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A Study of Nordstrom-Robinson Optimum Code*

Franco P, Preparata

Summary

The optimum quadratic (15,8) code with minimum distance d=5,.recently
discovered and studied by Nordstrom and Robinson, can be rather naturally
described in terms of polynomials over GF(2), It is shown that the Nordstrom-
Robinson code consists of a linear code and of a certain subset of its cosets,
which account for its non-linear nature, This representation leads to a
non-heuristic proof that weight and distance structures can be treated
analogously and that the minimum distance and weight are 5. The analysis of
this mechanism may be an essential step in the discovery of an entire class
of non-linear double error correcting codes. The given analysis also suggests
a systematic decoding procedure, This is based on permutations which map any
correctable error pattern (double or single errors) into digit positions for
which the computation of a syndrome allows the correction, The correct code

word can then be recovered through the inverse permutation.

1. Introduction
An interesting non-group (15,8) binary code of minimum disteonce
d = 5 has been recently discovered by Nordstrom and Robinson [1,2], As noted

in these references, two non-group codes reported in the past years, i.,e,, the

*This work was supported in part by the Joint Services Electronics
Program under Contract DAAB 07-67-C-0199 and in part by NSF Grant GK 2339,
Part of the results reported here were presented at the Second Princeton
Conference on Information Sciences and Systems,
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codes presented by Nadler [3] and Green [4], have lost their puzzling identity
to become subcodes (in the sense of shortened codes) of the Nordstrom-Robin-
son (NR hereafter) code, The latter is particularly attractive because it is
more efficient than the corresponding linear code with the same length and
minimum distance, i.e., the BCH (15,7) code,

The purpose of this paper is mainly to present a new description of
the NR code in terms of polynomials over GF(2), which may be considered as an
additional step in the elucidation of the deep structure of thia code, Since
to date the NR code is an isolated example, the validity of this invest.gation
may be questioned, The reported analysis, however, reveals a structure which
is suggestive of the membership of the NR code in a wider class of non-linsar
codes, The discovery of this class is certainly a fascinating objective and
it is felt that the presented description may guide further research in this
direction,

As another interesting feature, the polynomial representation
suggests almost naturally a systematic decoding procedure. This procedure
is based on a subgroup of the group of permutations for which the NR code
is an invariant and on the processing of a syndrome-1fke function of the
received vector,

2, The Poiynomial Description

All polynomials considered in the sequel belong to the algebra A of

polynomials over GF(2) modulo (x7+1)[5]. By {m(x)} we denote the ideal of

polynomials m(x), mod (xi+1), generated by g(x) = x3+xz+1, i.e., the (7,4)

i
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hamming code.

Consider now a generic polynomial i(x)eA, i.e., a polynomial of
degree < 7. Clearly i(x) belongs either to {m(x)} or to one of its cosets.
If we take as coset leaders of {m(x)} the minimum weight polynomials q(x) in
the coset, 1(x) admits of a unique decomposition

1(x) = m(x)+q(x) (1)
where m(x)e{m(x)} and q(x) is a coset leader of {m(x)}. Since a Hamming
code is a perfect code, q(x) is of the form axa, where a = 0,1 and o = 0,1,
++s,6; moreover, q(x) is readily found by multiplying i(x) by the polynomial
£{x) = x6+x5+x;+1, which belongs to the dual code of {m(x)}. Due to the

fact that f(x) is a maximum length sequence, we have

0 - a=(Q
1(x)f(x) = j
x'F(x) = a=1, o=}
Once q(x) has been found, m(x) = i(x)+q(x) and decomposition (1) is obtained.
Given two polynomials a(x) and b(x) in the algebra A and a binary

congtant 17, we form 15-component vectors over GF(2) of the form

¥ = [a(x), 1,, b(x)] (2)
With this notation we mean that the 7 rightmost (leftmost) components of w
are given by the ordered sequence of the coefficients of b(x) (of a(x)).
Let us now construct vectors of the form
w = [i(x), i m(x) + 1(x)£(x) + tu(x)] (3)

vhere u(x) = (x7+1)/(x+1) = x6+x5+x4+x3+x2+x+1 and b is the parity of the
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Hamming weight of the 8-component vector [m(x), 17]. We claim that all
vectors given by (3), for any arbitrary choice of i(x) and 17, constitute
the NR code (apart from the minor difference that in [1] and [2] i(x) is

replaced by x6i(x), i.e., a one-position cyclic shift of 1(x)).

