THE UNIVERSITY OF MICHIGAN February 1968 Memorandum 15 ## CONCOMP # A 201 A DATA COMMUNICATION ADAPTER FOR THE PDP-8: **Preliminary Engineering Design Report** David E. Wood DDC MAY 8 1968 Uning E Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151 School in approved Memorandum 15 A 201A DATA COMMUNICATION ADAPTOR FOR THE PDP-8: PRELIMINARY ENGINEERING DESIGN REPORT David E. Wood CONCOM: Research in Conversational Use of Computers F. H. Westervelt, Project Director ORA Project 07449 supported by. ADVANCED RESEARCH PROJECTS AGENCY DEPARTMENT OF DEFENSE WASHINGTON, D.C. CONTRACT NO. DA-49-083 04A-3050 ARPA ORDER NO. 716 administered through: OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR February 1968 #### TABLE OF CONTENTS | | Page | |--|---------| | INTRODUCTION | 1 | | DESIGN OBJECTIVES | 2 | | SYSTEM DESCRIPTION | 3 | | PROGRAMMING AND CONTROL CONSIDERATIONS | 7 | | A DATA FORMAT SCHEME | 14 | | DETAILED LINE ADAPTOR LOGIC | 16 | | Serial-Deserializer Register | 18 | | Clock Gating | 18 | | SDR Pulse Gating | 18 | | Data Set Signals | 22 | | SDR Serial Input/Output Gating | 22 | | Transmit/Receive State Gating | 22 | | Control Register 2 | 22 | | Frame Counter | 27 | | State Synchronization | 27 | | Text State and Sync Detection | 27 | | Parity Gating | 31 | | Clear- and Request-to-Send Gating | 31 | | Character Service Interrupt Flag | 31 | | Status Indicators | 35 | | Control Word 1 EAC Gating | 35 | | Miscellaneous Pulses | 35 | | APPENDIX I | I - i | | APPENDIX II | I I - i | | APPENDIX III | III-i | #### LIST OF DIAGRAMS | Diagram | , | Page | |---------|-------------------------------------|------| | 1 | SDR Register | 19 | | 2 | Clock Gating | 20 | | 3 | SDR Pulse Gating | 21 | | 4 | Data Set/Interface Cable Assignment | 23 | | 5 | SDR Serial I/O Gating | 24 | | 6 | Transmit/Receive State Gating | 25 | | 7 | Control Register 2 (Frame Size) | 26 | | 8 | Frame Counter | 28 | | 9 | State Synchronization | . 29 | | 10 | Text State and Sync Detection | 30 | | 11 | Parity Gating | 52 | | 12 | Clear- and Request-to-Send Gating | 33 | | 13 | Character Service Interrupt Flag | 34 | | 14 | Status Indicators | 36 | | 15 | Control Word 1 EAC Gating | 37 | | 16 | Miscellaneous Pulses | 38 | #### LIST OF FIGURES | Figures | | Page | |---------|--|------| | 1 | 201A Communication Link | 4 | | 2 | 201A Line Adaptor Control | 5 | | 3 | Bit Assignment of Control Words | 9 | | 4 | Graphical Presentation of a Message Exchange Viewed from the PDP-8 | 17 | #### LIST OF TABLES | Tables | | | Fage | |--------|-------------------|-------------|------| | I | Control-Character | Definitions | 14 | # BLANK PAGE ## A 201A DATA COMMUNICATION ADAPTOR FOR THE PDP-8: PRELIMINARY ENGINEERING DESIGN REPORT #### David E. Wood #### INTRODUCTION This report discusses the design and use of equipment built for lata communication to and from the PDP-8 through a 201A data set. The purpose of the data communication interface is to allow a PDP-8 to send and receive digital data through a 201A data set in a half-duplex mode. The 201A data set operates serially at a rate of 2000 bits per second, with the transmit clocks supplied by the data set. In the receive mode, the data set achieves bit synchronization, and provides a receive clocking signal to the interface. The interface provides the character synchronization at the start of a message and then transfers successive characters in parallel to the PDP-8. The interface stores and retrieves characters from the PDP-8 memory through the data-break facility, while achieving control communication with the PDP-8 through the interrupt and programmed data transfer modes. This report will serve as a progress report for those interested in technical progress on the project, and as a rudimentary maintenance manual for those responsible for system maintenance in the future. Basic design objectives and decisions will be described first. A brief overall system description together with a sketch of a data format scheme and programming considerations will be followed by a detailed description of the interface logic. #### DESIGN OBJECTIVES In order to obtain a flexible interface the following design objectives were set forth: - Rigid interrupt discipline. - 2. Minimal program interaction required during message transmission. - 3. Variable character length and vertical parity calculation under program control. - 4. Maximal interface status and control available upon request. - 5. Hardware implementation of character synchronization using the ASCII SYN character. In order to minimize the amount of code in an interrupt processor for the 201A communication interface, the interface was carefully designed to give interrupts only and always when a character was received or transmitted. The desire to give the maximum time between interrupts at the minimal hardware cost led to a decision to use core buffers in the PDP-8 through the use of the data-break facility. This decision was also made in light of the fact that several of these interfaces were to be used on the Data Concentrator. A separate design using a hardware buffer without using the data-break facility is shown in Appendix III. The expected mode of operation of the interface utilizes an 8-bit character without vertical parity. Experimental evidence during the past year has indicated that vertical parity, at least on local hook-ups, is not needed. The decision to use an 8-bit character was strongly influenced by ASCII conventions and the fact that the central computing facility uses an 8-bit byte IBM/360 model 67 computer. The interface depends on the PDP-8 only to the extent that characters must be removed or placed in the core buffers, and the interrupt processed within a character time for errorfree transmission. However, complete control and status presentation is available from the interface if desired, to the extent that the 201A data set will allow. #### SYSTEM DESCRIPTION The four sections of the equipment for one end of a data communication link are shown in Figure 1: the PDP-8, the PDP-8/201A line adaptor interface, the 201A line adaptor, and the 201A modem. The PDP-8 and the 201A modem will not be discussed here. This report is concerned with the design of the line adaptor and the line adaptor interface. The distinction between the line adaptor and its interface is in some instances arbitrary. In general, however, the term line adaptor refers to that portion which is common to the three variations of the 201A data communications adaptor described in this report. The three variations which will be presented are: the basic PDP-8 adaptor, the PDP-8 adaptor which does not use data break, and the 201A line adaptors on the Data Concentrator. The PPP-8/201A line adaptor interface is hence that portion particular to the 201A communication link being considered. Unless otherwise indicated, the basic PDP-8/201A line adaptor interface will be considered in the main body of the report. Detailed specifications of the 201A interfaces on the Data Concentrator and the 201A interface without data break are given in Appendices II and III respectively. The subsystem designated by "201A Line Adaptor Control" in Figure 1 is specified in more detail in Figure 2. The basic component of the 201A line adaptor is the serial-deserializer register (SDR). This is a serial-in parallel-out or parallel-in serial-out shift register. It accepts and transmits to the 201A data set a serial data stream at 2000 bits/sec. Figure 1. 201A COMMUNICATION LINK and leading U Transmission of the Trining tice Trinscent P Section 1 The state of s Figure 2. 201A LINE ADAPTOR CONTROL On the other hand, it accepts from or transmis to the PDP-8 characters (usually 8 bits in length) in parallel. All clocking, with the exception of the data-break timing, is provided by the 201A data set. The PDP-8 sees the 201A line adaptor (L.A.) as two control or status registers with all interaction being mediated through the manipulation of bits in these 2 registers. A detailed description of these registers as seen by the PDP-8 software is given in the next section. It is sufficient at this point to note that these registers, along with the frame counter, specify to the interface its state and hence the appropriate action to take at any given instant. The frame counter is that counter in the line adaptor which determines when the correct number of bits have been shifted into or out of the SDR register. When the frame courter overflows, the character is data-breaked into core, in the case of a receive operation, or a new character is loaded into the SDR register from core in the case of a transmit operation. At the same time, an interrupt flag is set and the frame counter is reloaded. The L.A. then continues to assemble or dissassemble the next character while the proceeding interrupt is being processed by the PDP-8. This process is repeated over and over again for each character of the message. If, however, the interrupt flag has not been cleared when the next interrupt is generated, a Data Lost flag is set in additions an error indication to the PDP-8. When vertical parity calculation is enabled in the L.A., the frame size is assumed to include a parity bit as the high-order bit. The parity calculation is based on old parity, and a parity error will cause only the Parity Error flag to be set, with no other abnormal action initiated by the L.A. The remaining function of the L.A. is to achieve character synchronization. This is accomplished by scanning the received data stream for a given bit pattern designated by SYN (026g). When this pattern is found, the interface is placed in what is called the text mode state, and the actions described above then take place. At the discretion of the PDP-8 software, the L.A. can be taken out of the text mode state, with the
result that the scanning process will be resumed. The control sequences to transmit and receive data will be described below. The remainder of the L.A. consists of buffers and gates which will be described in detail in the section on logic. The PDP-8/201A line adaptor interface performs the logical and electrical function of mating the PDP-8 and the 201A line adaptor. This entails the control of the databreak operation between the 201A L.A. and the PDP-8, gating necessary for programmed data transfer, and the logic required for the interrupt control between the two devices. The details of these operations are presented in Appendices I, II, and III since they vary among the three systems. #### PROGRAMMING AND CONTROL CONSIDERATIONS The PDP-8/201A data communication interface in the case of a standard PDP-8 with single-cycle data-break capabilities is controlled by the resident PDP-8 program via three sets of IOT instructions. The device codes for these three sets of IOTs must be consecutive with the first one divisible by 4.* For example, 40, 41, and 42 are not used on most PDP-8 installations and satisfy the requirements. Furthermore, the hardware specifies (at the option of a given installation) two locations in core to be used as receive and transmit buffers. These locations must also be sequential with the convention that: receive $\pm 0 \pmod{2}$ and transmit $\pm 1 \pmod{2}$. After the 201A L.A. transfers a word between the SDR register and the core buffer, the 201A L.A. will generate an interrupt. The first set of IOTs will service the interrupt ^{*} that is, the second octal digit is either a 0 or 4. as follows: #### Identify Transmit Interrupt (6xxl) This micro-instruction causes a skip if an interrupt caused by a 201A transmit operation is pending. #### Identify Receive Interrupt (6xx2) This micro-instruction causes a skip if an interrupt caused by a 201A receive operation is pending. #### Clear 201 Interrupts (6xx4) This instruction will cause the 201A transmit and receive interrupt flags and the character service flag in the 201A status word to be cleared. The 201A L.A. has two status or control words associated with it. Control Word 1 is serviced by the second set of IOTs and Control Word 2 by the third. (Figure 3 gives the bit assignment of these control words, and their interpretation is given below.) The IOTs for Control Words 1 and 2 behave identically. #### Read (6xx1) The contents of the specified control word is ORed into the AC. #### Skip Under Mask (6xx2) The PDP-8 will skip the next instruction if any position of the AC is a one and the corresponding position in the control word is a zero. #### Invert Under Mask (6xx4) This instruction inverts (complements) each bit of the control word for which there is a one in the AC. CONTROL WORD 1: Higgstong Lammer and the Till betiliber 1177(Dames) (14) Transmirth Himenenit il parent result Phinamers. цинини HHHHHHHH # CONTROL WORD 2: | CFR(3)CFR(2)CFR(1)CFR(0) | 11 | |--------------------------|----------| | CFR(1) | 10 | | CFR(2) | 6 | | FR (3) | œ | | <u> </u> | POSITION | | | Ų | Figure 3. BIT ASSIGNMENT OF CONTROL WORDS The first status register, called Control Word 1, is the basic 12-bit control register for the 201A L.A. It contains the necessary status information to control the 201A data set and L.A., and to determine its state. The second status register, Control Word 2, is a four-bit register which contains the modulo 16 complement of the character or frame size, not including vertical parity. When vertical parity is enabled, as noted above, the frame size includes a bit position for parity even though it is only detected and used by the hardware. For example, in normal operation, the character size is 8 bits with vertical parity checking and computation disabled; thus Control Word 2 in this instance would contain 108. The restrictions on the frame size from a hardware point of view are that it be greater than 2*and less than or equal to 1210, including parity. The following definitions give the name of each bit in Control Word 1 and its position relative to the AC along with the prescribed effect the software should have on each status bit. The operations available to the software (read, clear, and invert) are indicated in parentheses. #### INT FLAG-Interrupt Flag (Clear) (ACO) When receiving, indicates that a character has just been placed in the receive buffer. When transmitting, it indicates that a character has just been taken from the transmit buffer and will be transmitted. An interrupt will occur only and always in these cases. #### DATA LOST-(Clear) (AC1) Indicates that an interrupt has occurred when the INT flag is set. This should indicate, if interrupts are processed correctly, that overrun has occurred and hence a character has been lost (receive) or a duplicate character sent (transmit). ^{*}Note: The SYN character is constrained to be 8 bits. #### PAR ERROR-Vertical Parity Error (Clear) (AC2) Indicates a vertical parity error has occurred on the present character received. This indication will occur only if bit AC6 is set (see description below). #### REQ SEND-Request-to-Send (Read) (AC3) This is a data set control signal which tells the data set to produce a carrier and begin transmitting when the clear-to-send signal comes on. This signal is generated and cleared via transmit request in a manner described below. #### XMT REQ-Transmit Request (Invert) (AC4) By setting this bit, the request-to-send bit is set if the 201A L.A. is not in the receive state. If the 201A L.A. is actively receiving, the receive operation is terminated at the next end-of-character indication and then the request-to-send signal is given. If the 201A L.A. is actively transmitting and XMT REQ is cleared, the 201A L.A. will go into the receive idle state at the next end-of-character indication, that is, waiting for the carrier to be detected from the other end of the line. #### CLR SEND-Clear-to-Send (Read) (AC5) Indicates that sufficient time has elapsed since the request-to-send indication was given and the line is now in a transmit ready state. This indication is <u>not</u> the data set clear-to-send signal, but an indication derived from the data set signal which guarantees proper operation of the interface. #### CHK PAR-Check Vertical Parity (Invert) (AC6) Indicates to the 201A L.A. that in the receive state vertical parity is to be checked, and in the transmit state vertical parity is to be computed and the correct bit appended to the character and transmitted. Vertical parity is always computed in the 201A L.A., but no action is taken unless the CHK PAR bit is set. This continual computation allows the 201A L.A. to go from non-parity operations to parity operations within one character time. #### TEXT-Text Mode (Invert) (AC7) In the receive state, text mode indicates that character synchronization has been found. If the TEXT bit is cleared while in the receive state, this tells the interface to look for new character synchronization. While looking for character synchronization no interrupts will occur. The first interrupt will occur on the first character received following the establishment of character synchronization. When in the transmit state, TEXT should normally not be altered. If the TEXT bit is cleared while transmitting, the interface is frozen until the TEXT bit is set again. This has the effect of transmitting continually the bit being presented to the line at the time the TEXT bit was cleared. During this time no interrupts will occur. The 201A L.A. will always place the TEXT bit in the correct state. It should be changed under p_{\perp} gram control only if the actions described above are desired. #### SET RDY-Set Ready (Read) (AC8) Indicates that a call has been answered and that there is a data set in the data mode at the other end of the line. This indication drops when either party hangs up. #### TERM RDY-Terminal Ready (Invert) (AC9) Indicates to the data set that it should automatically answer a call. #### RING-Ringing (Read) (AC10) Indicates that the data set is being called. The indication follows the actual bell or ring signal to the hand set. #### CAR DET-Carrier Detect (Read) (AC11) Indicates that carrier is on the line. 'n most cases of normal operation when CLR SEND is on, it indicates that local carrier is present, and conversely when CLR SEND is off, that carrier is being received from the other end of the line. Throughout the definitions above, reference was made to the transmit and receive states. These states are defined within the 201A L.A. as the logical conjunction of certain signals. That is, the 201A L.A. is in the <u>transmit</u> state if and only if all the following signals are present: - a. REQ SEND - b. CLR SEND - c. SET RDY - d. TERM RDY - e. CAR DET The 201A L.A. is in the <u>receive state</u> if and only if <u>all</u> the following conditions are true: - a. REQ SEND is not present - b. CLR SEND is not present - c. SET RDY is present - d. CAR DET is present The 201A L.A. is in the $\underline{\text{receive-idle}}$ state if and only if $\underline{\text{all}}$ the following conditions are true. - a. REQ SEND is not present - b. CLR SEND is not present - c. SET RDY is present. #### A DATA FORMAT SCHEME For the sake of completeness a brief sketch and discussion of a message format scheme is presented. The only portion of this scheme which is affected by the hardware is the actual SYN character. This particular scheme is presented for exposition purposes only and is not intended to represent the existing 201 software support. An inbound message has the following format: <Sync Characters><Text Characters><Terminating Character><Two Block Check Characters>. These characters are defined as follows: TABLE I CONTROL-CHARACTER DEFINITIONS | mission | |-------------| | | | nowledgment | | nowledgment | | ldle | | Block | | ge | | Turnaround | | | A <u>Sync Character</u> is the ASCII SYN character. A minimum
of four sync characters will be required to guarantee proper character synchronization by the software. In the case of long distance operation where there is echo suppression on the telephone line a sufficient number of PAD characters must precede the SYN characters to allow the line to settle down. A <u>Text Character</u> may be any combination of eight bits which is not identical to a terminating character. The positive acknowledgment character, ACK, and the negative acknowledgment character, NAK, are considered message characters for transmission purposes. Likewise SYN is a message character which when received is deleted from the message. The message may be the empty string, that is, no text characters. A <u>Terminating Character</u> is any member of the following set of characters: Each of these terminating characters will have the effect of terminating the present message along with other logical implications to the software. The <u>Block Check Characters</u> are longitudinal parity check characters treated as a code word in a cyclic code whose generating polynomial is $$x^{16} + x^{15} + x^2 + 1$$. Two block check characters must accompany every message. This format is used in a store and forward mode; that is, the PDP-8 receiving a message across a 201A data communication link will store the incoming message. Concurrently it will forward that message at a rate that the interrupt processing will bear, calculating the cyclic checksum as it proceeds. In general, when the terminating character is finally encountered in this forwarding operation, the two checksums (the one actually received and the one computed) are compared. If the two match, a positive acknowledgment ACK is returned to the sender. If a discrepancy exists, an NAK or negative acknowledgment is returned. The software determines what to do in these cases, and this problem will not be discussed here. An <u>outbound message</u> has the same format as an inbound message with the addition of at least one PAD character appended to the end of the message to allow for proper "flushing" of the communication link. The PAD characters are always ignored in this context. A graphical presentation of a message exchange as viewed from the PDP-8 is shown in Figure 4. For exposition purposes the handshake message has the form: (SYN1) (SYN2) (TEXT CHAR) (ETX) (BCC1) (BCC2) (PAD1) (PAD2) , with the acknowledgment taking the form (SYN1) (SYN2) (ACK) (FTX) (BCC1) (BCC2) (PAD1) (PAD2) . In Figure 4, the control status is affected either by the program (P.S.-Program Set, P.C.-Program Clear) or by the data set or interface (D.S.-Modem Set, D.C.-Modem Clear). #### DETAILED LINE ADAPTOR LOGIC This section will present in detail the logical design of the 201A line adaptor. The logic diagram standard Digital Equipment Corporation conventions. ing knowledge of D.E.C.'s R and W series logic is assumed throughout this section. The remainder of the logic for the 201A Interface is given in Appendices I, II, and III for each particular version of the interface. For completeness, both the module position and pin assignment for each circuit is indicated. All circuits within this section are in the same D.C.C. 1943 wire-wrap panel. The detailed module utilization is presented with the particular interface in the Appendices. In order to allow for multiple adaptors, as used on the Data Concentrator, the common signal names are prefixed with a # sign. In a single adaptor configuration the # sign is just part of the signal name. The logic will be presented as much as possible within the framework of Figure 2. Hite section of 1111 HHH-HHH. невиненица dements. Graphical Presentation of a Message Exchange Viewed from the PDP-8. Figure 4. #### Serial-Deserializer Register (Diagram 1) This is a 12-bit register with high-order position #SR00 and low-order bit #SR11. Serial data are shifted into #SR00 in the receive state from the data set on the clock signal #SHIFT. They are shifted out of #SR11 in the transmit state into a line buffer #SDBF. Characters are strobed into the SDR register in a data-break operation from the buffered memor; buffer on the #MBSR signal. This character transfer is simulated in the case of an interface not using data break, and those details are treated in Appendix III. The operation of character areasfer to the PDP-8 is treated in the Appendices. #### Clock Gating (Diagram 2) The 201A data set provides two clock signals, #SCRB (receive clock) and #SCTB (transmit clock). The #SCTB clock is always available and is used within the data set for internal control timing. The #SCRB clock is derived from the received data stream and is provided to sample the received data line (#RDB). The interface selects the correct clock on the basis of its state (transmit/receive). #### SDR Pulse Gating (Diagram 3) The control of the SDR register is primarily achieved through the four pulse amplifiers (Diagram 3). To keep all transitions occurring synchronously with the #CLOCK signal it is necessary to separate the clearing of #SR00 from the remainder of the register. By the use of the #FR3+ signal, the register is cleared at the end of a transmitted character before the next character is loaded. It is cleared at the end of a data-break operation in the receive state via #BRKDN; and all but #SR00 is cleared when character synchronization is found in the receive state. In this last case, while the remainder of the register is cleared the first bit is read in from the line. #MBSR loads ones into the register during a data break in the transmit state. Diagram 1. SDR REGISTER **#.** Diagram 2. CLOCK GATING 1 in resident 1 Limited The second state of the second 41140000-00061 H The same of sa W. нинавин interestrate Diagram 3. SDR PULSE GATING #### Data Set Signals (b agram 4) Diagram 4 shows the correspondence between the 201 data set connector and signal designations of the 201A L.A. #### SDR Serial Input/Output Gating (Diagram 5) The serial input signal #F.DB from the 201A data set is converted to standard D.E.C. levels (-3v, 0v) from E.I.A. standard levels (+6v, -6v) (Electronic Industries Association Standard R S 232: Interconnection of Data Terminal Equipment with a Communications Channel). When not in the receive state, the input to the SDR register is conditioned (#RD+) to shift a zero into the SDR register. The #LINE flip-flop determines whether the output from the SDR register buffered via #SDBF or a parity bit (#PTBF) is placed on the transmit data line (#SDB). When the L.A. is in the receive state, zeros are always placed on the #SDB line to minimize possible cross-talk. #### Transmit/Receive State Gating (Diagram 6) The XMT/REC status of the interface is specified by the two flip-flops #XMT and #REC. The definition of these states has been defined above, however, it is important to note that the state changes are synchronized to the clock. The #RSYN latch is used to prevent the loss of the last receive interrupt. #### Control Register 2 (Diagram 7) The second control word as defined above contains the modulo 16 complement of the current character length. This value is referred to throughout the interface as the frame size and is stored in the register #CFRO-#CFR3. The register is loaded via IOT commands described above from the PDP-8 AC, and read into the PDP-8 on an extension to the AC called the EAC. The details of the EAC buss are described in Appendix I. D1AGRAM 4 DATA SET/1NTERFACE CABLE ASSIGNMENT | Interface
