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PREFACE

This Memorandum was prepared for the Advanced Research Projects
Agency's high energy laser program. It examines the interaction of
a high intensity laser and a metal, and discusses the heating and
second harmonic generation. The discussion should be of interest
to those concerned with high energy laser devices and with the

propagation of intense laser beams through bounded media.
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This ﬂémorandum presents a calculation of the classical interaction
between laser light and a metal. Using a simple model for the
statistics of the conduction electrons and their interaction with the
surface, Maxwell's equations and the Boltamann equation are scolved .
self-consistently for the fields in the metal, yielding the usual

Fresnel solutions plus correction terms which, at optical frequencies

and above liquid helium temperatures, are shown to be of the order of one
percent.

When laser light of sufficient intensity is used, a nonlinear
polarization is induced and waves of twice the fundamental frequency
are produced. For the indicated model and for normal incidence, the
second harmonic waves in the metal are calculated and the magnitude
of the relative heating is computed. The method for solving the

general problem for an arbitrary incidence angle is outlined and the

ratio of the average energy flux r«flected in the second harmonic to
the incident flux is estimated. The relevance to a high-intensity

laser experiment is considered and an error in the computation of the
(1,2)

reflection coefficient as obtained by Jha is discussed.
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1. INTRODUCTION

When a laraor beam of sufficient strength interacts with a metal,
a nonlinear polarization is induced in the metal and waves of twice
the frequency of the incident radiation are produced. The amplitude
of these waves decreases rapidly with distance in the direction of
propagation and, except for very thin foils, there is no transmission
of waves through the metal. liowever, for oblique incidence, second
harmoniic waves will be reflected from the surface. While it is
difficult to perform high-intensity experiments without damaging the
metal, c¢laims of detecting a frequency doubling of the reflected
1ight have been made,’>)

A number of calculations of the nonlinear conductivity tensor
have been made based on a frece-electron gas model.(a) In the usual
theory it is assumed that the current density at any point in the metal
is determined entirely by the value of the electric field at that point.
With this assumption Maxwell's equations have solutions representing
simple harmonic plane waves which are exponentially damped in the
direction of propagatipn.(s) These expressions for both the fundamental
and second harmonic solutions will be referred to as the classical
results,

The basic assumption of the above theory is not valid when the
electric field varies appreciably over distances of the order of the
conduction electron free path, i.e., when the free path is of the order
of the penetration depth of the electric field, In general the
expression for the current density takes the fo;m of & definite

integral involving the eiectric field at all points in the metal, and
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Maxwell's equations lead to an integro-differential equation from
which the electric field has to be determined.(6)

For the fundamental wave the present theory predicts a propagating
disturbance in the metal which is characterized essentially by the
classical index of refraction with a small correction, plus a
"transient" term (from a branch cut) which is of small amplitude and
decreases rapidly with distance from the surface. However, for the
second hammonic the theory predicts, in addition to the propagating
second harmonic componeat of classical theory (with a small correction)
and a small transient, a propagating disturbance approximately equal
in magnitude and opposite in phase to the classical result at the
surface, but more rapidly attenuated. Hence the new term is important
in computing surface effeccs. The magnitude of these terms at the

14

surface is shown to be approximately eEi/mcwp ~ (4.2 X 10°°%) Ei (mks

units), where e and m are the electronic charge and mass, mb is the

plasma frequency (ne2/mc°)% > 1.4 % 1016

rad/sec, c¢ is the vacuum
spead of light, and E, is the amplitude of the incident electric
field.

For the present treatment, the metal is assumed to be semi-
infinite in extent and the problem is formulated as a boundary value
problem. The relevant equations and approximations are discussed in
Section II. In the third section solutions for the fundamental wave
(frequency w) are found using Fourier transforms, and the inversion
invclves a contribution from a pole and a branch cut, The contribu-
tion fiom the pole approaches the classical result as vf/c -0

{vhere \ is the Fermi velocity), with the correction term a function

of botk frequency and the relaxation time of the conduction electrons,
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This correction to the classical refractive index is small except
at liquid helium temperatures; for light in the infrared shining on
silver at room temperature the correction is of the order of one
percent, The contribution frocs the branch cut is also discussed and
its magnitude is shown to be a small fraction of the pole contribution
at the surface (e.g., less than one percent for light at 103 cm‘1
shining on silver) and to attenuate rapidly with distance., Finally,
the correction to the linear reflection coefficient is considered,
and is shown to be negligibly small.

The second harmonic problem for normal incidence is considered
in Section 1V, and an analysis similar to that of Section III yields
the contributions from the poles and the branch cut, It is demonstrated
that for normal incidence no second harmonic components are reflected
from the surface, In Section V the second harmonic problem for oblique
incidence is discussed and the nonlinear reflection coefficient is
estimated. The relevance to a high-intensity laser experiment is
algo discussed, and, in the light of the present analysis, resulcs

obtained by Jha(l) are demonstrated to be in error,
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. II. PHYSICAL MODEL
i

For the purpose of this analysis the penetration depth of the
field is assumed to be small compared with the liuear dimensions of
the specimen, so that it is permissible to vegard the metal as occupy-
ing the half-space z 2 0. The physical properties of the metal can
be adequately described in terms of the free electron model, according
to which the valence electrons are able to move about freely through
the volume of the specimen. In the absence of the light wave the
zero-order energy distribution of the electrons is taken to be that
of a Fermi gas at absolute zero.(7) Under the combined action of the
applied electromagnetic field and the collisions of the electrons with
the lattice, a steady state is set up, and the distribution function is

determined by the Boltzmann equation., All of the details of the

collision processes are summarized for the preseut purpose by specifying
the relaxation time T, or, equivalently, the collision frequency v = T-l.
The collisions are caused by thermal or structural imperfections in the

lattice; for example, in silver v is of the order 1014 sec-l.