In iact let
6
m(x)+L (x) £(x)+bu(x) = r(x) = T rjxj
y=0
6
i(x) = T ijxj
3=0
6

m(x) = Z m.jxj
j=0

To obtain m(x) we must first know q(x). To this end let
1(x).£(x) = ijxj
= = -a =
If q(x) = 0, then pj 0 for every j. If q(x) = x~, then PoPo-1Pe-2 1

while PPr-1Pk-2 = 0 for k # o (all the subscripts are intended modulo 7).

It follows that
6 6
- - . 3
m(x) = i(x)+q(x) i(x)+j§onPj-1pJ-2x jfo(ij'ﬂ’jpj-ll’j-z)x

ioeog
By " HPPiPseaPy-2 “

From the definition of r(x) we obtain
6 j 6 j 6 j 6 6

z rjx = 3 mjx + 3 pjx + (L mk-+17)xj
§=0 =0 =0 =0 k=0




or, equivalently,
6

‘Dj = ij+ij+1+ij+2+ij+4
substituting (4) into (5) we obtain, after considerable and unrewarding
manipulations,

rj = 17+1j*1j+1+ij+2+1j+4 (5')

F g ) Ut g Ayt ) Gy tyng)

Flgatgy) Gyt

which, except for the slight difference mentioncd earlier, coincides with
‘ the expression obtained by Robinson.
We now rewrite relation (3) as

¥ = [m(x)*+q(z), 1., m(x)+q(x) £ (x)+bu(x)]

| Clearly w can be expressed as

¥=yvtuy (6)
1 with
, ¥ = [m(x), 1,, w(x)+bu(x)] ¢))
| u = [q(x), 0, q(x)£(x)] (8)

Inspection of (7) shows that all vectors v, obtained for an arbirrary choice
of m(x)e{m(x)}, form a linear code: specifically, it is easy to r:cognize
}. . its equivalence to the (15,5) triple-error correcting BCR code, For brevity

5" we shall refer to this code as to the "kernel." It is alaso clear thar,
‘»
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since q(x) * 0 is a coset leader of {m(x)}, distinct vectors u = [q(x),0,q(x)
£(x)] identify cosets of the kernel. Recalling that q(x) = axa(a-o,l)(a-o,l,
«vs36) we have the following interesting interpretation of the NR code: the
NR code consists of the code words of the kernel and of its seven cosets
identifiied by distinct u's for which q(x) # 0.
3. Weight and Distance Structure

By W[a(x)] we denote the number of nonzero coefficients of a(x).
The Hamming distance between two polynomials a(x) and b(x), denoted by
d[a(x), b(x)] is clearly

dfax), b(x)] = Wa(x)+b(x)]

We now give two preparatory lemmas.

Lenma 1. - The polynomial q(x)+£(x)q(x) belongs to {M(x)} and

Wla(x)+£(x)q(x)] = g : 383 :8

Proof: We notice that the polynomial f(x) enjoys the property

£2(x) = £(x)
From this we irmediately derive
£(x) {q(IHEEQX ] = EQEIHE (Kqfx) = 0
i.e., q(x)+E(x)q(x)e{m(x)]}, being orthogonal to £(x). Moreover, if q(x) = 0,
then q(x)+£(x)q(x) = 0 and obviously W[q(x)+£(x)q(x)] = 0. If g(x) # 0, then

Wlq(x)] = 1. From W £(x)q{x)] = &4 it follows that W[q(x)+q(x)£(x)] = 3.

Q.E.D.
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Lerma 2, - The sum of two vectors u, and u

1 2

the representation

uty = v'+
LA qtp

s I

with v' = [m'(x),0,m' (x)+bu(x)] , m' {x)¢{m(x)}
§- g = [Q(x):o:‘l(x)]
- P = [6,0,0"(x)] , o ‘x)ef{m(x)}

Moreover W[m'(x)] = 0,3. If q(x) # O,
Wln"(x)] = 3
W {x)+q(x)] = &4

Proof: Let y, = [ql(x).o,f(X)ql(x)J and u, = [qz(x),o.f(x)qz(X)].
their sum is

apty, = [ 3,040,800, 0,£60(5; (e, ) .

