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OSCILLATION OF CYLINDERS IN OR BELOY THE FREE
SURFACE OF DEEP FLUIDS

by
W. Frank

ABSTRACT

The subject of cylinders oscillating in or below the free surface of very
deep fluids is developed as a boundary value problem within the framework of
linea: free-surface theory by distributing source singularities over the sub-
merged portion of the cylinders. A computer program for calculating the hydro-
dynamic pressure, force, and moment on these cylinders has been devised by
the Naval Ship Research and Development Center. The results for various two-
dimensional shapes are given in graphical form.
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NOTATION

Oscillation amplitude in the m th mode

Beanm of cross section C
Submerged part of croas sectional contour in reat position
Acceleration due to gravity

Influence cosfficient in phase with displacement on the {th
midpoint due to the jth segment in the m th mode of motion

Influence coefficient in phase with velecity on the §th

midpoint due to the jth segment in the m th mede of
oscillation

Added mass force or moment for the m th mode of
oscillation at frequency «

Number of line segments defining submerged portion of half
section in rest position

Damping force or moment for the m th mode of oscillation
at frequency w

Direction cosine of the normal velocity at {th midpoint
for mth mode of oscillstion

Cauchy principal value of integral

Hydrodynamic pressure in phase with displacement for
m th mode of oacillation

Hydvodynamic preasure in phase with velocity for mth
mode of oscillation

Source strength in phase with displacement along jth
segment for m th mode of oscillation

Bource strength in phase with velocity along jth segment
for mth mode of oscillation

Length varisble along C,
jth line segment

Draft of cross section
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Time:

Normal velocity component at £th midpoint for s th mode
of oscillation

Abscissa of i th midpoint
Ordinate of ith midpoint -
Ordinate of center of roll

Complex field point in region of fluid domain (2 = 2 + iy)

Complex midpoint of ith segment (s, = z; + iy )

Angle between ith aoﬁent and positive z axis
Complex variable along C,

jth complex input point along C,

Oedinate of jth input point

Wave number ( = w?/g)

kth irregular wave number for adjoint interior problem
Abscissa of jth input point

Density of fluid

Velocity potential for mth mode of oscillntion
Radian frequency of oscillation

4 th irregular frequency for adjoint interior problem
(kth eigenfrequency)
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INTRODUCTION

Hydrodynamic research of horizontal cylinders oscillsting in or below the free sur-
face of a deep fluid has increased in importance in the past two decades and has been atud-
ied by & number of investigators. The modern history of this subject began with Ursell,!
who formulated and solved the boundary-value problem for the semi-immersed heaving circu-
lar cylinder within the framework of linearized free-surface theory. He represented the
velocity potential ¢s the sum of an infinite set of multipoles, each satisfying the linear free-
surface condition and each being multiplied by a coefficient determined by requiring the
series to satisfy the kinematic boundary condition at & number of points on the cylinder.

Grim? used & variation of the Ursell method to solve the problem for two-parameter,
Lewis-form cylinders by conformal mapping onto a circle. Tasai® and Porter,* using the
Ursell approach, obtained the added mass and damping for oscillating contours mappable
onto & circle by the more general Theodorsen transformution. At the Naval Ship Resesrch
and Dovelopment Center, Ogilvie® calculated the hydrodynamic forces on completely sub-
merged heaving circular cylinders.

Despite the success of the multipole expansion-mspping methods, the present paper
discusses the problem from & different view. The velocity potential is represented by a
distribution of sources over the submerged cross section. The density of the sources is an
unknown function (of position along the contour) to be determined from integral equations
found by applying the kinematic boundary condition on the submerged part of the cylinder.
The hydrodynamic pressures are obtained from the velocity potential by means of the linear-
ized Bernoulli equation. Integration of these pressures over the immersed portion of the
cylinder yielda the hydrodynamic forces or moments. ]

A simpler approximation to the solution of tue two-dimensional hydrodynamic problem
was used in the strip theory of ship motions introduced by Korvin-Kroukovsky.5 The solu-
tions of two-dimensional, water-wave problems for ship sections by multipole expansion and
mapping techniques have been applied to this strip theory by Gerritsma,” Swith,® Grim,? and
Vassilopoulos!? to predict the heaving and pitching motions of surface veasels moving in

ll!oletom:u are listed on page 39,
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head or following seas. This report has largely been motivated by the desirability of devising
& computer program, based on strip theory and independent of mapping techniques, to predict
the reaponse of aurface ships moving with steady lorwsrd spsed in oblique sa well se head

or following seas for all six degrees of freedom.