AU
.

The
amplitude of the incident light (assumed monochromatic) is then treated
as a perturbation parameter in the Boltzmann equation,

It is further necessary to make an assumption concerning the
reflection of the electrons from the surface. The surface potential
varies from a value of the order of the Fermi energy at the surface
to zero at a distance d m 10‘8 cm in from the surface. The average
time taken by an electron to enter and leave the barrier region is
then of the order d/vf. Hence, provided w << vf/d o> 1016 sec-l,

it is permigsible to replace the surface potential barrier by a step




(9]

potential--i.e., to assume the conduction electrons are specularly
reflected from the surface.

In discussing the anomalous skin effect in metals, Reuter and
Sondheimer(8> have shown their results to be relatively insensitive
to the fraction of electrons assumed specularly refiected from the
surface, and reasonable results can therefore be expected at higher
frequencies. The mathematical formulation is presented in the next

section.
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I1I. THE LINEAR FROBLEM

The electron distribution £(r,v,t) satisfies the Boltzmann

equation(g)
af EE Bf L .
3t HUWE g - 5 (£ (1
Let
Emf +TE e ldat (2)

q

where fo is the distribution of a degenerate Fermi gas at 0°k. The

fundamental electric field in the metal may be writien as

E= E(z)e'i‘”t e,

(3)

and is proportional to the amplitude of the incident electric field Ei'

Treating E1 as a small parameter in a perturbation expansion,
£, = O(E,) £, = O(ED)
1 172 2 i

1f ve linearize £q. (1) and seek solutions which vary sinusoidally with

time and depend only on the coordinate z, we obtain

3 wmt, . eka 3
— R . (4)
3z v, 1 mvz 5vx

where o’ = o + 1v.

The formal solutfon of Eq. (4) may be written as

S S [Ra—— - - e e — f
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3f im'z/v z
.. 0 z -iw’t/v,
£(z0) =2 =2 U‘ E(E) e d§+A(!)] (5)
z X 0
iw’z/v
Then e increases indefinitely with z for v, < 0, 1In order that

f(w,v) remain finite, f1 must be written as

R 3f  iw’z/v_ = -iw’e/v
fl(z,g) - - ;%~ 5;2 e z J E(t)e z de
z %'x z
for v, <0 (6)
For v, > 0, write
3f  iw’z/v z -im’e/v
+_ e o z z
£] = e Uoz(g)e de + A(v)] %))

The specular reflection condition at z = O implies that
+ - -
£,00,v,5v,0V,) = £,(0,V,,V 3 -V,) (8)

Substituting Eqs. (6) and (7) into Eq. (8) yields

« -io’t/v
A = j E(E) e *ag
0
and therefore
df  iwfz/v z -iw’t/v @ 1n’t/v
+ e _o z z ) z
f = — E d
mv_ 3, e Uo (8) e t+ Joh(g) e dg] (€))

The current density is given by

iR

w1y -

Wi

Pl AU BT LT e S PRINE TR,

(R

SR DR T 4



e e — r———————ttotm e <5

l--eI!fd3v (10)

1f the functions Pi(u) are defined by

® ® L v, 3f iw’u/v
i o z"
Pi("") = J‘ . dvx I _mdvy J‘Odvz[—v v ° J (11)

Z X

then Pi(uo vanishes unless i = x because fo = 0 at v, =& Dropping

the subscript x, note that

- -] [ .} ’
J'-dex I -cdvyj‘ dv ;— :% em, u/v’] = P(W) - P(-p)  (12)

The total current density can then be written

e?. Z G ® 1
i = ;[ J'o E(E) P(z-8)dt + Io E(t) P(ztE)dt + L E(t) p(g-z)dgj

e__ o ) ©

| J‘o E() B(|z-g])de + Io E(E) P(z-f-g)dg] (13)

The electromagnetic fields are related to the current through Maxwell's

equations
VXE®= igB (14)
and
inE
vx‘!-uo.'j.- c2 (15)

Because of the convolution form of Eq. (13), it is desirable to solve the

system by means of Fourier transforms. Equation (13) is valid only in

the half-space z 2 0, however, and while several techniques exist for
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treating this type of problem, perhaps the simplest is a mathematical
artifice first used by Shafranov.(7) The technique, as applied to
this problem, is to assume that the metal occupies all space, i.e.,
that Eqs. (13), (14) and (15) hold for z < 0 as well as for z > 0,

and to introduce a Dirac delta function current source at z = 0 to

yield
vx B+ E =y [+ 36(2)e ] (16)

= 2
c

Equations (3), (14) and (16) yield

2 agE
3—’25 + =+ dau = -fou_J6(2) (17)
3z c

The general solution of Eq. (17) is a valid solution in the
half-space z > 0 of the original problem. The constant J must then be
chosen such that the fields connect properly to the vacuum field at
z2 = 0-, so that the tangential electric and magnetic fields are
continuous at the boundary. The result of this procedure is a solu-
tion which satisfies both the correct differential equation for
z > 0 and the proper boundary conditions at the surface of the metal.