rescpeteinerny

Decomposition (1) can be applied to ql(x)+q2(x), i.e,,

q; (x)+q, (x) = m' (x;+q(x)

From this we hauvn

¥ w' (x) = g (<), (x)+q(x)

of the form (8) admits of

9

(10)
(11)
(12)

(13a)
(13b)

Then

(14)

(15)

which shows that W[m'(x)] = 3 if and only if qy(x) # q.(x), q,(x) %0,

qz(x) ¢ 0, and is O otherwize, Relation {14) can now be rewritten as

‘ilﬂ*'z = [m' (x)+q(x),0,(m' (x)+bu(x)) +q{x)+q(x)+£f(x)q(x)+m’ (x)+bu(x)]

- [m' (x%),0,m' (x)+bu(x)]+[0 »0,q(x)+£(x)q(x)+m' (x)+bu(x)]

oo

H a(x),0,a00)]

o
B .

ooy
SO

e




where b is chosen according to the rule
0 if Wm'(x)] = 0
. 1 if Wm'(x)] =3
To prove (9), all we need to show is that
m' (x) = q(x)+£(x)q(x)+m’ (x)+bu(x) (16)
belongs to {m(x)}. But this follows immediately, since the three poly-
nomials m'(x), u(x), q{x) + £(x)a(x) belong to {m(x)}.
To prove (13a,b), assume first that m'(x) = 0. Then (16) becomes
m'(x) = q(x)+£(x)q(x) and (i3a) follows from Prop. 1. Furthermore
Wlm" (x)+q(x)] = W{E(x)q(x)] = 4 and (13b) is proved. Assume now that
m'! (x) # 0. Denoting q(x) by xk, relation (16) becomes (b=1)

o (x) = xS(HE(x) 4’ (x)+u(x) .

k

We notice that the coefficient of x is 0 in xk(1+f(x)) and is 1 both in

u(x) and in m'(x) (see relation (15))., This has the following consequences:

1) m'(x) ¢ xk(1+f(x)). From Wlm'{x)] = 3, W[xk(1+f(x))] = 3 we then obtain
W[m'(x)+xk(1+f(x))] = 4 and W{m"(x)] = 3; 11) the coefficient of xk in m" (x)
is 0. Hence
Wlm" (x)+q(x)] = Win"{x)H[q(x)] = 4.
Q.E.D,
We can now prove the following theorem,
Theorem 1. - Given any two distinct code words ¥, and w, of the NR

2
code, their Hamming distance is never less than 5.
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1 d Proof: Let ¥y = vty and w, = Y,tu,. Then, using (9), we obtain
1 - = '
: ? gy, = (Ut )+ te,) = Uty e )tetg
) or
3 ? ¥ te, = viphg (17;
o where we have set !A v1+32+3' . Clearly v is an arbitrary member of the

¥
B Juanit B

W DRy e

kernel and p, q are defined by relations (11)(12)(13a)(13b), 1if q = (o,0,0],
; clearly 4, =y, and (‘11+l".2) belongs to the kernel: since the minimum weight
of the code words of the kernel is 7, the assertion is proved,.

Assume now that g ¥ [0,0,0]. Let W denote the weight of (314172).
If v = [0,0,0] then

"y
rrsrepmve——_— - T

W = weight[q(x),0,q(x)4m" (x)]
; = Wiqx)JWa(x)4m" (x)] = 1+4 = 5

which follows from (11b) and W{q(x)] = 1. If v # [0,0,0] consider the sum

oy
O ER A O RETP A P

8= ytp = [mlx), i;, m(x)+bu(x)+n"(x)]
Clearly w +w, = stg and

W= 17+d[m(x) »q (%) J+d[m(x)+m" (x)+bu(x) ,q(x)] (18)
Since q(x)# {m(x)}, q{x) is distinct from both m(x) and [m(x)+m"(x)+bu(x)].

It follows that the triangle inequality applies strictly, i.e.,

d[m(x) ;q () J+Hd[m(x)+u" (x)}+bu(x) ,q(x) ]>

> d[m(x) ,m(x)+m" (x)+bu (x) J=sW{m" (x)+bu(x)]

Relation (18) becomes therefore

W> 17+W[m" (x)+bu(x)] (18a)

Kecne e e v
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Depending upon the value of b we distinguish two cases:

A) b=l, From (13a), W m"(x))=3, we have W[m"(x)+u(x)]=4 and (18a) ylelds
W>4 (1.e. W>5).