Signal Name | | t Connector
DB-25-P PLUG) | Signal Name | Interface
Connector
(WO21MJ*) | |--------------------------|----|------------------------------|----------------------------|-------------------------------------| | | 1 | AA | Protective Ground | С | | | 7 | AB | Signal Ground | С | | #SDB | 2 | ВА | Transmit Data | D | | #RDB | 3 | ВВ | Receive Data | E | | # r. SB | 4 | CA | Request to Send | F | | #CSDB | 5 | СВ | Clear to Send | н | | #SRDB | 6 | СС | Set to Ready | J | | #TRDYB | 20 | CD | Terminal Ready | К | | #R1NGB | 22 | CE | Ring | L | | #CDETB | 8 | CF | Carrier Detect | М | | #SCTEB | 24 | DA | Terminal Transmit
Clock | N | | #SCTB | 15 | DB | Set Transmit Clock | P | | #SCRB | 17 | DD | Set Receive Clock | R | $[\]star$ Special module with all pins available and ground connections for shielding. Diagram 5. SDR SERIAL I/O GATING C still state of L commence of Controller Time Metalog Ind Diagram 6. TRANSMIT/RECEIVE STATE GATING Diagram 7. CONTROL REGISTER 2 (FRAME SIZE) 0 A School I Distribution Supplement of the same Company of the Compan Excession. #### Frame Counter (Diagram 8) The frame counter determines by its overflow when a character has been received or transmitted, thus making the positive transition of #FR3+ the character received/transmitted signal. It is reloaded from Control Register 2, each character time making use of the fact that the register is zero at this time. It is thus necessary only to clear the register at the beginning of an operation via the #SVC signal. The frame counter is normally incremented when in the text state and not in a transition state (#SVC+). The #IOPCS signal forces the counter to wait one bit time on character synchronization when parity checking is enabled to take account of the parity bit on the SYN character. #### State Synchronization (Diagram 9) The #SVC state and #SVC-positive transition are used throughout the interface to clear it on a XMT/REC state change or a change in the text state. The remainder of the logic is necessary for its synchronization to the clock signal. #### Text State and Sync Detection (Diagram 10) The text state is embodied in the flip-flop #IFMD. The flip-flop is one bit of Control Word 1 and is therefore accessed through the AC under program control. Two of its other input gates place #IFMD in the correct state when the XMT/REC state is entered. The remaining gate sets #IFMD in the text state when character synchronization is found in the REC
state. This transition is conditioned by #DTSY+ and strobed on the clock signal. #DTSY+ is the logic 1-and gate used to determine whether the first 8 bits of the SDR register contain the SYN character. Diagram 8. FRAME COUNTER [] د The state of s Algeria, mad Lancing Land Land Diagram 9. STATE SYNCHRONIZATION Diagram 10. TEXT STATE AND SYNC DETECTION Constitution of ### Parity Gating (Diagram 1) The check-vertical-parity-status flip-flop is designated #EBPC in the interface. It is manipulated in the same manner as described above for other bits in Control Word 1. The parity error flip-flop is #PAR and normally is set to zero when #EBPC is not set. When parity checking is enabled, the accumulated parity in #PATY is compared against the last bit of the character when receiving, and #PAR is set if they are not the same. ### Clear- and Request-to-Send Gating (Diagram 12) The contents of the transmit request flip-flop (#XTRQ) is jammed into the request-to-send flip-flop (#RQSD) at the end of each data-break cycle requested by the interface. Since the cleared status of #RQSD is (request-to-transmit) a gate is provided to set #RQSD immediately upon the transition of #XTRQ if the interface is in neither the XMT or REC state. This method of control of request-to-send guarantees that the processing of the current character will be concluded before the XMT/REC state is changed. Furthermore, if #RQSD is set, at least one character must be transmitted before a receive operation can occur. The clear-to-send indication, #CLSD, is derived from the data set signal #CSDB. In order to avoid a spurious receive state, clear-to-send must be delayed from dropping after request-to-send drops. This delay is necessary because the data set brings up carrier after first dropping it when clear-to-send drops. It appears that this is the result of the data set "flushing" itself after a transmit operation. ### Character Service Interrupt Flag (1 agram 13) The interace's character interrupt flag is #SRSV. This flag is set in the text state on each received character, and in the text state on each character transmitted if there Diagram 11. PARITY GATING 1,000 Georgia degrapas Dark Park Street The same of Нинини Hantiku-s Diagram 12. CLEAR- AND REQUEST-TO-SEND GATING Diagram 13. CHARACTER SERVICE INTERRUPT FLAG district The street of th H H-Printer Annangement of is still a transmit request pending. Every time the frame counter overflows, an #ENDI pulse is generated. This pulse is normally the character service request except when a change in text mode generates a false overflow, thus the need for #BRENB. ### Status Indicators (Diagram 14) Diagram 14 shows the remaining status bits of Control Word 1. Terminal ready (#TMRD) and data lost (#DLST) can be manipulated under program control as described above. Set ready (#STRDY) and (#RING) are only gates since they present static status of the data set. ## Control Word 1 EAC Gating (Diagram 15) Diagram 15 shows the gating necessary to load Control Word 1 on the extended AC buss (EAC). ### Miscellaneous Pulses (Diagram 16) To prevent undue loading of the PDP-8 power clear signal and to allow for reshaping the pulse, #PWCLR is derived. #INVMK is the pulse used to invert under mask the bits in Control Word 1. #RING Diagram 14. STATUS INDICATORS The state of s 2 Section of the last and designation Assessed Bayes The state of s ned#2leguare Particularies The same of and appropriate Contrade line THE STREET Diagram 15. CONTROL WORD 1 EAC GATING Diagram 16. MISCELLANEOUS PULSES THE PERSON NAMED IN lamidi... The state of s BETT 183201-1- Hiteless of the second est material The state of s 1001711011011011 N. PERSONAL PROPERTY. A AND PARTY OF THE PDP-8/201A LINE ADAPTOR INTERFACE FOR USE WITH A PDP-8 WITH THE DATA-BREAK FACILITY # TABLE OF CONTENTS | | Page | |------------------------------|--------| | Data Break Control | I - 1 | | Data Break Address | I - 3 | | Device Select Code | I - 3 | | Device Selection Gating | I - 7 | | Interrupt Control | I - 7 | | Extended Accumulator Control | I-10 | | Accumulator Input Gating | I - 10 | | Extended Accumulator Buffers | I - 10 | | Data Bit Buffers | I - 10 | | Miscella: ous Circuits | I-10 | | Cable Layout | I-16 | | Module Utilization | I-16 | # LIST OF TABLES | Tables | | Page | |--------|-------------------------------------|--------| | I - 1 | Buffered Accumulator Outputs | I - 18 | | I - 2 | Buffered Memory Buffer Output Lines | I-19 | | J - 3 | Accumulator Inputs | I - 20 | | I - 4 | Programmed Injut/Output Control | I - 21 | | I - 5 | Data-Break Address Lines | I - 22 | | I - 6 | Data-Break Input Lines | I - 23 | | I - 7 | Data-Break Control Signals | I - 24 | | I - 8 | Panel 1 - Common Section | I - 25 | | I - 9 | Panel 1 - Common Section | I - 26 | | I - 10 | Panel 2 - Fort O/Line Adaptor 1 | I - 27 | | I - 11 | Panel 2 - Fort O/Line Adaptor 1 | T _ 28 | # LIST OF DIAGRAMS | Diagram | | Page | |---------|------------------------------|--------| | I-1 | Data Break Control | I - 2 | | I - 2 | Data Break Address Lines | I - 4 | | I - 3 | Device Decoding | I - 6 | | I - 4 | Device Selection Gating | I - 8 | | I - 5 | Interrupt Control | I - 9 | | I - 6 | Extended Accumulator Control | I-11 | | I - 7 | Accumulator Input Gating | I - 12 | | I - 8 | Extended Accumulator Buffers | I - 13 | | I - 9 | Data Bit Buffers | I - 14 | | I-10 | Miscellaneous Circuits | I-15 | | I-11 | Cable Layout | I-17 | # LIST OF FIGURES | Figure | | | Page | |--------|--------------|---------|-------| | I - 1 | W021MG Addre | ss Card | I - 5 | Hermaldin माधंशंक न # BLANK PAGE ### PDP-8/201A LINE ADAPTOR INTERFACE FOR USE WITH A PDP-8 WITH THE DATA-BREAK FACILITY The remainder of the logic and details of the 201A data communication adaptor using the data-break facility is presented in this Appendix. With reference to Figure 1, the body of the logic to be discussed here is considered to make up the PDP-8/201A line adaptor interface. The total 201A data communications adaptor is realized in two DEC 1943 wire-wrap panels. For the purpose of this report, each panel is called a bay. In this version of the adaptor, for the most parc, the PDP-8/201A line adaptor interface is in Bay 1 with the 201A line adaptor in Bay 2. Throughout the remainder of this Appendix, unless noted otherwise, the logic discussed is in Bay 1. ### Data Break Control (Diagram I-1) The line adaptor signals the PDP-8 through the #BKRQ flip-flop that a data transfer is desired to or from PDP-8 core. The address within the PDP-8 memory is read by the PDP-8 from the data address lines. The low-order bit of this address is given by DIAD11. When the break request is given, the direction of the transfer is specified by the CICTL signal. the PDP-8 enters the break state and the address is loaded into the memory address register, an address accepted pulse is generated by the PDP-8. At this time, the break request signal must be dropped by the interface. During the break state, as defined by the BBREAK signal, the BTl pulse indicates the end of the break cycle, and is used to strobe the contents of the designated memory location from the buffered memory buffer register into the SDR register. The PDP-8 will also strobe the data-break input lines (DATA BIT) into memory at this time in case the transfer direction is into core. The break request signal is generated each time the frame counter overflows while Diagram I-1. DATA-BREAK CONTROL The Property The state of s updetalteen STATE OF THE PARTY OF Best College of the London distanting. MICE DALCAGE OF FEMALES Printerson of the last distribution. A STATE OF THE STA in the text state, and when the interface first enters the transmit state to fetch the first character to be transmitted. All of the logic shown in this diagram is in Bay 2 of the interface. ### Data Break Address (Diagram I-2) The 201 line adaptor has assigned two sequential locations in PDP-8 core to be used as buffers for incoming (received) and outgoing (transmitted) data. These two locations are specified in the hardware on a W021MG address card. The address is a 14-bit address to allow the buffers to be in any core bank. The 15th or low-order bit is not required because a pair of locations is being specified. By convention, the even location of the pair is the receive buffer and the odd location is the transmit buffer. Using the DEC numbering convention, the address is given by the vector ADDR(0)...ADDR(14). Schematically, the W021MG module is shown in Figure I-1. These address lines are then buffered as shown in Diagram I-2 and form the inputs for the data break address (DADR); the low-order bit (DIAD11) is generated by the request-to-send signal and is shown in Diagram I-1. The j-th position $(j=0,\ldots,13)$ of the address is a 0 if there is a jumper to ground at that position and is a 1 otherwise. The WO21MG address card is located in module position 1B09. If any of the three high-order positions (ADDR(0), ADDR(1), or ADDR(2)) is a 1, there must be extended memory capabilities on the PDP-8, and the eleventh or address extension cable must be provided. ### Device Select Code (Diagram I-3) The device select code is a two octal digit number which selects an external device during an input/output operation. The device code appears in positions 3 through 8 of the memory buffer (M.B.) during an IOT instruction, alerting the external device that it is being selected. Diagram 1-2. DATA-BREAK ADDRESS LINES I Total State of the Local Division in Loc Appelitherence, distribution discontraction of the second A STATE OF THE PARTY PAR Standard Standard And the state of t Section of the second Allendaries Figure I-1. W021MG Address Card. ÷ Diagram I-3. DEVICE DECODING Carried Street Contraction of the last Santa Printers A STATE OF THE PARTY PAR The state of the Total Street Harrison, I SHP4-2154APP BANKS CANADA Military Hall William Committee The 201A L.A. has associated with it three separate device codes as
discussed above. In order to specify the three devices it is sufficient, because of the aforementioned requirements, to define only a four-bit number, which appears in positions 3-6 of the M.B. during an IOT instruction. This number must also be realized in the hardware, and this is accomplished via an R002 diode module found in position 1A13 and pictured at the far left of Diagram I-3. Thus to specify the desired set of device codes the appropriate diodes are removed. For example, using the set 40, 41, 42 as before, the diodes connected to pins E, H, L, and P must be removed. The remainder of Diagram I-3 shows the gating necessary to obtain the signals to identify each of the devices. ### Device Selection Gating (Diagram I-4) The gates shown in Diagram I-4 are located in Bay 2 and provide the signals to differentiate between Control Word 1 and Control Word 2 operation. #### Interrupt Control (Diagram I-5) Every time a character is transferred between the 201A L.A. and the PDP-8's memory, a character service flag (#SRSV) is set as described above. This flag in turn sets the appropriate interrupt flag, Transmit (XINT) or Receive (RINT), which causes an interrupt request. If interrupts are enabled in the PDP-8, a program interrupt is generated. Via the appropriate IOT micro-instruction, the program can identify the device causing the interrupt. The SKIP signal will be generated, and a program skip forced if this IOT is executed. It is the program's responsibility to clear the interrupt after it is identified, and the remainder of the gates allow for this. Diagram I-4. DEVICE SELECTION GATING TOWNS CO. * And 40000 The second Properties. ALDERINA MARCHAN Cal-Joseph Cal- The state of s Manager A Diagram I-5. INTERRUPT CONTROL : ### Extended Accumulator Control (Diagram I-6) In order to provide the IOT structure described in the Programming and Control Considerations section, the Extended Accumulator (EAC) buss was implemented. The full power of the EAC is not realized until multiple devices are using the buss, since it provides the mechanism for multiple inputs to the PDP-8 AC. Diagram I-6 shows the gating necessary to generate the SKIP signal when a skip under mask IOT is executed ### Accumulator Input Gating (Diagram I-7) Diagram I-7 shows the buffers which gate the EAC buss onto the AC buss. For other devices to use the EAC buss they need only provide the appropriate input to the ENBL gate and the gates for the EAC buss. ### Extended Accumulator Buffers (Diagram I-8) Diagram I-8 shows a set of buffers necessary to accomplish the inversion to gate the EAC onto the AC. The clamped loads for the EAC buss are also indicated. ### Data Bit Buffers (Diagram I-9) Diagram I-9 shows the buffers used to provide isolation between the SDR register outputs and the data inputs on a data break into the PDP-8. There is no gating signal provided on these buffers since this is the only device using the data bit lines. ### Miscellaneous Circuits (Diagram I-10) History Diagram I-6. EXTENDED ACCUMULATOR CONTROL Diagram I-7. ACCUMULATOR INPUT GATING Control of the Contro EAC10 EAC11 - Harriston Tophismus and a Thursday Hill Brasser THE PERSON NAMED IN EAC06 -- Diagram I-8. EXTENDED ACCUMULATOR BUFFERS Diagram !-9. DATA BIT BEFFERS ----- Diagram I-10. MISCELLANEOUS CIRCUITS # Cable Layout (Diagram I-11) The input/output cables for the 201A L.A. are shown in Diagram I-11. The correspondences between the s_gnal names, module positions, and pin connections for the 201A L.A. and the PDP-8 are given in Tables I-1 through I-7. # Module Utilization (Tables I-8 through I-11) Tables I-8 through I-11 give the module utilization for a 201A L.A. In addition to the module utilization, a complete signal name map is also shown. | | l | 01 02 | 03 04 | 90 50 | 07 | 80 | 60 | |-----|---------------|----------------|-----------------|--------------|------------------|-------------------|------------------| | | ОШ | BACOC
BACO1 | BMB00
BMB01 | AC00
AC01 | DADROC
DADRO1 | DABT00
DABT01 | ADREX1
ADREX2 | | | - II - | BAC02 | BMB02 | AC02 | DADR02 | DABT02 | ADREX3 | | |) ¥ - | BAC03 | BMB03- | AC03 | DADR03 | DABT03 | | | | 1 2 2 | BAC04 | BMB03 | AC 0 4 | DADR64 | DABT04 | | | | Z D, C | BACOS | BMB04- | ACOS | DADKOS | DABT05 | | | | × S ⊢ : | BACO6
BACO7 | BMB04
BMB05- | AC06
AC07 | DADRO6
DADRO7 | DABTOS
DAI TO? | | | | > | BAC08 | BMB05 | AC08 | DADR08 | DABT08 | OH: | BAC09
BAC10 | BMB06-
BMB06 | AC09
AC10 | DADRO9
DADR10 | DABT69
DABT10 | | | | <u>. # +</u> | BAC11 | BMB07- | AC11 | DIADII | DABT11 | | | | , ×. | 1001 | BMB07 | SKIP | BKRQ# | | | | - B | 3 Z 2 | IOP2 | BMB08- | INT .EQ | DICTL | | | | | ء کہ د | 10P4C | BMB08 | | BBREAK | | | | | × S ← : | BT1C
BT2A | BMB09
BMB10 | | ADDACC | | | | | ⊃ > | BPULRC | 3MB11 | | | | | | | 1 | | | | | | | Diagram I-11. CABLE LAYOUT A. 1000000 Harrison of the ca Jeronneser. THE PROPERTY OF A STATE OF THE PARTY PAR Mutherightin - TABLE I-1 BUFFIRED ACCUMULATOR OUTPUTS ********** | 201A LI | NE ADAPTO | R | | PDP-8 | | |--------------------------|-----------------|-----------------|-----------------|----------------|-------------------------| | INTERFACE
CONNECTION | SIGNAL
NAM | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE
CONNECTION | | A01D, A02D
A01E, A02E | BACOO
BAC 01 | | | BACO
BAC1 | ME34D
ME34E | | A01H, A02H | BAC02 | | | BAC 2 | ME34H | | A01K, A02K
A01M, A02M | BAC03
BAC04 | | | BAC3
BAC4 | ME34K
ME34M | | A01P, A02P
N01S, A02S | BACO5
BACO6 | —— ∻ | → | BAC5
BAC6 | ME34P
ME34S | | A01T, A02T
A01V, A02V | BACO7
BACO8 | > | | BAC7
BAC8 | ME34T
ME34V | | B01D, B02D
B01E, B02E | BAC09
BAC10 | ─ ❖ | ⇒ | BAC9
BAC10 | MF34D
MF34E | | ВО1Н, ВО2н | BAC11 | > | | BAC11 | MF34H | TABLE I-2 BUFFERED MEMORY BUFFER OUTPUT LINES | 201A | LINE ADAP | TOR | | PDP-8 | | |-------------------------|----------------|-----------------|-----------------|----------------|----------------------| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE CONNECTION | | A03D, A04D | BMB00 | > | | BMB0(1) | ME35D | | A03E, A04E | BMB01 | > | | BMB1(1) | ME35E | | A03H, A04H | BMB02 | | | BMB2(1) | ME35H | | A03K, A04K | BMB03- | > | | BMB3(0) | ME35K | | A03M, A04M | BMB03 | | | BMB3(1) | ME35M | | A03P, A04P | BMB04- | | | BM24(0) | ME35P | | A03S, A04S | BMB04 | | | BMB4(1) | ME35S | | A03T, A04T | BMB05- | | | BMB5(0) | ME35T | | A03V, A04V | BMB05 | | | BMB5(1) | ME35V | | B03D, B04D | BMB06- | | | BMB6(0) | MF35D | | B03E, B04E | BMB06 | | | BMB6(1) | MF35E | | В03Н, В04Н | BMB07- | | | BMB7(0) | MF35H | | B03K, B04K | BMB07 | | | BMB7(1) | MF35K | | B03M, B04M | BMB08- | | | BMB8(0) | MF35M | | B03P, B04P | BMB08 | · | | BMB8(1) | MF35P | | B03S, B04S | BMB09 | | | BMB9(1) | MF35S | | B03T, B04T | BMB10 | | | BMB10(1) | MF35T | | B03V, B04V | BMB11 | | | BMB11(1) | MF35V | TABLE I-3 ACCUMULATOR INPUTS | 201A | LINE ADAI | PTOR | | PDP- | 3 | |--|--|--|-----------------|--|---| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE
CONNECTION | | A05D, A06D
A05E, A06E
A05H, A06H
A05K, A06K
A05M, A06M
A05P, A06P
A05S, A06S
A05T, A06T
A05V, A06V
B05D, B06D
B05E, B06E | AC00
AC01
AC02
AC03
AC04
AC05
AC06
AC07
AC08
AC09
AC10 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | AC0
AC1
AC2
AC3
AC4
AC5
AC6
AC7
AC8
AC9
AC10 | PE 2D PE 2E PE 2H PE 2K PE 2M PE 2P PE 2S PE 2T PE 2V PF 2D PF 2E | | В.5Н, ВО6Н | AC11 | | | AC11 | PF2H | *Note: Collector of Grounded-Emitter Transistor 4. TABLE I-4 PROGRAMMED INPUT/OUTPUT CONTROL | 201A | LINE ADAP | TOR | | / JP-8 | | |-------------------------|----------------|-----------------|-----------------|----------------------|----------------------| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
Symbol | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE CONNECTION | | B05M, B06M | INTREQ | *1 | *1 | INTERRUPT
REQUEST | PF2M | | B05K, B06K | SKIP | *1 | *1 | SKIP | PF2K | | B01K, B02K | IOP1 | | | IOP1 | MF34K | | B01M, B02M | IOP2 | | | IOP2 | MF34M | | B∩1P, B02P | IOP4C | | | I O P 4 | MF34P | *Note: Collector of Grounded-Emitter Transistor TABLE I-5 DATA-BREAK ADDRESS LINES | 201A | LINE ADAPTOR | TOR | | PDP-8 | | |-------------|--------------|-------------------|-------|-----------------|-------------------------| | INTERFACE | SIGNAL | LOGIC | LOGIC | SIGNAL
NAME | INTERFACE
CONNECTION | | | ADREX3 | Ŷ | Î | ADDR EXT 3 | ME30H | | | ADREX2 | Ŷ | | ADDR EXT 2 | ME30E | | | ADREX1 | Ý | | ADDR EXT 1 | ME30D | | | DADROO | Ŷ | Ŷ | DATA ADDR 0(1) | PE3D | | | DADRO1 | Ì | | DATA ADDR 1(1) | PE3E | | | DADR02 | Ý | | DATA ADDR 2(1) | РЕЗН | | | DADRO3 | | | DATA ADDR 3(1) | PE3K | | | DADR04 | Î | Ŷ | DATA ADDR 4(1) | PE3M | | - | DADROS | Ŷ | 7 | DATA ADDR 5(1) | PE3P | | | DADR06 | Ŷ | | DATA ADDR 6(1) | PE3S | | | DADR07 | ÿ | Ŷ | DATA ADDR 7(1) | PE3T | | | DADR08 |) | Ŷ | DATA ADDR 8(1) | PE3V | | | DADR09 | $\langle \rangle$ | Ŷ | DATA ADDR 9(1) | PF30 | | | DADR10 | \ | Ÿ | DATA ADDR 10(1) | PF3E | | | DADR11 | • | Ŷ | DATA ADDR 11(1) | PF3H | TABLE 1-6 DATA-BREAK INPUT LINES | 201/ | 201A LINE ADAPTOR | TOR | | PDP-8 | | |--------------------------|-------------------|-----------------|-------
------------------|-----------| | INTERFACE
CONNEC, 10N | SIGNAL | LOGIC
SYMBOL | LOGIC | S I GNAL
NAME | INTERFACE | | A08D | DABTOO | Î | | DATA-BIT 0 | PE4D | | A08E | DABT01 | () | ĵ | DATA-BIT 3 | PE4E | | А08Н | DABT02 | Í | Î | DATA-BIT 2 | PE4H | | A08K | DABT03 | Ŷ | Î | DATA-BIT 3 | PE4K | | A08M | DABT04 | 1 | | DATA-BIT 4 | PE4M | | A08P | DABTOS | Ŷ | - | DATA-BIT 5 | PE4P | | A08S | DABT06 | Ŷ | Î | DATA-BIT 6 | PE4S | | A08T | DABT07 | Ŷ | Ŷ | DATA-BIT 7 | PE4T | | AC8V | DABT08 | | Ç | DATA-BIT 8 | PE4V | | B08D | DABT09 | | Ç | DATA-BIT 9 | PF4D | | B08E | DABT10 | | Ŷ | DATA-BIT 10 | PF4E | | B08H | DABT11 | Ŷ | Ŷ | DATA-BIT 11 | PF4H | | | | | a | | | TABLE I-7 DATA-BREAK CONTROL SIGNALS | 201/ | LINE AD | APTOR | | PDP-8 | | |-------------------------|----------------|-----------------|-----------------|---------------------|----------------------| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
Symbol | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE CONNECTION | | в07К | BKRQ# | * | * | BREAK
REQUEST | PF3K | | В07М | DICTL | | | TRANSFER DIRECTION | PF3M | | B07P | BBREAK | | | B BREAK | PF3P | | B07S | ADDACC | | | ADDRESS
ACCEPTED | FF3S | | B01S, B02S | BT1C | | | BT1 | MF34S | | во1т, во2т | BR2A | | | BT2A | MF34T | | B01V, B02V | BPCLRC | | | B POWER
CLEAR | MF34V | *Note: Collector of a Grounded-Emitter Transistor. 413....... la montage Antiphistory of the second Martine State Mark Street D 12-451- 2997275 PETER PROPERTY. SCHIMBING. COMMON SECTION | | | | | | | | | | | | | | _ | | | | | | ₹ @ | | | | | | | | | | | | |------------|-------|--------|---------|--------------|---------|---------|---|--------|---------------|------------------|----------|-----------|--|-----------|---|---|---------|--------|--|-------------|----------|----------|--------|---------|---------------------------------------|----------|---|---------|---------------------------------------|---------| | 416 | R 107 | | 1 | EAC1,J | EAC01- | EACOL | EACO2- | FACD3- | EAC93 | EACD4- | EACOS- | EAC05 | - | SELOV | | | 919 | R107 | | EACD6- | EACO6 | FACO | EACD8- | EACDB | FACO | EAC1D- | EAC10 | EAC11- | BACTY | BACD9- | | A15 | R141 | GNDALS | 15 ISKP | BACDO- | EACD0 | BACC1- | EACO1 | EACO2 | BAC03- | EACC3 | EACD4 | BACO5- | EACDS | CNOALS | GNDA15 | * characteristics date characteristics | 815 | R141 | | CNDB15 | BAC06- | RACO2- | EACC | BACCS- | RACOB- | EACD9 | 8AC10- | FACID | EAC11 | GNDE15 | | A14 | R107 | | BAC00- | BACCO | 8AC01- | 8AC01 | BACO2- | 34C03- | BACC3 | BAC04- | 8AC05- | BAC05 | SELOV | | SELNO | NAME OF THE PARTY | 814 | R 107 | | BAC06- | BACD6 | BACOZ | BACD8- | BACOB | BACDS- | BAC1D- | 8AC10 | 8AC11- | ENBL | DEVSLI | | A13 | R0^2 | | 9P8C3- | 6MB03 | SELNC | -4:8IS | 4 CD | BPH75- | 50848 | SELND | B#876 | SELNO | | | | As addison The content was and | B13 | R111 | | 102 | ENEL | SKIP | | XINI | SK IP? | SKIP | *************************************** | RINT+ | SKIP3 | SKIP | | A12 | R1C7 | GNDA!2 | BK SL# | CNDA:2 | BPCLR | BPCLRC | \$401
10840 | L DAC- | LDAC+ | CTWDC | CTMD1 | DEVSL1 | C1MD2 | DE V SL 2 | | | 912 | R991 | | 1STSKP | SKIP | SK (P2 | CTMDG | SKIP3 | CEVADO | GRPSEL | CEVNDI | GRP SEL | | | | A11 | R111 | | × INI × | | | INTREO | OINTA | | | NTREO | 1001 | ENBL | 1 | LOAC | LOAC+ | 1 | 811 | R111 | | 67898 | PMBGB | DEVSIO | DEVSLO | BM807 | DEVAD1 | DEVSL1 | CEVSL 1 | BH307- | CEVNC2 | DEVS1.2 | | A13 | R1~1 | | ŧ. | ADORCO | AOPE X2 | ADDR : | AUREXI | LAUREN | ADDRC3 | DAUROL | DADROZ | ADUR C 5 | DAURLE | ADUR 16 | | : | c
T | R1~1 | | DAUR 04 | ADDRO7 | ADDR C8 | DAURGE | ADDR C9 | ADDR 10 | Ur.AR 78 | ADOR 1 1 | ADDR 12 | DADR 10 | | | 5 UV | h:21 | | ACREX1 | ADREX2 | | AJREX3 | | - | | | | W. 10 | | | | 1 | QT
V | ₩721MG | | ADORFE | ADDR71 | ADCR73 | ADDRAG | ADDRES | #DDK-0 | ADI)R 28 | 506330 | ADDKI | ADDR12 | AD0813 | | ALR | 12.4 | | CAPTON | CAFTOI | | FAFT 32 | CAE.TC3 | | CAP Tr4 | CABICS | | CABTO | CAHT-7 | 0.00 | [ABT.9 | ! | a.
