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A Study of Nordstrom-Robinson Optimum Code*

Franco P. Preparata

Sunmmary

The optimum quadratic (15,8) code with minitaum distance d-5S.re~ently

discovered and studied by Nordstrom and Robinson, can be ratheir naturally

described in terms of polynomials over GF(2). It is shown that the Nordstrom-

Robinson code consists of a linear code and of a certain subset of its cosets,

J• which account for its non-linear nature. This representation leads to a

non-heuristic proof that weight and distance structures can be treated

L. analogously and that the minimum distance and weight are 5. The analysis of

this mechanism may be an essential step in the discovery of an entire class

of non-linear double error correcting codes. The given analysis also suggests

a systematic decoding procedure. This is based on permutations which map any

correctable error pattern (double or single errors) into digit positions for

which the computation of a syndrome allows the correction. The correct code

word can then be recovered through the inverse permutation.SI!.
1. Introduction

An interesting non-group (15,8) binary code of minimum distance

d - 5 has been recently Jiscovered by Nordstrom and Robinson [1,21. As noted

in these references, two non-group codes reported in the past years, i.e., the

*This work was supported in part by the Joint Services Electronics
Program under Contract DAAB 07-67-C-0199 and in part by NSF Grant GK 2339.
Part of the results reported here were presented at the Second Princeton

.I o Conference on Information Sciences and Systems.
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codes presented by Nadler [3] and Green [4], have lost their puzzling identity

to become subcodes (in the sense of shortened codes) of the Nordstrom-Robin-

son (NR hereafter) code. The latter is particularly attractive because it is

more efficient than the corresponding linear code with the same length and

minimum distance, i.e., the BCH (15,7) code.

The purpose of this paper is mainly to present a new description of

the NR code in terms of polynomials over GF(2), which may be considered as an

additional step in the elucidation of the deep structure of Zb1a code. Since

to date the NR code is an isolated example, the validity of this investigation

may be questioned. The reported analysis, however, reveals a structure which

is suggestive of the membership of the NR code in a wider class of non-linear

codes. The discovery of this class is certainly a fascinating obJective and

it is felt that the presented description may guide further research in this

direction.

As another interesting feature, the polynomial representation

suggests almost naturally a systematic decoding procedure. This procedure

is based on a subgroup of the group of permutations for which the NR code

is an invariant and on the processing of a syndrome-like function of the

received vector.

2. The Polynomial Description

All polynomials considered in the sequel belong to the algebra A of

polynomials over GF(2) modulo (x 7+1)[5]. By (m(x)) we denote the ideal of

polynomials m(x), mod (x7+1), generated by g(x) x 3+x2 +1, i.e., the (7,4)
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r ,hamming code.

Consider now a generic polynomial i(x)eA, i.e., a polynomial of

degree < 7. Clearly i(x) belongs either to (m(x)) or to one of its cosets.

If we take as coset leaders of fm(x)] the minimum weight polynomials q(x) in

the coset, i(x) admits of a unique decomposition

I--+ iI i(x) - m(x)+q(x) (1)

where m(x)e¢m(x)) and q(x) is a coset leader of [m(x)]. Since a Hamming

code is a perfect code, q(x) is of the form axa, where a - 0,1 and a - 0,1,

... ,6; moreover, q(x) is readily found by multiplying i(x) by the polynomial

f(x) x 6+x +x3 +1, which belongs to the dual code of tm(x)]. Due to the

fact that f(x) is a maximum length sequence, we have

ixfx -10 -. a-0

Si(x)f(x) -{JF(x) i a-:, o-J

* Once q(x) has been found, m(x) - i(x)+q(x) and decomposition (1) is obtained.

Given two polynomials a(x) and b(x) in the algebra A and a binary

constant i 7 , we form 15-component vectors over GF(2) of the form

[ -a(x), i 7 , b(x)] (2)

With this notation we mean that the 7 rightmoat (leftmost) components of w

are given by the ordered sequence of the coefficients of b(x) (of a(x)).

Let us now construct vectors of the form

W - [i(x), i 7, m(x) + i(x)f(x) + t-u(x)3 (3)

-x7  6 5 4 3 2
where u(x) N +l)/(x+l) x +x +x +x +x2+x1l and b is the parity of the

-I j

fu -
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Hamming weight of the 8-component vector [m(x), i 7]. We claim that all

vectors given by (3), for any arbitrary choice of i(x) and i 7 , constitute

the NR code (apart from the minor difference that in [E] and [23 i(x) is

replaced by x6 i(x), i.e., a one-position cyclic shift of i(x)).

