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Summary 

In some situations  encountered today the  components  are so reliable 

that  no  failures are observed within the time available   for  testing.     This 

can pose  a problem in data analysis and interpretation.     We consider here 

the problem of determining lower  confidence bounds  on  the  reliability of 

a complex system, such as  the Saturn 1-C, when eazh  component  is assumed 

to have  an exponential life and different  components have different  multi- 

plicities within the system.     We discuss and compare  the  confidence  limits 

obtainable  from various  interpretations of the data and  several theories 

such  as  asymptotic  likelihood  ratio, asymptotic maximum likelihood,   the 

Bayeslan method and  the new method presented here utilizing the conditional 

probabilities of malfunction of  the components  given that  a malfunction  in 

the  system has occurred. 
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Introduction 

The  problem of determining  the  probability of  successful   operation 

of  a  large  complex system when  one  has  data only on  the   reliability of 

the components,   has over the past decade, been the subject of many in- 

vestigations.     A large portion of these  reports were proprietary. 

However much of this vast  literature either consists of amalgams 

of engineering judgement  and  untutored  statistical  intuition,   or the 

study  is based on an asymptotic theory  for which the precision  of th'i 

approximation  is  unknown or the analysis  is based on subjective prior 

assumptions utilizing Bayesian methods. 

The economic importance of correct assessment of the system relia- 

bility before  full scale testing can hardly be underestimated  in nearly 

any of the  current aerospace programs.     The desire to find an  acceptable 

solution can be seen from the  inclusiveness of the proprietary  report of 

Dalton   [2]  which ostensibly compares many of these techniques.     We also men- 

tion the  comparison made  in   [11]   and the many references given  in   [2]. 

The  fact   is  estimating mean time until failure or the probability 

of failure  (under many models) ,  requires that at least one  failure be ob- 

served.     The plea which is often made  to the preliminary testing program 

for more data is sometimes nothing but  a covert wish for more   failures. 

Thus  tue statistician is put  in the uncomfortable position of  having less 

and less  confidence in his interval estimates of reliability when fewer 

and  fewer  failures are observed due  to  the fact  the reliability  is be- 

coming higher and higher.     Ultimately, when the system becomes  perfect 
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and no  failures are observed  the  statistician has no confidence if his 

statistical procedures are necessarily based on  failure  analysis.     In 

this  unsatisfactory situation it   is an understandable  reaction of pro- 

gram managers to form a distrust  of statistical  inference  and its "num- 

erologists" as well.     And as  indication of this  disenchantment  see  [3]. 

In this note we address the problem of deriving appropriate statis- 

tical techniques which will be valid when there is a paucity of observed 

failures  in the components which have been tested. 

- 
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1.     The  Basic Model 

Consider a large complex system which has been designed to perform 

in a specified manner when all  of  its components are operating.    At  ques- 

tion   is  the length of  time during which it  can perform adequately,  or 

equivalently,  the confidence we  can have that  it will perform adequately 

for a specified time. 

Suppose we postulate that  each component of the  system, as well as 

the system itself,   is either performing adequately or is  in a failed state. 

Hence  at  any time    t     for the     1 component 

X^t) 
1     indicates performance 

0     Indicates  failure. 

The stochastic process    X  (t)     is called the perforrrtanae process of 

the     it       component.     Let    ^(t)   -   (X1(t),...,X  (t))     indicate the state of 

all  the  components  at  any time    t   > 0.      The state of  the  system formed 

from these  components  is  given by  the system structure  function    41,    which 

is a non-decreasing function on  the vertices of the hypercube of dimension 

m    and such that 

())(1,...,1)  -  1      and      <K0,...,0)   - 0. 

This class of functions  is  called   coherent of order    m    and has been 

studied previously in   [4]  and   [6].    Thus the stochastic process 

♦ (t)  « *X(t), 

where juxtaposition indicates composition, defines the performance process 

^^mm M^^ 
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of  the system.    We are interested in the probability  of perfect perfor- 

mance of the system for a mission of length    t,     namely 

(1.1) P[*(s)  - 1,    0  < s   < t]. 

The problem is that one has only a limited amount of data about the 

reliability of each of the components so that at best one can obtain a 

lower confidence bound on (1.1), for a fixed mission of given length. We 

shall make the specific assumption 

1  The random variables 

Vi  - inf{t:Xi(t) - 0}    i - l,...,m 

are called the times until failure  for each component and are 

independently distributed by 

?[Vi  >  t]  - e'Qi(t)  for  t > 0 

where Q.  is the hazard  function of U.. 

In this context a minimal out  has been defined, in [6], as a mini- 

mal set of components such that if all are simultaneously failed the system 

must be in a failed state.  The performance process of the system can then 

be related to the performance process of the components in the usual fashion 

through the minimal cuts  C.,...,C.  by 

m 
(i.i.i) ^(t) - n ruJL(t) 

J-l J 

where 

(1.1.2) n.£(t) - 1 - n (l-X.(t)) 
3 ieC 
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for all    t > 0.       This  representation is well known,   see   [6]. 

We can now prove 

Theorem 1.    Under assumption    1 ,    there exists for any coherent 

structure    $    with minimal cut sets    C. C      a set of integers 

v
1»'"»ytaj with    v        the number of the    C     which contain    i    as 

a member, and 
m 

P[*(t)  - 1] ^ exp[-£v,Q,(t)]      for      t > 0. 
1    J  " 

Proof:    By a fundamental result of Esary, Proschan and Walkup,  theorem 

3.3  [5] i we have 

k 
P[^(s) - 1,    0  < s  <  t] ^   n P(n.Ä(8)  - 1,    0 < s < t] 

J-l J' 

where    n.jC(s)    was  defined  in  (1.1.2).     But notice that  as events 

[n £(s) - i,   o < s < t] - [nieC (^(s)) - o,   o < s < tpr^ [x^t) 

and it is the probability of this last event which is easily computed. 

o 

1] 

Hence by assumption 1 

P[ n £(8) - 1,      0 < s < t] >.  n   P(X (t) - 1] -   n   e   i 

* ieC ieC, 

k 
In P[#(t)   - U > -E    £  Q^t) 

