
KSD-TR-67-430 MTR-516

o E
38
S3

k e
en CO

USING THE READILY AVAILABLE ALGEBRAIC LANGUAGE

AS A COMPILER ENVIRONMENT

ESD RECORD COPY
RETURN TO

SCIENTIFIC & TECHNICAL INFORMATION DIVISION
s V.,.,/"^^ tfSIIli ÖUILDING 1211 ^

APRIL 1968

G. P. Steil, Jr.

ESD ACCESSION LIST
Esn can Nu im M 60520
Copy Ho. of cys.

Prepared for

DEPUTY FOR COMMAND SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This document has been approved for public

release and sale; its distribution is un-

limited.

Project 512B
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(62h)-5165

ffioyA*fr

When U.S. Government drawings, specifica-

tions, or other data are used for any purpose

other than a definitely related government

procurement operation, the government there-

by incurs no responsibility nor any obligation

whatsoever; and the fact that the government

may have formulated, furnished, or in any

way supplied the said drawings, specifica-

tions, or other data is not to be regarded by

implication or otherwise, as in any manner

licensing the holder or any other person or

corporation, or conveying any rights or per-

mission to manufacture, use, or sell any

patented invention that may in any way be

related thereto.

Do not return this copy. Retain or destroy.

ESD-TR-67-430 MTR-SlfS

USING THE READILY AVAILABLE ALGEBRAIC LANGUAGE

AS A COMPILER ENVIRONMENT

APRIL 1968

G. P. Steil, Jr.

Prepared for

DEPUTY FOR COMMAND SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This document has b>?en approved for public

release and sale; its distribution • 5 un-

limited.

Project 512B
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF 19(628)-5165

FOREWORD

This report describes the use of an algebraic language in constructing
a simple compiler. It was written by The MITRE Corporation, Bedford,
Massachusetts, in partial fulfillment of Project 512B under contract number
AF 19(628)-5165.

REVIEW AND APPROVAL

Publication of this technical report does not constitute Air Force approval
of the report's findings or conclusions. It is published only for the exchange
and stimulation of ideas.

WILLIAM F. HEISLER, Colonel, USAF
Chief, Command Systems Division

11

ABSTRACT

The use of algebraic command languages for things other than
preparing numerical algorithms has become somewhat popular, in
particular for writing compilers. The author feels that the
technique of using an algebraic command language, for implementing
a compiler is a good solid practical idea deserving some additional
attention. He feels that this technique will be found particularly
useful by organizations not in the business of building commercial
compilers, but interested in the implementation of a small special-
purpose language, such as a query language for a model of a command
system. The purpose of this paper is to describe this technique
to such an audience and to comment on the extent of its applicability.

111

TABLE OF CONTENTS

LIST OF FIGURES

SECTION I INTRODUCTION

GENERAL APPROACH

SECTION II UTILITY PROCEDURES

editor
nextatom and test
gather and scatter
join and unwind
generatedname
error
Other Utility Procedures

SECTION III GLOBAL VARIABLES AND THE COMPILER PROCEDURE

SECTION IV A SIMPLE EXAMPLE

SECTION V FLOYD'S EXAMPLE

SECTION VI TRANSLATING PANINI BACKUS FORM

SECTION VII ERROR HANDLING AND CREATIVE ADHOCERY

SECTION VIII SYNTACTIC MACROS

SECTION IX EXPERIENCE

SECTION X REMARK

SECTION XI SUMMARY

REFERENCES

Page

vi

1

2

4

4
5
6
8

10
II
II

12

1<4

1(3

28

29

54

55

56

57

LIST OF FIGURES

Number Title Page
1 The Main Procedure compiler 15
2 Translating ^assignment statement> 18
3 Translating <left part list> 19
4 Translating <arithmetic expression> 21
5 Translating <term> 23
6 Translating <factor> 24
7 Translating <primary> 25
8 gather 1: an Extension of the Utility Procedures 26
9 Translating <statement> 30
10 Translating <alternatelist> 32
11 Translating <alternate> 34
12 Translating <factor> 36
13 Translating <variable> 37
14 Translating <compound tail>: a Mechanically

Generated Scanning Algorithm 39
15 Translating <compound tail>: a Cleaned Up

Scanning Algorithm 41
16 Translating <compound tail>: the Addition of

Code to Perform the Translation 42
17 super join: an Extension of the Utility

Procedures 44
18 Translating <compound tail>: Realizing the

Implications of Centralizing Error Recovery
Here 45

19 Translating <compound tail>: the Addition of
Code to Space Forward and Generate Error 46
Messages

20 Expanding <matrix declaration>: a Mechanically
Generated Scanning Algorithm 50

21 Expanding <matrix declaration^ the Addition of
Code to Perform the Expansion 51

22 Syntax of a Macro Declaration Statement 53

vi

SECTION I

INTRODUCTION

Six years ago, Robert W. Floyd remarked in his article "A
Descriptive Language for Symbol Manipulation:" "The algebraic
command languages (ALGOL, IT, FORTRAN, UNICODE), although useful
in preparing numerical algorithms, have not in the author's opinion
proven themselves useful for symbol manipulation algorithms,
particularly compilers."W Robert W. Floyd would probably not say
that today, for the use of algebraic command languages for things
other than preparing numerical algorithms has become somewhat
popular, in particular for writing compilers. For example, the
Burroughs Corporation has programmed large portions of the software
for the B5000 and B8500 systems using a dialect of ALGOL, MITRE has
programmed FORSIM IV in FORTRAN IV, and according to the recruitment
ads in Datamation (at the date of this writing), United Airlines
intends to program most of its passenger reservation system in
Univac's FORTRAN V. The author feels that the technique of using
an algebraic command language for implementing a compiler is a good
solid practical idea deserving some additional attention. He feels
that this technique will be found particularly useful by organizations
not in the business of building commercial compilers, but interested
in the implementation of a small special-purpose language, such as
a query language for a model of a command system. The purpose of
this paper is to describe this technique to such an audience and to
comment on the extent of its applicability.

Using a tool for a purpose other than the one for which it was
intended requires an explanation. Usually the substitution of one
tool for another takes place when the proper tool is not available,
and its fabrication is a non-trivial process. In our case, the tool
is a compiler builder.

To say that compiler builders do not exist or are not available
would not be quite accurate, for work on such tools and the theory
behind them has been going on at a large number of places for quite
some time. This work has not been without significant results:
certain classes of ALGOL-like (phase structure) languages have been
identified as being unambiguous; algorithms have been devised which
will accept a definition of the syntax of a language and determine
if the language is in such a class; and algorithms have been devised
for these classes of language that mechanically generate other
algorithms capable of scanning source text and producing representa-
tions of the source text syntax in a variety of formats. Around
these basic principles have been built a variety of systems for

programming compilers that are indeed compiler builders or "compiler
compilers." But at the present time these systems are by no means as
readily available as conventional software, in particular the algebraic
languages. Furthermore, despite the progress that has been made, the
advent of the instant compiler is still quite a way off. A large
amount of the work of implementing a compiler is still conventional
programming and debugging.

