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Corporation, Bedford, Massachusetts for the Deputy For Communications 
Systems, Electronic Systems Division, of the Air Force Systems Command 
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ABSTRACT 

The techniques of sampling theory are applied to measure the per- 
formance of the plant of a common-user communication system. 

Based on a range of expected values of p   (probability of call failure), 
appropriate values are derived for  n   (the sample size), and the rationale 
behind the selection of a confidence level is explained.   Where sampling 
results indicate an identifiable cause of ineffective calls, remedial engineering 
work can be undertaken.    By this process system performance can be improved 
until no readily identifiable cause of failure can be found. 

The work in this report was done in order to provide input to Annex H 
of the Overseas AUTOVON Master Test Plan. 
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SECTION I 

INTRODUCTION 

"Statistics is the art of stating 
in precise terms that which one 
does not know." 

—Statistician's epigram 

The "common-user" communications system under consideration in 

this report consists of one or more switching centers to each of which many 

subscribers are connected by access lines.    The switching centers are inter- 

connected by groups of interswitch trunks.    The subscribers originate 

telephone calls to each other at times of their own choosing.    The performance 

of the system can be specified in terms of the number of calls that fail. 

One source of ineffective calls is the failure of plant (equipment and/ 

or circuits) to operate in the manner for which it was designed; i. e. , some 

item of plant involved in processing the call is faulty.    This report deals 

with the performance of the common-user system when call attempts fail 

because of such plant malfunction. 

In order to eliminate the irrelevant complications arising from busy 

conditions, the rule will be imposed that the probability of encountering a 

busy condition in the system must be very small compared with the proba- 

bility of ineffective calls due to faulty plant.    This is equivalent to saying 

that the system must be lightly loaded. 

When the performance of the plant of a system is specified in terms 

of the number of calls that fail because of faulty plant (equipment and/or 

circuits), a system "figure of merit" readily follows.    Given such a measure, 

the performance of the plant in different systems can be compared, one with 
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another, and criteria of goodness or badness can be established and used. 

One such measure, termed Plant Performance Index (PPI), is the fraction 

obtained by dividing the number of calls that fail by the total number of call 

attempts.    This fraction expressed as a decimal is similar, qualitatively, 

to the commonly used "grade of service, " e. g., 0. 02.   It can also be 

thought of as a proportion.   In statistical terms it is the failure probability, 

and this term will be used throughout this report. 

The failure probability is likely to be greater in a newly structured 

system - such as one containing switching centers of a new design, for 

example, or one using transmission circuits not originally designed as a 

part of a switched system (or both) - than in an integrated system, i. e., 

one that has "shaken down" and where any frequently recurring design or 

manufacturing deficiencies have been rectified.   In an integrated system, 

independent failures will still occur in any of the various individual compo- 

nents that make up the system, but no one single type or piece of equipment 

can be singled out as a recurring prime cause of failure. 

As the number of call attempts increases, the proportion that fail will 

tend towards a stable value.    The larger the number of attempts the narrower 

becomes the range of fluctuation of the proportion around the stable value. 

Also, as the number of call attempts increases, so does the likelihood that 

the many diverse potential causes of failure will manifest themselves.    The 

net result is that the behavior of the system plant can be characterized by 

a failure probability. 

Ideally, therefore, we are led to accept the necessity of making an 

infinitely large number of calls and counting those that fail.   In the practical 

world this is clearly not possible,  so this failure probability is inherently a 

conceptual device.    Fortunately, however, sampling theory provides us with 



techniques by means of which the concept can be given practical significance. 

The engineer who is faced with the problem of evaluating this probability in 

real systems is able to draw useful numerical inferences about it from the 

results of relatively few call attempts by using the theory of the sampling 

process. 

In this report the symbol   "p"  will mean this call failure probability 

in the infinite population of call attempts, and 1-p therefore indicates the 

corresponding probability of success. 



