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PREFACE

This Memorandum was prepared for the Advanced Research Projects

Agency's high energy laser program. It examines the interaction of

a high intensity laser and a metal, and discusses the heating and

j second harmonic generation. The discussion should be of interest

to those concerned with high energy laser devices and with the

propagation of intense laser beams through bounded media.

J
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SUMMARY

This kemorandum presents a calculation of the classical interaction

between laser light and a metal. Using a simple model for the

statistics of the conduction electrons and their interaction with the

surface, Maxwell's equations and the Boltzmann equation are solved

self-consistently for the fields in the metal, yielding the usual

Fresnel solutions plus correction 
terms which, at optical frequencies

and above liquid helium temperatures, are shown to be of the order of one

percent.

When laser light of sufficient intensity is used, a nonlinear

polarization is induced and waves of twice the fundamental frequency

are produced. For the indicated model and for normal incidence, the

second harmonic waves in the metal are calculated and the magnitude

of the relative heating is computed. The method for solving the

general problem for an arbitrary incidence angle is outlined and the

ratio of the average energy flux reflected in the second harmonic to

the incident flux is estimated. The relevance to a high-intensity

laser experiment is considered and an error in the computation of the

reflection coefficient as obtained by Jha(1 '2) is discussed.
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I. INTRODUCTION

IWhen a larr beam of sufficient strength interacts with a metal,
a nonlinear polarization is induced in the metal and waves of twice

the frequency of the incident radiation are produced, The amplitude

of these waves decreases rapidly with distance in the direction of

propagation and, except for very thin foils, there is no transmission

of waves through the metal. However, for oblique incidence, second

harmonic waves will be reflected from the surface. While it is

difficult to perform high-intensity experiments without damaging the

metal, claims of detecting a frequency doubling of the reflected

light have been made.
(3 )

A number of calculations of the nonlinear conductivity tensor

have been made based on a free-electron gas model. (4) In the usual

theory it is asnumed that the current density at any point in the metal

is determined entirely by the value of the electric field at that point.

With this assumption Maxwell's equations have solutions representing

simple harmonic plane waves which are exponentially damped in the

direction of propagation.( 5) These expressions for both the fundamental

and second harmonic solutions will be referred to as the classical

results.

The basic assumption of the above theory is not valid when the

electric field varies appreciably over distances of the order of the

conduction electron free path, i.e., when the free path is of the order

of the penetration depth of the electric field. In general the

expression for the current density takes the form of a definite

integral involving the electric field at all points in the metal, and
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Maxwell's equationa lead to an integro-differential equation from

which the electric field has to be determined.
(6 )

For the fundamental wave the present theory predicts a propagating

disturbance in the metal which is characterized essentially by the

classical index of refraction with a small correction, plus a

"transient" term (from a branch cut) which is of small amplitude and

decreases rapidly with distance from the surface. However, for the

second harmonic the theory predicts, in addition to the propagating

second harmonic component of classical theory (with a small correction)

and a small transient, a propagating disturbance approximately equal

in magnitude and opposite in phase to the classical result at the

surface, but more rapidly attenuated. Hence the new term is important

in computing surface effeccs. The magnitude of these terms at the

2 -14 2
surface is shown to be approximately eE i/Acmpo (4.2 X 10 Z i (mks

units), where e and m are the electronic charge and mass, co is the

plasma frequency (ne2 /me ) 1.4 x 1016 rad/sec, c is the vacuum

apeed of light, and Ei is the amplitude of the incident electric

field.

For the presenZ treatment, the metal is assumed to be semi-

infinite in extent and the problem is formulated as a boundary value

problem. The relevant equations and approximations are discussed in

Section II. In the third section solutions for the fundamental wave

(frequency w) are found using Fourier transforms, and the inversion

invclves a contribution from a pole and a branch cut. The contribu-

tion form the pole approaches the classical result as vf/c - 0

(where vf is the Fermi velocity), with the correction term a function

of both frequency and the relaxation time of the conduction electrons.
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This correction to the classical refractive index is small except

at liquid helium temperatures; for light in the infrared shining on

silver at room temperature the correction is of the order of one

percent. The contribution fro, the branch cut is also discussed and

its magnitude is shown to be a small fraction of the pole contribution

at the surface (e.g., less than one percent for light at 10
3 cm "I

shining on silver) and to attenuate rapidly with distance. Finally,

the correction to the linear reflection coefficient is considered,

and is shown to be negligibly small.

The second harmonic problem for normal incidence is considered

in Section IV, and an analysis similar to that of Section III yields

the contributions from the poles and the branch cut. It is demonstrated

that for normal incidence no second harmonic components are reflected

from the surface. In Section V the second harmonic problem for oblique

incidence is discussed and the nonlinear reflection coefficient is

estimated. The relevance to a high-intensity laser experiment Is

also discussed, and, in the light of the present analysis, results

obtained by Jha I are demonstrated to be in error.