Then, substituting Eq. (13) into Eq. (17) yields

+93E - [ K(z-0) B0 - [ K(a4t) E(O)dE = -law J8(z)  (18)
522 ¢ 0 0 °
where

o B R SRR Y
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fo o v, 3f  io’lu|/v

= -———JL- X _9 z

R(w) I dv j dvy j dv e

zv, av
2 %
and wp = (noe /meo) , the plasma frequency of the electron gas, From
the symmetry of the "new" problem, E(z) = E(-2); hence Eq. (18) may

be written as

™

2
+8E - Lx(z-g) E(8)de = -ion J6(2)

° dz [

et

Equation (20) can now be solved by a Fourier transformation.
Defining the Fourier transform cf the function £(z) by

(k) = ]‘ f(z)e 1¥% 4z

-

the transformed equation becomes

i+ we? - K0T B = -tow 3

vhere

3 1kz @ ‘”22 3 > >
k) = x dz = d d d [ x_ ]
K(k) J‘-o (2) e z = nocz J..“ v, J'—G vy 'L‘ v >, v wTk

2

o Q
- 2
of c2 dv I dv dszl -kv /m ]
°

and where Eq. (23b) follows from integrating Eq. (23a) by parts.
By the Fourier inversion theorem, the inverse transform of

the sunction T(k) defined by Eq. (21) is

(19)

(20)

(21)

(22)

(23a)

(23b)
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£(z) = 51; J‘ Fk) eP*? gk (24)

end therefore the solution of Eq. (20) is

1wqu Q eikzdk
2 o kP (wf/e) 24R(K)

(25)

E(z) =

where the integration, as in Eq. (24), is to be carried out along the
real axis in the k plane. The usual procedure for evaluating such an
integral is to close the contour in the upper half-plane and to apply
the theory of residues. Now assume fo will vanish for v, greater than
gome value Ve Equation (23) then reveals that ¥(k) is not defined
whenever kvf/m' is both real and has magnitude greater than unity,
i.e., whenever arg k = + 6 = + arg 0’/ = tan-l(u/ag and |k| 2 O/vf
where {1 = lm" = (m?+u2)k. Taese conditions define the branch cuts
around which the contour must L2 deformed. The deformed contour and
the branch lines are indicated in Fig., 1, where E(2) is recovered

in the limit as R = w,

The integral over the infinite semicircle is easily shown to

vanish. Then the residue theorem applied to the contour yields

(26)

€ e
= - wp J L Res
2n I Br k- (a/c)? +K(K) °

i J ikz ikz
E(z) = - 2 dk [ 2 = ]
k- (/e +HK®™,
h]

where each kj is an isolated pole of the integrand of Eq. (25) in the

upper half-plane, the integral is along the branch cut and denoted

by Br, and Res is the residue.
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Fig. 1—1Integration contour in the complex k plane
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CONTRIBUTION TQ THE ELECTRIC FIELD FROM THE POLE

In this section the contribution from the residues to the electric
field are calculated., To locate the poles in the k plane, the roots

of the dispersion relation
2 2.~
D(k) = k™ -(w/c) " +K(k) = 0 (27)

must be found. These roots are discussed in Appendix A. In the limit
B >> v it is shown that there always exists one and only one zero of

this expression, provided fo is a symmetric function of Vs and it
kv
occurs when r:;%| << 1. The integrand of Eq. (23) is an analytic

function in the "cut" plane and ?{k) can be evaluated analytically

for w >> v by expanding the denominator to yield:

2 2 2
z

2 @ % kv
R(l) = &5 2 [1 +—
(4 w

+ ...] (28)

The index of refraction n = (kc/w) is then given by the pcsitive

square root of

5
N

N
.
g
g

(29)

N

1+

g
w 758
NJN<NJ

w3 e
Equation (29) describes the wave propagation characteristics of a
metal as a function of frequency, including the effect of a finite
velocity spread in the distribution function for the free electrons.

2
As the ratio vz/c2 tends tc zero, the above expression continuously

approaches the usual formula for a "cold" electron gas
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2 2
k ¢ o
2 (s -
Be ( w ) =1 olotiv) (30
2 2
2 n -n
The magnitude of the thermal correction inn~, A = -—E-S-, is
nc
“"(32 2 2, 2)32 (31)

The maximum value of the correction occurs at @ = v/ /2. Substituting

in Eq. (30) reveals that

¢35 ()

3 (32)

Hence for ® >> v, only the first few moments of fo need be estimated
to compute the dispersion relation. For lower frequencies it is
necessary to approximate the shape of the Fermi surface by an analytic
expression or to numerically integrate the expression for R(k). 1In
general, the energy surface can be complicated, and its shape for
certain metals has been estimated from measurements of various optical
constants, soft x-ray emission, Knight shift, and various transport

(11)

properties. For rough order-of-magnitude calculations we can

2

assume v is 0(\::) where v_ is calculated from the free electron model

£
and depends only upon the valence electron density. A spherical
energy surface of the free electron model is expected to be a good
approximation in a number of cases, including sodium, silver, and
certain alloys of copper.(lz) While it {38 not necessary to assume a

spherical distribution to proceed with parts of the analysis, i€

some of the integrations are performed the formulas become simpler and
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permit us to readily estimate the magnitudes of the various terms.

Then with
nO
f = ———H(v_-V) (33)
° @/yn3 f
£
where
H(x) = 1, x20
= 0, x<0
we have v2 - % vi For silver at 0°C, Ve ~ leb % 108 cm/sec,
a¥ s Lol X 1016 rad/sec, and v~ +5 X 1014 sec-l.(7) Then with

cs 3}y 1010 cm/sec, the maximum value of A is .l4. For poorer
conductors, Amax will be correspondingly less.

The root of Eqe (27) can then be written approximately as
A 1
k, = kc{l -ge q’} (34)

uhere o= tan-l[: “ l:.c is the clessical propagation vector,
(a’-3v°) 3 -1
and A/2 £ ,07. For example, for light at 10 cm

o =2 x 10secl, and from Eq. (31), &/2 = .O1.

shining on silver,

Returning to Eq. (26}, the contribution to the electric field

from the pole, Ep. becomes

1koz
. 1kz ~aH J e
- - £ 2
E, = - akJ X Res D(k)] = (35)
[1+ -P-—) 2.7 o
c 3

The magnetic field associated with Ep is given by

Lol b Yt MRS -
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ikoz
oE qu e

p e o
z =y v 2 Sy
2[1+Léii)p&ﬂ
S\e¢ ‘o .3

1
(z)'ima
The constant J cannot be evaluated until the contribution from the

B, (36)

branch cut is calculated. However, in most practical cases, the
propagation characteristics of Ep (and Bp) will be shown to be given
approximately by the classical electron theory (i.e., ko a:kc), with a

correction of at most a few percent above liquid helium temperatures.