J-l ieCj 

-Q.(t) 

and reversing the summation yields the result claimed. 

mm 

mm 
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This  result  provides a lower bound on the  reliability of  any  struc- 

ture in terms  of  a series system with  the niL.ltiplicities    v       of  the 

components suitably  chosen.    Moreover  if  component  reliabilities  are very 

high the system itself begins to behave  like  its weakest  links,  namely 

its minimal  cuts,   and  its reliability becomes  closely approximated by 

the bound given.     In view of the  theoretical simplicity and the  approxi- 

mate equality of  the bound given in the many practical cases when hazard 

rates are small,  we shall henceforth  assume  that we seek a lower confidence 

bound for such  a series system reliability.     This we take as 

-Ev*i(t) 
(1.2) el11 for t  > 0. 

where    v.    are known constants determined  from the monotone functional 

representation    $    of  the system and    Q,     are unknown hazard functions of 

the components. 

Keeping in mind the missile systems which  are the archtype of  this 

model,   it  is often necessary    to assume  that  a different representation 

of the  form (1.2)   is  assigned for each separate phase of the missions. 

Henceforth we assume  that such a phase  is  given and fixed. 

2.    Beta Factors 

We now make  a distinction between malfunction and failure of 

a component.     In actuality a malfunction  in the  component may cause only 

degraded performance  of  the component  insuead of a complete  failure.     This, 

by definition,will  result  in a system failure  (or vehicle loss  in  the 

archtype missile sysfieni)   since we have reduced our assumption to that of 

a series  system. 
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It becomes expedient  to extend the model and allow the concept  of 

malfunation which  if occurring at a given time in  the mission may or may 

not result  in component   failure.    A failure  thus  is a special case of 

malfunction. 

We now make  two very specific assumptions 

2 :    A malfunction  in the i      component  during the time  interval 

(t,t+h>     of a mission will result  in a component  failure 

causing vehicle loss with a certain probability    6.(t)'h. 

3 :    The time until malfunction of the  i      component is exponential 

with hazard rate    X  . 

It follows that 

lim--- P(X.(t+h)  - 0|x.(t)   > 0] -  X,ß°(t). 
h-0 h       i i " 1 

I. 

From the definition of  U. we have Q.Ct) - J   A ß°(x)dx 
0 

t+h 
Ptl^ >  t+h]^ > t] - exp{-J       Xiß°(x)dx} 

For a mission of fixed length    t0    we define the beta factors    &., 

which are constants, by the equation 

Vo " vi •/     ^(x)dx- 

Thus the probability of vehicle safety over the time interval  (0,t0), 

i.e. the reliability of the system, is from (1.2) 

m 
(2.1) exp{-Exißit0} 
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Without loss of generality we shall henceforth assume that all time 

intervals are expressed in fractions of this fixed mission length  t , 

to wit, assume  t- - 1. 

For the i  component we will refer to both the (average) beta factor 

ß  and ß ,  the conditional probability of failure given a malfunction 

in that component, as ß-factors.  The usage will make clear which is meant. 

Although we define  3,  as an integral, in practice it is ordinarily 

a sum.  Usually the mission phase is divided into periods and the ß-factor 

is taken as constant during each period.  Suppose the ß-factor is ß   for 

the i  component during the j  period of the mission phase.  Hence the 

Notice that incorporating ß-factors into the model to evaluate the 

probability of vehicle loss, as a consequence of assumptions 2  and 3 

changes the entire nature of (1.2) since (2.1) involves only a known linear 

combination of the unknown failure rates X . 

3.  The Data 

In many cases  the first type of data one has  concerning the  reliability 

of the components comes  from environmental  tests.     This  test data must be 

transformed by engineering evaluation  into  the equivalent  operational  time 

during the given phase of  the mission.    Those  factors, which transform en- 

vironmental test  time into  the equivalent  phase time called the environmental 

factors or E-factors,  are  used  in industrial practice,  see   [1]. 

An E-factor is a number used to modify one unit  of test time so  that 

it  may be expressed in the appropriate units of equivalent mission phase 

time.     For example,  it  one  unit  of test  time  is  equivalent  in severity  to 

time intervals    (t(:,"1),  t(:J))    j-l,...,r,    where    t(0)  - 0,    t(r)  = 1    by 
I 

our convention, would constitute  the    r    phases.     We would then have 
i 

(2.2) ß.   -   i>°   U(j)  -  t^1*]. 
j-1 1J 
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one-half of a unit of time during a certain phase condition then the E- 

factor is  .5.   In other words two units of test time at this speci- 

fied condition of environmental severity to one unit of mission phase 

time. 

Specifically, during the first phase of a mission a component may 

experience several types of vibration, several temperature and humidity 

changes.  Consequently, testing the component in these separate environ- 

ments must yield results requiring a transformation into the appropriate 

mission phase equivalent time. 

We do not discuss further the derivation of these transformations 

but we merely point out that in such instances the data on the operational 

behavior of the components are not god-given, but rather are the construct 

of prior engineering knowledge and judgement.  We remark also that E-factors 

are not the same as ß-factors.  Beta factors are determined from the systems 

vulnerability to a malfunction of a given type during a certain phase of 

mission.  On the other hand E-factors are used to accelerate the testing 

and reduce its expense. 

Keeping this point in mind, the statistician is ultimately provided 

with data on all the components in the form 

(3.1) xi *   ^i*11!) 1,. . . ,m 

th 
where    t.     is the total time   (in  fractions of the mission length)   the i 

component nas been operated and    n.    is the total number of malfunctions 

of  the i      component  during  time    t.. 

We now make some interpretations of these data. 
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Interpretation I.  Suppose it was decided to run the i   component 

for a fixed period of time  t.  and count the number of malfunctions.  From 

assumption 2  it follows that the time  t,  is a known parameter while 

n,  is an observed value of a Poisson random variable N.  with density 
i i 

e-Xiti(A.t.)n ; 
(3.2)   .        n - 0,1,... n. 