In .act let
6

m(x)+i(x)f(x)+bu(x) -r(x) E rjx
i=0

6
i(x) E i x

J=0

6
m(x)W E mjxj

i-a
To obtain m(x) we must first know q(x). To this end let

i(x).f(x) - Epjxj

If q(x) - 0, then p1 M 0 for every J. If q(x) -xt, then pp• .plP 2 - 1

while pkPk.-lPk.2 - 0 for k 0 a (all the subscripts are intended modulo 7).

It follows that
6 6

m(x) - i(x)+q(x) - i(x)+ E jp" J-2P1. X J )

i.e.,

mj - i 1+pjpj1 .lPjp 2  (4)

From the definition of r(x) we obtain

6 •r 6 6 6 6
: Em xJ+ E p xJ ':EV(.+i 7 )xj

0 1.0 J JJ-0 - j-0 k-0
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r [or, equivalently,

Srj =m +p.4 j . n+ EV (5)
""1 J+PE.1k=O i"

Recalling now that +t . +++

j j J+l J+2 J+4

substituting (4) into (5) we obtain, after considerable and unrewarding

manipulations,

ji 7 jii+ J+l 'J+2 'J+4 (5')

+(i J2+iJ+3) (ij+4+iJ+6) + j6

Swhich, except for the slight difference mentionud earlier, coincides with

the expression obtained by Robinson.

We now rewrite relation (3) as

w = Em(:t)+q(u), i 7, m(x)+q(x)f(x)+bu(x))

I Clearly w can be expressed as
; .

w v + (6)

-I with

C Em(x), i7, m(x)+bu(x)] (7)

M Cq(x), 0, q(x)f(x)j (8)

Inspection of (7) shows that all vectors v, obtained for an arbitrary choice

of m(x)etm(x)), form a linear code: specifically, it is easy to racognize

its equivalence to the (15,5) triple-error correcting BCH code. For brevity

I we shall refer to this code as to the "kernel." It is al3o clear that,

ii
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since q(x) 0 0 is a coset leader of (m(x)], distinct vectors u - [q(x),Oq(x)

f(x)] identify cosets of the kernel. Recalling that q(x) - axt(a-0,l)(C't0,l,

... ,6) we have the fol.lowing interesting interpretation of the NR code: the

NR code consists of the code words of the kernel and of its seven cosets

identified by distinct u's for which q(x) # 0.

3. Weight and Distance Structure

By W[a(x)] we denote the number of nonzero coefficients of a(x).

The Hamming di.stance between two polynomials a(x) and b(x), denoted by

d[a(x), b(x)] is clearly

d[a(x), b(x)] - W[a(x)+b(x)]

We now give two preparatory lemmas.

Lemda 1. - The polynomial q(x)+f(x)q(x) belongs to (M(x)] and

W[q(x)+f(x)q(x)] 0 q(x) 0
1 3 + q(x) # 0

Proof: We notice that the polynomial f(x) enjoys the property

f 2(x) f(x)

From this wv immediately derive

f(x)(q(x)+f(x)q(x)) - f(x)q(x)+f 2(x)q(x) - 0

i.e., q(x)+f(x)q(x)efm(x)], being orthogonal to f(x). Moreover, if q(x) = 0,

then q(x)+f(x)q(x) - 0 and obviously W[q(x)+f(x)q(x)] - 0. If q(x) # 0, then

W[q(x)] - 1. From W[f(x)q(x)] 4 it follows that W[q(x)+q(x)f(x)] - 3.

Q.E.D.

_____________________________________________________________
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Leina2Z. -The sum of two vectors uand u2 of the k~rm (8) admits of

the representation

u +u v'_q. (9)
1-2

with ii' C m'(x),O,m'(x)+bu(x)] , M'(x)cfm(x)] (10)

_q. [ q(x),0,q(x)] (11)

p - O 0 m ( ) m!"'x hfm(x)] (12)

Moreover Wcm'(x)"j - 03. If q(x) #0,

W~m!'x)] 3(13a)

W~m'(,x)+q(x)] - 4 (13b)

! : Lot 1 ql [ql(x),o,f(x)ql(x)] and 22-C2()Ofxq()] Te

their sum is

u + -Iq(x)+q (x),O,f(x)tql(x)+q~xlI (14)

Decomposition (1) can be applied to ql(x)+q2() i.e.,

q,(x)+q()- m'(x"#-q(x)