FORKULATION OF PROBLEM

Consider a cylinder, whose cross section is a simply connected region, which is fully
or partially immersed horizontally in & previoualy undisturbed fluid of infinite depth. The
body is forced into simple harmonic motion, and it is assumed that stoady state conditions
have been attained.

The two-dimensional nature of the problem implies three degrees of (readez of mation.
Therefore, consider the following three types of oscillatory motions: vertical or heave, hori-
zontal or sway, and rotational sbout a horizontal axia or roll.

To use linearized free-surface theory, the following assumptions are made:

1. The fluid is incompreasible and inviseid.

2. The effects of surface tensjon are negligible.

8. The fluid flow is irrotational.

4, The motion amplitudes and velocities are all small enough that all but the linear

terms of the free murface condition, the kinematic boundary condition on the cylinder, and the
Bernoulli equation msy be neglected.

Coe
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For complete discussions of linearized free-surface theory, the reader is refetred to Stoker!! e
and Wehausen and Laitone. 12

Given the sbove condiiions and agsumptions, the problem reduces to the following 4
boundary-value problem of potential thecry. The cylinder is forced into the simple harmonic
motion A™) cos (wi) with prescribed radian frequency w, where the superscript may take on

the values 9, 3, and 4 denoting swaying, heaving, and rolling motions, respectively. It is re-
quired to lind a velocity potential

O™ (a,y;0) = Re (4™ (a,y) = 40%) (1

satisfying the following conditions: i |

1. The Laplace equation
oMo 8}

in the fluid domain, i.e., for y < 0 outside the cylinder;

A4
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2. The free surface condition ¥y

LM+ go,("') -0 ()

on the free surface y = 0 outside the cylinder, g denoting the acceleration of gravity;

8. The **hottom’’ condition

,
:
ES
|
%
"

y lim  |pem)| .0 [4)
4. The condition of the normal velocity component of the fluid at the surface of the cylin- 4:
dor being equal to the normal component of the forced velocity of the cylinder, i.e., it v, is
the component of the forced velocity of the cylinder in the direction of the outgoing unit
notmal vector n, then "

ne V@"") - ‘Un [5]

this kinematic boundary condition being satisfied at the meun (rest) position of the cylindrical
surface; and

5. The radiation condition that the disturbed surface of the fluid takes the form of regular
progressive outgoing gravity waves at large distances from the cylinder,

Acoording to Wehausen and Laitone, the complex potentisl at s of a pulsating point
source of unit strength at the point { in the lower half plane is

1 -
6 (1,60 =5 [log (s~ 0)-logs- O

ka0
+2 P.V.f —— dk] co8 ot (el
(V) 174 ‘“k

-e"“’("z-)sin wt

80 that the real point-source potential is

H(2,y,&m0) = Re 16" (3, 0)) (7]

Sve




where s = z + iy,

Cmé+ig, and
v=w?/g.

Letting

1
G(3,) =~ Re -2—[ (s-¢)-log (s~ {)
-ik(a
+2PY dk . [ 8)
(/]

—iRe [mivs = O]

H(z,y, & ) = Re 16 (2, {) o™i {9

Equation (9] satisfies the radiation condition and Equatious {1} ikrough {4). Another expres-
sion sstiafying all these rslations is

(c, wént- —) Re i@ (s, {) ¢ 39% [10]
2w

Since the problem is linear, & superposition of Equations [9] and [10] results in
the velocity potential

™) (3,9; ) = Re f Q(s) @(5,() ™ '@t ds (11}
o

where C, is the submerged contour of the cylindrical cross section at its mean (rest) posi-
tions and Q(#) represents the complex source density as a function of position along C,.
Application of the kinematic boundary condition on the cylinder at s yields

Re(n.p) | Q(s) @(s,{)ds=0
C (18]

In(s-vp) f Q(s) G(s, ) ds = A™) ¢ ™)
Co
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where A(*) denotes the amplitude of oscillation and a(™) the direction cosine of the normal
velocity at s on the cylinder. (Both A(™) and x¢™) depend on the mode of motion of the cylin-
der, as will be shown in the following section.) The fact that Q(s) is complex implies that
Equations [12] represent a set. of two coupled integral equations for the real functions :
Re{Q(s)] and Im {Q(2)}. The solution of these integral equations and the evalustion of the J
kemél and potential integrals are described in the following section and in Appendices B
and C, respectively.