Interpretation II. We now regard the time until the occurrence of 

the preassigned n th  malfunction  (n >. 1)  for the i  component as the 

observed value of a random variable.  Let 

(3.3) Si - 1^(1) + ... + Ti(ni) 

denote the tfme of the n.   malfunction of the i  component where n. ^_ 1 

is given and where T.(k)  is the exponentially distributed time between 

the (k-l)st and the k   malfunction of the i  component. 

Now the data  (t.,n )  means having observed the event 

(3.A) [S, < tJOlS^T^+l) > t.]. ' • 
■ 

In words; the    n malfunction took place on,  or before  time    t      and 

the    (n.+l)st    malfunction had not occurred at  that  time. 1 I 

If n > 1,  then we must have observed the event 

(3.5) [S1 - slnCT^n.+l) > ti - s] 

for some 0 < s < t,.  Or on the other hand if n. ■ 0, we must have 
i l 

observed the event 

(3.6) [T^D > tj 
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Now  the density of     S.     is  the  gamma density, (p.   74,   ref.[7])   given by 

(3.7) 

n.   n,-l -> .s 
,      i     i i As e 

for s   >  0 

which one may use to evaluate the probability of the events (3.4), (3.5) 

and (3.6).  We defer this until later. 

4.  The Asymptotic Maximum Likelihood Method 

In case interpretation I holds,one can verify easily from the density 

given in (3.2) that the maximum likelihood estimate of X  is  A ■ n /t . 

But also under interpretation II the likelihood of the event (3.5) using 

the density in (3.7) is, except for some constant not depending upon X 

(4.0.1)        nilnXi + (n^Dln s - X^ - X^t^s) 

and the maximum likelihood estimate of X.  is again X  as given above. 

Moreover the probability of the event (3.6) is e ^ ^, and the value of 

X,  which maximize this is X. ■ 0. 
i i 

Thus under either interpretation of the data we obtain the maximum 

likelihood estimate of X  is 

(4.1) 
1   'i 

and we note that X = 0 if n - 0. 

Let X « (X1t...,X ) denote the vector of component rates and  X  the 

corresponding vector of maximum likelihood estimates. 
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We now state  the appropriate 

Theorem 2.     If    X    is  the maximum  likelihood estimate of the  true 

component  hazard  rate  veacor    A,     then    g(Ä)    is asymptotiaally 

normal with mean    g(X)    and vananae 

o     -   E (^8(A)]   var(A   ) 
j-1     J J 

whenever the partial derivatives of   g    exist. 

The proof  is well known and  is  given  in many  texts,  e.g.[12].    To 
m 

utilize  this   theorem we take    g(X)  ^^ß.A.     and  first make  Interpretation  I, 
1 

It  follows   from    A     » Nj/tj     where    N       is  a Poisson  random variable with 

mean     (A, t.) ,     that 

1 \ var(A  )  - —- var(N )  » — 

1 1 

2     V«   2   ^i 

ii 

Now we make  the notational  convention to be used  subsequently  that 

(4.2) T,   " T- i  -   l,....m. 
i       ßi 

Hence we  can  estimate  the standard deviation by 

a-^EVi -2 ■ 

Thus by theorem 2 and the consistency of 3 we know that  [g(A) - g(A)]/3 

is asymptotically a normal zero, one random variable. (Strictly speaking 

the Theorem 2 is not needed with this interpretation since the sum of 

Poisson random variables is known to be asymptotically normal.) 
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Suppose we now make interpretation  II,   restricting our attention 

to  the  case when  the  event     [S.   =  t   ]     is  observed.     Since    S       has 

the density given  in  (3.7)   one  checks  that   for    b ■  1,2,     given   that 

3 i - 

ES"b =  Xb/ n   (n -j) 
j»l 

From this  one  shows  that 

var^) Vi 2 

ni-l 
1   1 

LV2 

If we substitute     X       for    X.     in the expression for    a      we obtain thf 

estimate 

»2 - EV'i» - ;rm - f> i-1 

which can be compared with the estimate for o  obtained under interpre- 

tation I.  One sees they are nearly the same only if n , which is re- 

quired to exceed 2, is large. 

We then have, under either interpretation. 

(4.3) uii) - &m} < _ 1 - c 

th 
where z  is the 100^  percentile of the standard normal, 

we find (4.3) is equivalent with 

By algebra 

-g(^) > e ■WE] 

*m 
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where W  is a random variable given, say under interpretation I, by 

(4.4) w   ^ ^+ w^: ^ . 
1   i    V 1  i 

-W 
Thus for any c  (for our application near one, say .95), e 

gives asymptotically a lower confidence bound of level  e  on the true 

reliability.  Notice that if no failures occur for the i   component no 

account is taken of them in the equation (4.4) and indeed under inter- 

pretation II we must have at least three failures to take account of a 

component. 

5.  The Asymptotic Likelihood Ratio Method 

Again we make interpretation I and examine the data.  The total 

test time  t , we consider as a parameter, and the number of malfunctions 

is a random variable N..   As is well known, p. 10 ref. [7], the number 

of malfunctions in an exposure period of length  t  has a distribution 

given by (3.2).  Using the notation of section 4, the likelihood function, 

given the parameter vector X,  is 

m 

L*(X) = Lt-Vl + Mn(M ) - ln(n !)}. 

The   reliability   for  the system with a given mission  length  and 

given     ß-factors  is 
m 

h(A)   -  exp{-£A   R   }, 

We  now state 
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Theorem^.    If the hypothesis    h(Ä)  - r    is true then  the  likelihood 

ratio,     -2J!.nL(r),    where 

(5.1) L(r)   =  sup  L*(X) -L*(X) 
{A :h(X)   = r} 

has asymptotiaally a Chi-square distribution with one degree of freedom. 

A proof  is  found in many  texts  for example Wilks,  p.   419   [15].     At 

this juncture we notice, were we  to make Interpretation II,   that the like- 

lihood  function given in  (4.0.1)   of  the event defined in   (3.5)   is the same 

as    L*(/'),     except   for some constant  not depending upon    A..       Hence whe- 

ther we make  interpretation  I or  II  the function    L(r)     defined in (5.1) 

would be  the  same. 

