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ABSTRACT

The subject of cylinders oscillating in or below the free surface of very
deep fluids is developed as a boundary value problem within the framework of

linenw free-surface theory by distributing source singularities over the sub.

merged portion of the cylinders. A computer program for calculating the hydro-
dynamic pressure, force, and moment on these cylinders has been devised by
the Naval Ship Research and Development Center. The results for various two-
dimensional shapes are given in graphical form.
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NOTATION

A(m) Oscillation amplitude in the arth mode

B Beam of cross section Co

0C Submerged pet of cross sectional contour in rest position

41
F Acceleration due to gravity

/In•) Influence coefficient in phase with displacement on the ith
midpoint due to the jth segment in the nth mode of motion

j (r,) Influence coefficient in phase with velocity on the ith
midpoint due to the jth segment in the ath mode of
oscillation

W(• Added mass force or moment for the auth mode of
oscillation at frequency -0

N Number of line segments defining submerged portion of half
section in rest position

NV I Damping force or moment for the nth mode of oscillation
at frequency w

n•(m) Direction cosine of the normal velocity at ith midpoint
fro a th mode of oscillation

P.V. Cauchy principal value of integral

Hydrodynanic pressure in phase with displacement for
a th mode of oscillation

r(v) Hydrodynamic pressure in phase with velocity for ath
mode of oscillation

Q1(I/m) Source strength in phase with displacement along Jth
segment for rth mode of oscillation

Source strength in phase with velocity along jth segment

for nth mode of oscillation

Length variable along C0

a. jth line segment

T Draft of cross section
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Time,

) Normal velocity component at ith midpoint for nth modeof oscillation

2, Abscissa of ith midpoint

Yj Ordinate of ith midpoint

Y0 Ordinate of center of roll

a Complex field point in region of fluid domain (a - z + 4y)

Sd Complex midpoint of ith segment (sa -z + t~j)

a, Angle between ith segment and positive a axis

C Complex variable along 0 0

, idth complex input point along CO

Ordinate of jth input point

Wave number ( 2/)

""k th irregular wave number for adjoint interior problem. I
I! Abscissa of ith input point

p Density of fluid

f(i) Velocity potential for nth mode of oscil•thion

Radian frequency of oscillation

•01 kth irregular frequency for adjoint interior problem
(kth eigenfrequency)
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INTRODUCTION

Hydrodynamic research of horizontal cylinders oscillating in or below the free sur-

face of a deep fluid has increased in importance in the past two decades and has been stud-
ied by a number of investigators. The modem history of this subject began with Ursell, 1

who formulated and solved the boundary-value problem for the semi-immersed heaving circu-
lar cylinder within the framework of linearized free-surface theory. He represented the
velocity potential as the sum of an infinite set of multi poles, each satisfying the linear free.
surface condition and each being multiplied by a coefficient determined by requiring the
series to satisfy the kinematic boundary condition at a number of points on the cylinder.

Grim 2 used a variation of the Ursell method to solve the problem for two-parameter,
Lewis-form cylinders by conformal mapping onto a circle. Tasai 3 and Porter,4 using the
Ursell approach, obtained the added mass and damping for oscillating contours mappable
onto a circle by the more general Theodorsen transformation. At the Naval Ship Research
and Development Center, Ogilvies calculated the hydrodynamic forces on completely sub-
merged heaving circular cylinders.

Despite the success of the multipole expansion-mapping methods, the present paper
discusses the problem from a different view. The velocity potential is represented by a
distribution of sources over the submerged cross section. The density of the sources is an
unknown function (of position along the contour) to be determined from integral equations
found by applying the kinematic boundary condition on the submerged part of the cylinder.
The hydrodynamic pressures are obtained from the velocity potential by means of the linear-
ized Bernoulli equation. Integration of these pressures over the immersed portion of the
cylinder yields the hydrodynamic forces or moments.