From this we havi

M'(x) -ql(x)+q 2(x)+q(x) (5

which show. that Wrm'(x)) 3 if and only if qj(x) # q..(x), ql(x) #0,

c12(x) 0 0, and is 0 otherwiae. Relation (14) can now be rewritten as

Fm' (x)+q(x) ,0, (ml (x)+bu(x)) +q(x)+q(x)+f(x)q(x)+m' (x)+bu(x)]

-[ml (x) ,O,m' (x)+bu(x){0 ,0,q(x)+f(x)q(x)+m' (x)+bu(x)]

1 +[q(x) ,O,q(x)~



where b is chosen according to the rule

0 if WEm'(x)] - 0

1 if W~m'(x)] - 3

To prove (9), all we need to show is that

m"(x) M q(x)+f(x)q(ic)+m'(x)+bu(xO (16)

belongs to tm(x)). But this follows limmediately, since the three poly-

nomials m'(x), u(x), q(x) + f(x)a(x) belong to fm(x)).

To prove (13a,bl assume first that m'(x) - 0. Then (16) becomes

m"(x) - q(x)+f(x)q(x) and (13a) follows from Prop. 1. Furthermore

W[m"(x)+q(x)] = WEf(x)q(x)] - 4 and (13b) is proved. Assume now that
k

m'(x) # 0. Denoting q(x) by x , relation (16) becomes (b-l)

m" (x) x k (+f(x))+m'(x)+u(x).

We notice that the coefficient of xk is 0 in x (l+f(x)) and is 1 both in

u(x) and in m'(x) (see relation (15)). This has the following consequences:

I) m'(x) # x k(l+f(x)). From W[m'(x)] - 3, W[x k(l+f(x))] - 3 we then obtain

SW[m'(x)+x k(l+f(x))] - 4 and W[m"(x)] 3; 1i) the coefficient of xk in m'(x)

is 0. Hence

W[m"(x)+q(x)] - W~m!(x)]+W[q(x)] - 4.

Q.E.D.

We can now prove the following theorem.

Theorem 1. - Given any two distinct code words wi and w2 of the NR

code, their Hamming distance is never less than 5.

iN
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Proof: Let wI -Vl+_uI andw -v+u Then, using (9), we obtain

-w -. 1 -1_-1 -ýX2)+(u-2 2) - usl-i2(, )+ wo+ bi

orE

where we have set v4 V+_v2 +'. Clearly v is an arbitrary member of the
kernel and p, q are defined by relations (11),(12),(13a),(13b). If q - [ooo),

clearly u1 - and (w1-I+w2 ) belongs to the kernel: since the minimum weight

of the code words of the kernel is 7, the assertion is proved.

Assume now that q [0,0,0]. Let W denote the weight of •1+w_2)

If V- [0,0,0] then

I W - weight[q(x),O,q(x)+m"(x))

-W[q(x)]+W[q(x)+m"(x)] - 1+4 - 5

which follows from (lib) and W[q(x)] - 1. If v # [0,0,0] consider the sum

S = + [mKx), i 7 , m(x)+bu(x)+m(x)]

Clearly _Wl'•2 L - +2 q and

I W - iT+d[m(x),q(x)]+d[m(x)+m"(x)+bu(x),q(x)] (18)17

Since q(x)i (m(x)], q(x) is distinct from both m(x) and [m(x)+m"(x)+bu(x)].

It follows that the triangle inequality applies strictly, i.e.,

d[m(x) ,q@•)]+d[m(x)+m" (x)+bu(x) ,q(x)]>

> d[m(x) ,m(x)+m" (x)+bu(x)]uW[m" (x)+bu(x)]

Relation (18) becomes therefore

W > i 7+W[m"(x)+bu(x)) (18a)

I fj
-I
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Depending upon the value of b we distinguish two cases:

A) b-i. From (13a), Wrm"(x)]-3, we have W[m"(x)+u(x)]=4 and (18a) yields

W >4 (i.e. W >5).

B) b=0. If i 7 = 1, relation (18a) yields W > l+WEm"(x)] - 4 and we still

have W > 5. We now remark that b-0, 17 0, m(x)0O imply W[m(x)] a 4.

Then by using equations (I0• (11) and (12) we have

W - W[m(x)+q(x)]+WEm(x)+m"'(x)+q(x)]

Now W~m(x)+q(x))•W1m(x)]-W~q(x)]-4-13. Similarly WEm(x)+m" (x)+

q(x))Ž W[m(x)+m"(x)]-W~q(x)]. But WEM(x)]=4 and WEm"(x)]=3 imply that

WEm(x)+m"(x)] be odd, i.e., Wrm(x)+m"(x)] > 3. It then follows that

W > 3+2 - 5.
Q.E.D.