SECTION II 

THEORY OF THE SAMPLING PROCESS 

For any given size of sample of call attempts, say   n   in number, the 

possible number of ineffective calls ranges all the way from zero to   n   in 

discrete steps of one.    Each of these possible call failure numbers has a 

certain probability of occurrence; in mathematical terms, the probability 

that any particular number  x  of ineffective calls will result is 

x „ „ n - x 
(x)   =   (n   -   x) ! x!   P   (1 ~ P) 

n 
Thus, the probability that no ineffective calls will occur is   (1   -  p)     and 

the probability that all calls will be ineffective is   p   .    (When checking 

these, remember that 0! , p     and   (1   -   p)     are all equal to 1). 

Within the sample of  n   call attempts there is thus an associated dis- 

tribution of probabilities of ineffective calls, and this is called a sampling 

distribution.    An example of such a distribution is given in Figure 1* for 

the case when  n  =  300 and  p  =   0. 02.    These values were chosen as being 

of the right order of magnitude for some practical cases.   In the figure, the 

abscissa Scale A shows the number of ineffective calls (NIC) in the sample, 

and Scale B shows the proportion of ineffective calls (PIC) in the sample. 

PIC   =   NIC/n. 

The curve is incomplete as shown - it actually extends far to the right 

with Scale A reaching 300 and Scale B 1. 0.    In these extreme-right regions 

Data for Figure 1 were obtained from Tables of the Cumulative Binomial 
Probability Distribution. I-1J 
" 4 



L_ 

^ 

X 

 L_L_ 

-* CM 

CO - 

frr 
— 

. 

<£ 

<r   -» 

o  u 

o - 
CC o 

OD 

UJ 
m Q. 

O 
3 n 
Z 

(Ti < 

ID 

ui 
-I 
< _ 
o 

CM q 

UJ 
-I 
< 
o 
V) 

8 

CD „  
q o 

o i 
z _J < 
3 
_l 
< 

o 
UJ 
> 

o _ <r H 
<> <) 

Ul hi > u u 
O UJ 

UI ^ 

C\J 

ODtDTCMOCOlOq-cvJO 

°oo0obdooo 
33N3dnD0O JO Ainmvsodd 

o 

> 
o 
oj 

1) 

u 

E 

z 
-o 
c 
o 

c 
o 

8 
o 
I— 

o_ 

0) 

E 
o 

c 
o 

3 
-a 

>- 

n 
.J3 
0 

3 



the probabilities are insignificantly small; i.e. , such values of x  are 

"most improbable. "  It should be noted that the "most probable" value for 

x   is when NIC    =   6, but the associated probability of occurrence of this 

"most probable" value is still quite low at 0.16. 

The shape of the curve is very similar to the bell shape of the normal 

distribution, thus illustrating an important general law of statistics that 

"measures computed from (random) samples usually tend to be normally 

distributed. "   This law, the Central Limit Theorem, coupled with the proper- 

ties of normal distributions, permits us to use the results of sampling 

processes to make inferences about the properties of the population from 

which the samples were taken.   When these general remarks are applied 

specifically to the situation shown in Figure 1, they mean that, given the 

number of ineffective calls in the samples, each consisting of 300 call 

attempts, it is possible to state with a certain degree of confidence (expressed 

as a percentage) that the value of p  lies within certain limits.    For the 

present problem it can safely be assumed that the shape of the distribution 

of possible ineffective calls will be normal if the size of the sample is 

greater than,  say,  100.    (For other reasons, also, as will be seen later, the 

sample size will be kept in the low hundreds.) 

Any normal distribution is completely defined when its mean and 

standard deviation are known.    The especial significance of the standard 

deviation in our problem is that it indicates the degree to which the possible 

values of the variable are clustered or grouped about the mean - the greater 

the value of the standard deviation the wider the spread, and vice versa. 

When the standard deviation is small, a large percentage of the possible 

values of the variable will be found close to the mean. 