CONTRIBUTION TO THE ELECTRIC FIELD FROM THE BRANCH CUT

In the integration along the branch cut in Eq. (26), the
contribution from the small semicircle is easily seen to approach

zero as ¢ —» 0. Then the contribution from the branch cut is

i J ikz
Bpr = " T it (31
r cpte, K-(afe) (k)
16 eie. Then

Along c2, i.e., on top of the branch cut, k > p e

16e“) - % e-ie. Therefore, the pole in the integrand

o'k = @e'%)/(p e
in Eq. (23) lies just below the real axis in the complex v, plane.
However, the pole can be considered to lie on the real ax. and the
path of integration can then be deformed to lie just abuve the pole,
The new path will be denoted by q+, and the integral so defined by
R’+(p). Similarly, along c, the path in the v, plane can be deformed

to ¢ (see Fig. 2), and the corresponding integral will be denoted by

X (p). Then
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Complex v, plane

- — - \ -

Jr— e “- o

o C NS T
+ vz=9/vf

Fig. 2—Paths of integration for K (k) and kK (k)
in the secorid harmonic

o
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] i6 Q/v 16
0 £ eizpe ei&

dp
oy +j 7 216
= p e -

o ___ .
a?/cz + i-(p)

lz0e [K(p) - 'i+(9)] dp

i [
e 38
ofv, 2216 _ 2 c 2 216 (38)

wilc? + THORTR - Pl + K (]

| 2

w et ® af v
'ﬁ*(P) - P f dv dv j dv [—9- X
(39)
P noc2 o % j-m Y zZLovy . %

R () - 'K'i'(p)] can also be expressed by Eq. (39), except that the
{ integration is now performed along a closed contour enclosing the
pole (in the positive direction). Consequently, according to the
theory of residues,
—— ot 0)2 ® (] afo
K -K-Znim—-P—z-I dvf dv (v ——) (40)
Pncfdw *da ¥

X avx
Vzlﬂ/ p

From qu (33))

i
i of n \
0 o [2. .2 2
= - 5 vy~
avx 3 Yx vy oz vf) (41)

v v +v2
z

2
y

N RN
W&
a
mc
LI
b

Then, changing to cylindrical coordinates and substituting v2 - vf

+ (q/p)? ylelds

g 2
2 g SO R s Ry TR RN ROV o
2z "p 2378 £
£

— T Y
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Therefore
p 16
(DZ 2 © [vz_(olp)z] eizpe dp
Enr"%"‘szgew 2 716_2 2 262, 2, wa 4P
° ¢ vy “0fve  olp w21 c24% ¥ (0) 1 p2e?t P r ek (»]
First note that neglecting the 2/c terms in the denominator in
Eq. (46) 1is equivalent to neglecting (vflc)2 compared to unity. Then
the magnetic field from the branch cut is given by
i8
3E mf, [vz-(ﬂ/o)zl el gy
Bar ~ ﬁ aBr m %“’“ I3 e 0 2 g+ -21bc 2 o 215 (44)
z ° ¢ Q/vf [p“+K e e+ ]
To evaluate the fields at the surface, substitute u = Q/vfo
and z = 0 in Eq. (43) and Eq. (44) to yield
22
) 1 2, 3
--2, ;—2 3 318 (1-u“)u’ du
Ege(0) = = 4 ¥,d 24 £ f 2 (45)
¢ + -248 5= -216
[1+ (R R+ (5 )“ ]
masz 1 2, 2
-3 —_p _-21% (1-u7)u” du
Br() = - L ugd e j > 5 (46)
[1 +( f) + 216]['1 +( )—i-e-216‘,
Ve 2
But |(Q—) ?‘ fs 0(A), and therefore, to lowest order in &
5 VE -318
Ege(®) = -~ Teawd b e 47)
B, {0) = -2y J4e L0 48
Br' 2 "o (48)




LLEXRE S SRt

Ribis FEay

ety

2 cognd o S srpuiica gL

aald SRR A M At

VT
s

o e~

PRS-

20

The magnitude of the ratio (Ro) of the contribution to the electric
field from the branch cut to that from the pole at the surface of the

metal, to lowest order in &, is

3

EBr(o) 5 kcvf 1 2 Vs kcc m2
"~ 8 ( 0 ) A=s 9% (??>
E_(0)

(m2+v2)2

Using Eq. (30) to express the ratio as a function of w, the maximum
value of the above expression can be shown to occur at @ = v/ /2
(provided uz << wﬁ, which is well satisfied for most metals). The
maximum value of R is = .03 (mpvf/uc)3. For silver, (Ro)max -
R°(3.6 X 1013) ~ ,06, For poorer conductors, (Ro)max will be
conisiderably less. The relative contribution from the branch cut also
falls off rapidly with frequencies far from vA/ﬁ. Again, for light
at 103 cm.1 shining on silver, RO(Z X 1014) ~ .005.