Since    L*(X)     is the supremum of    L*(X)     over all admissible values 

of    A     it   is easily  found.    The  first term is more difficult  since we 

seek the maximum of    L*(A)    under th- constraint    h(X)  - r    with    r    fixed. 

We  follow a procedure for binomial data first proposed by Madansky in   [9] 

for series  systems  and then generalized to arbitrary systems  in   [10].    The 

procedure  is  to maximize    L*    under  the constraint by using a LaGrange 

multiplier    6.       Setting 

a ni r2-[L*(A)   -  6£nh(A) ]  - -t.  + -L + 6ß    - 0, 
3A j        A j 

and solving yields 

AjU) 
V6ßj 

J"l,...,m. 

Call    A(6)     the vector solution.     Note that     A - A(0).       We now define 

A(x)   - L*(A(x)]   - L*(A') 

Ar        Ti T^   T £n     1 - -J-+ £n(—Ml 

«n 
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where we have used the definition (4.2).    We want   to solve for the value 

of     x > 0    sucl.  tiidt   for a given level    c 

(5.2) A(x)  = - i x^(l) 

where    x  (D     ^s t^e I^OL       percentile of  the Chi-square random variable 

with one degree of  freedom.     Call the solution of  (5.2)   the value    x  . 

Then m      n 

(5.3) h[A(xE)]-exp(-i;^r) 

1+-C 
is  an asymptotic lower bound  for    h(X)    of level    -r-    rather  than of level 

e,  since we obtain only a one sided confidence bound. 

We now exhibit  a method  for the determination of    x  .       For a given 

m 12 
e,     set    B    -52n.  + T X (1),     then for each    B    > 0     there exists an    x >  0 

E     rr   1      2    E c 
12 

such  that    f(x)  - 0,    where     f(x) ■ -A(x)  - ö" X (1). 

We  can write 

^ ^[^ -i" &)h 
The solution of  f(x) • 0 must be unique since 

m    n 
f'U) -  xj;  ~ > 0 

i-1 (T^X)^ 

whenever    0 < x <  T,.,.   ■ min(T   ,...,T   ). (1) 1 m 

But  note  that 

m (T.+X) 
:"(X)   «   £n     ^ 

i=l      (Ti-x)J 
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Thus we see that both  f', f" are continuous and do not vanish for 

0 < x < T,.., which is a sufficient condition that the Newton iteration 

procedure, namely 

"n ' "n-l ' f'di ,) 
n-i 

n-l,2, 

will  converge to the value    x   . 

6.     Bayesian Confidence Intervals 

Let us now outline the Bayesian method of obtaining confidence limits. 

Suppose  that    TT(A)     is a given prior density of the parameter    X,    here 

taken as one-dimensional  for illustrative purposes.     If    X    is known then 

a sample    x    of independent  identically distributed observations  from a 

population with that parametric value is    p(x|x).       Then,   following Lindley 

[8],  pp.   1 and 2,   the posterior density of    X    based on the evidence    x    is 

f(X|x)-<p(x|X)7T(A). 

Now   if    I   (x)     is any interval of    X    depending on    x    and    c. 

0  < e  < 1,    such that 

(6.1) 
h   (x)f(A|x)dX - e, 

then    I  (x)     (p.  15,  Lindley,  loc.  clt.,)  is called a I00c% Bayesian 

aonfidenae interval of    X    for given    x. 

If we desire a Bayesian  confidence interval on    A " X    + X      and we 

have posterior densities of     A   ,  X»,    call them    f      and    f-    then from 

an assumption of independence of these posterior densities one can obtain, 

fli^MM 



n—p-WM^W 

H 

■18- 

vla the calculus of probabilities, a posterior density of " ■,  +  *-,  as 

the convolution , 

f *f2(A) - / f (A-t)f-(t)dt 
0 

and use  fj*^  to calculate an upper confidence bound on X    from (6.1). 

This is essentially the method that has been recently utilized to obtain 

confidence bounds on the reliability of series systems and is presently 

the subject of much interest.  (See [14], (16] and the references given there.) 

If the data x " (x.f...tx ) where x. ■ (t.,n.)  is given we may 
im i    1 i     " 

make either interpretation I or II. We decide whether one regards the 

time until the n.   malfunction as an observation from a random variable 

with parameter n. (»* 0)  fixed or the number of malfunctions n.  as an ob- 

served value of a random variable when the time of testing t,  is given. 

In each interpretation as we now show we are lead to the following: the 

probability of observing the event x  given a value of A  is 

(6.2) 
pCxJ^) 

e"Vi(Vl)
ni 

"i1 

Under interpretation I we regard x, as the event [N ■ n ] where N 

is the Poisson random variable with density (2.2). Hence we have (6.2) 

directly. 

Under interpretation II, n,  is fixed and the time until the  (n,+l)st 

malfunction is the random variable S  . - S. + T. (n^+1).  Now x,  becomes 

the event (3.4), and we want to evaluate 

PUJV -Pis.it^ si+1 > tj. 
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But the  right hand  side  is the difference of  the  convolutions 

Gni  (ti)  - G(ni+:''*(ti),    where    G    is the exponential distribution  of 

the time between  failures with hazard rate    X   .    This difference,  p.   11  [7], 

is equal to  (6.2). 

From Bayesian Principles, using either interpretation I or II, one obtains 

the same joint posterior density of  (X ,...,A ) 
1 m 

m 
f(X1,...,Ao|x1,...,Xni)   o<  n P(xi|Ai)Tr(X1 Xm) 

where    IT    is the joint prior density of    (A. X ). 
i     m 

7. The Principle of Insufficient Reason 

I now mention an approach which has been called a majo breakthrough in 

the analysis of confidence levels for system reliability.  This is because 

it leads to an answer which is theoretically exact and does not depend upon 

an approximation to an asymptotic distribution. 

This approach is the Bayesian method with the special prior density 

(7,1) TT(X) E 1  for all Xi > 0. 

