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ABSTRACT
&

A linear system analysis is applied to electromagnetic scattering
problems. The relationship between the incident and scattered fields is
reduced to a one-dimensional linear system by suitable restrictions, and
modeled as a linear two-port with time-invariant parameters. The two~
port is characterized by a real, time-dependent impulse response function
and a transform-related complex, frequency-dependent phasor response.
Two fundamental approaches for obtaining approximate solutions to
electromagnetic scattering problems are seen. Estimates of either the
frequency-dependent phasor response or the time-dependent impulse re-
sponse can be attempted. The material in this study is concerned with
the latter approach.

The concept of impulse and transient response approximations in
electromagnetic scattering problems and the general properties of such
waveforms are reviewed in Chapter I. It is demonstrated that the impulse
and transient response waveforms provide a primary conceptual model for
electromagnetic scattering which permits the integration of all existing
frequency data, calculated or :ncasured, and is simple in form. The model
is directly related to the geomet=ical and physical properties of the scatter-
ing object; does not change drastically for small perturbations of parameters;
and can be used to predict the response of the object to any type of incident
plane wave. Analytical and experimental methods for obtaining estimates
of the response waveforms are discussed, and a systematic procedure for
securing such estimates is suggested.

Estimates of the impulse and transient response waveforms of a
perfectly conducting prolate spheroid are obtained in Chapter II. Two
results are derived. The first is restricted to axial incidence and utilizes
the geometrical similarity of the sphere and spheroid to obtain the response
waveforms of the spheroid. The second result is for arbitrary orientation
of the spheroid and arbitrary linear polarization of the incident field.
Calculations from both results are compared with measured data on a 2:1
axial ratio spheroid.

Derivation of the response waveforms of the prolate spheroid
target requires, as input data, the Rayleigh scattering coefficient of the
target. The Rayleigh coefficients of prolate and oblate spheroids for
arbitrary orientation, axial ratio, and material properties; and for
arbitrary linear polarization of the incident field are given in Appendix I
Time domain interpretations of high frequency asymptotic estimates of
the creeping wave on conducting spheres and cylinders are considered in
Appendix II. The non-causal nature of creeping wave estimates for the
sphere is noted and suggestions for obtaining a causal response waveform
are made.
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CHAPTER 1
INTRODUCTION

Theoretical and experimental studies of the interaction of electro-
magnetic waves and finite material objects have received the attention
of numerous investigators for several decades. One therefore finds in
the literature[ 1] * an imposing array of sophisticated mathematical
techniques for calculating such interactions and an equally impressive
collection of calculated and measured data on the interactions for spe-
cific objects. These data are usually presented in the form of curves
or patterns of the radar cross section of the object. With the exception
of spherical objects, however, the theoretical contributions are charac-
terized by restrictions on the orientation and material properties of the
object and on the frequency, polarization and character of the incident
electromagnetic ficld. In the same vein, experimental studies reported
in the literature cannot hope to be all inclusive and inevitably involve

some of the same limitations.

Contributions prior to 1957 are covered by earlier Georgia Institute
of Technology bibliographies also given in Reference 1.
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One might summarize the present state of the art in prediction
of the radar cross section of an object as follows; if the object is very
large in terms of the wavelength, then several approximate or asymp-
totic theories of varying degree of complexity and accuracy are avail-
able for cross section calculations. The major difficulty encountered
in this portion of the spectrum is in estimating how large a particular
object must be in terms of the wavelength in order to achieve a given
accuracy in the cross section calculation using a specific approxi-
mation. If the object is very small in terms of wavelength then again
several approximate theories are available. In this case no particular
difficulty is encountered in the accuracy of the calculations but the
maximum object size which can be handled is rather strictly limited.
Such limitations are imposed by either the geometrical shape and
constitutive parameters of the object or by the storage capacity of
present digital computers.

Exceptions exist of course, but in general one can achieve a
reasonable estimate of the radar cross section of an object at the
extremities of the spectrum. In what is somewhat loosely referred
to as the resonance region[ 2] of an object, however, no such reason-
able estimate is readily obtainable. In certain cases, i.e., for a
specific object geometry, material properties and orientation, the

extension of a particular high or low frequency approximate or




asymptotic theory into the resonance region has been achieved. No
general extension can be implivd from these results however, and in
fact would appear to fail by the very nature of the assumed fields.

It would serve no purpose here to detail all of the approximate
theories referred to above. The point to be made is that for the
general finite, non-spherical object a significant portion of the spec-
trum usually cannot be analyzed by existing asymptotic or approxi-
mate scattering theories. Unfortunately, this gap in the spectrum
is often of most practical interest for cross section calculations.
Three additional comments are in order. First, it is customary with
most approximate methods to assume a plane monochromatic incident
field. Treatment of an arbitrary type signal often becomes a much
more complex problem. Second, the approximate methods in vogue
at present are not capable of systematically integrating calculated and
measured data from various portions of the spectrum into a single
model with a wider applicability. Thus, for example, good estimates
of high and low frequency scattering properties of an object arc not
combined to improve the estimate of its resonance region behavior.
Finally, the geometrical shape of an object is not simply related to
the form of the predicted scattered field. Consequently, minor
perturbations of the object geometry often require a tedious new

solution rather than a minor modification of an existing solution.
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It is the opinion of the author that no measurement or calculation
program, regardless of its scope, can hope to satisfy the present and
future requirements in radar reflectivity without the establishment of
a primary conceptual model whereby all the existing theories and
measurements on a given object and on objects of similar geometry
can be integrated. Such a conceptual model should also incorporate an
applicability to all types of signaling waveform including the ultra-short
pulse of current interest.