A complete evaluation of EBr(z) requires integration of Eq. (43),
which can only be performed numerically, However, it is possible to
find an asymptotic representation for EBr(z) valid for ({n/vf) > 1
by successively integrating by parts (vf/Q < vf/v; for silver this

representation is always valid for z 2 10-6 cr) .,

15 Ve o516 em’/vf -zv/vg
EBr(z) ~ 5 ouJ A7 e —— e (50)
: (Qz/vf)

The ratio of the electric fields in the metal, Rz’ to lowest order in
4, is given by
| 6. (2) 24R ( )e-zu/vf eIm(ke) 2
Br Z 0'\®

~ (51)
Ep(z) (Qz/vf)2

R (o) =

(49)
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provided nz/vf >>» 1, 1t is interesting to observe that for optical
frequencies, Im(kc) ~wp/c~ S X 106 cm-l, and with exception of the
best conductors, (wpvf/vc) < 1, Hence, for z sufficiently large, Rz(uD
can be greater than unity, However, this occurs when both |Ep| and

IEbI are negligibly small. For w/v << 1, Rz(uo << 1, and the electric

field falls off exponentially with z,

THE REFLECTION COEFFICIENT

The analysis has shown that when an electromagnetic wave is
incident upon a me:al, energy is transmitted in the metzl as a com-
plicated electromagnetic disturbance. The contribution from the branch
cut is dissipated within a distance of the order vf!Q. The contribu-
tion from the pole has a longer range, and its behavior is essentially
determined by the classical model, with a small correction (above
liquid helium temperatures) due to the nonzero Fermi velocity. The
fraction of energy reflected from the surface can be calculated by

applying the usual boundary conditions at the metal surface:

Ey

Ei - Er = cB(0) = ch(O) + cBB(O) (52b)

where Ei and E_ are the incident and reflected electric fields,
respectively. The constant J can now be computed by adding Eqs. (52a)
and (52b):

4E
L
cuo(l + “c)

J= -

2 n
c

+ Er = E(0) = EP(O) + EB(O) (52a)

i {1 + s [(1 + JL)eim + 2e-216]} (53)

=
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As A ~ 0, Eqs. (35) and (53) yield
ZE1
IEP(O)l * T, (54)

the classical result for the amplitude of the transmitted field at the

metal surface.

2
E
The reflection coefficient, r = £ , to lowest order in A, is
i
given by
X 1 1
I a1+ 24gn [ L + ] (55)
T i 2 2 2 2
c (1-nr) + ny (1 nt) + ng
l-nc 2
where r_ = Trn, , B= -[8in(28) + %sin o], and n_ and n, ave the
real and imaginary parts of n.» respectively.
2 2 2 2,2 -5
For @, >> o > v, the correction term is O(Vf/c ) ~10 °, For
m§ >> 1,)2 >> a)z
rlr_~1+4 oL2aw (56)
c @,

which again gives a negligible correction. Reuter and SOndheimer,(s)
using a similar analysis, have discussed the reflectivity of silver

at liquid helium temperatures (corresponding to much larger A's in
this analysis) and have concluded that the correction to the classical

result would still be very difficult to measure.
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IV, SECOND HARMONIC GENERATION

In this section, the formalism developed in Section III is
utilized with the new assumption that terms of order Ei are no longer
negligible. The electromagnetic fields are expanded in a Fourier

geries,

L]
E= Z Ene-ina)t’ B = 2- _Bme-imt (57)
n=-o n

and solutions are sought for which the series converge rapidly. These
representations are valid when E1 oscillates with frequency o and

has a sufficiently small amplitude. 1In this case each of the nth-
order Fourier coefficients contains a term which is the n':h power of
the incident wave, and the series converges quickly for small amplitude
waves.

Substituting Eqs. (2) and (57) into Eq. (1), the second-order

component of the transport equation becomes

sz e Bfo afl
(u-21m)f2+vz'a-;'-;§,2-§-"' 1+(!X§1)]‘5'!"’ (58)
Let o' = o + %iv and define 8, by
- ®
8 = j-@ dvx I.m dvy vif2 {59)

Then multiplying Eq. (58) by vy and integrating yields

- ' —--
21w31+v T Esz dv J' dv "iaj b, (60)
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where
of of
e 1 1 _, 1
I I [El v, + B (vx av v, av, )] vy dVdex (61)

and summation cver j is implied. From the relation afo/ij - (vj/v)
(Bfolav), it follows that the third texm in Eq. (60) vanishes unless

i = jo Further, since there is no second harmonic component in the
incident wave, the boundary conditions (Eq. (55)) require that the
second harmonic electric field in the metal be longitudinal, or j = z.

For the z component of Eq. (60), the third term integrates to

ne
2.
m

E (62)

0] (W)
< '<
" WiN N

Similarly, f1 (given by Eq. (5)) is an even function of vy and

an odd function of Ve from which it can be shown that Dx = Dy =0,

and Dz reduces to

- —L v I J v, ——- dv dvy (63)
The equation for g, seems intractable as it now stands since the exact
forms of the fields and distribution function of the fundamental are
complicated by boundary effects. Fortunately it is possible to make
reasonable approximations which will render Eq. (60) tractable, In
the last section it was shown that the branch cut contributizu to
the fundamental field has a small amplitude and short range, so ouly
the contribution from the pole will be included. A second assumption,
vwhich is implicit in the classical theory and its conclusions, is that

the electric field may be vegarded as spatially constant for the
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purpose of calculating the current at a point, This assumption is
valid when the field does not change appreciably over a distance of
the order of the mean free path of the conduction electrons, that is
to say, when the mean free path is small compared to the effective
field penetration depth, This condition is equivalent to setting
A = 0 and is satigfactory for all frequencies of interest except at

very low temperatures. The solution of Eq. (4) can therefore be

written ieE,(z) of
£ N,___l;__.._JZ (64)
17 mn! v
x
which yields
3 =~ --——-E(z)Iv-——d (65)

for the current density. When Eq. (64) is substituted into Maxwell's
equations, the classical dispersion relation, Eq. (30), is recovered.
Then, using Eqs. (33) and (64) and carrying out the indicated

integration results in the following equation for 8,*

%,

- 2—‘*,‘:- g, = v, ¥(2) (66)
where
2) = 3 [r(:) “Ey(2) ] (67)
and
F(2) = 2% £,(2)B,(2) (68)

