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V ABSTRACT 

A linear system analysis is applied to electromagnetic scattering 
problems.     The relationship between the incident and scattered fields is 
reduced to a one-dimensional linear system by suitable restrictions, and 
modeled as a linear two-port with time-invariant parameters.    The two- 
port is characterized by a real,  time-dependent impulse response function 
and a transform-related complex,   frequency-dependent phasor response. 
Two fundamental approaches for obtaining approximate solutions to 
electromagnetic scattering problems are seen.    Estimates of either the 
frequency-dependent phasor response or the time-dependent impulse re- 
sponse can be attempted.     The material in this study is concerned with 
the latter approach.,)^ 

The concept of impulse and transient response approximations in 
electromagnetic scattering problems and the general properties of such 
waveforms are reviewed in Chapter I.    It is demonstrated that the impulse 
and transient response waveforms provide a primary conceptual model for 
electromagnetic scattering which permits the integration of all existing 
frequency data,  calculated or measured, and is simple in form.    The model 
is directly related to the geometvical and physical properties of the scatter- 
ing object; does not change drastically for small perturbations of parameters; 
and can be used to predict the response of the object to any type of incident 
plane wave.    Analytical and experimental methods for obtaining estimates 
of the response waveforms are discussed, and a systematic procedure for 
securing such estimates is suggested. 

Estimates of the impulse and transient response waveforms of a 
perfectly conducting prolate spheroid are obtained in Chapter IL    Two 
results are derived.     The first is restricted to axial incidence and utilizes 
the geometrical similarity of the sphere and spheroid to obtain the response 
waveforms of the spheroid.     The second result is for arbitrary orientation 
of the spheroid and arbitrary linear polarization of the incident field. 
Calculations from both results are compared with measured data on a 2:1 
axial ratio spheroid. 

Derivation of the response waveforms of the prolate spheroid 
target requires,  as input data,   the Rayleigh scattering coefficient of the 
target.     The Rayleigh coefficients of prolate and oblate spheroids for 
arbitrary orientation,  axial ratio,   and material properties; and for 
arbitrary linear polarization of the incident field are given in Appendix I. 
Time domain interpretations of high frequency asymptotic estimates of 
the creeping wave on conducting spheres and cylinders are considered in 
Appendix II.    The non-causal nature of creeping wave estimates for the 
sphere is noted and suggestions for obtaining a causal response waveform 
are made. 
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CHAPTER I 
INTRODUCTION 

Theoretical and experimental studies of the interaction of electro- 

magnetic waves and finite material objects have received the attention 

of numerous investigators for several decades.    One therefore finds in 

* the literature[ IJ      an imposing array of sophisticated mathematical 

techniques for calculating such interactions and an equally impressive 

collt.'Ction of calculated and measured data on the interactions for spe- 

cific objects.     These data are usually presented in the form of curves 

or patterns of the radar cross section of the object.    With the exception 

of spherical objects,  however, the theoretical contributions are charac- 

terized by restrictions on the orientation and material properties of the 

object and on the frequency,  polarization and character of the incident 

electromagnetic lield.     In the same vein,  experimental studies reported 

in the literature cannot hope to be all inclusive and inevitably involve 

some of the same limitations. 

Contributions prior to 1957 are covered by earlier Georgia Institute 
of Technology bibliographies also given in Reference I. 



One might summarize the present state of the art in prediction 

of the radar cross section of an object as follows; if the object is very 

large in terms of the wavelength, then several approximate or asymp- 

totic  theories of varying degree of complexity and accuracy are avail- 

able for cross section calculations.    The major difficulty encountered 

in this portion of the spectrum is in estimating how large a particular 

object must be in terms of the wavelength in order to achieve a given 

accuracy in the cross section calculation using a specific approxi- 

mation.    If the object is very small in terms of wavelength then again 

several approximate theories are available.    In this case no particular 

difficulty is encountered in the accuracy of the calculations but the 

maximum object size which can be handled is rather strictly limited. 

Such limitations are imposed by either the geometrical shape and 

constitutive parameters of the object or by the storage capacity of 

present digital computers. 

Exceptions exist of course,   but in general one can achieve a 

reasonable estimate of the radar cross section of an object at the 

extremities of the spectrum.     In what is somewhat loosely referred 

to as the resonance region[ 2]   of an object,  however,  no such reason- 

able estimate is readily obtainable.    In certain cases,  i. e. ,  for a 

specific object geometry,  material properties and orientation,  the 

extension of a particular high or low frequency approximate or 
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asymptotic theory into the resonance region has been achieved.    No 

general extension can be implied from these results however, and in 

fact would appear to fail by the very nature of the assumed fields. 

It would serve no purpose here to detail all of the approximate 

theories referred to above.    The point to be made is that for the 

general finite, non-spherical object a significant portion of the spec- 

trum usually cannot be analyzed by existing asymptotic or approxi- 

mate scattering theories.    Unfortunately, this gap in the spectrum 

is often of most practical interest for cross section calculations. 

Three additional comments are in order.    First,  it is customary with 

most approximate methods to assume a plane monochromatic incident 

field.    Treatment of an arbitrary type signal often becomes a much 

more complex problem.    Second,  the approximate methods in vogue 

at present are not capable of systematically integrating calculated and 

measured data from various portions of the spectrum into a single 

model with a wider applicability.     Thus,  for example,  good estimates 

of high and low frequency scattering properties of an object arc not 

combined to improve the estimate of its resonance region behavior. 

Finally,  the geometrical shape of an object is not simply related to 

the form of the predicted scattered field.    Consequently, minor 

perturbations of the object geometry often require a tedious new 

solution rather than a minor modification of an existing solution. 
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It is the opinion of the author that no measurement or calculation 

program,   regardless of its scope,  can hope to satisfy the present and 

future requirements in radar reflectivity without the establishment of 

a primary conceptual model whereby all the existing theories and 

measurements on a given object and on objects of similar geometry 

can be integrated.    Such a conceptual model should also incorporate an 

applicability to all types of signaling waveform including the ultra-short 

pulse of current interest. 

The subject of this study is the interpretation and application of 

such a primary conceptual model for electromagnetic scattering.   This 

model permits the integration of all existing frequency data,  calculated 

or measured, and is simple in form.    It is directly related to the geo- 

metrical shape and constitutive parameters of the object; does not 

change drastically for small perturbations of parameters; and can be 

used to predict the response of the object to any type of incident plane 

electromagnetic wave.    This primary conceptual model,  the impulse 

and related transient response waveforms of a scattering object, was 

first proposed by Kennaugh and Cosgriff[ 3j   in 1957.    In their paper, 

one facet of the impulse response concept,   namely the use of high and 

low frequency approximations to secure approximate resonance region 

data, was exploited.    Since that time, Kennaugh and his colleagues at 

The Ohio State University ElectroScience Laboratory have published 

"i 



results dealing with various aspects and applications of the theory[4-l 6]. 

A review of these accomplishments; a description of the general proper- 

ties of the solutions to transient electromagnetic scattering problems; 

and a discussion and illustration of various methods for approximating 

the appropriate waveforms was published by Kennaugh and Moffatt[ 13] 

in 1965.    To the best of the author's knowledge,  only three other publi- 

cations dealing specifically with the impulse response waveform of a 

finite three dimensional scattering object have appeared.    Betten[ 17] 

in 1962 discussed the experimental determination of the impulse re- 

sponse waveform of an object and the synthesis of an equivalent net- 

work.    He also suggested a rather elaborate identification scheme 

utilizing cross correlation of object waveforms.     Brown[ 18]   in 1962 

presented an approach to the solution of pulse scattering by finite 

obstacles which utilized the identification and separate treatment of 

the individual terms in a wavefront expansion of the transforms of the 

field vectors.    This latter work, while mathematically quite elegant» 

adds little if any insight to the estimation of impulse response wave- 

forms for finite objects.     Finally,  in 1963 Barabanenkov,  et al. [ 19] 

derived, apparently independently,  the impulse response waveform 

produced by the physical optics approximation as obtained by Kennaugh 

and Cosgriff in 1957. 



In this study, the first chapter develops the necessary groundwork 

for investigating solutions to transient electromagnetic scattering prob- 

lems.    The general properties of such solutions are reviewed and defi- 

nitions of the pertinent transient waveforms are given.    Analytical and 

experimental techniques for obtaining approximate estimates of the 

impulse and transient response waveforms are discussed. 

In Chapter II»  the electromagnetic backscattering by a perfectly 

conducting prolate spheroid is analyzed,  using estimates of the impulse 

response and related transient response waveforms.     Two results are 

derived.    The first is restricted to axial incidence and utilizes the geo- 

metrical similarity of the sphere and spheroid to obtain an impulse 

response for the spheroid in terms of known approximate waveforms 

for the sphere.     The second result,  based in part on the results of the 

axial solution,  is for arbitrary axial ratio and orientation of the 

spheroid and for arbitrary linear polarization of the incident electro- 

magnetic field.    Calculations from both results are compared with 

measured data for a 2:1 axial ratio spheroid and previously calculated 

data for a 10:1 axial ratio spheroid. 

Two Appendices are included in this study.    In the first Appendix, 

the Rayleigh scattering coefficients of prolate and oblate spheroids are 

obtained.     The results hold for arbitrary orientation,  axial ratio,  and 



material properties of the spheroid and for arbitrary linear polari- 

zation of the incident wave.    These results are utilized in Chapter II 

in deriving response waveforms of the prolate spheroid. 

The second Appendix contains a time domain intepretation of 

certain high frequency asymptotic estimates of the creeping wave on 

cylinders and spheres.    The non-causal nature of particular asymp- 

totic estimates is demonstrated and suggestions for obtaining a 

causal response waveform are made. 

A.    The Concept of Impulse and 
Transient Response Waveforms 
in Electromagnetic Scattering 
Problems 

Two basic assumptions are made which hold throughout this 

investigation.    It is assumed that between the input terminals of the 

radiating system producing an incident field and the output terminals 

of the receiving system detecting the scattered field only linear 

processes with time-invariant parameters are involved.    The scat- 

tering process is viewed as a cause and effect relationship whereby 

a transducer operates on the input or cause at the input terminals to 

produce the output or effect at the output terminals.    With the as- 

sumptions given above,  the transducer is a linear, time-invariant 

operator and is uniquely determined from the knowledge of a single 

function; the impulse response.    Specifically,  the cause is the incident 

I 
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electromagnetic field in which the scatterer is immersed and the effect 

is the scattered electromagnetic field defined conventionally    3 the 

difference between the total and incident fields.    It is further assumed 

that the input and output terminals are both in the far-field of the scat- 

tering object. 

Thus,  as shown in Fig.   li  the scattering process is modeled by 

a passive linear two-port with time-invariant parameters.    The input 

is E( t') ,  the output F( t') ,  and the two-port has an impulse response 

function F^t').    The input and output are related through the corvo- 

lution integral as 

(1) F{t') =y Fj{r) E( 

tl 

t'-^dr 

Ein fiV) 

Fig.   l--Two port representation of scattering problem. 



In order to define the various quantities in Eq.   ( 1) and to explain the 

scalar treatment of the electromagnetic fields,  it is necessary to 

introduce a coordinate reference frame.     This coordinate frame is 

shown in Fig.   2.     The incident plane electromagnetic field polarized 

in the x direction 

(2) .1        A E    = x E(t - z/c) 

Fig.   2--Coordinates of scattering problem. 
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evaluated at z = 0 has an intensity E( t).    With this plane wave Incident 

on the scattering object as shown in Fig.   2, a scattered field is pro- 

duced.    At an arbitrary location P in the far-field of the scattering 

object, a normalized transverse component of the scattered field has 

an intensity F( t).     In order to remove the time delay between scatterer 

and observer,  a new time scale t' = t-r/c is introduced.    The input 

E( t')  is simply E( t)  with t replaced by t'.     For the output F( t') , 

t-r/c is replaced by t' in F( t).    The impulse response waveform Fjit') 

is the response when the input E(t')  is impulsive,  i. e. , E(V)  =   ßCt'). 

The lower integration limit tj in Eq.   (1)  is the initial value of t' at 

which the impulse response waveform FjCt') departs from zero.    This 

limit is,  in general,  not zero since the initial contribution need not 

arrive at a time t = r/c.    If L is the maximum object dimension then 

tl  >   -L/C in the half-space z >  0 and tj  >  0 in the half space z < 0. 

The two-port has a frequency-dependent phasor response G( jw)  which 

is related to the radar cross-section of the scatterer as 

l I2 

(3) cr(w)   = ir|G(jw)| 

The frequency-dependent phasor response G( jw)  and the time- 

dependent impulse response waveform F^t')  form a Laplace trans- 

form pair. 
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(4) G(jw) -cj   Fjif)  e"^' df 

0 

CO 

FT(t
,)= _L- V G(3w) et,jw dw 

2irjc J_ai 

or using s notation ( s = jw) 

( 5) G( s)   = c\   Fjit1)  e"8*' df 

0 

Fyit»)  =   \   G(8)et,8 ds 
1 Zwic   J 

-joo 

Equations ( 3)  and ( 4)  define the normalization mentioned above.    It 

should be noted that the scattering object in Fig.   2 is located in the 

half-space z > 0 of the coordinate frame.    A more detailed develop- 

ment of the normalized impulse response waveform F^t')   is found 

in Kennaugh and Moffatt[ 13] . 

Certain points should be stressed concerning the two-port in 

Fig.   1.    Its time-dependent impulse response Fj( t')   is dependent 

on the orientation of the scattering object, the observation angles 

( but not range) and the particular transverse component of the 

scattered field selected.    The electromagnetic scatterer properties 

are uniquely determined by FjCt') ,  but one cannot extrapolate this 

statement without proof to imply that F^t')  uniquely determines the 

physical properties of the scatterer.    It seems doubtful that two 
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geometrically or materially different scatterers could ( for fixed source 

and receiver locations and polarizations) , have exactly the same phasor 

response over the entire spectrum,   but a unique determination of the 

physical properties of the scatterer has not been proven. 

The impulse response waveform Fjit1)  is the   .ime-dependent 

electromagnetic field intensity produced at the output terminals when 

the input E(tl)  is an impulsive plane electromagnetic wave,  i. e. , 

Elf)  =6(tl).     OnceFjIt1)  is known,   the response waveform for any 

incident waveform is determined by Eq.   ( 1).     Two other particular 

response waveforms are of interest in this study and need to be defined. 

The step response 

CO 

(6) F^f)    =  \    F^T)  u(t'-T)dT 

and the ramp response 

00 

(7) FR(f)    =yFI(T)(t,-T)u(t,-T)dT  =yFu(T)dT 

The Laplace transform relations in Eqs.   ( 4) and ( 5)   state that 

Fjlt')  and G( jco)   can each be derived from the other.    But G( jw)  is 

known exactly for only one finite three dimensional shape; the sphere, 

and even for this shape the transformation to obtain Fj( t')  cannot be 

achieved exactly.     Thus,  a study of the scattering problem in the time 
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domain consists essentially of the development of a reasonable esti- 

mate for the impulse response waveform Fjit').    In exactly the same 

way,  the study of scattering problems in the frequency domain has 

been, as discussed in the introduction to this chapter, the development 

of reasonable estimates to the phasor response G( jw) ,  but usually for 

either the high or low extremities of the spectrum.    A number of 

distinct advantages to the time domain approach,  as well as some dis- 

advantages, will be enumerated in the course of this study.    It is hoped 

that the time domain approach can be presented with sufficient clarity 

and simplicity, and its utility demonstrated on a sufficiently complex 

problem, that future investigators will move freely between the 

domains to exploit the maximum potential of either approach. 

It would be premature at this point to discuss the relative   ad- 

vantages and disadvantages of a frequency domain versus time domain 

approach to an electromagnetic scattering problem.    What is hoped to 

be demonstrated is that one can incorporate into the time domain model 

most of the advantages of a frequency domain approach while at the 

same time exploiting certain unique features of the time-dependent 

waveform model.    Consideration at the moment is to be restricted to 

simply the solution of a given electromagnetic scattering problem 

involving a single isolated object.    In the opinion of the author,  the 
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following remarks justify consideration of the time domain approach 

and at the same time indicate the basic premises upon which such an 

approach is based. 

1. It is to be generally expected that,  compared to the 

complicated complex phasor response G( s)  of a given 

object as a function of frequency,  the real,  time-de- 

pendent waveform F^t') will be relatively simple.    In 

the context of this study,   the scatte-er can be represented 

by a distributed constant,  linear, time-invariant two-port 

network.    As such,  its impulse response waveform should 

be relatively simple compared to the transcendental 

response functions characterizing distributed systems in 

the frequency domain. 

2. The impulse and transient response waveforms of a 

scattering object must be related in a rather direct way 

to the geometry and constitutive parameters of the object. 

It will be shown,  for example, that the area beneath the 

ramp response waveform is proportional to the Rayleigh 

coefficient; and hence,  to the volume of the scatterer. 

More fundamentally, however,  as the impulsive or 

transient illumination moves across the object,  only that 

portion of the object which has been illuminated can possibly 
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contribute to the scattered field waveform.    Therefore, up 

until the time when the transient illumination has passed 

completely over the object, there is a direct correlation 

between the response waveform at a given time and a spe- 

cific portion of the object.    Furthermore,  since we are 

dealing with a physically realizable system which cannot be 

a predictor, two objects which present in-daily identical geo- 

metrical and physical properties over a given region must 

yield identical response waveforms up to the time corre- 

sponding to complete illumination of this region,  regardless 

of their geometrical and physical properties beyond this point. 

3.    In principle at least,  it is possible to incorporate into an 

estimate of the waveform Fj( t')  all of the best features of 

various approximate or asymptotic estimates of G( s) while at 

the same time utilizing certain unique features of the time-de- 

pendent waveform.    If one has certain estimates of G( s) whose 

validity is restricted to particular portions of the spectrum,  it 

is far from clear how consideration of these estimates can be 

used to approximate a G{ s)  corresponding to the remainder 

of the spectrum.    In the time domain however, the estimates 

of G( s)  become time-limited port v-ns of the waveform,  and it 

is known that these pieces must combine with other pieces to 
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produce a single waveform.    Certain conditions on this total 

waveform are known from low-frequency derived moment 

conditions.    Even very crude estimates of how the pieces 

are combined must add some new knowledge concerning G( s). 

4.    The convolution integral in Eq.   ( 1)  relating the response 

waveform to the interrogating signal provides an additional 

understanding of the relationship between the contributions 

of G( s)  from various portions of the spectrum and the response 

waveform Fj( t').    Let the input signal be a monochromatic 

continuous wave.    The graphical interpretation of convolution 

is that of reversing one of the signals with respect to time and 

then sliding one over the other.    At any given time, the response 

is given by the integral of the product of the two waveforms over 

that time interval where they coincide.    For the monorhromatic 

input, this consists of sliding a sinusoid of a given period across 

the reversed waveform Fj( -t').    It follows that at relatively low 

frequencies,  the response can be influenced little by the minute 

details of the waveform; therefore the response at low fre- 

quencies is basically dependent on the general size and shape 

of the waveform.    As the input frequency increases,  more and 

more of the waveform detail is important and slowly varying 

portions of the waveform less important since the contributions 
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from these are effectively cancelled by the positive and negative 

portions of the sinusoid.    Two conclusions can be drawn from 

these remarks[ 13] : ( 1)   The general shape and size of the 

impulse response waveform F^t')   is dictated by the low-fre- 

quency response of the object and ( 2)  The fine structure and 

detail of the waveform is controlled by the high-frequency 

response of the object.     Thus if one constructs an estimate 

of FAV) using the moment conditions, it is to be expected 

that such a model would fit relatively well at low frequencies, 

but would require modifications and corrections to predict 

the response well at high frequencies. 

5.    The use of experimental data in deriving estimates of G( s) 

or Fjit')   is an important consideration.    The most straight- 

forward but probably least effective method for utilizing such 

data is simply the comparison of theoretical results based on 

a model obtained wholly from analytical considerations with 

such data.    If only a limited amount of experimental results 

are available,   such comparisons are not conclusive and often 

not indicative of the changes required in the model.    From 

the discussion in ( 4)  above,  it is apparent that one should be 

able to construct a crude model of the response waveforms 

from a limited number of low-frequency measurements, and 
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that systematic procedures for incorporating such data with 

theoretical estimates of Fj{ t')  should be feasible. 

This study does not fully develop the methods and techniques 

mentioned in ( 5) above* and it will be found that the model of Fj(t') 

developed in Chapter II for the prolate spheroid target is obtained 

without consideration of experimental data; such data only being used 

to compare with calculations from the model.    However, we shall 

discuss how such experimental data might be more effectively used 

and the possible directions of future research in this area. 

B.    General Properties of the 
Impulse and Transient 
Response Waveforms 

The frequency-dependent phasor response G( ju)  and the corre- 

sponding time-dependent impulse response waveform Fjft')  are both 

governed by Maxwell's equations.     Therefore F|( t1)  must be a causal 

function,  i. e. ,  a back scattering response cannot appear at the output 

terminals before the time t1 = 0.     The square integrable criterion 

(8) i ^   |G(jw) |2do)   < oo 

0 

can be applied provided, as pointed out by Paopulis[ 20] , all constants 

and positive powers of jw are first removed from G( jco). Note that it 

does not necessarily follow that approximate or asymptotic estimates 
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of G( jw) will also lead to causal time functions.    It will be shown in 

Appendix II that certain high-frequency asymptotic estimates of G( jw) 

lead to non-causal time functions. 

The definition in Eq.   ( 3)   shows that G( jw)  must have the di- 

mension of length.    From Eqs.   ( 4) , ( 6) ,  and ( 7)  respectively,  it is 

seen that the impulse response F^t')   is dimensionless; the step  re- 

sponse FTj(t')  has the dimension time; and the ramp response F^( t') 

the dimension time squared.    It is most convenient to choose a time 

scale measured in units of the transit time for some characteristic 

dimension of the scatterer.    If i  is such a characteristic length then 

the transit time 

(9) to = i/c, 

is set equal to unity.    This can be interpreted as choosing a time 

scale such that c  is unity and a distance scale such that a free space 

wave traverses the length i  in unit time. 