This paper suggests that in the absence of a readily available
compiler building tool that the available algebraic language be
adapted to such a purpose, as has been done already at several places.
It sketches an approach to such an adaptation, and it shows that
while this approach has the disadvantage of being relatively informal
(in the sense of taking strict advantage of the available theory),
it has the advantage that a compiler constructed as we are about to
describe can be maintained and modified by programmers with no special
training or experience. It also shows how this scheme lends itself
readily to what we have come to call "creative adhocery" and has the
audacity to suggest that such an adaptation of an algebraic language
has a usefulness as great as many of the fancier compiler compilers
of recent derivation.

GENERAL APPROACH

Our general approach in making a compiler building tool out of
an algebraic language is to augment the algebraic language and its
operating environment with a small set of tightly coded machine
language subroutines. These machine language subroutines provide
the data manipulating capabilities that are necessary for the con-
struction of a simple compiler and are not found in the algebraic
language. Communication between the algebraic language and the
machine language subroutines is facilitated by defining the interface
between them entirely in terms of integers. That is, every symbolic
datum that need be manipulated by a program in the algebraic language
is represented as an integer. The extra machine language programs
are not, however, a general-purpose symbol manipulation capability.
Such a task could become quite, complex, and that would subvert our
basic goal of providing an economical base for constructing a simple
compiler.

A compiler to be implemented in this environment is structured as
follows: Each syntactic element in the source language is represented
by a procedure in the algebraic language, which is entirely responsible
for the translation of an instance of that syntactic element into some
object language. In performing its job of translation, this procedure
may appeal to other procedures representing syntactic elements;

procedures which build and manipulate symbol tables, procedures which
generate code, and so forth. Thus at the highest level there is a
procedure named PROGRAM which, when appealed to, compiles an entire
program. At a lower level a procedure named BOOLEAN is responsible
for translating a Boolean expression and returning the translation
as its value. This way of structuring translation, "top-to-bottom"
analysis, is frequently employed in syntax-directed compilers, where
the rules of syntax are stored explicitly in a specially formatted
table. The difference here is that each syntactic element, rather
than being represented in a table» is represented by a procedure.
The advantage of doing it this way can be seen by studying the design
of syntax directed translators employing the table method. Although
the syntax definition is usually neatly packaged, the algorithm which
generates the object code (or the output to the next stage of trans-
lation) is usually specified by a series of "actions" attached to
the syntax definition which are as ad hoc as the syntax definition
is general. But the algorithm which generates the object code is
the non-trivial part of translation. Representing syntax by procedure
structure allows the translation algorithms to be expressed in a
general-purpose programming language rather than in a set of ad hoc
"actions." The formal structuring of a compiler in a way that, is
rigidly tied to syntax is the contribution of the syntax directed
compiler. But it is the author's experience that the dream of
feeding a language specification as data to a general-purpose program
can lead the design of a compiler astray.

Looking through the literature the author notes that both Lietzke^J
and Irwin PI have suggested basically what is suggested here. The
difference is that we are pushing the idea further. Lietzke was
interested in employing a set of procedures that paralleled language
syntax only for the purpose of diagnostics (in the Share ALGOL compiler)
and Irwin only in generating random sentences of a grammar; we are
suggesting that nearly the whole compilation job can be done in such
an environment.

In constructing the examples in the sections that follow we have
assumed that the algebraic language which is to be used as a simple
compiler environment is ALGOL. Hereafter the term "ALGOL procedure"
will be used interchangeably with "algebraic language procedure."

SECTION II

UTILITY PROCEDURES

The utility procedures used to augment the normal ALGOL operating
environment are described in this section. They include an editor
for segmenting a source string, two elementary list operators, two
procedures for composing an object string, and one procedure for
generating identifiers. Unless otherwise specified, it is intended
that they be programmed in machine language.

editor

As any compiler writer will tell you, a large percentage of
compilation time in a typical compiler is spent in the simple process
of examining the source string one character at a time, breaking it
I~

T
.O "atoms.," and reducing each atom to its internal representation.

This aspect of compilation is usually separated off as a tightly
coded subroutine, and ro exception is made here. The machine language
subrout ine which we postulate to do this job is known as the editor.
Its input arguments could include such things as the source or
location of a string in the source language, a list of characters
which are to serve as separators, and other information regarding
the editing of the source text into atoms. But for our purposes
here we will assume the editor itself bears the full responsibility
for knowing or finding out these details, and consequently has no
input arguments Its output value, is an integer which may be
thought of as a pointer to the first atom of the edited source
string. We shall see how to use this pointer shortly.

For the purpose of our examples below we will assume that
the editor segments source strings according to the. following rules:

(i) All characters except A,B,C,...,Z,0,1,2,...9
are separators.

(2) All separators except blank (b) are atoms.

(3) Any sequence of non-separators between two
separators is an atom.

Example" The editor segments the source string

A+T(ANQ;7)-F ;IFbbbANY

into the atoms

A + T (AN£ ; 7) - F ; IF AN^

nextatom and test

Two machine language subroutines are used to scan along an
edited source string.

nextatom fetches the next atom in a source string. nextatom
has one argument, an integer serving as a pointer to an atom of an
edired string, nextatom returns as an output value, an integer
serving as a pointer to the next atom in the edited string, ne« tatom
returns a special terminal integer, say A, if there is no next atom.

Example: Assume the source string

ANS + 47*B

is ready at an input source when the following segment of
code is executed:

integer X;

X : = nextatom (nextatorn(editor))

The contents of the variable X will be replaced by an integer
serving as a pointer to the atom 47.

The phrase "integer serving as a pointer" occurs so frequently
that we will use in its place simply the word "pointer." Thus we
will say "the contents of the variable X will be replaced by a
pointer to the atom 4?."

test is a logical valued procedure used to compare an
arbitrary string to an atom in an edited source string, and on the
basis of the comparison advance a pointer pointing to the edited
source string. Thus test requires two arguments: a string and a
pointer* and test^ returns two values: true or false, and a pointer
to the next atom in the source string when the comparison yields
true. To make the. use of the function test as natural as possible,
the following conventions have been adopted regarding the input
arguments to test and the values it returns. test is defined to
have, one explicit argument, the string to be compared; and one
implicit: argument, the name of a variable containing a pointer to
an atom in an edited source string. The implicit argument is
always the name of the global variable input (where it is not
possible for external machine language subroutines to reference
variables in the algebraic language programs, the procedure test
can be redefined to have two explicit arguments). If the value of

the comparison is true, test returns the value true and replaces the.
pointer in the variabTe named by the second argument (in our case,
the implicit argument "input") by the value of the procedure nextatom
operated on that pointer. Otherwise, test returns false. Using
these conventions the function test appears to have one "input argument,
a string, and one resultant value, either true or false.

Example: Assume the variable input has been declared
appropriately and tiha^ it contains a pointer to the
beginning of the following edited source string:

Then if the statement

r:est{°+a)

is executed, the variable input will subsequently contain a pointer
to tne atom 1. If, with input pointing to the atom 1,

tesfci'*1)

is executed, the variable input will not be changed.