I
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II. PHYSICAL MODEL

For the purpose of this analysis the penetration depth of the

field is assumed to be small compared with the litear dimensions of

the specimen, so that it is permissible to regard the metal as occupy-

ing the half-space z k 0. The physical properties of the metal can

be adequately described in terms of the free electron model, according

to which the valence electrons are able to move about freely through

the volume of the specimen. In the absence of the light wave the

zero-order energy distribution of the electrons is taken to be that

of a Fermi gas at absolute zero. (7) Under the combined action of the

applied electromagnetic field and the collisions of the electrons with

the lattice, a steady state is set up, and the distribution function is

determined by the Boltzmann equation. All of the details of the

collision processes are summarized for the present purpose by specifying
i -1

the relaxation time T, or, equivalently, the collision frequency v = T

The collisions are caused by thermal or structural imperfections in the

14 -1lattice; for example, in silver v is of the order 10 sec . The

amplitude of the incident light (assumed monochromatic) is then treated

as a perturbation parameter in he Boltzmann equation.

It is further necessary to make an assumption concerning the

reflection of the electrons from the surface. The surface potential

varies from a value of the order of the Fermi energy at the surface

to zero at a distance do 10-8 cm in from the surface. The average

time taken by an electron to enter and leave the barrier region is

then of the order d/vf. Hence, provided w << vf/d s 1016 c-

it is permissible to replace the surface potential barrier by a step
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potential--i.e., to assume the conduction electrons are specularly

reflected from the surface.

In discussing the anomalous skin effect in metals, Reuter and

Sondheimer (8 ) have shown their results to be relatively insensitive

to the fraction of electrons assumed specularly reflected from the

surface, and reasonable results can therefore be expected at higher

frequencies. The mathematical formulation is presented in the next

section.

I
F I

t
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III. THE LINEAR PROBLEM

The electron distribution f(r,v,t) satisfies the Boltzmann

equation
(9)

+ (.V) f - •(
)t M by Off0

Let

f - f +Tf e -iq ot  (2)
0 q q

where f is the distribution of a degenerate Fermi gas at 0°K. The0

fundamental electric field in the metal may be written as

ia~t
E E(z)e e (3)

and is proportional to the amplitude of the incident electric field Ei

Treating Ei as a small parameter in a perturbation expansion,

f 2
f O(Ed) f2 2 O(E P

If we linearize Eq. (1) and seek solutions which vary sinusoidally with

time and depend only on the coordinate z, we obtain

fl -V f a z o (4)
3z v mvz  v

where a) ( n + iv.

The formal solution of Eq. (4) may be written as
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fl~~v . e o eE( )19 dt + A(v) (5
f(z,,) - TV0- r ~~mz Vx 0O

io)'z/v z
Then e increases indefinitely with z for v < 0. In order thatz

f(,v_) remain finite, fl must be written as

bf iCo'z/v z  "itu't/v
fl(z '-) - - e E(Q)e dt

for v < 0 (6)

z

For v~ >0O, write
; cf iCO'z/v LzE() + (7)t

-E " v- e Ed)e Zd + A(v) (7)
my vz x 0J

The specular reflection condition at z - 0 implies that

f + o, VV 'z> -fl(O,Vfx,Vy,-V.> (8)

Substituting Eqs. (6) and (7) into Eq. (8) yields

Ca -iCD"/V

A(y) - J0 EQ) e

and therefore

f+ - - e E(Q) e Zdt + E() e dJ (9)

The current density is given by
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j - -e J v f d3 v (10)

If the functions Pi(t) are defined by

ccv ;5f ito -LL/v
Pi) dv f dvy fdv[z 0 e (1

then P (P) vanishes unless i - x because f - 0 at v - I-=. Dropping0 x

the subscript x, note that

O v f i'oi/vrd~ -- 9-° - P(u,) P(-u.) (12)dv J dVy J dvz[-2 e - 1 -LO (2

- x d z-vz Vx

The total current density can then be written

Jr E() P(z-t)dg + E(Q) P(z+t)dg + EQ) P(z-z)dt

- -- r EQ) P(jz-fl)dt + EQ) P(z+)d (13)
at L so 1()~

The electromagnetic fields are related to the current through Maxwell's

equations

Vx E i A (14)

and

VX B- 1 -1 - (15)

Because of the convolution form of Eq. (13), it is desirable to solve the

system by means of Fourier transforms. Equation (13) is valid only in

the half-space z 0 0, however, and while several techniques exist for
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treating this type of problem, perhaps the simplest is a mathematical

artifice first used by Shafranov.(7) The technique, as applied to

this problem, is to assume that the metal occupies all space, i.e.,

that Eqs. (13), (14) and (15) hold for z < 0 as well as for z > 0,

and to introduce a Dirac delta function current source at z - 0 to

yield

V 1 + -12 E = o[j + J6(Z)ex] (16)

2 2- 0-X1
c

Equations (3), (14) and (16) yield

? 2E(

2+ i2- +  oJ -iziUJ6( z) (17)

Bz c

The general solution of Eq. (17) is a valid solution in the

half-space z > 0 of the original problem. The constant J must then be

chosen such that the fields connect properly to the vacuum field at

z = 0 , so that the tangential electric and magnetic fields are

continuous at the boundary. The result of this procedure is a solu-

tion which satisfies both the correct differential equation for

z > 0 and the proper boundary conditions at the surface of the metal.