The low frequency scattering properties of any finite, three di- 

mensional object provide interesting and useful conditions on the 

impulse and transient response waveforms.    At sufficiently low fre- 

quencies, it is known that the phasor response. G( s)« of a scattering 

object can be expanded in a Taylor series about the origin s = 0 as 



MIIWMM 

20 

(lo) G^)-2 an.
n 

n=0 

where Rayleigh's theory dictates that the coefficients a0 and ai  in 

such an expansion are zero while the coefficient a2 is proportional 

to the scatterer volume.    Note that the coefficient a2 depends upon the 

shape,  orientation,  and constitutive parameters of the scatterer as 

well as the polarization of the incident and scattered fields.    Expand- 

ing e"8*'  in the definition integral in Eq.  (5)  in a Taylor series about 

the origin s = 0 there results. 

00 

(11) y   F^ndf =a0 =0 

0 

y   t'F^t'Jdf =a1  = 

\    t^F^t^df = 
2a2 

c 

00 

J   t.nFl(t.)dt. = id^l±IL 
0 

These are moment conditions on the impulse response waveform 

FjCt1).    An integration by parts of the second and third expressions 

in Eq.   ( 11)  shows that the first three moment conditions can be 

interpreted as requiring that the net area beneath the impulse and 



21 

step response waveforms be zero and that beneath the ramp response 

waveform proportional to the so-called Rayleigh coefficient!  a2,  of 

the scatterer.    A word is in order concerning this proportionality 

factor which has caused some difficulty in the past.    With the definition 

in Eq.   ( 11) ,  the Rayleigh term (for small w)  is 

-a2(2ir)2c2i2 -a2(2iT)2 /i-2 

(12) G(ju)) = 
i2 X« ^G 

where i  is some characteristic dimension of the scattering object.    If 

the Rayleigh coefficient» K,  is defined by 

(13) G(jW)  =K^) 

then 

(14) K = 

and 

-a2(2ir)2 

r -Kti 
(15) \    FR(t')dt'=—r- 

y (2ir)    c 

Note that the moment conditions in Eq.   ( 11) were not obtained from 

the final value theorem of the Laplace transform theory 

( 16) lim    sG(s) = lim    Fjf t1) 
8—0 t'-*« 
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which theorem simply yields the result that in the limit of large time 

the response must decay to zero.    This latter result is clearly reason- 

able on physical grounds. 

The expansion for G( s)  in Eq.   (10)  is not unique unless a phase 

center is defined.    Since the first non-zero term is the coefficient of 

s2,  the choice of phase center does not change the first three moments. 

However,  to employ moments higher than the third both the choice of 

phase center and the origin of coordinates on the t' scale must be 

specified.    The first two moment conditions are applicable to any 

finite,  three dimensional object.    For a great many targets, the 

Rayleigh term ( coefficient of s2)  can also be estimated making the 

third moment applicable.     The higher order coefficients can only be 

obtained for particular objects,  therefore the usefulness of the higher 

order moment conditions (n > 2)  is restricted to a small class of 

targets.    An exception to this exists for the case of objects which have 

a center of symmetry. Stevenson[ 21]   has demonstrated that for 

this class of targets the coefficient of the s3  term is identically zero 

when the phase center for the expansion is chosen at the center of 

*    An object has a center of symmetry,  0,   if it is symmetrical to a 
transformation consisting of rotation by TT radians about an axis 
through 0 and then reflection in a plane perpendicular to the axis of 
rotation and containing 0. 
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symmetry.    Therefore for this class of objects,  the fourth moment 

condition can be utilized.   If the phase center is chosen   at the center 

of symmetry and the origin of the t' axis at the point where the inci- 

dent impulsive wave first encounters the body then 

C 12 La, 
(17) ^   t^Ftft'Jdf =     c 

where L is twice the linear distance from the center of symmetry to 

the t' origin and is a negative quantity.    Equation ( 17) may also be 

written as 

00 

(18) 
)■■ 

FR(t')df = 
2La2 

The moment conditions given in Eq.   ( 11)  implicitly assume 

that all the moments of the time-dependent impulse response wave- 

form exist[ 22] .    It is clear that for the n^ moment to exist,  Fi(t') 

for large t' must vanish at least as fast as l/t1      .    In the latter 

portion of this section a discussion of the proper analytical models 

for Fj( t')  and G( s)  makes it clear that insofar as the approximations 

of interest for these functions are concerned, the assumption of the 

existence of the moments is not unreasonable. 
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A well known high frequency estimate of G( s)  is the physical 

optics approximation.    It can be shown[ 23]   that this approximation 

predicts the following form for the step response waveform Fu( t') 

for conducting objects if the observation location is constrained to 

the E or H planes of the incident field. 

E plane,  direct polarized component 

(19) Fuit'.e.p) =  ^55    6 

.ill 

p.(£4) 1 
t' - 

A     A 
4* n ds 

E plane,  cross polarized component 

(20) F^f, e,p)  E   0 

H plane,  direct polarized component 

(21) 

_ill    L 

f  - 
A        A 

£•   (g -§) A        A   j g •   n ds 

H plane,   cross polarized component 

(22) Fu(t,,e,ß)  = 
sin P 

ire w 
.ill 

t. p- (g-t) A 

c 
9                                                                                                                                                           * 

X n ds 

In the above equations (as shown in Fig.   3) ,  g  is a unit vector in the 
A 

direction of propagation of the incident field; ^  is a unit vector in the 

direction of propagation of the scattered field; n is the unit outward 

normal from the scatterer surface; and p is the position vector of a 
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l'Ct) 

FltJ,/ 

Fig.   3--Coordinate8 of scattering problem. 

point on the scatterer surface,    ß is the angle between the unit vectors 
* A ... 
g  and £  ( ß <. ir)  and  s      is the illuminated surface of the scatterer. 

For the backscattering case ( ß = IT)  specializing to the orientation in 

Fig.   2 

(23) FuCf)   =   - 
1      dA(z) 

2irc       dz 
= ct'/Z 

and 

(24) ^ = --k 1      dzA(z) 
4^   ~~dP 

= ct'A 
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The function A( z) measures the area of the scatterer surface between 

the x, y plane and a cutting plane at z projected orthogonally on the x, y 

plane.    A detailed derivation of Eq.   ( 24)  is given in Reference 13. 

The bistatic results in Eqs.   ( 19),  ( 21),  and ( 22) have also been in- 

terpreted in terms of area functions! 23] .    It can be shown[ 13]   that 

the physical optics result in Eq.   ( 24)  always satisfies the zero 

moment condition [ first of Eq.   (11)]   but does not in general satisfy 

the higher order moments. 

Similar time domain interpretations can be made of other high- 

frequency approximations, usually however only with reference to a 

particular scattering object.    If the inverse transformation [ Eq.   ( 4)] 

can be achieved in closed form then an analytical result is obtained. 

If the inverse transformation cannot be achieved,  a Fourier synthesis 

procedure can be used to obtain an estimate of the time-dependent 

waveform.    The Fourier synthesis procedure is adequately described 

in Reference 13.    In essence,  given the phasor response G( s)  at a 

sufficient number of harmonically related frequencies,   estimates of 

the time-dependent response waveforms can be generated. 

It will be instructive at this point to examine certain of the 

approximate impulse and transient response waveforms which have 

been obtained for specific objects.     The interest here is in noting the 

salient features and characteristics of the waveforms.     It is stressed 
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that these are far or radiation field response waveforms and the con- 

clusions drawn from th' m are restricted to that region.    The back- 

scattering impulrr-,   step,  and ramp response waveforms of a perfect- 

ly conducting sphere[ 13]   are shown in Fig.   4.    The sphere radius is 

a and the time scale is in units of the sphere diameter transit time 

(t0 = 2a/c).    In this figure* as well as those presented in the re- 

mainder of this study,  the delta-function pulse of weight a  is denoted 

by a vertical arrow with a by the arrow head.    For the impulse re- 

sponse waveform, the incident waveform is a positive delta function 

pulse of weight unity.    The impulse response waveform consists of a 

negative impulse of weight a/c followed by a positive jump of 0. 5 and 

o 

a secondary negative maximum at approximately t1 equal 2. 57t0. 

Beyond this secondary negative peak the waveform damps rapidly, 

becoming negligible in comparison to the earlier portions for times 

greater than approximately 6 transit times for the sphere diameter. 

The secondary negative peak at t1 ~ 2. 57t0 corresponds to the arrival 

of a diffracted front.    Both the negative impulse and 0. 5 jump at 

t1 = 0 are correctly predicted by approximate high frequency solutions. 

The response waveforms of the conducting sphere, particularly the 

diffracted or creeping wave peak at t' ■ 2. 57t0, will be discussed in 

Appendix II.    One should note that the exact nature of the creeping 

wave maximum is not resolved in Fig.   4.    It is important to discern 
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Fjd') 

-0.25 

Fig.   4--Approximate impulse,  step,  and ramp response 
waveform of conducting sphore.     Backscatter. 
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two main points from the waveforms shown in Fig.   4.    The first is that 

the successive integrations to obtain the step and ramp response wave- 

forms from the impulse response result in a considerable smoothing 

of the latter waveforms.    Thus distinct singularities and peaks present 

in the impulse response waveform are effectively masked in the corre- 

sponding ramp response and one can conclude that a reasonable 

approximation to the ramp waveform is more simply obtained that an 

impulse response approximation.    Clearly,  each waveform contains 

all the information; for example the secondary peak in the sphere 

impulse response becomes at most a subtle change in slope in the 

ramp waveform,  but an estimate of the ramp waveform which ignored 

the change in slope would still be a reasonable approximation over a 

range of lower frequencies.    The second point of interest is the ef- 

fective time-limited nature of the response waveforms.    For times 

greater than 5 or 6 to, the response waveforms have decayed to a 

negligible value.     Regardless of the exact nature of this decay, it is 

evident that an approximation to the waveform which fits well for 

t' <  6 t0 and which vanishes for large times would,  for all practical 

purposes, provide a satisfactory model. 
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The response v/aveforms shown in Fig.  4 were obtained by a 

Fourier synthesis procedure using calculated values of G( s) from the 

Mie series.    In Fig.   5, the approximate impulse response waveforms 

of several other objects are shown.    The waveforms in Fig.   5 were 

obtained from a combination of high-frequency estimates of G( s) and 

the lower order moment conditions.    In the case of the cone-sphere[ 8] 

(Fig.   5b)  and the prolate spheroid[ 10]   (Fig.   5d), the sphere results 

in Fig.   4 were also utilized.    The reader's attention is called to the 

correction in the response waveform shown for the flat-based right 

circular cone in Fig.   5a.    The response waveform for this object 

given in Reference 13 inadvertently reversed the time behavior of the 

doubly-diffracted term from the base. 

Some additional characteristics of the impulse response wave- 

form can be deduced from the waveforms shown in Fig.   5.    There 

is clearly a general relationship between the object geometry and the 

response waveform; i. e. ,  the various singularities and peaks in the 

response waveform occurring at given times can be directly associated 

with a corresponding geometrical feature of the object.    Furthermore, 

the estimated character of the singularity or peak can also be deduced 

from the geometrical feature.    For example, the response waveform 

associated with the diffraction from smooth convex surfaces (the 

secondary peak in the sphere impulse response of Fig.   4)  has the 
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same general form for the sphere,  spheroid and cone-sphere.    In a 

similar fashion,  it is seen from Fig.   5 that single diffraction from 

edges has a delta function character and double diffraction a 

l/slt* -T  behavior.    It is clearly evident in Fig.   5 that objects which 

initially present identical geometrical and physical properties to the 

incident transient excitation must also have identical response wave- 

forms for an initial time period.    The impulse response waveforms 

for the cone,  cone-sphere and double cone in Fig.   5 are identical 

until a time corresponding to the arrival of the incident impulsive 

wave at a change in geometry.    Consider a more explicit example. 

Compare two cone-sphere targets (as in Fig,   5b)  identical in every 

respect except for an axial needle protruding from the sphere in one 

case.    For an incident impulsive wave along the cone axis toward the 

cone tip,  the impulse response waveforms of these targets would be 

identical for all t' less than % 6. 3t0.    For times larger than this, the 

two response waveforms may differ markedly.    We emphasize the 

fact that,  as the impulsive wave moves over the object in the illumi- 

nated region or the transient currents excited by the incident wave 

move beyond the shadow,   a change in the geometry or composition 

of the object cannot be anticipated.    The excitation, propagating with 

a finite velocity,  must reach the perturbation before a change in the 

response waveform can occur.     Thus if one were attacking the scatter- 

ing problem of the perturbed target,  the early portion of the waveform 
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would be known and the analysis could be concentrated on the effect of 

the perturbing geometry.    A question clearly exists as to exactly when 

the forcing function,  i. e. ,  the incident impulsive wave,  ceases to 

influence the transient currents induced on the target.    From a geo- 

metrical optics viewpoint,  the forcing function would shut off at the 

shadow boundary.    More realistically,  the impulsive wave probably 

continues to influence the induced current somewhat beyond the 

shadow boundary but confined to the neighborhood of the boundary. 

Therefore in the case where a change in the geometry or composition 

occurs close to the shadow boundary,   some uncertainty would exist 

in predicting exactly when the response waveform should depart from 

the unperturbed case.    This causality feature of the response wave- 

form with respect to a given geometrical feature of the target is 

extremely useful in devising estimates of the waveform.    That is,  in 

most cases the location in time if not the character of the response 

due to a specific feature can be determined. 

The most important question in the application of the time do- 

main concepts discussed thus far in this chapter is: What is a valid 

general analytical model for the \.ime-dependent response waveform 

Fj( t') ,   or alternatively for the frequency-dependent phasor response 

G( s) ,  in a scattering problem?   In the context of this study,  the 

scattering object is a two-port transducer and the two-port is a linear, 
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distributed-jonstant system.     Thus G( s)   must be some combination 

of rational and transcendental functions of s.    Unfortunately, the 

literature on the analysis of distributed constant systems via trans- 

form methods is quite limited compared to that on lumped constant 

idealizations.    Two points should be made; first,  the impulse re- 

sponse of a lumped constant system is only an approximation (at 

sufficiently high frequencies the system is distributed) ,  but one 

which is sufficiently good for the frequency ranges of practical inter- 

est,   secondly,   some circuit concepts developed by transform methods 

with reference to lumped constant systems may have to be modified 

for application to a distributed constant system. 

It must be stressed that in the context of this study, what is 

sought is an approximate analytical model capable of producing a 

reasonable estimate of F^t1)  or G{ s)  in the range of practical inter- 

est.     For example,  the dc and optical properties of the scatterer are 

not really of interest here; and consequently,  the estimate of G( s) 

need not be valid at these limits of the spectrum.    Such a band-limited 

approximation for G( s) ,   or alternatively for Fj{ t1) ,  is further 

justified when one considers the effective bandwidths of practical 

radar systems.    The question becomes therefore: What is a sufficient- 

ly general physical model of the scattering process in such a band- 

limited approximation?   Clearly, the necessary complexity of the 

physical model depends to some extent on the specific scattering 
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object and one cannot rigorously justify the assumption of any particu- 

lar model for the general object.    However,  the representative wave- 

forms shown in Figs.   4 and 5 do illustrate some of the characteristics 

the general model must be able to reproduce.    Specifically«  it can be 

seen that over limited time ranges,  the model must be capable of 

generating an increasing rather than decreasing function with time 

and also admit to at least approximations of various types of singu- 

larities.     Finally, for moderately large times the model must produce 

a rapid damping. 

Consider first the large time behavior of the impulse response 

waveform.    It is known[ 24]   that in any passive or stable active 

lumped-constant network,  the force-free behavior decays exponential- 

ly     so that a short time following the transient interval only the forced 

behavior survives.    In the present case of a distributed constant sys- 

tem,  this generalization cannot be made precisely because of the 

presence of the transcendental functions of s.    However,  given suffi- 

cient elements,  one can synthesize an approximation to the distributed 

constant system using lumped elements.    Clearly this lumped constant 

approximation,  regardless of the number of elements needed to secure 

a reasonable estimate,  must decay exponentially for large time.    For an 

*    In the general case one has a summation of exponentials,  but for 
large time the minimum decay rate dominates and the response 
approaches an exponential decay. 



36 

approximate model for Fi(t') an exponential decay for large time is 

assumed,  i. e. , beyond some finite value of t' which will vary with 

the scatterer,  an exponential decay of the waveform is enforced. 

Physically»  this exponential decay is associated with radiation and 

dissipation effects.    If the inverse transformation of Eq.   ( 5)  is 

written as 

Y+ joo 

t's (25) F^f)  =     \    G(8)el8ds y >-a 
2irjc   J 

v-j00 

then a is the minimum exponential decay rate of the impulse response 

waveform for large values of t* .    The results in Figs.   4 and 5 indi- 

cate that a  is reasonably large for practical scatterers. 

It is also known[ 24]   that for lumped constant systems with 

simple poles the most general representation of the impulse response 

waveform is a linear combination of terms of the type 

N 

(26) f(t)  =^   Aneantu(t) 

n=l 

This in fact is the most general time function having a rational 

Laplace transform when the Re( an)  < 0.    It is immediately clear 

that one would require N large to approximate the response wave- 

forms in Figs.   4 and 5 with a function of this type,  except for large 

t' .    However,  if the real part of the an are unrestricted and a delay 
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factor is introduced then a linear combination of terms of this type 

should be capable of achieving reasonable estimates of the time re- 

sponse waveforms with just a few terms.    A possible analytical model 

for the impulse response waveform is 

M 

(27) F^f)   =^   Am6(f-tm) 

m=l 

K   N 

iJ;   Bnke^Ut'-Tk) -u(t'-Tk+1)] 
k=l n=l 

K+l =   00 

The model in Eq.   ( 27)   consists of weighted delta function singularities 

at selected instants plus sections of sums of exponential functions and 

a final exponential decay.     Note that there are no restrictions on the 

real part of the bj^ except in the final time interval,  i. e. ,  t' >  TJQ . 

In this final time interval 

(28) Re(bnK)  <  0 

to ensure an exponential decay of the response waveform for large 

time. 

Excluding the delta function singularities and the exponential 

decay for large time,  the analytical model in Eq.   (27)  is a super- 

position of bounded,  time-limited waveforms in sub-intervals or 

sections.    The number of sub-intervals into which the response 

waveform is separated is finite for any scatterer,  and judging from 
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the response waveforms in Figs.   4 and 5 will usually be no more than 

3 or 4.    The point is that th« number of sub-intervals (K-l), their 

relative location (T^ and duration (T^+j - T^) is selected from an 

examination of the geometry of the target.    Locations on the target 

where changes in the curvature or the derivatives of curvature,  or 

the composition of the scatterer occur are natural join points of the 

sub-intervals.    With this type of model it is clear that both experi- 

ence and a knowledge of the known response waveforms for various 

objects ( a catalog of known response waveforms)  is an indispensable 

aid in making a judicious choice of the model for a given target. 

It is not intended to imply in the compactly written analytical 

model in Eq.   (27) that the same number of exponential terms neces- 

sarily be used in each sub-interval.    The number of terms required 

in each sub-interval will depend on the complexity of the waveform, 

primarily at the end points of the interval    It is intended that the 

character of the response at the joins of the sub-intervals be deter- 

mined from various approximate or asymptotic theories and the ge- 

ometry of the shape.    In this regard it is evident that the analytical 

model in Eq.   (27)  cannot»  in its present form, faithfully reconstruct 

singularities such as those corresponding to double diffraction (Fig. 

5a).    However,  such cusp type singularities are usually predicted by 

an asymptotic theory and are associated with abrupt discontinuities in 
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the curvature of an object.    Such discontinuities are mathematical 

idealizations for real targets which exhibit less perfect curvature 

transitions.    It is contended that a practical interpretation of the 

singularities resulting from such discontinuities is a bounded vari- 

ation of the response waveform.    Therefore an approximation to the 

singularity can be obtained with the analytical model proposed in 

Eq.   (27). 

Neglecting the delta function singularities, this analytical 

model of the impulse response waveform is a superposition of bound- 

ed,  time-limited waveforms with various delays plus a final expo- 

nential decay.    In the  s  domain,  the model corresponds to a combi- 

nation of entire functions[ 25], i. e. ,  functions which have no singu- 

larities in the finite portion of the plane; and rational functions. 

Such a function,  i. e. ,  one made up of entire and rational functions, 

is known as meromorphic in the unextended plane.    The analytical 

model for the phasor response is 

M 

(29) G(s)   «2     Ame'trn8 

m=l 

K    N 
+ y V   ^^.[^b^-s)^!   .e(bnk-s)Tk] 

.   'nk 
k=l n=l 

. 
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The analytical time domain model in Eq.   ( 27)  and the corre- 

sponding phasor response in Eq.   ( 29)  have not been based on an 

assumed physical model for the distributed constant system but rather 

on the known impulse response waveforms of certain representative 

scatterers.     It is clearly not imperative that the analytical model be 

linked to a particular physical model; but such a correlation is advan- 

tageous as a partial justification of the model.    Franks[26]   has chown 

that the finite impulse sequence 

M 

(30) f(t)  -2  Am^t-W 
m=l 

given as the first part of Eq.   ( 27)   corresponds to the impulse re- 

sponse of a network consisting of delay lines lumped loaded with re- 

sistors.    He has also shown that the impulse response of delay lines 

with general lump loading can have the bounded,  time-limited 

behavior corresponding to entire functions in the   s  domain.     Franks 

suggested a segmental impulse response involving an exponential sum 

approximation in each interval similar to the second part of Eq. ( 27) 

for such a network.    In his case however,  it was stipulated that the 

real part of the b^ be less than zero.    However,  the purpose of 

Frank's approximation was for the realization of a segmental impulse 

response which consisted of segments of time functions having rational 

Laplace transforms between critical break points corresponding to 
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lengths of delay line.    If one replaces the delay line with finite lengths 

of uniform transmission line,  then the segments of time functions will 

no longer have rational transforms.    Th    general representation in 

Eq.   ( 26)  for time functions with rational transforms is no longer ade- 

quate and a less restrictive representation is required.    A possible 

interpretation of the physical model corresponding to the approximate 

analytical representation in Eq.   ( 27)  consists of a finite length of 

uniform transmission line lump loaded at various intervals.    As a 

practical physical model to approximate the scattering of an electro- 

magnetic field by a finite three dimensional object,  such a represen- 

tation does not seem unreasonable. 