Assuming the same edited string is pointed to from the
variable input, the value of the following expression will be false
(and input will subsequently point to the atom *):

if test(c+°) and not test('l') then true else test('1')
r*\j ' r*>jrj r * ^^, ——^- «WiW *V^-**>^V» r\xv^-«*x< ^~~~~~

gather and scatter

gather and scatter are two very simple list processing
procedures. gather accepts two integer arguments and returns a
single integer as a value. The integer which gather returns as a
value can be thought of as a list whose elements are the two integers
supplied as arguments. scatter does just the opposite, scatter
accepts three arguments, the. first of which is an integer previously
returned by a gather operation, the other two arguments are the names
of variables which are to receive the two integers represented by
the first argument.

Example:

integer a,b,c^

£ := ^ther (2,4);

b := gather (7,a);

scatter (b,a,c) ;

scatter (c_,£,.a)

After this sequence of code has been executed, the variable
a contains the integer 4, and the variable £ the integer 2.

gather and scatter are readily programmed in ALGOL, and are
shown below. gatherarray and other undefined identifiers are assumed
declared in a higher level procedure and will be discussed later.

Note that for debugging purposes it is convenient to be able
to distinguish the integers manipulated by gather and scatter from
the ones being manipulated by editor, nextatom and test.

integer £rjDcedure gather (argj,arg2) ; vaj-uj- argl, arg2;

intege:r ar&l, ar&2 ;

begin integer workl;

if nextavailable = 9999999999 then

error (0)

else

begin

workl := nextavailable;

nextavailable := gatherarray [workl] ;

gatherarray [workl] :* argl;

gatherarray fworkl+i] :■ arg2;

gather := workl

end

end gather

7

procedure scatter (from, tol, to2) ; value from;

integer from, tol, to2;
r^r^*^jr^K*\s^, ————— —— ——

begin

tol :- gatherarray [from];

to2 := gatherarray [from +1] *,

gatherarray [from] := nextavailable;

nextavailable := from

end scatter

join and unwind

join and unwind comprise a mechanism for generating object
code, .join is used during translation to tie together pieces of
code as they are generated, and unwind is used subsequent to
translation to tidy up the final string of object code.

j oin, like test, is defined with special conventions that
make its use as natural as possible. In fact, as we are about to
define it, join violates two of the rules of ALGOL. First, it has
a variable number of arguments; and second, it allows any of its
arguments to be either strings or integers. Both of these conver
niences can be dropped, if necessary. join can be defined as a
procedure with two arguments (and then applied repetitively); and
since the set of string arguments that are normally given to it is
small« they can easily be represented as integers (in particular,
we could define a simple function which mapped the strings of
interest into integer representations). But it has been our
experience that ALGOL compilers are quite permissive about the
ways in which external (machine language) procedures are called,
and that in fact the join statements as they are defined are
permitted.

As stated above, join accepts a variable number of arguments,
Each argument may be either a string, which represents itself, or
an integer. No integer argument to loin represents itself. Zero
represents the null argument and is ignored. A non-zero integer
may represent either:

(1) an atom in an edited source string;

(2) a field in a symbol table (to by discussed
below); or

(3) the result of a previous join operation

join returns as its output value an integer which represents the
concatenation of its arguments. In this way join is similar to
gather. join and gather are used in different ways, however. gather
is used whenever a temporary compression of data is called for,
whereas join permanently associates data until the end of translation
and is intended primarily for the construction of object code.

unwind is used at the end of translation for the final
construction of object code. Whether or not unwind is actually
needed depends on how join is implemented. The suggested imple-
mentation is as follows: join examines its arguments in the sequence
in which they are supplied. If an argument, is a string, or an
integer representing the result, of a previous join operation, the
argument is written on "tape" without any further evaluation. If the
argument is an integer representing an atom in an edited source
string, or a field in a symbol table, then the actual atom or value
of the field is fetched and written on the tape. When the arguments
have been exhausted a terminal mark is written on the tape, «ASiS
returns as its value the integer address of the first value it wrote
on the tape.

The function of unwind is: given an integer address to the
join tape, construct a single string consisting of the orderly con-
catenation of all the values written at that place on the tape. Where.
a pointer to another place on the tape occurs, appeal to unwind re-
cursively to fetch the string consisting of the orderly concatenation
of all the values written at that place on the taper and so forth.
Thus unwind has one argument, an integer address to the \oin tape,
and returns as its value a pointer to an orderly concatenated string
which is the object, code of a translation. By orderly concatenation
we mean concatenation according to some simple rules that mak^ stnse
for whatever object code (or class of object codes) is being generated.
If, for example, ALGOL is the object code being generated, then it:
would make sense to form the concatenation by inserting a space between
values■

join is used throughout, the translation process to form
pieces of the object code, which may then be manipulated as simple
integers regardless of their length. unwind is used only at the
end of translation to unravel the join tape and produce the. final

version of the object code. Clearly the integers which represent
the result of join operations must be distinguishable from other
integer representations.

Example:

integer a_,b.,c_;

a :- join (?R{
: 'SS'T');

b :- loin ('P'.sQ'}a,'0«);

c :» join (b.b) ;

a :- unwind (c.) \

After this string of code has been executed, the variable a will
contain a pointer to the object code "P Q R S T U P Q R S T U".

generatedname

When generating object code it becomes necessary on occasion
to invent an identifier for use as the name of a label or a variable,
generatPdname is a procedure with no arguments that returns an
integer representing an identifier, generatedname returns a unique
value each rime it 13 called.

Example:

integer a.b:

a_ := genera'tedname;

b :- join (a, ' :GO',a; ';')

After the execution of the above code, the variable b contains a
representation of the object code:

GN1 : GO GN1;

where GNi is an identifier that might be generated by generatedname.

10

error

error is a procedure that generates diagnostic messages In
a full blown system error would normally have a full set of input
parameters. These might specify an index to a standard error message
stored in a catalog of error messages, parameters to be substituted in
the standard message, specification of where the message is to appear,
and so forth. For our purposes here error will accept just one input
parameter, an integer designating a standard error message

Example:

error (67)

Other Utility Procedures

The utility procedures that have been outlined above form
the basis of any complete set that would be required for the imple-
mentation of a simple language, and are sufficient for all the
examples that have been included in this article. Depending on
exactly what language is to be implemented, some additional utility
procedures may be required. In the informal framework we've described,
they can be added ad infinitum according to the whim of the designer.
The basic idea is to separate into a machine language utility procedure
those algorithms which either consume a large amount of space or time,
or cannot otherwise be conveniently programmed in ALGOL. The general
appearance of the complete compiler is that while the majority of the
logic of translation is in ALGOL, the majority of time-consuming work
is done in the machine language utility procedures,

One set of utility procedures that are conspicuously missing
in the discussion above are symbol table manipulation procedures. They
have been left out in part because they are not essential for the
examples to be employed below (and certainly not essential to the
concepts discussed), but also because we feel the design of symbol
tables should be tailored to each individual language, even to the
extent of their interface with the procedures that use them.