The solution of Eq. (66) that satisfies the specular reflection

condition at z » 0 is
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R 2’ /v, = -2iw't/v
g, = - v, e zz Iz e 2 v(e)de (69a)

for z < 0 and

2iw’/v z ®  2ipt/v
+ z 2 -2imt /
gy =V, e [Jo e Yz y(e)de - Jo e z t(g)dg] (69b)

for z > 0,

Following the same procedure used to derive Eq. (13) yields for the

second harmonic current density

3 -] o
i = (i:vf) 2iae_ [jo K (z+) ¥(8)de - J'o Ky(z-8) ¥(8)de]  (70)

[o]

where

2 v
3iw £ 24w’ |x|/v
K2(x) = - -—EE-I e Zy dv (71)
z z
v 0
f
With this definition of K2(x), and introducing Maxwell's equation for

the longitudinal harmonic

1

Ey - imr J
2 e 2

=0 (72)

resuits in

2mvg © R
E,(2) + (3noe)[jox2<z-g) DL - | (e KdE] =0 (7

or, using Eq. (68),

E,(2) - Uo Ky(2-t) Ep(0)dt - [ Kp(x4t) Ep(D)dL] = w(z) (74)
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where

W = [ ket Tt - [ k() P (75)

Since W(z) = -u(-z), Ez(z) is antisymmetric, and Eq. (74) becomes

Ey(@) - [ Kp(at) Ey(8)dE = W(2) (76)

Fourier transforming Eq. (76) yields

F (k) - F, ()]

EyG0 = ML g () —— an
1-K, (k) 1-K, (k)
where
2 2
at e v v dv
~ ~ -1kx p f z
(k) = (x) e dx = - (78)
%2 I~mx2 v K2 Io v (o 5%
and

@©

F 0 = [ F(2) e k24, (79)
0

As in the linear case, the branch cuts in the k plane are those regions

where Kz(k) is not defined, i.e., where kv /Zm is real and

| | > 1. Kz(k) is analytic in the rest of the plane and is gilven

by
3w o 1 + kv /Zm’
= - - ~
K,(k) ;EB_E [1 ln\*-:—i3"75*7 J (80)

where 1ln denotes that branch of the logarithm which vanishes for

k-oo
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From Eqs. (68) and (79)

2k
F,(-k) - F (k) = ¢ 57—
+ + k2~(2k )2

c

where
e 2 __4nc
O = - + E
m’ Tl (1nc)

Referring to Eq. (79), it can readily be seen that iz(k) has no isolated

singularities in the cut plane, and that the singularities of E;(k)
are therefore the poles of E+(-k) - E+(k) and the zeros of I—EQ(k).

The expression for E+(-k) - E+(k) indicates that there is a pole of

E}(k) which yields a signal with wave number k = 2k_ which is twice that

of the fundamental frequency, and since it is a second harmonic term,

it therefore has the same phase velocity as that of the fundamental.

The roots of 1 - iz(k) are discussed in Appendix B. 1In the
limit @ >> v, it is shown that there always exists one and only one
zero of this expression.

Finally, in Appendix C, the relative amplitudes of the residues
are calculated, and the amplitude of the branch integral is estimated
at z = 0, It is shown that the amplitudes of the waves from the
residues arc nearly equal at z = 0 but are approximately 180° out
of phase. When @ << W, the amplitudes at z = 0 are ~ ¢ and -o from
the residues at 1 - Ez(k) = 0 and k = 2kc, respectively. While
both values of k correspond to evanescent waves for v << w << w , the
latter has a much longer range (~.c/wp) than the former (~ vf/wp) and
is the only disturbance of interest away from the surface. In this

frequency range

(81)

(82)

PR RERIT AN, SR

i o

s

. St

o SR AR Ao et




29

2
4ieE
i /@, -13 2 .
mcwp \/C;; ~ 1.67 x 10 Ei (mks units) (83)

lo| =

is smaller in magnitude

10

for w >> v. The propagating wave with k = 2kc
2¢E -
(~ 10 Ei for @ in the

than the fundamental in the ratio = 7
mcw

infrared) and has half the range. The heating effect of the second

harmonic is therefore down by approximately the equare of this ratio.
When the inequality @ << @, is not satisfied (e.g., waPAZ 1/3) the

expressions for o and for the residues are more complicated and the

expressions derived in Appendices B and C must be used.
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V. OBLIQUE INCIDENCE

For the case where the propagation vector of the incident wave
makes an angle 6 with respect to the normal to the metal surface
(i.e., the z direction), the qth harmonic of the distribution function

and the components of the fields are nroporticnal to

o-lawz 8in 8/c o Lot

Assuming specular reflection and following the procedure outlined

in Section I1I, the first-order distribution function is found to be

iw_/v
df z 'z .z -imt/v ® ink/v
+ e 0 e z z .
=22 ~ {"x Uo e E_(£)dE + »[o e Ex(g)dg]
z -i(ng/vz ® 1(;3§/vz
+vy Uc e E_(8)dg + Io e Ey(g)dgj
z -ipt/v o 1ot/v
+v, Uo e Trmd-[e T E,(8)de]} (84a)

for v, > 0 and

e O Jwz/vy 3 © -igt/v

- z
G maw v ) w[e o Trow (84b)
z kel z

2
y

Maxwell's equations yield a set of three integral equations for the

for v, < 0, where v = (vi +v_+ vi)%. Using Eq. (1G) and introducing

components of the electric field which can all be solved by Fourier

transforms. The results yield propagating components of the fields,
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which are given by the usual classical or Fresnel equations with small
corrections of order A, plus transient components of short range and

small amplitude.

F In discussing the second harmonic, the spatial derivatives of
f{ may again be ignored in the "source terrs" for f, which yield three
additicnal integral equations for the components of the second

harmonic fields. The boundary conditions for oblique incidence no

longer require a reflected harmonic to vanish, and the amplitude
r may, in principle, be calculated by the method described. However,
& even using the Fresnel relations for the fundamental fields yields

extremely tedious first-order differential equations for the second

harmonic current generators. Again, in order to match boundary
conditions, it is necessary to find the residues at z = 0 from the

poles of the transformed kernels as well as those at twice the

fundamental propagation vector components. These have been shown to
be approximately equal in magnitude. (The branch cut contributions
will again be small.)