Some final comments on the analytical model in Eq.   (27) are 

necessary.    The impulse response waveform F^ t') must be real, 

therefore a necessary relationship between the coefficients in the 

exponential sums exists.    If the bnk are complex,  they must exist 

as conjugate pairs and the corresponding Bnk are ^ :ial in magnitude. 

If these Bnk have the same sign they are real,  *d they have the op- 

posite sign they are imaginary.    If the b^ are purely real then the 

B k are also purely real.    In some cases it may prove advantageous 

in terms of determining the b^ and B,^ in a particular interval to 

write the exponential in a shifted form 
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(31) Bnke
bnk(t'-Tk) 

in order to isolate B^ when t' equals T^. 

At best,  the preceeding discussion has perhaps achieved a rea- 

sonable rationalization for the use of the analyiical model.    A rigorous 

demonstration that the analytical model has the physical interpretation 

suggested has not been given,  nor has it been demonstrated that these 

models are necessarily a valid approximate represent,   .on of an 

actual scattering problem.    At this point in the development of impulse 

response methods in scattering problems,  however,   it is felt that such 

rigorous demonstrations are not necessary.    There is evidence[ 13] 

that the analytical model in £q.   ( 27)  yields adequate representations 

of the response waveforms for certain objects.    That is,  the published 

estimates of the response waveforms for particular targets[ 13] , 

which have been verified by comparisons of the corresponding phasor 

responses with measured or calculated data, were achieved with the 

implicit assumption of the analytical model suggested here.    Thus 

while a more rigorous basis for the analytical model is desirable, 

it is not a prerequisite for further applications of the impulse re- 

sponse approach. 
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C.    Analytical and Experimental 
Approximations of Impulse 
and Transient Response 
Waveforms 

The purpose of this Section is to discuss in a general manner 

the development of approximate impulse and transient response wave- 

forms.    To place the discussion in proper perspective»  it is perhaps 

advisable to begin with some comments regarding electromagnetic 

scattering studies.    If the ultimate goal of such research is an 

"understanding" of the scattering by various objects, then the most 

direct route to this "understanding" lies via the development of the 

time domain approach rather than the development of theoretical 

solutions per-se.    The point is that the ultimate refinement of a 

given theoretical solution lends little insight to the general problem. 

Using the time domain approach, it is possible to secure estimates 

of the response of a variety of object   shapes in a limited amount of 

time.    A most important consideration is the applicability of experi- 

mental data.    Despite the vast literature on electromagnetic scatter- 

ing[ 1] ,  one is hard pressed to find examples where experimental 

data have been used in a direct way to help construct a theoretical 

estimate.    The handbook approach,  followed almost without exception, 

has been to devise an estimate of the phasor response based purely on 

theoretical considerations and then compare calculations from this 

model with experimental data.    Our criticism is not of experimental 
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data,  but rather of the fact that such data have been generated haphaz- 

ardly without any useful integration of the results.    With the ever in- 

creasing complexity and number of objects of practical interest,  the 

utilization of experimental data must be extended beyond simply a 

confirmation of theoretical estimates or the compilation of patterns on 

a specific shape. 

The time domain approach appears to offer the first practical 

way in which to build one's knowledge and understanding of scattering 

by the systematic improvement of a basic model.    Thus,  experimental 

measurements as well as computer derived solutions[ 27]   can be used 

in a direct way to refine the theoretical model discussed in the previous 

section.    It is to this systematic procedure that the discussion in this 

section is directed. 

It is postulated that the fundamental building block in the develop- 

ment of a general approach for obtaining the response waveforms of an 

object is the ramp response waveform Fj^t').     There are several 

reasons which make an initial estimate of the ramp response wave- 

form a logical starting point.    It was pointed out in the previous section 

that one could estimate the ramp response waveform using fewer pa- 

rameters than would be required for estimates of the corresponding 

step or impulse response waveforms.    If the estimated ramp response 

waveform has a finite integral over all t' then the first two moment 
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conditions are automatically satisfied.    Forcing this finite integral to 

be proportional to the Rayleigh coefficient ( Eq.   ( 15)) then satisfies 

the first three moment conditions.    Finally, it has been shownf 13] 

that whereas many values of the phasor response are required to 

synthesize an estimate of the impulse response waveform,  as few as 

five values of the phasor response can be used to generate an estimate 

of the ramp response waveform.    The required input data are low fre- 

quency harmonics with the fundamental wavelength approximately 10 

times the maximum linear dimension of the object.    Note that the neces- 

sary phasor response data could be obtained from experimental measure- 

ments as well as theoretical calculations; consequently, an experimental- 

ly derived first estimate of the ramp response waveform is also feasi- 

ble[ 13] .     Regardless of the method used to generate this first estimate, 

the corresponding estimate of the phasor response will be a low-fre- 

quency,  i. e. ,  Rayleigh and low resonance region approximation. 

In most previous applications of the time response concepts, 

direct estimates of the impulse response waveform have been attempted 

employing segmental exponential sum approximations similar to Eq. 

(27).    In specific cases,  sinusoids or polynomials in t' have been 

used in place of an exponential sum in some sub-intervals.    In general, 

the physical optics approximation is used to predict the short time 

behavior of the response waveform.    Later portions of the waveform 
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are selected either from a knowledge of the character of the response 

corresponding to specific geometrical features of the object or simply 

from a rough guess as to its probable form.    These various pieces of 

the waveform are then joined with sufficient undetermined parameters 

to permit the known moment equations to be satisfied.    Exactly this 

type of approach is used in Chapter II to obtain an estimate of the 

impulse response waveform of a prolate spheroid target; the extension 

being to a general orientation of the spheroid and an arbitrary linear 

polarization of the incident plane wave. 

The approach outlined above for obtaining estimates of the 

impulse response waveform of an object is clearly inadequate.    The 

fact that such a procedure has led to significant contributions to 

electromagnetic scattering theory is probably the strongest possible 

recommendation for further study in the time domain.    The most 

obvious difficulty with the method above is that a successful estimate 

of the impulse response waveform is almost wholly dependent on the 

ingenuity of the analysist in deducing the character of the response 

waveform for other than short times.    The moment conditions can 

also lead to problems in that enforcing the moments results in a 

system of simultaneous nonlinear equations.     Even a very simple 

model for the response waveform can lead to an extremely difficult 

system of equations.     Thus in many cases it is necessary to devise 
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a model such that a soluble system of equations is obtained,  and this 

usually requires some sacrifice in the desired character of the wave- 

form.     The approach also lacks the property of finality in that if an 

additional exponential term is added in any one sub-interval,   then all 

of the coefficients must be redetermined.    The final criticism is that 

there is no established procedure for selecting the distribution of pa- 

rameters in the various sub-inte/vals which are to be determined 

from known conditions or the -''aveform.    It seems apparent that a 

need exists for studies on techniques for securing estimates of the 

response waveforms of distributed constant systems.     It is not in- 

tended to pursue such an investigation in this research beyond the 

point of indicating sume possible lines of attack.     The reader should 

note that one feature of the segmental impulse response waveform 

will probably be retained,  ultimately,  in any derived estimate of the 

response waveform of a given object.     The singularities,  disconti- 

nuities,   and peaks in the impulse response waveform are directly 

associated with the arrival of reflected and diffracted fronts from 

specific geometrical and physical features of the object.     Since the 

arrival time of these fronts can usually be accurately predicted, 

procedures for estimating the response waveforms of the object 

must,   at one point,   3uccessfully exploit this knowledge. 
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In considering alternative methods for estimating the response 

waveforms,  one is naturally led to a consideration of the techniques 

developed for time domain synthesis and time domain identification 

in network and control system studies.    The literature, as was noted 

in the case of linear system analysis via transform methods»  is pre- 

dominantly devoted to a consideration of lumped constant idealizations. 

Horowitz[ 28]   has discussed a number of these techniques.    Two main 

points are noted; emphasis is on expansion of the impulse response 

waveform in a finite series of orthogonal functions»  and an error 

criterion»  usually the integral square-error or the weighted integral 

square-error is used to judge the accuracy of the approximation. 

Both time domain synthesis and time domain identification are con- 

cerned with the following problem.    How does one find a frequency- 

dependent response Ha( s) whose inverse transform approximates a 

given time function f(t) ?   As previously stated» Ha( s) is usually 

assumed to be a rational function of s.    Clearly» the problem at hand 

is somewhat different.    Simply stated it is; how does one find a time- 

dependent impulse response waveform whose transform approximates 

the phasor response of a system over the range of practical frequen- 

cies»  given certain conditions on the waveform and estimates of its 

value at particular times?   There are common areas of the problems» 
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however, which enable one to consider application of some of the 

techniques described in the literature. 

It was concluded previously that the initial estimate of the 

time-dependent waveform should be made on the ramp response 

waveform of the target.    From a mathematical viewpoint it would 

seem that the ramp response waveform should be expanded in a 

set of functions,  complete and orthogonal on the range 0 to «o . 

The reason for this is that if it is assumed that the ramp response 

waveform Folt')  is square integrable 

CO 

2 
(32) \   |FR(t') |   df  <   « 

0 

and is expanded in an orthogonal series which is complete 

(33) Fp(t') zjj   An^t') 

n=0 

then 

N 

(34) lim    C   iF^t')-/    An<Mt')   I'df-O 
^"0 n=o 

Also,  if Fj^t')  is continuous then 

N 

(35) lim     )   An(|)n(t')   = FR( f) 

n=0 
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In a great many cases it is reasonable to expect FR( t')  to be continu- 

ous,   since a jump discontinuity in Fj^(t') would mean a doublet in the 

impulse response waveform.     The coefficients in such an expansion 

have the property of finality,  an obvious advantage.     The problem of 

course is in obtaining the coefficients An in the expansion.    Formally» 

if the <)>n are assumed to be an orthonormal set then 

(36) An= JFR(t') 4>n(t')dt 

Note that one could therefore express estimates of the ramp response 

waveform obtained by any method in the form of Eq. ( 33). 

Kautz[ 29]   has described the conversion of polynomial sets 

which are orthogonal over a finite interval into exponential sets or- 

thogonal over the semi-infinite interval 0 < x <   «o.    An advantage of 

this technique is that whereas simply transforming sets orthogonal 

over a finite interval into sets orthogonal over the semi-infinite inter- 

val leads to poles in the s plane equally spaced along the negative real 

axis,      the exponential set permits an arbitrary location of the poles. 

Assuming a set 4>n,  orthonormal over the semi-infinite interval Kautz 

forms 

*    An exception is the Laguerre polynomials,  orthogonal over the 
semi-infinite interval with weight e     at , which lead to a simple 
multiple order pole at s = -a[ 29] . 
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(37) «Mt«)  =  ReCn  e"81*' 

(Mt1)  =   ReCz! e"8^' 

(Mt')  =  ReC3l  e'8lV + ReCjz e"8^' 

^(f)   =  ReC«  e"81*' + ReC52 e"82*' + ReCi3 e"8»*' 

etc. , 

where the s^ = »k + Jßk are arbitrary.     From the orthonormal con- 

dition on the 4)n it is shown that the coefficients C   «  can be determined 

and relatively simple computational techniques are given involving 

partial fraction expansions of the Laplace transform of the <t>n.    From 

Eq.   ( 36) ,  taking as an example the third coefficient 

00 

(38) A,   = Re JCa!  e"81*' Fj^ndf + ReJ CJZ e"8^' FR( t')  df 

But from Eq.   ( 5) , 

00 

(39) 
f     -st' 1   G<8) ^   e   st   Fj^ndf =  -  — 

c     s' 

Thus Eq.   ( 38)  becomes 

(40) 
C31    0(8!) C,2   G(s2) 

A3  = Re     —;— + Re 
c sj s, 

or in general[ 29] 1  An is replaced by the sum 
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n 

(41) A» « >    Re l Cyi   G(»i) 

C 8* 8i 

Now if all the poles are chosen to liu equally spaced along the 

jui axis ( s^ ■ jßk)    then this configuration corresponds to a Fourier 

series in the time domain, and each orthonormal function of the set 

consists of a «ingle sine or cosine term.    Note that G( jß^)  is the 

phasor response of the scatterer at the angular frequency p^, a 

measurable quantity.    For the special pole configuration leading to 

a Fourier series, the result is simply an alternative Fourier synthe- 

sis procedure.    However, the pole locations (s^) are arbitrary and 

one could choose unequally spaced imaginary poles or any desired 

combination of real and complex poles.    For example,  the above 

procedure could be used when calculated or measured values of the 

phasor response were available at nonharmonically related frequen- 

cies.       When only imaginary poles are utilized Kautz[ 29]   (for 

equally spaced poles)   suggests a predistortion of the response wave- 

form 

(42) FR(t')   =e+at, FR(t') 

*    A procedure for this situation was also suggested in Reference 30. 



m  iiwiii ilM—WW 

53 

-at1 

That is, the ramp response waveform is divided by e '      before ex- 

pansion and then multiplied by e        afterwards.    This hab the effect 

of multiplying the error bound as a function of time by e'      [ 29]. 

Thus far it is clear that an analytical estimate of the ramp response 

waveform can be put in the form of an orthonormal expansion and that 

an initial orthonormal expansion estimate of the ramp response wave- 

form can be obtained from calculated or measured data on the phasor 

response.    It is also known[ 13]   that such data should be predominant- 

ly low-frequency. 

An attractive feature of an orthonormal expansion is that it 

automatically minimizes the rms error[ 29] .    That is,  if F^t') is 

the actual ramp response waveform and F^^Ct') an orthonormal 

approximation such as Eq.  ( 33)  then 

00 

(43) 62= \[rR(t')  - FRA(f)]2dt' 

becomes 

oo N 

(44) €2 = ^  F2
R(t')dt'  -^   A2

n 

0 n=0 

From Parseval's theorem[ 20] ,  Eq.  ( 43) interpreted in the S domain 

is 

100 

2 1        f      I   G( 8)    - 
(45) *l = — \        r 

JWC* J       | s2 

-GA(s) 2 
ds 
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where G( ■) corresponds to FR( t') and GA( s) to FRA( t') 

( 45) may also be written as 

00     / 

1 
2 

ire2 

0 

where 

A(ju))  =Ar(jW) +jAi(jw)  =G(jw)   -GA(ja)) 

(46) 

00    ( 

dw 

Equation 

Regardless of how the approximation of the ramp response is obtained« 

an estimate of the rms error can be obtained from phasor response 

data.    How good an estimate of the rms error one can obtain clearly 

depends on the extent and nature of the phasor response data.    In any 

practical situation,  at most a band limited knowledge of the phasor 

response may be known and Eq.   ( 46)  becomes 

(47) I 
0 

rAr( jw)i 2 

+ 
r &{{ jw) i 

2\ 

j 

I <*     J L  <-'    I 
.   dw 

where u)£ is the cut-off frequency of the band-limited phasor response. 

Note that if in the range 0 S. w < wf. the maximum value of A( jw) /w2 

occurs at CJ- then 

(48) 

"P 

€2   < 
ITC2 4 

Wf 

■■"  ■ 
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Both Fj^t1)  and Fpy^it')  must be causal time functions» therefore 

Eq.   ( 47)  may be written as[ 20] 

«f 

(49) ^ 2   #v 
2 

ire1 [m'-if[^ dw 

and in the notation of Eq.   ( 48) • 

(50) ^W-.-MT^ 
In a great many practical cases,  only data on the radar cross section 

are available.    One possible method for securing an error estimate» 

not of the waveforms themselves but of the waveforms convolved with 

themselves,  can be given. 

It can be shown that if a ramp response waveform is convolved 

with itself,  i. e. , the autocorrelation of the ramp waveform»  the re- 

sultant waveform is given by 

(51) 
1 ^ -i G(jw) 

U)« I ire 
ff(jw) 
W 

♦    Equation ( 49)  actually only holds for Wf ■ «,  but for the present 
case, i. e. , G( s)/s2,  it is felt to be a reasonable approximation 
for finite wf. 

 _ 
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Thus forming the error measure 

00 

<52) <0-JtFRR(f)  -FRpA(t')]2dt' 
0 

and 

(53) 

Wf 

^ j_ r r<r( ju>) - o-A( jo>) ] 

' ™ i [    w*      J 
dw 

Data on the phasor response or radar cross section are usually given 

as a function of an electrical length,  say ki .    The equivalent expres- 

sion for Eq.   ( 53) is 

2(ki) 

(54) 

o L 

<r(2ki)   - (rA(2ki) 

(2ki)4 

d(ki) 

where t0 « 2i/c  is set equal to unity.    Note that the error estimates 

given above are applicable to any approximation of the ramp response 

waveform.     They are not confined to orthogonal expansions of the re- 

sponse.    Also,   similar expressions involving the step and impulse re- 

sponse waveforms of the target can be obtained with the restriction 

that these waveforms be real,  causal,  and square integrable.    It is 

possible therefore to obtain an estimate of the rms error for a given 

approximation and deduce from this when further modifications of the 

model are not justified.    Such a gauge is important in that there are 

■    — 
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really three approximation problems to be solved, sequentially the 

ramp, step and impulse response waveforms of the object, and one 

must economize the treatment of the preliminary steps. 

Simply stated, the suggested approach to the approximation 

problem is as follows:   From a combination of theoretical estimates 

and experimental data, a basic model of the ramp response waveform 

is obtained.    This is a low-frequency model and the number of pa- 

rameters involved should be minimized consistent with obtaining an 

rms error of possibly 5 to 10 percent.    The model is then interpreted 

as a step response waveform ( differentiation), additional parameters 

added and an rms error of again 5 to 10 percent achieved.    Note at 

this point that two simultaneous conditions must be satisfied by the 

added parameters.    A specified minimum error in the step waveform 

is sought but at the same time the ramp response error must be 

maintained.    Proceeding to the impulse response waveform, addition- 

al parameters are once again included.    At this point it is desired to 

build into the model all available information.     That is,  approximate 

or asymptotic high frequency estimates of the reflected and diffracted 

fields,  natural points of discontinuity or rapid change of the response 

corresponding to geometrical or physical features of the object, high 

frequency experimental data,  etc.    There are now three conditions to 

satisfy,  the ramp,   step and impulse response error. 

■       ■■■ ■ 
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Realistically,  it must be recognized that how meaningful these 

errors are depends upon the extent of the phasor response data avail- 

able.    A band-limited estimate of the area beneath the real and im- 

aginary parts of the phasor response as a function of frequency clearly 

requires much more data than to estimate the area beneath these 

same curves divided by the frequency squared.    The point is that a 

reasonable estimate of the integral in Eq.   ( 49)  might be obtained 

from a few properly distributed values of Ar( jw)   or £*( jw),  but the 

corresponding integrals for the step and impulse error would require 

an increasing density of known values.    The upper bound on the error 

given in Eq.   ( 50)  is somewhat conservative.    Lacking sufficient data 

to estimate Eq.   ( 49) directly, a more reasonable estimate than Eq. 

( 50)  would be to assume the average Ar( ju))/w2 or £}( ju))/b)2 to be 

independent of frequency.    That is,  given Q values of Ar( jw)/w2f  let 

(55) 

Q 

■kl 
Ar<Jwn) 

n=l      "n 

then 

(56) (2    2t 
2 A2 wf 

•frC 

Since the ramp waveform is a low frequency estimate,  a weighted 

sum 

(57) w 
-(a)f -a)nK     Ar* jgn) 

) 
(A)! 

n=l 
n 

 _ 
" ■    — — 
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might also be used.    The choice depends upon both the cut-off frequen- 

cy ojj and the distribution of the data within this bandwidth. 

If one is to use an orthonormal expansion to estimate the re- 

sponse waveform, the major problem is to select the proper set of 

orthogonal functions.    Strictly speaking, this involves the pole lo- 

cations of the orthonormal expansion and hence the natural resonances 

of the transient.    That is,  the optimum location of the poles is at the 

natural resonances of the scattering object.    The flexibility of the 

orthogonal exponentials of Kautz[ 29] , described earlier, have an 

advantage in this regard pince the pole locations may be arbitrarily 

specified.    However, unless all the specified poles have negative, 

non-zero real parts,  the orthogonal functions do not have the neces- 

sary decaying behavior with large time and a predistortion would be 

required.    The set of orthonormal Laguerre polynomials have a 

decaying behavior for large time,  but correspond to a single multiple 

order real poIe[ 29] .    It can be shown that if a given time function is 

expanded in a set of orthonormal Laguerre polynomials, the coef- 

ficients in the expansion are a linear combination of the coefficients 

of a power series expansion of the corresponding frequency domain 

function about the real pole.    Thus such an expansion eliminates the 

possibility of directly determining the expansion coefficients in terms 

of measured phasor response data.    It is not possible,  at this point. 
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to recommend one particular set of orthogonal functions for expansion 

of the response waveforms.    There are numerous possibilities[ 29], 

and perhaps the most expedient procedure would be to compare ex- 

pansions for several known ramp response waveforms[ 13] .    Note 

that the objective is not a selected set for each individual scatterer 

but rather one particular set which has a reasonable applicability to 

numerous objects.    Assuming that a particular orthonormal set has 

been selected, logical procedures for estimating the ramp response 

waveforms of an object can be postulated. 

An initial estimate of the ramp response waveform can be se- 

cured in several ways: the Fourier synthesis procedure using experi- 

mental data and an analytical approach combining the physical optics 

approximation and the second moment condition as mentioned previ- 

ously.    It is not expedient to adopt the latter approach, precisely 

because of the necessity for selecting a specific functional form for 

the model.    There is no reason,  however, why one cannot simply 

sketch a curve for the ramp waveform utilizing exactly the same 

information,  i. e. , physical optics, the geometry of the object, and 

the second moment.    Such a possibility has been suggested previ- 

ously[ 13] .    Envisoned is some type of analog interplay with a digital 

computer whereby one could very rapidly, by trial and error,  secure 

a ramp waveform similar to that predicted by physical optics over 
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most of the illuminated region of the target* which had the proper net 

area, and which agreed with experimental data.    It must be stressed 

that the anticipated estimate of the ramp waveform is a simple,  con- 

tinuous curve with at most possibly three significant zero crossings. 