11

SECTION III

GLOBAL VARIABLES AND THE COMPILER PROCEDURE

The general approach to the structuring of a simple compiler that
is being delineated here is to represent each syntactic element in the
source language with a procedure, in ALGOL (or other algebraic language)
which is entirely responsible for the translation of an instance of
that syntactic element into object, language. At the top of a hierarchy
of such procedures there is, of course, one "main" procedure. This main
procedure has the responsibility of declaring all global quantities
(simple variables, arrays, and procedures), and performing any
initialization and finalization that may need to be done.

An example of a main procedure for a simple compiler, which is
named compiler, is shown in Figure 1 compiler is quite trans par-.
except (alas) when it comes to its parameters Because the most
important of its parameters are not acceptable ALGOL data types.
and because the integer representation scheme applies only inside
the compiler itself, it is necessary to go underground and specify
the communication of parameters to and from compiler with conventions
that lie outside the scope of the ALGOL language.

The input values supplied to a compiler normally include

(1) a source text

(2) a list of resources available

(3) rules to be followed during translation (ranging from
the specification of an end of text symbol to a
complete language syntax specification)

(4) indicators of operating mode (on-line or off-line,
debugging or production, etc.)

(5) designation of the disposition of output values

The output values produced by a compiler normally include:

(1) an object text

(2) diagnostics

(3) listings of the source and object texts

12

The conventions that have been assumed by compiler and its sub
structure of procedures in the acquisition and disposition of input
and output values are as follows:

(1) the procedure editor has the responsibility for obtaining
the source text and delivering a listing of the source
text.

(2) resources available are listed as explicit parameters
(only one is listed in Figure 1)

(3) the procedure unwind has the responsibility for delivering
the object program

(4) the procedure error has the responsibility fot disposing
of diagnostics.

Presumably editor, unwind, and error are machine language
procedures that have been programmed to agree on the acquisition
and disposition of input and output values.

For the purpose of the examples which follow, the reader
should keep in mind the following things about global variables
and the compiler procedure:

(1) the variable input contains a pointer to the current
atom of the source string.

(2) the variable translation is used to communicate the
translation of a syntactic element from the procedure
that translates it to the procedure calling for the
translation.

(3) a procedure for each syntactic element is declared in
the procedure heading of compiler; each procedure that
corresponds to a syntactic element returns a value of
true when it successfully scans and translates an
instance of the syntactic element it represents, and
a value of false otherwise.

13

SECTION IV

A SIMPLE EXAMPLE

[4]
The syntactic element <program> from the Revised ALGOL 60 report

has been chosen as a simple example. A program is defined in Panini
Backus Form[5] as follows:

<prqgram> ::= <block>|<compound statement>

An ALGOL procedure for translating this syntactic element is:

Boolean procedure program;

begin

program := if block then true else compoundstatemenL

end

w

Boolean procedure compiler (eatherarraylimit); value gatherarraylimit,

integer gatherarraylimit;

comment other appropriate arguments are inserted in place above,

begin

ijjteger array gatherarray [1 : gatherarraylimi 11 •

integer input, nextavailable, translation;

procedure initializegatherarray

begin integer i;

for i ;■ step 2 until gatherarraylimit - 3 do

gatherarray [i] :» i+2;

gatherarray [if gatherarray limit/2 = gatherarraylimi t-H) fl

then gatherarraylimit-2 else gatherarraylimit-11 :■

9999999999;

nextavailable := 1

end

comment all other global array, simple variable and

procedure declarations are inserted here;

initializegatherarray;

input := editor;

translation : = 0;

comment all other initialization steps are inserted here

compiler :■ program;

unwind (translation);

comment all other finalization steps are inserted here;

end compiler

Figure 1 . The Main Procedure compiler

15

SECTION V

FLOYD»S EXAMPLE

The example chosen by Floyd in is a simple assignment
statement defined by these Panini Backus expressions:

assignment statement> : := <left part list > <arithmetic expression>

<left part list> ::= <variable> :=|<left part list> <variable> :=

"^arithmetic expression> : := <term>|<adding operator> <term>|

<arithmetic expression> <adding operator> <term>

<term> ::= <factor>|<term> <multiplying operator> <factor>

<factor> ::= <primary>|<factor>t<primary>

<primary> ::= <procedure identifier>(<arithmetic expression>)|

(<arithmetic expression^)|<variable>

The object language into which simple assignment statements are tu be
translated is a simplified ALGOL in which only one operation is
permitted to the right of ":=", and only one variable to the left.

One way in which this example is more difficult than the
preceding one is that some actual translation will have to be done,
and the utility procedures will need to be employed Another wav
in which this example is more difficult is that left recursion is
used in four of the six definitions. In top-to-bottom analysis,
left recursion is a problem that has to be handled as a special case
To see the problem, consider the definition:

<A> : : = <A> B | C

A procedure A is constructed with the responsibility for translating
syntactic elements of type A. But the first step A takes is to
appeal to A in order to check out the first alternative of the
definition of A. An endless sequence of operations results. This
difficulty is overcome in this way:

The alternative definitions for a syntactic element are
grouped into two categories: those which begin with an instance of
the syntactic element being defined, and those which do not. Each
of the definitions that do not so begin are attempted first [£
none of those definitions can be satisfied, then there is no hope

16

for scanning and translating an instance of the syntactic element
being attempted, and the attempt is given up. If one of those
definitions is successful, then instead of being satisfied with
success, the left recursive definitions are examined. The first
element of each left recursive definition is deleted (the recursive
mention of the syntactic element being translated) and the remaining
definition segments are matched against the source string repetitively
until no more scanning can be done.

Thus, if the string

BCDBECFD

is tested against the definition

<A> : :*= <A> B | C

it would be rejected because it does not satisfy the definition C.

The string

CBBBBBCDBCFB

would, on the other hand, yield an instance of A, namely,

C B B B B B.

The non-recursive definition (C) being satisfied, the
remaining definition segment of the left recursive definition (B)
is successfully matched against the source string five times.

ALGOL procedures for translating assignment statements as
defined above are shown in Figures 2 through 8. Note the definition

of gather 1 to extend the usefulness of the utility procedures.

The reader will probably find it useful to consider an example.
For the source string

P := Q := A * sin(B)/C t (-D)

the object string

XI • = sin(B);

11 :• A*T1;

13 • = C t -D;

17

Boolean procedure assignmentstatement;

begin integer vorkl, wprk2, work3, work4;

if left part list then

begin

scatter (translation, workl, work2);

arithmeticexpression;

scatter (translation, work.3, work4) ;

translation : = join (work.3 , ' ; ', work!, work4, ' ; * , work2) ;

assignmentstatement := true

end

else

assignmentstatement :■ false

end assignmentstatement

Figure 2. Translating < assignment statement >

18

Boolean procedure leftpartlist;

begin integer saveinput, workl, work2;

saveinput := input;

if variable then

begin

if test (■:=') then

begin

workl := translation;

work2 := 0;

go to leftrecursivealternate
KX^J <-\x-\> ——————_—————_—-——-————-_——-——_—————

end

end

input :■ saveinput;

leftpartlist := false;

go to end;

leftrecursivealternate:

saveinput := input;

if variable then

)egm

if test (':=') then

Figure 3. Translating <left part list>

19

begin

work2 := join (workl, ':=', translation,

' ; ', work2);

workl := translation;

go to leftrecursivealternate

end

end

input :«■ saveinput;

translation := gather (join (workl, ':='), work2);

leftpartlist := true;

end: end leftpartlist

Figure 3. Translating <left part list > (concluded)