T | 1234 | 1 | 671843 | CABIL | CABTIL | | | | | | | | | | 700 | hr21 | | | DAGACI | | DADREZ | F JOUNG | | CADPC4 | CAFRES CARTES | | CACAC | OADRC 7 | | #
20
20
20
20
20
20
20
20
20
20
20
20
20 | | ۳, | h-21 | | CADRES | DADRIA | DIACIL | | HKKC | E1C 7L | | BREAK | 47.4. |)
)
1 | | | Ar6 | ¥021 | | ACC | 4C71 | | 4C:2 | AC 7.3 | | 4C.4 | A.C. 0. 6. | | ٠ | | ; | a
د
م | | ec. | #921 | : | 5.JV | 4C1C | 4C11 | • | SK IP | INTORG | | | | | | | AC 5 | 1234 | | ACC | AC'1 | | ACC2 | A(f 3 | | V CC4 | AC 7.5 | i | ALCE | AC: S | | ن
د
د | | en
L | hr21 | | 55)4 | 40.10 | 4011 | | SK 1P | INTREC | | | | | | | 374 | 1654 | | BPB 70 | TO THE SE | | S 14.75 | D HALL | | AMB23 | 1
1
1
1 | : | 901149 | 16141 | 4 | ^
5
8. | | 4 | 17.74 | | 1 4 C F 1 3 | تتهودن | -128.118 | | HF E 7 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | たしたがむ | C Ya | 04.31 | 1 2 3 | | \$ v \$ | 12CH | | LERI | 3 M G L | | C.ZEC.S | 1. 19.20 | | S GAMO | - 7 1180 | • | B # 8 - 4 | in i | 4 7 11 11 | c ,a | and a separate | 873 | F, ck | ed review of the second | 1 200 20 | E MIN TO | -1 JBWF | | へしまる | 1.10年 | | D'HH' | 1 | .181 | | | A.2 | W-21 | | 54636 | 1, AC. | 4 | 44617 | 14 0 0 0 4 | | おうしても | 7.76 | | 1997.10 | 70791 | 0 | ٠
١ | en es e e e e e e e e e e e e e e e e e | 3,2 | 7 | And of the control | . At. ° 9 | 7174 | .4611 | | [d:] | 5401 | | 35d51 | 1110 | 4.715 | | | 401 | 12.4 | | PAC | ורשלי | | 4267 | 8 4 C - 4 | | \$ J C J & | 4, 76.7 | 3 | 946.5 | 300 | | ,
100
100
100
100
100
100
100
100
100
10 | Photograph of the state | 1, | 12.4 | and a
management of the second | \$ _ DV c | 94C1° | 11011 | | 5
- | 1,63 | | 1: A • C | 311. | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.100 | TABLE I-8. : | | 2 | | <⊕∪ | 0 4 | u ii. | I | 7 & | -J 1 | c z | • | « | ^ - | . > | > | 832 | | 464 | , | , W 4 | I | 7 | ¥ | *************************************** | 3: | • • | | - 3 | . 2 | |-------------------|------|--|-----|-------------|-----------------|--------|-----------------------------|---------|----------|--------|---------------|------------|--------|--------|-----|------|---------|-------------|----------|----------|--------|-----------|---|--------|--------|--------------------------------|---|-----| | - | A32 | | | | | | | | | | | | | | 60 | | | | | | | | | | | | | | | - SEA - SEA - SEA | A31 | | | | 1 | | | | | | | | | | 168 | ! | ! | | 1 | | | | | | | - | * ***** *** *** *** *** *** *** *** ** | | | ! | A 30 | and desired the state of st | | | t | , | | | | | | | | | 630 | | | | 1 | | | | | | | a did position to make | - | | | | A29 | | | | | | | | | | | | | | 920 | | | | 1 | | | | | | | | 100 0 00 000 000 000 000 000 000 000 00 | | | | A28 | SOSUM | | OXHI! | #SRSV+ | #DLST+ | #PAR+ | # IFMD+ | AT MR DA | PRING | SCARDT | | | | 828 | • | | | | | ; | | resear · · | | | es unidos perciónico e supil e | | | | | A27 | | | | | | | | | | | | | | 627 | | | | | | | | | | | · Annual special services | | | | | A26 | | | | | | | | | | | | | | 826 | | | | | | | | | | | And the second | | | | : | A25 | | | | | | | | | | | | | | 825 | | | | | | | | | | | | | | | | A24 | | 1 | | ì | | | | | | | | | | 624 | | | | | | | | | | | | 1 | | | | A23 | | 1 | | : | | | | 3 | | | | | | 623 | | | | | | | | !
! | | | - | 1 | | | | A22 | 4 | i | | ì | 1000 | | | | | | | | | 822 | | | | | | | | | | | | | | | *** | A21 | dans | | | | 1 | | | | | | | | | 621 | | | | | | | | | | | | | | | | A20 | R 123 | | # SROC+ | *10×5* | CABTOO | EABTO1 | # 5803+ | DAR TC2 | CABINE | # SRC4+ | *2×0× | DABIO4 | CABT05 | 82C | R123 | | + + 5 0 5 4 | # SR C7+ | 1 | CABIO | * 178 CB+ | | CABTOB | CA8109 | # SR 11+ | DABILO | | | | A19 | | 1 | | | | | | | | | | | | 815 | R111 | | 100 st | CTWD | # SR SV+ | | BIIC | | A 7.1 | 813 | : | , | | | | A18 | R2C2 | | 1094 | DEVSIO
BPCLR | | ACCI XINT+
EACC2- #SRSV- | -LEX# | 1004 | DEVSLC | APULR | D INT | #SHSV- | #REC- | 818 | 200m | | F 21 P. | EACC1 | FACCS | E ACC4 | FACT5 | | EACTR | EAC! 9 | | 014611 | , | | | A17 | R123 | | EAC03- 10P4 | | CV3 | ACC1
EAC12- | FACA 3- | LDAC- | | | | | 4004 | 617 | P123 | | F 3 C 7 6 - | | ACCS | ACC? | FACORE | LDAC- | ACCR | 6009 | | LDAC- | , | | | | | 460 | | | | ¬ ¥ | 1 | | | | | | > | | | ∢ 100 (| | | | | | | - 1 | | | | | TABLE I-9 Anthorythalis # set; 20125491 B-sections seed I The part of the state Hermannan ------ District of the second W-9549-9949-994 plesses mag Personal Transmit Batherrated and PORT O/LINE ADAPTOR 1 13346146199888 | | I RIII ROFI | 118 ICS# | R 1118 11.5 | R 1118 1724 | |--|--|---
--|--| | 30 A 30 M | | <i>و</i> | 7 COWO 4 | 2.0 M. C. | | +REC- | **CPF ** *REC- | * SCHE + AREC- | BAD+ BARCK BALLEF BARC- | #KD+ #SKCK #NCPF+ #REC- | | #OTNI) | dilhe+ #OTRIDI | dline+ #OTND1 | #PEC+ #LINE+ #OTNOT | #PEC+ #LINE+ #OTNUT | | _ | ACT ST AREC- | 1 #REC- | #SKCK #CT**51 #REC- | #SKCK #CT*:01 #REC- | | *OLVO* | *OLVO* | *OLVO* | SCC11 #GINGS | -37E37E- | | FREC- | MREC- | MREC- | A TOTAL ARECT A | A TOTAL ARECT A | | STATE OF THE PARTY | THE PART OF PA | ALC: NA | THE MAN ALCOHOL | THE PART OF PA | | | | | | | | | 200 | | 200 | 735-74 76-4 | | | | | | | | | 2 2 2 | | | | | CTECA ANDRET | | T T T T T T T T T T T T T T T T T T T | A ACTIVAL | A ACTIVAL | | | | | | | | 3 | | 2 - 504 | 2 - 504 | 3 | | 99.4 | • | | 1048 | | | 4 7 | 4 7 | 4 7 | * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * * | | | | · · · · · · · · · · · · · · · · · · · | · Commission of the contract o | . The state of | | re ace ecr | ירב שנה | 934 C.S. BCC | ירב שנה | 934 C.S. BCC | | SCI R272 REF2 | NSC1 R272 | R212 | STI NSCI R272 | STI NSCI R272 | | | | | | | | | | CNU 46 | | *CNU 16 | | TELE MEMBER | ACTTC | | SCK ACTE | 34 PSCK BCLTC | | | #CC1 | #CC1 | #CC1 | #CC1 | | *PMCL* | #CCTD *PMCLR | *PMCL* | SCR SCCID SPACLE | SOCK SCCTO SPACE | | | | | | -01 X X | | *
*
• | *
*
• | *
*
• | *** | *** | | # SRC* | #L37 #SRC4 | #L37 #SRC4 | PL37 #SRCK | PL37 #SRCK | | #RECE- # | 35 #U37 #RECE- # | 35 #U37 #RECE- # | #CND35 #U37 #RECE-# | 35 #U37 #RECE- # | | PEGML# 75 | # 1514 | * | # 1514 | # 1514 | | | 41.27 | 41.27 | 41.27 | 41.27 | | #STCK | | | | and a second of the | | * BIJTO | A GITAGE TENTA | * BIJTO | A GITH CANADA CT. | A G.C. CASSA AT LA | | 1 | # 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 100 100 100 100 100 100 100 100 100 100 | 100 100 100 100 100 100 100 100 100 100 | 100 100 100 100 100 100 100 100 100 100 | | | | | | | | A L L V & | * L L V * | * L L V * | * L L V * | * L L V * | | | | | | | TABLE I-10. | | < 6 € | ~C=4×2×3×4×0× | | 4800M#IJK788888 | |--------|-------|--|------------------
--| | 7 F W | | | 832 | | | 164 | | | 831
R2F5 | #CFR2+
#CFR2+
#CFR2+
#CD39
#CC39
#CFR3+
#CFR3+
#CFR3+ | | A 30 | | ## CTR | 83r
R205 | #CFR0+
#CFR0+
#CFR0+
#CFR0+
#LD4UY
FR1+
#CFR1- | | A 2'' | | | 825
R2C5 | # FR 1+
FR 2+
FR 2+
FR 2+
FR 2+
FR 3+
FR 3+
FR 3+
FR 3+
FR 3+
FR 3+ | | A7.8 | | # # # # # # # # # # # # # # # # # # # | 328
R205 | ECNDEN
ECTOCK
EFRO
EFRO
EFRO
EFRO
EFRO
EFRO
EFRO
EFRO | | A21 | | SESSION SESSIO | B27 | # 4 A M | | R275 | | ###################################### | 326
F6^3 | 10P4
#ENGL-
#INVHK
#ZRUSR
#XTRG-
#LDFR
#ENGSR
#ENGSR | | 825 | | # 51CK | e25
R111 | PERSONAL PROPERTY OF THE PROPE | | . 575a | | *INVWK.