Thus either from a Fourier synthesis of experimental data or the 

above described sketched estimate» a first model for the ramp re- 

sponse waveform is secured.    The model is simply a curve in graphi- 

cal form, and is not described analytically.    This model can now be 

approximated by an orthonormal expansion, the integrations in Eq. 

( 36)  being approximated using digital computer techniques.    The 

fact that a time-limited model for the ramp response waveform is 

used makes this approach feasible.    One also sees the advantage of 

using one orthonormal set for at least a class of objects; the ortho- 

normal functions need only to be calculated once,  over an initial time 

range,  at suitable increments. 

The second moment condition introduces a constraint on the 

coefficients. Let $n( s) be the Laplace transform of <t>n( t) , from 

Eqs.   ( 15)  and (36) 

*    A complicated ( in terms of geometrical or physical properties) 
target may have a ramp waveform with more than three significant 
zero crossings,  but a first estimate of this waveform would proba- 
bly not recognize this fact. 

mm 
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N 

(58) J   An*n(0)  =   "Kt0 

(2n)2c 
n=0 

Other constraints may also be introduced» for example 

N 

(59) CiSi) s   cS'^   A^^Si) 

n^O 

relating calculated or measured data at a specific frequency to the 

expansion coefficients,  or 

N 

(60) F^(t:)=^    An<t>^(t:) «1-0.1,2..-. 

n=0 

whereby the ramp response or its derivatives is constrained to a 

specific value at a fixed time.    It is not clear at this point which 

constraints should be utilized, aside from that in Eq.  ( 58) ,  or at 

what point in the developmtnt they should be introduced.    Note that 

the type of constraint in Eq.   ( 60) is an obvious way to introduce 

into the model both a knowledge of the arrival time of diffracted 

fronts and asymptotic estimates of their value.    When constraints 

on the orthonormal expansion are introduced,  minimization of the 

rms error in Eq.   ( 43)   requires the use of a Lagrange multiplier. 

A generalized method for the case of several constraints of the 

form of Eq.   ( 60) ,  yielding the Lagrange multipliers and the new 

expansion coefficients has been given[ 29] . 
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A systematic procedure for progressing beyond the ramp re- 

sponse waveform, i. e. , to the step and impulse response, is mor« 

difficult to formulate.    The first estimate of the step response (adding 

M terms to the ramp model) 

N+M 

(61) FuCf)  -Jj   An*^') 
n=0 

has M undetermined coefficients.    The constraint in Eq.   ( 58) must 

now be imposed on the N+M coefficients.    It need not have been im- 

posed explicitly on the N coefficients of the initial ramp waveform 

since the sketched or synthesized ramp response satisfied the second 

moment.    The form of solution with the constraint requires that the 

M added coefficients be calculated without the constraint and then a 

new set of N+M coefficients be computed.    Therefore M adjustments 

on the step response waveform can be made.    That is,  the corrected 

step waveform is 

N+M 

(62) Fuff)  »2   An^f) 
n=0 

where 

An=An+X*n(0) 

and 
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N+M 

-^   A  *fl( 0) 
n=0 

N+M 

I 
n=0 

•'„(0) 

The problem is in calculating the M new coefficients without the con- 

straint.    It is these coefficients which are to add the necessary ad- 

ditional detail to the step waveform.     Given sufficient phasor response 

data to estimate the rms error in the step response waveform in Eq. 

( 61) ,  the new parameters could be adjusted to reduce this error. 

Lacking such data,  two alternatives are seen.    The first is to in- 

corporate certain theoretical estimates of the step response detail 

into a revised sketch of the waveform and then proceed as with the 

ramp model to calculate the coefficients.    New coefficients would 

then be computed as in Eq.   ( 62).     The second alternative is to in- 

corporate additional constraints of the form in Eq.   ( 60) ,  calculate 

the additional unconstrained coefficients from the ramp model,  and 

then solve for the new coefficients subject to the constraints.    When 

more than one constraint is introduced,  a system of linear equations 

must be solved to determine the Lagrangian multipliers.     Essentially 

the same problems and alternatives exist in going to the impulse re- 

sponse waveform.    In this case one should not attempt to incorporate 



65 

into the model delta function or higher order singularities in the wave- 

form,  since these can be added independently. 

An attempt has been made,  in the preceding pages, to outline 

a systematic general procedure for estimating the canonical response 

waveforms in a transient electromagnetic scattering problem.    The 

effective integration of analytical and experimental data into a single 

model is stressed,  along with an orderly, predictable method for 

determining the parameters of the model.    The use of orthonormal 

expansions of the response waveform estimates has been suggested, 

and certain advantages of such an approach discussed.    The feasibility 

of the approach has not been demonstrated, and hinges primarily on 

the availability of a set of functions,  orthogonal and complete on the 

semi-infinite interval ( 0, <*>) , which will permit a reasonable estimate 

of the ramp waveform with just a few terms.    Two sets, orthogonal 

exponentials and La guerre polynomials,  satisfying the orthogonality 

and completeness criteria have been suggested,  but their applica- 

bility has not been shown.    No claim is made that the suggested attack 

on the problem represents an optimum procedure, and it is evident 

that future research should investigate not only orthonormal expan- 

sions but other possible approaches. 

Ml 
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One rather important conclusion can be drawn from the discus- 

sion in this section.    For any given combination of theoretical esti- 

mates and experimental data»  the best hope for achieving a waveform 

estimate which closely approximates the true object response lies with 

the ramp response waveform.    Corresponding estimates of the step 

and impulse response waveforms will be less exact,  if derived from 

limited theoretical and experimental data. 

■ 



CHAPTER  II 
THE ELECTROMAGNETIC  BACKSCATTERING 

BY A  PERFECTLY CONDUCTING 
PROLATE SPHEROID 

The investigation of scalar and vector boundary value problems 

in general ellipsoidal coordinates»  and more particularly in the de- 

generate cases of prolate and oblate spheroidal coordinate systems, 

has been a favorite of the mathematical analysist for almost nine 

decades.    Flammer[ 32]   in his "Spheroidal Wave Functions" gives 

an excellent historical survey of the main contributions to the develop- 

ment of the spheroidal wave functions and the applications of these 

functions to various boundary value problems.    More recently* 

Sleator[ 33]   has reviewed the analytical and experimental contributions 

to the acoustical and electromagnetic scattering by prolate and oblate 

spheroids.    It is vividly evident in this latter work that despite the 

long history of interest in the subject,  very few numerical results 

have been obtained for the vector problems.    The reasons for this are 

discussed by both Flammer and Sleator,  and are briefly reviewed 

below.    The point,  however,  is that a good approximate general solu- 

tion to the plane wave scattering by spheroids has not been obtained 

67 
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even in a formal sense.     Those approximate solutions which are 

amenable to computation,   even with modern high speed digital com- 

putersi  are limited either to a particular range of the spectrum or 

to specific orientations of the spheroid. 

Recently,   solutions for the scattering from conducting spheroids 

have been reported by Andreasen[ 34] ,  Oshiro[ 3 5] ,  and by 

Waterman[ 36].    These results,  while differing somewhat in specifics, 

are essentially all applications of the "point matching" approach to 

electromagnetic scattering problems.    As such,  there is a practical 

limitation imposed by the size of present electronic computers and the 

costs involved on the maximum spheroid size which can be handled 

successfully.    Estimates of the maximum size which can be handled 

vary,   and much depends upon what one considers reasonable in terms 

of computer running time.     For example, Waterman[ 36]   reports a 

running time of two hours on an IBM 7030 computer to compute the 

scattering pattern of a 2:1 prolate spheroid with a minor circumference 

of 10 wavelengths.    In any event,   such solutions must be supplemented 

by approximate? high frequency methods to cover the entire spectrum. 

A most useful application of these "point matching" solutions for 

spheroid targe's would be the computation of sufficient phasor response 

data at harmonically related low frequencies to generate the ramp re- 

sponse waveform for specific orientations via Fourier synthesis. 
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In this Chapter, an approximate general solution for the electro- 

magnetic backscattering by a perfectly conducting prolate spheroid is 

derived using time domain concepts.     The formulas obtained hold for 

arbitrary orientation and axial ratio of the spheroid and for arbitrary 

linear polarization of the incident plane electromagnetic wave.     These 

results have the extremely attractive feature that calculations using 

the derived formulas are quite simple, involving nothing more compli- 

cated than exponential functions. 

The major difficulty in obtaining a rigorous solution of the plane 

wave scattering by spheroids is that the vector wave equation is not 

separable in either oblate spheroidal or prolate spheroidal coordi- 

nates[32].    Specifically, what goes wrong for the prolate spheroid can 

be seen from a consideration of the simplest case, that of a plane 

electromagnetic wave incident along the major axis of a perfectly con- 

ducting prolate spheroid.    This is the problem which was considered 

by Schultz[ 37] .    As shown by Schultz[ 37] , the incident field can be 

expanded in an infinite series of vector spheroidal wave functions. 

An expansion for the scattered field as the sum of two infinite series 

of vector spheroidal wave functions can also be devised, and such an 

expansion properly is a solution of the vector Helmholtz equation, 

has zero divergence,  and satisfies the radiation condition at infinity. 

However,  in attempting to satisfy the boundary conditions at the 
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spheroid surface it is found that the field cannot be resolved into com- 

ponents such that individual terms in the series can satisfy the bounda- 

ry conditions.    This difficulty arises for two reasons: ( 1)  the angle 

functions have different indices in the expansion of the incident and 

scattered fields,  and ( Z)  the scale factors involved in the definition 

of the vector spheroidal functions appear explicitly in the expansions. 

In the classical solution of the sphere, the angular dependence is the 

same term by term in the expansions of the incident and scattered 

fields.    Therefore one can utilize the orthogonality of the angular 

functions to obtain equations relating the coefficients of the expansions 

of the incident and scattered fields.    For the spheroid,  this cannot be 

done,  i. e. , the known and unknown coefficients cannot be related for 

a finite number of summation indices.    It is at this point that the rigor 

of Schultz1 s solution is lost since an infinite system of equations for 

the infinite set of coefficients must be truncated to obtain a solution 

for the expansion coefficients of the scattered field. 

Although,  as related by Sleator[ 33] ,   certain advances have 

been made in the approximate or asymptotic theories for high and low 

frequencies, the returns from the numerous studies of the problem 

have been woefully meager.     The situation is summarized (prior to 

the "point matching" results)  by Sleator[ 33]   as follows: 
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"Since the work of Schultz[ 37]   and the computations based 

on this by Siegel, et al. [ 38] , virtually no progress has 

been made in the solution of the vector problem in the reso- 

nance region    All existing techniques either break down 

completely or become prohibitively difficult or tedious in 

this region, and the need for a totally new approach becomes 

more and more apparent. " 

It is to this new approach that the work in this Chapter is directed. 

The new approach is an application of the time domain concepts dis- 

cussed in Chapter I.    The application of these concepts is in its 

infancy,  i. e. .  a new approach to electromagnetic scattering problems 

is being developed, and the approach is via a "model" rather than a 

sophisticated extension and application of a well-known technique. 

Consequently the treatment will be mathematically simple and the 

philosophy of an engineering approximation liberally applied.    The 

goal of this study is the development of a general model for the 

electromagnetic backscattering by a perfectly conducting prolate 

spheroid for arbitrary orientation and axial ratio and arbitrary linear 

polarization of the incident field.    What is sought is an estimate of the 

response waveform of the target capable of yielding a reasonable 

approximation of the scattered field for a variety of orientations. 
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polarizations,  and frequencies.    A precise determination of the model 

for one fixed combination of these parameters is not intended. 

The first section of this Chapter briefly reproduces a solution 

for the axial impulse response waveform of the spheroid published by 

Moffatt and Kennaugh( II]   in 1965.    The reason for the inclusion of 

this result is two-fold; first,  much of the study for the general case is 

predicated on retaining the essential character of the axial waveform, 

and second, the axial result is intimately related to the response wave- 

form of a sphere,  an understanding of which is essential for later dis- 

cussions of the spheroid waveforms. 

With this background a basic general model for the impulse re- 

sponse waveform of the spheroid is then derived and calculated results 

from this model compared with measured data on a 2:1 axial ratio 

spheroid and calculated data (axial)  for a 10:1  spheroid.    The Chapter 

concludes with a discussion of these results and the applicability of 

the basic model for spheroids with other axial ratios. 

In Appendix II,  that portion of the sphere impulse response 

waveform corresponding to the creeping wave is examined in some 

detail.     This digression to the sphere is used to illustrate the basic 

nature of the creeping wave contribution in the time-domain.     The 

creeping wave contributions predicted by high-frequency asymptotic 
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solutions are analyzed and certain inconsistencies resulting from their 

non-causal nature discussed. 

A.    The Axial Impulse Response 
Waveform 

Consider the perfectly conducting sphere and the related per- 

fectly conducting prolate spheroid with an n to 1 axial ratio shown in 

Fig.   6.    The spheroid has a semiminor axis equal to the sphere radius 

■►Z 

Fig.   6--Sphere and prolate spheroid geometries. 
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which is taken as unity. Let the sphere and spheroid be illuminated 

by a ramp type excitation propagating in the z and z directions re- 

spectively. 

(63) Elf)   = t' niV) 

E(F)   =F uft') 

where t' = t - z/c and t1 = t - z/c 

Now if the axial ratio of the spheroid is unity,   clearly the response 

waveforms will be identical for the sphere and spheroid.    This,   of 

course,  is true for any excitation    As the axial ratio of the spheroid 

is increased (n >   1) differences in the sphere and spheroid response 

waveforms will occur.    The basis for the approximate spheroid re- 

sponse waveform derived in this section is the assumption that the 

ramp response waveform of the spheroid can be obtained by simply a 

change in the time scale of the sphere ramp response waveform. 

Since the step and impulse response waveforms may be obtained by 

successive differentiations of the ramp response waveform, a 

change in time scale for the ramp response waveform results in a 

change in amplitude as well as time scale for the step and impulse 

response waveforms.    To a first approximation at least, the ramp 

response waveform of the spheroid undergoes only a time scale 

change as can be shown in two ways. 
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For the sphere, using Eq.   ( 24)   of Chapter I, the response wave- 

forms predicted by the physical optics approximation are 

(64) FR(f)  =    f-lSÜ  + 1-1   [u(f)   -u(f-t0)] 

FuCf)  =    T- !£+ 11 [u(t')   .u(t'-t0)] 

F^f)  =   - !£  6(f) +   i[u(t')  -u(t'-t0)] 
2 2 

and those for the spheroid are 

(65) FR(T')  =   [- !2!1+ I_] [u(T')   -u(T'-nt0)] 
L      2n        4n2J 

Fu<T)  =    \-¥+4^   It«^')  -ud'-nto)] 
L    ^n     2n    J 

FjCi') =   -—  6(1')  =   -^-[uÜ1)  -u(T-nt0)] 
^n 2nz 

where t0 = 2a/c,  and a  bar has been used to denote the spheroid wave- 

forms.    If,   in the expression for the ramp response waveform of the 

sphere the substitution t! = t'/n is made then the ramp response wave- 

form of the spheroid is obtained.    Obviously successive differentiation 

leads to the correct physical optics step and impulse responses.    Note 

that the same change in time scale in the step or impulse response of 

the sphere does not yield the spheroid physical optics result.    It is 

concluded therefore that insofar as the physical optics approximation 
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is concerned it is the ramp response waveform which undergoes only a 

time scale change. 

A second argument for only a time scale change in the ramp 

waveform is provided by the moment conditions; specifically the second 

moment which relates the area beneath the ramp response waveform 

and the Rayleigh coefficient of the target.     The approximate axial ramp 

response waveform of the spheroid according to this assumption is 

obtained by a linear deformation of the time axis in the illuminated 

region and a nonlinear deformation in the shadowed region.    Corre- 

sponding ordinates on the ramp response waveforms for the sphere 

and spheroid are defined by equal cross sections in a plane perpen- 

dicular to the line of sight.    Corresponding abscissa are defined by 

the shortest ray path to the given cross section following the line of 

sight to the shadow boundary and the scatterer surface beyond. 

Thus setting 

(66) FR(T)   = FR{V)   , 

and differentiating 

(67) F^P)   =Fu(t') J- 

[|] 
d2f 

FT(f)    =FT(t')|—|      +Fu(f)  — 
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(68) 

Out' <jt, 

t' =   ^ 
to+^        2xdx      tolfltoS 

1    J2x - xz 

/ — 
z 

t' = s 

ztn < f ^ nt. 

nt0 + 
n   J 

n 

x2-Znx)( 1-n2)^  n2 

^Znx-x2 
dx        nto^f^S'to. 

(70) 

where 

_1_ 
n 

(69) Ü « 1 
df 

and 

^(z2-2Z)( l-n2)+ 1 

in = < 

( l-z)( 1-n2) ^2z-2z 

\   [(z2-2z)(l-n2)+ I]2 

•J 
2n 

0 < t1 < t. 

t0 < f < t0 + S . 

0 £V £tt 

to < t' < t0 + S   , 

dx 

1    ^x-x2 

• = i (*  >|(x2-2nx)( 1-n2) ■»• nz 
dx 

An example of the spheroid ramp response waveform obtained in this 

way is shown in Fig.   7b for a prolate spheroid with a 2:1 axial ratio. 

The sphere ramp response waveform is shown in Fig.   7a.    A graphical 

integration of the spheroid ramp response waveform shown in Fig.   7b 
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demonstrates that the second moment condition is approximately satis- 

fied.    A comparison of the Rayleigh coefficient obtained by graphical 

integration of the curve in Fig.   7b and that calculated in Appendix I 

shows an error of approximately 3 percent.    Similar comparisons for 

axial ratios of 4, 6, 8, and 10 gave a minimum error of 1 percent (8:1) 

and a maximum error of 5 percent ( 4:1).    No discernable trend of 

error versus axial ratio was observed.    The ramp response waveform 

of the sphere (Fig.   7a)  was obtained from the exact Mie solution using 

the Fourier synthesis procedure.     The synthesis procedure is described 

in Reference 13.    Thus both physical optics and the second moment con- 

dition ( as do the two lower orders)  support the assumption that the 

ramp response waveform of the spheroid is obtained from that of the 

sphere by a change in the time scale alone. 

It is important to emphasize one point in the above results.    The 

Fourier synthesis procedure used to obtain the approximate impulse, 

step and ramp response waveforms of the sphere does not yield ana- 

lytical expressions for these waveforms,  but only their magnitudes at 

selected values of time.     The time increments are arbitrary so that 

the waveforms may be obtained to any accuracy desired (within the 

limitation of a finite pulse width) ,  but only in the sense of a point by 
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point plot.    Consequently the ramp,   step and impulse response wave- 

forms of the spheroid obtained by the above described method are 

also only point by point plots at arbitrary values of time. 

A detailed development of the axial response waveforms of the 

spheroid is given in the 1965 publication by Moffatt and Kennaugh[ 11] . 

Shown in Fig.   8 ( solid curve) is the impulse response waveform of 

a 2:1 axial ratio spheroid as obtained by a nonlinear transformation 

of the time scale for the ramp response waveform of the sphere.  Also 

shown in Fig.   8 (dashed curve)  is an analytical exponential sum 

approximation for the waveform.    The Laplace transform of this 

exponential sum approximation was found to yield a satisfactory fre- 

quency-domain approximation for minor axis circumferences of the 

spheroid in wavelengths greater than 1. 5.    For minor axis circumfer- 

ences in wavelengths less than 1. 5 it was necessary to use convolution 

and an approximate integration of the derived ramp response wave- 

form to obtain frequency domain data.    A comparison of calculated 

and measured echo area for a 2:1 axial ratio spheroid is shown in 

Fig.   9.     Data denoted as target motion are explained in Reference 11. 

It has been shown that an approximate solution for the axial 

backscattering from a prolate spheroid may be obtained through a 

modification of the impulse response waveform of a spherical scatterer. 

Experimental verification of the results predicted was obtained for a 
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prolate spheroid of 2:1 axial ratio.    The method used employs a non- 

linear transformation of the time scale to obtain the ramp function re- 

sponse of the spheroid from that of the sphere.    The method has not 

been applied to extremely large axial ratios and may require further 

corrections in such cases. 

The model has a number of deficiencies which need to be studied 

further.     First,  for times after the impulsive excitation reaches the 

rear of the spheroid it was assumed that the time relations ( Eqs. ( 69) 

and ( 70) ) were the same as the first portion,  corresponding to the 

excitation progressing on around the spheroid.    This assumption,  used 

primarily for lack of an alternative procedure, needs to be placed on a 

sound basis or a different technique devised.    Second,  it can be seen 

from Eqs.   ( 67) ,   ( 69) ,  and ( 70) ,   that the creeping wave peak predicted 

is independent of the spheroid axial ratio and equals,  in all cases,   that 

of the sphere; a questionable result.     Both of these questions are 

related to the nature of the creeping wave on smooth convex surfaces. 

In Appendix II,   some insight to this problem is gained from the time 

domain interpretation of asymptotic estimates of the creeping wave 

on spheres and circular cylinders.    However,   in this study the results 

in Appendix II have not been utilized to improve the axial model.    In 

terms of the basic goal of this Chapter,   that of a general model,  two 
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results of this section are used.    One.  the fact that an exponential 

approximation of the creeping wave consisting of a join of two expo- 

nentials with finite slopes at the time of the creeping wave peak 

yielded reasonable results, and two, the fact that the magnitude of 

this creeping wave peak could,  at least for a 2:1 axial ratio spheroid, 

be assumed to be independent of axial ratio. 