20

Boolean procedure arithmeticexpression;

begin integer work}., work2;

if term then

egm

workl := translation;

go to leftrecursivealternate

end;

if test ('+') then

begin

term;

workl :■ translation;

go to leftrecursivealternate
A&\s r*ji**j ^——^—^——————————————

end;

if test ('-') then

egin

term;

workl := gather 1 (gather (0,0), join ('-'), translation) ;

&£ ££ leftrecursivealternate

end;

arithmeticexpression :■ false;

go to end;

leftrecursivealternate

if addingoperator then

Figure 4. Translating <arithmetic expression >

21

begin

work.2 := translation;

term;

workl := gather 1 (workl, work2, translation) ;

go to leftrecursivealternate

end;

arithmeticexpression :■ true:

translation := workl;

end: end arithmeticexpression

Figure 4. Translating <arithmetic expression > (concluded)

22

Boolean procedure term;

begin integer workl, vork2;

if factor then workl :■ translation

else begin term := false; go to end end;

leftrecursivealternate*.

if multiplyingoperator then

begin

work2 :■ translation;

factor;

workl := gather 1 (workl, work2, translation) ;

go to leftrecursivealternate

end;

term := true;

translation := workl;

end: end term

Figure 5. Translating <term>

23

Boolean procedure factor;

begin integer workl;

if primary then workl := translation

else begin factor := false; go to end end;

leftrecursivealternate:

if test ('t ») then

egin

primary;

workl := gatherl (workl, join ('t'), translation);

go tjo leftrecursivealternate

end;

factor := true;

translation := workl;

end: end factor

Figure 6. Translating <factor>

24

Boolean procedure primary;

äS&JJ! iÜiS^J- Ü2lis^» work.2, work3, temp;

primary :■ true;

if procedureidentifier then

begin

workl := translation;

test (»(');

arithmeticexpression;

test (»)•>;

scatter (translation, work2, work3);

temp := generatedtemp;

translation := gather (join (work2, ';', temp., ': = '

workl, '(', work.3, ')'), temp)

end

else

if test ('(') then

begin

arithmeticexpression;

test (")')

end

else

if variable then translation := gather (0, translation)

else

primary := false

end primary

Figure 7. Translating <primary>

25

integer procedure gather 1 (leftoperand, operator, rightoperand) ;

value leftoperand, operator, rightoperand:

integer leftoperand, operator, rightoperand;

begin integer leftcode, leftvalue, rightcode, rightvalue, temp

scatter (leftoperand, leftcode. leftvalue) ;

scatter (rightoperand. rightcode, rightvalue) ,

temp := generatedtemp;

gather 1 := gather (join (leftcode, ';*, rightcode, ' , .

temp, ' :■', leftvalue, operator, right value) .. temp)

end gather 1

Figure 8. gather 1 : an Extension of the Utility Procedures

26

T4 := T2/T3;

Q :« T4;

P := Q;

will be generated.

A comparison of Figures 2-8 with Floyd's original example
will show the former to be far lengthier, but no less lucid for it:
and if the utility procedures have been implemented cleverly, no less
efficient.

27

SECTION VI

TRANSLATING PANINI BACKUS FORM

The regularity of Figures 2 through 8 suggests that the procedures
there may themselves be generated mechanically. Considering Panini
Backus Form as a source language, its definition in Panini Backus Form
looks like this (circles are used to distinguish constants in the
language being defined from constants in the metalanguage):

<statement> ::= <variable> \jj <alternate list>

<alternate list> : := <alternate>|<alternate list>Qj<alternate>

<alternate> : := <factor>|<alternate> <factor>

<factor> ::= <variable>|<basic symbol string>

<variable> ::=(<)<identifier>(>)

A set of ALGOL procedures for translating this language into an
ALGOL equivalent are shown in Figures 9 through 13. Two simplifying
assumptions have been made:

(1) that it is valid to accept the first alternative in a
definition that matches without checking to see if there
is a longer one that matches; and

(2) that no definition has more than one left recursive
alternate.

The object code that is produced from a source string of Panini
Backus Form is sufficient for scanning instances of the language
defined, but additions must be made by hand before translations can
be made.

An example of a source string in Panini Backus Form that has
been translated by the procedures in Figures 9 through 13 is the
five lines above. The object code, suitably doctored so that a
translation is made to ALGOL, is shown in Figures 9 through 1.3.

„

28

SECTION VII

ERROR HANDLING AND CREATIVE ADHOCERY

Unfortunately, this compiler scheme has no facility for the
automatic detection and reporting of errors in the source text. The
algorithms generated from Panini Backus Form by the procedures of
the preceding section simply back up when the source text is not
syntactically well-formed. This means that when the slightest error
is embedded in the source text, the highest level procedure simply
returns ,£&£&£, with no indication as to how many errors were found,
what kind of errors were found, or whether or not the errors found
would have prevented meaningful execution. But although there is
no automatic facility for error handling, there are no obstacles
barring the implementation of a well formulated error policy.
With simple modifications to the algorithms mechanically generated
by the procedures of preceding section, the procedure representing
a syntactic element can be made to:

(1) generate an error message, back up (the source
text), and return ff&l&g,,

(2) generate an error message, scan forward to an
appropriate point, and return ,£ajj5£,

(3) generate an error message, scan forward
to an appropriate point, set up a default
piece of object code in translation, and return

(4) generate an error message, back up, and wait
for the source text to be modified on line, or

(5) almost anything else along these lines.

Distinctions can be made between "hard" errors and "soft" errors,
and fancy listings that include a snapshot of the segment of the
source text containing the error can toe produced. The important
thing is that the designer specify an error policy that is con-
sistent, and relates well to the nature of the source language,
and the environment(s) in which the compiler is to operate.

29

Boolean procedure statement;

bej^iii integer saveinput, workl, work2;

saveinput := input;

if variable then

begin

workl := translation;

if test ('::-') then

^ alternatelist (workl) then

begin

scatter (translation, translation, work2) ;

translation := join ('J^äI^Ä £&&£&&&*>

workl,'; begin integer saveinput,

saveinput :* input;', translation,

' ;input := saveinput; ' , workl, ' : =

false: go to end: leftrecursivealternate : ',

work2,';',workl,' := true; end: end',

workl) ;

go to leftrecursivealternate
A^, «XA< -———_——————_--—-———_—————-——

end
«MM

end
«_>xv>

end;

input := saveinput;

statement := false;

Figure 9. Translating statement >

30

go to end;

leftrecursivealternate:

statement := true;

end: end statement

Figure 9. Translating < statement> (concluded)

