left 
halves to the left halves and the right halves to the right halves 
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Boolean procedure compoundtail; 

begin integer saveinput; 

saveinput :■ input; 

if statement then 

if test ('end') then 

begin www 

go to leftrecursivealternate 
*CTN* <NA> ——————————————— 

end 

end; 

input := saveinput; 

i^f statement then 

begin 

if test (';') then 

begin 

if compoundtail theri 

begin 

go to leftrecursivealternate 

end 

end 

end 

Figure 14.   Translating < compound tail  > :   a Mechanically 

Generated Scanning Algorithm 
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input   :=  saveinput; 

compoundtail   :=  false; 

go  to end; 

leftrecursivealternate: 

compoundtail   :-  true; 

end:     end compoundtail 

Figure 14.    Translating <compound tail > :   a Mechanically 
Generated Scanning Algorithm (concluded) 
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Boolean procedure compoundtail; 

begin integer saveinput; 

saveinput :■ input; 

if statement then 

begin 

if test ('end') then go to leftrecursivealternate 
*W ———    <v*\*w     /Vi»N^"unj A>w «\*V —————————  — 

if test ( ' ; ') then 

begin 

if compoundtail then 

begin 

go to leftrecursivealternate 

end 

end 

end 

input := saveinput; 

compoundtail :■ false; 

go to end; 

leftrecursivealternate: 

compoundtail :■ ^tjrue; 

end:  end compoundtail 
———     runjru        *   

Figure 15.   Translating   < compound tail >   :   a Cleaned Up Scanning Algorithm 
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Boolean procedure compound!.ail; 

begin integer saveinput, workl; 

saveinput :«* input; 

if statement then 

begin 

if test (cend!) then go to leftrecursivealternate, 
*>S\*    ———— n^rwrw -^TiJ^Sv    *&TV    *>#M    ——————————————— 

if  test   ( ' ; ')   then 
/vrw  »vvv^ 

begin 
<V\Aruru 

workl   '"  translation; 

if compoundtail  then 
«W   —-^————    /x*>*N<rw 

begin 

translation :■ super join (workl, 

translation) ; 

go to leftrecursivealternate 
Kr^    *jn*,   ———^^—^———————^— 

end 

end 

end 

input   :■ saveinput; 

compoundtail   :=  false; 

go  to end; 

leftrecursivealternate: 

compoundtail   :■  true: 

end:     end compoundtai1 

Figure 16.   Translating   <compound tail >   :   the Addition of Code to Perform the Translation 
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and forms a new gathered translation.  In this way initialization 
steps required by each component (the left halves) can be grouped 
together.  This technique has been mentioned here only as an example 
of the creative adhocery that can be applied in building translation 
procedures; it is not intended as a complete solution to the problems 
of compiling ALGOL 60 statements.  The procedure super join is shown 
in Figure 17. 

Figure 18 reflects some further thinking about the implications 
of centralizing error recovery in compoundtail.  It has been decided 
that compoundtail will always return true, and the procedure has been 
simplified accordingly.  It has also been realized that because of 
the definition of the empty statement, the procedure statement will 
always return £rue; the attendant simplifications have been made. 

Finally in Figure 19 the code for generating two error 
messages and spacing forward to the next translatable segment has 
been added. 
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iii^SSJL JEL££JcädE£ super i°in   (lef toper and,   rightoperand) ; 

value   leftoperand,   rightoperand; 

integer   leftoperand,   rightoperand; 

icS&Lli iiLESJ^JE.  ^eftva^ue^-'   lef tvalue2,   rightvaluel,   right value 2.; 

scatter   (leftoperand,   leftvaluel,   leftvalue2); 

scatter   (rightoperand,   rightvaluel,   rightvalue2); 

super join   :=  gather   (join   (leftvaluel.   rightvaluel), 

join   (leftvalue2,   rightvalue2)) 

end  superioin 
«wu —*■ ■*  

Figure 17.   superjoin   :   an Extension of the Utility Procedure 
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Boolean procedure compoundtail; 

begin integer workl; 

statement; 

workl := translation; 

if test ('end') then go to leftrecursivealternate; 
<V*V»   ——— VWU «WVA«   A>V    <V»»V    ———————————^———— 

if test   ( ' ; ')   then 

begin 

compoundtail; 

translation :■ super join (workl, translation); 

go to leftrecursivealternate 
Xn*  «\*>* ———————————————— 

end 

leftrecursivealternate: 

compoundtail   :«  true 

end  compoundtail 

Figure 18.   Translating   <compound tail  > :   Realizing the 

Implications of Centralizing Error Recovery Here 
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ß£&iß&ß, £££££&&& compoundtail; 

begin integer saveinput, workl; 

statement; 

workl : = translation; 

if test ('end3) then go to leftrecursivealternate; 
*N*v —~~"-—    »\*>x\*    <\*\*vrw *jr\# «v*\* ———————————————— 

if test ( ' ; f) then 

U: 

begin 

compoundtail; 

translation := super join (workl, translation) ; 

go to leftrecursivealternate 

end; 

if saveinput ^ input then 

begin 

error (1); comment 'a ; or end appears to be missing'; 

go to 11 
Air« '«sw — 

end; www 

error (2); comment 'an untranslatable statement appears to have 

been encountered1; 