B) b=0, If i, = 1, relation (18a) yields W > 1+W[m"(x)] = 4 and we still

7

have W > 5. We now remark that b=0, i_=0, m(x)%0 imply W[m(x)] = 4,

7
Then by using equations (10), (11) and (12) we have

W o= Wm(x)+q(x) HW[m(x)+m" (x)+q(x)]

Now W[m(x)+q(x)]>W[m(x)]-W[q(x)]=4-1=3, Similarly Wlm(x)+m" (x)+
q(x)]> Wlm(x)+m" (x) J-W[q(x)]. But W[M(x)]=4 and W[m"(x)]=3 imply that
Wlm(x)+m" (x)] be odd, i.e., Wlm(x)+m"(x)] > 3. It then follows that

WD 3H2=5,
Q.E.D.

Finally, we like to investigate the weight structure of the NR
code, The task is extremely simplified by the following lemma which results
immediately from (6) and (8).

Lemma 3. - Any code word w of the NR code admits of the following
decomposition

W = vitgtp' (19)

where v is a member of the kernel, g is given by (11), and p'=[0,0gq(x)+£(x)
q(x)].

We now remark that the vector 2' of (19) is analogous to the vector
p of (12). In fact m*(x) Aq(x)d-f(x)q(x) belongs to {m(x)} and if q(x) # O,

iemma 1 yields: W[m*(x)] = 3 and W[q(x)+m*(x)] = 4. We see therefore that
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by an argument exactly parallel to the one used to prove theorem 1 we can

o v bt .
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demonstrate the following assertion:

sy

Theorem 2, - The NR code has minimum weight 5.

At

b |

This concludes the formdl justification of the acuke: heuristic

observation of Nordstrom and Robinson.

1
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4, A Decoding Procedure
The polynomial description given in Section 2 also leads to a

[
4 [

decoding algorithm of the NR code, which differs in an essential step from

the one described in [2], i.e., the permutation for the convenient positioning

sy I SR
o reigurtiting
' i

of the error pattern to be corrected,.

We represent the error pattern as a vector (whose total weight
does not exceed 2 for correctability)
no e = [e;(x),e,,e,(x)]

with obvious significance of the symbols, Further, we let R[i(x),i7] = r(x),

ryparee AL

namely, R denotes the operation of computing the redundant digits rj(j-o,l,

.+e56) as prescribed by (5'). We now compute the polynomial

3 i e e o v

T(x) = R[i(x)+e1(x),ij+e7]+r(x)+e2(x) (20)

e ghere 2

ans grampe

which coincides with the pseudo-syndrome mentioned in [2].

Y e Pt

Let us now assume that el(x) = 0, In this hypothesis we obtain

T(x) = R[i(x),ij+e7]+t(x)+e2(x)

SR

= m(x}+i(x)f(x)+(b+e7)u(x)+m(x)+i(x)f(x)+bu(x)+p2(x)

= e7u(x)+e2(x)
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With reference to the number W of nonzero coefficients of T(x)(the weight of
T(x)) and recalling that the weight of [e7,e2(x)] cannot exceed 2, we dis-
tinguish the following cases:

1. W=0, This implies e_=0, ez(x)-o, i.e,, the recaived vector is

7

error-free,

2, W=l,2, This implies e_=0, ez(x)-T(x).

7
3, W=6,7. This implies e7-1, ez(x)-f(x)+u(x).

We stress that if el(x) = 0, W cannot take any other value than
0,1,2,6,7. The converse is also true, For, assume that W = {0,1,2,6,7}.
According to the previous discussion we can form e;, eé(x) (the prime denotes
that these are estimated error patterns, not the actual ones). Then we add

[O,e;,eé(x)] to the received vector and obtain

g = [1(x)te, (x), i te tel, r(x)+e, (x)+e; (x)].