31

Boolean procedure alternatelist (categoryname); value categoryname;

integer categoryname;

begin integer saveinput, workl, work2, work3;

saveinput :■ input;

if alternate (categoryname) then

begin

scatter (translation, workl, work2);

go to leftrecursivealternate

end;

input := saveinput;

alternatelist := false;

go to end;

leftrecursivealternate:

saveinput := input;

if alternate (categoryname) then

begin

scatter (translation, translation. work3) ;

if not work3 = 0 and not work2 = 0 then error

(integer ('more than one left recursive

alternate')) ;

workl := join (workl, ';', translation);

work2 := join (work2, work3);

go to leftrecursivealternate

end

Figure 10. Translating < alternatelist>

32

input :s saveinput;

translation :a gather (workl, work2);

alternatelist :■ true;

end: end alternatelist

Figure 10. Translating < alternateIist> (concluded)

33

Boolean procedure alternate (categoryname); value categoryname;

integer categoryname;

begin ijiteger saveinput, workl, work2, work.3;

saveinput := input;

if factor then
*»*V ————— «Vf^g^xN*

begin

workl := translation;

work.2 := work3 := 0;

gjD Vo leftrecursivealternate

end;

input := saveinput;

alternate :=Jalsej

go to end;

leftrecursivealternate:

saveinput := input;

if factor then

begin

vork2 := join (work2, 'if, translation,

'then begin');

work3 := join ('end', work3) ;

go to leftrecursivealternate

end;

Figure 11. Translating <alremate>

34

input :■ saveinput;

work2 :■ join (work2, 'go to leftrecursivealternate', work.3) ,

if compare (workl, categorvname) then

translation :■ gather (03 join ('saveinput :■ input; ' ,

work2, '; input :■ saveinput'))

else

translation := gather (join ('if, workl, 'then begin',

work2, 'ena'),0);

alternate := true:

end: end alternate

Figure 11. Translating < alternate > (concluded)

35

Boolean procedure factor;

begin integer saveinput;

saveinput :■ input;

if variable then

begin

go to leftrecursivealternate

end;

if basicsvmbolstring then

begin

translation := join ('test(',trans lation,')');

go to leftrecursivealternate

end;

input := saveinput;

factor := false;

go to end;

leftrecursivealternate:

factor := true;

end: end factor

Figure 12. Translating <factor >

36

Boolean Pjrocedu*^ variable;

begin integer saveinput;

saveinput :~ input;

i^f test ('<*) then

begin

if identifier then

3egm

if test ('>') then

Degin

go to leftrecursivealternate

end

end

end

input :■ saveinput;

variable := false;

go to end;

leftrecursivealternate:

variable := true;

end: end variable

Figure 13. Translating < variable >

37

To illustrate one solution to an error handling problem, and
also to show what we mean by creative adhocery, the remainder of
this section is devoted to the implementation of the syntactic
element in ALGOL 60, compound tail.

The definition of compound tail occurs in Section 4.1 of the
Revised ALGOL 60 report, part of which is printed below:

<program> ::= <block>|<compound statement>

<block> ::= <unlabeled block>|<label> : <block>

<unlabeled block> ::■ <block head> ; <compound tai1>

<block head> : := b.egin <declaration>|<block head> ; <declaration>

<compound tail> : : = <statement>end|<statement> ; <compound tai1>

<compound statement> ::= <unlabeled compound>|<label> : <compound statemenc>

One gross error strategy for ALGOL 60 is to allow each syntactic
element at the level of statement or below to either generate error
messages, back up and return false; or simply back up and return false.
The choice of these two actions~are'pends on whether the failure to^
scan off an instance of a syntactic element is deemed to be an error
or not. Responsibility for scanning forward to an appropriate point
for the resumption of normal processing is centralized in compound
tail.

Figure 14 shows the results of processing the Panini Backus
definition of compound tail with the programs of the previous section.

Figure 15 shows the same procedure after some preliminary
modifications have taken place. The appeal to the procedure statement
has been "factored out," and some unnecessary begin end pairs have
been removed.

In Figure 16 the necessary code to perform a simple translation
to object code has been added. This additional code defines the
translation of a compound tail to be the concatenation of the trans-
lations of its components. But to make things not quite so trivial
the procedure super join has been defined to perform the concatenation,
and the following convention assumed: a translation in the context
of any of the syntactic elements of Section III of the ALGOL 60
report consists of two halves, a left half and a right half, which
have been gathered. The procedure super join concatenates the left
halves to the left halves and the right halves to the right halves

38

Boolean procedure compoundtail;

begin integer saveinput;

saveinput :■ input;

if statement then

if test ('end') then

begin www

go to leftrecursivealternate
CTN <NA> ———————————————

end

end;

input := saveinput;

i^f statement then

begin

if test (';') then

begin

if compoundtail theri

begin

go to leftrecursivealternate

end

end

end

Figure 14. Translating < compound tail > : a Mechanically

Generated Scanning Algorithm

39

input := saveinput;

compoundtail := false;

go to end;

leftrecursivealternate:

compoundtail :- true;

end: end compoundtail

Figure 14. Translating <compound tail > : a Mechanically
Generated Scanning Algorithm (concluded)

40

Boolean procedure compoundtail;

begin integer saveinput;

saveinput :■ input;

if statement then

begin

if test ('end') then go to leftrecursivealternate
*W ——— <v**w /Vi»N^"unj A>w «*V ————————— —

if test (' ; ') then

begin

if compoundtail then

begin

go to leftrecursivealternate

end

end

end

input := saveinput;

compoundtail :■ false;

go to end;

leftrecursivealternate:

compoundtail :■ ^tjrue;

end: end compoundtail
——— runjru *

Figure 15. Translating < compound tail > : a Cleaned Up Scanning Algorithm

41

Boolean procedure compound!.ail;

begin integer saveinput, workl;

saveinput :«* input;

if statement then

begin

if test (cend!) then go to leftrecursivealternate,
>S ———— n^rwrw -^TiJ^Sv *&TV *>#M ———————————————

if test (' ; ') then
/vrw »vvv^

begin
<V\Aruru

workl '" translation;

if compoundtail then
«W —-^———— /x*>*N<rw

begin

translation :■ super join (workl,

translation) ;

go to leftrecursivealternate
Kr^ *jn*, ———^^—^———————^—

end

end

end

input :■ saveinput;

compoundtail := false;

go to end;

leftrecursivealternate:

compoundtail :■ true:

end: end compoundtai1

Figure 16. Translating <compound tail > : the Addition of Code to Perform the Translation

'+2

and forms a new gathered translation. In this way initialization
steps required by each component (the left halves) can be grouped
together. This technique has been mentioned here only as an example
of the creative adhocery that can be applied in building translation
procedures; it is not intended as a complete solution to the problems
of compiling ALGOL 60 statements. The procedure super join is shown
in Figure 17.

Figure 18 reflects some further thinking about the implications
of centralizing error recovery in compoundtail. It has been decided
that compoundtail will always return true, and the procedure has been
simplified accordingly. It has also been realized that because of
the definition of the empty statement, the procedure statement will
always return £rue; the attendant simplifications have been made.

Finally in Figure 19 the code for generating two error
messages and spacing forward to the next translatable segment has
been added.