This assumption is justified by the so called principle of insufficient 

reason',  since we know nothing specific about TT we have insufficient rea- 

son to take Tr(X)  anything but uniform.  Strictly speaking TT as defined 

in (7.1) is a non-probabilistic prior.  But of course one could consider It 

an approximation to a prior density.  There have been several attempts made 

to use this general approach for confidence intervals, in particular see [!]• 

mm 
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However  from  (7.1)  we  have 
ni 

m (A,t.) -A.t. 
f(A|x)   -    n t.  -^-h  e     1   1       for     ^.   >  0. 

i-1   i        ni- 

The  mathematical  problem becomes  that  of  finding  the  distribution of 

m 
(7.2) V"Ee-A

i 
1     1 

where    ß.     are known  constants and    Ä.     are  fiducial     gamma variates with 

known scale and shape parameters.    To wit,  each    >,     is    r(t   ,n +1)     where 
." J     J 

r(t,v)     denotes  the   law with  density ,  give    v   >  0 

/-i   JN 1        v v-1 -tx      c _ (7.3) .   ■   t x      e for    x  >  0. r(v) 

We also quote two related results: Feller II loc. cit, 

If \       is  r(t ,v )  then t X.  is  r(l,v ) 

If    v     >   1    then     xi   °   ^l  + xlj    where     X'     is     r(t   ,1) 

independent   of    A"    which  is     r(t   ,v  -1). 

Thus by the   Tirst   renark we  see that   in distribution 

where 
ß 

b    = T-1- - —- j-1,... ,m 
*        j        j 

and each  «   is now  1(1,n +1).  By the second remark, for the data, 

given in Table I from the Sl-C, (where we have at most two failures) we 

see that in distribution 

* We shall use the word "fiducial" to apply to variates which are the 
construct of prior knowledge and hence represent, to a degree, per- 
sonal belief. 

-■  - -        -     --        -  -   1—i L- 
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(7.4) v'pizi+t^rt\h 

wliere    s    is  the num'jer  of  components with  two  failures during  testing 

r-s    is   the number  of  components with  one   failure .during testing 

m-r-s    is   the number of  components with no  failures  during testing 

and     X, ,  V  ,  Z       are  all  independent r(l,l)     i.e.   exponential with  unit 

mean,   variates. 

We now quote  a well  known  result  proved,   for example,  in   [13]  as  a 

Lemma i:    If    Z, Z,      are  independent exponential random variables with 

unit mean then for    b,   > 0,   all distinct, we have 

(7.5) ?£> Z   > u] -   EB 
1 j-1 :, 

k  we-u/b) 

(1) where    B^'   -  1    and  for    k ^ 2 

(7.5.1) 
J i»l    j    i 

for    jml.•••»k. 

Also these recursion relations hold 

B(k) = B(k"1)bi/(bj-bk)     j=l,...,k-l    and    B^k) 

Also we have 

k-1   ^^ 
i-2:Bk). 

j-1 * 

m r 
Lemma 2:    The  distribution  of   ]CbiZi  

+£b-Y4     is 

1 I    1 2 

E   EB.(m)B.(r){l  - e    j    -c*(i,j,t)}       for    t > 0, 
i-1 i-1 1      ^ 2 

where we set     c.  -  1/b       for    j-l,...,max(m,r) 

— 
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^(i.j.t) / exp{-c.(t-y) - c y}dy 
0      1        J 

-c, c 
1 te 

-c.t  -et 
e  1 -e J 

c -c 

lf i = j 

if i n 

The proof is accomplished by the convolution of two distributions each 

of the form given in lemma 1.  Consider the more general definition 

k mi 

j' i-1 i-1 
1 11 

where the    X        are  all independent exponential variates with unit mean. 

Let    V.     have distribution    F.     then 

"He 

i»l 

Defining     F =   1  -  F      with any  affixes,   and  taking    c,     as  given  in  lemma 2, 

Fk(u) •Xik  >   U-V dFk-l(v) 

0    Li-1 

dFk-i<v) 

But the quantity In braces in the equation above becomes 

u 

0 

Hence we  have  shown  the  following 

i   .  .. 
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Lemma  3:     The  survival  nrobability of     V       as  defined in equation   (7.6) 

is  given  in  terms  of the survival  probability of    V    1     as 

(7.7) /    N V*    „      *    F  ~uCi f ~ /    ^    -(u-v)i 
,(u)   »      2-   Bi e +  JiJ   Fk-l(v)e 

i-1    1       L 1  0 

Ldv 

Note that (7.7)   can be used to prove lemma 2 and used recursively, 

by computing machine, to find the distribution of V.  easily for small  k. 

8. Malfunction Modes 

A subsystem containing several components can fail by having different 

components fail but moreover each component itself may fail in different 

ways.  For example a gimbal may shatter or crack, or a hose coupling can 

either rupture or leak. These separate ways of failure are called failure 

modes.  Of course we talk about failure modes in an intuitive sense when 

in fact we mean the ways a component can malfunction and we do not mean to 

imply that a malfunction need necessarily cause a system failure.  We 

shall without deference to established convention use the nomenclature 

malfunction modes. 

We assume 

4° The time until malfunction in each mode has constant hazard rate 

for each component and all are independent. 

Suppose we separate the possible modes of malfunction for the j 

component into k classes which are functionally independent, then label 

the time until malfunction T   for the i  mode of the j  component. 

The time until malfunction of the component by any mode is 

T - min(T  ,...,T  ) 
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ird  rate  of    T.     is     *     =   52   > wl 
j j        i=l     lj 

and  the  hazard  rate  of    T       is     ^^   =   5J   >. .    with  the  obvious   interpre- 

tation of     A.,     as  the hazard  rate  of    T..,       Consequently we  can  substi- 

tute  either  component hazard   rates  or  hazard rates by  separate   failure 

modes  interchangeably within  the   fundamental series  system equation  and 

use  the  same  mathematical  treatment.     The   introduction  of  this   classifi- 

cation by  failure  mode may be  an extension of  the model  for  classification 

by  components   or  it  might be  a refinement. 

Without   any   real loss  of  clarity  to   the  fundamental  ideas   let  us  fix 

our  att  ntion  on  a component with   two  separate modes of malfunction with 

fixed hazard   rates     A      and     A   ,  say. 