Then, substituting Eq. (13) into Eq. (17) yields

b2 E 2
+ 2 E - K(z-t) E(Q)d§ -J K(z+t) E()dt - -aoJ6(z) (18)

2 2

where
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K(u.) = 2 v v d xf o
Sdv dv Jdz 2L 0e (19)

n c

S o (noe2me) the plasma frequency of the electron gas. From

the symmetry of the "new" problem, E(z) = E(-z); hence Eq. (18) may

be written as

2 2 
+ E - K(z-t) E(t)dt - -iwo J6(z) (20)

az2 C 2  J0

Equation (20) can now be solved by a Fourier transformation.

Defining the Fourier transform of the function f(z) by

U

T(k) .1 f(z)e "i k z dz (21)

the transformed equation becomes

2 2-
C-k + (w/c) 2 K(k)1 E(k) - -iWJ (22)

where

1(k) - f.K(s) eikz dz k Jdv Jdv j'dV v -,/k] (23a)
--- id (v - 23

2

C n' 2 / o-kv/C 'j
i oc

0

and where Eq. (23b) follows from integrating Eq. (23a) by parts.

By the Fourier inversion theorem, the inverse transform of

the function T(k) defined by Eq. (21) is
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1i

f(z) Y(k) e k z dk (24)

and therefore the solution of Eq. (20) is

iz 0 c_ eikZdk
E(z) -f2 k2_(0c) 2+7(k) (25)

where the integration, as in Eq. (24), is to be carried out along the

real axis in the k plane. The usual procedure for evaluating such an

integral is to close the contour in the upper half-plane and to apply

the theory of residues. Now assume f will vanish for v greater than

some value v Equation (23) then reveals that Z(k) is not defined

whenever kvf / to' is both real and has magnitude greater than unity,

i.e., whenever arg k - k6 = -1 arg a)' - ± tan'1 (/a,) and Ikj I t/vf

where 0 - Ito . (W2+V2)k. These conditions define the branch cuts

around which the contour must La deformed. The deformed contour and

the branch lines are indicated in Fig. 1, where E(z) is recovered

in the limit as R-..

The integral over the infinite semicircle is easily shown to

vanish. Then the residue theorem applied to the contour yields

eikZdk ikz" -- ofB e-kW Rest e k(26)Ez) 2_ 22 Jl 2 2"( / -'(U k)

r -(/c) +K(k) k -(a[/c) K°kJ

where each k is an isolated pole of the integrand of Eq. (25) in the

upper half-plane, the integral is along the branch cut and denoted

by Br, and Res is the residue.

•I___________ ____ _______
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~R C

Fig. 1- I ntegration contour in the complex k plane
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CONTRIBUTION TO THE ELECTRIC FIELD FROM THE POLE

In this section the contribution from the residues to the electric

field are calculated. To locate the poles in the k plane, the roots

of the dispersion relation

2_ 2
D(k) = k -(G)/c) +K(k) = 0 (27)

must be found. These roots are discussed in Appendix A. In the limit

w >> v it is shown that there always exists one and only one zero of

this expression, provided f is a symmetric function of v , and it
kvf 0

occurs when I-I << 1. The integrand of Eq. (23) is an analytic

function in the "cut" plane and Z(k) can be evaluated analytically

for w >> v by expanding the denominator to yield:

2 k2v

01c 2 (28)*

The index of refraction n (kc/w) is then given by the positive

square root of

2W

n = (29)
2 2

w'3 c2

Equation (29) describes the wave propagation characteristics of a

metal as a function of frequency, including the effect of a finite

velocity spread in the distribution function for the free electrons.
2 2

As the ratio v /c tends to zero, the above expression continuously
z

approaches the usual formula for a "cold" electron gas

II
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2 2
kc

n - lp (30)c

2 2n -n

The magnitude of the thermal correction in n2 , A n 2 - is
n

c
2 f23 (31)

The maximum value of the correction occurs at a = /v2. Substituting

in Eq. (30) reveals that

2 2

3 (32)

Hence for w >> u, only the first few moments of f need be estimated0

to compute the dispersion relation. For lower frequencies it is

necessary to approximate the shape of the Fermi surface by an analytic

expression or to numerically integrate the expression for I(k). In

general, the energy surface can be complicated, and its shape for

certain metals has been estimated from measurements of various optical

constants, soft x-ray emission, Knight shift, and various transport

properties.(11)  For rough order-of-magnitude calculations we can

assume V2 is 0(V2 ) where vf is calculated from the free electron model

and depends only upon the valence electron density. A spherical

energy surface of the free electron model is expected to be a good

approximation in a number of cases, including sodium, silver, and

(12)certain alloys of copper.(12  While it is not necessary to assume a

spherical distribution to proceed with parts of the analysis, if

some of the integrations are performed the formulas become simpler and
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permit us to readily estimate the magnitudes of the various terms.