43

iii^SSJL JEL££JcädE£ super i°in (lef toper and, rightoperand) ;

value leftoperand, rightoperand;

integer leftoperand, rightoperand;

icS&Lli iiLESJ^JE. ^eftva^ue^-' lef tvalue2, rightvaluel, right value 2.;

scatter (leftoperand, leftvaluel, leftvalue2);

scatter (rightoperand, rightvaluel, rightvalue2);

super join := gather (join (leftvaluel. rightvaluel),

join (leftvalue2, rightvalue2))

end superioin
«wu —*■ ■*

Figure 17. superjoin : an Extension of the Utility Procedure

44

Boolean procedure compoundtail;

begin integer workl;

statement;

workl := translation;

if test ('end') then go to leftrecursivealternate;
<V*V» ——— VWU «WVA« A>V <V»»V ———————————^————

if test (' ; ') then

begin

compoundtail;

translation :■ super join (workl, translation);

go to leftrecursivealternate
Xn* «*>* ————————————————

end

leftrecursivealternate:

compoundtail :« true

end compoundtail

Figure 18. Translating <compound tail > : Realizing the

Implications of Centralizing Error Recovery Here

45

ß£&iß&ß, £££££&&& compoundtail;

begin integer saveinput, workl;

statement;

workl : = translation;

if test ('end3) then go to leftrecursivealternate;
*N*v —~~"-— »*>x* <**vrw *jr\# «v** ————————————————

if test (' ; f) then

U:

begin

compoundtail;

translation := super join (workl, translation) ;

go to leftrecursivealternate

end;

if saveinput ^ input then

begin

error (1); comment 'a ; or end appears to be missing';

go to 11
Air« '«sw —

end; www

error (2); comment 'an untranslatable statement appears to have

been encountered1;

12: —

input := saveinput := nextatom (input);

if test ('end*) then go to leftrecursivealternate;

if test (';') then go to 11;

Figure 19. Translating < compound tail > : the Addition of Code to Space Forward
and Generate Error Messages

46

if not (test ('go') V test ('if') V test, ('for') V test (?coimne:>* %)

V test ('begin') V test ('own') V test ('Boolean') V rest

('integer') V test ('real') V test ('array') V test (^switch*)

v test ('procedure')) then go to 12j

input := saveinput;

le ftrecurs1vea1ternate:

compoundtail :« true

end compoundtail

Figure 19. Translating < compound tail > : the Addition of Code to Space
Forward and Generate Error Messages (concluded)

f7

SECTION VIII

SYNTACTIC MACROS

Syntactic macros were introduced by Cheatham in . Syntactic
macros differ from ordinary macros in two ways:

(1) instances of arbitrary syntactic elements:are
allowed as parameters, and

(2) the scope of definition of a macro can be limited
to certain syntactic contexts.

Thus syntactic macros clean up two of the problems that have always
plagued conventional macros: the problem of delimiting parameters,
and the problem of the macro definition being triggered in contexts
where it is not desired.

A capability similar to syntactic macros (although less formal)
can be provided within the compiler environment described here.
The technique is to describe the syntax of the macro form in Pan;
Backus Form, decide what its equivalence is in the normal source
language, and build a procedure which scans the macro form, produces
the normal source language, and then appeals to the appropriate pro-
cedure in the normal source language compiler to perform the second
level of translation. One additional utility capability is needed.
The procedures append and append1 build a stream of atoms similar
to the stream produced by editor. The procedure append has two
arguments: a pointer to a stream to which it is to append a new
atom (or zero, which represents a null stream), and the new atom
expressed as a string. The procedure append1 has three arguments:

a pointer to a stream to which it is to append additional atoms,
a pointer to an existing stream of atoms which marks the first atom
to be appended from that stream, and a second pointer to that same
existing stream which marks the point at which no more atoms are
to be extracted.

* f6T
Taken from l

48

For example*, suppose that an application for ALGOL involves
the heavy use of square arrays, and we would like to be able to
say:

matrix A [n]

instead of

array A [1 : n, 1 : n]

The syntax for such a matrix declaration can be defined by the
Panini Backus metaexpression:

<matrix declaration> :: = matrix<identifier> [<arithmetic expression>]

When this metaexpression is processed by the programs of Section 7,
the procedure in Figure 20 is the result. Figure 21 shows the same
procedure after it has been suitably modified to serve as a macro.

The production of macro procedures can be automated somewhat by
the introduction of statements in the normal source language for the
purpose of defining macros. For the example considered above such
a statement might look like this:

macro matrix (_i is identifier, n is arithmetic express ion) ;

context declaration;

} matrix i. [n] S means J array i^ [l:n, l:n] >

This statement declares the macro matrix. It has two parameters:
_i, which should be scanned as an identrFier7 and n, which should be
scanned as an arithmetic expression. The scope of definition of the
macro is as if it were another alternative in the definition of the
syntactic element, declaration, of the normal source language. The
final line of the example defines the mapping from the macro form
(between the first pair of braces) to the normal source language
(between the second pair of braces).

A specification for the complete syntax of a macro declaration
statement, as it might appear if it were part of ALGOL 60, is shown
in Figure 22. Its implementation in the compiler environment
described here is a fairly straightforward process, although a
little creative adhocery is required. The reader may wish to try
his hand at it.

49

Boolean procedure matrixdeclaration'•

begin integer saveinput;

saveinput := input;

if test ('matrix') then

begin

if identifier then
<W —————^—— ^y^jr^jr^,

begin

i£ test (' [') then

begin

if arithmeticexpression then

begin

1£ test ('] ') then

begin

go to leftrecursivealternate

end

end

end

end

end

input := saveinput;

matrixdeclaration := false;

go to end;

leftrecursivealternate:

matrixdeclaration := true;

end:end matrixdeclaration

Figure 20. Expanding < matrix declaration > : a Mechanically

Generated Scanning Algorithm

50

begin integer saveinput, stream, saveinputl;

saveinput := input;

if test ('matrix') then

string, :■ 0

saveinputl :- input;

if identifier then

begin

append (stream, 'jj££-*z')>

appendl (stream, saveinputl, input);

if test (■ [') then

3egin

saveinputl :■ input;

if arithmeticexpression then

begin

append (stream, '[')

append (stream, ']')

append (stream, ':')

appendl(stream, saveinputl,

input);

append (stream, ',');

Figure 21. Expanding< matrix declaration >: the Addition of
Code to Perform the Expansion

51

end

append (stream, '1');

append (stream, ':');

appendl(stream, saveinput1,

input);

append (stream,, '] ') ;

if test ('] ') then

begin

s° o to
leftrecursivealternate

end

end

end:

end

end

input := saveinput;

matrixdeclaration := false;

go to end;

leftrecursivealternate:

saveinput := input;

input := stream;

matrixdeclaration := arraydeclaration;

input := saveinput;

end matrixdeclaration
N«"ur ———————————

Figure 21 . Expanding< matrix declaration > : the Addition of
Code to Perform the Expansion (concluded)

52

<macro declaration> : := macro<macro headingXmacro body>

<macro heading> ::=<macro identifierXparameter specification part>;

<allowable context specification part>

<macro identifier> ::=<identifier>

<parameter specification part> ::=<empty>|(<parameter specification list>)

<parameter specification list> : :s=<parameter specifier>|

<parameter specification list> , <parameter specifier>

<parameter specifier> ::=<formal parameter>is <syntactic element identifier>

<allowable context specification part> ::=<empty>|

context <allowable context specification list>;