Suppose   this  component  was  operated   for a time     t    and no  failure of 

either  type were  observed.     Hence by   the   first Bayesian method  the  posterior 

fiducial  distribution of the  component  hazard rate     A(=A +A„)     considering 
1 i. 

the component as a unit, is 

(8.1) 1 - e~at   for a > 0. 

Note  that   for  a mission of  length     t 

HA   <  a]  =  Pte"^   >  e"at] 

-at 
so  that     e is  a lower bound  on  the  missicn reliability  and  the  confidence 

level  is    P[A   <  a]. 

But  on  the  other hand by  considering  the posterior  fiducial   distribu- 

tion  of     A    +  A       using data    x.   =  x-  =   (t,0)     and  the   first  Bayesian method 

(and  the  principle of  insufficient   reason)  we have 

(8.2) 1 - e~at  - at  e~at:       for    a > 0 
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as  the posterior  fiducial distribution of  the hazard rate of     >     of the 

component.     But  notice  that   (8.2)   is  much  less  than  (8.1)   which was  the 

fiducial  distribution  from the  same  data  for the  same  component.     If by 

changing our  interpretation  of what  constitutes  a component, we  arrive at 

different   answers when using  the  same  data,then something must  be wrong. 

In  reliability  theory one man's  component  is  another man's  system and the 

fiducial distribution from  ehe  same  data should be  the  same  regardless of 

the  labeling  of   the components. 

To continue this point   further,   let  us suppose that we have  a series 

system with  separate malfunction modes with hazard rates    X    >.      each 

of which has  acquired the same operational experience namely    x    ■  (t,0) 

for    i=l,...,k    i.e.  no failures during operation for a length of time    t. 

Again by using the principle of  insufficient  reason and the non-probabilis- 

tic prior density we have by  the  first Bayesian method the  fiducial distri- 

bution  of     A   =  A  +. ..+A,      as 1 k 

k       -at,     J 
-   e (at)J 

which approaches  zero as    k    approaches  infinity regardless  of  the value 

of    ta > 0. 

This  effect   is why reliability managers  say "the  system is  «11  rieht, 

it   is  the statistics that   is killing  as,"  see  [3],     I maintain that a proper 

model  in these cases should yield exactly the same  fiducial confidence under 

any interpretation as to what  set of  components constitutes  a subsystem.     It 

is  to this  point  that we continue  to write. 

MfeM 
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9.  Alpha Factors 

We do not regard the  A  as independent fiducial random variables 

having a distribution which is to be constructed from prior knowledge 

but essentially as constants which are unknown.  If the  A.  were unknown 

positive real numbers then there would exist a constant of proportionality be- 

tween any two >. 's which would be fixed even though it was unknown. 

Thus we make the assumption 

5  There exists a constant of proportionality say  a   between any two 

A  and A . 

If we have m different modes of malfunction we define a      for 

i«l,...,m as the probability of malfunction in  the  i      mode given that a 

malfunction in the system has oacurred.    One sees that 

•i   <   t   IE    [T     <   t]] 
j = l      J 

m 
a.   -  P[  T, 

where we made the convention that  the summation of events  denotes the dis- 

loint   union.     It  follows  that 
Xi 

a.   =        i=l,...,m. 
i m 

j-iJ 

Thus   5    is equivalent     to     taking the prior distribution,  say    n(A),     to 

be  singular with all  mear.ure  concentrated along a  ray out   from the origin 

with  the  direction of  the  ray  determined by  the  constants  of  proportionality. 

Specifically we  assume 
a  A 

>  0       if  some    A    = -^ for     i  ^ j 
(9.1) dn(\1 Am)) ' aj 

' 0       otherwise . 

Mta 
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In  the  case    m =  2,     n(X   ,A   )     is  zero everywhere but   along the  ray 

X„  = — A       out  from the origin  in  the    (A   ,A   )     plane. 
Z       a^     i. 1     2 

Following the general  Bayes  procedure 

m n. 
f(x|x) <y n (t.A ) 1e~tiXi dncx. \  ). 

. 1  i i i     m 

m 
We wish to find the posterior density of ^g.X. .   We make the change of 

1 
variables     pJ   ■  ß.A,     and by   (3.2)   and    T.  ■  t,/ßJ     we  have 

i        i i i        i    i 

m 

where 

f(p|x)  -<E(^P,)ni e"TiPi dn*(p1,...,p  ) 
.•^     ii im 

Pl Pm 
n*(p

1'---'pm) ■ n(r r^ 
1 m 

Thus 

(9.2) dn*(p    p  ) 
1 m 

aieiP1 
> 0       if some    p,   -        ^ ■'       for    i iM 

0      otherwise. 

The  density we seek is proportional to 

(9.3) /.../    ^(Vi^1 e"TiPi dn*(pi **> 
(D: Ip^a, 

Consider the line in m-space 

a-ß-       a ß 

^l*  '  (P1'^P1 ^'^ 

By equation (9.2) all the mass of fl* is concentrated along the ray {.(p,) 

for p. > 0.  In effect the only quantity that has a distribution is p. 

and   we shall later see it makes no difference what this distribution is 

. , ja«*«*" 
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as long as it has support on  (0,°°).  This line intersects the plane 

/*P■   = a at a single point, namely p   such that 
1 

m aißi 

i+ s 
i-2 alßl Dl 

and solving for p.  we find Pi " Yi  where we define 

aißi 
(9.3.1) Yi " "V    i=l,...,m. 

Then the value of p.  at the point of intersection of the line i    with 

the plane Ep. «a is PJ " aYi  tor      i»l,...,m.  Since all the measure 

of  n* is concentrated along the line l^   the integration over the plane 

in (9.3) yields a single value at the singularity of the measure II*.  It 

follows that the density we seek is proportional to the value of the 

integrand at that point, namely 

m n, m 
11 (T   ay.)      exp{-   ^i 

i-1 i-1 

If we define 

m T,t-!ai m 

(9.4) =Evi = ?yT   and   k =Sni' 

which are a weighted mean of the  t ,  and 
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the  total number of  failures,   respectively, we  can write the posterior 
m 

fiducial density  of   ^0.     as 

(9.5) 

The distribution then  is 

G(Oa)ke-a0 

Gu 

for    a > 0. 

k -s 
(9.6) P(Zp 

i 0        k. 
ds i- E e    ?u) 

j-o       J- 

But we recognize this  as a Chi-square distribution and if we set 

u-^x^W), 

where we have defined  this notation in  (5.2), we have 

P[e-Ipi > e"11]  -  e. 