A simpler approximation to the solution of tue two-dimensional hydrodynamic problem
was used in the strip theory of ship motions introduced by Korvin-Kroukovsky. 6 The solu-
tions of two-dimensional, water-wave problems for ship sections by multipole expansion and
mapping techniques have been applied to this strip theory by Gerritsma,7 Sinith, 8 Grim, 9 and
Vassilopoulo81 0 to predict the heaving and pitching motions of surface vessels moving in

1
References are listed on page 39.



head or following seas. This report has largely been motivated by the desirability of devising

a computer program, based on strip theory and independent of mapping techniques, to predict
the response of surface ships moving with steady forward speed in oblique as well as head

or following seas for all six degrees of freedom. -.

FORMULATION OF PROBLEM

Consider a cylinder, whose cross section is a simply connected region, which is fully
or partially immersed horizontally in a previously undisturbed fluid of infinite depth. The

body Is forced into simple harmonic motion, and it is assumed that steady state conditions

have been attained.

The two-dimesional nature of the problem implies three degrees of froodc-. of motion.
Therefore, consider the following three types of oscillatory motions: vertical or heave, hori-
zontal or sway, and rotational about a horizontal axis or roll.

To use linearized free-surface thory, the following assumptions are made:

1. The fluid is incompressible and inviscid.

. The effects of surfacn tension are negligible.

8. The fluid flow is inrotational.
4. The motion amplitudes and velocities are all small enough that all but the linear

tems of the free surface condition, the kinematic boundary condition on the cylinder, and the
Bernoulli equation mmy be neglected.

For complete discussions of linead zed free-surface theory, the reader is referred to Stoker11

and Wehausan and Laitoe. 1 2

Given the above conditions and assumptions, the problem reduces to the following
boundary-value problem of potential theory. The cylinder is forced into the simple harmonic
motion 00 coo (w) with prescribed radian frequency w, where the superscript may take on
the values 9, 8, and .4 denoting swaying, heaving, and rolling motions, respectively. It is re.
quired to find a velocity potential

) (s, V; 4) Re (-0(') (s, V) 6-e i) [I]

satisfying the following conditions:

1. The Laplace equation

.(a) +0 ,?). 0 ([9)

in the fluid domain, i.e., for ' < 0 outside the cylinder;
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2. The free surface condition

+ g..;,o 0 13

on the free surface y - 0 outside the cylinder, g denoting the acceleration of gravity;

8. The "bottom" condition

lira Vr(m) 0 [4)

4. The condition of the normal velocity component of the fluid at the surface of the cylin-

dor being equal to the normal component of the forced velocity of the cylinder, i.e., if va is

the component of the forced velocity of the cylinder in the direction of the outgoing unit
normal vector n, thou

n • Fy O Wm - VA[5

this kinematic boundary condition being satisfied at the mean (rest) position of the cylindrical

surface; and

5. The radiation condition that the disturbed surface of the fluid takes the form of regular
progressive outgoing gravity waves at large distances from the cylinder.

According to Webausen and Laitone, the complex potential at s of a pulsating point

source of unit strength at the point C in the lower half plane is

G* (S. [;• -• lag (a - l)- og (a - )

"+ .2P.V. ik dk coso (61

so that the real point-source potential is

H (,Y, y, q,; t). Re I* (a, t) [78



where s - + 4 sy,

+ - rl, and

Letting

G(s, )s-o - Ig(-( )-log ('- o)

2 .V.s. !..j dk][81

-, Re (e-i -

then 1
H I, , • '; g =Re I0 (1, a) -iml[

Equation (9) satisfies the radiation condition and Equatiors -11 ,brough (41. Another expres-
sion satisfying all these r•lations is

H (,•,,, - -ReiG(s, C i) -o'tJ [101

Since the problem is linear, a superposition of Equations [91 and [101 results in
the velocity Po94atial

00A (.T, Y; 9)'e'• q(s)G(s,, e,-.,, 1wt d

where 0O is the submerged contour of the cylindrical croon section at its mean (rest) posi-

tions and Q (a) represents the complex source density as a function of position along Co.