Then with

n
f 0 H(vf-v) (33)
o (4/3)T v

3
f
f

whe're

H(x) i, x 0

.0 x<O

212 o8
we havev z- v. For silver at OC, vf z-l.4 x 10 cm/sec, I
Gp P 1.4 X 101 6 rad/sec, and v,.5 x 1014 sec-l.(7) Then with

c a Y 10 10 cm/sec, the maximum value of A is .14. For poorer

conductors, r will be correspondingly less.
max

The root of Eq. (27) can then be written approximately as

k - k{1- 1 e'} (34)

where Cp tan[- 1 kc is the classical propagation vector,[!m(o -3V2 ) c3 -
and 4/2 S .07. For example, for light at 10 3 cm 1 shining on silver,

- 2 x 1014sec "1, and from Eq. (31), 6/2 % .01.

Returning to Eq. (26), the contribution to the electric field

from the pole, Ep, becomes

ik z
ikz -Wl&Je

The magnetic field associated with Ep is given by

,4,

I

a - -
Res e (35•



16

ik z
1 p ioJ  e 0

B2(z) 7 e e (36)p Yv2 -Y

2 [1+ -1(~)~ -

The constant J cannot be evaluated until the contribution from the

branch cut is calculated. However, in most practical cases, the

propagation characteristics of Ep (and B p) will be shown to be given

approximately by the classical electron theory (i.e., k 0  kc), with a

correction of at most a few percent above liquid helium temperatures.

CONTRIBUTION TO THE ELECTRIC FIELD FROM THE BRANCH CUT

In the integration along the branch cut in Eq. (26), the

contribution from the small semicircle is easily seen to approach

zero as e -. 0. Then the contribution from the branch cut is

eik z dk (37)

Br 21? 1 Wc 2  2(k)
c1 +c 2  -/)+K~k

Along c2 , i.e., on top of the branch cut, k - p e 0 e i c . Then

i iSe 0 -is
C =/k n (Cle)/(p e e - - e . Therefore, the pole in the integrand

in Eq. (23) lies Just below the real axis in the complex v z plane.

However, the pole can be considered to lie on the real ax. and the

path of integration can then be deformed to lie just above the pole.

The new path will be denoted by c+, and the integral so defined by

+(p). Similarly, along c the path in the v plane can be deformed
C1  z

to c (see Fig. 2), and the corresponding integral will be denoted by

K(p). Then
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Complex v, plane

C

Fig.2-Paths of integration for k+(k) and kk)
in the second harmonic

.. . . .. . . . . • . . , -.
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izpe i 6 (1/vf izpe1 6

2TEBr e r e e dp f e e dp ,

p10/vp2e 2/c + k (p) p 2 216 2/c2 (p)

6 e oe1 - K+0)(1 dp t (38)

ep e+ (218 2 (38)

he /Vf [p2e 2/c2 + K (p)l pe -)/c + K(p)]

twhere

CD2 2af

-P f c2z vx

hen -+(p)] can aso be expressed by Eq. (39), except that the

Sintegration is now performed along a closed contour enclosing the

pole (in the positive direction). Consequently, according to the

theory of residuE3,

+ (f(p) yi e ld

2

,2 r (42)

p 2
From Eq. (33),

22 22,

Then, changing to cylindrical coordinates and substituting 
v -2 v2

+ (0l/0)2 yields

2
~-3n rv2_ 21 Hr 2_(,.j/ (42)

2 K+ 2 V c3f

!f
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There fore

i6
2 2 v2-(/p)2] eiZpe dpa ) 0 3 1 6 C Op fe i/ e d p

E 2  er 2 2168 2 +2182 (43)
EBr 4 oJ  2 3 /c/vf6

Br f /Vf pp e w ./c++(p)][p e mj /c2 +K(p)]

21 2First note that neglecting the a)/c2 terms in the denominator in

Eq. (46) is equivalent to neglecting (vf/c) 2 compared to unity. Then

the magnetic field from the branch cut is given by

1E 2 C [v2_ (Q/ P) 2]1 e iZpei16 dp

B B OoD- UP (l-f (44d

To evaluate the fields at the surface, substitute u - '.I/vfp

and z - 0 n Eq. (43)a[l +q(-()) to yie1
2D 2Df 1  2

Er(2) " j P v3  U 6  (-u2)u du
Br 4 o C204 2 2 (45)

(-#)~.:i7 R+-i8-21
I uvf 

uve

222

B r(0) L °J _!a e-i W i (1-u2)u2 du (6
Br 4 0 c 2 03 1 0f 2 - 1 f 2 (46)

But is 0(6), and therefore, to lowest order in a

vf -316

Br ) - - A - e (47)

Br%0) - - J A o " (48)
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The magnitude of the ratio (Ro) of the contribution to the electric
0

field from the branch cut to that from the pole at the surface of the

metal, to lowest order in b, is

E Br(0) k \ 12vL 31kcc C32
Ro(c) - EBrO 5 1 W (49)

E p(0) (CO +D2 )

Using Eq. (30) to express the ratio as a function of w, the maximum

value of the above expression can be shown to occur at a3- v/v/

(provided 2 << a,2 which is well satisfied for most metals). The

maximum value of R is ; .03 (Mnvf/uc)3. For silver, (Ro)max -

R (3.6 x 1013) .06. For poorer conductors, (Ro)max will be

considerably less. The relative contribution from the branch cut also

falls off rapidly with frequencies far from vA/i. Again, for light

at 103 cm 1 shining on silver, R0(2 X 1014) o .005.