SOLUTION OF PROBLEM

Take the 2 axis to be coincident with the undisturbed free surface of a conventional
two-dimensional Cartesian coordinate system. Let the cross sectional contour (, of the
submerged portion of the cylinder be in the lower half plane, the y axis being the axis of
symmetry of C,. (Since ship sections are symmetrical, this investigation is confined to
bodies with right and left symmetry.) Select N +1 points (£, 1,)s (&3, 19)s ++« » (Ex Wy)» and
(€n 41 TN 4+ 1) Of C to lie in the fourth quadrant so that (), 7,) is located on the negative
y axis,  For partially immersed cylinders, ({y , ;» ny , ;) i8 on the positive 2 axis. For fully
submerged bodies, £y ., = £, and 5y, , <0. Connecting these N +1 points by successive
atraight lines, N straight line segments are obtained which, together with their reflected
images in the third quadrant, yield an approximation to the given contour as ~hown in Figure 1.
The cdordinatas, length, and angle associated with the jth segment are identified by the sub-
script j, whereas the corresponding quantities for the reflected image in the third quadrant are
denoted by the subscript —j, so that by symmetry E_,. =-$pend g = g for 1S55N + 1,

Potentials and pressures are to be evaluated at the midpoint of each segment. The
coardinates of the midpoint of the ith segment are

=€+ v 1) /8 = (n 4 M) /2 (18]

for 1 $i SN. The length of the ith segment is

l8; = \/(f.'... 1= f,')z +(m4q - ’l.')2 [14]

while the angle made by the {th segment with the positive z axis is given by

& xtan=! ——— (15)
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The outgoing unit vector nomal to the cross section at the sth midpoint (2, y,) is
n,=lsine;~jcose, : l16] -
where | and | are unit vectors in the directions of increasing s erd y, reapectivaly.

The cylinder is forced into simple harmonic motion witk radian frequency w, acoording
to the dispiacement equation

) w A™) 008 i [17]
form=9, 8; or 4, correaponding to sway, heave, or roll, respectively. The rolling oscillations
are about an axis through & point (0, y,) in the symmetry plane of the cylinder.

In the traaslatiocs] modes, any point of the cylinder movas with velocity
v o i AP ¢ sin ot (181
for away, or
v aej AP o sin wt [19]
for heaving oacillations.
Rolling motion about (0, y,) is illustrated in Figure 8. Cousidering s point (3, y,) on
Cy an inspection of Figure 8 yields
and
y1 =V | Pl 2
0, = tan~! 10 wain=! 222 oot =
” B, R;
Therefore, by siementary two-dimensional kinemsatics, the unit vector in the direction of in-
creasing 0 is
[l [ |
T, «—iBin g +jcos O =~ +— |
K 3 [} R‘ B‘
L]
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The nommal components of the velocity v ™) = n; - v{*) at the midpoint of the éth
segment (v, y,) are

vf3) =~ 0 AD sin @, sin ot ]

03 = u A3 008 @, sin wt (e1)

0 =0 4V (y, ~ y,) sin &, + 2, con @] 8in ot :

for the swaying, heaving, and rolling modes, respectively. Defining

o™
™ -

A™) o, sin wt

then, consistent \v.ith the previously mentioned notation, the direction cosines for the three
modes of motion are

7D wmgin a;

2w (y; -y,) sin @, +2; cos a;

Equations [2¢] illustrate that heaving is symmetrical, i.e., n{3 = n ). Swaying and rolling, ) !
however, are antisymmetrical modes, i.e., #2) = —n (), and n{Y = ~ a {9, ’
Equations [12) are applied at the midpoints of each of the N segmeuts, and it is
assumed that over an individual segment the complex source strength @(s) remains constant, -
although it varies from segment to segment. With these stipulations, the set of coupled
integral Equations [12] becomes a set of 2N linear algebraic equations in the unknowns

Re Q™) (a)) = Q™ and m 1Q™) (s) 1 = @47}
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Thus, fori=1,2, ..., N
N N
JE MR X QY I -0
(28]}

N . N
S E TP T, QI - e A
where the superscript (») denotes the mode of motion. The *‘iafluence coefficients’ I“i")
and "i(i.) and the potential #(™)(z,, y,; ¢) are evaluated in the appendix. The resulting
velocity potential consizts of & term in phase with the displacement* and a term in phase
with the velocity.

The hydrodynamic pressure at (z;,y,) along the cylinder is obtained from the velocity
potential by means of the linearized Bernoulli equation

P™ (epypwif)=~p 8™ (a, 9, w; 8) (24]

P (Cpyp @i t) = 9™ (3, ¥ 0) co8 wt + pS™) (2, ¥, @) 8in Wl [25]

where » {*) and p (™) are the hydrodynamic pressures in phase with the displacement and in
phase with the velocity, respectively. (p denotes the density of the fluid in Equstion [24]).
As indicated by the notation of Equations [34]1 and [25], the pressure as well as the potential
is a function of the oscillation frequency.