Ap~plication of the kinematic boundary condition on the cylinder at s yields

Rf••e(. Q1#) G(s, C) ds - 04".n'

to (a()G(a -At)a^
fI
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where A(') denotes the amplitude of oscillation and W(a) the direction cosine of the normal
velocity at s on the cylinder. (Both A(") and s(n) depend on the mode of motion of the cylin-

der, as will be shown in the following section.) The fact that Q(s) is oomplex implies that

Equations [12] represent a net of two coupled Integral equations for the real functions =

ReIQ(a)I and Is IQ(a) L The solution of these integral equations and the evaluation of the

kernel and potential integrals are described in the following section and in Appendices B

and C, respectively.

SOLUTION OF PROBLEM

Take the a axis to be coincident with the undisturbed free surface of a conventional

two-dimensional Cartesian coordinate system. Let the cross sectional contour C. of the

submerged portion of the cylinder be in the lower half plane, the y axis being the axis of

symmetry of C0 . (Since ship sections are symmetrical, this investigation is confined to

bodies with right and left symmetry.) Select N+1 points (f,, nl), (f2, 112)b '" I (CN, nN), and

(fN + 1, IN + ) of C0 to lie in the fourth quadrant so that (e 1 , il) is located on the negative

V axis. For partially immersed cylinders, (eN + 1, VN + d) is on the positive s axis. For' fully

submerged bodies, %N + I and 17N + 1 < 0. Connecting these N + 1 points by successive

straight lines, ,N straight line segments are obtained which, together with their reflected

images in the third quadrant, yield an approximation to the given contour as shown in Figure 1.

The coordinates, length, and angle associated with the jth segment are identified by the sub-

script j, .whereas the corresponding quantities for the reflected image in the third quadrant are

denoted by the subscript -j, so that by symmetry f i_- - J1 and qi = ji for 1 < j S N + 1.
Potentials and pressures are to be evaluated at the midpoint of each segment. The

coordinates of the midpoint of the ith segment are

Xj = (C4 + + 1) /2, ii - (,7i + 1+ 1) /2 [18]

for 1 < :5 N. The length of the ith segment is

Ir(i- +4 - +)2 + (.1+-)2 [14]

while the angle made by the ith segment with the positive r axis is given by ,

af tan- 1 [151

S-5



The outgoing unit vector normal to the crosa section at the ith midpoint (op VF) in

S-i sin , - ioo08 [16

whe. I and i are unit vectors in the directions of increasinga mod V, respectively.

The cylinder is forced into simple harmonic motion with radian frequency w, according

to the dispiacement apatien

S(n) ACm) 666t [it)

form - 2, 8, or 4, corresponding to sway, heave, or roll, respectively. The sMiling oscillations

am about -n axem tvafth a point (0, 1o) in the symwe piaoe of the cylinder.

In the Wanslatiomal mode", any point of the cylinder moves with velocity

for wMay, or

v(3) -i AM' &ain cit [19)

for heaving ocillations.
Rolling motion about (0, 10o) 1i illusrated in Figure L Considering a point (a, yo) on

CO, an inspection of Figure 9 yields

LmW- * - 00;
Njj

Therfore, by elementary two-dimensiomal kinematics, the unit vector in the direction of in-

crossing is

/ YF - o tr

U-1 %.-sin Sj+i- ='+• l

• 6



so that I

v(4 ) Z S(4) ? A• " ",A 4 ) [(y, -yo) I- g in €Wg (2]

The normal components of the velocity rl") - n4 • v(n) at the midpoint of the ith

segment (sp yV) are
mI

V(2) w A(2) gin 0, Sin

t,() (a A(3) cos &, sin at [21]

,(4)) A ((4) IFo) sin a, + z, cos a I sin at

for the swaying, heaving, and rolling modes, respectively. Defining

A(") w sin (ot

them, couistent with the previously mentioned notation, the direction cosines for the three

modes of motion are

t&12) - - sin au

-cs) os a•[22]

a•' (y•- YO) sin ei + aj cos Mi

Equations (K] illustrate that heaving is symmetrical, i.e., n(!) - n•(). Swaying and rolling,
however, are antisymmetrical modes, i.e., n.(2 ) f-t (2), and a_(4) -- n(4

Equations [12] are applied at the midpoints of each of the N segments, and it is
assumed that over an individual segment the complex source strength Q(a) remains constant,
although it varies from segment to segment. With those stipulations, the set of coupled
integral Equations [121 becomes a sot of 2N linear algebraic equations in the unknowns

He (*,i)I - a) and in IQ(-) ( -0QN~
I I

- |'



Thus, for is ,2,... ,NN N

N N

. - 1 i-t'"' /m :!,P

where the superscript (n) denotes the mode of motion. The "iaflueuce coefficients" IPM"')
and a&nd the potential O(n)(i, ,y; g) are evaluated in the appendix. The reulting
velocity potential consicts of a term in phase with the displacement* and a term in phase
with the velocity.