B.    A General Impulse Response 
Waveform Model 

For the general problem,  the prolate spheroid and the associated 

coordinates are shown in Fig.   10.    The spheroid has a semiminor axis 

a and a semimajor axis b.    The incident plane electromagnetic field is 

incident from a direction defined by the spherical angles 6 and $. 

Because of the rotational symmetry of the spheroid,  the direction of 

propagatioii of the incident field can be restricted to lie in the y,z 

plane without loss of generality.      With this restriction,  two principal 

polarizations of the incident field are defined;   T. E. , where the 

incident electric field vector is normal to the y,z plane,  and T. M. , 

where the incident electric field vector lies in the y, z plane. 

Associated with each of the two principal polarizations is a path length 

corresponding to line of sight to the shadow boundary and a geodesic 

on the surface beyond.    Note that these paths are measured from a 
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SHADOW 

T.E. PATH 

T.M. PATH 

Fig.   10--The prolate spheroid and associated coordinates. 

plane perpendicular to the line of sight,  and located at the point where 

such a plane first touches the spheroid. 

In an earlier study of the general prolate spheroid target[ 12] , 

the author derived an approximate spheroid model based on an approxi- 

mation to the ramp response waveform of the target.    The results of 

this initial study are of some interest; both as an example of how a 

very crude approximation in the time domain can yield reasonable 
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results in the frequency domain,  and as a demonstration of the neces- 

sity for a well choosea impulse response model in order to achieve 

fine accuracy in the frequency domain.    A general discussion of the 

derivation of transient and impulse response waveforms for a finite, 

three dimensional target was given in Chapter I; it is reiterated how- 

ever that it is reasonable that the twice integrated function of a real 

variable be easier to approximate with fewer parameters than the 

function itself. 

The above model for the prolate spheroid target was based upon 

an earlier study by Kennaugh[ 39]   demonstrating that the ramp re- 

sponse waveform of a conducting sphere could be approximated quite 

well using very simple functions.     In this approach,  the ramp response 

waveform consists of the physical optics approximation to the shadow 

boundary and an amplitude proportional to the circumference of the 

section cut from the sphere surface by a plane moving along the line 

of sight with half the free space velocity beyond the shadow boundary. 

For those times after the plane moves beyond the sphere,   this latter 

waveform iä extended continuously and multiplied by an exponentially 

damped term whose magnitude is chosen to satisfy the second moment 

condition.     The amplitudes of the above two sections are matched at 

the shadow boundary.    The resulting approximation to the ramp re- 

sponse waveform of a conducting sphere of radius a is 
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(71) FR(f)   =  r.^.+ Ll   [u(t-)  -u(t'-t0)] 

t2 
- 12- co8( t' -t0) [ u( f -t0)  -u( f - ( 1 + w/2) t0) ] 

4 

.£ eNT(t0(lW2)-f)co8(t,.to) u(t,.(1 + n/2)to) 
4 

Several salient features of this waveform should be noted.    The first 

term in Eq.   (71)  is simply the physical optics approximation to the 

ramp response waveform.    It was shown in Chapter I that this is 

simply proportional to the cross-sectional area intercepted by a 

transverse plane moving in the direction of the incident wave at half 

the free space velocity.    The second term corresponds to the cir- 

cumference of this cross-sectional area beyond the shadow.    Note, 

however, that the times corresponding to these amplitudes are meas- 

ured from the shadow along the surface of the sphere.    Thus the cir- 

cumference reaches zero at t' = ( 1 + ir/Z)  t0 rather than 2t0.    As was 

shown by Kennaugh[ 39] .  this waveform is a rather good approximation 

to the ramp response waveform obtained by Fourier synthesis from 

the exact Mie solution and shown in Fig.   7a.    As will be seen,  how- 

ever,  such a waveform leads to certain difficulties where twice 

differentiated to obtain an impulse response waveform. 
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One can derive a similar approximation for the ramp response 

waveform of a prolate spheroid for the general off-axis case.    Note 

that in this case a polarization-sensitive approximation is obtained 

because of the dependence of the second moment condition on the 

Rayleigh coefficient of the target,  which is dependent on both the 

incident polarization and the orientation of the spheroid.       In order 

to secure a closed form expression for the ramp response waveform, 

certain simplifying approximations are made for the spheroid case. 

The first of these involves the point of termination,   in time,  of the 

physical optics approximation.     For the sphere,  the shadow boundary 

is always normal to the direction of propagation of the incident field. 

For the spheroid,  however,  this only occurs  at   axial and broadside 

(6=0 and 90 degrees respectively in Fig.   10).    At other orientations, 

the shadow boundary is not perpendicular to the line of sight.    As a 

crude approximation,  the shadow boundary was ignored and the 

physical optics approximation terminated at the peak transverse 

cross section encountered by the cutting plane.    A second difficulty 

encountered is in the measurement of path lengths on the shadowed 

side of the spheroid.    This is,  for either polarization,  a distance 

*    The Rayleigh dependence of prolate and oblate spheroids for 
arbitrary polarization and orientation and for arbitrary constitutive 
parameters is given in Appendix I. 
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along the perimeter of an ellipse,   i. e. ,  an incomplete elliptic integral. 

The circumlerence of the area cut from the surface by the cutting plane 

is also an ellipse.    Again,  in the interests of a simple closed form 

expression»  the second portion of the waveform was crudely approxi- 

mated by a shifted cosine wave whose period was determined by the 

creeping wave geodesic path,  i. e, ,   T. E.   or T. M. .     The ramp re- 

sponse waveform so obtained is given by 

(72) FR(f)  = [-Af + Bt'2/2]  fu(f)  -u^f - 110) 1 

-^cos[P(f-|t0)][u(f-Ato)   .u(t..T2to)] 

A*  ea( T2t( 

2B 
'V) cosTp^' -|t0)l u(t'-T2t( 

where 

A = 
a b t. 

2[b2cos2e+ a2sin2e] 

and 

a2 b 
B = 

= ^ 

4[b2cos2e+ a2sin2e] 

r 
-ßA2/2B 

ß  = 

3B2      2      2PB 

Tr/2 

3     0 

32 

-P' 
1/2 
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The constants A and B are obtained from the physical optics ap- 

proximation to the ramp response waveform.    The constant a is de- 

termined from the second moment condition and K is the Rayleigh coef- 

ficient of the spheroid (Appendix I).    The time Tj is determined from 

the geometry of the spheroid and corresponds to a creeping wave path 

length,     following the line of sight to the shadow boundary and a 

geodesic path on the  spheroid beyond.    Assuming that the circumfer- 

ence of the ellipse in the x. z plane may be expressed as 

(73) Cir = 27T I afi + b' 

with negligible error,  T2 is given by 

T. M. Polarization 

( 74)   Tz =  sin 9 cos 9 (b2 - a2 ) + J_ ^~coai e + a
2 sin2 6 

2ja2 co82e+ b2 sin2 6 2 

+ T 
a   + b 1 

2 +I 
sin 6 cos 9 (b2 - a2 )   _ Jb« cos2 9 + a2 sin2 9 

Ja2 cos2 9+ b2 sin2 9 

and 
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T. E. Polarization 

(75)      Tz =   ,Bin2 Ö COa> 9     (b2 - ^ t +^W^W7 
Jb2 co»1 9 + a2 sin2 8 (b2 sin2 8 + a2 cos2 6) 

+   I 
ci* + c,' 

where 

Ui   - a 

'sin29 cos2e(b2- a2)(a2- b2)]2 

1 - 
^ 

sin'ecos'e^-aV + La2b2Jb2co82e+ a2 sin2 6 
~~^:Trr~ '     b2 sin2 6 + a2 cos2 9 

a2b2 

and 

_ 2      a2b2- sin2ecos2e(b2  - a2)2 
c2  

b28in2e+ a2 cos2 9 

[ sin2 9 cos2 9 (b2 - a2)(a2 - b2 )  
Jb2 cos2 9+a2 sin2 9 {b28in29+ a2 cos2 9). 
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In actual calculations in this study, the quarter circumference of an 

ellipse which appears in the T. M.   case as 

IT   I a^ + b* 

and in the T. E.   case as 

IT 

2^ 
C? + cl 

was computed using the polynomial approximation to the complete 

elliptic integral[ 40] 

(76) Cir = 4b 1+a (t)"-(i)' 

o'-Ka'l-(-.)" +   Ib^rV4 '^ 

where ai   = 0. 4630151 

a2  =   0. 1077812 

bx  = 0. 2452727 

b2 = 0. 0412496 

for an ellipse of major axis 2b and minor axis 2a.    Note that for a 

unity axial ratio spheroid, Eq.   (72)   reduces to Eq.   (71). 
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The ramp response waveform in Eq.   ( 72) was used in Reference 

12 by the author as the basic model for the conducting prolate spheroid. 

Calculations of the echo area of the spheroid using this model were 

compared with measured data on a 2:1 axial ratio spheroid.    The com- 

parison covered a frequency range from 1. 5 to 5. 0 minor axis cir- 

cumferences in wavelengths in increments of 0. 25 wavelenths and an 

aspect range of 6 (Fig.   10)  from 0° to 90° in increments of 10°,  for 

both the T. E.   and T. M.   polarizations.    Considering the crudeness of 

the ramp waveform model,  the results of this comparison were quite 

good.    An example of the type of agreement obtained is shown for an 

aspect angle  9 of 40° in Figs.   11a and lib for the T. E.  and T. M. 

polarizations respectively.    Note that the basic deficiency for both 

polarizations appears to be a constant shift of the maxima and minima 

of the calculated data with respect to the measured data.    But, taking 

into account this shift,   the calculated and measured periodicity and 

amplitudes are in fair agreement.    It would serve no purpose here 

to duplicate all of the results obtained with this ramp response model. 

These are reported in detail in Reference 12 and the reader is 

referred to that publication. 
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Fig.   Ila--Calculated ( solid)  and measured echo area 
of a 2:1 axial ratio prolate spheroid.    Ramp response 

model,  T. E. polarization,  6= 40° . 

Aside from the specific calculations for the prolate spheroid 

targets,   the results obtained with the crude ramp response model 

yielded two general conclusions.    First,  the study reported in Refer- 

ence 12 was the initial attempt to extend the application of transient 

and impulse response approximations to a nonsymmetrical or off-axis 

target orientation.    As such they were distinctly encouraging and lent 

real hope that other targets might be amenable to a similar attack. 
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Fig.   1 lb--Calculated ( solid)  and measured echo area 
of a 2:1 axial ratio prolate spheroid.     Ramp response 

model,   T. M. polarization,  9 = 40° . 

Second,   it had been contended by E. M. Kennaugh and the author in 

1965[ 13]    that, with experience and intuition,   one might ultinnately 

be able to roughly sketch the ramp response waveform of a target 

from simply a consideration of physical optics,  the target geometry 

and the low-frequency derived moment conditions.    Noting that to 

this point,  the above considerations were the only ones involved in 

deriving the ramp response waveform,   it is felt that this premise 
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has Leen proved - and proved for a target which heretofore has stub- 

bornly resided even an approximate practical theoretical solution. 

Two basic deficiencies can be noted with the ramp response 

waveform given in Eq.   ( 72).    These are most apparent from a con- 

sideration of the related impulse response waveform.    Differentiating 

Eq.   ( 72)  twice with respect to time, 

(77) Fjif)  = -A6(t')  + 

A2P2 

+  cos 
2B 

+ f5 ( P1 - «») ea< T'Vt'l cos [ß (f-| t0)]u( f.T2t. 

^-ea<T"-o-t,)sln[ß(t..|t0)]u,t..Tl.0)     . 
B 

A rough sketch of the form of the impulse response waveform in Eq. 

( 77)   is shown in Fig.   12.    From a knowledge of the axial impulse re- 

sponse waveform in Section A and the nature of the creeping wave in 

Appendix II,  it is clear that the impulse response waveform in Eq. ( 77) 

has two primary faults.     First,  the erroneous jump occuring at 

t1 = A/B t0, and second the form of the response waveform at the 

creeping wave peak ( T2t0).    In the first case,  there is no evidence 

that in the neighborhood of the shadow boundary a discontinuity should 

occur in the waveform.    The axial model (Section A)  predicts a smooth 
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Aza^ 

Fig.   12--Rough sketch of impulse response waveform 
predicted by basic ramp model. 

continuous waveform in this region.    The creeping wave portion of the 

waveform in Fig.   12 resembles, if anything, that to be expected from 

a cylinder ( see Appendix II).    In the earlier study[ 12] , part of the 

discrepancy in the shifted periodicity of th« calculated data with re- 

spect to the measured data was attributed to the approximation in 

Eq.   ( 73) with regard to the creeping wave times.    For a 2:1 axial 

ratio spheroid, Eq.   ( 72)   is approximately 6 percent in error.    How- 

ever,  a later correction of this error using Eq.   ( 76)  did not signifi- 

cantly alter the positions of maxima and minima in the theoretical 

curves.    It is now clear that the character of the creeping wave 

contribution in conjunction with the erroneous jump at the peak 
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cross-sectional area produced the error.    This will be demonstrated 

with calculations on the improved impulse derived model.    One should 

note that,  in principle* it would be possible to correct the ramp re- 

sponse derived model.    That is,  a polynomial section rather than a 

shifted cosine could be used to eliminate the jump at the shadow 

boundary and at the same time .orce the waveform to assume the 

desired behavior in the neighborhood of the creeping wave maximum. 

However,  the additional parameters required would exceed the known 

conditions on the waveform.    This is the type of dilemma one en- 

counters when starting with an analytical approximation of the ramp 

response waveform.    Since this waveform is smoother than its first 

or second derivatives, it can be estimated with fewer parameters. 

But the type of functional dependence assumed is extremely critical» 

when twice differentiated,  in the impulse response waveform.    It 

will be seen,  for example,  that th    impulse response waveforms of 

the new model differ markedly from that sketched in Fig.   12. 

Turning directly to the derivation of a model which will have 

the desired features lacking above,  it is advantageous to start with 

an assumed approximation for the impulse response waveform of the 

target, while at the same time retaining those features seen to be 

desirable in the ramp model.    There seems no reason to doubt the 

validity of the physical optics approximation for short times,  thus the 
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specular delta function and jump discontinuity will be given by the con- 

stants A and B respectively in Eq.   ( 72).    It is desired, with this 

model, to secure the secondary peak type behavior for the creeping 

wave maximum occuring at the time Tz given in Eqs.  ( 74)  and ( 75). 

Evidence from the axial waveform in Section A, the asymptotic esti- 

mates in Appendix II,  and,  indirectly,  the ramp response derived 

model discussed in this section, indicates this type of waveform for 

the creeping wave.    The basic impulse response waveform for the 

spheroid is assumed to be of the form 

(78) Fm(t')   = -A6(t') + [B-Ce**']   [u(t')  -u(f-T2tJ] IH* 

+ De"0*' uU1 - T2t0) 

where the subscript H denotes this to be the high frequency portion of 

the final impulse response waveform.    Two conditions are imposed on 

this waveform 

(79) C < < <  B     , 

and 

(80) B -CeoT2to=   De"oT2to = P   . 

where P is a constant.     Note that this high frequency portion of the 

waveform has deliberately been made as simple as possible by chosing 
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the same exponential coefficient on either side of the creeping wave 

peak.    The waveform is designated as high frequency because it is the 

relatively high frequency properties of the scatterer which it must 

satisfy,  the low frequency conditions will be added later.    From Eq. 

(80). 

(81) D =   - [ PB-P2]     , 
C 

and 

(82) Q   = 
2T2t0      Lc \p    yj 

It is clear from Eqs.   ( 81)  and ( 82)  that two constants in the waveform 

of Eq.   (78) i  P and C,  have not as yet been specified.    With these two 

parameters,  it is possible to effect a degree of control on the character 

of the creeping wave contribution.    For example, with the peak creeping 

wave contribution,  P,  fixed,  C controls the slope of the waveform prior 

to the peak.    The basic assumption with this model is that the impulse 

response waveform of the spheroid,  regardless of orientation or polar- 

ization,   should be roughly similar in character to the waveform of the 

conducting sphere and the waveform derived in Section A for the 

spheroid axial case.    Note particularly that no attempt has been made 

to utilize the low-frequency derived moment conditions to determine 

the constants P and C or to include additional parameters and enforce 
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higher moment conditions.    Such an approach has been found to be inef- 

fective,  primarily because one cannot conveniently maintain simul- 

taneously the desired character of the impulse waveform-    Even for 

very simple waveforms, the integrations indicated by the moment con- 

ditions can lead to a very complicated set of simultaneous nonlinear 

equations. 

Two possibilities exist for establishing,  approximately, the 

peak,   P,  of the creeping wave contribution.    The first is an evaluation 

of the asymptotic expression obtained in Appendix II.    The second is to 

accept the assumption in Section A that the peak magnitude is invariant 

with axial ratio,  and use the known magnitude of the sphere waveform. 

In either case,  the derivation of the remaining low-frequency portion 

of the impulse response waveform for the spheroid is unchanged.     It 

is proposed to superimpose a second waveform on that given in Eq. 

( 78)  whose sole purpose is to ensure the correct low-frequency be- 

havior of the response.    This waveform is an exponentially damped 

sinusoid which is written in the form 

(83) FIL(f)   = Efe-^it'  - e"^'} u( t') 

where E,4>i , and <j>2 can be complex. Let the first three moments of 

the high-frequency waveform in Eq. ( 78) be denoted by Ij , I2, and I3 

respectively,   i. e, , 
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(84) j   FmCt^dt« =Ii   . 

etc.    Setting the impulse response waveform of the spheroid to be 

(85) Flit1)  =FIH(f)  +FIL(t') 

and imposing the zero»  first,  and second moment conditions on the 

waveform yiolds the set of simultaneous, nonlinear equations 

(86) E[<(>2-4>il   = -Ii4>i4>2 

E[ *l~t\]  =-I2<()5<t)22 

2E[ *i-«|)?]   =(K-I )<t>?<t>| 

Solving Eq.   ( 86) ,  if 

(87) 4 

© 2Ii VlJ 21, 

then <j>i, (j>2,  and E are real and given by 

(88) <t>2 = 
Iz/li 

• • m 

1 
+   — (Iz/Ii) 

l&M1]' fe) K-I3 

2Ii 

1/2 
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and 

. 
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<t»i  - WFW] 
(90) E =   - 

If the inequality in Eq.   (87)   is not satisfied,  then 4>i  and <)>2 

become complex conjugates and are given by 

(91) 

(92) 

*ir ~ ^zr " ^KF) 2+ «Ik 
2Ii 

^li = -^zi ~ " T ' 
4 

Ift)" • K-Ij 

21! 

2 
Iz 

VliV 21!   ) 

1/2 

and 

(93) E =   - L 
2 ♦■•[(IT • ■?! 

.1 

where the subscripts  r  and  i  refer to the real and imaginary parts 

respectively.    To complete the formulas, the moments of the high- 

frequency waveform in Eq.   ( 78)  are given by 

(94) I,   = -A + BT2 - 
Ce oT2 De -aT, 
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(95) I* = 
BT2       CT2e

oT2     CeoT2       DT2e"oT2      De"aT* 

and 

(96) 1        Eh+Il [De-aT2 . Ce<»T2] + 2T.   ^at, + ^-«T.j 
3 a or 

-oT: oT, 

.3 O-' 

Thus with the exception of the constants C and P,  all of the parameters 

in the model of the impulse response waveform of the spheroid in Eq. 

( 85)  are determined. 

Consider first the expressions for the creeping wave in the time 

domain obtained in Appendix U. Using the approximations valid in the 

neighborhood of the creeping wave peak and specializing to the time at 

the peak,   Peters' expression reduces to 

e u(T-g)      dT 

00 

(97) FT     ( Of) , 
( 2IT) -p 

(»4      n 

.00 (T-a) W 

and Keller's result to 

(98) FfV)   = R3^   r I    p3/2 1     ] 

2ß 3»2 

3     M T-a 
u( T-O)  dr 
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A change of variable yields for Eq.  (97) 

A 3^ 
( 99) Ffw( a) =  

(2iT)3'i(ß)^ 

and for Eq.  ( 98) 

( 100) FTV )  =   - 
A 39'2r(7/2)        A 39'2r(5/2) 

27te(ir)^ p* 4(ir)3'22,feß4 

Peters' result applies strictly to the sphere in the form given and 

cannot be used for the spheroid.    It will be of interest»  however, to 

compare Eq.   (99) with the estimated peak obtained by Fourier synthe- 

sis of the exact solution for the sphere.    On the other hand Keller's 

formula is for a general spheroid, and while the constants given apply 

to the sphere, for the general spheroid only the constants A and ß 

change in Eq.   ( 100) ,  as well of course as a.    It will also be of interest 

to see how these results compare for the sphere. 

A final comment is in order concerning the use of Keller's result 

in Eq.   ( 100) to predict the creeping wave peak,  P,  lor the arbitrarily 

oriented spheroid.    As derived by Keller,  the geometrical theory of 

diffraction expression is for axial incidence (6=0°)   only.    A corre- 

sponding expression for the arbitrarily oriented spheroid has not been 

given.    The contention here,  however, is that for estimating the 

creeping wave peak at an arbitrary orientation,  Eq.   ( 100)  could be 

used provided the constants A and ß  are chosen to correspond to the 
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ellipse cut from the spheroid by the plane defined by the incident elec- 

tric field vector and the line of sight.    This obviously is a gross dis- 

tortion of the theory of geometrical diffraction,  and the author intends 

in no way to implicate Keller or others in this assumption.    It has 

been seen,  however, with the ramp response waveform model, that 

very crude approximations in the time domain can lead to good fre- 

quency domain results.    Moreover,  it will be shown that an even 

cruder assumption concerning the creeping wave peak leads to what 

must be considered oulUfactory results for a 2:1 axial ratio spneroid. 

In any event, with reference to the designated T. E.   and T. M.   polari- 

zations,  for the T. M.   polarization a constant creeping wave peak is 

predicted with this approximation corresponding to the actual axial 

ratio of the spheroid.    This is so   because while the total path length 

changes ( T2 in Eq.   ( 74)), the distance traveled along a geodesic 

path on the spheroid remains constant for all aspects.    However, for 

the T. E.   polarization,  the ellipse cut by the above defined plane has 

an axial ratio which decreases with 6 ( Fig.   10) ,  and is un'^y at 6 = 90°. 