12: — 

input := saveinput := nextatom (input); 

if test ('end*) then go to leftrecursivealternate; 

if test (';') then go to 11; 

Figure 19.   Translating   < compound tail >  :   the Addition of Code to Space Forward 
and Generate Error Messages 
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if not   (test   ('go')  V  test   ('if')  V test,   ('for')  V  test   (?coimne:>* %) 

V test   ('begin') V test  ('own')  V test   ('Boolean')  V  rest 

('integer') V test  ('real')  V test  ('array')  V test   (^switch*) 

v test   ('procedure'))   then go  to  12j 

input   := saveinput; 

le ftrecurs1vea1ternate: 

compoundtail   :« true 

end compoundtail 

Figure 19.   Translating < compound tail  > :   the Addition of Code to Space 
Forward and Generate Error Messages (concluded) 
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SECTION VIII 

SYNTACTIC MACROS 

Syntactic macros were introduced by Cheatham in   .  Syntactic 
macros differ from ordinary macros in two ways: 

(1) instances of arbitrary syntactic elements:are 
allowed as parameters, and 

(2) the scope of definition of a macro can be limited 
to certain syntactic contexts. 

Thus syntactic macros clean up two of the problems that have always 
plagued conventional macros: the problem of delimiting parameters, 
and the problem of the macro definition being triggered in contexts 
where it is not desired. 

A capability similar to syntactic macros (although less formal) 
can be provided within the compiler environment described here. 
The technique is to describe the syntax of the macro form in Pan; 
Backus Form, decide what its equivalence is in the normal source 
language, and build a procedure which scans the macro form, produces 
the normal source language, and then appeals to the appropriate pro- 
cedure in the normal source language compiler to perform the second 
level of translation.  One additional utility capability is needed. 
The procedures append and append1 build a stream of atoms similar 
to the stream produced by editor.  The procedure append has two 
arguments:  a pointer to a stream to which it is to append a new 
atom (or zero, which represents a null stream), and the new atom 
expressed as a string.  The procedure append1 has three arguments: 

a pointer to a stream to which it is to append additional atoms, 
a pointer to an existing stream of atoms which marks the first atom 
to be appended from that stream, and a second pointer to that same 
existing stream which marks the point at which no more atoms are 
to be extracted. 

* f6T 
Taken from l 
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For example*, suppose that an application for ALGOL involves 
the heavy use of square arrays, and we would like to be able to 
say: 

matrix A [n] 

instead of 

array A [1 : n, 1 : n] 

The syntax for such a matrix declaration can be defined by the 
Panini Backus metaexpression: 

<matrix declaration> :: = matrix<identifier> [<arithmetic expression>] 

When this metaexpression is processed by the programs of Section 7, 
the procedure in Figure 20 is the result. Figure 21 shows the same 
procedure after it has been suitably modified to serve as a macro. 

The production of macro procedures can be automated somewhat by 
the introduction of statements in the normal source language for the 
purpose of defining macros.  For the example considered above such 
a statement might look like this: 

macro matrix (_i is identifier, n is arithmetic express ion) ; 

context declaration; 

} matrix i. [n] S means J array i^ [l:n, l:n] > 

This statement declares the macro matrix.  It has two parameters: 
_i, which should be scanned as an identrFier7 and n, which should be 
scanned as an arithmetic expression.  The scope of definition of the 
macro is as if it were another alternative in the definition of the 
syntactic element, declaration, of the normal source language.  The 
final line of the example defines the mapping from the macro form 
(between the first pair of braces) to the normal source language 
(between the second pair of braces). 