The hydrodynamic pressure at (i, VO) along the cylinder is obtained from the velocity

potential by memas of the linearized Bernoulli equation

P(") (at, i, CO; P) Ot-p , e ) (si, Yip, w; t) (241

p(3) 1 0#y, io •; t) o p() ( i) cos Wt + F(M) (o, ; 6) sin eot [251

where p.•') and p,(1•are the hydrodynamic pressures in phase with the displacement and in
phase with the velocity, respectively. (p denotes the density of the fluid in Equation [24]).

As indicated by the notation of Equations [941 and [25], the pressure as well as the potential
is a function of the oscillation frequency.

The hydrodynamic force or-moment (when a 4) per unit length along the cylinder
necessary to sustain the oscillations is the integral of p() n a(m) over the submerged contour

of the cross section C0 . It is assumed that the pressure at the tth midpoint is the mean pres-

sure for the ith segment, so that integration reduces to summation, whence

N
M(n) (0).2 1 P15,9 O(p5 ,; W) (26]

N t
N(W')(). p,¶in)(-,g;ci)af[) 227]

for the added mass and the. damping forces or moments, respectively.

*Moet euftam refer to thb term ane aompamt In b•ase with the ccoleretioe. Howevor, do* to dlsplacnaeat

Squetln. (171. this autbr dema It awe appmpriste to M•ee to this tram M beig 180 dowsen out-fotdasjo with
the ccWlaetIMSn or atss-he*e with the displacemest.

8
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The velocity potentials for very small sad very large frequencies are derived and

discussed in Appendix D.

LIMITATIONS OF GREEN'$ FUNCTION - INTEGRAL EQUATION METHOD

F. John13 proved the existence and uniquaenes of the solutions to the three- and two-

dimensional potential problems pertaining to oscillations of rigid bodies in a free surface.
The solutions were subject to the provisions that no point of the immersed surface of the
body would be outside a cylinder drawn vertically downward from the intersection of the body

with the free surface and that the frbe surface would be intersected orthogonally by the body
in its me,-, or rest position. I

John also showed that for a set of discrete "irregular" frequencies the Green's
t function-integral equation method failed to give a solution. He demonstrated that the

irregular frequencies occurred when the following adjoint interior-potential problem had

eigenfrequencies. Let 06 (z,y) be such that

1. Oxx, + 07Y -0 inside the cylinder in the region bounded by the immersed surface of

the body and the extension of the free surface inside the cylinder,

9. oy - Yk 0 - 0 on the extension of the free surface inside the cylinder, i't being the

wave number coresponding to the irregular frequency wk, k - 1, 2, a,...;
. -0 on the surface of the cylinder below the free surface.

For a rectangular cylinder with beam B and draft. F (see Figure 8), the irregular wave
numbers may be easily obtained by separation of variables in the Laplace equation. Sepa-

rating variables gives the eigenfunctions

Ok a Bt sin (k r /wB) sinh (A w TIB)

for ki 1, 9, 8, ... , etc., where the Bk are Fourier coefficients to be determined from an
appropriate boundary condition. Applying the free-surface condition (2) on V- T for
0 < x < B, the eigenwave numbers (or irregular wave numbers)

Y - (k u/B) coth (k T/8) (28]

are obtained for k - 1, 2,..., etc. In particular, the lowest such irregular wave number is
give. by

"V "(u/B) coth (w r/B) (129

9



-- -------

Keeping T fixed in Equation [99) but letting B vary and setting 6 #1.B, then fromi the
Taylor expansion

& coth (bT)-5(16) + a7/s - (6')8/4s +.]

it is seen, that as b. 0, which is equivalent to 8 -. j 1/f. Therefore, for
rectangular cylinders of draft T,

(801

arelation that John proved for general shapes complying with the restrictions previously3

outlined. Figure 4 depicts the first irregular wive number for rectangular cylinders as 'a
function of the beam-to-draft ratio, keeping doe &aft constant. For a beam-todraft
ratio of 9.5, v1 A' 1.48; while for 8/r ," 1.71.