The subject of this study is the interpretation and application of
such a primary conceptual model for electromagnetic scattering. This
model permits the integration of all existing frequency data, calculated
or measured, and is simple in form. It is directly related to the geo-
metrical shape and constitutive parameters of the object; does not
change drastically for small perturbations of parameters; and can be
used to predict the response of the object to any type of incident plane
electromagnetic wakve. This primary conceptual model, the impulse
and related transient response waveforms of a scattering object, was
first proposed by Kenna;xgh and Cosgriff[ 3] in 1957. In their paper,
one facet of the impulse response concept, namely the use of high and
low frequency approximations to secure approximate resonance region

data, was exploited. Since that time, Kennaugh and his colleagues at

The Ohio State University ElectroScience Laboratory have published



results dealing with various aspects and applications of the theory[4-16].
A review of these accomplishments; a description of the general proper-
ties of the solutions to transient electromagnetic scattering problems;
and a discussion and illustration of various methods for approximating
the appropriate waveforms was published by Kennaugh and Moffatt[ 13]
in 1965. To the best of the author's knowledge, only three other publi-
cations dealing specifically with the impulse response waveform of a
finite three dimensional scattering object have appeared. Betten[ 17]

in 1962 discussed the experimental determination of the impulse re-
sponse waveform of an object and the synthesis of an equivalent net-
work. He also suggested a rather elaborate identification scheme
utilizing cross correlation of object waveforms. Brown[ 18] in 1962
presented an approach to the solution of pulse scattering by finite
obstacles which utilized the identification and separate treatment of

the individual terms in a wavefront expansion of the transforms of the
field vectors. Th.s latter work, while mathematically quite elegant,
adds little if any insight to the estimation of impulse response wave-
forms for finite objects. Finally, in 1963 Barabanenkov, et al. [ 19]
derived, apparently independently, the impulse response waveform
produced by the physical optics approximation as obtained by Kennaugh

and Cosgriff in 1957,



In this study, the first chapter develops the necessary groundwork
for investigating solutions to transient electromagnetic scattering prob-
lems. The general properties of such solutions are reviewed and defi-
nitions of the pertinent transient waveforms are given. Analytical and
experimental techniques for obtaining approximate estimates of the
impulse and transient response waveforms are discussed.

In Chapter II, the electromagnetic backscattering by a perfectly
conducting prolate spheroid is analyzed, using estimates of the impulse
responsé and related transient response waveforms. Two results are
derived. The first is restricted to axial incidence and utilizes the geo-
metrical similarity of the sphere and spheroid to obtain an impuise
response for the spheroid in terms of known approximate waveforms
for the sphere. The second result, based in part on the results of the
axial solution, is for arbitrary axial ratio and orientation of the
spheroid and for arbitrary linear polarization of the incident electro-
magnetic field. Calculations from both results are compared with
measured data for a 2:1 axial ratio spheroid and previously calculated
data for a 10:1 axial ratio spheroid.

Two Appendices are included in this study. In the first Appendix,
the Rayleigh scattering coefficients of prolate and oblate spheroids are

obtained. The results hold for arbitrary orientation, axial ratio, and



material properties of the spheroid and for arbitrary linear polari-
zation of the incident wave. These results are utilized in Chapter II
in deriving response waveforms of the prolate spheroid.

The second Appendix contains a time domain intepretation of
certain high frequency asymptotic estimates of the creeping wave on
cylinders and spheres. The non-causal nature of particular asymp-
totic estimates is demonstrated and suggestions for obtaining a
causal response waveform are made.

A. The Concept of Impulse and
Transient Response Waveforms

in Electromagnetic Scattering
Problems

Two basic assumptions are made which hold throughout this
investigation. It is assumed that between the input terminals of the
radiating system producing an incident field and the output terminals
of the receiving system detecting the scattered field only linear
processes with time-invariant parameters are involved. The scat-
tering process is viewed as a cause and effect relationship whereby
a transducer operates on the input or cause at the input terminals to
produce the output or effect at the output terminals. With the as-
sumptions given above, the transducer is a linear, time-invariant
operator and is uniquely determined from the knowledge of a single

function; the impulse response. Specifically, the cause is the incident

o R
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electromagnetic field in which the scatterer is immersed and the effect
is the scattered electromagnetic field defined conventionally ) the
difference between the total and incident fields. It is further assumed
that the input and output terminals are both in the far-field of the scat-
tering object.

Thus, as shown in Fig. 1, the scattering process is modeled by
a passive linear two-port with time-invariant parameters. The input
is E(t'), the output F(t'), and the two-port has an impulse response
function Fi(t'). The input and output are related through the cor-o -

lution integral as

@

(1) F(t') =g Fy7 E(t'-7)dr
ti
O3 ——0
E(t) PASSIVE, LINEAR, NETWORK F(t))
o— Fp(t) —o

Fig. 1--Two port representation of scattering problem.



In order to define the various quantities in Eq. (1) and to explain the
scalar treatment of the electromagnetic fields, it is necessary to
introduce a coordinate reference frame. This coordinate frame is
shown in Fig. 2. The incident plane electromagnetic field polarized

in the x direction

(2) §i=$‘cE(t-z/c) ,
x
§ F )
¢ da
,-"\\
« -
~
= 8
i \
—_— #z
L
y

Fig. 2--Coordinates of scattering problem.
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evaluated at z = 0 has an intensity E(t). With this plane wave incident
on the scattering object as shown in Fig. 2, a scattered field is pro-
duced. At an arbitrary location P in the far-field of the scattering
object, a normalized transverse component of the scattered field has
an intensity F(t). In order to remove the time delay between scatterer
and observer, a new time scale t' = t-r/c is introduced. The input
E(t') is simply E(t) with t replaced by t'. For the output F(t'),

t-r/c is replaced by t' in F(t). The impulse response waveform FI( t')
is the response when the input E(t') is impulsive, i.e., E(t') = §(t').
The lower integration limit t; in Eq. (1) is the initial value of t' at
which the impulse response waveform Fy(t') departs from zero. This
limit is, in general, not zero since the initial contribution need not
arrive at a time t = r/c. If L is the maximum object dimension then

t; > -L/c in the half-space z > 0 and t; > 0 in the half space z < 0.
The two-port has a frequency-dependent phasor response G(jw) which

is related to the radar cross-section of the scatterer as

2
(3) o(w) = n|G(jw)]