The hydrodynamic force or moment (when s = 4) per unit length along the cylinder
necessary to sustain the oscillations is the integral of (™) « a{™) over the submerged contour
of the cross section C,. Itis assumed that the pressure at the ¢th midpoint is the mean pres-
sure for the ith segment, so that integration reduces *> summation, whence

N - : .
U () =2 IEx P (@py ) ™ (26]

: N
NP (@2 2 2 @y 0) nf™ (e7]

for the added mass and the damping forces or maments, respectively.

siost authors refer to this term as a compaonent in phase with the accelewation. However, due to displacement
Equation [17), this suthor deems it more appropriats to refer to this term as being 180 degrees cut-of-phase with
the acceleration or in-ghase with the displacement,
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The velocity potentials for very small and very large frequencies are derived and
discussed in Appendix D.

LIMITATIONS OF GREEN'S FUNCTION — INTEGRAL EQUATION METHOD

F. John!3 proved the existence and uniqueness of the solutions to the three- and two-
dimensional potential problems pertaining to oscillations of rigid bodias in » free surface.
The solutions were subject to the provisions that no point of the immersed surface of the
body would be outside a cylinder drawn vertically downward from the intersection of the body
with the free surface and that the free surface would be intersected orthogonally by the body
in its mean or rest position.

John also showed that for a set of discrete ‘‘irregular’’ frequencies the Green’'s
function-integral equation method failed to give a solution. He demonstrated that the
irreguler freguencies occurred when the following adjoint interior-potential problem had
eigenfrequencies. Let y(z,y) be such that

Log,, + Vyy = 0 inside the cylinder in the region bounded by the immersed surface of
the body and the extension of the free surface inside the cylinder;

2. ¥y = v; ¥ =0 on the extension of the free surface inside the cylinder, v, being the
wave number corrupanding to the irregular Irequency w;, k=1, 3, 8, ... ;

3. ¢ =0 on the surface of the cylinder below the free surface.

For a rectangular cylinder with beam B and draft T (see Figure 8), the irregular wave
numbers may be easily obtained by separation of variables in the Laplace equation. Sepa-
rating variables givea the eigenfunctions

¥ = B, sin (% « 3/B) sinh (A w T/B)
fork=1,2,8,..., etc., where the B, are Fourier coefficients to be determined from an
appropriste boundary condition. Applying the free-surface condition (2) on y = T for
0 < # < B, the eigenwave numbers (or irregular wave numbers)

v = (k »/B) coth (k » T/B) 28]

are obtained for k= 1, 2, ..., etc. In perticular, the lowest such irregular wave number is
given by

v, = (#/B) coth (» T/B) (29}
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Keeping T fixed in Equation [29] but letting B vary and setting b = #/B, then from the
Taylor expansion

b coth (3T) = b [1/(3T) + BT/8 - (BT)*/45 + ...}

it is seer that as 3 - 0, which is equivalent to B + e, v, = I/ T. Therefore, for ‘
rectangular cylinders of draft T, '

v, YT {301

s rolation that John proved for general shapes complying with the restrictions previously
outlined. Figure 4 depicta the first lmgulu wave number for rectstgular cylinders as'a
function of the beam-to-draft ratio, keeping the draft constant. For s beam-to-deaft

ratio of 2.5, v, & 1.48; while for B/T = 8, v, & 1.71.

At an irregular frequency the matrix of influence coefficients of Equations [28] be-
comes singular as the number of defining points per cross section increases without limit,
i.e., a8 N + », [n practice, with finite N, the determinant of this matrix becomes very small
not only at the irregular frequency but also in an interval about this frequency. This interval
can be reduced by increasing the number of defining points N .for the cross section, Figures
5, 6, and 7 illuateate this phenomenon md its effect on the calculated added maas and demp-
ing coefficients.

These results are significant in the application to ship soctlons. Most surface vessels
have neatly oonstaat draft over the length of the ship, and the maximum beam ocoute st or
near midship, where the cross section is usually almost rectangular, so that for most surface
shipe the first irregular frequency w, is less for the midsection than for any other cross
section. ' For a ship with a 7:1 length-to-beam and s 5:2 beam-to-draft, the firat irregular
wave encounter frequency--in nondimensional form with L denoting the ship length—ocours at

@y VL/g = 5.00

which is boyond the range of practical interest for ship-motion analysis. Therefore, for
slender surface vessels, the phenomenon of the first irregular frequancy of wave encounter
is not too important.
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NUMERICAL RESULTS AND CONCLUSIONS

A computer program, based on the analysis of this report, was developed, and calcula-
tions for cylinders of various cross sections were performed by the IBM 7000 electronic
digital computer at the Center. Two options in the program piovide for pressure and added
mass of moment calculations for the asymptotic cases of very small and very large
frequencies.