At an Irregular frequency the matrix of influence coefficients of Equations [28] be-
comes singular as the number of defining pointa per cross section increases without limit,
i.e., as N.m In practice, with~ finite N, the determinant, of this maturix becomes very small
not only at the irregular frequency but also, in an interval-about this frequency. This interval
can be reduced by increasing the number of defining points N tar the cross section. Figures
5, 6, and I illustrate this phenomenon and itqj effect on the calculated added mass and damp-
Ing coefficients.

These result-4 are significant in the application to .hlp sections. Most surface vessels
have nearly constant draft over the length of the ship, and the maximum beam occurs: at or
near midship, where the cross sectionl'i usually almost rectangular, so that for most sutface
ships the first irregular frequency w, is loes for the midsection than for any otJWe cross
section. ' For a ship with a 7: 1 length-to-beam and a 5:92 beam-to-draft, the first irregular
wave encounter frequency-in nondimensiosal form with L denoting the ship length-occurs at

01VL/,r 5.09

which is beyond the range of practical interest for dhip-motion analysis. Therefore, for
slender surface vessels, the phenomenon of the first~ irregular frequency of wave encounter
Is not too important.

10



NUMERICAL RESULTS AND CONCLUSIONS

A computer program, based on the analysis of this report, was developed, and calcula-

tions for cylinders of various cross sections were performed by the IBM 7090 electronic
digital computer at the Center. Two options in the program provide for pressure and added

mass or moment calculations for the asymptotic cases of very small and very large

frequencies.
The most time consuming computer operations occur when evaluating the principal

value integrals. These integrals are of the complex exponential integral type and are cal-

culated as power series in tr, with P2 = (ai - fi)2 + (y/ + qi)2, and V .. (d2/g. These series

(derived in the appendix) converge fairly rapidly for partially submerged shiplike sections at

frequencies lower than the first irregular frequency. This results in an average computer

time of 20 seconds per frequency for half sections defined by 21 input points. However, for
fully immersed bodies, r is considerably larger, so that the much slower convergence of the

series increases the computation time greatly. For a given contour and frequency the com-

puter time varies as the square of the number of input points, which is limited to a mesh

fineness of 46 points per half section.

The frequency input to this program is in the form of wave numbers, nondimensional-

ized by some principal linear dimension such as the draft or the half beam. The output of

this computer program includes the pressures in phase with the displacement and in phase
with the velocity at each of the segmental midpoints, the added mass or added moment and

damping coefficients in normalized form, and a scaled version of the determinant of the

matrix of influence coefficients.
For partially submerged cylinders the added mass or moment and the damping are

scaled by w2 times the amplitude of oscillation times the displaced mass or displaced

moment of inertia of a semicircular cylinder of radius equal to the principal dimension. For

fully immersed bodies these quantities are normalized by w2 times the oscillation amplitude

times the displaced mass or displaced moment of inertia of a circular cylinder of radius equal
to the principal dimension. It is assumed in all cases that the cylinders are oscillating with

unit amplitude

The graphs of Figures 5 through 26 were obtained with the aid of the SC 4020

Charactron plotter, an important piece of peripheral equipment to the IBM 7090 digital

computer. These figures illustrate the behavior of the hydrodynamic pressure sad normalized
force components as functions-of the nondimensional wave number for various cylindrical

shapes. In Figures 8 through 18, the added mass and damping coefficients as well as the

hydrodynamic pressure components are plotted against (2 B/(2g) for the heaving and swaying
semi-immersed circular cylinder, defined by 21 equally spaced input points around the

half section. The results for the heaving mode agree well with the Porter results. Figure 14
depicts the added mass and damping coefficients of a fully submerged heaving circular cylin-

der, defined by 21 equally spaced points, whose axis is submerged to a depth of 1.25 times