We recognize only two outcomes from call attempts - they succeed or 

they fail.    It is a binary situation, not an analog one.    In such cases, the 

mean value of the sampling distribution is equal to  np  when the abscissa 

represents number of ineffective calls (Scale A of Figure 1), or is equal 

to   p   if the proportion of ineffective calls is plotted (Scale B of Figure 1). 

For such "binary" populations statisticians use the term "standard error" 

in place of "standard deviation, " and this is equal to    /  —- — .    Figure 2 

shows how the standard error varies with sample size    n   for different 

values of  p.    It will be seen that for the lower values of  n   the standard 

error drops rapidly as   n   increases, but that when   n   is about 300 or more 

this rate of change in the standard error slows down considerably. 

Based on these theoretical considerations, it is possible, as has 

already been suggested, to make some positive assertions regarding the out- 

come of the sampling process.    For example, if sampling is performed under 

certain conditions (to be discussed later) then the results of the sampling 

will produce a distribution of the normal kind.    The statistician is, therefore, 

"confident" of the outcome of the sampling process and expresses his degree 

of confidence in percentages.    Since in any normal distribution about 68 per- 

cent of all possible outcomes will be within ±1 standard error of the mean of 

the distribution, he therefore rates his confidence coefficient as 68 percent 

that any one outcome will be found within the same confidence interval. 

In the particular situation under study, the mean of the sampling dis- 

tribution (Scale B) is   p.    Hence, we can be 68 percent confident that the 

true value of  p   (unknown to us) will lie within an interval bounded by ±1 

standard error from the PIC value of the sample. 



0.07 

p » 0.30 
0.25 
0.20 
0.15 

0.00 
200 300 400 

SIZE OF SAMPLE n 

Figure 2.   Variation of Standard Error with Sample Size 



Any required confidence coefficient other than 68 percent can be 

obtained from tables of the normal distribution. The table gives some 

useful approximate values: 

Table I 

Number of 
Standard Errors 

0.68 

0.84 

1.00 

1.04 

1.28 

1.65 

2.00 

2.58 

Confidence 
Coefficient (% 

50 

60 

68 

70 

80 

90 

95.5 

99 

As was suggested earlier, certain conditions must be observed in our 

sampling in order not to invalidate the theory.    These are: 

(a) That the outcome of each call attempt is independent of 

(i.e. , not influenced by) all other call attempts. 

(b) That the call attempts making up the samples are truly 

random choices, i.e., specified by a deliberate process 

which gives the same probability of being selected to each 

and every possible combination of calling and called sub- 

scribers.    This is more difficult than it sounds at first 

sight and is most easily accomplished in practice by using 

tables of random numbers. 



SECTION III 

PREPARATION FOR PRACTICAL APPLICATION 

It is manifestly desirable to try to achieve a high confidence coefficient 

and, at the same time, a small standard error, inasmuch as such a combina- 

tion reduces the uncertainty in the estimate of p  to a minimum.  Figure 2 

shows, however, that the values of standard error become smaller only as 

the sample size   n  increases, and that for any particular value of n  the 

standard error increases with increase in   p .    Both of these effects are 

contained in the formula, 

Standard Error   =    / ] 

n 

In preparation for the practical application of sampling theory, the 

three basic questions then are: 

1. What values of p  may be expected in working systems? 

2. What size should   n   be? 

3. What percentage confidence should be used? 

With regard to the first question the author, in discussing the plant per- 

formance of AUTOVON communications (mentioned earlier) has provided reason- 

ing which suggests that values of  p   ranging approximately from, say, 0. 02 up 

to perhaps 0. 30 might be met with in practice.    The lower end of the range 

would, it is suggested, apply to the less complex subsystems consisting of 

one switching center and its dependent subscribers, while the upper end of 

the range might be found in multi-switch systems with global coverage. 