The frequency-dependent phasor response G( jw) and the time-

dependent impulse response waveform Fy(t') form a Laplace trans-

form pair.
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@
(4) G(jw) = cS Frt) e 9 g
0
@
Fy(t')= S G(jw) ' du '
2wjc vY_4,

or using s notation (8 = jw)

(5) G(s) = CS Fy(t') e'St' dt'
0
" ' t'
FI(t) = P S G(s)e ® ds
..Jco

Equations ( 3) and (4) define the normalization mentioned above. It
should be noted that the scattering object in Fig. 2 is located in the
half-space z > 0 of the coordinate frame. A more detailed develop-
ment of the normalized impulse response waveform Fi( t') is found
in Kennaugh and Moffatt[ 13] .

Certain points should be stressed concerning the two-port in
Fig. 1. Its time-dependent impulse response Fy(t') is dependent
on the orientation of the scattering object, the observation angles
( but not range) and the particular transverse component of the
scattered field selected. The electromagnetic scatterer properties
are uniquely determined by F((t'), but one cannot extrapolate this
statement without proof to imply that Fy(t') uniquely determines the

physical properties of the scatterer. It seems doubtful that two

e
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geometrically or materially different scatterers could ( for fixed source
and receiver locations and polarizations), have exactly the same phasor
response over the entire spectrum, but a unique determination of the
physical properties of the scatterer has not been proven.

The impulse response waveform Fj(t') is the .me-dependent
electromagnetic field intensity produced at the output terminals when
the input E(t') is an impulsive plane electromagnetic wave, i.e,,

E(t') = 6(t'). Once Fy(t') is known, the response waveform for any
incident waveform is determined by Eq. (1). Two other particular

response waveforms are of interest in this study and need to be defined.

The step response

@

(6) Fy(t') =S‘ Fi(7) u(t'-7)d~ ,
t

and the ramp response

@© t'
(7) FR(t') =S‘FI(T)(‘t'-'r)u(t'-‘r)d'r=SFU( T)dT
t) t,

The Laplace transform relations in Eqs. (4) and (5) state that
Fi(t') and G(jw) can each be derived from the other. But G(jw) is
known exactly for only one finite three dimensional shape; the sphere,
and even for this shape the transformation to obtain Fy(t') cannot be

achieved exactly. Thus, a study of the scattering problem in the time
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domain consists essentially of the development of a reasonable esti-
mate for the impulse response waveform Fy(t'). In exactly the same
way, the study of scattering problems in the frequency domain has
been, as discussed in the introduction to this chapter, the development
of reasonable estimates to the phasor response G(jw), but usually for
either the high or low extremities of the spectrum. A number of
distinct advantages to the time domain approach, as well as some dis-
advantages, will be ennmerated in the course of this study. It is hoped
that the time domain approach can be presented with sufficient clarity
and simplicity, and its utility demonstrated on a sufficiently complex
problem, that future investigators will move freely between the
domains to exploit the maximum potential of either approach.

It would be premature at this point to discuss the relative ad-
vantages and disadvantages of a frequency domain versus time domain
approach to an electromagnetic scattering problem. What is hoped to
be demonstrated is that one can incorporate into the time domain model
most of the advantages of a frequency domain approach while at the
same time exploiting certain unique features of the time-dependent
waveform model. Consideration at the moment is to be restricted to
simply the solution of a given electromagnetic scattering problem

involving a single isolated object. In the opinion of the author, the

ol R
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following remarks justify consideration of the time domain approach

and at the same time indicate the basic premises upon which such an

approach is based.
1. It is to be generally expected that, compared to the
complicated complex phasor response G(s) of a given
object as a function of frequency, the real, time-de-
pendent waveform Fy(t') will be relatively simple. In
the context of this study, the scatterer can be represented
by a distributed constant, linear, time-invariant two-port
network. As such, its impulse response waveform should
be relatively simple compared to the transcendental
response functions characterizing distributed systems in
the frequency domain.
2. The impulse and transient response waveforms of a
scattering object must be related in a rather direct way
to the geometry and constitutive parameters of the object.
It will be shown, for example, that the area beneath the
ramp response waveform is proportional to the Rayleigh
coefficient; and hence, to the volume of the scatterer.
More fundamentally, however, as the impulsive or
transient illumination moves across the object, only that

portion of the object which has been illuminated can possibly
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contribute to the scattered field waveform. Therefore, up
until the time when the transient illumination has passed
completely over the object, there is a direct correlation
between the response waveform at a given time and a spe-
cific portion of the object. Furthermore, since we are
dealing with a physically realizable system which cannot be

a predictor, two objects which present initially identical geo-
metrical and physical properties over a given region must
yield identical response waveforms up to the time corre-
sponding to complete illumination of this region, regardless
of their geometrical and physical properties beyond this point.
3. In principle at least, it is possible to incorporate into an
estimate of the waveform FI( t') all of the best features of
various approximate or asymptotic estimates of G(s) while at
the same time utilizing ccrtain unique features of the time-de-
pendent waveform. If one has certain estimates of G(s) whose
validity is restricted to particular portions of the spectrum, it
is far from clear how consideration of these estimates can be
used to approximate a G( s) corresponding to the remainder

of the spectrum. In the time domain however, the estimates
of G( 8) become time-limited port‘.ns of the waveform, and it

is xnown that these pieces must combine with other pieces to

R ——
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produce a single waveform. Certain conditions on this total
waveform are known from low-frequency derived moment
conditions. Even very crude estimates of how the pieces

are combined must add some new knowledge concerning G( s).