11



its radius. The values obtained in this case awe in good agreement with the results obtained

by Ogilvie from his first order theory. Figures 16 through 17 show the added mass, damping,

and pressures of a partially immersed heaving ogival cylinder with draft/diameter equal to

0/10 and beam/diameter equal to 8/5 as functions of the nondimensional wave number
W2 8/(2g). This is an instance of a bulbuous section similar to the cylinders discussed by

Motors and Koyazna, 1 ' which have the property that the damping vanishes at some frequency.

Figure 15 indicates zero damping at about oAB/(2q) - 0.7.
Figures 18 through 20 illustrat the added mass, added moment, and damping coeffi-

cients for all three modes of oscillation of a cylinder whose cross section is in the shape of

the midsection of a Series 60, Block TO ship defined by 16 input points per half section as

well as the same parameters for a geometry defined by only 7 input points. The close agree-

ment between these two sets of output data (within 10 percent of each other) suggest the
possibility of using a coarse sectional input mesh for the application of this method to the

strip theory of ship motions. The computing time for the 16 point geometry was roughly six
times that for the 7 point half section. The graphs in Figure 18 are very similar to the curves

for the added mass and damping coefficients of the heaving, full-forrm, Lewis-type cylinder
of Porter. Figures 21 through 26 show the sway, heave, roll, added mass or moment and

damping coefficients for the bow and stern sections Qf the same ship, defined by T points per
half section. Observe that the roll damping for these sections is considerably larger than for
the midsection, being largest for the extremely slim bow section, -1

Recall that three assumptions were made to obtain numerical solutions to the boundary-
value problem. First, it was assumed that the cylindrical cross section could be approximated

by a polygonal succession of straight-line segments defined by a finite number of points.
Second, the hypothesis of the constancy of the source strengths along an individual segment
was employed to convert the integral equations into a set of linear algebraic equations.

Third, the supposition of mean hydrodynamic pressures over the individual segments made it

' possible for the integrations of these pressures to be transformed into summations. However,mt

as the number of segments is made to increase indefinitely, while the largest of these seg-
ments converges to zero length, the polygonal approximation approaches the cross sectional
contour, and the source strengths and pressures become continuous functions of position (and
frequency) along this contour.

The Green's function-integral tquation method as described in this paper is applicable
to may two-dimensional simply connected shape (even those with severe corners, bilge keels,
bulbs, fins, etc.), whereas the mapping of those odd-shaped contours onto the unit circle
requires a great number of terms in the The5e-rsen transformation. Smith reported the

necessity of obtaining 16 Thoodorsen coefficients for the mapping af a bulbous form with an

expenditure of 8 minutes of computer time.

12
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APPENDIX A

EVALUATION OF PRINCIPAL VALUE INTEGRAL

The real and imaginary parts of the principal value integral

are used in evaluating some of the kernel and potential integrale.

The residue of the integrand at h- v is e-"u' - so that

is. , e-i ( - ) - ( - )t

Vd J - dkf+ e-*v(a- ) A813
v-k v-h

where the path of integration is the positive real axis indented into the upper half plane about

Note that vY • 2/lg > O, lm < O, andm •Is 5O. The transformation w -i(k - ) (o -)
converts the contour integral on the right side of Equation [31E to -•

e-i(s- dk-- e-v(a-)j du, w

o k W

-. e -V(, - y+log E-iv(e-Z)]

where y - 0.5772... is the well known Euler-Mascheroni constant. (See Abramovitz and
Stegun' 5 for the definition of 91.)