A specification for the complete syntax of a macro declaration 
statement, as it might appear if it were part of ALGOL 60, is shown 
in Figure 22.  Its implementation in the compiler environment 
described here is a fairly straightforward process, although a 
little creative adhocery is required.  The reader may wish to try 
his hand at it. 
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Boolean procedure matrixdeclaration'• 

begin integer saveinput; 

saveinput := input; 

if test ('matrix') then 

begin 

if identifier then 
<W  —————^——  ^y^jr^jr^, 

begin 

i£ test (' [') then 

begin 

if arithmeticexpression then 

begin 

1£ test ( ' ] ') then 

begin 

go to leftrecursivealternate 

end 

end 

end 

end 

end 

input := saveinput; 

matrixdeclaration := false; 

go to end; 

leftrecursivealternate: 

matrixdeclaration := true; 

end:end matrixdeclaration 

Figure 20. Expanding < matrix declaration > : a Mechanically 

Generated Scanning Algorithm 
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begin integer saveinput, stream, saveinputl; 

saveinput := input; 

if test ('matrix') then 

string, :■ 0 

saveinputl :- input; 

if identifier then 

begin 

append (stream, 'jj££-*z')> 

appendl (stream, saveinputl, input); 

if test (■ [') then 

3egin 

saveinputl :■ input; 

if arithmeticexpression then 

begin 

append (stream, '[') 

append (stream, ']') 

append (stream, ':') 

appendl(stream, saveinputl, 

input); 

append (stream, ','); 

Figure 21.   Expanding< matrix declaration >:   the Addition of 
Code to Perform the Expansion 
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end 

append (stream, '1'); 

append (stream, ':'); 

appendl(stream, saveinput1, 

input); 

append (stream,, ' ] ') ; 

if test (' ] ') then 

begin 

s° o to 
leftrecursivealternate 

end 

end 

end: 

end 

end 

input := saveinput; 

matrixdeclaration := false; 

go to end; 

leftrecursivealternate: 

saveinput := input; 

input := stream; 

matrixdeclaration := arraydeclaration; 

input := saveinput; 

end matrixdeclaration 
*N«"ur\* ——————————— 

Figure 21 .   Expanding< matrix declaration > :   the Addition of 
Code to Perform the Expansion (concluded) 
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<macro declaration> : := macro<macro headingXmacro body> 

<macro heading> ::=<macro identifierXparameter specification part>; 

<allowable context specification part> 

<macro identifier> ::=<identifier> 

<parameter specification part> ::=<empty>|(<parameter specification list>) 

<parameter specification list> : :s=<parameter specifier>| 

<parameter specification list> , <parameter specifier> 

<parameter specifier> ::=<formal parameter>is <syntactic element identifier> 

<allowable context specification part> ::=<empty>| 

context <allowable context specification list>; 

<allowable context specification list> ::=<syntactic element identifier>| 

<allowable context specification list>,<syntactic element identifier> 

<syntactic element identifier> ::=<identifier> 

<macro body> ::=<macro form> <macro form> means <defining form> 

::=\<open sequence>/ <macro form> ::=\<open sequence>) 

<defining form> ::=<<open sequence>> 

<open sequence> : := <proper sequence>K<open sequence>>| 

<open sequenceXopen sequence> 

<proper sequence>: :=<sequence elernent>|<proper sequenceXsequence element> 

<sequence e lernen t>: :=<f or mal parameter>|<identifier>i<string>| 

<any basic symbol exceptcor>> 

Figure 22. Syntax of a Macro Declaration Statement 
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SECTION IX 

EXPERIENCE 

The compiler design presented here was used at MITRE for the 
implementation of a file processing language, PROFILE, which is 
part of the C-10 file management system operating on the IBM 1410 
(see I?)).  PROFILE combines features of command and control query 
languages with features of algorithmic languages.  The implementation 
on the 1410 was not done in ALGOL 60 but in the C-10 language, STEP, 
and later in a special macro version of AUTOCODER.  ALGOL was used 
in this paper so that a wider audience could be obtained. 

PROFILE is a language that evolved over a period of two years, 
and during that span of time it underwent four separate implementations 
It was our experience that using the technique described here, an 
implementation required about six man months of effort.  But the 
really desirable characteristic we realized with this technique was 
the easy maintenance and modification of the compiler by programmers 
who by no means considered themselves compiler experts.  A compiler 
written in ALGOL as we have described here can be maintained and 
modified by any ALGOL programmer. 
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SECTION X 

REMARK 

The utility of algebraic languages having been firmly 
established for things other than numerical algorithms (especially 
systems programming), one would think it was time to reconsider 
the intent and design of higher level algorithmic languages from 
first principles.  Surely the approach taken by PL/I, that every 
conceivable data structure and programming facility be permanently 
cemented into the language, is not satisfactory. 
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SECTION XI 

SUMMARY 

A design for the construction of a simple compiler using an 
algebraic programming language as the primary tool has been described, 
The chief advantage of this approach is the ready availability of the 
algebraic language.  The basic technique used is to augment the cap- 
abilities of the algebraic language with additional data structures 
implemented by means of external machine language utility procedures. 
A set of basic utility procedures have been suggested, and examples 
of language implementations have been given.  Panini Backus Form has 
been considered as a source language for such a compiler, error 
recovery techniques have been suggested, and syntactic macros have 
been discussed. 
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