4. The convolution bintegral in Eq. (1) relating the response
waveform to the interrogating signal provides an additional
understanding of the relationship between the contributions

of G(s) from various portions of the spectrum and the response
waveform Fy(t'). Let the input signal be a monochromatic
continuous wave. The graphical interpretation of convolution

is that of reversing one of the signals with respect to time and
then sliding one over the other. At any given time, the response
is given by the integral of the product of the two waveforms over
that time interval where they coincide. For the monorhromatic
input, this consists of sliding a sinusoid of a given period across
the reversed waveform Fy( -t'). It follows that at relatively low
frequencies, the response can be influenced little by the minute
details of the waveform; therefore the response at low fre-
quencies is basically dependent on the general size and shape

of the waveform. As the input frequency increases, more and
more of the waveform detail is important and slowly varying

portions of the waveform less important since the contributions
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from these are effectively cancelled by the positive and negative
portions of the sinusoid. Two conclusions can be drawn from
these remarks[ 13] : (1) The general shape and size of the
impulse response waveform Fy(t') is dictated by the low-fre-
quency response of the object and (2) The fine structure and
detail of the waveform is controlled by the high-frequency
response of the object. Thus if one constructs an estimate
of Fy(t') using the moment conditions, it is to be expected
that such a model would fit relatively wezll at low frequencies,
but would require modifications and corrections to predict
the response well at high frequencies.

5. The use of experimental data in deriving estimates of G( s)
or Fy(t') is an important consideration. The monst straight-
forward but probably least effective method for utilizing such
data is simply the comparison of theoretical results based on
a model obtained wholly from analytickal considerations with
such data. If only a limited amount of experimental results
are available, such comparisons are not conclusive and often
not indicative of the changes required in the model. From
the discussion in (4) above, it is apparent that one should be
able to construct a crude model of the response waveforms

from a limited number of low-frequency measurements, and
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that systematic procedures for incorporating such data with
theoretical estimates of Fy(t') should be feasible.

This study does not fully develop the methods and techniques
mentioned in (5) above, and it will be found that the model of Fy(t')
developed in Chapter II for the prolate spheroid target is obtained
without consideration of experimental data; such data only being used
to compare with calculations from the model. However, we shall
discuss how such experimental data might be more effectively used
and the possible directions of future research in this area.

B. General Properties of the

Impulse and Transient
Response Waveforms

The frequency-dependent phasor response G(jw) and the corre-
sponding time-dependent impulse response waveform Fy(t') are both
governed by Maxwell's equations. Therefore Fy(t') must be a causal
function, i. e., a backscattering response cannct appear at the output

terminals before the time t' = 0. The square integrable criterion

@
1 . 2
(8) - |Gljw) | dw < @ )
™
0
can be applied provided, as pointed out by Paopulis| 20], all constants
and positive powers of jw are first removed from G( jw). Note that it

does not necessarily follow that approximate or asymptotic estimates
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of G( jw) will also lead to causal time functions. It will be shown in
Appendix II that certain high-frequency asymptotic estimates of G( jw)
lead to non-causal time functions.

The definition in Eq. (3) shows that G(jw) must have the di-
mension of length. From Eqs. (4), (6), and (7) respectively, it is
seen that the impulse response Fy(t') is dimensionless; the step re-
sponse FU( t') has the dimension time; and the ramp response FR( t')
the dimension time squared. It is most convenient to choose a time
scale measured in units of the transit time for some characteristic
dimension of the scatterer. If £ is such a characteristic length then

the transit time

(9) to'_‘l/Cv

is set equal to unity. This can be interpreted as choosing a time
scale such that c is unity and a distance scale such that a free space
wave traverses the length £ in unit time.

The low frequency scattering properties of any finite, three di-
mensional object provide interesting and useful conditions on the
impulse and transient response waveforms. At sufficiently low fre-
quencies, it is known that the phasor response, G(s), of a scattering

object can be expanded in a Taylor series about the origin s =0 as
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[ o]

(10) G( s) 22 an " '

n=0
where Rayleigh's theory dictates that the coefficients ag and a; in
such an expansion are zero while the coefficient a, is proportional
to the scatterer volume. Note that the coefficient a, depends upon the
shape, orientation, and constitutive parameters of the scatterer as
well as the polarization of the incident and scattered fields. Expand-
ing e-8t' in the definition integral in Eq. (5) in a Taylor series about

the origin s = 0 there results,
®

(11) S Fi(t')dt' = a5 =0
0

@®

S t' Fy(t')dt' =a; =0
0

@

) 2a
S t2F(t)dt' = —=
0

. n ' " = (-l)nn.'a
S t'UFy(t')dt' = - L

These are moment conditions on the impulse response waveform
Fy(t'). An integration by parts of the second and third expressions
in Eq. (11) shows that the first three moment conditions can be

interpreted as requiring that the net area beneath the impulse and
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step response waveforms be zero and that beneath the ramp response
waveform proportional to the so-called Rayleigh coefficient, a;, of

the scatterer. A word is in order concerning this proportionality
factor which has caused some difficulty in the past. With the definition

in Eq. (11), the Rayleigh term (for small w) is

(12) G(jw) = 3 =
2° 22 tg

-a,( 2w) 2 a2 -a,(2m)? (z )2

A

where £ is some characteristic dimension of the scattering object. If

the Rayleigh coefficient, K, is defined by

1 \2
(13) G(jw) =K(X-) ’
then
-ap(2m)®
(14) K-‘-——'z——— ’
to

and

R

(15) : FR(t)dt! = ——5—

Note that the moment conditions in Eq. (11) were not obtained from

the final value theorem of the Laplace transform theory

(16) lim s8G(s) = lim FI(t') ’

s—~0 t'—>o
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which theorem simply yields the result that in the limit of large time
the response must decay to zero. This latter result is clearly reason-
able on physical grounds.