A complete evaluation of E Br(z) requires integration of Eq. (43),

which can only be performed numerically. However, it is possible to

find an asymptotic representation for E Br(z) valid for (Cz/vf) >>

by successively integrating by parts (vf/O < Vf/v; for silver this

representation is always valid for z > 10-6 cm).

v zCO/vf -zu/vf
EB(Z) 15 Af -5i6 ee (50)

Br 2 o Q (Cz/vf) 2

The ratio of the electric fields in the metal, R , to lowest order in

A, is given by
4 Egr(Z) 

24R ()e - z / v f e I m( k c ) z

z E r 2z) O (51)Ep(z) (Oz/v f)2
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provided Oz/vf >> 1. It is interesting to observe that for optical 4

frequencies, Im(kc) -w /cow .5 X 106 cm1 , and with exception of the
C p

best conductors, (Wvf/vc) < 1. Hence, for z sufficiently large, R (W)

can be greater than unity. However, this occurs when both IEp I and

EDbI are negligibly small. For w/v << 1, R (W) << 1, and the electric

field falls off exponentially with z.

THE REFLECTION COEFFICIENT

The analysis has shown that when an electromagnetic wave is

incident upon a me.al, energy is transmitted in the metal as a com-

plicated electromagnetic disturbance. The contribution from the branch

cut is dissipated within a distance of the order vf/'. The contribu-

tion from the pole has a longer range, and its behavior is essentially

determined by the classical model, with a small correction (above

liquid helium temperatures) due to the nonzero Fermi velocity. The

fraction of energy reflected from the surface can be calculated by

applying the usual boundary conditions at the metal surface:

Ei + Er = E(O) - Ep(O) + EB(O) (52a)

E - Er - cB(O) - CBp (0) + cBB(O) (52b)

where E and Er are the incident and reflected electric fields,
i r

respectively. The constant J can now be computed by adding Eqs. (52a)

and (52b):

4 E 1 -21i

j- {(+)e +2e 2" 61} (53)

c40(l + 7L) 2CC-
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As A 0, Eqs. (35) and (53) yield

2E1-Ep(~ + (54)

the classical result for the amplitude of the transmitted field at the

metal surface. 2

The reflection coefficient, r - to lowest order in A, is

given by

cc 1 + 260n, 1 +  1 255
r l iL(1-n ) 2 + n2 (lnr)2 + ni

1-n 12
where rc - - -[sin(26) + ksin wl, and nr and ni are the

real and imaginary parts of nc, respectively.

For 2 >> a2 >> v2, the correction term is O(v2/C2)-_  -0 5. For
apf

2 V2 2

r/rc  + (56)

lop

which again gives a negligible correction. Reuter and Sondheimer,
(8)

using a similar analysis, have discussed the reflectivity of silver

at liquid helium temperatures (corresponding to much larger A's in

this analysis) and have concluded that the correction to the classical

result would still be very difficult to measure.
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IV. SECOND HARMONIC GENERATION

In this section, the formalism developed in Section III is

utilized with the new assumption that terms of order E are no longer

negligible. The electromagnetic fields are expanded in a Fourier

series,

E-nEe B - B n e-inv t  (57)

nw-w n

and solutions are sought for which the series converge rapidly. These

representations are valid when Ei oscillates with frequency t and
th

has a sufficiently small amplitude. In this case each of the n -

th
order Fourier coefficients contains a term which is the n power of

the incident wave, and the series converges quickly for small amplitude

waves.

Substituting Eqs. (2) and (57) into Eq. (1), the second-order

component of the transport equation becomes

f2 e fo ef
,-2) f- .+ •z T - +( B) . (58)

Letw wD + kiv and define gl by

g - dv dvy vif2  (59)

Then multiplying Eq. (58) by vi and integrating yields

g + v ' edv dv v -f-D (60)I z Jz x I - y iBV~
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where

Dv e EB vi  dv (61)

and summation over j is implied. From the relation )fo/Bv j M (vj/V)

(bfo/Bv), it follows that the third term in Eq. (60) vanishes unless

i - J. Further, since there is no second harmonic component in the

incident wave, the boundary conditions (Eq. (55)) require that the

second harmonic electric field in the metal be longitudinal, or j - z.

For the z component of Eq. (60), the third term integrates to

2
3 nnoe vz

2 m 3 E2 (62)
vf

Similarly, fl (given by Eq. (5)) is an even function of v and
1 y

an odd function of v from which it can be shown that D = D = 0,
x x y

and D reduces to

z

ell =f -- 1 v z d.v ,v dVy (63)

The equation for gz seems intractable as it now stands since the exact

forms of the fields and distribution function of the fundamental are

complicated by boundary effects. Fortunately it is possible to make

reasonable approximations which will render Eq. (60) tractable. In

the last section iL was shown that the branch cut contributit to

the fundamental field has a small amplitude and short range, so only

the contribution from the pole will be included. A second assumption,J which is implicit in the classical theory and its conclusions, is that

the electric field may be regarded as spatially constant for the
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purpose of calculating the current at a point. This assumption is

valid when the field does not change appreciably over a distance of

the order of the mean free path of the conduction electrons, that is

to say, when the mean free path is small compared to the effective

field penetration depth. This condition is equivalent to setting

A = 0 and is satisfactory for all frequencies of interest except at

very low temperatures. The solution of Eq. (4) can therefore be

written ieE (Z) aff 1 0 (64)

which yields

jl n MWEl j d
- (65)

for the current density. When Eq. (64) is substituted into Haxwellts

equations, the classical dispersion relation, Eq. (30), is recovered.