Accordingly, values of p  ranging from 0. 01 to 0. 30 were used in calculating 

the standard error curves of Figure 2. 
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In considering the size of  n   the need for standard error values as 

small as possible has already been established,  but unfortunately such can 

be attained only for the higher values of  n.    The practical difficulties of 

sampling - the time needed for a program of test call samples, the central 

organization required, and the necessity for a number of reasonably skilled 

testers coupled with the requirement that the system under test be lightly 

loaded - all these factors mitigate against the use of high values for   n. 

Also,  it has to be recognized that the practical difficulties of sampling will 

probably increase when higher and higher values of  p   are encountered,  as 

anticipated in systems that will cover geographical areas of continental 

dimensions.   When such considerations are coupled with the trends of the 

curves depicted in Figure 2, values of  n   around 300 to 400 suggest them- 

selves as reasonable compromises.    In Annex H of the Overseas AUTOVON 

Master Test Plan, where the author has used these techniques, 300 was 

specified as a practical value of  n.    However, if initial tests taken with 

n   =   300 indicate that   p   is likely to be found amongst the lower values used 

for Figure 2, then this knowledge will justify a reduction in sample size 

to 200,  or even 100,  if further testing is necessary. 

The final factor to be appreciated is the shape of the curve linking the 

percentage confidence with the corresponding number of standard errors. 

Figure 3 shows the table from page 9 in graphic form.    A reasonably linear 

relationship exists between the two factors up to 85 percent values of confi- 

dence.    Higher values of confidence are attained only at the expense of a 

rapidly increasing confidence interval.    An 85 percent confidence coefficient 

is recommended for use.    The corresponding confidence interval is the PIC 

value  ±   S (where   S, the spread on either side of the mean,  equals 1.44 

times the standard error). 

11 
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Figure 4 gives the variation of  S  with PIC for the case when   n   =   300 

and the confidence coefficient is 85 percent.    The confidence interval within 

which  p will lie is then PIC ± S. 

13 
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0.00 0.01 0.02 0.( 
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Figure 4.   Derivation of Confidence Interval 
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SECTION rv 

PRACTICAL APPLICATION 

In the preceding section recommendations have been made and supported 

regarding appropriate choices for   n   and the confidence percentage.    These 

choices were made on the assumption that, in practice, the range of possible 

values for  p  might lie somewhere between 0.01 and 0.30, according to the 

complexity (or quantity) of plant involved and the quality of its performance. 

After a newly structured system has been tested in the field by meas- 

uring the number of ineffective calls in a sample size  n , the PIC must be 

determined   (PIC   =  NIC/n).   Next, the resulting PIC value is applied to the 

ordinate scale of Figure 4 and the corresponding value of  S  is read off from 

the abscissa; if the PIC value is 0.16, for example,   S  is approximately 

0. 031.    Hence,  it can be said with 85 percent confidence that the true value 

of p  of the system lies somewhere in the range 0.16 ± 0. 031, i.e., between 

0.129 and 0. 191.    This is the best that can be done with one sample,  size 300. 

If the opportunity exists to take a second sample of the same size, without 

any changes to the plant that might affect its performance, then the confi- 

dence interval would shrink from 0. 031 to 0. 031/1. 41, i. e. , to 0. 022, in 

which case the 85 percent confidence range would extend from 0. 138 to 0.182. 

When the results of the first sampling indicate that an identifiable cause of 

ineffective calls exists, however, then good engineering practice will demand 

that this cause be removed by modifications to equipment and/or circuits. 

After this remedial work has been completed, a fresh sample should be 

taken, and the improvement in the system performance will be reflected in 

the lower range of values for p.   Ideally, this process should continue until 

15 



no readily identifiable causes of failure can be found — in other words, until 

the ineffective calls are due to chance effects. 

Such expenditure of effort is completely justified, in the author's opinion, 

when a new and important system element — a new switching center, for 

example — is being field tested for the first time.    The improvement in 

system performance resulting from such work will be reflected in lower 

p's   for all subsequent similar installations, with comprehensive and 

permanent benefits that should not lightly be foregone. 

EHH-.dmp 
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