The semiminor and semimajor axis of this ellipse are given by the 

constants Ci  and Cz respectively in Eq.   (75). 

In Fig.   13, the creeping wave peak as calculated from Eq. ( 100) 

is shown for a range of axial ratios from 1 to 10.     Peters' estimate 

of the creeping wave peak for a sphere ( Eq.  ( 99) )  is also shown.    In 
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SPHEROID AXIAL RATIO 
4      5      6 

KELLER . CALCULATED 

10 

Fig.   13--Peak magnitude of the creeping wave response 
in the time domain predicted by Keller's spheroid 

diffraction theory (axial incidence)   as a function of the 
spheroid axial ratio. 

comparing these results for the sphere with those obtained from a 

Fourier synthesis of the exact solution,   it must be remembered that 

optical contributions are also present in the synthesis picture,  but 

are not included in the creeping wave estimates.    With this in mind, 

the estimates of the creeping wave peak in Fig.   13 for a unity axial 

ratio seem reasonable,   if not precise. 

An even cruder estimate of the creeping wave peak is obtained 

by accepting the result in Section A that the creeping wave peak is 

independent of the spheroid axial ratio.     In this case P takes the value 

1. 0 approximately,  and is independent of both orientation and 
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polarization.    The remaining problem, with either the above estimate 

of P or the geometrical result,  is the choice of the constant C in £q. 

( 78).    In order to achieve a basic waveform with the essential character 

of the sphere response«  it is apparent that C must decrease with  in- 

creasing axial ratio since the exponential in the second term of Eq. 

( 78)  should only be strongly effective as the creeping wave peak is 

approached.    Clearly,  one can generate an infinite variety of wave- 

forms by varying C» but several checks on the magnitude of this pa- 

rameter can be used.    This parameter is not,  therefore, a curve fitting 

device in the sense that C is varied until the best fit with independent 

measured or calculated echo area data is obtained.    The first check on 

C is the form of impulse response waveform obtained; in essence a 

smoothly decreasing function such as that shown in Fig.   8 (dashed 

curve) for the exponential sum approximation is desired.    Note that 

the exponential sum approximation in Reference 3 2 gives a clue as to 

the order of magnitude required for C at least for a ?.:! spheroid. 

C in this case roughly corresponds to the coefficient A2 in Eq.  (17) 

of Reference 12, which is of the order of 1 X 10~14,  a very small 

number.    A third check on the assumed magnitude of C is provided 

by the coefficients calculated for the low-frequency waveform in Eq. 

( 83).    The low-frequency waveform is a correction waveform in the 

sense that it is added to enforce    the moment conditions.    However, 



110 

if the assumptions concerning the similarity of the spheroid waveform 

to the sphere are correct, and the choice of C reasonable«  then very 

little correction should be needed.    Thus if the magnitude of the coef- 

ficients in the low-frequency waveform are such as to seriously distort 

the waveform,  then it is an indie xtion that the assumed magnitude of C 

is in error. 

The basic model proposed for the impulse response waveform of 

the prolate spheroid target,   for the defined T. E.   and T. M.   polari- 

zations and any orientation,   is that given by Eq.   ( 85).    It is deceptive- 

ly simple in form,  and leads, through the Laplace transform,  to a 

computationally simple frequency-dependent function.    It remains to 

test the various hypothesis and assumptions inherent in the model both 

as to the form of the response waveforms generated and ultimately,  of 

course,  with respect to calculated echo areas for the target.    These 

tasks are undertaken in the next Section. 

C.    Calculated and Measured Results 
for a 2;1 Axial Ratio Spheroid 

Of the two suggested models for the general impulse response 

waveform of the spheroid,  that one utilizing an invariant (with axial 

ratio,  orientation,  and polarization)  creeping wave pe?k taken from 

the sphere is by far the easiest to implement.    It is reasonable,  there- 

fore,  to consider this model first.     From the exponential sum 
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approximation to the spheroid impulse response waveform given in 

Reference 12, taking into consideration the fact that for the present 

model the jump magnitude ( F'   does not have an exponential decay» 

the constant C in Eq.   ( 78) is set equal to 1 X 10'12.       The above 

choice for C was the first one made.    The best proof of this,  regard- 

less of the resultant echo area calculations,  is that neither the impulse 

response waveforms obtained for the spheroid nor the magnitude of the 

damped sinusoid correction are by any means exactly what was desired 

for all orientations and polarizations.    It is also clear that much more 

sophisticated techniques for obtaining both P and C could be devised. 

For example,  one could confine these parameters to a particular range 

of values and then minimize the area beneath the impulse and step re- 

sponse waveforms by some type of testing procedure.     But such so- 

phistication is accomplished at the expense of a more complicated 

model.    One of the most distinctive features of the time domain ap- 

proach is the results which can be obt. .   ed,  in terms of predicting 

frequency domain behavior, with very crude models.    This will be de- 

monstrated presently for the spheroid model using exactly the gross 

approximations described above. 

It is instructive first to consider the magnitudes of the various 

parameters in the impulse response waveform model described above 

as a function of both orientation and polarizatioa    These parameters 



112 

are given in Tables I and II for the T. E.   and T. M.  polarizations re- 

spectively.    The above tables list»  reading from left to right; the 

aspect angle*  specular magnitude (A) , jump magnitude ( B), time of 

creeping wave peak ( T2). Rayleigh coefficient (K),  exponential decay 

(a), exponential coefficients C and D,  real and imaginary parts of the 

correction exponentials (<)>i and $2) • and the coefficient of the cor- 

rection term { E).    The symbols in the table headings correspond to 

the symbols in Eqs.   ( 78) and ( 83).    In Table in* the corresponding 

moments of the basic model,  i. e. , without the added damped exponen- 

tial of Eq.  ( 83)  are given, again for both T. E.   and T. M.   polarizations. 

Note that if the basic model were correct, Ij and I2 in Table III would 

be zero, and I3  equal to the corresponding Rayleigh coefficient. 

Consider first the T. E.  polarization; from Table I and Table III 

it is seen that as the aspect angle increases from the axial case 

(9 = 0°),  the basic waveform ( Eq.   ( 78))  becomes first a better and 

then a poorer model and the correction waveform ( Eq.   ( 83))  becomes 

progressively larger with aspect angle after 9 = 20° .    Note that the 

uncorrected moments of the basic model are not wholly compatible. 

That is,  in terms of the zero and first moments (Ii and I2), the model 

is best at approximately 9 = 20°,  in terms of the second moment (I3 ) , 

9 = 30° is the optimum model.    In considering the magnitude of the 

correction coefficient (last column in Table I)  it must be remembered 
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TABLE III 
MOMENTS OF UNCORRECTED IMPULSE 

WAVEFORM MODEL 
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e Ii Iz Is Ii h Is 

0 -0. 056 -0. 47 -5. 7 -0. 056 -0.47 -   5. 7 

10 -0.036 -0. 38 -5. 3 -0. 032 -0.39 -   5.4 

20 0.029 -0. 12 -4. 1 0.039 -0. 13 -  4.4 

30 0. 14 0. 3 -2. 5 0. 18 0.33 -  2.9 

40 0. 32 0. 88 -0. 5 0. 42 1.00 - 0. 66 

50 0. 60 1. 6 1. 6 0. 82 2. 10 2. 40 

60 1.0 2. 6 3.6 1. 5 3.70 6.40 

70 1.6 3. 7 5. 6 2.4 5.9 11.00 

80 2. 3 4. 8 7.2 3.6 8.2 16.00 

90 2.6 5. 3 7.9 4. 1 9.3 19.00 

that the duration of the waveforms is decreasing with increasing 6k thus 

the correction must effectively be made at smaller times.    From the 

trend of the moments and the correction coefficient,  it is concluded 

that a broadening of the creeping wave in the neighborhood of the peak 

for aspect angles greater than 30° and a narrowing of this waveform 

below 30° is required.    In the neighborhood of the creeping wave peak, 

rather small changes in the slope of the waveform will have a sub- 

stantial effect on the higher moments. 
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Turning to the T. M.   polarization in Table II.  a similar trend is 

observed.    Here, however,  the zero and first moments are smallest 

on axis (6=0*) whereas the second moment is best at 6 = 30°.    For the 

T. M.   polarization,  the moments of the uncorrected model are seen to 

be in error by a greater amount for aspects near 90° than were those 

for the T. E.   case.    Again, a required broadening of the creeping wave 

waveform is indicated with somewhat greater broadening necessary for 

the T. M.   than for the T. E.   polarization.    It is of interest next to 

examine the ramp and impulse response waveforms predicted by this 

model,  with the correction waveform added, and to compare the corre- 

sponding frequency-dependent function with experimental data.    It is 

desired to compare the ramp response waveforms predicted by this 

model with the ramp waveforms obtained with the earlier ramp wave- 

form model given in Eq.  ( 72).    This comparison is shown in Figs.   14 

through 18  for both the T. E.   and T. M.   polarizations for aspect angles 

©from 0° to 90° in increments of 10°.    It is evident that except for 

small times,  the ramp waveforms predicted by the two models differ 

substantially.    The differences are primarily a longer endurance and 

higher magnitude for the impulse response derived model.    Note also 

that the magnitude of the ramp derived model never exceeds the physi- 

cal optics estimate whereas the impulse derived model does,  particu- 

larly for aspects approaching broadside.    On the basis of the ramp 
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waveform for axial incidence derived in Section A,  one would conclude 

that the ramp derived model is more nearly correct, at least for 

aspects near axial incidence.    It is not possible to settle this question 

completely with the limited low-frequency data available (this point is 

discussed later).    One could, however, with the techniques discussed 

in Chapter I; utilize additional experimental data or "point matching" 

solutions to estimate the mean square error of the waveforms.    For the 

stated purpose of this study, that of obtaining an approximate general 

model,  it is not necessary to resolve this question.    It is noted however 

that some reservations concerning the ramp response waveforms must 

be retained and that the next investigation of the prolate spheroid target 

should begin with the ramp response waveform. 

The impulse response waveforms predicted by the new (Eq. ( 85)) 

model are shown in Figs.   19 through 23.    Two points are immediately 

evident from these waveforms.    First, the model has succeeded in 

enforcing the type of creeping wave contribution felt to be necessary. 

Second,  the damped sinusoid correction term while adjusting the 

creeping wave peaks to some extent has,  in the process of enforcing 

the moment conditions,  distorted the waveforms significantly for 

earlier times.    This is vividly evident for either polarization as the 

aspect angle approaches 90°.    Note that the specular component has 

been omitted from these figures.    It is simply a negative delta function 
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prolate spheroid obtained from impulse derived model. 

T. M. polarization, 
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of weight A/c at t' = 0 which is given in Tables I and II in the second 

column.    The same conclusions observed earlier from an examination 

of the model parameters in Tables I,  II, and III are confirmed by the 

impulse response waveforms.    In each case it is seen that the cor- 

rection sinusoid has increased the negative area beneath the wave- 

forms.    Unfortunately»  the correction is not concentrated in the vi- 

cinity of the creeping wave peak and has, as is apparent« substantially 

distorted the waveforms for earlier times. 

The final test of the model is a comparison of calculated and 

measured results for the backscattering from a prolate spheroid target. 

Extensive data have been measured on a 2:1 axial ratioprolate spheroid 

for both the T. E. and T. M. polarizations over 360 "of aspect.   The meas- 

ured patterns corresponding to this data were reported in Reference 

12 and will not be repeated here.    In Reference 12 the accuracy of the 

measured results is estimated as -1. 0 dB at a level of 20 dB less than 

a square wavelength.    Two comparisons of calculated data from the 

model and experimental measurements are desired.    The first is the 

echo area at a fixed orientation and polariz.ation as a function of fre- 
■ 

quency,  and the second is the echo area as a function of orientation 

for fixed frequency and polarization        The variable frequency com- 

parisons will be more extensive.   In Figs. 24 through 33, the predicted 
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and measured echo area of the 2:1 prolate spheroid are compared for 

aspect angles; 6,  from 0° in increments of 10° to 90° as a function of 

the minor axis circumference of the spheroid in wavelengths.     In each 

figure,  the calculated data is the solid curve.     Part a of each figure is 

for the T. E.   polarization and part b for the T. M.   polarization.     It is 

evident from these figures that considering the crudeness of the theo- 

retical model,   substantial agreement with the measured data has been 

obtained.    Minor disagreements are apparent,  as in the location of 

maxima and minima for aspects of 0° and 10°, but the general indi- 

cation is that the model rather accurately predicts the echo area of the 

2:1 spheroid for arbitrary orientation and linear polarization. 

The question concerning the ramp response waveforms of the 

ramp derived and impulse derived models is partially resolved by the 

comparison with measured echo data.     It was found that for aspect 

angles less than 40° (for both polarizations)  calculations from the 

ramp derived model were in somewhat better agreement with the 

measured data for minor circunnferences less than one wavelength. 

For aspect angles greater than 40°,  there was little to choose between 

the two models.     In the limit of low frequencies the models agree,  as 

dictated by the enforced moment conditions.    For aspects less than 

40° and minor axis circumferences less than one wavelength,  the 

calculations shown in Figs.   24-28   are from the ramp derived model. 
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Turning to the second test,  in Figs.   34 through 37,  the measured 

and calculated echo and phase patterns of a 2:1 axial ratio spheroid for 

the T. M.   polarization are shown for minor axis circumferences of 1. 5, 

2. 0,   2. 5,  and 3. 0 wavelengths respectively.    In these figures the 

measured data are shown as the solid curve ( part a of each figure is 

the echo data, part b the phase data).    The phase data are referenced 

to the center of the spheroid.    It is estimated that the echo area data 

have an error of - 1.0 dB at 20 dB below a square wavelength, and 

the phase data an error of -  10 degrees.    The agreement between 

calculated and measured data,  while perhaps not as striking as for 

the variable frequency curves,   is still reasonably good. 

Calculations of the creeping wave peak predicted by Keller 's 

geometrical theory of diffraction result were shown in Fig.   13 as a 

function of the spheroid axial ratio.    Two points should be noted from 

this curve.     First,  Keller's result for the degenerate case of the 

sphere is in error,  as is seen in Appendix II from the Fourier synthe- 

sis figures,   and would have to be shifted in magnitude to be used. 

Second,  for the 2:1 spheroid the change in creeping wave peak from 

the sphere case is so slight that a second model,  for the case of a 2:1 

spheroid,  does not seem to be warranted.    Suggestions for the use of 

the curve in Fig.   13 for higher axial ratio spheroids are given in the 

next. Section.    However,  it is noted here that with estimates of the slope 
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Fig.   34--Measured ( solid)   and calculated echo and phase patterns 
of a 2:1 axial ratio prolate spheroid.    Minor axis circumference 

equal 1. 5 wavelengths,     (a)   Echo area.    ( b)   Phase. 
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(a) 

Fig.   3 5--Measured ( solid)  and calculated echo and phase patterns 
of a 2: axial ratio prolate spheroid.     Minor axis circumference 

equal 2. 0 wavelengths,    (a)   Echo area.    ( b)  Phase. 
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Fig.   36--Measured ( solid) and calculated echo and phase patterns 
of a 2:1 axial ratio prolate spheroid.    Minor axis circumference 

equal 2. 5 wavelengths,    (a)  Echo area.    ( b)  Phase. 



m 

153 

Fig.   37--Measured ( solid)   and calculated echo and phase patterns 
of a 2:1 axial ratio prolate spheroid.     Minor axis circumference 

equal 3.0 wavelengths,     (a)   Echo area.    ( b)   Phase. 
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of the creeping wave on either side of the peak from Kellor's theory, 

additional parameters could be added to the impulse waveform model. 

Realistically,   there seems little advantage in this added complexity 

nntil failures of the simpler model are noted or a more exact asymp- 

totic estimate of the spheroid creeping wave is obtained. 

Finally it is desired to list some results obtained from the im- 

pulse response waveform model of the 2:1 spheroid which may be of 

use to other investigators.    The primary concern is not,  as was noted 

in Chapter I,   the details of the impulse response waveform of the de- 

rived model,   but is instead the predicted ramp response waveform. 

A reasonable approximation to this ramp waveform can be generated 

by Fourier synthesis from the first nine harmonics of the phasoi re- 

sponse,  and a comparison of the ramp waveform predicted by otY.sr 

theories with those given here would be extremely useful.     To this end, 

the predicted phasor response for both the T. E.   and T. M. polarizations 

at aspects of 0 0 ( 10°) 90° for minor axis circumferences from 0. 25 

(0. 25)2. 25 wavelengths are tabulated in Table IV.    The phase reference 

for these data is at the point the incident wave first strikes the spheroid. 

Note in Table IV that the real and imaginary parts are normalized such 

that the cross section normalized by the shadow cross-sectional area 

ira2 is given by the sum of the squares of the real and imaginary parts. 
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Calculated data on a prolate spheroid with a 10:1 axial ratio for 

axial incidence ( 6 = 0°)  have been given by Siegel, et al. [ 38].    These 

data are shown in Fig.   38 as the solid curve.    Also shown in Fig.   38 

are calculations for this target from the ramp response derived model. 

These data are designated by crosses.    An impulsive response wave- 

form model for this target was also given by Kennaugh and Cosgriff[ 3] , 

and showed reasonable agreement with the calculated data.    For such 

a large axial ratio spheroid,   it is clear that the simple model in Eq. 

( 78)  is not a good approximation.    As shown by the model in Reference 

3,  the creeping wave contribution for such a large axial ratio is well 

approximated by a very narrow rectangular pulse.    It is not practical 

to obtain such a waveform with one exponential term as in Eq.   (78). 

Therefore,  for large axial ratio spheroids,   the ramp response derived 

model should be used.    This point is discussed in the next section. 

D.    Conclusions 

It was mentioned earlier in this Chapter that certain of the ap- 

proaches and procedures followed in attacking the prolate spheroid 

problem were,  with the experience gained herein,  not necessarily 

those recommended either as an approach to future problems or a 

continuation of the spheroid study.    One must remember that the use 

of transient and impulse response waveform estimates in electro- 

magnetic scattering problems is still an embryonic art.    Significant 
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Fig.   38--Axial (6=0°)  echo area of a 10:1 axial 
ratio prolate spheroid. 
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contributions have been made,  as cited in Chapter I,  both to the so- 

lution of new scattering problems,  and providing additional insight to 

the scattering mechanism.    Ina sense,  however,  as discussed in 

Chapter I,  these contributions have been made with a limited ap- 

proach in that a systematic procedure for application of the concepts 

has not been developed.     Unfortunately,  these comments hold true 

for the material reported in this Chapter.    A general model has been 

developed for the electromagnetic backscattering by a perfectly con- 

ducting prolate spheroid target for arbitrary linear polarization and 

arbitrary orientation which has been shown to be in reasonable agree- 

ment with measured data for a spheroid of 2:1 axial ratio.    But despite 

this success,  the void with regard to a systematic procedure remains. 

The conclusions from this Chapter therefore are of two types; those 

pertaining strictly to the spheroid model,  its deficiencies,  possible 

improvements, and applicability to other untested axial ratios, and 

those pertaining to the application of a time domain approach to other 

problems.    In this Section,  the discussion will be confined to the 

former type,  i. e. .  to the specific model developed for the conducting 

prolate spheroid target.    What insight has been gained in developing 

a systematic approach to the general problem has been incorporated 
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into Chapter !,  primarily into Section C of Chapter I,  on the analyti- 

cal and experimental approximations of transient and impulse re- 

sponse waveforms. 

Consider first the deficiencies of the model,  and admittedly it 

has many.     These deficiences are primarily in terms of failures to 

relate the geometrical properties of the spheroid to the corresponding 

detail of the model.    It is certainly clear that the different radii of 

curvature in the two planes,  the changing shadow boundary with re- 

spect to the line of sight,  and the polarization properties of the 

spheroid,  must,   in any complete analysis,   materially affect the tran- 

sient waveform.    Some of these effects may have been partially 

accounted for by the conditions imposed on the model.    But these con- 

ditions were not explicitly related to the geometrical detail,  conse- 

quently when rather large changes in the geometry are made, as with 

a large axial ratio spheroid or a different smooth geometry,   there is 

no assurance that the same conditions will continue to effect adequate 

compensation.     These comments apply both to the illuminated and 

shadowed side of the spheroid.     On the illuminated side,  corrections 

are needed to the physical optics approximation which are related to 

the geometry.    For the conducting sphere,   Weston( 44]   has supplied 

such an additional term from an asymptotic expansion of the optics 

field,  and asymptotic estimates might be utilized for the spheroid 
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in a future analysis.    Similar comments apply to the creeping wave 

portion of the model.    Despite the success of the comparison with 

measured data,  the exact nature of the creeping wave contribution is 

still unknown.    How the contribution builds to the secondary peak,  the 

slope of the waveform on either side of this peak,  and particularly 

how the geometry of the spheroid is related to these effects is not 

known.    In this regard,  the noncausal nature of the creeping wave 

contribution in the time domain ( see Appendix II)  predicted by asymp- 

totic estimates and the attendant questions would seem to indicate that 

a complete understanding of the sphere scattering in all detail has not 

been attained as yet. 

With regard to the estimates of the time domain waveforms,  it 

must be concluded in light of the above remarks that the detailed 

features of the waveform may bear scant resemblence to the true re- 

sponse.    This points out an extremely useful and at the same time 

frustrating nature of the transient waveforms.     Very crude approxi- 

mations in the time domain lead, in many cases,   to estimates of the 

phasor response which are out of all proportion to the exactness of 

the approximation.    In establishing the correctness of the time domain 

waveform then,  comparisons of the calculated and measured echo area 

of an object are of limited usefulness.    This is particularly true if the 

measured data are confined to a small portion of the spectrum.    It is felt 
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that the ramp response waveforms predicted by the ramp derived 

model are a reasonable estimate of the true response.     No such confi- 

dence is expressed in the  ramp and related step and impulse response 

waveforms of the impulse derived model, however,   except in the 

gross features of the response. 