Using Eq. (83), the ratio of the energy flux reflected with
frequency 2m from the surface to the incident flux can be estimated

from the present analysis to be

2
P 4eE o
R i B
P, (mca)p> F(e, m') (85)

where g is the incidence angle and F is of order unity with F(O, mb/m') =
F(n/2, mb/m') = 0, For an incident laser team of Ei ~2.5 X% 106v/meter,

the traction of the incident power reflected in the second har—onic

A, REE > Pl VTN S, e - -

N
R R T
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is -10~14. For order-of-magnitude estimates of Pr/Pi’ a plot of

R VEFLELORN S s g B O

2
1 (AeEi/mcwp) versus incident electric field Ei is shown in Fig. 3.

5 For electric fieldslz 1011 v/meter, the metal will probably be damaged.

(3

Brown, Parks and Sleeper, using a ruby laser with 1 MW peak

LAl fastads by

power and < 50 nsec duration shining on silver have obtained reason-

b4

. 4 : :
3 able agreement with F « cos @. They point out that these observations
are consistent with a second hammonic polarization proportional to
EI(V°E1)° This expressicon has arbitrarily been extracted from the

known nonlinear polarization for a free electron gas where boundary

T ITA Ph S E,

effects are not included, which contains an additional term proportional

to E. X El

(1,2)

1 , and which yields a much more complicated dependence on 6,

Jha has attempted to include the boundary effects for
oblique incidence by using an iteration procedure, perturbing about
the classical Fresnel solutions. However, for the fundamental wave,
his correction term, to lowest order in vf/c, is of the same order of
magnitude as the Fresnel solution. This result shows that, first of
all, the iteration procedure is invalid near the surface. Secondly,
the results of the analysis presented here indicate that the total
correction to the Fresnel solutions are of order A, and one should
i obtain only the classical result as vf/c -~ 0.

For the second harmonic, Jha attributes the EI(V(El) term to a
surface phenomenon, the E

X B. expression to a volume contribution,

1 1

and obtains a complicated expression for F(8, wp/w’) in the absence
of collisions, These correspond to the root of l-ik(k) = 0 and the

residue at k = 2kc, respectively, While such a partition enables one

to estimate the correction in the metal fairly well, the procedure
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E; (VolfS/meter)

Fig.3—Scale factor for the fraction of incident
intensity reflected in the second harmonic

7 e RN

“‘
A

¥
3.
R

s

2

'!(v‘" %
“

T N e
A L .
A

My
™

[

B T U P

O

[P S Y

w‘fﬂdﬁwf‘ﬁﬁf © gy F ol e ae




SRR T S e e 5

TR T o

Gkl v

PR TN g S S

L 32 e St S il

RN G S S e g LA 8 s

R

P

C e e e - . -

34

again breaks down near the surface, Here Jha has neglected terms in
his iteration which are of the same order of magnitude as those he
has retained, Basically, as has been shown, there are three terms

to consider for the second harmmonic. While the branch cut contribu-
tion is indeed negligihle at the surface for w << wp, it is necessary
to include the residues from the transformed kernels in order to
obtain better than the order-of-magnitude agreement predicted by

Eq. (85).

The results presented are sufficient to obtain rough estimates
of nonlinear heating and harmonic generation. While the amplitudes
are small, it may still prove necessary to account for the second
harmonic generation in applicat ons where instabilities might be
excited and grow to such amplitudes as to affect the operation of
a device, The stability of a system when a wave of frequency 2w
is generated shculd therefore be considered and, when necessary, the

growth rate should be estimated.

S e v e e - e et . - bt e ————_
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Appendix A h

ROOTS OF THE LINEAR DISPERSION RELATION

With the restriction that fo be a symmetric function of Voo
a valid representation for KT(k) with the same regicn of analyticity

as Eq. (23b) is given by

o w @ @ ® fo
K.(k) = — —E= _[ dv j dv J dv (A-1)
2 co *Vle YV z 1l - (kvz/w')z

The zeros of D(k) are then roots of

2
- (ﬁs) " Ty fIf 2 dvxdvydvZ (A-2)

(kv Jw")

Let (kvf/w’)2 = a + bi, where a and b are real, and define p = v/w.
Then (kc/w)2 = (c/vf)2 (a + bi)(1 - p2 4+ 2ip). The general technique

for locating the zeros of D(k) involves calculating the change in the

argument of (D’'(k)/d{k)) around a suitably chosen contour in the
k plane, However, for all metals except at liquid helium tempera-
1
tures, p is small for frequencies greater than ~ 10 3 cps. With this

restriction, the real and imaginary parts of Eq. (A-2), for p = 0, are

1 - a(c /vf) ——2— J]]‘f (v.,v ,n) r 1- apz 2] dv dv du (A-3)

A A T e
and
w2 2 i
o220 % ) ?
ble /vg) = nom2 .f.” £ (vysvy k) [(I-w)z . (bu)z] dv,dvydu (A-4)

respectively, The integrand in Eq. {A-4) is always positive, and this

equation can then only be satisfied if L = O, Egcation (A-3) becomes
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f (v ;v

2, 2 - o' X y .
1 - a(e /vy N 2 J” - dvxdvydu- (A-5)

which can readily be solved by sketching the left- and right-hand

TR LT Y

sides of the equation versus a. The left side is a straight line with

y-intercept unity and a negative slope of (c/vf)z. The right-hand

side is zero at a = - and has y-intercept (wp/w)z. Inspection of the
denominator of Eq. (A-5) reveals that the slope is always positive for
a < 1. (The region a > 1 corresponds to the branch cut.) Hence there

exists one and only one intersection for p = 0,

For (mp/a))2 < 1, the root a is positive with 0 < a, < (vf/c)2 <«< 1.
When o < Wy s the root is negative and |ar\ can easily be seen to be less
than 1 provided mbvf/wc < 1, or for frequencies greater than ~'1013 cps,
which was our original assumption. (This is a sufficient, but not a

necessary condition.)