The expansion for G(s) in Eq. (10) is not unique unless a phase
center is defined. Since the first non-zero term is the coefficient of
82, the choice of phase center does not change the first three moments.
However, to employ moments higher than the third both the choice of
phase center and the origin of coordinates on the t' scale must be
specified. The first two moment conditions are applicable to any
finite, three dimensional object. For a great many targets, the
Rayleigh term (coefficient of s?) can also be estimated making the
third moment applicable. The higher order coefficients can only be
obtained for particular objects, therefore the usefulness of the higher
order moment conditions (n > 2) is restricted to a small class of
targets. An exception to this exists for the case of objects which have
a center of symmetry. * Stevenson[ 21] has demonstrated that for

3

this class of targets the coefficient of the s° term is identically zero

when the phase center for the expansion is chosen at the center of

* An object has a center of symmetry, 0, if it is symmetrical to a
transformation consisting of rotation by w radians about an axis
through 0 and then reflection in a plane perpendicular to the axis of
rotation and containing 0.
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symmetry. Therefore for this class of objects, the fourth moment
condition can be utilized. If the phase center is chosen at the center
of symmetry and the origin of the t' axis at the point where the inci-

dent impulsive wave first encounters the body then

@©
' 12La
(17) 5 t'3 Fy(t') dt’ =——c—’ .
0

where L is twice the linear distance from the center of symmetry to
the t' origin and is a negative quantity. Equation (17) may also be

written as

w

(18) ét'FR(t')dt' - 2L

The moment conditions given in Eq. (11) implicitly assume
that all the moments of the time-dependent impulse response wave-
form exist[ 22] . It is clear that for the nth moment to exist, Fi(t')

.n+1. In the latter

for large t' must vanish at least as fast as 1/t
portion of this section a discussion of the proper analytical models
for F{(t') and G(s) makes it clear that insofar as the approximations

of interest for these functions are concerned, the assumption of the

existence of the moments is not unreasonable.
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A well known high frequency estimate of G(s) is the physical
optics approximation. It can be shown[ 23] that this approximation
predicts the following form for the step response waveform Fy(t')
for conducting objects if the observation location is constrained to
the E or H planes of the incident field.

E plane, direct polarized component

-8
' lSoo ' g.(g-) A A
(19) FU(t.ﬁ.ﬂ)-? S 6t e §- nds
sill

E plane, cross polarized component
' =
(20) Fylt' 8,) = 0

H plane, direct polarized component

A A

-1 - -£

(21) FU<t'.e.ﬁ>=——zSS slo -2 B2 a 4,
mc c

gill
H plane, cross polarized component
i ' p- (g -8

(22) Fy(t',0,p) =—2nF gs glo Bo (88 a AL

mC c

gill

A

In the above equations (as shown in Fig. 3), g is a unit vector in the
A

direction of propagation of the incident field; £ is a unit vector in the

direction of propagation of the scattered field; 7 is the unit outward

normal from the scatterer surface; and p is the position vector of a
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Fig. 3--Coordinates of scattering problem.

point on the scatterer surface. P is the angle between the unit vectors
A :
/g\ and § (B £ w) and sﬂ‘l is the illuminated surface of the scatterer.

For the backscattering case (f = w) specializing to the orientation in

Fig. 2
1 dA(z)
=1 ’ = /2
(23) Fyl(t') T z =ct'/
and
a® A(z)
" = , =ct'/2
(24) Fy(t') = T z =ct'/

S ]
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The function A(z) measures the area of the scatterer surface between
the x, y plane and a cutting plane at z projected orthogonally on the x,y
plane. A detailed derivation of Eq. (24) is given in Reference 13.
The bistatic results in Eqs. (19), (21), and (22) have also been in-
terpreted in terms of area functions[ 23] . It can be shown[ 13] that
the physical optics result in Eq. ( 24) always satisfies the zero
moment condition [ first of Eq. (11)] but does not in general satisfy
the higher order moments.

Similar time domain interpretations can be made of other high-
frequency approximations, usually however only with reference to a
particular scattering object. If the inverse transformation [ Eq. ( 4)]
can be achieved in closed form then an analytical result is obtained.
If the inverse transformation cannot be achieved, a Fourier synthesis
procedure can be used to obtain an estimate of the time-dependent
waveform. The Fourier synthesis procedure is adequately described
in Reference 13. In essence, given the phasor response G(s) ata
sufficient number of harmonically related frequencies, estimates of
the time-dependent response waveforms can be generated.

It will be instructive at this point to examine certain of the
approximate impulse and transient response waveforms which have
been obtained for specific objects. The interest here is in noting the

salient features and characteristics of the waveforms. It is stressed
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that these are far or radiation field response waveforms and the con-
clusions drawn from them are restricted to that region. The back-
scattering impulr~, step, and ramp response waveforms of a perfect-
ly conducting sphere[ 13] are shown in Fig. 4. The sphere radius is
a and the time scale is in units of the sphere diameter transit time
(to = 2a/c). In this figure, as well as those presented in the re-
mainder of this study, the delta-function pulse of weight a is denoted
by a vertical arrow with a by the arrow head. For the impulse re-
sponse waveform, the incident waveform is a positive delta function
pulse of weight unity. The impulse response waveform consists of a
negative impulse of weight a/c followed by a positive jump of 0. 5 and
a secondary negative maximum at approximately t' equal 2. 57t,.
Beyond this secondary negative peak the waveform damps rapidly,
becoming negligible in comparison to the earlier portions for times
greater than approximately 6 transit times for the sphere diameter.
The secondary negative peak at t' 2, 57t, corresponds to the arrival

of a diffracted front. Both the negative impulse and 0. 5 jump at

t' =0 are correctly predicfed by approximate high frequency solutions.