The most time consuming computer operations occur when evaluating the principal
value integrals. These integrals are of the complex exponential integral type and are cal-
culated as power series in vr, with 7% = (2, - {)? + (y, + y)%, and v ~ w?/g. These series
(derived in the appendix) converge fairly rapidly for partially submerged shiplike sections at
frequencies lower than the first irregular frequency. This results in an average computer
time of 20 seconds per frequency for half sections defined by 21 input points. However, for
fully immersed bodies, r is considerably larger, so that the much slower convergence of the
series increases the computation time greatly. For a given contour and frequency the com-
puter time varies as the square of the number of input points, which is limited to a mesh
fineness of 46 pointa per half section.

The frequency input to this program is in the form of wave numbers, nondimensional-
ized by some principal linear dimension such as the draft or the half beam. The output of
this computer program includes the pressures in phase with the displacement and in phase
with the velocity at each of the segmental midpoints, the added mass or added moment and
damping coefficients in normalized form, and a scaled version of the determinant of the
matrix of influence coelficients.

For partially submerged cylinders the added mass or moment and the damping are
scaled by w? times the amplitude of oscillation times the displsced mass or displaced
moment of inertia of a semicircular cylinder of radius equal to the principal dimension. For
fully immersed bodies these quantities are normalized by w2 times the oscillation amplitude
times the displaced mass or displaced moment of inertia of a circular cylinder of radius equal
to the principal dimension. It is assumed in all cases that the cylinders are oscillating with
unit amplitude

The graphs of Figures 5 through 268 were obtained with the aid of the SC 4020
Charactron plotter, an important piece of peripheral equipment to the IBM 7090 digital
computer. These figures illustrate the behavior of the hydrodynamic pressure and normalized
force components as functions.of the nondimensional wave number for various cylindrical
shupes. In Figures 8 through 18, the added mass and damping coefficients as well as the
hydrodynamic pressure components are plotted against w2 B/(2g) for the heaving and swaying
semi-immersed circular cylinder, defined by 21 equally spaced input points around the
half section. The results for the heaving mode agree well with the Porter results. Figure 14
depicts the added mass and damping coefficients of a fully submerged heaving circular cylin-
der, delined by 21 equally spaced points, whose axis is submerged to a depth of 1.25 times

11

e e e e e aflreaw W e

ot ot e e e =

tre

Lok




1 oA P i+ e s e wa o m e

¢ ey By

sty A . T o 4 I

bt e e

its radiua. The values obtained in this case are in good agreement with the results obtained
by Ogilvie from his first order theory. Figures 15 through 17 show the added mass, damping,
and pressures of a partially immersed heaving ogival cylinder with draft/diameter equal to
9/10 and beam/diameter equal to 3/5 as functions of the nondimensional wave number

«? B/(2g). This is an instance of & bulbuous section similar to the cylinders discussed by
Motora and Koyama, 14 which have the property that the damping vanishes at some frequency.
Figure 15 indicates zero damping at about w2B/(2g) = 0.7.

Figures 18 through 20 illustrate the added mass, added moment, and damping coeffi-
cients for all three modes of oscillation of a cylinder whose croas section is in the shape of
the midsection of a Series 80, Block 70 ship defined by 16 input points per half section as
well as the same parameters for ¢ geometry defined by only 7 input points. The close agree-
ment between these two sets of output data (within 10 percent of each other) suggest the
possibility of using a coarse sectional input mesh for the application of this method to the
strip theory of ship motions. The computing time for the 16 point geometry was roughly six
times that for the 7 point half section. The graphs in Figure 18 are very similar to the curves
for the added mass and damping coefficients of the heaving, full-forra, Lewis-type cylinder
of Porter. Figures 21 through 26 show the sway, heave, roll, added mass or moment and
damping coefficients for the bow and stern sections of the same ship, defined by 7 points per
half section. Observe that the roll damping for these sections is considerably larger than for
the midsection, being largest for the extremely slim bow section.

Recall that three assumptions were made to obtain numerical solutions to the boundary-
value problem. First, it was assumed that the cylindrical croas section could be approximated
by a polygonal succession of straight-line segments defined by a finite number of points.
Second, the hypothesis of the constancy of the source strengths along an individual segment
was amployed to convert the integral equations into s set of linear algebraic equations.
Third, the supposition of mean hydrodynamic pressures over the individual segments made it
possible for the integrations of these pressures to be transformed into summations. However,
as the number of segments is made to increase indefinitely, while the largest of these seg-
ments converges to zero length, the polygonal approximation approachee the cross sectional
contour, and the source sirengths and pressures become continuous functions of position (and
frequency) along this contour.