Then, using Eqs. (33) and (64) and carrying out the indicated

integration results in the following equation for gz

g. - v *(z) (66)
3z V z

where

*(z) 0 F(z)-E2(z) (67) 4
mv

and

ie

F(z) Z7 E1 (z)Bl(z) (68)

The solution of Eq. (66) that satisfies the specular reflection

condition at z - 0 is
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21e/v -21eet/v2

for z < 0 and

v V e z e -21t / ()d - e z *( )dJ (69b)
92 =0 OJ

for z > 0.

Following the same procedure used to derive Eq. (13) yields for the

second harmonic current density

2mv 3 ccc

where

312v f 21aflxl/, z
K ) - v e v z (71)

With this definition of K 2 (x), and introducing Maxwell's equation for

the longitudinal harmonic

1 - J2 = 0 (72)

resul.ts in

2mv3
E2(z) + (3n2moef 01 K2 (z-t) * )d Ob K2(z+-) *Q)dt] 0 (73)

2 0nekIL 0  () -JK 2 zO

or, using Eq. (68),

E2(z) - U K2 (z-t) E2( )dt- J K2 (z+,) E2 (t)dt] " w(z) (74)
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where %

W(z) - rK 2 (z-) F(-t)dg - K 2 (z-t) F(Q)dt (75)

Since W(z) = -W(-z), E2(z) is antisynmetric, and Eq. (74) becomes
2i

E2 (z) -. f (z-) E2( )dt = W(z) (76)

Fourier transforming Eq. (76) yields

E2 (k) - W(k) K(k) E(-k) - F+(k)]
2 -k - (77)

where

00210 M V v 2dvk(k) f.2 (x) e- ikx dx 3 v -2Jf 2dvz (8
v P- z z (Te))

and

:+(k) - loF(z) e jikZ/dz (79)

As in the linear case, the branch cuts in the k plane are those regionn

where (k) is not defined, i.e., where kvf/2e is real and
kv£

> 1. K2(k) is analytic in the rest of the plane and is given

2o2by

1 +kv/2"c
I,- ±K, Zn (80)2 2L kvf -kv12

where In denotes that branch of the logarithm which vanishes for

k -0.
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From Eqs. (68) and (79)

2k

F +(-k) -F+(k) c 2 2k (81)
k k(2k)c

where

e 2 4nc
c(1+nc)

Referring to Eq. (79), it can readily be seen that K2(k) has no isolated

singularities in the cut plane, and that the singularities of E2 (k)

are therefore the poles of F (-k) - F (k) and the zeros of l-K2(k).
+ +2

The expression for F (-k) - F (k) indicates that there is a pole of
1%0+ +

E2(k) which yields a signal with wave number k = 2k which is twice that

of the fundamental frequency, and since it is a second harmonic term,

it therefore has the same phase velocity as that of the fundamental.

The roots of 1 - K2(k) are discussed in Appendix B. In the

limit o3 > u, it is shown that there always exists one and only one

zero of this expression.

Finally, in Appendix C, the relative amplitudes of the residues

are calculated, and the amplitude of the branch integral is estimated

at z - 0. It is shown that the amplitudes of the waves from the

residues are nearly equal at z - 0 but are approximately 1800 out

of phase. When a) << w the amplitudes at z - 0 are o' a and -n from
P A

the residues at 1 - K2(k) - 0 and k - 2kc, respectively. While

both values of k correspond to evanescent waves for v << w << w , the

latter has a much longer range (- c/w ) than the former (-. vf/W) and
pf

is the only disturbance of interest away from the surface. In this

frequency range
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41eE i
E , 1.67 X 10- E' (inks units) (83)

isU Mmle inmgntd

for a) >> u. The propagating wave with k = 2k is smaller in magnitude
2eEl i0 I  o i h

than the fundamental in the ratio 10-10 E. for a) in the

infrared) and has half the range. The heating effect of the second

harmonic is therefore down by approximately the Lequare of this ratio.