With regard to the utilization of the impulse derived model for 

other axial ratio spheroids,   the following comments are offered. 

Keller's model for the creeping wave contribution is clearly inade- 

quate since it fails even in the degenerate case of the sphere to pre- 

dict the correct detail of the waveform.    However,  with no present 

alternative,  it is suggested that for higher axial ratios the peak of 

the creeping wave shown in Fig.   1 3 be utilized after first scaling 

the results so that they agree,  for the degenerate sphere case, with 

the Fourier synthesis result using the exact solution.     Thus for the 

T. E.   polarization a varying magnitude,   P,  for the creeping wave 

peak should be used while for the T. M.   case it remains fixed by the 

axial ratio of the spheroid.     The predicted ramp response waveform 

and the magnitude of the correction term remain clues to the esti- 

mate.     Any radical departure of the form of the ramp waveform, 

aside from a general stretching,   should be suspect as should the 

magnitude of the correction term.     The parameter C should be de- 

termined from tests of the impulse response waveform at 9= 0° and 

. 
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90° .    The basic premise being to retain the gross resemblance of the 

waveform to that of the sphere.    Both Keller's result and simply an 

examination of the geometry indicate that as the axial ratio of the 

spheroid increases,  the attenuation of the creeping wave should de- 

crease.    In the time domain this would indicate that the waveform in 

the neighborhood of the creeping wave peak should become narrower 

with increasing axial ratio.    As mentioned earlier,  the impulse re- 

sponse waveform of a 10:1 axial ratio spheroid given in Reference 3 

demonstrated this effect.    As the axial ratio of the spheroid increases, 

the creeping wave contribution apparently approaches a very narrow, 

high spike, with negligible value except in the immediate vicinity of 

the creeping wave peak.    It is clear that the simple impulse response 

derived model in Eq.   ( 85)  is not practical for large axial ratio 

spheroids.    For example,  a value of 1 X lO'4"    is required for C to 

achieve a reasonable waveform for a 10:1 axial ratio spheroid.    For 

such large axial ratios,   models such as that given in Reference 3 or 

the ramp response derived estimate in Section B should be used. 

For axial ratios greater than 2:1 or 3:1,  it will probably not be pos- 

sible to use a single value for the parameters C and P for all 

orientations and polarizations.    The model loses much of its attractive- 

ness in this case since individual adjustments for each orientation and 

polarization will be required.    The impulse response derived model 
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has not been tested for axial ratios greater than 2:1.    It is evident 

however that utilization of the model becomes more difficult with 

increasing axial ratio and is probably prohibitively difficult, with- 

out modifications,  for axial ratios greater than 5:1. 

It is readily apparent that thit» study in the time domain of the 

prolate spheroid target has raised more questions than it has 

answered.    A novel result has been obtained; a model predicting the 

backscattering from the prolate spheroid target for arbitrary orien- 

tation, and linear polarization of the incident field has been derived; 

and the general validity of the model demonstrated for the case of a 

2:1 spheroid.    In the opinion of the author,  this model,   with judicious 

application,  may continue to demonstrate reasonable agreement with 

other measured or calculated data for axial ratios less than 5jl.    In 

fairness both to this study and to the time domain approach in general, 

one should be cognizant of the numerous frequency domain studies of 

the spheroid target which have had far less success.    However,  it is 

clear than an understanding of the scattering by the spheroid, and 

consequently an ability to project these results to other shapes,  is 

meager.     The most pressing requirement at present is a detailed 

model for the creeping wave contribution from smooth surfaces in 

the time domain.    The asymptotic high frequency estimates of this 

response, when transformed to the time domain,   offer clues in this 
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direction,  particularly with regard to the behavior of this reponse in 

the neighborhood of its peak.    A feeling persists however that the 

ultimately most fruitful attack on the problem will be one undertaken 

in the time domain.    Considering the relative simplicity of the real, 

time-dependent waveforms corresponding to complex frequency-de- 

pendent functions; it does not seem unrealistic to suggest that such 

time-dependent functions may be more intimately and simply related 

to the geometry of the scattering object.     This comment is felt to be 

pertinent in general, and not restricted to the creeping wave problem. 

It is apparent that one could make a number of adjustments on 

the impulse response derived model to minimize the low frequency 

corrections required.    By examining the ramp and impulse response 

waveforms and the uncorrected moments as the parameters P and C 

are varied,  an improved model for each aspect and polarization 

could be obtained.    However, as indicated in Chapter I,   such an ap- 

proach does not lead to an "understanding" of the scattering by a 

prolate spheroid target.    It is recommended that future research on 

this problem begin with improved estimates of the ramp response 

waveform using measured and calculated low frequency data.    The 

"point matching" solutions mentioned previously appear to offer a 

convenient and accurate method for securing the necassary phasor 

response data. 
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APPENDIX I 
RAY LEIGH SCATTERING   BY  SPHEROIDS 

It is well known that for objects sufficiently small in terms of 

wavelength,   the scattering cross section varies as the sixth power 

of dimension and the fcurth power of frequency.    The purpose of 

these notes is to develop explicit expressions for the factor of pro- 

portionality for scattering from spheroids.    Stevenson( 42] ,  in his 

excellent paper,  has provided a general solution for the coefficients 

in a power series expansion in the wavenumber of the scattered field. 

We are concerned here with the coefficient of the wavenumber squared 

or the so-called Rayleigh term for the case of spheroids.     We wish to 

couch our development in terms of electric and magnetic dipoles 

aligned with the principal axes of the body whose relative strengths 

are determined by the aspect and polarization of the incident field. 

Following Stevenson,  let i,m,n be the direction cosines of the 

direction of propagation of the incident field; ii, mi , ni  be the di- 

rection cosines of the incident electric vector; and izin^ng be the 

direction cosines of the incident magnetic vector.     With e" 

understood the incident field is given by[ 42] 
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(101) E1 = ( ii , mi , n)  e 
ik( ix + my + nz) 

and 

H1 » ( ti, mz, nz)  e 
il<:( ix + my + nz) 

and the scattered fields by[ 42] 

(102) -0 
8P i 

+ 8P 
8e8      sin 68   84> s 

ikR I 

and 

2» = - H8 = \-^— 
9 e   L8in e8 

8P 
8<l>8 

8P 
86 sj 

ikR 

kR 

where R,   es, (j)s are the spherical coordinates of the field point 

(103) P = (ka)3[Kii1a+ K^rtn ß + KsmyJ 

and 
P = (ka)s[K1i2a+ K2m2 ß+ Ksn2 yj 

where Q,ß,y are the direction cosines of the radius vector to the 

field point.    The constants Kj. .   ,  Ki. . , are,   respectively,  the 

electric and magnetic coefficients which are a function only of the 

body and independent of the incident field.    Note that in the "a" in 

Eq.   ( 103)   is the principal axis along the x and y coordinates 

(Fig.  10). 
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,,04)      K.=      .2'-1> .ft. r2'"-"     - = 

v    .        2(€-l) Z 2(^-1) 

,^ [(..,».+_J.b] 3«.^..,,.^] 

and K$ =        ZU-l) _   ^ = 2(u-')  

where €   and H- are the constitutive parameters of the spheroid.    Note 

that we have altered Stevenson's expressions slightly to conform to 

our desired dipole development.    The expressions Ia,  I^ are related 

by 

(105) 2Ia + Ib= — 
a2b 

and 

2aMa + b2Ib = I, 

where now we must differentiate between two cases.    For the prolate 

spheroid ( a < b) 

<106'      "bMi^l 
where T| = \l 1 -( a/b) z .        For the oblate spheroid ( a > b) 
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(107) I = i_  cos"1   (Jl - ti» )   , 

w here r| - N/1-( b/a)^ .     Thus for the prolate spheroid we obtain 

( 108)     Ki = K2 = 
2(€-l) 

3[<l-)(2/T^.,u^n(^) 
V • 

+ 2|u7" 

K, = 

LV1^ 
2(^-1) 

./TV^D.^f^ni 
• 

+  2jl-Tl2 

K 1  - K2 pTS 
2U-JJ 

n2 - (i-i' *"'*[$) + 2fu7" 

and 

fe> = 
^(ix-l) 

V1^ unMii,-1) + d-n 2vS/ 2 " (S)] + 2^] 
For the perfect conducting case d t | ~- ^ . H1 "-" 0),  the above reduce 

to 

( 109) Ki  = K2 =  4n . 

3[2/T^2.(l-n2)3/2in(i^)] 

Ks  = 2ti 

s^nJT^i^-D + iUt!»^2 in(T^-)] 
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( 109 cont*. ) &i = '^   « ;[2/n7   '[2in7.(1^^.n(ii2.]|] • 

and 

Kj = 
-2 

^7 - ^ [z/ü? (^ -1) + üJL'Ü m (i±n.)}] 

For the oblate spheroid 

(110)    Ki -Ki   = 2l€-l) 

RMF^pjy 
K» = 
 2(i_-l)  

2(^-1)   

and 

Kt 
2(»i-l) 
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For a perfect conductor the above become 

( 111) Ki  = K,   = Irf 

3[co8-1(/u^") . rJl-Ti»] 

Kj = 
r  i     /rco8-i(>fT7?")- njiT^-y 

Ki = K2 = - 

fUri« 
/rC0S-1(^f^:^)-  T]JU?y| 

and 
^» 

-1 

LJi-n2 yr^ v 
COS'MJ1"1!2 )   -   T|Jl-Tl2 

Now for the general case, 

( 112) a  =  sin 9S cos 4>s , 

ß  =  sin 6S sin 4>s ,   and 

\ =   cos 0S 

Let the coordinates of the source point be R,  9^,  <J>i ; then 
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( 113) i    =   -sin Gj cos (^ , 

m   =   -sin 0i sin 4^ ,  and 

T|     =    -cos Gj 

There is no loss of generality if we restrict the direction of 

incidence to the y,z plane (^ = w/Z)  whence 

( 114) i    =   0, 

m   =   -sin Gj ,  and 

T|     =    -cos 6^ 

We now consider two particular polarizations of the incident 

field from which,  by superposition,  the solution for any arbitrary 

polarization can be obtained. 

T. E.   Incident electric vector perpendicular to yz plane. 

( 115) i!   =    1. 0 i2  =   0. 0 

mj =   0.0 m2 =   -cos Gj 

til   =   0. 0 ^2  =   sin ^i 

T. M.   Incident electric vector parallel to yz plane. 

( 116) ij   =   0. 0 iz  =   -1. 0 

mi =   -cos G. m2 =   0. 0 

ni   =   sin Gj ^  =   0. 0 
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Lot us define a normalization cnch that 

(117) 1^'    \Ea
n'
: 

■na.c n 

Then the normalized scattered fields are given by 

T. E. 

( 118) £9^= H^TI = 2{ka)z[KiC08 e8 cos <t>8 - ^2 cos 8. cos <|>8] 

and /v 
E^ = - H^ = ZdcarL-Kjsin 4», + K2 cos 8. C08 e8 sin <|>8 

+ Kj sin ei sin 8J ; 

T. M. 

( 119) E^ = ^n - 2(ka)2 [-K2 C08 ei cos es 8in ^s " K> 8in ei 8in es 

+ ^i 8in4)8J 

and 

E^TI = - H^ = 2(ka)2 [-Kz cos 8i cos 4>s + Kx cos 88 cos <))8J   . 

Let us define the Rayleigh coefficient K as 

(120) E^ = K(ka)2 



174 

Then 

T. E. 

( 121) Ke^.e,,^) = 2[K1 co. 9, cos <|>8 - Kz cos Qi cos ()»,] 

and 

T. M. 

(122) 

K<j>(öi. e84»g) = 2[-K1 sin 4>8 + k2 cos ^ cos e8 sin 4>s 

+ ^j sine. 8in eaJ  ; 

K8(9i.ea.4)a) = 2[-K, cos B{ cos e8 sin <|>8 - Kj sin Q{ sin efi 

+ 1^1  8in4)8J 

and 

K<>(0i.e8l4)g)= 2[-Ka   cos &{ cos <t>s + Ki cos e8 cos <j)8J   . 

For backscatter (Qa - Gj,   <t>s = IT/2) 

T. E. 

(123) 1^(6) = 2[-K,  +k2   cos2e+k, sin^ej 

and 

T. M. 

Ke(e) = 2[-K2   co82b- K, sin'e+ß:,]   . 
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It is clear from Eqs.   ( 121-123)  that a knowledge of the dipole coef- 

ficients Ki  . . . ,   Ki .. . ,   suffices to determine the Rayleigh coefficient 

for any polarization and for any arbitrary orientation of source and 

receiver. 

For the general spheroid,  the dipole coefficients may all be 

obtained from the quantities Ia and 1^»   these are plotted in Figs.   39i 

40,  41,  and 42 as a function of the axial ratio for the prolate and 

oblate spheroids,   respectively.    For the perfectly conducting case 

we note that 

( 124) K3   =   - -  ^ 

and 

LK,    KJJ 

-i 

Thus all the dipole coefficients may be obtained from Ki  and K3 . 

These quantities are plotted in Figs.   43,   44,  45,   and 46 as a 

function of the axial ratio for the prolate and oblate spheroids, 

respectively.     From the curves in Figs.   39-46,  the Rayleigh coef- 

licienl lor the prolate or oblate spheroid with any combination of 

constitutive parameters for any polarization and orientation can be 

quickly obtained. 



176 

As an example of the use of these curves,   consider a perfectly 

conducting prolate spheroid with a 2:1 axial ratio.    From Figs.   4 3 

and 45,   Ki *   *• 62 and K3 21 3. 8.    Then from Eq.   ( 124) ,  Ki  = -1. 13 

and Kj  =-0.8.    Then from Eq.   (123) 

( 125) KTE(e) = 2[-1.62 - 1.13 cos2 G - 0.8 sin^ej 

and 
KTM(e) = 2[-1.62 CO820- 3.8 sin

2ö-  1.13J 

In Table V the Rayleigh coefficients are given for perfectly con- 

ducting spheroids with axial ratios from 1( 1) 10 and incidence angles 

efrom 0( 10°) 90° for both the T. E.   and T. M.   polarizations. 



177 

>y 
W 

2 

O 

W 
1-4 

u 

9 
o 
w 

w 

O 
PtJ 

0 
2: 

fa 
« 
O h 

D 
Ü 
»—I 

w 
3 

Q 

0 
u 

h 
U 
W 

W 
0. 

Cfl 
a) 
4) 

o 
4) 

<—t 
00 
c 
< 

c 
4) 

u 

^ SO ^ O ^ rg o rg T o o sO sO rg ^ vO rg  o 

o 
oo 

i    i    * 
o> r- O vO CO >£» O m rg m 00 -«f o ^ vO -* r«- 

o ^ o NO fvj 00 o O vö eg o ^ CO vO 00   00 CO O     -H 
<M ^ i—< sD ^H o 

—< 
■—< 

—> 
-H ON   -1 

—1 rg 
fM   T»* 

CO 

>o fVl 00 oo <M Tf 00 ^ ^t vO rg 00 rg o o rg o o 
o 

oo 
1       1        * 

00 h- in t* ^ vO -f sO vO sO o sO r- vO ^ >0  rg 
00 "^ o vO ^-^ oo o o ^ rg r- t o vO rg oo vO O  rg 

«^J CO ,— sO »-^ o #—» ^ ^^ O -. m rg  ro 
~* •—t rg CO 

M ^ O 00 o vO fM vO vO NO o rg "* sO o rg ^ >o 
O 't O ro o 00 O 00 O en o rg o CO  ^ vO »H    00 

o I      1      • • • • • • • • • t • • • •     • • t      • 
r- ^ o sO O 00 >o o o^ (M o in o r* r* ON in r-H      ^4 

<N> CO -H m r-H o #—i rg F-H r«- •-* co (M   O 
*-i <—i rg CO 

o T»< 00 rv] 00 rsj 00 vO eg vO ■<*• >o 00 >o Tf ■^ 00   •* 
o » o m ^^ O eg 00 ■^ »H m m vO oo oo r- ON OS 

o 1    1     • • • • • • • • • • • • • •    • • t     • 
>o If, JO r^ 00 o "g >-* pg CO o in rg r* CO    O CO ~    <VJ 

r—t CO •—< in ^H r- ■—i —1 i—i m -< o rg  >o 
<—< •—< rg rg 

M <NJ o vD o O "*• 00 00 rg ^ Tf 00 «M   •* "<tJ O  -* 
»-* PH ro rvj m «H r^ <VJ o "T rg r-« ^ o r- sO o m 

o 1     1      • • • • • • • • • • • • t •   • • •    • 
ir> in 00 h- NX> o 00 »-H 1- CO m sO rg 00 in o ^ CO  >- —< fNJ i—• ^ •—i >o •-H o ^H rg rg 

•■H 
NO rg  -H 

rg 

rg "^ f t 00 >o rg ^ 00 o >o o ^ "^ rg rg 00 ^ 
rg CO iD 00 00 o (SJ m 00 o ^ CO co r^ o O 00 

o i    i     • • • • • • • • ■ • • • •    • • •    • 
^ m r^ r^ ro o rvj rj in t o vO o o ^ -. CO "^ >o 

-H fvj CO i—i m 1—< t^ r-l ON rg fM rg in 

^ fM vO 00 o »M X) "f >o » t o rg rg rg rg rg rf 

o 
ro ^X> h- n ^1 ■—I >o in ^H o NO o —4 in NO JN ~->   r? 

i    i  m NO t- -, o X pg »o m r- r- o o in rg CO m in —^ r—• (VJ r—t co ^H .n fM >0 rg 00 rg o 

rg »M Tt« rg 00 00 >* ^ rg 00 O >* 00 rg o ^ •* pg 
O "* o ON f^ Tf f—t o in xO 00 <M CO r- O  co o ON m 

in >o r*- cy^ O *r CO o m m 00 CO o rg co rg in co 
•—1 •—« ~-i —< f—< rg i—< CO rg ■*  rg m rg  vO 

oo •* >o rg NO rsl o NO fM rf? >ö vO o 00 ^ ^ oo oo 
O -f >ß o IT) >■£> vO CO o O in ^ rg vO   00 rg -^ -. 

m in 00 00 O —i CO 
1—< 

in 
•—< 

00 00 
r—i 

rg 
rg 

•—1 

rg 
NO CO 
rg rg CO rg co 

o o o o o o M 'VJ 00 00 IM rg 00 00 NO >0 rg rg 00  00 

o 
o o m m —t r- r^ CO CO O o >o O co ro O o >o NO 

to ro m m oo 00 o o CO CO sO NO 00 00 -^ ^H    r? Tf NO   X> 
^-4 >—i ^H ^^ r-H —< '—* f—t rg rg  rg fM rg  rg 

W 2 W 2 W 2 w 2 w 2 w 2 W 2 w 2 w S w S 
H H H H h H h H H H h H H H H H H H H H 
—1    -H      fNJ rg ro fO -i* ^ in m vO vO r^ r^ CO 00   ON ON o o 

e/q    'OI^H^I JBIXV pioaaqds a^nioJd 

, 



178 

b3Ia 

IV 

8 

6 y 
y 
/ 

2 

10' 
8 

6 

4 

/ 

/ 

j 

2 

/ 

/ 

iftO 
PROLATE SPHEROID 

10 
e 

6 

/ 

[ 
b/a 

Fig.   39--Dipole coefficient Ia as a function of axial ratio. 
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Fig.   40--Dipole coefficient 1^ as a function of axial ratio. 
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APPENDIX   II 
ON  THE  NATURE  OF THE CREEPING  WAVE 

In the derivation of transient and impulse response approxi- 

mations for smootl   curved objects, a model for the creeping wave 

contribution is an important consideration.    High frequency asymp- 

totic solutions have been employed with some success in the pre- 

diction of the diffraction from smooth convex curved surfaces.    It 

is of interest to examine certain of these solutions in the time do- 

main,  where additional insight both to the scattering mechanism 

and to the nature of the approximation may possibly be gained.    In 

this Appendix,  attention will be given to the perfectly conducting 

circular cylinder and the perfectly conducting sphere.     The geo- 

metrical theory of diffraction solutions given by Kouyoumjian[ 43] 

and Peters[ 44]   for the cylinder and sphere and by Keller[ 45]   for 

the sphere '  will be examined in addition to Seniorls[ 46]   asymp- 

totic expression for the conducting sphere creeping wave. 

*    Keller's result is actually for axial incidence on a spheroid, 
but considered first is the specialization to the sphere. 
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A general observation concerning the geometrical diffraction 

theory can be made.    For conducting objects,  each surface ray mode 

according to the theory has associated with it a phase delay of at least 

-iki e   •'      , where   k  is the free space wave number and  i  ths geodesic 

path length along the surface of the diffracted ray.     Thus the geo- 

metrical theory expression for the diffracted field,  when transformed 

to the time domain,   must have a time delay of at least i/c provided 

the complete expression is one which leads to a causal time function. 

As will be seen,  there is an essential difference between the geometri- 

cal theory expressions for the cylinder and sphere.     The geometrical 

expression for the diffracted field of a cylinder ( normal incidence) 

leads to a causal time function whereas the corresponding expression 

for the sphere does not.     This difference is caused by the presence of 

a cylindrical caustic for the sphere case,  for which a phase jump must 

be added.     If a total caustic correction of other than - mr radians is 

dictated by the theory,  the resultant expression for the diffracted field 

apparently leads to a noncausal time function.     This is true for edge - 

as well as surface-diffracted fields.     In the frequency domain,   the non- 

causal nature of the inverse transformed diffracted field is of no conse- 

quence and in fact the caustic correction is essential for the success 

of the theory.     In the time domain,  however,  when one attempts to 

construct a model for the transient or impulse response waveform, 

the presence of a noncausal time function is not convenient. 
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Consider the far-field backscattered impulse response waveforms 

of the conducting sphere and the infinite conducting cylinder for broad- 

side incidence.     The sphere waveform is shown in Fig.   4 7, the cylin- 

der waveforms for parallel polarization ( solid)  and for perpendicular 

polarization (dashed)  are shown in Fig.   48.     These approximate wave- 

forms were obtained from the Fourier synthesis procedure! 13]   using 

the exact solutions for the respective scattering problems.    Fo:: the 

sphere,   475 harmonics with a fundamental of 0. 2512 sphere circumfer- 

ences in wavelengths were used      For the cylinder,   79 harmonics with 

APPROXIMATION USING  475 HARMONICS 

T 
4 W~ 

Fig.   47--Approximate impulse response waveform of 
conducting sphere,  backscatter. 
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PERPENDICULAR 

J~* 4 5 6 
UNITS   OF TRANSIT 
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PARALLEL 

Fig.   48--Approximate impulse response waveform of conducting 
infinite circular cylinder,   backscatter,  broadside incidence. 