The Green's function-integral uquation method as described in this paper is applicable
to any two-dimensional simply connected shape (even those with severe corners, bilge keels,
bulbs, fins, etc.), whereas the mapping of these odd-shaped contours onto the unit circle
requires u groat number of terms in the Thecdnzsen transformation. Smith reported the
neceasity of obtaining 16 Theodorsen coefficients for the mapping of a bulbous form with an
expenditure of 3 minutes of computer time.
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APPENDIX A

EVALUATION OF PRINCIPAL VALUE INTEGRAL

The real and imaginary parts of the principal value integral

w  =ik(z )
P.V.J‘ ak
o v-£k

are used in evaiuating some of the kernel and potential integrals.
The residue of the integrand at k = vis ¢~ ¥ (* = {3, 8o that

RY TR P ik =0
oy, I diee [ S gkrine =0 [81)
v-k k

Y-
ol

where the path of integration is the positive real axis indented into the upper half plane about
k = W

Note that » = @3/9> 0, Im 3 <0, and /m £ <0. The transformation v = i(k - 1) (8 = {)
converts the contour integral on the right side of Equation [31]j to

¥ =ik - &) Y -—w
I‘L——T—{ dk._,—‘v(‘-f)j °w dw
0 v -tv(:-f)

o ) ¥

G- O p (iv(s - ]

[82]
- a0 ‘y + log [-iv(s = {)]

v () eiv(s - O
* Z nnl }

Awl

where y = 0,5772 ... is the well known Euler-Maacheroni constant. (See Abramovitz and
Stegun!? for the definition of E,.)

Setting r = |~{v(a - {)| and

6wtan~? [im(=tv(s =~ O)/Re(~iv(a =N +n
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the following expression is chtained for Equation (31]

PV. J- e dk = ¢V + ) [oon v(@ = §) ~ i 8in v(a - §)]

A v-k
"
-‘[)u-log o l —:—o.-.;!!-’:ﬂ] [33]
. Am

[ 3 r"lin(nq]}
+3 16+ —
’ Awm] hen

Separating Equation (388 into its real and imaginary parts yields

F oy +mk -
P.V.f ¢+ MR ooy k(s - ¢)

p dk = e’ O+ [C(r, 8 cos v(a - )
V-

o
(3¢]
+ 8(r, 8) sin v(a - ¢))

et MEgin k(y- f)

I AN —

=¥ MO(r, 0) sin v(a - ¢)

= 8(r, 6) cos (= - §))
provided that

. " cos (n 6)

C(r0)my+logr+ —

and

8(r,6) =6+ E 'ﬂ:i"n‘;"’
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APPENDIX B

EVALUATION OF KERNEL INTEGRALS

The influence coefficients of Equati ms [28] are

1 - -
If™ = Re {(n,-- v [f['z—u (log (s - {) - log (s - {))

i

1 F ika-D
+ = PV. f ——————— dk| ds
v-k

[85)
1 -
-~ [2,—” (tog (s + ) ~1og (5 + {)

=i

1 e-il:(x+¢)
+ - PYV. I —_—— dk| ds
w J v-£k

Ji(i"') =Re {(ni .9 U =) gy
%
‘ (386]
Z'ﬂl‘ .

-(-n" J‘ ,*-iv(=+()d,]
'=‘i)

-

and

$-i

We note that in the complex plana with 2, 0n s,

, &, dF(a)
}-Re{-ze %

Be[(ni . p) F(a)

Considering the term contairing log (3 - ), it is evident that the kernel integral is

singular when ¢ = j, 80 that the indicated different:ation cannot be performed under the
integral sign. However, in that case one may proceed as follows:

16

e e e el S XA AR AT 2 A PTG Y PR - B L G Gy (8 e st




{m v iy
d{ = df + idp
= ds cos @; +ida sin a;
-ei.idc

for { along the jth segment. Therefore, ds = e—‘-i d¢, and

Re {(niov) Ilog(a~()da ]
) 3=z

P d 1+1 o

u Re - 1'6“’. TJ;’ G-wi a¢ los (2~ ()
f‘jﬂ

= Re log (3 ~ {) ¢

= Si

-i -
ds (j

Setting {’ = 8 — {, tho last integral becomes

*

a (4
Re {-i 2;!‘( log {’d¢{

f+1 1=3;
""B(‘i“,‘)“"!('["{,q.;)’"

It i ¥ j, differentiation under the integral sign may be performed, so that

- Re {(ni .9) f log (3~ {) ds ]
‘i =3,

(=; ~ ff)a +(y; = 'Ij)z

(=~ fi.,,l)z + (V;“’I;q.x)z

: Yyi=n; 1 Vi1
+cos (a; ~a;) [tan™", -tan”" ———e—
-4 g -§1

= 8in (a; - @) log




For the integral containing the log (3 - {) tem, ds = "% dZ, s0 that

-

(z; - f,)’ +(y; + r;,)2

(=~ f,-.q.;)z +(y,; + "jq»])z‘

Re {(n.--v) flog(l-Z)dc
i

= sin (&, + @) log

Vit YitNie1
+ cos (B‘O--i) [m—l f_.m-l ___1_"_.]