The response waveforms of the conducting sphere, particularly the
diffracted or creeping wave peak at t' = 2. 57t,, will be discussed in
Appendix II. One should note that the exact nature of the creeping

wave maximum is not resolved in Fig. 4. Itis important to discern
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Fig. 4--Approximate impulse, step, and ramp response
waveform of conducting sphere. Backscatter.
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two main points from the waveforms shown in Fig. 4. The first is that
the successive integrations to obtain the step and ramp response wave-
forms from the impulse response result in a considerable smoothing
of the latter waveforms. Thus distinct singularities and peaks present
in the impulse response waveform are effectively masked in the corre-
sponding ramp response and one can conclude that a reasonable
approximation to the ramp waveform is more simply obtained that an
impulse response approximation. Clearly, each waveform contains
all the information; for example the secondary peak in the sphere
impulse response becomes at most a subtle change in slope in the
ramp waveform, but an estimate of the ramp waveform which ignored
the change in slope would still be a reaéonable approximation over a
range of lower frequencies. The second point of interest is the ef-
fective time-limited nature of the response waveforms. For times
greater than 5 or 6 tg, the response waveforms aave decayed to a
negligible value. Regardless of the exact nature of this decay, it is
evident that an approximation to the waveform which fits well for

t' < 6 t, and which vanishes for large times would, for all practical

purposes, provide a satisfactory model.

e o
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The response waveforms shown in Fig. 4 were obtained by a
Fourier synthesis procedure using calculated values of G(s) from the
Mie series. In Fig, 5, the approximate impulse response waveforms
of several other objects are shown. The waveforms in Fig. 5 were
obtained from a combination of high-frequency estimates of G(s) and
the lower order moment conditions. In the case of the cone-sphere[ 8]
(Fig. 5b) and the prolate spheroid[ 10] ( Fig. 5d), the sphere results
in Fig. 4 were also utilized. The reader's attention is called to the
correction in the response waveform shown for the flat-based right
circular cone in Fig. 5a. The response waveform for this object
given in Reference 13 inadvertently reversed the time behavior of the
doubly-diffracted term from the base.

Some additional characteristics of the impulse response wave-
form can be deduced from the waveforms shown in Fig. 5. There
is clearly a general relationship between the object geometry and the
response waveform; i. e., the various singularities and peaks in the
response waveform occurring at given times can be directly associated
with a corresponding geometrical feature of the object. Furthermore,
the estimated character of the singularity or peak can also be deduced
from the geometrical feature. For example, the response waveform
associated with the diffraction from smooth convex surfaces ( the

secondary peak in the sphere impulse response of Fig. 4) has the
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same general form for the sphere, spheroid and cone-sphere. Ina
similar fashion, it is seen from Fig. 5 that single diffraction from
edges has a delta function character and double diffraction a

1/Nt" =T behavior. It is clearly evident in Fig. 5 that objects which
initially present identical geometrical and physical properties to the
incident transient excitation must also have identical response wave-
forms for an initial time period. The impulse response waveforms
for the cone, cone-sphere and double cone in Fig. 5 are identical
until a time corresponding to the arrival of the incident impulsive
wave at a change in geometry. Consider a more explicit example.
Compare two cone-sphere targets (as in Fig. 5b) identical in every
respect except for an axial needle protruding from the sphere in one
case. For an incident impulsive wave along the cone axis toward the
cone tip, the impulse response waveforms of these targets would be
identical for all t' less than % 6.3t,. For times larger than this, the
two response waveforms may differ markedly. We emphasize the
fact that, as the impulsive wave moves over the object in the illumi-
nated region or the transient currents excited by the incident wave
move beyond the shadow, a change in the geometry or composition
of the object cannot be anticipated. The excitation, propagating with
a finite velocity, must reach the perturbation before a change in the
response waveform can occur. Thus if one were attacking the scatter-

ing problem of the perturbed target, the early portion of the waveform
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would be known and the analysis could be concentrated on the effect of
the perturbing geometry. A question clearly exists as to exactly when
the forcing function, i. e., the incident impulsive wave, ceases to
influence the transient currents induced on the target. From a geo-
metrical optics viewpoint, the forcing function would shut off at the
shadow boundary. More realistically, the impulsive wave probably
continues to influence the induced current somewhat beyond the
shadow boundary but confined to the neighborhood of the boundary.
Therefore in the case where a change in the geometry or composition
occurs clese to the shadow boundary, some uncertainty would exist
in pred.cting exactly when the response waveform should depart from
the unperturbed case. This causality feature of the response wave-
form with respect to a given geometrical feature of the target is
extremely useful in devising estimates of the waveform. That is, in
most cases the location in time if not the character of the response
due to a specific feature can be determined.

The most important question in the application of the time do-
main concepts discussed thus far in this chapter is: What is a valid
general analytical model for the time-dependent response waveform
Fi(t'), or alternatively for the frequency-dependent phasor response
G(s), in a scattering problem? In the context of this study, the

scattering object is a two-port transducer and the two-port is a linear,
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distributed-constant system. Thus G(8) must be some combination
of rational and transcendental functions of s. Unfortunately, the
literature on the analysis of distributed constant systems via trans-
form methods is quite limited compared to that on lumped constant
idealizations. Two points should be made; first, the impulse re-
sponse of a lumped constant system is only an approximation (at
sufficiently high frequencies the system is distributed), but one
which is sufficiently good for the frequency ranges of practical inter-
est, secondly, some circuit concepts developed by transform methods
with reference to lumped constant systems may have to be modified
for application to a distributed constant system.