From the definition of T(x) we compute

T(x) = R[i(x)+e1(x), i7+e7+e;]+r(x)+e2(x)+e5(x) =0

i.e., w' is & code word, Since the distance of w from the received vector
cannot exceed 2, from the distance property of the code (d=5) we conclude
that w' is the correct output. Decoding is therefore easily accomplished
vhenever 7(x) = {0,1,2,6,7} or, equivalently, whenever the i(x)-positions
are error-free,

Our decoding problem is not yet solved when el(x) $ 0. Should
we find, however, an artifice which reduces any error pattern to the el(x) =0

condition, by "mapping" the error pattern into the [17,r(x)]-positions, a
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solution would be obtained, This artifice is the group {P} of permutations
of 15 elements with respect to which the NR code is an invariant, that is, a
permutation P belongs to {P} ii and only if, for a code word ¥ Egl -y, is
also a code word, To gain some insight into the structure of this group, we
recall (as noted in [2]) that the NR code is a subset of an (15,11) Hamming

code, In fact

{£(x)+uix)} {f(x)i(x)+i7u(x)+r(x)} =0

since f(x)u(x) = 0, £f(x)m(x) = 0, uz(x) = u(x), If this expression is trans-
lated into matrix form, we obtain a 7X15 matrix A premultiplying the column

vector gT.l Only fcur rows of the matrix A are linearly independent, i.e.,

010011111011000
ge[111010001110100
001110121100010
100111010110001

which shows that each word w of the NR code is necessarily in the null space
of H, the parity check metrix of the (15,11) Hamming code,
It follows that {P} is contained in the group {Q} for which the
Hamming (15,11) code is an invariant. This group {Q} can be easily found.
Given any permutation Q, the relation
Qu’ = H'B (21)

tells us that HTB must be column equivalent to H:, i.e., B must be a non-

singular 4x4 matrix, The converse is also true. In fact, given any non-

singular B, since all the rows of H? are distinct, no two rows of HTB are

equal: hence there exists a permutation Q which maps HT into HTB. The group

1

If A is a matrix, AT is its transpose.
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{Q} is therefore isomorphic to the group of 4X4 nonsingular matrices: the
order of this group is clearly 15x14x12x8. It can also be shown that the
kernel, as defined in section 2, is invariant with respect to {Q}. If we
now recall relations (6,), (7), and (8) we have that for any Pe{P}, since
Pe{Q} also, Pv belongs to the kernel, We must therefore insure that for
every u of the form (8)

Py = vtu' (22)

where v belongs to the kernel and u' is of the form (8). Relations (21)
and (22) completely define the members of {P}.2

Two non trivial members of {P} are given below. They are

P1 = (4, 11, 10, 13, 6,9, 7, 2, 5, 15, 8, 12, 1, 14, 3)

P, = (1, 7, 10, 14, 12, 5, 11, 8, 9, 15, 2, 6, 4, 13, 3)

and generate a group of order 12, as can be readily checked, It is par-
ticularly instructive to consider the "traansition diagram" of a permutation,
i.e., the directed graph associated with a permutation matrix P. In figure
1, snlid lines describe the transitign diagram of Pl’ dotted lines that of

P Double-circled nodes identify the [17,r(x)]-positions. These are

2'

referred to as "final",

2After this paper was written, Dr. J. P. Robinson, of the Univer-
sity of Iowa, conducted a computer search and found that {P} contains
15X14x12 members, This indicates that once three columns of B are assigned,
the fourth is completely determined (private communication, Jan, '68).

B dibnarto kbt oalt maattiubllpmssistatdde . o
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Fig. 1. The combined transition diagrams of P, and Pz (four subdiagrams),

1

Since each of the four subdiagrams contains final nodes, there is a sequence

of the permutations P, and P2 (a P-sequence) which maps any node into a final

1
node, We also claim that any pair of nodes can be mapped into a pair of
final nodes, Each of the subdiagrams II, III, IV contains a self-looping
final node. Assume that a node of the given pair belongs, say, to II (a
similar argument holds for subdiagrams III or IV): then there exists a
P-sequence which maps it into node 14, At this point, if the other node has
been transformed into 7, the mapping is accomplished by Py, otherwise by an

appropriate sequence of P Finally, when the pair is entirely contained

10
in subdiagram I, the assertion is immediately verified.
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The previous argument shows that the group generated by P1 and P2
is the device sought, It is now possible to construct a P-sequence 812811...
Sl(sj = {PI,PZ}) which successively generates the 12 members of this group.
With the help of the multiplication table, which is omitted for brevity, one
such P-sequence is found to be

P,P,P P P PP, P R Py PPy

where the rightmost permutation is performed first. The identity permutation
is produced at the completion of this P-sequence,

The preceding discussion is recapitulated by the following
decoding algo<ithm:

1,-Set j=0,

2,-Compute T(x). If W= {0,1,2,6,7] obtain the estimated error pattern
and add it to the permuted received vector; else proceed.