When the inequality w << a p is not satisfied (e.g., o/au 1/3) the

expressions for ct and for the residues are more complicated and the

expressions derived in Appendices B and C must be used.
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V. OBLIQUE INCIDENCE

For the case where the propagation vector of the incident wave

makes an angle 0 with respect to the normal to the metal surface

(i.e., the z direction), the qth harmonic of the distribution function

and the components of the fields are proportional to

e-iqmz sin O/c e- int

Assuming specular reflection and following the procedure outlined

in Section III, the first-order distribution function is found to be

f e 6foeiz/Vz ze -i/v z E i/v

1 mv 6V v {V 0e Ex()d' + e x( I

+ v ei Ey()dt + W e E

y z Y/v y/v

~z -iQA/V iot /
+ v z e E (z)dg -O e z E ()dtl (84a)

forv > 0 and

6 f e/mZ/Vz 3 "-JCo/v z
f e o e, vk  e c E()d (84b)

mv v vz  kz

k-l
2 2 2

for v < 0, where v (v2 + v + V2). Using Eq. (10) and introducing
z x y z

Maxwell's equations yield a set of three integral equations for the

components of the electric field which can all be solved by Fourier

transforms. The results yield propagating components of the fields,
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which are given by the usual classical or Fresnel equations with small

corrections of order A, plus transient components of short range and

small amplitude.

In discussing the second harmonic, the spatial derivatives of

f: may again be ignored in the "source terirs" for f2 which yield three

additicnal integral equations for the components of the second

harmonic fields, The boundary conditions for oblique incidence no

longer require a reflected harmonic to vanish, and the amplitude

may, in principle, be calculated by the method described. However,

even using the Fresnel relations for the fundamental fields yields

extremely tedious first-order differential equations for the second

harmonic current generators. Again, in order to match boundary

conditions, it is necessary to find the residues at z - 0 from the

poles of the transformed kernels as well as those at twice the

fundamental propagation vector components. These have been shown to

be approximately equal in magnitude. (The branch cut contributions

will again be small.)

Using Eq. (83), the ratio of the energy flux reflected with

frequency 2m from the surface to the incident flux can be estimated

from the present analysis to be

2
P 4eE CD

F(9, (85)

where e is the incidence angle and F is of order unity with F(O, CD/a') -

F(1T/2, w Ip/,') 0 0. For an incident laser beam of E1 .2.5 x 106v/meter,

the fraction of the incident power reflected in the second har--onic

b.4. . ~4
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is 10 . For order-of-magnitude estimates of Pr/Pi, a plot of

(4eEi/mcWp ) 2versts incident electric field E. is shown in Fig. 3.

For electric fields , 10 I v/meter, the metal will probably be damaged.

Brown, Parks and Sleeper, (  using a ruby laser with I MW peak

power and < 50 nsec duration shining on silver have obtained reason-

able agreement with F m cos 4 They point out that these observations

are consistent with a second harmonic polarization proportional to

EI(V.E1). This expression has arbitrarily been extracted from the

known nonlinear polarization for a free electron gas where boundary

effects are not included, which contains an additional term proportional

to E x B, and which yields a much more complicated dependence on e.

Jha (1 ,2) has attempted to include the boundary effects for

oblique incidence by using an iteration procedure, perturbing about

the classical Fresnel solutions. However, for the fundamental wave,

his correction term, to lowest order in vf/c, is of the same order of

magnitude a'i the Fresnel solution. This result shows that, first of

all, the iteration procedure is invalid near the surface. Secondly,

the results of the analysis presented here indicate that the total

correction to the Fresnel solutions are of order 4, and one should

obtain only the classical result as v f/c - 0.

For the second harmonic, Jha attributes the E1(V-E1) term to a

surface phenomenon, the EI x BI expression to a volume contribution,

and obtains a complicated expression for F(e, w /w') in the absence
p

of collisions. These correspond to the root of 1-K 2(k) = 0 and the

residue at k = 2k , respectively. While such a partition enables one

to estimate the correction in the metal fairly well, the procedure
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again breaks down near the surface. Here Jha has neglected terms in

his iteration which are of the same order of magnitude as those he

has retained. Basically, as has been shown, there are three terms

to consider for the second harmonic. While the branch cut contribu-

tion is indeed negligible at the surface for w << w , it is necessaryP

to include the residues from the transformed kernels in order to

obtain better than the order-of-magnitude agreement predicted by

Eq. (85).

The results presented are sufficient to obtain rough estimates

of nonlinear heating and harmonic generation. While the amplitudes

are small, it may still prove necessary to account for the second

harmonic generation in applicat'ons where instabilities might be

excited and grow to such amplitudes as to affect the operation of

a device. The atability of a system when a wave of frequency 2w

is generated shculd therefore be considered and, when necessary, the

growth rate should be estimated.
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Appendix A

ROOTS OF THE LINEAR DISPERSION RELATION

With the restriction that f be a symmetric function of v

a valid representation for KT(k) with the same region of analyticity

as Eq. (23b) is given by

2

w L dv dv
KT(k)=7 (A-)
Tn c 2 -CO -CO -Ok 1 w' /A-2

The zeros of D(k) are then roots of

2
i-&) 0**~*J' dv dv dv (A-2)