It must be stressed that in the context of this study, what is
sought is an approximate analytical model capable of producing a
reasonable estimate of Fy(t') or G(s) in the range of practical inter-
est. For example, the dc and optical properties of the scatterer are
not really of interest here; and consequently, the estimate of G( s)
need not be valid at these limits of the spectrum. Such a band-limited
approximation for G(s), or alternatively for Fy(t'), is further
justified when one considers the effective bandwidths of practical
radar systems. The question becomes therefore: What is a sufficient-
ly general physical model of the scattering process in such a band-
limited approximation? Clearly, the necessary complexity of the

physical model depends to some extent on the specific scattering
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object and one cannot rigorously justify the assumption of any particu-
lar model for the general object. However, the representative wave-
forms shown in Figs. 4 and 5 do illustrate some of the characteristics
the general model must be able to reproduce. Specifically, it can be
seen that over limited time ranges, the model must be capable of
generating an increasing rather than decreasing function with time
and also admit to at least approximations of various types of singu-
larities. Finally, for moderately large times the model must produce
a rapid damping.

Consider first the large time behavior of the impulse response
waveform. It is known[ 24] that in any passive or stable active
lumped-constant network, the force-free behavior decays exponential-
ly* so that a short time following the transient interval only the forced
behavior survives. In the present case of a distributed constant sys-
tem, this generalization cannot be made precisely because of the
presence of the transcendental functions of s. However, given suffi-
cient elements, one can synthesize an approximation to the distributed
constant system using lumped elements. Clearly this lumped constant
approximation, regardless of the number of elements needed to secure

a reasonable estimate, must decay exponentially for large time. For an

* In the general case one has a summation of exponentials, but for
large time the mininmium decay rate dominates and the response
approaches an exponential decay.




36
approximate model for Fi(t') an exponential decay for large time is
assumed, i. e., beyond some finite value of t' which will vary with
the scatterer, an exponential decay of the waveform is enforced.
Physically, this exponential decay is associated with radiation and
dissipation effects. If the inverse transformation of Eq. ( 5) is

written as

y+ jo
1 t's
(25) Fy(t') = S G(s) e ° ds y>-a
2wjc )
Y-)®

then a is the minimum exponential decay rate of the impulse response
waveform for large values of t' . The results in Figs. 4 and 5 indi-
cate that @ is reasonably large for practical scatterers.

It is also known[ 24] that for lumped constant systems with
simple poles the most general representation of the impulse response

waveform is a linear combination of terms of the type

N.
(26) f(t) = Z A, e®nty(y
n=1

This in fact is the most general time function having a rational
Laplace transform when the Re(a,) < 0. It is immediately clear
that one would require N large to approximate the response wave-
forms in Figs. 4 and 5 with a function of this type, except for large

t' . However, if the real part of the a, are unrestricted and a delay

. S - = e S, TS g
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factor is introduced then a linear combination of terms of this type
should be capable of achieving reasonable estimates of the time re-
sponse waveforms with just a few terms. A possible analytical model

for the impulse response waveform is

M

(27) Fylt') =Z Am 8(t'-t )
m=1

K N
+ Z Z Bnk eb“kt'[ u(t'-Ty) -u(t'-Ty4p) ]
k=1 n=1 Tge1=® .
The model in Eq. (27) consists of weighted delta function singularities
at selected instants plus sections of sums of exponential functions and
a final exponential decay. Note that there are no restrictions on the

real part of the b, except in the final time interval, i.e., t' > Ty .

In this final time interval
(28) Re(an) <0 ’

to ensure an exponential decay of the response waveform for large
time.

Excluding the delta function singularities and the exponential
decay for large time, the analytical model in Eq. (27) is a super-
position of bounded, time-limited waveforms in sub-intervals or
sections. The number of sub-intervals into which the response

waveform is separated is finite for any scatterer, and judging from
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the response waveforms in Figs. 4 and 5 will usually be no more than
3 or 4 The point is that thie number of sub-intervals (K-1), their
relative location ('I‘k) and duration (Tk+l - Tx) is selected from an
examination of the geometry of the target. Locations on the target
where changes in the curvature or the derivatives of curvature, or
the composition of the scatterer occur are natural join points of the
sub-intervals. With this type of model it is clear that both experi-
ence and a knowledge of the known response waveforms for various
objects (a catalog of known response waveforms) is an indispensable
aid in making a judicious choice of the model for a given target.

It is not intended to imply in the compactly written analytical
model in Eq. (27) that the same number of exponential terms neces-
sarily be used in each sub-interval. The number of terms required
in each sub-interval will depend on the complexity of the waveform,
primarily at the end points of the interval. It is intended that the
character of the response at the joins of the sub-intervals be deter-
mined from various approximate or asymptotic theories and the ge-
ometry of the shape. In this regard it is evident that the analytical
model in Eq. (27) cannot, in its present form, faithfully reconstruct
singularities such as those corresponding to double diffraction ( Fig.
5a). However, such cusp type singularities are usually predicted by

an asymptotic theory and are associated with abrupt discontinuities in
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the curvature of an object. Such discontinuities are mathematical
idealizations for real targets which exhibit less perfect curvature
transitions. It is contended that a practical interpretation of the
singularities resulting from such discontinuities is a bounded vari-
ation of the response waveforimm. Therefore an approximation to the
singularity can be obtained with the analytical model proposed in
Eq. (27).