Zi= &= &

" The keenel integral containing the principal value integrals is

e-‘f&(z-?)
Re l(l“') J: ds PY. I V=i dk '_",

j+1 ' Jo

- k .
= sin (@; + @) [P.l’.f e it n)) cos k(= - & dk
]

vk

k(y;+9 )
-p.v.f e ! 1 con k(x - &40

savar[ G 4 - e-ik(x;-f)
= Re l- ie Y 4 z PV T
4

o v-£k
- Janp o k(2; - €)
-cos (@, +@) [P.V.I — k
0 v -

- PV,

k n;
Ot i) gy k(z; =& y)

v-k

The first integral on the right side of Equation (36] becomes

y= l‘}

Re l(n‘ .9) f Pkid b O s
$
i

*

(39]

(40]

- - ain (e, +a)) [e"(’i""'i) cos (2 - £ - R Fad IS L v(¢‘-£’+l)] [41]

+cos (a; + @) [ev(y‘ 74 gin v(z; - §) - LUt +1) gin v(e; - &, 1)]
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The kernel integrals over the image segments are obtained from Equations [38] through [41]
by replacing é',., fj,ﬂ, and o with 'E-i = fi’ 6_(,._”) =~ £i+1’ and a_j=-a,
reapectively.
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APPENDIX C
: EVALUATION OF POTENTIAL INTEGRALS ; !
The velocity potential for the mth mode of oscillation at the ¢th midpoint (2,, y,) is
o, |
¥ (pyit) = - 2 Q; Re { f [los (3;-¢) - log (2, - {) }
z f=1 5 ! i
l o e- ik (2, oZ) % 5;
+2P.V. f T dk] ds :
i v~k ! ,
p
| i
; -0 [ g6+ 2 -tog (5,4 0) P
-
:= . e-“(:‘ + O | {7
‘ +2P.V. J' — a] d.} . cos wt 4
; v-£k :
' o !
| o ; z ! v
. - E QN+i Re ‘f ‘-w(l.' ) ds ‘.
jwl ) s 1
-iv(s, |
-y f SO da} - sin ot ;
: = iL ¥
The integration of the log (3, ~ {) term is straightforward, yielding :
i.
Re { J' log (3; - §) da] t
E : -cosai [(”"‘fi)log \/(zi-f")2+(yi"ﬂ,‘)2+6,"6"...1 ' .
g '(’i'fj+x)l°3‘/(;i‘fi+1).2+(J’t"l,'+1)2 [48] j j
' (.’lg“ﬂi) (v, ~ '11...1) !
-(y;-n,)tan~1 - +(y; ~n;, a0t — —— i
; £ (= "fj) ¢ 7+1 (2; - ‘fj+1) {
% !
: 20 !
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+sina, [(yIl = ;) log \/(;; - <f,-)7 +(y; - 'l,)2 =N+

- =M+ 1) log ‘/('i 'fj+1)2 +(y;- '7,'+1)2

(v, - 'lj) (v; - M+ 1)]
1 - - £, -1 st e,
-0 (2;~ ¢ 4y) tan @€,

[43]

+ (2, = ¢;) tan”

In the integration of the log (s = {) term, note that y; and y, . , are replaced by ~ n, and
= 1j 41 Fespectively. '

To evaluste the potential integral containing the principal value integral, proceed in
the following manner. For an arbitrary 2 in the fluid domain

‘i*‘l r ik (2 - O
ds P.V. f — &
- v-£k
Z; o
. 2 j+1
- ipy. f i ik =0 g7
v=k J-
0 C,-
% ~ikx j4l
«e%ipy f ¢ x. 4 a7
| -
0 g,
ipv _r e (:k{iﬂ Mi) dk
=T (R %

where the change of integration is permissible since only one integral requires a principal
value interpretation. After dividing by v and multiplying by v - & + £ under the integval
sign, the last expréssion becomes

i@, o ikl ik
e | i+l _ /
_ e [J‘ otk (e e ) b
v k
°
- [44)
o -ik (2 ~ 2’.+1) o0 e—.‘]g (z - fi)
+P.V. f ¢  dk-PV. f Gk
s v-£k 3 v-k
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Regarding the first integral in Equation [44] as a function of 3,

iy e"‘zi) dk
k

7 —~ikz
F (o) = J‘ e (e

0

Differentiating Equation [45] with respect to 2 gives

F'(a)--i {j a‘”‘ (z = zi+‘)dk- I e-ik (x—z’.)
[]