0 1 - (kV z/W')2

2
Let (kvf/W') = a + bi, where a and b are real, and define p = v/w.

2 2 2
Then (kc/w) (c/vf) (a + bi)(l - p + 2ip). The general technique

for locating the zeros of D(k) involves calculating the change in the

argument of (D'(k)/D(k)) around a suitably chosen contour in the

k plane. However, for all metals except at liquid helium tempera-

13
tures, p is small for frequencies greater than - 10 ps. With this

restriction, the real and imaginary parts of Eq. (A-2), for p = 0, are

2 2
1 - a(c 2/V~ 2= vX V11 1 2 Jj 1dv dv d (A-3)

n 0 v 0 ) L(la& + OPby

w 2
2 2 L- r f 7-v2 dvvd ,,.' 2A4

b(c /vf) = o(Vx,V,p) L 2-a

n w x( 1 la2)2 + (b2)2 dVxdVyd4 (A-3)

respectively. The integrand in Eq. (A-4) is always positive, and this

equation can then only be satisfied if b = 0. Equation (A-3) becomes
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2 f (vv 'V~L
a(c° 2 )Vy 0 X Y dvxdvydp (A-5)I-a /vf) =- I -a

no2 jjj y

which can readily be solved by sketching the left- and right-hand

sides of the equation versus a. The left side is a straight line with

2y-intercept unity and a negative slope of (c/vf) . The right-hand

_ 2side is zero at a - - and has y-intercept (wp 1w) 2 . Inspection of the

denominator of Eq. (A-5) reveals that the slope is always positive for

a < I. (The region a > I corresponds to the branch cut.) Hence there

exists one and only one intersection for p - 0.

For ()p/C)2 < 1, the root ar is positive with 0 < ar < (vf/c)2 << .

When co < p, the root is negative and jarI can easily be seen to be less

than I provided cOpv fhc < 1, or for frequencies greater than - 1013 cps,

which was our original assumption. (This is a sufficient, but not a

necessary condition.)

For p nonzero but small, the root will have a small imaginary

part, but its magnitude will remain < 1.
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Appendix B

THE ZEROS OF K2(k) = I

The roots of 1- K2 (k) = 0 are the zeros of

1 2
4At 2 & .3 f0 x dx

2( kvf 2

For lkvf/212"I << 1 the integrand may be expanded and integrated term

by term to yield

kv 2

p

2 1The root given by Eq. (B-2) is not valid when a) e"/w p I - or >> 1.

The latter case is of little interest. A solution in the former case

may be found by noting that a valid representation of Eq. (B-i) is

2  -1
4)2 e El [-p tan (lip)] (B-3)
a)

P

where (2a)'/kvf) 2 , and that branch of tan - I (l/p) is chosen

which equals n/2 at p - 0. Then for IM0 ae'/,21 < 1, Eq. (B-3) may

be expanded about p - 0 to yield

kv 2 3m

Let (kvf/2cn) 2 = a + bi, where a and b are real, and consider the

collisionless lirait j - 0. Then c0 u a) and equating the imaginary

parts yields b = 0. Sketching the left and right sides of
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2 '3 ~ 2  (B -5)
pI 0O1-ax

reveals that one (and only one) intersection always exists whenever

the right-hand side of Eq. (B-5) is defined (i.e., -~< a < 1))
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Appendix C

THE RESIDUES AND BRANCH CUT CONTRIBUTION FOR THE SECOND HARMONIC

The residue of

2atk K2(k)
(c-i)

at 1- 2(k) - 0 is given by

2 2(C-2)
Ik -2kcK2" k)

First consider the range where Eq. (B-2) is valid. Then

032 
kv 2k), I ' - [1 + f ,

4co a'

Substituting from Eq. (B-2) for k2 yields

2 2

-O 2 * kv 2 0

k- [1-I(k) 1 - (1- -
3k -2 4c 5 k2 'I 2( 4o e)

and the residue is

2 3 02 2 (C-3)

' ' 0 3V - CD all 0 ")4a
El (-t2) 2 .e L wa

2

When 1w afW/w2 << 1, we use Eq. (B-4) which gives
p
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2

1-K 2 (k) 1 + ')QL k - IR(l 2
k 22 ' k
k vf

and the residue is

(C-4)

lp

The residue of Eq. (C-1) at k = 2k isC

ctK 2 (2kc) (C-5)

1-(2k)

When Eq. (B-2) is valid the residue is

2 2(CD s)D

S(1+s)a (c-6)

2 2

1 (1+s) 1 - P

2 C 2

where s , G5 -1)(I - can be neglected.

When Eq. (B-4) is valid the residue is

(i2
\ v f /
\CDVf/

-)r (C-7)

f

In a manner identical to that used to derive Eq. (41), the

contribution to the branch cut, EBr' is

' - * - - -.------Br
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i6.

2E Br(Z) ei6 . dp (C-8)

Br22'/vf ( K ) (1 K2)

where
2

2-K2 )3 e,3 12+f2 e

21 2 22 The

p e - (2k)

C

Ei 2 i6' ______d____________

E (0 e d2p/vf 2 k 2- (i-10)

With the substitution Lj, 20'/vfp, Eq. (C-10) becomes

Bit the' 10 Eq. -13 i 2 1 2

EBr - (kvf 2  e (i)(-())c-l)

But 1kcVf/Q'I2 - 5A (a2+2)U 22 /4) << 1, and 4 p/w(, which we

have assumed >> 1. Then E (0) ,o w', 2. Hence the ratio of the
Br p

contributions from the branch cut to the residue is f,/m 2.

p

I
,!
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