PPDRLK
PPDRLC
EACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CACCO
*CA | 624
R^1 | CTACL CTACL CTACL CTACL CTACC | | R205 | | ###################################### | 923
R121 | # # # # # # # # # # # # # # # # # # # | | #201 | | # # # # # # # # # # # # # # # # # # # | B22 | ###################################### | | R2r1 | 0143 | | P.Z.1
R.1.Z.1 | 2 | | k?>1 | | 0+1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 111h | ## ## ## ## ## ## ## ## ## ## ## ## ## | | | | | 314 | ###################################### | | | | | # 1 # | | | 62.3 | | # # # # # # # # # # # # # # # # # # # | | | | | e 4 (| ひゃにょう 4 コミミチェッーコン | Shirt danset a g | <pre><pre><pre></pre></pre></pre> | PURT CALINE ADAPTOR 1 TABLE I-11. A PRINCIPAL PRIN Call Section Britishing yes Tangangan saang Bar derenten Marriage parties Britanista distantistication of - Comments distributions M. *** and the management Martin Color of the th Marie and the second 201A LINE ADAPTOR INTERFACE FOR USE ON THE DATA CONCENTRATOR #### TABLE OF CONTENTS | | Page | |------------------------------------|----------| | Data-Break Control | I I - 3 | | Data-Break Address and Data Gating | I I - 5 | | Common Data Address Gating | I I - 5 | | Scan Address Ruffers | I I - 8 | | Address Decoding | II-8 | | Data-Break and Device Selection | 1 I - 8 | | Device Selection Gating | I I - 8 | | Scan Interrupt Service Request | I I - 8 | | Transmit Clock Gating | II-14 | | "I'm Here" Indication | II-14 | | Buffered Memory Buffer Buffers | I I - 14 | | Accumulator Output Buffers | I I - 14 | | Miscellanes s Circuits | II-19 | | Cable Layout | II-19 | | Module Utilizations | II-19 | ## LIST OF TABLES | Table | | Page | |---------|-------------------------------------|----------| | II-1 | Buffered Accumulator Outputs | II-22 | | II-2 | Buffered Memory Buffer Output Lines | II-23 | | II-3 | Programmed Input/Output Control | II-24 | | I I - 4 | Data-Break Address Lines | II-25 | | II-5 | Data-Break Input Lines | II-26 | | 11-6 | Data-Break Control Signals | II-27 | | II-7 | Data-break Request and Select | II-28 | | II-8 | Extended Accumulator Inputs | II-29 | | II-9 | Scan Address | II-30 | | II-10 | Scanner Control Signals | II-31 | | II-11 | Transmit Clock | II-32 | | II-12 | Panel 1 - Common Section | II-33 | | II-13 | Panel 1 - Common Section | 11-34 | | I1-14 | Panel 2 - Port O/Line Adaptor 1 | II-35 | | II-15 | Panel 2 - Port O/Line Adaptor 1 | II-36 | | II-16 | Panel 3 - Port 1/Line Adaptor 2 | II-37 | | II-17 | Panel 3 - Port 1/Line Adaptor 2 | II-38 | | II-18 | Panel 4 - Port 2/Line Adaptor 3 | II-39 | | II-19 | Panel 4 - Port 2/Line Adaptor 3 | II-40 | | I1-20 | Panel 5 - Port 3/Line Adaptor 4 | I T - 41 | | II-21 | Panel 5 - Port 3/Line Adaptor 4 | 11-42 | | | | | 1 # LIST OF DIAGRAMS | Diagram | | Page | |---------|------------------------------------|-----------| | II-1 | Data-Break Control | I I - 4 | | II-2 | Data-Break Address and Data Gating | II-6 | | II - 7 | Common Data Address Gating | I I - 7 | | II-4 | Scan Address Buffers | II-9 | | II-5 | Address Decoding | II-10 | | I I - 6 | Data-Break and Device Selection | I I - 1 1 | | I 1 - 7 | Device Selection Gating | II-12 | | II-8 | Scan Interrupt Service Request | II-13 | | II-9 | Transmit Clock Gating | II-15 | | II-10 | "I'm Here" Indication | II-16 | | II-11 | Buffered Memory Buffer Buffers | II-17 | | II-12 | Accumulator Output Buffers | II-18 | | II-13 | Miscellaneous Circuits | II-20 | | II-14 | Cable Layout | II-21 | # LIST OF FIGURES | Figure | | | | | Page | |--------|----------------|----|----------|--------------|---------| | II-1 | Organization o | of | the Data | Concentrator | I I - 2 | 1 Ницини # BLANK PAGE #### 201A LINE ADAPTOR INTERFACE FOR USE ON THE DATA CONCENTRATOR The remainder of the logic and details of the 201A communication adaptors used on the Data Concentrator are presented in this Appendix. Figure II-1 shows in block form the general organization of the Data Concentrator, to the extent that it concerns the 201A line adaptors. The control of AC transfers and interrupts for the PDP-8 is handled by the scanner. In order to address a line adaptor (for the purrises here, a 201A line adaptor) the scan address register must be loaded with what corresponds to the line adaptor's logical address. This
logical address, in reality, is the core address of its receive or transmit buffer. When the scanner is interrupted by a line adaptor, it in turn interrupts the PDP-8 with the scan address register set to the receive or transmit buffer address depending on the type of interrupt. The IOT structure is the same as described for the basic 201A line adaptor once the scan address register is pointed to the line adaptor. The normal operation for the scanner is to scan, in turn, each of the 64 full-duplex lines looking for an interrupt. When an interrupt is found, the scanner is stopped and a PDP-8 interrupt is generated. After servicing the scanner interrupt (indirectly a line adaptor interrupt), the scanner is restarted. The multiplexor is a buss-type multiplexor where the device presently selected gates its address and data information onto common busses. A device requests a data-break cycle by pulling to ground its break request line, and the data break is granted when its select line goes to -3v. In order to realize this buss concept, certain of the normal PDP-8 signals are electrically inverted at the multiplexor interface. Figure II-1. ORGANIZATION OF THE DATA CONCENTRATOR There are four 201A line adaptors on the Data Concentrator. They all have a common control section which, in the context of Figure 1, is the PDP-8/201A line adaptor interface. The common section is Bay 1 of the complex with Bays 2-5, representing the four 201A line adaptors. The individual signal names in the 201A line adaptor contain a # sign which is replaced by a 1, 2, 3, or 4 in the particular line adaptor. The common signals are distinguished by the absence of a # sign. Unless otherwise noted, the logic shown in the diagrams in this Appendix is realized in Bay 1. #### Data-Break Control (Diagram II-1) By setting the #BKRQ flip-flop, the line adaptor signals the PDP-8 (through the multiplexor) that a data transfer is desired to or from PDP-8 core. The multiplexor responds with the BKAC# signal when the data-break cycle is granted. The direction of the transfer is specified by the DICTL signal. When the PDP-8 enters the break state, the address is loaded into the memory address register and an address accepted pulse is generated by the PDP-8. At this time, the break request signal must be dropped by the interface. During the break state, as indicated by the logical-and of BBREAK and BKSL#, the BTl pulse is used to generate a #BRKDN pulse which strobes the contents of the designated memory location from the buffered memory buffer register into the SDR The PDP-8 will also strobe the data-break input register. lines (DABT) into memory at this time in the case that the transfer direction is into core. The break request signal is generated each time the frame counter overflows when in the text state, and when the interface first enters the transmit state to fetch the first character to be transmitted. All of the logic shown in Diagram II-1 is in the individual line adaptor bay. Diagram II-1. DATA-BREAK CONTROL distance or constant Total Parks #### Data-Break Address and Data Gating (Diagram II-2) Each 201A line adaptor has assigned two sequential locations in PDP-8 core to be used as buffers for incoming (received) and outgoing (transmitted) data. The low-order four bits, except for the lowest order bit, are specified by an address card shown in Diagram II-5. The high-order five bits (page address) are specified by the Scanner and are gated onto the data address lines when the PGENB signal is given, as derived in Diagram II-3. The remainder of the address bits are specified in Diagram II-3. The contents of the SDR register are gated onto the data break input lines when the BKSL# signal is present, as shown in Diagram II-2. All of the logic shown in Diagram II-2 is in the individual line adaptor bay. # Common Data Address Gating (Diagram II-3) There are a total of 128 scanner data lines (64 full-duplex pairs). This corresponds to one full PDP-8 page of buffers. In the twelve-bit PDP-8 address, the highorder five bits specify the page; the low-order bit specifies whether the address is a receive or transmit buffer as the bit is respectively zero or one. The remaining six bits specify, which of the 64 line pairs is being referenced. These 64 line pairs are further broken down into eight blocks of eight lines each. Positions 5, 6, and 7 in the address thus specify the block address. A separate cable connects the scanner to each block of line adaptors and in turn provides the block address for those line adaptors, and a common buss (PGENB) to tell the scanner to load the page address on to the data address lines. Diagram II-3 indicates the gating necessary to gate the block address onto the data address lines and pull down the PGENB buss. Diagram II-2. DATA BREAK ADDRESS AND DATA GATING historicisming. The state of delineatering Assertances A STREET, STRE Bremdene The state of s Diagram II-3. COMMON DATA ADDRESS GATING #### Scan Address Buffers (Diagram II-4) These buffers provide the required isolation and signal levels to allow each 201A line adaptor to ascertain whether the current scan address is actually its address. These signals are fed to an address card which decodes the scan address actually assigned to the line adaptor. #### Address Decoding (Diagram II-5) This address card, located in the individual line adaptor bay, provides the line adaptor with its data break address within a scan block and the signals to determine if the current scan address is the line adaptor address. #### Data-Break and Device Selection (Diagram II-6) The first set of gates in Diagram II-6 derives the individual BKSL# signals from the multiplexor signals BKAC#. The BLKAC signal goes to -3v if any of the four 201A line adaptors is granted a data-break cycle by the multiplexor. The signals CTMD1 and CTWD2 are the assertion that the device codes corresponding to Control Word 1 or Control Word 2, respectively, have been detected during ar 10. microinstruction. ## Device Selection Gating (Diagram II-7) The gates shown in Diagram II-7 are located in the individual line adaptor bays and provide the signals to differentiate between Control Word 1 and Control Word 2 operations. #### Scan Interrupt Service & quest (Diagram II-8) Every time a character is transferred between a 201A line adaptor and the PDP-8's memory, it's character service flag (#SRSV) is set, as described previously. The SCNSVC buss is pulled to ground the next time the scan address matches the Additional (Diagram II-4. SCAN ADDRESS BUFFERS Diagram II-5. ADDRESS DECODING The state of s ATTENDED TO destroyed (19 Promptabile Management of the same THE PROPERTY OF The street THE STREET P. Sengari Diagram II-6. DATA-BREAK AND DEVICE SELECTION Diagram II-7. DEVICE SELECTION GATING # BLOCK The species The second second The state of s Handlestelensky Constitution of the as protinged by The state of s Diagram II-8. SCAN INTERRUPT SERVICE REQUEST line adaptor's address, as specified by *Block, *SCAN2, *SCAN1, *SCAN0 \pm . SCNSVC at this time causes a PDP-8 interrupt which the program can then identify. #### Transmit Clock Gating (Diagram II-9) The 201A data sets for the Data Concentrator have externally supplied transmit clocks. This specification allows transmit interrupt staggering and the use of different clock rates. The actual clock selection is made via a jumper card in Bay 1 while the driver for the data set is in the individual line adaptor bay. #### "I'm Here" Indication (Diagram II-10) The gating in Diagram II-10, located in the individual line adaptor bays, provides to the scanner a not here" or "off-line" indication through the #HERE signal. #### Buffered Memory Buffer Buffers (Diagram II-11) This set of buffers is needed for loading reasons in each block of line adaptors. The buffers also provide the necessary inversion to give the correct signal polarity as needed in the line adaptors. #### Accumulator Output Buffers (Diagram II-12) This set of buffers is needed to provide the necessary driving capabilities for the line adaptors. The buffers also provide the necessary inversion to give the correct signal polarity to the line adaptors. Diagram II-9. TRANSMIT CLOCK GATING Жинениен 422151944110000 Tirelesson. Diagram II-10. 'I'M HERE' INDICATION PRINCIPLES - Participation of the Participa Lineary Hand Cumming approxity interlanguages Total Street The particular of particul Killman 97 5 - Naghan The second Transcopping Tensespensor. Diagram II-11. BUFFERED MEMORY BUFFER BUFFERS . Diagram II-12. ACCUMULATOR OUTPUT BUFFERS A CHARACTER AND CHARACTE Separate streams Address of the same de la despesa estados de la despesa de general design d Section of the same Anne district desperatories and decontrollerada Philosophopological Party and 11. ## Miscellaneous Circuits (Diagram II-13) PRYREQ and SPSVC identify to the scanner that the interrupt (SCNSVC) is from a 201A line adaptor. The DTALST buss is used to indicate to the scanner that a line adaptor has a data lost condition (this gate is in the individual line adaptor). The remaining gates provide the necessary electrical signal inversion. #### Cable Layout (Diagram II-14) The input/output cables for the 201A line adaptors are shown in Diagram II-14. The correspondences between the signal names, module positions, and pin connections for the 201A line adaptor block and the multiplexor or scanner are given in Tables II-1 through II-9. # Module Utilizations (Tables II-10 through II-21) Tables II-10 through II-21 give the module utilization for the four 201A line adaptors comprising the block on the Data Concentrator. In addition to the module utilization, a complete signal name map is also shown. Diagram II-13. MISCELLANEOUS CIRCUITS B1141534444 Chamber .. Augustilen ja Lipotemple Distriction of the last THE PROPERTY OF THE STREET September 1 hadalicand on | • | ; | 1 | ; | ! | 1 | CK201A
CK201B | | CKTLPA | |--------|---------|------------|--------
---------|-------------|------------------|---------|---------| | SCANO | SCANI | SCAN 2 | SCAN3 | DEVSLI | DEVSL2 | 1 1
1 t | | • | | EAC 00 | EAC 0.1 | EAC02 | EAC03 | EAC04 | EAC 05 | EAC 06 | 10000 | EAC08 | | DABTOO | DABIOI | DAB.02 | DABTJ3 | DABT04 | DABTOS | DABT06 | | DABT08 | | DIADOO | DIADOI | DIAD02 | DIADO3 | DIAC 04 | DIADOS | DIADO6 | 7001710 | DIAD 08 | | BMB00+ | 8MB01+ | BMB02+ | BMB03- | BMB03+ | BMB 04- | BMB04+ | -coawa | BMB 05+ | | BACOOC | ארחזר | BAC02C | BAC03C | BAC04C | BAC05C | BACO6C
BACO7C | 2 (220 | BACOSC | | Q | u iL | # 5 | * " | Σ× | <u>م</u> بع | s F | _
_ | > | | | | | | < | | | | | | <u> </u> | | | · . | | | | |-----------------------------|--------------|--------|--------|--------|------------------|-------------| | BKRQ1 PRYPEQ
BKAC1 SPSVC | PGENB | BLKSEL | BLKBTO | BLKBT1 | BLKBT2
9TALST | HERE* | | | BKRQ2 PGENR | BKAC2 | BKRQ3 | BKAC3 | PKRQ4
BKAC4 | š
t | | EAC09
EAC10 | EAC11 | #
| ; | ! | 1 1 | ! | | DABT09
DABT10 | DABT11 | : | ; | ! | : : | | | D1AD09
D1AD10 | DIADII | : | DICTL | SBREAK | ADDACC | 1 | | BMB06-
BMB06+ | BMB07- | BMB07+ | BMB08- | BMB08+ | BMB09+
BMB10+ | BMB11+ | | BAC09C
BAC10C | BACIIC | 10P1C | 10P2C | 10P4C | BT1C
BT2AC | BPCLRC | | 2 20 1 | <u>.</u> = - | , ¥. | - 2 - | z a. : | ×ω⊢ | > | Diagram II-13. CABLE LAYOUT the control of co 100 THE PERSON NAMED OF PE 13 14 11 12 09 10 0.8 0, 90 0.5 03 04 01 02 A Pathlen B. (III) was TABLE 11-1 BUFFERED ACCUMULATOR OUTPUTS | 201A LINE ADAPTOR | | | MULTIPLLYOR | | | | |--------------------------|------------------|-----------------|-----------------|----------------------|-------------------------|--| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
Symbol | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE
CONNECTION | | | AGID, AO2D | BAC00C | | | CACOO- | A01D | | | A01E, A02E
A01H, A02H | BAC01C
BAC02C | | | CAC01-
CAC02- | A01E
A01! | | | A01K, A02K
A01M, A02M | BACO3C
BACO4C | | | CACO3-
CACO4- | A01K
A01M | | | A01P, A02P | BAC 05C | | | CACO5- | A01r | | | A01S, A02S
A01T, A02T | BACO6C
BACO7C | | | CACO6-
CACO7- | A01S
A01T | | | A01V, A02V
B01D, B02D | BACOSC
BACOSC | | | CAC 08 -
CAC 09 - | A 0 1 V
B 0 1 D | | | B01E, B02E | BACLOC | | | CAC10- | B01E | | | B01H, B02H | BAC11C | | | CAC11- | B01H | | TABLE II-2 BUFFERED MEMORY BUFFER OUTPUT LINES | 201A LINE ADAPTOR | | | MULTIPLEXOR | | | | |-------------------------|----------------|-----------------|-----------------|---------------------------------------|--------------|--| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | INTE FACE | | | A03D, A04D | BMB00+ | | | CMB00- | A 0 2 D | | | A03E, A04E | вмве1+ | | | CMB01- | A02E | | | A03H, A04H | BMB02+ | | | CMB02- | A 0 2H | | | A03K, A04K | BMB03- | > | > | | | | | A03M, A04M | BMB03+ | | | CMB03- | A02M | | | A03P, A04P | вмв04- | > | | | | | | A03S, A04S | BMB04+ | | | CMB04- | A02S | | | A03T, A04T | BMB05- | > | | # # # # # # # # # # # # # # # # # # # | | | | A03V, A04V | BMB05+ | | | CMB05- | A02V | | | B03D, B04D | вмв06- | | > | | ** parameter | | | B03E, B04E | вмво6+ | | | CMB06- | BO2E | | | в 03Н, в 04Н | ВМВ07- | | | | | | | B03K, B04K | BMB 07+ | | | CMB07- | B02K | | | B03M, B04m | BMB08- | | | | | | | B03P, B04P | BMB08+ | | | CMB08- | B02P | | | B03S, B04S | BMB09+ | | | CMB09- | B02S | | | B03T, B04T | BMB10+ | | | CMB10- | T268 | | | B03V, B04V | BMB11+ | | | CMB11- | BC 2V | | THE STREET TABLE II-3 PROGRAMMED INPUT/OUTPUT CONTROL | 201A | LINE ADAF | TOR |) | MULTIPLEXO |)R | |--------------------------|---------------------|-----------------|-----------------|----------------|-------------------------| | INTERFACE
CONNECTION | E SIGNAL
ON NAME | LOGIC
Symbol | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE
CONNECTION | | B01K, B02K
B01M, B02M | IOP1C
IOP2C | | | CIOP1 | B01K
B01M | | B01P, B02P | IOP4C | | | CIOP4 | B01P | TABLE II-4 DATA-BREAK ADDRESS LINES | 201.A | LINE ADAP | TOR | | MULTIPLEXO | R | |--|---|-----------------|-----------------|--|--| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
Symbol | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE
CONNECTION | | A05D, A06D
A05E, A06E
A05H, A06H
A05K, A06K
A05M, A06M
A05P, A06P
A05S, A06S
A05T, A06T | DIADOO DIADO1 DIADO2 DIADO3 DIADO4 DIADO5 DIADO6 DIADO7 | *********** | | DADDOO
DADDOO
DADDOO
DADDOO
DADDOO
DADDOO
DADDOO
DADDOO | A03D
A03E
A03H
A03K
A03M
A03P
A03S
A03T | | A05V, A06V
B05D, B06D
B05E, B06E | DIADO8 DIADO9 DIAD10 | * | | DADDO8
DADDO9
DALD10 | A03V
B03D
B03E | | B05H, B06H | DIAD11 | * | | DADD11 | B03H | *Note: Collector of a Grounded-Emitter Transistor. TABLE II-5 DATA-BREAK INPUT LINES | 201A | LINE ADAP | TOR | | MULTIPLEXO | R | |--|----------------------|-----------------|-----------------|----------------------------|----------------------------| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE
CONNECTION | | A07D, A08D | DABTOO | • | | DBITOO | A04D | | A07E, A08E
A07H, A08H | DABTO1 DABTO2 | | | DBIT01 DBIT02 | A 04 E
A 04 H | | A07K, A08K
A07M, A08M | DABTO3 DABTO4 | | | DBITO3 DBITO4 | A 04 K
A 04 M | | AG7P, A08P
A07S, A08S | DABTOS DABTO6 DABTO7 | | | DBITO5
DBITO6
DBITO7 | A 04 P
A 04 S
A 04 T | | A07T, A08T
A07V, A08V | DABTO8 DABTO9 | | → | DBITO7 DBITO8 DBITO9 | A04V
B04D | | B07D, B08D
B07E, B08E
B07H, B08H | DABT10
DABT11 | * | | DBIT109 DBIT10 DBIT11 | B04E
B04H | *Note: Collector of a Grounded-Emitter Transistor. THE PROPERTY. TABLE II-6 DATA BREAK CONTROL S SNALS | 201A | LINE ADAP | TOR | | MULTIPLEXO | R | |--------------------------|------------------|-----------------|-----------------|-----------------|----------------------| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE CONNECTION | | B 05M, B 06M | DICTL | * > | | TRADI | B03M | | B05P, B06P
B05S, B06S | BBREAK
ADDACC | | | CBBRK
CADACP | B03P
B03S | | B01S, B02S
B01T, B02T | BTIC
BT2AC | - | | CBT1
CBT2A | BO1S
BO1T | | B01V, B02V | BPCLRC | | | CPWCLR | B01V | *Note: Collector of a Grounded-Emitter Transistor. Statement Periods MINISTERNATION PROPERTY. A Tone parameter A. DROTTH-LAND Part Planteries officers of the second martinismes The development of TABLE II-7 DATA BREAK REQUEST AND SELECT | 201A | LINE ADAP | TOR | N | MULTIPLEXO | R | |-------------------------|----------------|-----------------|-----------------|----------------|-------------------------| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
Symbol | LOGIC
Symbol | SIGNAL
NAME | INTERFACE
CONNECTION | | B11D | BKRQ1 | | | REQ2 | D01D | | B11E
B11H | BKAC1
BKRQ2 | | → | SEL2
REQ3 | DO1E
DO1H | | B11K
B11M | BKAC2
BKRQ3 | → | → | SEL3
REQ4 | DO1K
DO1M | | B11P
B11S | BKAC3
BKRQ4 | → | → | SEL4
REQ5 | D01P
D01S | | BllT | BKAC4 | | | SEL5 | D01T | TABLE II-8 ## EXTENDED ACCUMULATOR INPUTS | 201A | LINE ADAP | TOR | | SCANNER | | |--|---|-----------------|-----------------|---|--| | INTERFACE
CONNECTION | SIGNAL
NAME | LCGIC
SYMBOL | LOGIC
Symbol | SIGNAL
NAME | INTERFACE
CONNECTION | | A09D, A10D
A09E, A10E
A09H, A10H
A09K, A10K
A09M, A1CM
A09P, A10P
A09S, A10S
A09T, A10T
A09V, A10V
B09D, B10D | EAC00 EAC01 EAC02 EAC03 EAC04 EAC05 EAC06 EAC06 EAC07 EAC08 EAC09 | * \ | | EACOO+ EACO1+ EACO2+ EACO3+ EACO4+ EACO5+ EACO6+ EACO7+ EACO8+ EACO9+ | A07D, A08D
A07E, A08E
A07H, A08H
A07L, A08K
A07M, A08M
A07P, A08P
A07S, A08S
A07T, A08T
A07V, A08V
B07D, B08D | | 609E, B10E
B09H, B10H | EAC10
EAC11 | ** | | EAC10+
EAC11+ | B07E, B08E
B07H, B08H | ^{*}Note: Collector of a Grounded-Emitter Transistor. TABLE II-9 SCAN ADDRESS | 201A | LINE ADAP | TOR | | SCANNER | | |-------------------------|----------------|-----------------|-----------------|----------------|-------------------------| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE
CONNECTION | | A11D, A12D | SCAN 0 | | | BXMT- | C 0 3 D | | A11E, A12E | SCAN 1 | | | BAD1- | COSE | | A11H, A12H | SCAN 2 | | | BAD2- | C 0 3 H | | A11K, A12K | SCAN 3 | | - | BAD3- | C03K | | B12M | BLKBTO | | | GND | D01M | | B12P | BLKBT 1 | | | GND | DOIP | | B12S | BLKBT2 | | | GND | D01S | TO THE STATE OF TABLE II-10 SCANNER CONTROL SIGNALS | 201A | LINE ADA | PTOR | | SCANNER | | |--|--|-----------------|-----------------|--|---| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | IOGIC
SYMBOL | SIGNAL
NAME | INTERFACE CONNECTION | | B12D
B12E
B12H
B12K
B12T
B12V
A11M, A12M | PRYREQ SPSVC PGENB BLKSEL DTALST HERE* DEVSL1
DEVSL2 | * | * | PORQ+ SSO+ PGENB+ BKSLO- DLOST+ LACHK- DSL+ ESL+ | D01D D01E D01H D01K D01T D01V C03M C03P | ^{*}Note: Collector of a Grounded-Emitter Transistor Ú TABLE II-11 Control of the last Birtherstern Privates 1 nas, September antenage per Hammed thing # TRANSMIT CLOCK | 201A | LINE ADAP | TOR | ми | LTIPLEXOR | | |--|----------------------------|-----------------|-----------------|------------------|----------------------| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE CONNECTION | | A13S, A14S
A13T, A14T
A13V, A14V | CK201A
CK201B
CKTLPA | | | CK2000
CK2400 | DO3S
DO3T | Henditan the animalist The state of s - Table 1 Thursday. Terrandita de The state of s Cumber of the state stat | | | 4#0 | 9 w | . . | 7 × . | . . . | E & 1 | K N F : | > | | | 480 | э ш (| . I | 7 = | » بـ | Z & : | K & F | ۰, | |-------------|---------|-----|-----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------|----------------------|------------|--------------|--------------------|--|----------------------|-----------|---------------|--------------|--------------------------|--| | 416 | RICT | | | 6M601+ | 6 M 6 C 2 + | 6 M G G G G | +7001 | 67605+
845L1 | DAACI | 916 | R107 | | *909MR | BMBOTe | 94000HB | 84809 | 6M510 | BMB11
BMB11
GKSL2 | BKAC 2 | | ¥15 | K187 | | | 6AC01
6AC01C | BACOZC | | 54CC+C | BKSL3 | £ 34 4 5 | 815 | R107 | | 5AC06C | BACOTC | BACOBC | 84C09C | BACTO | BAC11
BAC11C
BACTY | BACO9C | | ¥14 | 120M | | JPA1 35 | 134 | JMA I 3K | UMAISM | JE 1 130 | CK2C14
CK2018 | CKTLPA | 914 | 8111 | | SCHOOL | | SCSVCB | | SCNSVC | SCSVCs | SPSVC | | 4 13 | ₩021. | | JMA130 | JF.813H | JPA13K | NE 1 740 | 144139 | CKZF1A
CKZ÷1B | JARIV CKILPA | E18 | 955 4 | | CK221A | CK271A | CK2018 | CK 2718 | | 1SCTE
2SCTE | 3SCTE
ASCTE | | A1.7 | 12.M | | SCANI | SCAM2 | SCAN3 | CEVSL 1 | CHVS12 | JAMI 15 | | 219 | M321 | | SP SVC | PGENB | HEKSEL | BLKBTO | BLRBII | ELKBT2
DTALST | # U Z U I | | 1 | 170# | s | SCANI | SCANZ | SCANS | CEVSL 1 | CEVSLZ | JAAIIS | JEALLY | 2 | 1264 | | BKACL | BICK 02 | #KAC? | BKRGS | BKAC3 | BRAC4
SKAC4 | | | - | 1204 | | EACH
CAC::I | EACPZ | EACA3 | F AC >4 | 4. DA. | FACOR | FACTA | £ | 1254 | \$
\$
4
4 | EAC I O | EAC! 1 | PO-NH | SKENS | d6-HAP | 190 MML | AGCHMT | | e e | 120 | 20 | FACTE | FACTZ | races. | \$00#4 | EAC FS | FACTE | EAC 14 | 5 c # | 1204 | ; | EAC 13 | EACII | REGAR | SKENB | 36, E27 | JR8755 | ACCENT ASCERT | | 3 | 12.4 | | CANTOL | CARTER | FULLET | CARTÓN | CAPTES | LASTEC | EAS 1.18 | 800 | 12.4 | | CANTIN | CABTIL | CYSEL | ** (347 | JPBC7P | 240843
188074 | VESTAL | | | # 22 B | | 048TCC
048TCL | 043162 | | CASTON CARTÓN | EAH TES | CARTCE | 423860 | 111 | 170M | • | DAULY
DAULY | 111811 | LYSEL | AL UPAT | JEHLI | JAH 171 | | | ٠ | ₩^21 | | CIAC"F | UTACIZ | Clater Class Badff | | 6:3417 | 6146°e | GIACOR DARICH CABBOR | 3 6 | 12.4 | | 014610 | 11.1710 | JAMPER | CICIL | PHKTAK | ADEACC
JASS 1 | 25000 | | | 1234 | - | Clater
Glacel | Clarca | £ 27412 | ACIAIS ASSALS | 1.12005 | C17C56
51450 | 433413 | 4, 5 | 12.34 | | CIACI | 117710 | おおしまえつ | 16317 | EFFFAR | ACLACC
JF8051 | 360 | | i i | h 52.1 | | Parison. | + 205 and | #F13.7.5- | DF403+ | 一歩」でから | FP3.04+ | PM4.24 | *, 1 | 163 | | ************************************** | 45.45.7- | 47.063 | 1年7年8日 | *#12743 | ERGES+ | ACCEPT AND SET AND SET AT MESSES | | | 1714 | | | +80 abs | | | - স্নিধ্যার | | | 6)1 | 2.7.3 | | | | +2. Hell | - ## J∰%\ | * E. E. | 1 +5 /6/11
HMP[-+ : | | | ٠
د د | | | +108M8 DT. THE DILOTE | #2007C 14C 2C 0FF12+ | eat at a second cate | #FLORG DECDES DECENS | PACISC BACISC BMPIG- | 450,000 000000 000000-44 | ** JAC BACCAR DALAY | ~ ; | 12.1 | | PACE OF SACE AND AND ASSESSED. | HACELL TALINE APPRIL | 1.1.4.4.4 | 10.86 | 1. 1.40 | 8316
83286 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | 4 | # 2.2.# | | 17.74 | 37.342 | 36_36 | 345.345 | . 36. 3re | 191 . 3C . | J#1,744 | : | 121 | : | 10 %
101 % | 31 13V | 91404 | 13120 |] Judit | P115 : | | TABLE II-12. | 820 | |-----| |-----| TABLE II-13. ilestratiffs A THE SHIP 7 The state of s A CONTRACTOR OF THE PARTY TH Aguarana a Metanterities The state of Manual Ma adjust and n-resultant ------ A Transmitted 1 Table American series FURT OZLINE ADAPTOR 1 | 1112 1112 111 | 1 | 778 7668 | 74
K 15 CRF + | |---|-------------------|--------------------------------------|---| | | | | 16N074
15KCK 15CRF+ 1REC-
1.1RE+ 10TN01 | | | | 16ND14 | 1 SKCK 1SCHE+ | | 15CBF+ 1REC- | 15CBF+ 1REC- | 15KCK 15CRF+ 1REC- | I IN E TOTADI | | IL INE+ TOTADI | 10TND1 | INTER INTER INTER 15RCK 1ETAC1 18EC- | ISRCK ILTACI IREC- | | 1CL11 10TND2 | 1CL11 10TND2 | 1CL71 10TN02 | 1CL11 10TND2 | | IR.C. | IR t.C- | 10LT1 IREC- | IRC- IOLTI IREC- | | ٠. | 1FTEF+ 1RSAD | + IFIEF+ IRSAD | TETEF+ IRSAD | | INTELLEGISTS THE TREETY | ICIAD2 | ICIAD2 | TOWER TERMS | | 1011111111 | 1011111111 | 11.74 50.71 | 1011111111 | | | | - | - | | - L-X | • | 1 SCRB 1XF1- | - L-X | | • | | | | | 185NU LAUGS | - | 1 2000 | - | | 15.1 18R1 | 1 | 1551 | 1551 | | 20 P. | 2 | 400 | 4 | | | 500 6 | 200 0000 | 200 0000 | | SUPER RESE | SUPER RESE | KON KON KON | SUPER RESE | | , | | | | | 1035
K 10010 138939 | | 16ND35
15CK 1CCTD | 01331 | | 1001 | 1001 | 1001 | 1001 | | ICCID IPMCLR | 1 P WCL R | 1SCK ICCTO IPHCLR | ICCID IPMCLR | | IREC- ICLGCK | | | | | | ISRCK | ISRCK | ISRCK | | 5 1027 1KFCB- | 1037 1KFCB- | 5 1027 1KFCB- | 5 1027 1KFCB- | | 11.37 | 11.37 | 11.37 | 11.37 | | 11.37 | 11.37 | 11.36 11.37 | 11.36 11.37 | | | | | | | 1JF37 1FECIK | SCIR 1JF37 1FECIK | ISCIN 1JF37 1FACIR | SCIR 1JF37 1FECIK | | 1CE1 1XM1- 1 | 1CC1 1XM1- 1 | 1CC1 1XM1- 1 | 1CC1 1XM1- 1 | | 10F37 1XMT+ 1REC- | 1XMT+ 1 | 1XMT+ 1 | 1XMT+ 1 | | - * | | • | ٠, | TABLE II-14. | | | ∢⊕ ∪ | 2 | w | • | ĸ | 7 | ¥ | ۲ | I | Z | • | * | v | _ | = | • | > | | | | * | • | , ں | 2 ' | . . | | 7 | × | _ | I | Z | ٩ | « | S | _ | > | |-------|--------|-------------|---------|-----------|-----------|---------|---------|---------|-----------|---------|---------------|----------|---------|----------|-------------|-----------|--|---------|--|-------------|--------------|----------------------------------|---|--------|----------|------------|-----------------|----------|----------|-----------|---------|---------|-----------|----------|---------|----------|-------------| | A 36 | | | | | | | | | | | | | | | - | | | | | 832 | | | | | | | | | | | | | | | | | | | 164 | 4111 | | 1 | 9K SL 1 | | BOCVID | | LADROS | OK St. 1 | | DIA099 | | 1ADR 10 | 8K St. 1 | | OFADIO | 210110 | | | 831 | R205 | | | | | 1Crk2- | 1 | 1CFR2+ | | BAC09 | | 11 DAUX | 1CFR3+ | ICFR3- | | BACOB | BACOS | | D 4 | R123 . | | 1CFR3+ | 1CFR2+ | 1 ENAK+ | EACO8 | EACU9 | 1CFR1+ | 1CFK0+ | 1ENAX+ | EAC10 | EAC11 | 1RQ50+ | | | 014011 | 1000 | 01016 | | 830 | R205 | | | | LOAUX | - S | 4 | | BAC11 | BAC11 | | 1LOAUX | 1CFR1+ | 1CFR1- | | 010.8 | BAC10 | | 777 | 955M | | SCAN1+ | SCAN1- | SCAN2+ | SCAN2- | SCANB+ | SCAN3- | ISCANI | 1SCAN2 | 1SCAN3 | 1 ACRC8 | 1ADR 39 | LACRID | | | | | | B 29 | R205 | | | | 1 FR 1+ | | 16692 | | 16ND61 | 164061 | 1LCFR | 1FR2+ | 1FR3+ | | 1CFR3- | 16N061 | 164061 | | 87V | R123 | | 1EBPC+ | 11FMO+ | 1ENBL+ | EACO6 | EAC 07 | ISTRUY | 1 THROF | 1ENBL+ | EAC.08 | FAC09 | IRING | 1CAROT | 1FN31+ | EAC 10 | מייייייייייייייייייייייייייייייייייייי | EAC11 | ten vyyos a se dalabadan is | 828 | R205 | Township
advantages and spile of | | | זכרסכצ | 200 | 16600 | 1FR0+ | LEFRO | LEFRO | ILDFR | 1FKO+ | 15R1+ | | ICFR1- | 168000 | 168060 | | 77V | R123 | | 15RSV+ | 10L ST+ | 1ENBL+ | EACUL | EAC01 | 1PAR+ | 1RQ50+ | 1EN3! + | E4Ců3 | EAC03 | 1XTRO+ | 101.50+ | FNBL+ | E A C 0.4 | 1000 | EAC 05 | | 827 | K602 | | | 1CN059 | 17159 | | 73051 | 161059 | 1FR ZE | 1 PWCLR | 1JMP59 | | 115MO- | 1XHT- | 11FMD+ | 1REC- | IRSTRI | | A 2 6 | R2°5 | | 1 BRKON | 1ROSO- | IPMCLR | 1R51 | _ | 1XTRQ- | | e7.1 | 1 1 NV MK | 1XIXC+ | 1XTRO- | , | BACO4 | 4004 | 10140 | | 1 | 958 | R603 | | | | 1004 | LENBI | 44 44 7 | | 12RUSK | 1XTRQ+ | LOFE | | IMBSK | 1094 | 1ENAX- | 1 COAUX | | | 462 | R2C5 | | 1 STCK | 1CL SD- | 1PMCLR | | 1CL 50+ | 1CS- | 1CS+ | | 1 1 NVMK | 1 SR SV+ | 1SRSV- | 1 FSRSV | RACOO | CC 14 8 | 0 | I CHROX | * | 828 | R111 | | | | 1 SCANI | I SCANZ | TO TO TO | 1FNBL- | 1 SC AN1 | 1 SCAN2 | IAXNO | 1ENAX- | 1ENAX- | 180+ | 1PATY- | 1 PARNO | IPARI | | A 25 | #205 | | LINVAK | | 1Phclr | 1PAR 1 | 1PAR+ | EAC02 | BAC02 | 1CLOCK | 1 INVPK | 1CL ST+ | : | 1 SRSV- | • | 1000 | | CHRON | | £24 | 1208 | the employees or yet the | | | C111/1 | 18LAC | 2010 | 20413 | 1 AXAC | 18LCCK | IAXNO | 1 REC+ | IPARNO | 104 | IPARNO | | | | A 2 3 | R205 | | LINVEX | | 1 PWCLR | | 1EBPC+ | BACCO | BAC 26 | | 1 1 NVMK | 1TMRC4 | | | RACTY | 2000 | 1 V C | | 1 | £23 | R121 | 1 | | | | | TANAC | ADDACC | BKSL1 | 1 BRACIN | BKSL1 | EBREAK | BT1C | IPAR: | 180- | 1RFC+ | 1CY+ | | 774 | K261 | 16ND2C | ; | ISTANT | 1CND2C | | | 1PhCLR | | 1SVC- | IRSTRI | LHEC- | +IWXI | 1 KMT- | 1 1 1 | | | | | 822 | H121 | ! | | | 1672 | IRO | 1000 | 158114 | 1 4 1 1 | 1EP2 | 180+ | 1REC+ | 11FMD+ | 185RSV | NXH1+ | LX1RU+ | 11FM0+ | | 174 | R2C1 | 1ChC 19 | | 1 A D A C | 15AC15 | | | IPACLR | 18KRO+ | | | 1664+ | 11FFC- | TATAL | - LAX | | | | | 128 | R121 | | | | | | 168.70 | 18FC+ | 1 1FPC+ | LEXE | LIFFC+ | 1xTPC+ | 1 X P 1 + | 1PECE- | 1FCSC- | 1CL SE- | 1CARE 1 | | AZO | K 201 | | | INVER | BACO7 | 1REC- | 1 XM 1+ | 1 PMCLR | 11500+ | 11598- | | LINVAK | 8ACC7 | 31.3 CCK | - A > L J . | | | 1REC+ | and the same and | B2 C | 111 * | | | | 1 PQ SU+ | +05771 | | -31 MX 1 | 14R3+ | 1:80+ | ICYND | 1CY- | I CY- | 1 REC+ | 11670+ | | 1ESRSV | | A I C | R 12 3 | | 1 SRUC+ | I SR 77+ | HK SL 1 | DABITE | UAB 127 | | | | UABTER | DABTC9 | 15R1C+ | | , , , , , | | 11 140 | 548111 | | 818 | K0.1 | | | | 1 TMR 24 | OPENI | | N STREET | IXPIND | 1FR2+ | LUYAC | 1FR1+ | LOVAC | 16 BPC+ | LUYNC | 1 FMC+ | 10v4C | | A 1 G | R123 | | 1 SRCC+ | 15RC1+ | 0 K St. 1 | DABICC | DABTOL | 15802+ | 1SR 3+ | 9KSL1 | DABTCZ | DABICS | 15804+ | 1 50051 | | 47040 | 2000 | DABTOS | THE PERSON NAMED IN STREET, TH | 919 | ₹ JUM | man in the second | | | 1 of the | SCANCE | ON THE STATE OF | 1 SCHAL | INNING | 1 HLUCK | >CANC+ | 1 SWZNU | ISCANI | _ | _ | - | 1 SCAR2 | | 717 | R2C2 | | 1FK >+ | 10Y- | | 11 INE- | IL INE+ | 1CLUCK | 11. 17.E+ | 1F # 2E | 1523+ | -VIAGI | | + SATOL | | 15034 | + n x | 1PATY+ | THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. | 417 | 1111 | | | | 124544 | IKSYA+ | TON CALL | 7 | LSRSV+ | + 1 7 7 1 | ISA. NO | SCASVI | | | 15.6483 | IHERAD | ● 24 H ■ | PORT O/LINE ADAPTOR 1 TABLE II-15. Constitution of the last th Handaland PARTITION OF THE PARTIT Total said Best Asset 174 Anne de la constitución co is assistant. | A16
R205 | 26W14 C | 2508F+ E | 2GND14 H | | 25R11- L | _ | ZPAIT+ P | * | 2EP2 T | ZZROSR V | foregonium understein de demos sersites de | 916 | R002 | ₹ 60 | 2 SR00- 0 | | | | 20SYND K | | | 25R06+ P | | | |---------------|----------|----------------------|----------------|--------|------------------------|---------|------------------------|---------|---------------|-----------|--|-------|---------|-------------|-----------|--------|-----------|--------|-----------|----------|--------|-------------------|--------|---| | R201 R2 | | 25
25HIFT 25 | - | | 25R11+ 25
25R11- 2F | | 25M1F1 2P
25R10- 26 | - 1 | BMB11 25 | 77 | endicate washing our ministra | 815 | R111 R0 | | ZENOT 25 | | 2CHRON 25 | | 21FM0- 20 | | . 1 | 2015Y- 25 | 20 | - | | A14
R205 R | | 25HIFT
25R09- 2 | | - 1 | 25R08+ 2 | | 25K19+ 2
25K10- 2 | 1 | 25R09- B | ZMBSR | Months and the second of s | 814 | R121 R | | 21GPCS 2 | | 1 | | 2DTSY: 2 | | 1 | 210PCS 2
2FFR0 | 2F.1 | | | A13 | | 2SHIFT
2SRC 7- | 6MB07 | 25R06- | ZYBSR | 2SHIFT | 25K08* | 8 8 6 3 | 25R07- | ZMB SR | | 813 | R1C7 | | ZERENB | 2861 | 28KBC+ | 2ENAX+ | 2ENAX- | | | 2ENO
2HFRFR | | | | R205 | | 25R35- | | - | 25804+
2M858 | 25HIFT | 25R06= | | 25R05- | 2 MB SR | 97 | 915 | RIOZ | #
#
| 2CAROT | | | | 25CK | 24081 | - 1 | 2DTSY- | | | | R205 | ŧ | 25A1FT
25A03- | | | ZSR0Z+ | | 25K04- | _ | 25803- | | | 118 | R292 | | 2GND43 | 2RSYN- | 4 | - | 2 SR SV- | , | 2START | 26N043 | 2SYNC- | | | R205 | | 2SHIFT
2SR01- | HMBG1 | | 25800+ | | 25K02- | BMB02 | 25H71- | ZMBSR | | 810 | R6r2 | | | | 2C1 OCK | | 2START | | | | | | | R201 | | 25H IF 1 | 2 | 22RDSR | 2 SRC0- | | 280- | 2MBSR | C 849 | | | 508 | R602 | | 2.IMP4 | | | | 2PWCLR | 2 JPP41 | | | | | | R111 | | 2PECE- | 2REC+ | ZXMTE- | | 2XM3+ | | | | | | 808 | Recz | | 7 dal. 2 | 2FR3+ | 2 PR K PN | ZENZR | 2 ZHOSR | 2 JPP 4C | | | ZCLCLK | | | R302 | 26NDC6 | 2RQS0+ | 2A06JK | ZADEJA | 28F [X | 21FM0+ | ZAEC | 240651 | ZACEST | 28K1 | | 109 | R672 | | OF DAIL | | 201 OC K | 201SY- | 2 ZE RSR | 2JMP35 | | 251CK | 2SRCK | | | ROCI | | 2REC-
20TNO | 20 TNO2 | ZRSNU | | | | | | | | 8_¢ | R202 | ti. | | | 2010 | 2R EC+ | 2SHCK | | | 2 P II C 1 B | 2XM1- | | | 8111 | | 2SCBF+
2CINE+ | 2017 | 26186 | | 2011: | 2 X P 1- | 2×1FC+ | 2 P SNC | 29.51 | | ec 4 | 1054 | | 20010 | 2CD1 | , | | 2037 | 21.37 | 2137 | 7.1M27 | 2001 | | | 105 M | 2 CN D04 | 2 SRCK | 4246.7 | | 200004
21.04 | 5072 | 2 SC R B | | | | | £04 | # 5C1 | | 2 CNC 3 6 | 4 | 4 JC 7 | | 2000.46 | 21.36 | 2136 | 25018 | | | | A13 | | 2RD+
2R FC+ | 2RC-
2RC- | | | DTAL ST | 28F 1x | | A 130C VOCTOR | 4 UEL. A. | | E . B | 2094 | 1 | 25016 | | 0 170 | | | | | 2V+B 33 | 2V+803 | | | E I AR | 26NDC2 | 2GNUC2
2RINGB | 2RING
2RING | | 20506 | | 20NC02 | 25306 | 20100 | 251RDY | | 11.5 | E 14k | | 26ND34 | 23.Ub | 79 CB | | 20NU54 | | | >c01 | | | | AC1
W2010 | | 2508
2408
2808 | 20.50B | ZIRDYB | ZKINGE | | SSCX B | 1 4 | | 2HERE | | HC1 | 46C2 | | 2011 1 | | 22650+ | | 2 R SR | | 21HJYP | 24+401 | 24+961 | | PORT LILINE ACAPTOR 2 3.574 Andrew str. Transmission of : | | くのこのままりとしているというののもと | | | < C N N D Z Z L Y F I J W O U & P | |-----------
---|-------------|-------|--| | | : | 632 | | | | R111 | 240828
8KSL2
014008
24CR09
8KSL2
014019
24DR10
8KSL2 | 831 | R2C5 | 21DAUX
2CFR2-
2PMCLR
2CFR2+
8AC09
8AC09
2LDAUX
2CFR3+
2CFR3+
8AC08 | | R123 | 2CFR3+
2CFR3+
2ENAX+
EACO9
2CFR1+
2CFR1+
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFR10
2CFFR10
2CFFR10
2CFFR10
2CFFR10
2CFFR10
2CFFR10
2CFFR10
2CFFR10
2C | 068 | R205 | 2154UX
20FR0-
20FR0-
20FR0-
8AC11
8AC11
2CFR1-
2CFR1-
8AC10 | | 4554 | SCANIL + SCA | R29 | R2C5 | 26ND61
2FR1+
2FR2-
2FR2-
2GR51
2GN761
2GN761
2FR2+
2FR2+
2FR3+
2GND61
2GND61 | | R123 | ZEBPC+
ZIFBPC+
ZENBL+
EACOO
EACOO
ZIMRD+
ZIMRD+
ZENBL+
ZENBL+
ZENBL+
ZENBL+
EACIO |
B28 | P275 | 26ND65
2CLUCK
2CLUCK
2FR9-
2FR9-
2EFR0
2EFR0
2FR0-
2FR1-
2GR1-
2GND60 | | P123 | 258 SV + 258 SV + 258 SV + 258 BL + 686 CO | 827 | R6:2 | 2GN059
2JMP59
2JMP59
2SVC-
2GNU59
2FKZE
2PWCLR
2FKZE
2FKZE
2FMD-
2KMT-
2KMT-
2KMT-
2KMT-
2KMT-
2KMT-
2KMT- | | R2r5 | 28 28 28 28 28 28 28 28 28 28 28 28 28 2 | 82 6 | R673 | 10P4
2ENBL-
2INVFK
2INVFK
2XTRQ+
2LDFR
2MBSR
10P4
2ENAX-
2LOAUX | | R2r5 | 20 | 325 | #111 | 255
285
285
285
285
285
285
285
285
285 | | R205
 PAGE STATE S | H24 | prc1 | 201101
201101
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
201100
20 | | R2C5 | 2 INVP K
2 P W C L P
2 F d G C C
5 INVP K
2 I M C C C
5 I M C C C
5 I M C C C | 623 | R121 | 2200AC
ACUACC
BKSLZ
228PKDA
228PKDA
668EAK
668EAK
269AR I
209AR I | | R271 | 26ND2C
251AKT
26ND2C
26ND2C
25NC
25NC
28KC
28KC
28KC
28KC
28KC
28KC
28KC
28K | B 22 | K121 | 25.6.2.
20.15.4.
20.15.4.
20.15.4.
20.25.8.1.1.
20.25.8.1.1.4.
20.25.8.1.4.
20.25.8.5.4.
20.3.1.8.0.4.