Parallel ( solid)  and perpendicular (dashed) polarization. 

a fundamental of 0. 157 cylinder circurrfer^nceb in wavelengths were 

used.    In both cases, the pulse width and pulse separation of the 

synthesized incident cosine pulse[ 13]   are sufficient to ensure a 

reasonably accuracte approximate to the impulse response waveform. 

Assuming the progression of creeping wave contributions along 

*    An adequate representation of the sphere impulse waveform can 
be obtained from as few as 64 harmonics. 
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geodesic paths,  the creeping wave contributions for both the sphere 

and cylinder should appear first at a time t1 = (1 + IT/2) t0.    For the 

sphere ( Fig.   47) ,  the creeping wave contribution is a secondary peak 

occurring at the prescribed time.    For parallel polarization on the 

cylinder ( Fig.   48) ,  where the incident electric vector is effectively 

shorted out at the shadow boundary,  there is no evidence of a creeping 

wave contribution.    For perpendicular polarization the contribution 

begins at the above prescribed time.    The distinct difference in the 

creeping wave contributions for the sphere and cylinder is vividly 

evident in Figs.   47 and 48. 

One should note particularly that the creeping wave contribution 

for the sphere peaks at t' - ( 1 + w/Z) t0,   whereas the contribution for 

the cylinder ( perpendicular polarization)  begins at this same time. 

With reference to either the sphere or cylinder waveforms, the wave- 

form for t' >  ( 1 + IT/2) t0 might properly be explained by a creeping 

wave theory,   since the creeping wave cannot arrive before this time. 

Thus one would conclude that a creeping wave theory would be inade- 

quate for the sphere since it could not explain the leading edge of the 

peak,  but adequate  for the cylinder.    It will be shown, however,  that 

the referenced sphere solutions predict "precursors" in the time do- 

main which agree approximately, in the neighborhood of the peak, with 

the waveform in Fig.   47. 
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Consider first the geometrical theory of diffraction solution for 

the conducting cylinder of radius a for broadside incidence.    Both 

Kouyoumjian( 43]   and Petersf 44]    give the result ( retaining only one 

term in the diffraction and attenuation coefficients and neglecting all 

but the first surface ray mode) 

.  IT 

( 126) F™    = 0. 81 a1/3\1/6   e'3 \2 
(jw) 

. IT 

-Mkira+l. 65cJ^  a"2/3 V'1/3 ira]   e"JkR 

• e —_ 

Using an s notation ( s = jwt0 = j2ka) ,   shifting the phase reference to 

the specular point of the cylinder,  and normalizing such that the echo 

width predicted for the creeping wave contribution is 

( 127) <r(w)  =N/T   |Gcw(jw) |2 

( 128) G     (jw)   =- 
Ae-l^ + Ps1^] 

CW,  . A   e 

s^ 

where A = 0. 81 N/Tä ( 4TT) 1/6 

a  = ( 1 + IT /Z) t0, and 

1.   65TT2/3 

P ;  
4"3 
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Friedlander[ 47]   has obtained an approximate general result for the 

inverse Laplace transform of functions of the type in Eq.  ( 128)  using 

a saddle point technique. 

— \     8 n el *       J   ds 
J   J ,5/2 

E3-6nl    f6n-l\     f(>n-S\     3^2 ^ 

(129) 
i 

gl 

Zsfc 
u(T)    , 

the result in Eq.   ( 129) holding for T small and n 2.0.    Applying Eq. 

( 129) to Eq.   ( 128) • the cylinder creeping wave impulse response 

waveform predicted by the geometrical theory of diffraction is approxi- 

mately 

(130) FjV) - 
0. 8lN/a N/0. 825 e  •- 

t' - (l+ir/2)t, 

.uCf - (1 +Tr/2)t0) 

where Eq.   ( 130)  holds for t'Ao -1 - v/Z small.    Note particularly 

that the geometrical theory has led to a causal time function, i. e. , 

it is identically zero for t' < ( 1 + iT/2)t0.    Equation ( 130)  yields a 

good estimate of the creeping wave contribution for t' - (1 + ir/2)t0 

small. 
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The impulse response waveforms obtained by Fourier synthesis 

for the conducting circular cylinder shown in Fig.  48 are felt to be of 

some interest in their own right,  without regard to the comparison to 

the geometrical theory.    To the best of the author's knowledge,  such 

waveforms have not appeared previously in the literature.    For paral- 

lel polarization it is evident that except at the lowest frequencies, the 

geometrical optics specular contribution is an excellent approximation. 

For perpendicular polarization Peters[ 44]   has suggested the combi- 

nation of the creeping wave component in Eq.  ( 126) and the specular 

term as an approximation; and demonstrated the validity of this model 

for cylinder radii greater than 0. 3 wavelengths.    Again,  it is evident 

from Fig.   48 that such a model must fail at frequencies somewhat 

higher than for the specular model for parallel polarization and that 

the failure of the model is not due to inadequacies of the creeping wave 

component, but rather to the omission of additional terms for the 

optical contribution.    Finally it is noted that for perpendicular polari- 

zation in the neighborhood of t' ; 0+,    the details of the response wave-, 

form are somewhat obscured because of the finite width of the incident 

quasi-impulsive wave and the occurrence of both the specular jump 

and a second opposite sign discontinuity at the same instant    Details 

of the response waveform in this region are not germain to the present 

study,  and will not be pursued except to note that the synthesis 
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procedure could be used to resolve the question by the use of additional 

harmonics to narrow the incident pulse and by subtracting out the well 

known specular contribution. 

Turning now to the conducting sphere of radius a, it can be shown 

that the various high frequency asymptotic estimates for the creeping 

wave reduce to the following» where in each case the phase reference 

has been shifted to the specular point of the sphere and the expression 

normalized such that the echo area predicted for the creeping wave is 

given by 

(131) (r(w)  = ir|GCW( s) ' ' 

From Peters[ 44] 

(132) 

J4   A   -[as + Ps^] 

Gcw( s)   = 
e'*  Ae 

.M 

where A = 0. 54a( 4ir) 
2h 

o =(1 + ir/2)t( and 

P  ■ 
0. 8251T213 

.V3 
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From Keller[ 45] ,  specializing the spheroid solution to the 

sphere case 

(133) Gcw(.)  ■-jX."' e-[<••+ßB",1 

where .    > -=_      an 

. 

(I2)lb   qzD2 

ß =^W   '     **" 1-469354.     and 

D2 = ( 1. 16680)2 

It can be shown( 48]   that when the same number of terms are 

retained, Kouyoumjian,s[43] geometrical theory solution for the creep- 

ing wave and Senior's[ 46]   asymptotic high frequency expansion for 

the creeping wave are identical.    Using only the first term» and the 

acoustically hard component which dominates»  there is obtained 

(134) Gcw(s)   =-jAs*  e-l** + ^lto  -VB-10] 

-jls-1»3   e^QS ■f^8,h   -Ys-1'3] 

where A = 
1 

22/5 qo(Ai(-qo))2 

B = %fe I 20% 
-^)* 
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q0 = 1.01879 

Noting the distinct differences in the various formulas given 

above, it should be pointed out that each of the results has been shown 

to yield some degree of agreement,  when combined with the optical 

components» with the well known exact solution for the sphere back- 

scattering cross section.    Keller's expression lacks the correction 

terms to the diffraction and attenuation coefficients which were 

included by Kouyoumjian.    It was demonstrated indirectly by the 

author[ 49] *  in a study of the cone-sphere axial cross section, that 

Keller s result for the sphere creeping wave was incomplete.    The 

purpose here however is not a comparison or criticism of the various 

results in the frequency domain but an examination of the general type 

of waveform predicted in the time domain. 

Note in the expressions in Eqs.   ( 132) , ( 133), and ( 134),  that 

they are of the general form 

( 135) GCW( s)  = t  jF( s) 
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where F( s)  differs for the three formulas.    In Peter's case this is 
.IT 

one of the two terms obtained when e^  is expanded.    Assuming that 

F( s)  yields a causal time function, which will be shown later, it is 

seen that the asymptotic estimates of the creeping wave add a con- 

stant IT/2 radians phase shift.    If F( s) yields a causal time function 

then Gcw( s)  is noncausal.    To show this, 

(136) Ffw(f)   =   -^ C  Gcw(s)  e81' d 1 Zwj   J 
s 

A-jeo 

1 
=  -   Re4 

IT 

00 

yGCW(jW)eJwt,dW 

,cw.     . _ „cw.    . * where G     (-s) = G     ( s)     has been utilized.    To obtain a real time- 

dependent waveform,  the constant phase shift is assumed to change 

sign for negative frequencies.    From Papoulis[ 50] , 

(137) 

00 

J JWt' 1 
dw =   ■Fr6(t,)  +   j — 

thus 

(138) 

( 

iRe 
7T 

1 
t j  V e^' d« I  - + JL 

0 J 

If the inverse transform of F( s)  is f (t1) ,  i. e. , 

(139) 
-i 

Uf)   =j£'  [F(s)] 

then by convolution 
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(140) Fpf) '   ^'[GCW(.)]=Ujif0(t'-T)dT 
.00 

Turning now to consideration of F( s), for Peter's expression in Eq. 

(132) 

-[as +Ps1'3] 
(141) F( •)■-—■     

N/2 >2fe 

From Reference 51, 

-3s ^ 
(142) 

»-I e 
.2/3 ■4-   ^(-r) u(t,, 

where Ku(x)  is the modified Hankel fuiiction[ 52] .    Manipulating the 

result in Eq.   ( 142) and applying convolution. 

(143) •-i A     _e -[os +psI/>] 

TB  s ■] 

•n V N/t'-O 3   [ 

2P 
3/2 

S^Vt7^ 
^t'-a) 

It is interesting to note that for large arguments of the modified 

Hankel function, i. e. , for t'-a  small[ 52] , 

(144) Ki 
3 

r   zp* 
2ß 3/2 

3^*/f-a 
•sT? 33/4(t,-o)1'4       'WW?< 

2P w 

and Eq.   ( 143)  reduces to 
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4z 82/3 
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u(f-a) . 

which is exactly the result obtained by using Friedlander's approxi- 

mate formula ( Eq.   ( 129)) in Eq.   ( 141).    From Eqs.   ( 142) and ( 143), 

the exact expression for Peters' creeping wave in the time domain is 

(146) FiW(f)   = 
As/ß 

N/I ir vt'-o 
Ki 

3 

2ß 3/2 

S^NTF^ 
n(V-Q) 

Asfji 
lit1 J 

-00 

and for t'-a  small this reduces to 

I      2p3/2    1 
C    Ki \ vilzj u(T-a) 

T-O   (t'-T) 

(147) Fj     (f)   ~ 

[     2ß^     1 

2'^PI/4 (t'-a)1'4 
^t'-o) 

2P 3/2 

A 3^    r e 3^^^   ^^^ 

V)^Q1UL   (T-O)^(t'.T) 
dr 

( 27r) *• p 

For Keller's expression in Eq.   (133) 

(148) 

From Eq.   ( 142)  and the differentiation formula 
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(149) £•&•*.**9**§U%A 

uit'-a), 

where the prime indicates differentiation with respect to t' .    The exact 

expression in the time domain for the creeping wave predicted by Keller 

is 

(150) F?W(t') 
AsTf C 

.00 

T-O / 

VT-« 

gjygTgg 11 U
<
T

-
0
) 

2(T-O) 
312 

dr 
(t'-T) 

and for t'-a small. 

CW/ ( 151) Fi   (f)  ~ 
A3,/4 

Zir ^ ß174 

1 

4(T.O) 

J 
.00 

3/2 

33'2(T.a)^ 

2ß »^ 

T^^rT 
(t'-T) 
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For the results of Senior ( Eq.  ( 134)), F( s) assumes two forms 

(152) F.M  =AsW  e-t<", + ^,', -^"'J 

and 

(153) FZ(5)  =B.-'/» e-t"8^8"3  -V"bl 

Unfortunately, the inverse transform of these functions can only be 

written in terms of an infinite series.    Using Eq.   ( 140) .  the creeping 

wave time domain response of the Senior result ( Eq.   ( 144))  can be 

written,  but the explicit results are of little interest because of their 

complexity. 

The noncausal nature of the impulse response waveforms pre- 

dicted for the creeping wave on the sphere is demonstrated in Eqs. 

( 146)   and ( 150) ;  and implicitly from a combination of Eqs.   ( 15Z) 

and ( 153).    This is also evident from Eq.  ( 135) alone,  once the 

causal nature of the inverse transform of the frequency-dependent 

function without the constant phase shift is demonstrated.    It is further 

interesting to note that in the applications of the geometrical theory, 

i. e. , Keller,  and Kouyoumjian,  this constant phase shift is included 

because of a caustic correction,  and is not a part of the diffraction coef- 

ficient obtained from the solution of a canonical problem.    However, 

Senior's expression for the creeping wave also includes the constant 
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phase shift and in this case results from simply an asymptotic high fre- 

quency expansion of the exact solution.    In time domain terms, the non- 

causal nature is that of a network required to yield a ir/2 radians phase 

shift at all frequencies,    ^he impulse response of such a network would 

have a "precursor", and the network itself is nonphysical. 

Before further comment,  the time domain response waveforms 

predicted by certain of the asymptotic approximations will be calculated. 

This is done most simply for the results of Senior and Keller, using the 

Fourier synthesis procedure,  since calculations of the frequency- 

dependent expressions at *he requisite harmonics were available.       In 

both cases» two results are obtained; the causal waveform corresponding 

to removal of the K/Z radians phase shift, and the noncausal waveform 

corresponding to the complete expression.    The wavelorms for the 

causal case are shown in Fig.   49.    Included in Fig.   49 are calculated 

results from the analytical expression in Eq.   ( 149) with the simplifi- 

cation of the modified Hankel function for large arguments ( Eq.   ( 144)) 

employed.    In Figs.   50 and 51,  the corresponding noncausal results 

for the actual asymptotic high frequency expansions of Keller and 

*    Professor L. Peters,  Jr.   of The Ohio State University supplied 
calculated data from Senior's results.    Professor E. M. Kennaugh 
had previously obtained calculated data from Keller's result and 
had also obtained a portion of the time domain results via Fourier 
synthesis. 
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Fig.   49--Time dependent response v/aveforms predicted 
by Keller-Levy ( solid)  and Senior ( dashed) asymptotic 
estimates of creeping wave on conducting sphere when 

g-jir/2  phase factor removed.     Backscatter. 
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0.5 

-3      -2 

KELLER-LEVY 
NUMERICAL INVERSION 

-I 

Fig.   50--Time-dependent response waveform predicted 
by Keller-Levy asymptotic estimate of creeping wave 

on conducting sphere,  backscatter. 

Senior respectively are shown.    Aside from the demonstrated agree- 

ment of the analytical result for short time (t,-( 1 + iT/2)t0) small in 

Fig.   49) * the significant result in these figures is that the constant 

phase shift of IT/2 radians (  which amounts to convolution with l/t1 

in the time domain)  has transformed the causal waveforms into non- 

causal ones in approximate agreement in character with the creeping 

wave peak shown in Fig.   47.    It is apparent that the addition of the 

optical contributions to the noncausal response waveform in Fig.   51 

will yield approximate agreement in form with the sphere impulse re- 

sponse waveform.    This comparison is made in Fig.   52.    Shown are 

  
1 — 



205 

0.5 

-1.0 

UNITS OF  TRANSIT  TIME 
FOR  SPHERE   DIAMETER 

SENIOR'S  ASYMPTOTIC 
CREEPING   WAVE 
CONDUCTING   SPHERE 
NUMERICAL   INVERSION 

Fig.   51--Time-dependent response waveform predicted 
by Senior's asymptotic estimate of creeping wave on 

conducting sphere.     Backscatter. 

! 
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11 
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-0.7 U 1 '     i 
Fig.   52--Impulse response waveform of conducting sphere, 

backscatter.    Solid,  Fourier synthesis from Mie Series. 
Dashed,  Fourier synthesis from Senior's creeping 

wave estimate plus optical terms. 
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the Fourier synthesis derived waveforms obtained from the exact 

solution,  and from Senior's expression plus the optical terms.    It 

is easily seen from Fig.   52 that the combination of Senior's creep- 

ing wave expression with the optical contributions yields a reason- 

able approximation in the neighborhood of the creeping wave peak 

to the sphere impulse response waveform. 

In one sense,  the results in this Appendix undoubtedly are a 

reiteration of what is already known,  namely that asymptotic esti- 

mates of the creeping wave, when combined with the optical contri- 

butions,  yield a fair estimate of the echo area of spheres and 

cylinders over a range of higher frequencies.     From the time do- 

main viewpoint,  however,  the results explain a paradox which had 

existed as to how the asymptotic estimates of the creeping wave with 

the addition of optical terms could possibly yield good cross section 

data in the resonance region for the sphere.     The explanation lies in 

the noncausal nature of the predicted creeping wave waveform.    That 

is,  it was clear that if a response waveform beginning at 

t'  = ( 1 + 'ir/2)t   were added to the optical contributions (a negative 

delta function and a positive step function),  the result would not be 

a good approximation for the impulse response waveform of the 

sphere.     But the addition of a noncausal waveform can,  as has been 

shown,  yield a reasonable approximation. 
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The time dependent response waveforms predicted by high fre- 

quency asymptotic estimates of the creeping waves on spheres and 

circular cylinders have been demonstrated.    For the circular cylin- 

der a closed form expression for the waveform, holding for short 

times after the arrival of the diffracted front» was obtained.     The 

complexity of the asymptotic expressions precludes such a result for 

the sphere.    In this case a unique tool» the Fourier synthesis tech- 

nique, was used to demonstrate the character of the response.    This 

same approach can be used to resolve the question of the exact nature 

of the sphere response in the neighborhood of the secondary peak. 

That is, with the Fourier synthesis approach it is necessary to use 

many harmonics to secure a sufficiently narrow pulse width to ap- 

proximately resolve a jump discontinuity or a cusp type behavior 

of the waveform.    Using the Mie series,  it is not economically feasi- 

ble to secure the requisite harmonics.    However, the asymptotic 

estimates are easily calculated and it is a relatively simple matter 

to secure the necessary data.    Some preliminary work on this 

question has been done, utilizing up to 1800 harmonica with a 

fundamental corresponding to a sphere circumference of 0. 1 wave- 

lengths.     These results represent an order of magnitude decrease 

in the narrowest pulse width obtained using Mie series calculations. 

These results are incomplete and will not be detailed.    However,  it 

————————— . . - 
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was concluded that the secondary peak is finite (a previously unsolved 

question) and that an additional order of magnitude reduction of the 

pulse width would permit the magnitude of the peak to be determined 

as well as the slope of the waveform on either side of the peak.    It is 

clear therefore that asymptotic high frequency estimates of diffracted 

waves can be utilized in the time domain to resolve questions concern- 

ing the character of the response waveform at times corresponding to 

the arrival of the diffracted front.    The Fourier synthesis procedure 

is an indispensible tool in this case since many of the asymptotic esti- 

mates are not amenable to an analytical treatment.    However, as a 

device for "understanding" the scattering mechanism of an object, 

those asymptotic estimates which employ a nonphysical model and 

predict a noncausal waveform leave a great deal to be desired.     For 

the specific case of the sphere,  both time and frequency domain 

results demonstrate that the estimate of the energy arriving via 

creeping wave paths is correct.    But the interpretation that these 

paths are confined to great circles is incorrect.    Unless one is willing 

to accept group velocities for the diüracted fields which are greater 

than the speed of light,  the near time build-up of the creeping wave 

peak can only be explained on the basis of nongreat circle or non- 

geodesic paths.     Note that in terms of geometry,  the difference 

between the cylinder and sphere is that there are no possible shorter 
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paths on the cylinder ( i. e. ,   shorter than the cylinder circumference) 

whereas such shorter paths do exist on the sphere.    It is concluded 

therefore that the physical mechanism for creeping waves actually 

consists of pr'oagation along nongc jdesic as well as geodesic paths 

with the attenuation along the paths increasing with departure from 

the geodesic.    It is suggested that an examination of the time-de- 

pendent currents on the shadow side of the sphere when it is illumi- 

nated by an incident impulsive wave will reveal the location and 

relative attenuation of these paths.    Some evidence to support this 

has been found using calculations of the transient currents obtained 

by Kennaugh[ 53] .    It is estimated that the additional calculations of 

Mie series and corresponding Fourier synthesis procedure required 

to produce conclusive evidence of the nongeodesic paths as well as 

estimates of the attenuation would cost approximately $300. 00 on an 

IBM 7094 computer. 

An alternative approach confined entirely to the frequency do- 

main may also be possible.    The asymptotic estimate of the creeping 

wave derived by Senior is not unique.    This suggests that a different 

asymptotic expansion corresponding to a causal response waveform 

may be possible.    Such an expansion,  while of no greater utility than 

Senior's result in the frequency domain, would be of much greater 
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use in the time domain.    From a philosophical viewpoint, the high- 

frequency asymptotic estimates of diffracted fields must be consider- 

ed incomplete,  insofar as the time domain picture is concerned, 

until such estimates can be interpreted in the time domain with a 

strictly causal relationship between the geometry of the object and 

specific locations in time of the response waveform.    It is hoped 

that the results in this Appendix may provide the stimulus for future 

investigations in this direction. 
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