0

F(2) =log (2= Z)) ~10g (3 = &, 1) + K

(48]

:

[46]

where K is & constant of integration to be determined presently. Since F (s) is defined and

analytic for all 2 in the lower half plane, and since by Equation [45], lim
e

follows from Equation [468] that K = 0. Therefore,

“ -
Re fda PY. J' ——ee dk
vk
a’. 0

io

ie 1 {
=Re - — [108(33'2,')"108(':"2}“)

o0 e-"‘ ;=44 0 e-:k (z‘-Zf)
+PYV, f ——— dk=-PV. f —_— dk
. vek . v-£k

1 { [ ‘f(z‘-f,o%(ym,-)’
--; sin e; log

(- ‘fj-n)z +y + ’7;'+1)2

kir;+79
% e @i i“)cosk(z,-fi”)
dk

v-k

+P.V,

)
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The integration of the potential compontent in phase with the velocity over s; gives

Re f S O do]
*

1

1 4

e e et o+ =Yy st e g s

AL f

d vek
(v, + '11)
-1 - tan=!
+ Co8 .,‘ [tlll ("—fl) an

k .
“ . O;+1) cos k (2, - fl) ]
dk

(y[ + '1“,1)
(e; - f“,l)

sin 7 2, - €)

.b a;+ "I)
+ PV,

~P.V.

v~k

{’v(rﬁ' LT sin v(z, - fi) - .i]_‘v o, + N+ U sin [y (zi - ‘fjn) - ‘I]]

v~k
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APPENDIX D

VELOCITY POTENTIALS FOR VERY SMALL AND VERY LARGE FREQUENCIES

For vety small frequencies, i.e., as w + 0, the freo-surface cbndﬁt.ion Equation (3}
of the section formulating the problem degenerstes into the wall-boundary condition

o, =0 [49]
on the surface of the fluid outside the cylinder, whereas for exiremely large frequencies,
i.e., when @ = =, the free-surface condition becomes the *‘impulsive’’ surface condition

d~0 (50)

05 y = 0 cutside the cylinder.

Equations {2}, [4], and [5] remain valid for both asymptotic onses. The radiation
condition is replaced by a condition of boundedness at infinity.

Th«o(oro, there is a Neumann problem for the case w + G and a mxod probiem when
@ + ». The appropriate complex potentials for & source of unit strength &t & point {in the

.lower balf plane are
G (n 0= o [og -0 slog-B)+k, B
nd_ )
0 0 = Doge-0)-logs~3]+k, .  Isal

for the Neumann and mixed problom-, respectively, where K, and l{ are constants not yet

specified. .
Let

ba(® ¥ £ 1) =Re '0. (s, ()‘
50 that the veloocity poteatials for the mth mode of motion are

05*’ (9= é" Q.(l) (8 ¢, (a9 & ) de (58]
]
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for 2 = 0, and a = o, where @ ‘f"" is the expression for the source strength as a function of
position along the submerged contour of the cross section C,. An analysis similar tc the one ;
in the gection on formulating the problem leads to the integral equation

-9 f Q™ (8) @, (4, yi & n) ds = AT 4™ [54)
Co

which, sfter application at the N segmental midpoint, yields a set of ¥ linear algebraic
equations in the N unknown source sirengths Qj.

It remains to be shown whether these two problems are, in the language of potential
theory, well posed, i.e., whether the solutions to these problems lead to unique forces or
moments. The mixed problom raises no difficulty, since as 8+ «, @ (3, {) =+ 0. In fact
K, =0, which can be inferred from the pulsating source-potential Equation [8] by letting
Vo0,

Considering the Neumann problem, note that the constant K o in the Green's function
Equation [51] yields by integration an additive constant X to the potential. However, for a
completely submerged cylinder the cross sectional contour €, is s simply closed curve, so
that the contribution of K in integrating the product of the pressure with the direction cosine

of the body-surface velocity vanishes. For partially submerged bodies C, is no longer
closed. But since n{T? e ~ n{™) for m being even,

f Kn™dsa
Co

s0 that the swaying force and rolling moment are upique.. The heaving force on a partially
submerged cylinder is not unique for, in this case, n{}) = n{3), go that -

J Knt® ds 0

€

The constant X, may be obtained by letting » » 0 in the pulsating source-potential
Equeation [8].
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