21.1.8.0.4. | | A2C1 | 26 N 6 1 5 2 6 N 6 1 5 2 6 N 6 1 5 2 6 N 6 1 5 2 8 1 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | £ 2.1 | 1214 | 2011
2011
2011
2011
2011
2011
2011
2011 | | R201 | 11 | 155 | #.11 | 2 K K S S S S S S S S S S S S S S S S S | | P123 | 2 S S R O S S S R O S S S R O S S S R O S S S R O S S S S | 518 | 1,,,, | 216534
2761534
276153
276153
276153
276153
276153
276153
27616
27616
27616
27616
27616
27616
27616
27616
27616
27616 | | R123 | 2558010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010
25880
2588010
2588010
2588010
2588010
2588010
2588010
2588010
2588010 | 717 | 8 CC2 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | | . ?:
× | 20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 214 | 1112 | 23.55.57.57.57.57.57.57.57.57.57.57.57.57. | | 1 | 4 かしひおに エコヤコをスケックトラン | | | マンドリアメリア アン シン | PORT 1/LINE ACAPICA 2 TABLE II-17. HHH-HHH THE PERSON NAMED IN History many P. School W. Barrelline Parameter age April Company Martinesses in Betterner out Activisment paga-Hearn Pelituann-n THE STATE OF S Himmaning. jarga-pretade Norteepader A STATE OF THE STA B Mage-177 Annable of the E-man-man- A THE PERSON NAMED IN The second Total Marie Street displant Bottoffin The state of s mic simus PURT ZZELNE ACAPICK 3 | A16 | R205 | 36ND14 C | 916 | R032 | 35888888888888888888888888888888888888 | |-----------|---------
---|---------------------|-----------|---| | A15 A | R2C1 R2 | 358167
358107
358107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3581107
3 | 615 9 | RIII RO | 36REN 38
38REN 39
3CHRON 38
3CHRON 38
3CHRON 38
315RC + 38
33 30 37 4 - 38 | | 414 | R205 R | 33
33
33
33
33
33
33
33
33
33
33
33
33 | B14 | R121 R | 310PCS 3
30BPCCS 3
30TS 4+ 3
31FM0- 3
31EM0- 3
30TY- 3
31CPCS 3
31CPCS 3 | | A13 | R2C5 | ###################################### | 613 | R1C7 |
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38881
38 | | A12 | R2.15 | 98/8/11
98/8/11
98/8/11
98/8/11
98/8/11
98/8/11
98/8/11
98/8/11
98/8/11
98/8/11
98/8/11
98/8/11
98/8/11 | 812 | 1118 | 3CARD1
5CUTD
5DY+
3STCK
3SCK
3SCK
3SRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3RRO+
3R | | AI.1 | R205 | 358117
35803-
35803-
35803-
35803-
35803-
35803-
35805-
35805-
35805-
35805-
35805-
35805-
35805-
35805-
35805-
35805- | 719 | R202 | SERVICE SERVIC | | 91¢ | 8205 | 385111
385111
385111
385111
385111
385111
385111
385111
385111
385111
385111 | 613 | 46°2 | ACLUCK
3SYRC-
3START | | 6 V V | R2r1 | 35F1F4
34C5
35F1C5
35F1C5
35F1C5
37C5
37C5
37C5
37C5
37C5
37C5
37C5
37 | ٠
د د | 5 Ca G | BURDAN
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA
BURDA | | £. | R111 | 3 | 802 | 2098 | TO PERSON PER | | 407 | 2√£8 | 3 | 4C & | ×0.72 | A PARTY BY | | Ane | KÇC1 | SASSES SA | 4.70 | 2+60 | 24 4 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | AC5 | R111 | STEPPE ST | 45
61
21 | 1)54 | 2 | | 4 | 1054 | 3 C K d | '3
4 | 1004 | 300 M 30 | | AC3 | K1 11 | 340+
346-
346-
340-
346-
30-14-
30-14-
36-14- | <u>ت</u>
د | يه ود ر ج | 2 | | ≯0¢ | I IAF | 3471.72 3407-
34104 346-
34104 346-
34104 346-
34104
346-
3607-
3607-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36407-
36 | Ç. | 1. I A P | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | A. 1 A.2. | 3132# | | مسر
ار
ع: | 2.00 | 12.23
12.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
14.23
15.23
16.23
16.23
16.23
16.23
16.23
16.23
16.23
16.23
16.23
16.23 | | | | マボ 3回に 4 のつど 11 できな 20 かつ ラッ | | | FT JOULT TYWN TEEN | TABLE II-18. PURT Z/LINE ADAPTOR 3 TABLE II-19. A THE PARTY U Turk U Paragraph of the last * Comment U | A05 A10 A11 R201 R205 R205 4SHIFT 4SHIFT 4SHIFT 4SHIFT 4SR03- 4SR01- 4SR03- 4SR07- 4M871 4SR03- 4SR07- 4M85R 4M85R 4SH1FT 4SR03- 4SR07- 4M85R 4M85R 4SH1FT 4SR03- 4SR07- 4M85R 4SR07- 4M85R 4SR07- 4M85R 4M85R 4M85R 8M870 4SR01- 4M85R | 428ECE-
48ECE-
43MT+ | 46NOC6
46NOC6
46NOC6
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000
46000 | #111 ROC1 R3C2 R #111 ROC1 R3C2 R #5EEF+ 4REC- 46NOC6 #CINC1 4REC- 40C0C6 #CINC1 4REC- 40C0C #FINE | 46NEO4 ACS AO6 AO7 46NEO4 4SECK 45NEC 46NOC6 4SRCK 41NE+ 4REC 46NOC6 4SRCK 4CINE 4REC 4000C6 4CLI 4REC 400C0 4CLII 4GINUZ 4CLII 4GINUZ 4CNOU4 4LINE 4NEC 400GUK 4CNOU4 4LINE 4NEC 400GUK 4CINOZ 4CINOZ 4SEC 400GUK 4SCH 4XPI 4NEC 400GUK 4REC 4ANEC 4ANGSI 4RSI 4RSI 4BRI | ### ### ### ### ### ### ### ### ### ## | 4GNEO4 AC5 A06 A07 4GNEO4 4GNEC 4GNOC6 4SRCK 4CINE+ 4REC- 4GNOC6 4SRCK 4CINE 4GNUU 18050+ 4SRCK 4CINE 18EC- 4GOBC6 4CLT1 4GTNU 2 4CLT1 4GTNU 2 4CNOU4 4LINE- 4RSNU 4GOBUK 4 4CNOU4 4LINE- 4BFIX 51 4C9 4CLT1 4BEC- 4AOBUK 4 51 4C9 4CLT1 4BEC- 4AOBUK 4 51 4C9 4CLT1 4BEC- 4AOBUK 4 51 4C9 4CLT1 4BEC- 4ABEC- 4ABETX 51 4C9 4CLT1 4BEC- 4ABEC- 4BETX 51 4C9 4CLT1 4ABST 4ABS |
---|----------------------------|---|--
--|--|--| | E- 4SHIFT | 2 4 4 4 | # # # # # # # # # # # # # # # # # # # | R111 R0C1 R3C2 R 45.12 4 4.10.6 44.11.1 40.10.6 44.11.1 40.10.6 44.11.1 4.10.6 44.1 4.10.6 44.1 4.10.6 44.1 4.10.6 44.1 4.10.6 44.1 4.10.6 44.1 4.10.6 44.1 4.10.6 44.1 4.1 | 4501 R111 R0C1 R3C2 R 45RCK 45EBF 4REC- 46M0C6 45RCK 45EBF 4REC- 46M0C6 45RCK 45EBF 4REC- 46M0C6 45RCK 45EBF 4REC- 46M0C6 4CL11 4REC- 4AM0S1 4CR004 41LRE- 4RSN0 4AMS1 4CR1 4CF02 4SF1X 4CF1 4CF03 4F6- 4AMS1 4RSN0 4RS1 4AR1 | ### ### ############################## | ### ################################## | | E- 4SHIFT 4SHIFT 4RD+ 4ZEKSR + 4RD+ 4ZEKSR + 5RD1+ 4SR70+ 4SR01+ 4SR70+ 4SR01+ 4SR70+ 4SR01+ 4SHIFT 4SHIFT 4SHIFT 4SHIFT 4SHIFT 4SR01- 4SR01- 4SR01- 4SR01- 4SR01- 4SR01- 4SR01- 4SR01- 4SR01- 8040- 8040- 8040- 8040- 8040- 8040- 8040- 8040- 8040- 8040- 8040- 8040-
8040- 8 | | 46NOC6
4ROSO+
4AO6JK
4AO6JK
4AO6JK
4ACC-
4AO6ST
4AO6ST | 457.8FF 48.8C- 41.18E+ 4078.01 41.10.1 48.8C- 40.01.1 40.11.1 40.180.2 40.11.1 40.180.2 41.18E- 41.18E- 41.18E- 41.18E- 42.11.1 42.11.1 43.18E- 43.18E | 45NCC 45EBF 4REC- 45RCK 45EBF 4REC- 41NE+ 40TNJ1 4R050+ 45RCK 46TND1 4REC- 76NDC6 46LT1 4REC- 76NDC6 46LT1 4REC- 76NDC6 46NOJ4 4LINE- 4104 46LT1 4REC- 45CNB 4XP1- | 46ND04 45RCF 4REC- 4GNOC6 48E+ 45RCK 4LINE+ 4GTKJ1 4RQ50+ 48CF 45RCK 4CINC1 4REC- 7CNOC6 4RD- 4CLT1 4GTCC- 4AC4X 40LSI+ 4GNOJ4 4LINE- 4RSNO 4AO6JK 4 4CNOJ4 4CINOJ2 4BFIX 4DFIX 4SCR 4XFI- 4RSNO 4AO6ST 4GELAY 4SCR 4XFI- 4AO6ST 4GELAY 4RSI 4ARI | 4GNLC2 4GNEC4 4SEEF 4REC 4GNOC6 4GNUD2 4RD+ 4SECK 4SEEF 4REC 4LINE+ 4GTKJ1 4RGSO+ 4RING 4REC+ 4CINC1 4REC- ACNOC6 4RING 4REC- ACNOC6 4RING 4REC- ACNOC6 4CINC1 4REC- ACNOC6 4CINC1 4RING 4REC- ACNOC3 4GINE+ 4RSND 4AO6JK 4CINOZ 4GINC- ABFIX 4CS+ DIALST 4LO4 4CINOZ 4GINC- ABFIX 4CS+ ACNOC2 4BFIX 4SCR 4XFI- 4REC- 4GNOC2 4GINC2 4BFIX 4SCR 4XFI- 4REC- 4GNOC3 4BFIX 4SCR 4XFI- 4REC- 4GNOC2 4BFIX 4SCR 4XFI- 4RSND 4AO6ST 4AO6ST 4STRCY 4CELAY 4RSI 4ARI 4BRI 4BRI | | E- 45HIFT 45R31-
48D+ 42EK5R
+ 45R01+
45R01+
45R01+
45R01-
45R01-
45R01-
48HIFT 45R01-
48H 5R 8HB32
48B | 4 4 4 | 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 456 EF+ 4 REC-
46 NO C 6
46 NO C 7 NO C 7 NO C 6
46 NO C 7 NO C 7 NO C 7 NO C 1 NO C 7 NO C 1 NO C 7 NO C 1 NO C 7 NO C 7 NO C 7 NO C 1 NO C 7 | 4GNDC4 45RCK 45RCK 41REF 44REC- 45RCK 46LNE1 4REC- 46LT1 40TND2 46LT1 40TND2 46LT1 40TND2 46LT1 40TND2 41REC- 40CA 46LT1 48EC- 48F1X 41F40 48F1X 41F40 48F1X 48FX 48FX 48FX 48FX 48FX 48FX 48FX 48F | 4RD+ 4SRCK 45EBF+ 4REC- 4KEC+ 4KEC+ 4SRCK 4CINC1 4REC- 4CRC 4CINC1 4REC- 4CRC 4CINC1 4REC- 4CRC 4CINC1 4REC- 4CRC 4CINC2 4RD- 4CRC 4CINC2 4RD- 4CRC 4CINC3 4REC- 4GROSA 4LINE- 4LOA 4CINC2 4BFIX 4GROSA 4REC- 4BFIX 4RC- 4RC- 4RC- 4RC- 4RC- 4RC- 4RC- 4RC- | ## ## ## ## ## ## ## ## ## ## ## ## ## | | E- 45HIFT 45R31-
48D+ 45EK5R
+ 45R05R 45R71-
45R77- 45R77-
45R77- 48R77-
45HIFT 45R72-
48H5R 8MB32-
4MB5R 8MB3-
4MB5R 8MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3-
4MB3- | * * * * | 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 456 2F + 4REC-
461 RD1 4REC-
461 RD1 4REC-
461 RD1 4REC-
461 REC-
461 REC-
461 REC-
461 REC-
461 REC-
461 REC-
461 REC-
461 REC-
461 REC-
486 R | 45RCK 45EEF 4REC- 45RCK 45IEF 4REC- 45RCK 45IND1 4RGSO+ 45LT1 40TND2 46LT1 40TND2 46LT1 4REC- 4004 4LINE- 4104 4CLT1 4114 4104 4CLT1 4104 4114 41 | 4RD+ 4SRCK 4SEBF+ 4REC- 4REC+ 4REC+ 4SRCK 4GING1 4REC- 4CRG1 4GING2 4RC- 4GL11 4GING2 4RC- 4GL01 4GING2 4RC- 4GN034 4LINE- 4L04 4GING2 4REC- 4BFIX 4SCHB 4XFI- 4REC- 4RFIX 4REC- 4RFIX 4RC- 4RGSI 4ARSI 4BRI 4BRI 4BRI 4BRI 4BRI 4BRI 4BRI 4BR | 46ND02 4RD+ 45RCK 45EBF+ 4REC- 4RINGB 4REC+ 4SRCK 46IND1 4RGSO+ 4RING 4RD- 4RING 4RD- 4GNIO2 40LS1+ 4GNIO2 40LS1+ 4GRING 4RC- 4GNIO2 40LS1+ 4GRING 4RC- 4GNIO3 4GLI 4REC- 4AGII 4AGI | | 4 SR 151 4 SR 21 4 4 SE K SR 4 4 SE K SR 11 4 5 SR 21 4 5 SR 22 | | 40051K
40051K
40051K
40051K
40051K
400551
400551 | 4 LINCI 4 REC- 60006 4 CLT1 4 CTND2 4 CLT1 4 REC- 60006 4 CLT1 4 REC- 60004 4 LINE- 48 SND 4606JK 4 CTN 02 48 FIX 4 CTN 02 48 FIX 4 CTN 02 48 FIX 4 REC- 48 SND 4606JK 4 REC- 48 SND 48 GEC- 48 FIX 4 REC- 48 SND 48 GEC- 48 FIX 4 REC- 48 SND 48 GEC- 48 FIX 4 RESI 48 SLD 48 REC- 48 GEC- 48 FIX 4 RESI 48 SLD 48 REC- 48 GEC- GE | 458CK 4CINCI 4REC- 1CNOTC6 4CLT1 4REC- 1CNOTC6 4CLT1 4REC- 4AOLAK 4CINCI 4REC- 4AOLAK 4CINCI 4REC- 4AOLAK 4CINCI 4REC- 4AOLAK 4CINCI 4REC- 4AOLAK 4SCR 4XFIC- 4AOLAK 4RSI 4RRI 4RSI 4RRI | 48 F IX 4 5 C K 4 C IX | # INGS * NEC+ | | # 4 ZRUSR 45R01+ 4 SR70+ 4 SR00+ 4 SR70+ 4 SR00+ 4 SR70+ 4 SR00+ 4 SR10- 4 MB SR 4 MB SR 8 MB 72 73 8 MB 72 8 MB 73 | | 4406JK
4406JK
48F1X
41FHO+
4RFC-
4406ST
4406ST
4406ST | 4CLT1 4CTND2
4CLT1 4REC- 4A06JK
4LINE- 4RSND 4A06JK
4CTN 02 4BF1X
4CLT1 4BF1X
4CLT1 4RFC- 4A06ST
4RSNO 4A06ST
4RS1 4A81 | 4CLT1 4GTND2
4CLT1 4REC- 4A06JK
4GNOJ4 4LINE- 4RSND 4A06JK
4L04 4CTNO2 4BF1X
4L04 4CLT1 4RF1X
4L04 4CLT1 4RF1X
4L04 4CLT1 4RFC- 4A06ST
4RS1 4R81 4AR1 | 4RD-
4RD-
4CLT1 4REC-
4CLT1 4REC-
4CLT1 4REC-
4CLO2 4D164CLT1
4CLO2 4D1A-
4CLO2 4BF1X
4BF1X 4CLT1 4REC-
4BF1X 4SCRB 4XP1-
4REC-
4BF1X 4SCRB
4XP1-
4REC-
4ACCST
4REC-
4ACCST
4REC-
4ACCST
4REC-
4ACCST
4REC-
4ACCST
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC- | 4RING 4RD- 4CLT1 4REC- 4AC6JR 4RING 4RB- 4CLT1 4REC- 4AC6JR 4CRING 4GLS1+ 4CROO2 4GLS1+ 4CROO3 4GLS1+ 4CROO3 4GLS1+ 4CROO3 4GLS1+ 4CROO3 4GLS1+ 4CROO3 4GLS1+ 4CROO3 4GLS1+ 4GROO3 4GLS1+ 4GROO3 4GRS1 4AG6S1 | | ## 4 SR 701+ # 4 SR 701+ # 4 SR 701- # 4 SR 701- # 4 SR 101- # 5 SR 101- # 5 SR 101- # 5 SR 101- # 5 SR 101- # 6 S | | 44061K
4861X
41640+
4866-
48065T
48065T | 4CLT1 4REC- 4A75JK
4LTKE- 4RSND 4406JK
4CTA02 4BF1X
4CTA02 4BF1X
4CTT1 4RFG-
4XF1- 4A05ST
4RSLD 4A81
4RSL 4AR1 | 4CLT1 4REC- 4A05JK 4GNOJ4 4LINE- 4RSND 4405JK 4L04 4CLN02 4BFIX 4L04 4CLT1 4BFIX 4L04 4CLT1 4BFIX 4R54 4XPT- 4A05ST 4R51 4R51 4A05ST | 4RD- 4CLT1 4REC- 4A76JK
40LS1+ 4PRND 4LINE- 4RSND 4A06JK
4L04 4CTNO2 4BF1X
4L04 4CLT1 4BF1X
4BF1X 4SCHB 4XP1- 4REC-
4BF1X 4SCHB 4XP1- 4REC-
4REC- 4A76JK
4BF1X 4A6LT1 4AFEC-
4A76ST 4A06ST
4A76ST 4A81 4A81 | 4RING 4RD- 4CLII 4REC- 4ACADA 4CRODA 4LINE- 4CSBB 4L04 4CINE- 4CELAY 4CSBB 4L04 4CINE- 4BFIX 4CS+ 4CNDG 4BFIX 4SCRB 4XPI- 4SRDB 4XPI- 4SRDB 4XPI- 4SRDB 4XPI- 4SRDB 4XPI- 4REC- 4ACASI 4 | | ### ### ############################## | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4PTEF+ 4RSND 4A05JK
4LINE- 4BF1X
4CL11 4REC-
4XP1- 4A06ST
4RSI 4A06ST
4RS1 4A06ST | 40004 4LINE-
4L04 4CLT1
4L04 4CLT1
4L04 4CLT1
4SCRB 4XPT-
4SCRB 4XPT-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4REC-
4ROST
4ROST
4ROST
4ROST | 40LSI+ 4PTEF+ 4RSND 400.4K
4CN04 4CLN02
4DF1X 4CL11 4FFH0+
4BF1X 4SCHB 4XPI- 4REC-
4RF1X 4SCHB 4XPI- 4AP6ST
4RSNO 4A96ST
4RSN 4A81 | 4GNDOZ 4GLSI+ 4GNDO4 4LINE- 4CSDB 4CSDB 4CO4 4CTNO2 4CS+ 4CS+ 4CS+ 4CS+ 4CS+ 4CBOZ 4BFIX 4SCRB 4XFI- 4SRDB 4SRDB 4SRDB 4SRDY 4SROY 4RSI 46RI 46RI | | 4 SR 50 + 4 SR 00 + 4 SR 10 + 4 SR 02 + 4 RB 5R 10 + 4 SR S | • | • | 4CINE-
4CINO2 4BFIX
4CIII 4IFMO+ 4
4XFI-
4XFI-
4XFI-
4XFI-
4ASI 4A06SI
4ASI 4ARI
4BSI 4ARI | 4GNOJ4 4LINE—
4GNOJ4 4GTNOZ 4BFIX
4LO4 4GLVI 4REG—
4SCRB 4XFIX—
4XFEG—
4REG—
4REG—
4REG—
4ROST
4ROST
4RSI 4BRI
4RRI | 40004 4106-
4104 4611 415404 4
4851x 4564 4x11-
486-
4851x 4564 4x11-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486-
486 | #CSDB #CNO34 #LINE—#FIX
#CS+# #LO4 #CLTT #IF#O+ #FEC-
#CS+ #CS+ #CLTT #REC-
#CNOG2 #BFIX #SCHB #XPFC-
#SROB #XFEC-
#SROB #XFEC+ ##O&ST
#STKLY #CELAY #RSI
#STKLY #CELAY #RSI
#STROY #GRIA #RSI | | 4 SH IFT 4 SRP2+
4 RB- 4 SRP2+
4 RB- 4 SRP2-
4 MB-70 4 SRP1-
6 MB-70 4 SRP1-
4 SRP1-
4 SRP1-
4 SRP1-
4 SRP1-
4 SRP1-
4 SRP1-
4 SRP1-
4 SRP1-
4 SRP1-
8 D 9 B 1 9 B | • | • | 41F10+ 4
4REC-
4A06ST
4A06ST
4A06ST | 4104 4CLTI 41FH0+ 4
4SCRB 4XFTE-
4XTEG+ 4AP6ST
4RSNO 4A06ST
4RSNO 4A06ST
4RS1 4BRI | 07ALST 4154 4CLTI 41FMO+ 4 48FIX 45CH8 4XPT- 4A06ST 475KG 4XPT- 4A06ST 475KG | 4C5+ 07ALST 4L54 4CLTT 4TFM0+ 4
4C5+ 4CNDG2 4BFTX 4SCHB 4XPT- 4A06ST 4A0 | | 45H FT
45R02-
4RD-
4RD-
45R02-
48R02-
8M40-
45R01-
48R01-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
488R-
48 | • | • | 4866-44681
480681
48081 | 4 SCR6 4 XP1-
4 SCR6 4 XP1-
4 A T F G -
4 A O 6 ST
4 R S I
4 R S I
4 R S I
4 R S I
4 R S I | 48FIX 45CH8 4XFI-
48FIX 45CH8 4XFI-
48FIX 4AFSI
46ELAY 4AFSI
46RI
46RI | 48FIX 45CR8 4XFI-
48FIX 45CR8 4XFI-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC-
47FEC- | | 4 KDT 4 KSC2+ 4 KSC2+ 4 KSC2+ 4 KSC2+ 4 KSC1- | | 4A06ST
4A06ST
4AR1 | ;
; | 4 SCRB 4 XP1-
4 X I FC+
4 R S N
4 R S I
4 R S I | 48FIX 45CHB 4XFIT-
4XTFC+
4F5NO
4F5NO
4F51
4R51 | 48FIX 45CR8 4XFIT-
4XIFC+
4FSN0
4CELAY 4FS1
4RS1 | | 4 M S M 4 M 8 M 8 M 8 M 8 M 8 M 8 M 8 M 8 M 8 | | 4A06ST
4A06ST
4BR1 | ;
 | 4 X 1 E C C C C C C C C C C C C C C C C C C | 4000 4000 4000 4000 4000 4000 4000 400 | 4 KFG+4 4 KS1 4 KS1 4 KS1 4 KS1 4 KS1 | | BMB10 45R711-4
4 48R711-4
4 488SR 4
4 48SR 4
6 10 8 10 8 10 8 10 8 10 8 10 8 10 | | 4 A06ST | ;
 | 485NO
4851
4851
4851 | 485NO
4851
4851
4851 | 46ELAY 4851
4851
4851 | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 4 # 51
4 # 51
4 # 51 | 40ELAY 4851
4851 | 40ELAY 4851
4R51 | | H 195 B 10 R 6 12 R 6 02 R | | 4681 | 4 | 7 II N Z Y | 4881 | The state of s | | B39 B13 | | | • | • | | in the control of | | 672 R602 H | | | | | | And the state of t | | B39 B10
R672 R602 H | 1 | A distance | The same of sa | Address of the second s | And desired to the state of | | | R672 R602 H | à | 10E 90E | F 0 P | 5 806 BC7 | ECS 306 807 | 804 ECS 306 807 | | HOTZ HOUZ H | | | | | | | | | × | 7.5 KG(2 KG | Z KCCZ KG | 1 K2"2 KGC2 KG | TOT MOLI NEW KELL NE | WOUL MOIN TAIL MAIL MAIL MA | | | | | | | | | | • | | | | | | | | | • | • | | 05 | OF OND IT | OF OND IT | | Terre | | LOC PULEDS | | 4 かりととつか | # 5712E7F 21-10F 406F 11-10F | 4 FULLUS 21114 VICE 1 | | | 45534 | | | | 1934 | 1934 | | | - 0 | | 4PECL R | 4PECL R | SCK 4CETO 4PMCLR | 4SCTB 4SCK 4CETO 4PMCLR | | N 4CLUCK | | 4CL GCK | | 4CL GCK | 4CL GCK | 4REC- 4CLGCK | | 4ERZR +SANC- 4RSAN+ | 4E | 401 SV- | | | 47 | 4ZERSR | 4SRCK 4ZERSR | 4SRCK 4ZERSR | 4t37 4SRCK 42ERSR | 4t37 4SRCK 42ERSR | | ABCID | | 470054 | AL 37 AUECE - AZBONE | AUECE AZBOSE | ALMONA AL 37 AUEFFE A 2005A | AL 37 AUECE - AZBONE | | | • | | T LOOKE BOOK STORY | T COURT BOOK TO TO TO | T SPORT SOUTH STORY OF THE STORY | T STORET STATE STATE OF THE STA | | | , | ATT COLETT | * ^^1 | # CEAUTH CEAUTH | # CEAUTH CEAUTH | # CCALC# 157# 057# | | 4START | | | | | 4137 | 4137 | | L 70 NO Y | | 4STCK | • | | | 7 - 2 - 3 | | • | | 9 | 7 0 13707 | 7 0 10 10 7 6 8 8 7 7 6 8 7 9 7 | TO SOLOT REAL TO BASS TO | A CONTRACT A CROSS AND | | | | | THEFT TYPE | TOUR TOURS TARGET TYPE | TO TOUR TOLEN THECK THE | TO TOUR TOLEN THECK THE | | LOCK ABRKON ASYNC | Ţ | 4 SRCK | 4XMI- 4SRCK | 4CET 4XMI- 4SRCK | 4XMI- 4SRCK | C3 4CET 4XMI- 4SRCK | | 4ESFT 4EXMT | 4 | 4RFC- | 4XMT+ 4RFC- | 4XMT+ 4RFC- | 4XMT+ 4RFC- | 4XMT+ 4RFC- | | ARASA AFRD | 1 | ACI 00'K | ASTOR ACTOR | ASTOR ACTOR | ASTOR ACTOR | ASTOR ACTOR | | | 7 | 4000 | , | COOLS COOLS | יייי ארוכני | יייי ארוכני | | | - | A TILL | - ZIEY | | 4V-803 | C3 | TABLE II-20. | ~ | | < ⊕ ∪ | - | | | | | | | | | | | | | | | * | 2 | | The same and s | | | | | | | | | | | × • | | | | |------|------|----------------