Finally, we like to investigate the weight structure of the NR

code. The task is extremely simplified by the following lemma which results

immediately from (6) and (8).

Lemma 3. - Any code word w of the NR code admits of the following

decomposition

w = v+_+P' (19)

where v is a member of the kernel, q is given by (11), and 2'-[O,Oq(x)+f(x)

q(x)].

We now remark that the vector of (19) is analogous to the vector

of (12). In fact m*(x) aq(x)+f(x)q(x) belongs to (m(x)] and if q(x) 0 0,

lemma 1 yields: W[m*(x)] = 3 and W[q(x)+m*(x)] = 4. We see therefore that

j _______________
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by an argument exactly parallel to the one used to prove theorem 1 we can

demonstrate the following assertion:

L Theorem 2. - The NR code has minimum weight 5.

This concludes the formal justification of the aeute:heuristic

observation of Nordstrom and Robinson.

4. A Decoding Procedure

': The polynomial description given in Section 2 also leads to a

decoding algorithm of the NR code, which differs in an essential step from

the one described in [2], i.e., the permutation for the convenient positioning

of the error pattern to be corrected.

We represent the error pattern as a vector (whose total weight

does not exceed 2 for correctability)

e [e 1 (x),e 7 ,e 2 (x)l

with obvious significance of the symbols. Further, we let R[i(x),i 7 ] -r(x),

namely, R denotes the operation of computing the redundant digits rj(J=0,01

9...,6) as prescribed by (5'). We now compute the polynomial

T(x) = R[i(x)+e (x),i 7+e 7 ]+r(x)+e2 (x) (20)

which coincides with the pseudo-syndrome mentioned in [2].

Let us now assume that el(x) 0 0. In this hypothesis we obtain

T(x) - R[i(x),i 7 +e7 ]+r(x)+e2 (x)

- m(x)+i(x)f(x)+(b+e7 )u(x)+m(x)+i(x) f(x)+bu(x)-e 2 (x)

= e7u(x)+e 2 (x)

I7
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With reference to the number W of nonzero coefficients of ¶(x)(the weight of

T(x)) and recalling that the weight of Ce7 ,e 2 (x)J cannot exceed 2, we dis-

tinguish the fol.lowing cases:

1. W-0. This implies e 7 =0, e 2 (x)-O, i.e., the received vector is

error- free.

2. W-1,2. This implies e 7 =O, e 2 (x)-T(x).

3. W-6,7. This implies e 7 =l, e 2 (x)-.(x)+u(x).

We stress that if e (x) - 0, W cannot take any other value than

0,1,2,6,7. The converse is also true. For, assume that W - (0,1,2,6,7).

According to the previous discussion we can form el,, e•(x) (the prime denotes

that these are estimated error patterns, not the actual ones). Then we add

[0,e',e,'(x)J to the received vector and obtain
7 2

W' - [i(x)+eW(x), i7+e7+e, r(x)+e2 (x)+e (x).I]

From the definition of r(x) we compute

T(X) = R[i(x)+eW(x), i 7+e 7+elJ+r(x)+e2(x)+e(x) - 0

i.e., w' is a code word. Since the distance of w from the received vector

cannot exceed 2, from the distance property of the code (d-5) we conclude

that w' is the correct output. Decoding is therefore easily accomplished

whenever i(x) - (0,1,2,6,7] or, equivalently, whenever the i(x)-positions

are error-free.

Our decoding problem is not yet solved when el(x) 0 0. Should

we find, however, an artifice which reduces any error pattern to the el(x) W 0

condition, by "mapping" the error pattern into the [i ,r(x)]-positions, a

I7
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[ solution would be obtained. This artifice is the group [P) of permutations

of 15 elements with respect to which the NR code is an invariant, that is, a

Kpermutation P belongs to [P) ii and only If, for a code word w 1, T *- - 22 is-g also a code word. To gain some insight into the structure of this group, we

recall (as noted in [2]) that the NR code is a subset of an (15,11) Hamming

code. In fact

ff(x)+u(x)3 [f(x)i(x)+i 7 u(x)+r(x)) - 0

since f(x)u(x) - 0, f(x)m(x) -0 , u2(x) - u(x). If this expression is trans-

lated into matrix form, we obtain a 7X15 matrix A premultiplying the column

T Ivector w. Only four rows of the matrix A are linearly independent, i.e.,

a: 110 0lllll0011 010

0 01110111100010
1 0011101011000 0J

which shows that each word w of the WA code is necessarily in the null space

of H, the parity check matrix of the (15,11) Hamming code.