Setting r I-iv(a - ')J and

a. tan- [lot (-,v(o - Z))/Re (-iv(a - 47))) + m

14
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the following expression is obtained for Equaion ([i]

PV. -k e. #,(y' + 9) [coan v(s - i sin v(S ")

-k

IFr 'oo (ae0jIL- (•n 88'1

+r si (it _ ,

Separating Equaton (88] into its real and imaginary parts yields

P.. fo (y + 11) k Coso k( - •"F . k dye..v(y + •) [C(p, 0) co0 v(s- •)

(84]
+ (.., 8) sin v(ai - ')

P.V. A .elw (ykla • dk,#(+ 9) [C(r, 49) sin V(x -

0

- c(, 6) oog &(x -

provided that

C(r, 0) - , + log r + T, coo (f 0)

and

S(r, 9) a9+ P sin (IS)

awl

15



I.

I(

APPENDIX B

EVALWATION OF KERNEL INTEGRALS

The influence coefficients of Equations [28] are

1, "144) -Be (n. - V) f (log (') - logs ( - ))

1 .- ~ik (z+ 9

PV. - dkl dI
0 k,

(-• (Iog(A+ log] %I
fI

+ P.(V. e da ds1

siglrwe0 ,s htteidctddfee~to antb perfrme undert

and i

166

+ ds
We note that in the complex plans with aI on Si,

Considering the term containing log (a - C), it is evident that the kernel integral is

singular when i - ,so that the indicated differentiation cannot be performed under the

integral sign. However, in that case one may proceed as follows:



-- ±

dC de +i4
- do coo a, ids sin a,

e ii dasn

for C along the jth segment. Therefore, de = e-'l dC, and

Re {m -i e • )log (a -()do

i 
zle i d

i-e 
8=81

zj IRe dj-~ log (a-C) dC

Setting C'- x - C, tho last integral becomes

Re t si _j8 log 1'dC 1[7]

S ""~~I (si - Cj) - as (a/ - Ci+ •)

If i , j, differentiation under the integral sign may be performed, so that

Re j flog(-)da --

sin (Oj - 01) log' :: i f,)2 + )2 [881

+coo.(., ,) (, -ad- -ta
Ita -x i zi - ej+

17
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For the integral containing the log (i - Z) term, da = e'1 d?, so that

He n 9 log(s .-I

-sin (m + e(j) 0 /89
( - )2 + (y, + 9-+1)2

SII

IN +y 17+

The kernel integral containing the principal value integrals is

SBe Mi V do P.V. Ala ail

*i -ik-si)=Re -iFo) f d -k-

+ fo

sin (si + a&) .v. *je (kY + 9j1) cos k(xi -4) I
[.0 k•

i o ae) .. v -k [4]

k(yi+ 1i+ 1)I..
- P.V. dk]

I v- k

SThe first integral on the right aide ofEqu-ion [86] becomes

iRe{(as.v) feis zCde .1•

Co5,j 0 =j) ----

kl
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The kernel integrals over the image segments are obtained from Equations (38] through [41]
by replacing f), •+, and aj with _/-•, (+ )f- j 'an _j P-/

reapecti vely.

19
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APPENDIX C I
EVALUATION OF POTENTIAL INTEGRALS

The velocity potential for &he mth mode of oscillation at the ith midpoint (zi, Yi) is

NHO F") ( Zi, y; F) , f Q Re. f [o g ( i(- •)- log ( j, - )i

e -ik (x.
+ 2 P.V. dk da

- (- 1)" og (8j + •)-log (81 + g

-) [42]
+I

+ 2 P.V. d_ ] do coo (t.
0

J41N + j Re - do-~ IH•, ,-(-•)d,1 "i

-, + ) da sin wt

The integration of the log (si - 4) term is straightforwaul, yielding

Re~~ lo jA-d

-(Zi - hi) t+n 1) (log + 1i ()2 l+

(11_ 1) tan-_+)_-

20



(4o]Y, - 11+log [4- ,

t (an - j) (Xi - ,V-+ tah[n) ¶
+J

In the integration of the log (s - Z) term, note that,# and 91+ are replaced by - qj and
- / ,respectively.