<allowable context specification list> ::=<syntactic element identifier>|

<allowable context specification list>,<syntactic element identifier>

<syntactic element identifier> ::=<identifier>

<macro body> ::=<macro form> <macro form> means <defining form>

::=\<open sequence>/ <macro form> ::=\<open sequence>)

<defining form> ::=<<open sequence>>

<open sequence> : := <proper sequence>K<open sequence>>|

<open sequenceXopen sequence>

<proper sequence>: :=<sequence elernent>|<proper sequenceXsequence element>

<sequence e lernen t>: :=<f or mal parameter>|<identifier>i<string>|

<any basic symbol exceptcor>>

Figure 22. Syntax of a Macro Declaration Statement

53

SECTION IX

EXPERIENCE

The compiler design presented here was used at MITRE for the
implementation of a file processing language, PROFILE, which is
part of the C-10 file management system operating on the IBM 1410
(see I?)). PROFILE combines features of command and control query
languages with features of algorithmic languages. The implementation
on the 1410 was not done in ALGOL 60 but in the C-10 language, STEP,
and later in a special macro version of AUTOCODER. ALGOL was used
in this paper so that a wider audience could be obtained.

PROFILE is a language that evolved over a period of two years,
and during that span of time it underwent four separate implementations
It was our experience that using the technique described here, an
implementation required about six man months of effort. But the
really desirable characteristic we realized with this technique was
the easy maintenance and modification of the compiler by programmers
who by no means considered themselves compiler experts. A compiler
written in ALGOL as we have described here can be maintained and
modified by any ALGOL programmer.

54

SECTION X

REMARK

The utility of algebraic languages having been firmly
established for things other than numerical algorithms (especially
systems programming), one would think it was time to reconsider
the intent and design of higher level algorithmic languages from
first principles. Surely the approach taken by PL/I, that every
conceivable data structure and programming facility be permanently
cemented into the language, is not satisfactory.

55

SECTION XI

SUMMARY

A design for the construction of a simple compiler using an
algebraic programming language as the primary tool has been described,
The chief advantage of this approach is the ready availability of the
algebraic language. The basic technique used is to augment the cap-
abilities of the algebraic language with additional data structures
implemented by means of external machine language utility procedures.
A set of basic utility procedures have been suggested, and examples
of language implementations have been given. Panini Backus Form has
been considered as a source language for such a compiler, error
recovery techniques have been suggested, and syntactic macros have
been discussed.

56

REFERENCES

1. Robert W. Floyd, "A Descriptive Language for Symbol Manipulation,"
Journal of the ACM, Vol 8, No 4 (October 1961)".

2. Majorie P. Lietzke, "A Method of Syntax-checking ALGOL 60,"
Communications of the ACM, Vol 7, No 8 (August. 1964).

3. Larry Irwin, "Implementing Phrase-Structure Productions in PL/I,"
Communications of the ACM, Vol 10, No 7 (July 1967).

4. J. W. Backus, et al, "Revised Report on the Algorithmic Language
ALGOL 60," Communications of the ACM, Vol 6, No 1 (January 1963).

5. P. Z. Ingerman, letter to the Editor, Communications of the ACM,
Vol 10, No 3 (March 1967).

6. T. E. Cheatham, Jr., The Introduction of Definitional Facilities
into Higher-Level Programming Languages, CA-6605-0611, Computer
Associates, Wakefield, Massachusetts, May 1966. See also
Proceedings, AFIPS 1966 Fall Joint Computer Conference, Spartan
Book Co., Washington, D.C.

7. G. Steil, Jr., File Management on a Small Computer, MTP-47, The
MITRE Corporation, Bedford, Massachusetts, February 1967. See
also Proceedings, AFIPS, 1967 Spring Joint Computer Conference,
Thompson Book Co., Washington, D.C.

8. T. E. Cheatham, Jr., The Theory and Construction of Compilers,
CA-6606-0111, Computer Associates, Inc., Wakefield, Massachusetts,
June 1966 (draft report).

9. Julien Green, R. M, Shapiro, F. R. Helt, Jr., R. G. Franciotti,
and E. H. Thiel, "Remarks on ALGOL and Symbol Manipulation,"
Communications of the ACM. Vol 2, No. 9 (September 1959).

10. Joseph W. Smith, "Syntactic and Semantic Augments to ALGOL,"
Communications of the ACM, Vol 3, No 4 (April 1960).

11. J. W. Carr and J. W. Manson, "Two Subroutines for Symbol
Manipulation with an Algebraic Compiler," Communications of the
ACM, Vol 4, No 2 (February 1961).

12. M. Brassem and J. Coher, "A Description in ALGOL of a Simplified
ALGOL Compiler," IMAG-Groupe ALGOL, No. 27 (April 1964).

13. D. V. Schorre, "Meta II - A Syntax-oriented Compiler Writing
Language," Proceedings, ACM 19th National Conference, Philadelphia,
Pa., Association for Computing Machinery, New York, N.Y.

57

■

Security Classification

DOCUMENT CONTROL DATA -R&D
•.iinfv i In**mention t\l title, body ol nhntrtu t and indexing itnnoUitifn musi /><• entered when th<- nverall report 1 . i titsiiiliedj

|i >>M V.IN A TING Ariivin (Corporate author)

The MITRE Corporation
Bedford, Massachusetts

2«. REPORT SECURITY CLASSIMr A :

UNCLASSIFIED
2b. GROUP

N/A

USING THE READILY AVAILABLE ALGEBRAIC LANGUAGE AS A COMPILER
ENVIRONMENT

1 4 -r SCRIP TIVE NOTES (Type ol report and inclusive dates)

N/A
1 p AUTHORIS) (First name, middle initial, last name)

Gilbert P. Steil, Jr.

I» REPORT DATE

April 1968
7a. TOTAL NO. OF PAGES

62
7b. NO. OF RE FS

13
1 *a CO N TRACT OR GRANT NO

AF 19(628)-5165
1 b. PROJFC T NO

1 (1

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-67-430

9h. OTHER REPORT NJO(S) (Any other numbers that may be assigned
this report)

MTR-516
1 1 : DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.

Ill SUPBLEMENTARV NOTES

N/A

12. SPONSORING MILITARY ACTIVITY £)eDUtV for

Command Systems, Electronic Systems Divis-
ion, L.G. Hanscom Field, Bedford, Mass.

1 I i ABSTRACT

The use of algebraic command languages for things other than preparing numerical
algorithms has become somewhat popular, in particular for writing compilers. The
author feels that the technique of using an algebraic command language for implementing
a compiler is a good solid practical idea deserving some additional attention. He feels
that this technique will be found particularly useful by organizations not in the business
of building commercial compilers, but interested in the implementation of a small
special-purpose language, such as a query language for a model of a command system.
The purpose of this paper is to describe this technique to such an audience and to
comment on the extent of its applicability.

DD FORM
1 NO V 65 1473

Securitv Classification

Security (Maasifirution

KEY AO R DS

COMPILER

ALGOL

PARSING TECHNIQUES

AT I ROLE1 AT

1

Security Classification

t

•» * , ■