It follows that (P) is contained in the group fQ) for which the

Hamming (15,11) code is an invariant. This group (Q) can be easily found.

!I Given any permutation Q, the relation

T TQH H B (21)

tells us that TB must be column equivalent to HT, i.e., B must be a non-

singular 4X4 matrix. The converse is also true. In fact, given any non-

T T
singular B, since all the rows of H are distinct, no two rows of H B are

T T
equal: hence there exists a permutation Q which maps H into H B. The group

F: 1If A is a matrix, AT is its transpose.
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[Q) is therefore isomorphic to the group of 4x4 nonsingular matrices: the

order of this group is clearly 15xl4Xl2x8. It can also be shown that the

kernel, as defined in section 2, is invariant with respect to (Q). If we

now recall relations (6,), (7), and (8) we have that for any Pe[P], since

Pc[Q) also, Pv belongs to the kernel. We must therefore insure that for

every u of the form (8)

Pu - v+u' (22)

where v belongs to the kernel and u' is of the form (8). Relations (21)

and (22) completely define the members of (p]. 2

Two non trivial members of (P) are given below. They are

P1 M (4, 11, 10, 13, 6, 9, 7, 2, 5, 15, 8, 12, 1, 14, 3)

P2 = (1, 7, 10, 14, 12, 5, 11, 8, 9, 15, 2, 6, 4, 13, 3)

and generate a group of order 12, as can be readily checked. It is par-

ticularly instructive to consider the "transition diagram" of a permutation,

i.e., the directed graph associated with a permutation matrix P. In figure

1, solid lines describe the transition diagram of PI, dotted lines that of

P2" Double-circled nodes identify the [iTr(x)]-positions. These are

referred to as "final".

2
After this paper was written, Dr. J. P. Robinson, of the Univer-

sity of Iowa, conducted a computer search and found that (P) contains
15X14X12 members. This indicates that once three columns of B are assigned,
the fourth is completely determined (private cominunication, Jan. '68).

I.

I

2



kf 15

A-7I[

Fig. 1. The combined transition diagrams of P and P (four subdiagrams).
1 2

Since each of the four subdiagrams contains final nodes, there is a sequence

of the permutations P1 and P2 (a P-sequence) which maps any node into a final

node. We also claim that any pair of nodes can be mapped into a pair of

final nodes. Each of the subdiagrams II, III, IV contains a self-looping

final node. Assume that a node of the given pair belongs, say, to II (a

similar argument holds for subdiagrams III or IV): then there exists a

P-sequence which maps it into node 14. At this point, if the other node has

been transformed into 7, the mapping is accomplished by P2, otherwise by an

, appropriate sequence of P Finally, when the pair is entirely contained
f
* in subdiagram I, the assertion is immediately verified.

ii

I

El
I
I
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The previous argument shows that the group generated by P1 and P2

is the device sought. It is now possible to construct a P-sequence S12Sil...

SI(Sj -(PIP 2 )) which successively generates the 12 members of this group.

With the help of the multiplication table, which is omitted for brevity, one

such P-sequence is found to be

where the rightmost permutation is performed first. The identity permutation

is produced at the completion of this P-sequence.

The preceding discussion is recapitulated by the following

decoding algo:ithm:

l.-Set J-0.

2.-Compute T(x). If W - (0,1,2,6,7) obtain the estimated error pattern

and add it to the permuted received vector; else proceed.

3.-If J-12, decoding is complete. If J#12 replace j with j+l and per-

form S on the permuted received vector. Return to Step 2.

This algoritim, although very simple when the number of statements

is considered, is susceptible of several further simplifications. Typically

once W - (0,1,2,6,7) has been found, and the correction has been performed,

there is no need for proceeding through the sequence S of permutations. All

that is needed is the recovery of the original vector. Specifically if P

is the permutation currently applied to the received vector, we must subject

the corrected vector to P-. Inspection of the multiplication table of the

group reveals that P-1 consists of a P-sequence of length at most 4 (homing
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S sequence). Hence, once the correction is performed the appropriate homing

sequence of permutations could be executed and decoding would be accomplished.
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that the minimum distance and wdight ate 5. The analysis of this mechanism may
be an essential step in the discovery Of an entire class of non-linear double
error correcting codes. The given analysis also suggests a systematic decoding
procedure. This is based on permutations which map any correctable error pattern
(double or single errors) into digit positions for which the computation of a
syndrome allows the correction. The correct code word can then be recovered
through the inverse permutation.
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