---|----------|----------|---------|---------|----------|--------------|---------|-----------|----------|----------|---------|---------|--------|----------|--|--------|------|--|--------|----------|---------|----------------------------------|----------|--------------|-----------|---------|--------------------|----------|--------|---------|---------|--------| | A32 | | | | | | | | | | | | | | | | | | - | 83. | | and a second | | | | afridam cidibianes | | | | | and to employed to | | | | | | | A31 | R111 | | 4ADRO8 | BK St. 4 | | CIADOB | 1 | *ADR 99 | BK SL+ | | DIADOS | | PACKED | OFSE | 010410 | DIVE | | The second secon | 831 | R2C5 | | | 4LDAUX | 4CFR2- | 4PMCLR | 47.60 34 | BACOO | BAC09 | | 41 DAUX | 4CFR3+ | 4CFR3- | 800744 | BACOR | , | | A 30 | R123 | | | | 4ENAX+ | EACOE | EACO9 | 4CFR1+ | 4CF80+ | 4ENAX+ | EACTO | EACIL | 486504 | - 200 | DA 31.4 | 110410 | סוכיו | | 930 | R205 | | | 4LDAUX | 4CFR 2- | 4PMCLR | 47 co 74 | BACII | BAC11 | | 4LDAUX | 4CFR1+ | 4CFR:- | 0.000 | BACIO | 1 | | ¥25 | 4354 | | SCAN 1+ | SCAN 1- | SCAN2+ | SCAN2- | SCANS | SCANS | 4 SCANI | 4 SCANZ | 4 SCANS | 4 AUX CB | 4 ACKO | Jack | | | | | 828 | R205 | - | 4GND61 | 4FR1+ | | 4FRZE | 4CFR2- | 464041 | 4GND61 | 4LCFR | 4FR2+ | 4FR2+ | | ACP NO. | | 1 | | A28 | R123 | | 4EBPC+ | 4IFMD+ | 4ENBL+ | EAC 06 | EACO 7 | 4 ST KDY | 4TMRO | 4ENBL+ | EACOB | EAC 39 | SE LES | SCAKU! | SERBL. | EAC10 | EAC 1.1 | *************************************** | H28 | R205 | | 4GND60 | 4CLUCK | | 4FRZE | 4CFRC- | C 8 2 4 | 4EFRO | 4L DFR | 4FR0+ | 4FR1+ | | ACTRI- | 4CM060 | 2000 | | A2.7 | R123 | | 4SRSV+ | 4 DL ST+ | 4 ENBL + | EACOD | EAC01 | 4PAR+ | 4RQSD+ | 4ENBL + | EACOZ | EACO 3 | 4XTKU+ | *CL 30* | 45484 | EACO4 | EACO5 | ř. | 827 | R602 | ì. | 46ND59 | 4JMP59 | | man and the second of the second | 4 SVC- | 46000 | 4 PWCLR | 4 JMP59 | | 4 IFMO- | | 40H-114 | ARCTOT | | | A26 | R205 | | 4BRKDN | 4ROSC- | 4PMC1 R | 4RS1 | 4 ROSD+ | - SXLX | 4XLXC+ | 113 | 4 I NV PK | +72.24 | 4X1RU- | | EAL. | BAC 34 | | ı | 926 | 8673 | | | 1004 | 4EN81- | 4 INVAK | | 470050 | 4XTRO+ | 41.0FR | | 4MBSE | \$ do | 4ENAX- | 1 | | | A25 | R205 | | 4STCK | | | | 4CL SD+ | 4CS- | 4CS+ | | 4 INVEK | ASKSA+ | 4SRSV- | 4ESKSV | DE 3000 | BACSC | ACT NO | 1 | 925 | 1111 | | | 4SCAM1 | 4 SCANZ | 48LAD | 4ENBL - | 45.00 A L. 1 | 4SCAN2 | 4AXND | 4ENAX- | 4ENAX- | 4RD+ | 4PATY- | 40401 | 4 | | A24. | P2C5 | | 4 INVEK | | 4Phclr. | 4PAR 1 | 4 PAR + | EAC02 | EACO2 | 4CLCCK | A INVEK | 4CLST+ | | 45K3V | 16369 | EACEI | 4CHR DN | | #24 | 7000 | | | CIMUI | 4 BLNC | 4BLCCK | 4 BLNC | 44465 | 4BLOCK | 4 A XNC | 4RFC+ | 4 PAR NO | 40A+ | 4PARNO | | | | A23 | R205 | | 4 INVPK | | 4PWCLR | | 4EBPC+ | BACTE | BACAS | | 4 LYMY | 4TMRE+ | | | BACTY | HACTY | | | 823 | R121 | ¥ | | | | | 4ADAC | 77 | 4BRKON | BKSL4 | HUKEAK | BTIC | 4PAR I | 4RD- | 404 | | | A22 | R2C1 | GND 19- 46ND2C | | 4START | 4GND2C | | | 4PACLR | | 4 S VC- | 4KSTKT | 4REC- | | | 4×10+ | | | | H22 | ¥121 | | | 4EP2 | 4RC+ | 401SY+ | 4EP2 | 11117 | 4FP2 | 4RC+ | 4R FC+ | +04114 | 4ESRSV | *XMT+ | 4 TENO+ | 1 | | 137 | R2C1 | 96A6 1 9 | | 4.CAC | 46NC15 | | | 4PMCLR | | | | | 4 IF PC- | 4216A | | | | 1 | - 22 | 1218 | : | | | | | - | 4 1 1 1 1 1 | LAXST | 4 JFPC+ | 4XTAC+ | 4 X F 1+ | 4RECE- | 41050 | ACABLT | - | | AZC | R201 | | - respendence de la constitue | 4 INVAR | BACC7 | 4REC- | 4XMI+ | 4 PWCLR | 4 1 F P 10 + | 41570- | | 4 INVER | EACOT | *CLCK | 4C124 | -LEXT | ₽REC+ | | H2C | R111 | sidered ciginates near secretary | | 4 MC SD+ | 4CLSU+ | - 1 | | 4 20 34 | 4 F.B.C.+ | 4CYND | -A27 | 4CY- | | 4 1FMD+ | ACCOCA | | | A15 | R123 | | 45R76+ | 45RC7+ | BK SL 4 | DABTCA | | 1 | | BKSL4 | UABTOR | DAETES | 45817+ | 42K114 | HKSLA | DABL | DA8711 | | ٠
ت | 1504 | distribution of the state th | | 4T PRD+ | 4XHTAU | 4CARCT | | 10 × 10 × | | JNAC4 | 4FR]+ | 4DANC | | 4CVAC | 77.04
 311.11 | | 418 | R123 | | 4 SROC+ | 45RC1+ | BKSL4 | | | i | | BK SL 4 | DABTOZ | DABTOS | | - 1 | BKSL4 | DAUL | DABTCS | | 919 | RCC2 | medición sob arrestables des en e | | 4BLCCK | SCANC | - 1 | 4 | A SUANZ | | | 4 SAZND | 4 SCANI | | 4SN2NE | | 430496 | | 417 | R2C2 | | 4FR3+ | 4D.Y- | | 4L INE- | 4L INE+ | 4CLUCK | 4L INE+ | 4FRZE | 4FK3+ | 4PATY- | | 4718F+ | | 4FR3+ | 46 AT Y+ | - Address - Marie Ma | 817 | R111 | essentation of the same and | | 4SKS4 | 4R SYN+ | 45NIND | SCASVC | 47.56.57 | A L W M A | 4SAZAD | SCNSVC | | | 4SCAN3 | | 7575 | | | | ∢ 6 ∪ | 0 | w | u. | I | 7 | × | ب | T | Z | ٥. | œ | • | - | > | > | | | | 4 | ں ھ | 0 | 14 | ı | Ŧ. | , | ٠. | ı X | Z | ۵ | œ. | s, | - : | > : | TABLE II-21. O Branchestry Singan day Harmon d Briodephage Cont. discussion of the second Townson or the second diam's Albina interna Excessionally, An and Miles of the PDP-8/201A LINE ADAPTOR INTERFACE FOR UST WITH A PDP-8 WITHOUT USING THE DATA-BREAK FACILITY 1-11-65-2074P- Dappised, Th THE STREET Appel Manny 1. Harpestoda 4depoint grade Maps made # TABLE OF CONTENTS | | Page | |------------------------------|-----------| | Pseudo Data-Break Control | I I I - 2 | | Control Gating | III-2 | | BUF Register | I I I - 2 | | BUF Gating | I I I - 2 | | SDR Register | III-7 | | Device Select Code | III-7 | | Device Selection Gating | III-7 | | Interrupt Control | III-11 | | Extended Accumulator Control | III-11 | | Accumulator Input Gating | III-11 | | Extended Accumulator Buffers | III-11 | | Miscellaneous Circuits | III-16 | | Cable Layout. | III-16 | | Module Utilization | .II-16 | # LIST OF DIAGRAMS | Diagram | | Page | |-----------|------------------------------|------------| | I I I - 1 | Pseudo Data-Break Control | III-3 | | III-2 | Control Gating | I I I - 4 | | I I I - 3 | BUF Register | 111-5 | | I I I - 4 | BUF Gating | III-6 | | III-5 | SDR Register | III-8 | | III-6 | Device Select Code | III-9 | | III-7 | Device Belection Gating | I ï I - 10 | | III-8 | Interrupt Control | III-12 | | I I I - 9 | Extended Accumulator Contiol | III-13 | | III-10 | Accumulator Input Gating | III-14 | | III-11 | Extended Accumulator Buffers | III-15 | | III-12 | Miscellaneous Circuits | III-17 | | 111-13 | Cable Lavout | 111-18 | # LIST OF TABLES | Table | | Page | |-----------|--|------------| | III-1 | Buffered Accumulator Outputs | III-19 | | I I I - 2 | Accumulator Inputs | III-20 | | 111-3 | Timing Control Signals | III-21 | | III-4 | Programmed Input/Output Control | III-22 | | III-5 | Panel 1 - Common Section (without Data-Break) | III-23 | | III-6 | Panel 1 - Common Section (without Data-Break) | III-24 | | III-7 | Panel 2 - Port O/Line Adaptor # (without Data-Break) | I I I - 25 | | I I I - 8 | Panel 2 - Port)/Line Adaptor # (without Data-Break) | III-26 | III-vii #### PDP-8/201A LINE ADAPTOR INTERFACE FOR USE WITH A PDP-8 WITHOUT USING THE DATA-BREAK FACILITY The only difference between this version of the 201A communication adaptor and the basic 201A communication adaptor presented in Appendix I is that it uses a character buffs internal to the 201A line adaptor interface instead of using the du. break facility and PDP-8 core buffers. This necessitates the addition of control circuitry to transfer characters between the SDR register and this internal buffer (BUF) and additional micro-instructions to read, write, and clear BUF. The additional device ode for the set of IOTs is taken to be the fourth in the set used by 201A communication adaptor (see Programming and Control Considerations). This set of IOTs is defined as follows: #### Read Character Bu fer (6XXI) This micro-instruction causes the contents of the 201A line adaptor character buffer to be logically ORed to the accumulator. #### Clear Character Buffer (6XX2) This micro-instruction causes the 201A line adaptor character buffer to be cleared. #### Write Character Bulfer (6XX4) This micro-instruction causes the contents of the PDP-8 accumulator to be loaded into the 201A line adaptor character buffer (BUF). In order to use the same basic 201A line adaptor, the data break control signals were simulated, except that the transfer is to and from BUF instead or core. The remainder of the Appendix presents the detailed logic circuits with a brief description of their function. ### Pseudo Data-Break Control (Diagram III-1) Through the #BKRQ flip-flop, the line adaptor initiates the transfer to or from the SDR register from or to the BUF register. When #BKRQ is set, the direction of transfer is specified by the DICTL signal. The #BKRQ flip-flop is cleared by the first BTl pulse after it is set. The next BTl pulse is used to generate the #BRKDN signal which causes the reading or strobing of the BUF register. The #BRKQ flip-flop is set each time the frame counter overflows while in the text state and when the line adaptor first enters the transmit state to fetch the first character to be transmitted. All of the logic in Diagram III-l is in Bay 2 of the interface. #### Control Gating (Diagram III-2) The PDP-8's address-accepted signal is simulated by the ADRAC flip-flop, and the buffered-break signal is effected by the BBRK flip-flop. The sequencing through the states effected by BBRK and ADRAC is accomplished by the BT1, and BT2 pulses. The BUF register is cleared by a PDP-8 power clear signal, an explicit IOT, and by the interface before it loads the SDR register into it. The signal used to load the SDR register into BUF is READ, while LOAD is generated by the IOT used to write or load BUF from the PDP-8 accumulator. ### BUF Register (Diagram III-3) Diagram III-3 shows the internal buffer register. #### BUF Gating (Diagram III-4) Diagram III-4 shows the drivers and control gating necessary to load the BUF register into the PDP-8 accumulator. 0 - Compension of Santa Professional 10.214100011111 Chapman til determine Histopassili, Historyander? Diagram III-1. PSEUDO DATA BREAK CONTROL : Diagram III-2. CONFROL GATING 0 0 0 Townson of IJ IJ T Second and the second Liquidetti ingg 1 Diagram III-3. BUF REGISTER Diagram III-4. BUF GATING J B Û U ## SDR Register (Diagram III-5) Diagram III-5 is a revision of Diagram 1, described in the report, to reflect the loading of the SDR register from BUF instead from the buffered memory buffer. ## Device Select Code (Diagram III-6) The device select code is a two octal digit number which selects an external device during an input/output operation. The device code appears in positions 3 through 8 of the memory buffer during an IOT instruction, alerting the external device when it is being selected. This version of the 201A L.A. has associated with it four separate device codes as discussed above. In order to specify the four devices it is sufficient, because of the aforementioned requirements, to define only a four-bit number which appears in positions 3-6 of the M.B. during an IOT instruction. This number must also be realized in the hardware, and this is accomplished via an R002 diode module. Thus to specify the desired set of devices codes the appropriate diodes are removed. For example, using the set 40,41,42,43, as before, the diodes connected to pins E, H, L, and P must be removed. The remainder of Diagram III-6 shows the gating necessary to obtain the signals to identify each of the devices. ## Device Selection Gating (Diagram III-7) The gates shown in Diagram III-7 are located in Bay 2 and provide the signals to differentiate between Control Word 1 and Control Word 2 operation. Diagram III-5. SDR REGISTER Û ij al' papelina Characteristics. kipperstria sym SHIP THE STREET E.Broketti Photogrammer of dipositions and a Witnesses 12 Appetitions of Diagrum III-6. DEVICE SELECT CODE Diagram III-7. DEVICE SELECTION GATING 1 0 Ü Ü #### Interrupt Control (Diagram III-8) Every time a character is transferred between the 201A L.A. and the BUF register, a character service flag (#SRSV) is set, as described before. This flag in turn sets the appropriate flag, transmit (XINT) or receive (RINT), which causes an interrupt request. If interrupts are enabled in the PDP-8, a program interrupt is generated. Via the appropriate IOT micro-instruction, the program can identify the device causing the atterrupt. The SKIP signal will be generated and a program skip forced if this IOT is executed. It is the program's esponsibility to clear the interrupt after it is identified, and the remainder of the gates allow for this. ## Extended Accumulator Cortrol (Diagram III-9) In order to provide the IOT structure described under Programming and Control Considerations, the extended accumulation (EAC) buss was implemented. The full power of the EAC is not realized until there are multiple devices using the buss, since it provides the mechansim for multiple inputs to the PDP-8 AC. Diagram III-9 shows the gating necessary to generate the SKIP signal on a skip under mask IOT. #### Accumulator Input Gating (Diagram III-10) Diagram III-10 shows the buffers which gate the EAC buss onto the AC buss. For other devices to use the EAC buss, they need provide only the appropriate input to the ENBL gate and the gates for the EAC buss. #### Extended Accumulator Buffers (Diagram III-11) Diagram III-11 shows a set of buffers necessary to accomplish the inversion to gate the EAC onto the AC. The clamped loads for the EAC buss are also indicated. Diagram III-8. INTERRUPT CONTROL I 0 Ū U IJ U iligorium THE STATE OF H10-100 Diagram III-9. EXTENDED ACCUMULATOR CONTROL Diagram III-10. ACCUMULATOR INPUT GATING 0 0 A THE STREET Equation and The state of s Mirmanical Diffesion Lippetreenthico i interdibition Parameter Parame Hammen 1111000011-01111 Винения eli indista Musesparia 48116135486 This series Presentific The state of Diagram III.-11. EXTENDED ACCUMULATOR BUFFERS # Miscellaneous Circuits (Diagram III-12) Diagram III-12 is best described as the left-over circuits without a logical home. ## Cable Layout (Diagram
III-13) The input/output cables for this version of the 201A line adaptor are shown in Diagram III-13. The correspondence between signal names, module positions, and pin connections for the 201A line adaptor and the PDP-8 are given in Tables III-1 through III-4. # Module Utilization (Tables III-5 through III-8) Tables III-5 through III-8 give the module utilization for this version of the 201A line adaptor. In addition to the module utilization, a complete signal name map is also shown (Tables III-5 through III-8). MANAGEMENT. - SHERE SAME 3 1951+0⁴⁵⁰⁴ Files (agarrestrone) Angel Linds Diagram III-12. MISCELLANEOUS CIRCUITS ÷ | 1 | | | | | | | | | | | | | | | | | |-----|------------------|--------|--------|-------|--------|----------------|-------|-----|-------|---------------------------|--------------|--------------|--------|----------|----------------|---------------| | 90 | 00 | 2 | 3 | 4 | 2 | 90 | 8 | 90 | 6 | 0 | _ | ۵. | ΕQ | | | | | | AC (| AC 02 | AC03 | AC04 | AC 05 | AC 06
AC 07 | AC 08 | | AC09 | c_1 | AC11 | KIP | INTREQ | 1 | 1 1 | | | 0.5 | | _ | | _ | _ | | | 0.5 | * | ⋖ | ∢ | S | Z | | | | | | | | - | | | | - | | | | | | | | | | | 0.4 | 010 | 2 | 3- | 53 | 4- | 5- | 2 | 0.4 | -9(| 90 | 7- | 2 | 8- | ∞ | 00 | _ | | | BMB00
BMB01 | BMB02 | BMB03 | BMB03 | BMB04 | BMB04
BMB05 | BMB05 | | BMB06 | BMB (| BMB07- | вмво7 | BMB08 | BMB08 | BM309
BM810 | BY7.1 | | 03 | ã ã | æ | 8 | ã | ã | a a | ã | 0.5 | æ | <u> </u> | <u>~</u> | ã | 8 | 8 | M M | â | 0.2 | 0 = | ~ | 150 | ₹ | S | 9 7 | 00 | 02 | 0 | 10 | _ | | | ı, | | ۵ | | 0 | 000 | BAC 02 | BAC 03 | BAC04 | BAC 05 | BAC06
BAC07 | BACC8 | | 600 | $\mathbf{c}_{\mathbf{l}}$ | BAC11 | I 0 P 1 | 0 P 2 | OP4C | BT1C
BT2A | RPCLRC | | 01 | BAC 00
BAC 01 | BA | BA | BA | BA | BA
BA | BA | 01 | BAC | BAC | BA | 10 | 10 | 10 | BT
BT | 8 | | | | | | | | ستحصيه | | | | | | | | | | | | | O H U | L II - | , ¥ - | 12: | 20.0 | κω⊢: | o > | | 0 | п п | . = - | , × - | Z 2 | | K OF: | > > | | | | | | | | | _ | 1 1 | | | | | | | | | | | | | | | | | | 1 1 | | | | | | | | | Diagram III-13. CABLE LAYOUT The state of s U A STATE OF THE STA . A . B TABLE III-1 #### **BUFFERED ACCUMULATOR OUTPUTS** | 2014 | LINE ADAF | TOR | | PDP-8 | | |-------------------------|----------------|-----------------|-----------------|----------------|----------------------| | INTERFICE
CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE CONNECTION | | A01D, A02D | BACOO | | | BACO | ME34D | | A01E, A02E | BAC01 | | | BAC1 | ME34E | | A01H, A02H | BAC02 | | | BAC2 | ME34H | | A01K, A02K | BAC03 | | | BAC3 | ME34K | | A01M, A02M | BAC04 | | | BAC4 | ME34M | | A01P, A02P | BAC05 | | | BAC5 | ME34P | | A015, A025 | BAC06 | | | BAC6 | ME34S | | A01T, A02T | BAC07 | | | BAC7 | ME34T | | A01V, A02V | BAC08 | | | BAC8 | ME34V | | B01D, B02D | BAC09 | | | BAC9 | MF34D | | B01E, B02E | BAC10 | | > | BAC10 | MF34E | | В01Н, В02Н | BAC11 | | | BAC11 | MF34H | TABLE III-2 ## ACCUMULATOR INPUTS | 201/ | LINE ADAF | PTOP | | PDP-8 | | |--|--|---------------------------------------|---|--|--| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE
CONNECTION | | A05D, A06D
A05E, A06E
A05H, A06H
A05K, A06K