For p nonzero but small, the root will have a small imaginary

part, but its magnitude will remain < 1.

R R
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Appendix B

THE ZEROS OF ‘Ez(k) =1

The roots of 1 - iz(k) = 0 are the zeros of

1 2
w? 0 kv, 2
P 1 - (——%) x2
20y

For |kvf/2aW| << 1 the integrand may be expanded and integrated term

by term to yield

2
) =3[ 1]
®

The root given by Eq. (B-2) is not valid when la)af/mil S.i%'or >> 1.
The latter case is of little interest, A solution in the former case

may be found by noting that a valid representation of Eq. (B-1) is

G - 3p?1-p tan” (1/p)] (8-3)

i
P

vhere p2 - - (Zaf/kvf)z, and that branch of t:a\n-1 (1/p) is chosen
which equals n/2 at p = 0. Then for |a>af/m§| << 1, Eq. (B-3) may

be expanded about p = 0 to yield

2 2
) ==
w

Let (kvf/zu)’)2 = a + bi, where a and b are real, and consider the
collisionless limit v = 0. Then @' » o and equating the imaginary

parts yields b = 0. Sketching the left and right sides of

e

e e
2 AR W
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_Im?_ 1 xzdx
> =3 2
® 0 l-ax

P

reveals that one (and only one) intersection always exists whenever

the right-hand side of Eq. (B-5) is defined (i.e., -» < a < 1),

(B-5)
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Appendix C .
THE RESIDUES AND BRANCH CUT CONTRIBUTION FOR THE SECOND HARMONIC ;
The residue of .
2ak K, (k)
3 3 zxz - (c-1) ‘
i [k ‘(ch) ][l'Kz(k)] i
at 1-?2(k) = 0 is given by
S22 (c-2)
o (kS N & r1-R
1 (&) Jk S5 1Ky 00])
First consider the range where Eq. (B-2) is valid. Then
2 2
() kv
1K) ~ 1 - -1-—[1 +3 (—2;%)]
4o o
Substituting from Eq. (B-2) for k2 yields
2 2
kv 2 ®
I s S - A Y A T
kg LR~ - 25 - 5 () 2(1 - )

5

and the residue is i
!

-a o 2 4 (0-3)

(mbvg 2 3 ( m% - oo’ 2 f%

.3 @ T Do 1 -
[_1 5\ ac / ((D'(D'Z)‘mz - b o )}!—1 4 w”] o o
%

2
When |w m’/wp| << 1, we use Eq. (B-4) which gives

! g mre
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3(1)2
X , —pw O r1-% .
1K2(k),1+k22w, k5% [1-K, ()] = 2
v
£
and the residue is
< o
b ~
1-9.(& ? (I_Mi
3\¢c/ oo\ w2
P
The residue of Eq. (C-1) at k = 2kC is
aK2(2kc)
1-K2(2kc)
When Eq. (B-2) is valid the residue is
o X
by " (1+S)O' z%m,a
m2 aF
- —r - —P_
1 " o (1+s) 1 %o o
2 2
v (i
.é(mf) - =2))
where s 5 (77 (1 = o’) can be neglected.
When £q. (B-4) is valid the residue is
2
U4
1-3/‘“—°)
\av ¢
~ - O
" 2
(o &
o Ve

In a manpner identical to that used to derive Eq. (41), the

contribution to the branch cut, EBr’ is

(C-4)

(C-5)

(c-6)

(c-7)
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i 3
~+ ~-. 1lzpe P
o0 @ YLK e P R
2nEg (z) = ™ ) == dp (c-8) A
IOAAY (1-K,) (1-K,)
f KZ KZ E};
here E
w 3
b, .1 02 :
Rg = e ot 2 gy a0 @ ;
t"’ e b
16’ !
- y ) :
57 = tan N(v/2w), 0/ = (a2+v2/4)° and y(p) = 2 2i§°'{pe 7 + Then 3
p-e - (2k) ;
i
bia0 st [ dp i
E._(0) = - e f (c-10) ~
Br 3 20/v 2 2 216 ~t ~= }
wvg £ 0 rp -(2k)"e 1a K,))(1 Kz) %
§
§
With the substitution u = 20’/vfp, Eq. (C-10) becomes ‘
2
3iow 1 2 ]
Egr(® = - =P | wdp (c-11)
A2 c e\ 2 -218%
°r- ) | -G a-Ryw)
But |kcvf/0"2 = 5A (a\2+u2)/(w2+v2/4) << 1, and K§ 3 a)lz,/wo', which we
have assumed >> 1. Then EBr(o) sz own'/wlz). Hence the ratio of the
contributions from the branch cut to the residue is ~wQ’/a)p.
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metal surface. Using a simple model for
the statistics of the conduction electrons
and their interaction with the surface,
Maxwell's equations and the Boltzmann
equation are solved self-consistently

for the fields in the metal, yielding the
usual Fresnel solutions plus correction
terms which, at optical frequencies and
above liquid helium temperatures, are
shown to be of the order of 1 percent.
When laser light of sufficient intensity
is used, a nonlinear polarization is in-
duced and waves of twice the fundamental
frequency are produced. For the indicated
model and for normal incidence, the second
harmonic waves in the metal are calculated
and the magnitude of the relative heating
is computed. The method for solving the
generul problem for an arbitrary incidence
angle is outlined and the ratio of ile
average energy flux in the second harmonic
to the incident flux is estimated.
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