And this provides  a lower confidence bound of  level    e. 

We now make some observations about  this  result. 

1) Notice the confidence bounc5  is the same  regardless of how the ccmpo- 

nents are apportioned to subsystems within the system.    In particular if 

t    -  ...  = t      we obtain the same  fiducial  density of    ^ß.^.     as we 
im 11 

would by considering the system as a single unit. 

2) The addition of components to the system none of which have 

failed,  i.e.   data of the  type    (t   ,0),     do not necessarily cause 

the confidence  to go rapidly to zero,   (of  course the confidence does 

depend upon    t       through    0).      It is clear  from (9.5)   chat it  is 

not the number of  components but  the number of  failures which  force 

the confidence  to  zero. 

3) A knowledge of    a-factors is required to utilize this posterior 

density.    However this  does not mean that  the values of   A       need 

be known but merely 

■ ^a— J 
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that engineering experience be used to classify all the failure rates 

as multiples of a fixed one, say the lowest one. Usually that can be 

done at least in a conservative manner.  But we nssert that if one 

0 
believes   5     to be  true  then engineering knowledge whould be expended 

to obtain information about  the    Oj ' s    rather than elsewhere. 

4) It   is   apparent   from (9.4)   that   increasing the  length  of  testing 

for a component   for which    a       is  high will yield  the  greatest   im- 

provement   in  confidence, provided no failures are observed. 

5) In  the  special  case when    ß?(t)   =  ß       for all    t  >  0    we  can 

make an  intuitive  interpretation of    y.   as   the conditional probab- 

ility of failure of the i      component  given that a component has 

failed.* 

Label  the  events     F. ,     the  i       component   fails  and    M  ,     the   i       compo- 

nent  malfunctions.     Now by definition 

^   *  PIF.IMJ *i  • PIM^ZM  ] 

and  from the  calculus  of probabilities,   since     F, C M. i \-     i 

P(Fi) 
ai3i = P[EM   j 

and hence  from  (9.3.1)   follows    v.   -  PlFjEFj. 
'I i1     i 

'■" " ■ ■ <">*I*I   —  i        ^ ^^T' 

A^^rii 
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10.    Numerical Comparisons and Commentary 

In this section we  perform the actual computations for the 95% 

lower confidence  limits on the reliability of the Saturn  1-C using some 

data which was  available at a particular time during its preflight  pro- 

gram.    Since this will be an illustrative example we simplify the actual 

situation by taking    ß.   =  1    so that    ß v..       The data is given  In Table I, 

Method  (1)   - Asymptotic Maximum Likelihood 

Using interpretation II we can  take account only of data for which 

n    > 2    of which there  is none.    Using interpretation I, we  can  take ac- 

count of only  that  data  for which    n^ > 0.       These are 

(10.1) 

T1 - 32.5 
"I"2 

.2.    7.5 n2 - 2 

T3 - 31.8 n3-  1 

T,  - 17.7 
4 n4- 1 

T5 -    8.0 n5-  1 

T,  -    7.5 o n6"  1 

1.645    and by equation (4 M 

we   'E^+1.645^;niTi-
2 

,663 + 1.645/.0746 -  .898 

Hence based on the validity of the assumptions made, e    e ■   .406    is  the 

approximate 95% lower confidence bound on the true reliability of the systen. 
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Method (2) - Asymptotic Likelihood Ratio 

We can now make either interpretation however, as in Method 

1, we can utilize only tue data with n  > 0  given in equation 

(10.1) above.  Applying the Newton procedure as mentioned we obtain for 

this data the solution of equation (5.2), for e = .90,  as x = 3.84. 

From equation (5.3) we find 

6  n. 

1  Ti-yt 

-123 
Thus based on the validity of the assumptions for this case we find e  *  = .292 

is an approximate 95% lower confidence limit for the system reliability. 

It would seem that one could have no confidence, in the intuitive 

sense, in the confidence (in the precise sense) level which is obtained 

by either of these two methods.  This is because no account is taken of 

the larger part of the data namely, those components for which no failure 

was observed during testing.  Thus whether there were sixty or sixty thou- 

sand components in the system which experienced no failures during the 

test program the confidence limits would be the same. 

Second, the conditions are just not known which are necessary to enable 

one to assume that the distribution of the statistics in question, for the finite 

sample sizes which are obtained, can be adequately approximated by their 

asymptotic distribution. 

Method (3) - Bayesian Method with Uniform Prior 

Using the computational methods set forth in section 7, a machine pro- 

gram was written for the IBM-360, using double precision for the computation 

■^ 
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(k) 
of the B.  , which tabulates the distribution of the random variable V 

defined in (7.4).  This distribution is graphed in figure 1 from the 

machine run using the data presented in Table 1. 

m 
The fiducial random variable V "^ß.A.  has distribution F 

1 

which we calculate in the region of interest.  Since 

P[exp{-ZßiXi} i e ] - F(v) 

we find that if v = 12.8,  F(v) " .95 and then based on the assumptions 

necessary for this method the 95% lower Bayesian confidence limit for the 

— 12 8 
system reliability is e  ' .  This result needs no commenc.  Every per- 

son responsible for the reliability program had at least 95% confidence, 

In the intuitive sense, that the true reliability exceeded t'is number be- 

fore any statistical analysis was initiated.' Making confidence statements, 

such as the above, to managers of reliability programs tends to put statistics 

in a bad light.  (Recall the statements just preceding section 7.) 

A word about the ci mputational difficulties of this method.  It is 

clear from Table 1 that the differences of the x.  are small compared with 

(k) 
their magnitude.  A g] nice at the formula for the B    in equation (7.5.1) 

shows that in absolute value they can become very large.  (In fact for such 

data e.a  we havt for 70 components, values as high as lO2^ are not impossible). 