A05M, A06M
A05P, A06P
A05S, A06S
A05T, A06T
AC5V, A06V
B05D, B06D
BC5E, B06E
B05H, B06H | AC00
AC01
AC02
AC03
AC04
AC05
AC06
AC07
AC08
AC09
AC10 | - - - - - - - - - - - - - | - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 | ACO
AC1
AC2
AC3
AC4
AC5
AC6
AC7
AC8
AC9
AC10 | PE2D PE2E PE2H FE2K PE2M PE2P PE2S PE2T PE2V PF2D PF2D | *Note: Collector of Grounded-Emitter Transistcr TABLE III-3 #### TIMING CONTROL SIGNALS | 201A | LINE ADAP | TOR | | PDP - 8 | | |--|------------------------|-----------------|-----------------|---------------------------------|-------------------------| | INTERFACE CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | INTERFACE
CONNECTION | | B01S, B02S
B01T, B02T
B01V, B02V | BT1C
BT2A
BPCLRC | | | BT1
BT2A
B POWER
CLEAR | MF34S
MF34T
MF34V | TABLE III-4 PROGRAMMED INPUT/OUTPUT CONTROL | 201A | LINE ADAP | TOR | | PDP-8 | | |---------------------------|----------------|-----------------|-----------------|------------------------------|-------------------------| | INTERFACE
CONNECTION | SIGNAL
NAME | LOGIC
SYMBOL | LOGIC
SYMBOL | SIGNAL
NAME | 1.TERFACE
CONNECTION | | B0511, B06M
B05K, B06K | INTREQ
SKIP | *1
*1
> | *1
*1
 | INTERRUPT
REQUEST
SXIP | PF2M
PF2K | | B01K, B02K | IOP1 | | > | IOP1 | MF34K | | B01M, B02M | 10P2 | | | I OP 2 | MF34M | | B01P, B02? | IOP4C | | | IOP4 | MF34P | *Note: Collector of Grounded-Emitter Transistor. | | | | THE COMPANY AND ADDRESS OF THE PARKS | | | | | | | | | A SPECIAL CONTRACTOR ASSESSED. | pages and contract the same | | | | |--------|----------------|-----------|---|---------------|-------------|-----|-----|-----|-----|----------|------------------|--------------------------------|-----------------------------|---------|---------|---------------| | 12CM | 100 | M021 | M021 | MO 21 | M021 | | | | | £111 | R107 | #00% | 1107 | 1414 | R 10 7 | | | | | | | | | | | | | | CHOALS | | | 2000 | | < # L | | BACOD | 8AC03 | 64833 | 9 MB00 | A 5 00 | ACOO | | | | | XINT+ | BK St. 6 | | 8AC33- | TSTSKP | EACOO- | 0 ر | | BAC01 | 5AC 01 | 10919 | 10116 | V C01 | AC) 1 | | | | | | GNDA 12
BPCLR | BMB03
SELND | 8AC00
3A:01- | EAC00- | EACOS - | W W | | BAC02 | 8AC32 | 8 MB 3 2 | BM802 | AC 32 | AC 22 | | | | | INTREO | BPCLRC | BM834- | BACOL | BACO1- | EACOL | r· | | BACD3 | BAC03 | BMB33~ | BMB0 3- | AC 03 | AC 03 | | | | | RI NT+ | 1000 | SELVO | BAC02 | BACO 2- | EAC 02 | 2 7 | | \$6288 | BAC D4 | 50548 | FOUND | AC 04 | AC34 | | | | | | LDAC- | 84828- | BACO3- | EACO2 | EACO3- | _ 1 | | | | | | | | | | | | INTRES | CTMDS | SELND | BAC 04- | EAC03 | EAC04- | Z | | AC05 | 8AC35 | 1000 | 3 MS 04- | VC 05 | AC35 | | | | | | DEVSLO | -96 | 400 | BACOL | EAC94 | • | | Ý | BACOS | BATOL | AMADA | 4004 | AC06 | | | | | LAN | | SE NO | 34.03- | RACOA | EACOS- | * V | | BACO 7 | 8 AC 07 | 84805- | | AC07 | 4007 | | | | | | CTMD2 | | SEL DV | EACOS | GRPSEL | • | | 800 | | | | 900 | | | | | | LDAC | DEVSL2 | | 3 | GNDA 15 | SELDV | > : | 901 | 209 | 803 | 406 | 805 | 826 | ¥04 | 808 | 608 | 613 | 118 | 812 | 813 | + 16 | 815 | 816 | | | 12CM | 12CM | N021 | H021 | 1204 | M0.2.1 | | , | | | 1111 | R301 | R111 | R107 | R141 | R 107 | | | | . 9 €03 | | 100 | PC38 | 6 03 | | • | | | | 4747 | 1000 | 4074 | GWDB 15 | FAFOR | ∢ ⊕∪€ | | 84010 | BAC 10 | 3 MB 0 6 | EHB06 | AC10 | AC10 | | | | | 84808 | SKIPI | ENBL | B AC 06 | | EAC36 | | | BAC1 1 | BAC [] | -1C8M8 | 8 MB 0 7- | AC11 | ACI 1 | | | | | DEVSLO | SKIP2 | SKIP | 3A:07 | | EACO7 | I | | 100 | 1001 | 70074 | 70 | 8 2 3 5 | 9 22 3 | | | | | DEVSLO | CTWDO | , | BACOB- | | E ACO4- | 7; | | | | | | | | | | | | 94609- | GRPSEL | 1001 | BACD9- | FACOB | EACO9- | د - | | 392 | 2 dO 1 | 8 MB 08- | BMB08- | INTREG INTREG | INTREO | | | | | OE VND 1 | _ | SKIP2 | 8 AC 09 | BA C09- | EAC39 | E | | 7.49.1 | 1004 | | 6000 | | | | | |
1 | OEVSL 1 | GRPSFL | SKIP | BAC10- | EACO9 | EAC13- | Z | | ٠ | 101 | | 000 | | | | | | | 84807- | CAP SEL | RINT | 34511- | FACTO | FAC11- | | | 971C | 871 C | BMB09 | 8 4609 | | | | | | | 8 MB 08 | DE VND2 | 100 | 8AC11 | BAC 11- | EAC11 | . w | | | B12A | 0 19 59 | CIGNS | | | | | | | DEVNO2 | DEVSL2 | SKIP3 | ENBL | EACIL | BACTY | ⊢ : | | S
S | SPCLRC SPCLRC | 1 1 4 4 4 | 11000 | | | | | | | DEASE. | CHOLP | 17.0 | חבא אר ז | 2005 | ひかしてい | • | COMMON SECTION INITHDIIT DATE BREAK! TABLE III-5. | A 32 | < 0.30 W F T 7 X -1 T Z & 2 | :WF3> | 932 | | *************************************** | 00 | | I. | * | | 2 | The state of s | ~ " | , - | |-------|---|--|------|------|---|------------------|------------------|--------|----------------|---------|---------|--|--------|--------| | 101 | | 2 | | | - | | | | | | | - | | | | | | The state of s | 631 | | a Third dealer response to the | | | | | | | | | | | 2 | | 2 | 830 | | | | about a resident | | | | | and the same of th | | | | | | | 9.29 | | : | | 1 | | | | | | | | | ì |
MOSOS
SARA
SARA
SARA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SALASA
SA | | 929 | | | | | | | | | | | | | | | | 927 | | | | | | | | | | | | | | | | 929 | | | | | | | | | | | | | | | | 828 | R123 | | BUF 37+ | WAITE | AC07 | 8UF08+ | MR ITE+ | ACOR | AC39 | BUF11+ | 441764 | | | R2D5
LDAD
BUF10-
CLEAR
#SR10-
AVC10
BAC10-
READ
LUF11+
BUF11+ | #SRII -
BACII
RACII -
READ | 424 | R123 | | 8UF00+ | | | BUF32+ | | | ACD3 | | MRTTE+ | | | | BACO9-
BACO9-
BACO9-
READ | 823 | R202 | | ATRAC- | ADRAC. | ADRAC+ | 571 | 2 1 2 | 872 | | | BT2 | | - 8 | | BACOT
PACOT
READ | 228 | R107 | | CTMD3
DEVSL3 | WRITE+ | | 671C | | | | | 871C | | | R205
LOAD
BUF04-
CLEAR
GSQ04-
BACD4-
BACD4-
BACD4-
BACD4-
BACD4-
BACD4-
BACD4-
BACD4-
BACD4-
BACD4-
BACD4-
BACD4-
BACD4- | BACOS
READ | 121 | 1111 | | 84807-
84808- | DEVINOS | 2 | 1901 | | F. 17E- | | CTWD3 | LOAD | | | | 8 A C O 3 - R E A D 3 - | 820 | 1001 | | GRP SEL | #4EC+
CLRND | BARK+ | REDNO
BREC+ | AFIND | | | | | | 200 | R205
L3AD
CLEAX
CLEAX
BAC00
BAC00
BAC00
BAC00
BAC00
BAC00
BAC00 | RACOI-
RACOI-
REAO | 91 | R111 | | TOP4C
CTM03 | #SRSV+ | | ADRACO | CL P VD | CL FAR | 10P2 | CTW33 | CLEAR | | . 203 | R202
FDP4
DECSLO
BPCLR
R1014
BSRSV-
BX41-
10P4
DEVSLO | + ASSES & | 5 | 200M | | EACOD
EACOI | E ACO? | EACOA | FAC05 | E ACO7 | F AC08 | | | | | B1 23 | R123
FACOO-
FACOI
ACOI
EACO3-
EACO3-
FACO4-
ACO3-
FACO4-
FACO4-
FACO4-
FACO4-
FACO4-
FACO4-
FACO4-
FACO4-
FACO4-
FACO4- | 1.0AC-
A:04
ACO5 | 110 | R123 | | | | AC37 | | | | | EAC11- | | | | < | · >> | | | 4 E U | | | | | | | | | | TABLE III-6. Total State of the AND MANAGEMENT Harman Control Committee ************ Hatterintel PORT O/LINE ADAPTDR # (WITHOUT DATA BREME) | | 4++ 4 +1 ++14 & | 1101+01+0+10 | |---|---
---| | A16
R205 | SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
SC | 8 1 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | A15
R201 | #\$#1FT
#\$#1FT
#\$#11+
#\$#1FT
#\$#1FT
#\$#1FT | P 15 R1 11 R1 11 RCHADA | | Ai4
R235 | | # # # # # # # # # # # # # # # # # # # | | A13 | ###################################### | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | A12
R205 | ### ################################## | # 107
107 | | A11 | 26 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | # 20 2 | | AI 0 | 2 | 8 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | A 09 | # 2 H H H H H H H H H H H H H H H H H H | 809
RADILR
BUNK MP41
RUNK | | A0B | M M M M M M M M M M M M M M M M M M M | BOS
RECOS
RESTANT
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETARDS
RETA | | A07 |
BGRDSD+
BRDSD+
BRDSD+
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSSD-
BRDSSD-
BRDSSD-
BRDSSD-
BRDSSD-
BRDSSD-
BRDSSD-
BRDSSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD-
BRDSD- | # # # # # # # # # # # # # # # # # # # | | A06
R001 | ###################################### | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | A05 | # SDBF + # # # # # # # # # # # # # # # # # # | # 501
501
501
501
501
501
501
501 | | A04
H501 | BENDOA
BSRCK
BELOA
BLOA
BLOA
BSCRB | BO4
MSO1
BCND36
BSCK
BSCK
BSCK
BSCK
BSCK
BSCK | | A03 | RAD-
RAD-
RAP-
RAPIX | €
C
d | | A32
EIAR | BEGNDOS
BEGNDOS
BEGNDOS
BEGNDOS
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS+
BECS | 802
614 R
664034
460734
4708
6708
6708
6708
6700
6700
6701 | | 1 C V | 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | # # # # # # # # # # # # # # # # # # # | | 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | < C U U U U U U U U U | 4EUDLLINY_TPGEV F | CABLE III-7. | A32 | | < ⊕ ∪ | | w | • | * | 7 | * | | | | € | 5 | | 2 | > | 1 | 832 | | | B U | × | • 1 | which is the part and the first than the | | | | | | | | | | |------|-------|--------------|--|---------------|---------|---------|------------|--|---|----------|---------|---------|----------|----------|------------|--------|------------------------------|------|---------------|---|---------|-----------------|-------|--|--------|----------|---------|----------------
--|-------------|----------------|------------------|---------------| | A31 | | | PRANCISCO TANTONIO TO THE TOTAL TO SERVICE AND SERVICE ASSESSMENT OF THE T | | | | | | | | | | | *** | | | T | 160 | R205 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 2.2.6.6 | MCFR2+ | BAC09 | BACOS | AL DAILY | 1 | ACFR 3 | | BACOB | | | A30 | R123 | | OCFR3+ | OCFR2+ | BENAX+ | FACOR | EACO9 | OCFR1+ | SCP RUS | FACIO | FACIL | PROSDY | # 02 G M | BKSLF | PIADIL |)1CH | | 830 | \$02 } | F | | LOAUX | • | STACE A | #CFR3+ | BAC11 | 8AC 1.1 | #1 9411X | OCFR! + | JOFF 1- | | 8AC10 | | | A 29 | | | | | | | | 4117 | | | | | | | | , | . : | 2 | R205 | | BGND 61 | JFR1+ | | PFR2 | JFR2+ | 19 CM 28 | 190N96 | FR2+ | FF R3+ | | CFR3- | 600 61
600 61 | 990 | | A28 | R123 | | # De B PC+ | | FENBL + | | EAC 07 | STROY | PEN TE | FACOR | F ACO | PR I NG | PEAROT | PENBL | FACIO | EAC 11 | | 828 | R205 | | 9GN0 60 |)

 | | ALERO- | FR0+ | BEFRO | DEFRO | PERO PE | DFR 1+ | | FCFR1- | OCND 60 | AL OFF | | A27 | R1 23 | | #S#S# | BOLST+ | FNBL+ | E AC DO | EACOI | *** | 4 CON 1 | EAF 02 | FACOS | #XTRO+ | BCL SD | FINDL + | EACO4 | EAC03 | | 627 | R602 | | #GNDS9 | 62MF29 | | - 100 | BGN059 | DFAZE | PACLE | ACAME A | -OK-11 | OXMT- | FEND+ | PRSTAT | | | A26 | R205 | | FRKD | #R050- | BENCH | FRS 1 | PROS. | -DK-KG | - X - X - X - X - X - X - X - X - X - X | | EXT RO | WXTRO- | | BAC04 | 84004 | | | 979 | R 603 | | | 1 | ENER | | | # ZROSR | SXTRO+ | LOPK | 4 MB SR | 100 | DENAX- | CUTU- | | | A25 | R 205 | | JSTCK | BFLSD- | PWCLR | | 10 SO+ | - SOE | | AN LANGE | DSRSV+ | DSRSV- | FESRSV | BAC00 | BACSS | CHAD | | \$28 | 1111 | | | | | AFRA - | PENGL- | | | DENAX- | DENAX- | 8 00 | PATY | PARI | | | A24 | R 205 | | ¥ A | | PUCLR | 1240 | BPAR | BACOZ | 50769 | | ODL ST+ | | DSRSV- | BACOI | BACOI | CHRON | | 824 | 1001 | | | CTWD | | | CTWOS | BAXND | 98100 | PAYAG
PREC+ | 0 | | PARNO | | | | A23 | R205 | | BINYHK | | PUCLE | | DE JPC+ | BACOS | BACOB | 7277 | THRD+ | | | BACTY | BACTY | | | 623 | R121 | | | | | GADAC | • | | BRKON | BBRK+ | 97 IC | PARI | -046 | 80V+ | APATY+ | | A22 | R201 | 66ND 20 | | BSTART | 8CM020 | | | T T T | 7777 | 40.TET | FREC. | 4X4T+ | DXM T- | DREC+ | | | | 822 | R121 | | | SEPZ | 6X0+ | AFP? | BSRII+ | BXMT+ | 9EP2 | BREC. | 1 IF HD+ | DESASA | 6XHT+ | 1F MO+ | | | A21 | R201 | PG40 19 | | PADAC | SCN014 | | | 1 | PARC | | F 13+ | FE | BSTART | PXHT- | | | | 621 | R121 | | | | | JEN7R | PREC.+ | | EXM1 | EXTRO- | BXHT+ | PRECE- | 18.50
19.50 | OCAR OT | BSTRDY | | A20 | R 201 | | | | BAC07 | DREC- | 1 | A DE LEGICAL | | | S INVER | BAC07 | SCLOCK | PDT SY- | DXMT- | | | 820 | 1111 | | | BRUSO | | AKNTE- | OXMTE- | 8FR3+ | FROT | -A06 | -Y00 | | 6 I FNO | DE SR 3V | | | AIS | | | Madel pulser same title over paper | | | | | and polymers of the same | | | | | | | | | | •19 | 1001 | | | -01410 | CHINA | OXMIND | BSTROY | ON THE | | PFR1+ | i | ٠ | 1040 | 93 YNO | | | A18 | | | resident for successive special states of the second | | | | | The present of the latest owners are a | | | | | | | | | Monte of the second | 610 | | | | | | | | | | | | | | | | | A17 | R202 | | 0FR3+ | 6 0Y- | | OL INE- | OL INE+ | 2000 | AK B 26 | 4FR3+ | PATY- | | PTBF+ | | 0FR3+ | * | and the same amount or refer | 617 | | an up you nipp equipped on | | | | *************************************** | | | | | Medical desiration of the second seco | | | | | | | | ∢ © ∪ | ٥ | w | u. | I · | - : | ١. | | | • | ~ | v | - | = : | • | | | | < € | ه دا ۱ | 5 (| u u | . = | 7 | ¥ | ۱ ب | : P | • | € (| v - | - = | > | PORT O'MINE ADAPTOR & WITHOUT DATA BREAK! TABLE III-8. | DOCUMENT CO | NTROL DATA - RAI | | he amount secret is alreading. | |--|---------------------|------------|--------------------------------------| | THE UNIVERSITY OF MICHIGAN | | Uncla | T SECURITY CLASSIFICATION
SSIFIED | | CONCOMP PROJECT | | 24 GROUP | | | 3. REPORT TITLE | | | | | A 201A DATA COMMUNICATION ADAPT PRELIMINARY ENGINEERING | | | | | 4. DESCRIPTIVE NOTES (Type of report and Inclusive delec) Technical Report | | | | | S. AUTHOR(S) (Loot name, first name, initial) | | | | | WOOD, David E. | | | | | 6. REPORT DATE February 1968 | 79. TOTAL NO. OF P. | AGES | 76. NO. OF REFS | | 84. CONTRACT OR GRANT NO. | Se. ORIGINATOR'S RE | PORT NUM | 0 E R(3) | | DA-49-083 OSA-3050
A PROJECT NO. | Memorand | | | | g. | SA. OTHER REPORT I | io(S) (Any | other numbers that may be evalgred | | d. | | | | | 18. AVAILABILITY/LIMITATION NOTICES | | | | | Qualified requesters may obtain | copies of t | his re | port from DDC. | | 11. SUPPLEMENTARY NOTES | 12. SPONSORING MILI | FARY ACT | VITY | | | Advanced Re | search | Projects Agency | | 44 4000000 | | | | This report discusses the design and use of equipment built for data communication to and from a PDP-8 through a 201A data set. The purpose of the data communication interface is to allow a PDP-8 to send and receive digital data through a 201A data set in half-duplex mode. Basic design objectives and decisions are described first. A brief overall system description together with a sketch of a data format scheme and programming considerations is followed by a detailed description of the interface logic. Security Classification KEY WORDS LINK A LINK B LINK C ROLE WT ROLE WT ROLE WT Data Communication Logical Design Data Transmission Serial Synchronous Data Transmission Digital Computer Interface #### INSTRUCTIONS - ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report. - 2a. REPORT SECURITY CLASSIFICATION: Enter the overall accurity classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations. - 25. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Exter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized. - 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title. - DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. - 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter leat name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. - 6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication. - 7s. TOTAL NUMBER OF PAGES: The total page count ahould follow norms: pagination procedures, i.e., enter the number of pages containing information. - 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report. - 8. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. - 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc. - 9a. ORIGINATOR'S REPORT NUMBER(5): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. - 9b. OTHER REPORT NUMBER(\$): If the report has been assigned any other report numbers (either by the originator or by the aponsor), also enter
this number(s). - AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as: - (1) "Qualified requesters may obtain copies of this report from DDC." - (2) "Foreign announcement and dissemination of this report by DDC is not authorized." - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through - (5) "All distribution of this report is controlled. Qualified DDC users shall request through If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known. - 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes. - 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address. - 13. ABSTRACT: Enter an abstract giving a brief and factual aummary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached. It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (T.S), (S), (C), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words. 14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The sasignment of links, rules, and weights is optional.