To evaluate the potential integral containing the priicipal value integral, proceed in

the following manner. For an arbitrary a in the fluid domain

+ -ik i-"z.
d8 P.V. dk

-k
0J

is ~ fij+1 -

e /P.V. f -. +dk

0

ll°j

it e(e-4+e d 1k-

+-Ve )P.V. -k f

0 j

k k

where the change of integration is permissible since only one integral requires a principal
value interpretation. After dividing by v and multiplying by v - k + k under the integral

sign, the last expression becomes

-e [j e i k,( elk dk

[44)

+ P.V. e-k( i+ dk - PY.. dklJ v -k f -k j
0 0
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Regarding the first integral in Equation [44] as a function of a,

F()-�) j -ikZk dk

Differentiating Equation (45] with respect to a gives

F "(a) I u-j' d•-11 -4 z- 4 1dk f e1 " (z Ar ) 4k
0 0

a - Z+

so

F(a) - log (2 - Z.) -log (a - ?+ +•)K [461

where K is a constant of integration to be determined presently. Since F (a) is defined and

analytiQ tfor all a in the lower half plane, and since by Equation [451, lin F(a) - 0, it

follows from Equation [46] that K - 0. Therefore, 111

__ _ Pv ,•, ~ . •- .1

k +yi+ (xi -Z

+ P.V. dk

in o
0

221
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+ dkj

s - k

+ P.V. dk

": 0- .CiI,+)1  kaj,.)

-P.v. f- kI

0

The integration of the potential compontent in phase with thie velocity over ./ give.

-qs, (bi q/ +

Re {fed.J[48]
- j- {"",",'.(,, )- ., -,v,, f,, .4 . ,) -,_ ,.

It/
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APPENDIX D

VELOCITY POTENTIALS FOR VERY SMALL AND VERY LARGE FREQUENCIES

For very small frequencies, i.e., as 6) -* 0, the free-surface condition Equation (8}
of the section formulating the problem degenerates into the wall-boundary condition

y - 0 [49]

on the surface of the fluid outside the cylinder, whereas for extremely large frequencies,
i.e., when w m, the free-surface condition becomes the "impulsive" surface condition

400 [501

on y 0 outside the cylinder.
Jquations [9], [4], and [5] remain valid for both asymptotic cases. The radiation

condition is replaced by a condition of boundeodness at infinity.
Theefre, there in a Neumann problem for the can w - 0 and a mixed problem when

w .0. The appropriate complex potentials for a source of unit strength at a point C in the
- lower half plane are

G(o1, ( )= L clog ( - )+ log (1 -Z)J+ ([1 11 2
and I• I I

G. (,, [log (0 - lot -C) s 1l.- . )J+ .52] 1
for the Neumnn and mixed problems, respectively, where K0 and K, are constants not yet
specified.

** (a,v; S ,•) - IG O, (8, 0)1

so that the velocity potentials for the nth mode of motion are f
41a) (u, j)"f Q() (o) , (a, y; e, •) da [5*]

Co
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for a -O, and a- , where Q.(") is the expression for the source strength as a function of
position along the submerged contour of the cross section Co. An analysis similar to the one

in the section on formulating the problem leads to the integral equation

3 ~~~~(a. •~ f) QO,' (.) (m y; ~,q e-A t  ~ ~ ~ ((s (oy4d(m) at(m)[]

CO

which, after application at the N segmental midpoint, yields a set of N linear algebraic

equations in the N unknown source strengths Q1.
It remains to be shown whether these two problems are, in the language of potential

theory, well posed, i.e., whether the solutions to these problems load to unique forces or

moments. The mixed problem raises no difficulty1 since as s so, 0. (s, ý) - 0. In fact

K. - 0, which can be inferred from the pulsating source-potential Equation [8] by letting

Considering the Neumann problem, note that the constant KO in the Green's function

Equation [51] yields by integration an additive constant K to the potential. However, for a

completely submerged cylinder the cross sectional contour C0 is a simply closed curve, so
that the contribution of K in integrating the product of the pressure with the direction cosine

of the body-surface velocity vanishes. For partially submerged bodies C0 is no longer

closed. But since n_(')& - n(a) for m being even,

f K a(m) da - 0
¢o

so that the swaying force and rolling moment are unique. The heaving force on a partially

submerged cylinder is not unique for, in this case, n_(,)- nRf3), Do h&at

f Kn(3) d

The constant K. may be obtained by letting v - 0 in the pulsating source-potential
Equation [8].

25
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