3.-1f j=12, decoaing is complete, If 3}¥12 replace j with j+1 and per-
form Sj on the permuted received vector. Return to Step 2.

This algoriti'm, although very simple when the number of statements
is considered, is susceptible of several further simplifications. Typically
once W = {0,1,2,6,7] has been found, and the correction has been performed,
there is no need for proceeding through the sequence S of permutations. All
that is needed is the recovery of the original vector. Specifically if P
is the permutation currently applied to the received vector, we must subject

the corrected vector to P-l. Inspection of the multiplication table of the

group reveals that P"1 consists of a P-sequence of length at most 4 (homing

S i s s oo
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sequence). Hence, once the correction is performed the appropriate homing
sequence of permutations could be executed and decoding would be accomplished,
5. Acknowledgment

The author is greatly indebted to Dr. John P, Robinson for a

stimulating conversation and for kindly supplying the preprints of his papers.

References

(1] A. W, Nordstrom and J. P, Robinson, "An Optimum Non-linear Code," to
appear in Information and Control.

[2] J. P, Robinson, "Analysis of Nordstrom Optimum Quadratic Code," 1lst
Hawaii International Conference in Systems Sciences, Jan. 1968,

[3] M. Nadler, Topics in Engineering Logic, McMillan, New York, 1962,

(4] M. W. Green, "Two Heuristic Techniques for Block-Code Construction,"
IEEE Trans, on Information Theory, Vol, IT-12, p. 273, April 1966,

[5] W. W, Peterson, Error Correcting Codes, The M.I.T. Press and J. Wiley
& Sons, 1961,

g DA X v

B ute




Security Clasasification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be antered when the overall report 13 classilied)

Coordinated Science Laboratory
Urbana, Illinois 61801

1 ORIGINATING ACTIVITY (Corporate author) 28, REPORTY secua{liv &LA!MFICATION
e

University of Illinois Unclassi

2b6. GROUP

3. REPORT TITLE

A STUDY OF NORDSTROM-ROBINSON OPTIMUM CODE

4. DESCRIPTIVE NOTES (Type of report and, inclusive dates)

8. AUTHOR(3) (Firet nams, middle initial, lasf name)

Preparata, Franco P.

(-8

d.

P a———
¢. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS

mﬂ GRANT NO. Sa, ORIGINA;ZR'Q REPORT NUMBER(S) S
DAAB-07-67-C-0199; also in part NSF GK-2339

b, PROJECT NO.

R-375

#2. OTHER REPORT NO(S) (Any other
this report) (Any o numbers that may be assigned

10. DISTRISUTION STATEMENT

Distribution of this report is unlimited.

e
13. ABETRACT

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Joint Services Electronics Program
thru U.S. Army Electronics Command
Ft. Monmouth, New Jersey 07703

~ The optimum quadratic (15,8) code with minimum distance d=5, recently dis-
covered and studied by Nordstrom and Robinson, can be rather naturally described
in terms of polynomials over GF(2)., It is shown that the Nordstrom-Robinson
code consists of a linear code and of a certain subset of its cosets, which
account for its non-linear nature. This representation leads to a hon~heur-
istic proof that weight and distance structures can be treated analogously and
that the minimum distance and wéight ate 5. The analysis of this mechanism may
be an essential step in the discovery of an entire class of non-linear double
error correcting codes. The given analysis also suggests a systematic decoding

procedure. This is based on permutations which map any correctable error pattern

(double or single errors) into digit positions for which the computation of a
syndrome allows the correction. The correct code word can then be recovered
through the inverse permutation.

_—'—-—-—————————--—_-.—’
D FORM

woves 1473 1PAGE 1)

.

S/N 0101-807- 6811 ~ Becurity Classification




—Fecurity Claasification

14 KIV:IDI — LINK A LiNkK B LiNR €
b ROLE wt noLE wy ROLE wT
|
Non-linear codes
Hamming weight ;
Hamming distance
Dacoding
Polynomial codes ‘
i
o
i
R

DD 1473 w0

$/M 0101-807<802¢

Security Classification A-31409

>