(k) 
Since all B^   summeJ over j must add to unity, some must be positive 

and some negative. Hence at v = 0, by definition we should have F(v) ■ 0. 
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However because of the nature of the machine decimal arithmetic, the sum- 

mands will be rounded off and the machine value will not bo unity.  For 

example referring to figure 1, had we continued to plot the values compu- 

-3 
ted at  v = 3.2,  the machine computation was  F(3.2) = .699 x 10   but 

at v = 2.4,  F(2.4) • -.123 x 10   with wider fluctuations for smaller 

values of v.  Fortunately we are interested in those values of the argu- 

ment for which F(v)     is  near one and the values of v  necessarily become 

large enough to eliminate the errors due to this circumstance. 

Method (4) - Alpha Factor Method 

The computation necessary for this method is trivial: we need com- 

pute only the two quantities k. and 0 and then from a table of the 

Chi-square distribution calculate u = x (2k+2)/20 and e   becomes 

the lower confidence limit at level e. 

Example 1: 

Let us suppose that v. = — for i=l,...,m.  We recall that 
l  m 

under certain conditions this would mean the event any one par- 

ticular component had failed, knowing that exactly one component 

was in a failed state, was equally likely with the event any other 

component had failed. 

From Table I we find k = 8 and compute from (9.4),  D = ET /m = 25.5 

and hence for £ ■ .95,  using the Chi-square value for 16 degreed of 

freedom, we have u ■ (28.87)/51 = .565.  Thus e  = .57  is a lower 

95% confidence limit for the systems reliability, based on the validity 
< 

of the assumptions. 
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(Eti)/(i:61) = 16.27.  For 

Example 2: 

Let us suppose a =— for  i=l,...,m and from Table I, 

we again use (9.4) to compute C 

k = 8,  c = .95 we find u - (28.87)7(32.54) = .887 and e~U - .412 

is the lower 95% confidence limit for the reliability of the system. 

Example 3: 

Assume the failure rate X  is proportional to the complexity 

of the component.  Thus o^  is proportional to the (fictitious) 

weights given in the last column in Table I, to wit, we take w = Ka . 

We then use (9.4) to compute 0 « (It  aj / (U <x )   - 32.11.   For 

k = 8, c = .95. u - (28.87)/(64.22) - .45 and e"u - .64 is the 

lower 95% confidence limit for the reliability of the system. 

One notices that for ease of computation method (4) is to be pre- 

ferred since it does not require more than a desk calculator. Moreover 

the answers seem to be uniformly higher than those obtained by the other 

methods considered.  Lastly, the three examples show there is a robust- 

ness concerning the value of v  that are obtained. This helps to allay 

the fears of limitation of this method, namely, the necessity of exact 

determination of the a.. Nonetheless, knowledge of the a  are what 

is really needed to determine the confidence limit, thus it would seem 

that engineering and/or statistical effort should be expended in an at- 

tempt to determine them (or approximate bounds) rather than being ex- 

pended in the determination of the parameters of prior distribution of 

the components failure rates. 
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Concerning the alpha factor method the author's sentiments are 

best described by a remark of L.J. Savage.  "If Bayesian techniques 

are applied to situations in which they give ridiculous answers I 

want no part of their, however if they can be utilized to give wise 

answers in situations which cannot be treated by other methods then 

I favor their use." 

* 
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TABLE  1 

Summary of  test   data  for Saturn  I-C 

t . 
i 

=  test   time   in mission  lengths, n.   = number of   failures  observed 
i 

..   =  component multiplicity, Ti= V^i 
weights  of  relative  complexity 

t. 
i 

n.     ß. 
i       i 

t. w. 

318.5 0 16 19.9 5 48.7 0 48.7 100 
138.8 0 16 8.7 5 33.9 0 33.9 100 
69.4 0 16 4.3 5 30.2 0 30.2 100 

159.2 0 4 39.8 100 45.7 0 45.7 100 
187.9 0 8 23.5 100 36.5 0 36.5 100 
144.9 Ü 4 36.2 100 50.6 0 2 28.3 100 
69.7 0 4 17.4 10 45.2 0 2 22.6 100 
148.7 0 4 37.2 100 22.6 0 2 11.3 10 
146.8 0 4 36.7 100 37.7 0 2 18.8 10 
15.1 2 0 

4- 7.5 5 49.9 0 1 49.9 100 
7.5 0 12 .63 1 34.3 0 1 34.3 100 

120.7 0 30.2 100 37.7 0 1 37.7 100 
113.1 0 37.7 100 11.3 0 1 11.3 100 
98.1 0 98.1 100 15.1 0 2 7.5 1 
92.8 0 92.8 100 226.1 0 30 7.5 1 
9.0 0 9.0 5 30.3 0 10 3.0 10 

97.9 0 13 7.6 5 32.0 0 2 16 10 
87.3 0 21.8 5 179.0 0 8 22.4 25 
26.4 0 26.4 25 32.5 2 1 32.5 5 
83.7 0 20.9 25 75.4 0 10 7.5 5 
14.1 0 14.1 5 191.9 0 8 24 5 
41.5 0 41.5 5 34.6 0 2 17.3 25 
7.5 Ü 3.8 5 17.7 1 17.7 25 

15.1 0 5.0 5 73.6 0 18.4 25 
11.3 0 5.7 5 88.6 0 22.2 25 
29.3 0 5.9 5 8.0 1 8.0 5 
82.9 0 82.9 1 1.6 0 .5 1 
7.5 1 7.5 1 2.4 0 .4 1 

20.8 0 10.4 1 18.9 0 18.9 25 
52.8 0 52.8 1 11.1 0 11.1 25 
51.8 1 51.8 100 14.9 0 14.9 25 
65.3 0 65.3 100 13 0 13 25 
66.2 0 66.2 100 7.3 0 7.3 5 
65.2 0 32.6 100 
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Figure 1 

Graph of the distribution  F of the fiducial variable 

V = 2*$*^*     i" the region near unity 

16.0   19.2 

If  v  is the abscissa value, the value  F(v)  of the 

ordinate is the confidence the system reliability exceeds e 

- 
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