Neglecting the delta funciion singularities, this analytical
model of the impulse response waveform is a superposition of bound-
ed, time-limited waveforms with various delays plus a final expo-
nential decay. In the s domain, the model corresponds to a combi-
nation of entire functions{ 25], i. e. , functions which have no singu-
larities in the finite portion of the plane; and rational functions.
Such a function, i. e., one made up of entire and rational functions,
is known as meromorphic in the unextended plane. The analytical

model for the phasor response is

M
(29) G( s) =Z Ap e tm®

m=1

K
D)
-

k=

bnk' 8

N
Z Bnk [e(bnk- S)Tk""l _e(bnk‘s)Tk]
n=1

—
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The analytical time domain model in Eq. (27) and the corre-
sponding phasor response in Eq. (29) have not been based on an
assumed physical model for the distributed constant system but rather
on the known impulse response waveforms of certain representative
scatterers. It is clearly not imperative that the analytical modei be
linked to a particular physical model; but such a correlation is advan-
tageous as a partial justification of the model. Franks[26] has shown

that the finite impulse sequence
M
( 30) £( 1) =Z Am 5(t-trg) ,

m=1
given as the first part of Eq. (27) corresponds to the impulse re-
sponse of a network consisting of delay lines lumped loaded with re-
sistors. He has also shown that the impulse response of delay lines
with general lump loading can have the bounded, time-limited
behavior corresponding to entire functions in the s domain. Franks
suggested a segmental impulse response involving an exponential sum
approximation in each interval similar to the second part of Eq. (27)
for such a network. In his case however, it was stipulated that the
real part of the bpk be less than zero. However, the purpose of
Frank's approximation was for the realization of a segmental impulse
response which consisted of segments of time functions having rational

Laplace transforms betwcen critical break points corresponding to
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lengths of delay line. If one replaces the delay line with finite lengths
of uniform transmission line, then the segments of time functions will
no longer have rational transforms. Th:- peneral representation in
Eq. (26) for time functions with rational transforms is no longer ade-
quate and a less restrictive representation is required. A possible
interpretation of the physical model corresponding to the approximate
analytical representation in Eq. (27) consists of a finite length of
uniform transmission line lump loaded at various intervals. As a
practical physical model to approximate the scattering of an electro-
magnetic field by a finite three dimensional object, such a represen-
tation does not seem unreasonable.

Some final comments on the analytical model in Eq. (27) are
necessary. The impulse response waveform F(t') must be real,
therefore a nzcessary relationship between the coefficients in the
exponential sums exists. If the b, are complex, they must exist
as conjugate pairs and the corresponding B, are .:;4al in magnitude.
If these B, have the same sign they are real, :f they have the op-
posite sign they are imaginary. If the by are purely real then the
Bk are also purely real. In some cases it may prove advantageous
in terms of determining the bpy and Bpy in a particular interval to

write the exponential in a shifted form
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(31) B, ¢Pnk(t'-Ti)
in order to isolate B, when t' equals T).

At best, the preceeding discussion has perhaps achieved a rea-
sonable rationalization for the use of the analyiical model. A rigorous
demonstration that the analytical model has the physical interpretation
suggested has not been given, nor has it been demonstrated that these
models are necessarily a valid approximate represent. .on of an
actual scattering problem. At this point in the development of impulse
response methods in scattering problems, however, it is felt that such
rigorous demonstrations are not necessary. There is evidence[ 13]
that the analytical model in Eq. (27) vields adequate representations
of the response waveforms for certain objects. That is, the published
estimates of the response waveforms for particular targets[ 13],
which have been verified by comparisons of the corresponding phasor
responses with measured or calculated data, were achieved with the
implicit assumption of the analytical model suggested here. Thus
while a more rigorous basis for the analytical model is desirable,
it is not a prerequisite for further applications of the impulse re-

sponse approach.
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C. Analytical and Experimental
Approximations of Impulse
and Transient Response
Waveforms

The purpose of this Section is to discuss in a general manner
the development of approximate impulse and transient response wave-
forms. To place the discussion in proper perspective, it is perhaps
advisable to begin with some comments regarding electromagnetic
scattering studies. If the ultimate goal of such research is an
""understanding'' of the scattering by various objects, then the most
direct route to this ""understanding'' lies via the development of the
time domain approach rather than the development of theoretical
solutions per-se. The point is that the ultimate refinement of a
given theoretical solution lends little insight to the general problem.
Using the time domain approach, it is possible to secure estimates
of the response of a variety of object shapes in a limited amount of
time. A most important consideration is the applicability of experi-
mental data. Despite the vast literature on electromagnetic scatter-
ing[ 1], one is hard pressed to find examples where experimental
data have been used in a direct way to help construct a theoretical
estimate. The handbook approach, followed almost without exception,
has been to devise an estimate of the phasor response based purely on
theoretical considerations and then compare calculations from this

model with experimental data. Our criticism is not of experimental
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data, but rather of the fact that such data have been generated haphaz-
ardly without any useful integration of the results. With the ever in-
creasing complexity and number of objects of practical interest, the
utilization of experimental data must be extended beyond simply a
confirmation of theoretical estimates or the compilation of patterns on
a specific shape.

The time domain approach appears to offer the first practical
way in which to build one's knowledge and understanding of scattering
by the systematic improvement of a basic model. Thus, experimental
measurements as well as computer derived solutions[ 27] can be used
in a direct way to refine the theoretical model discussed in the previous
section. It is to this systematic procedure that the discussion in this
section is directed.

It is postulated that the fundamental building block in the develop-
ment of a general approach for obtaining the response waveforms of an
object is the ramp response waveform Fp(t'). There are several
reasons which make an initial estimate of the ramp response wave-
form a logicai starting point. It was pointed out in the previous section
that one could estimate the ramp response waveform using fewer pa-
rameters than would be required for estimates of the corresponding
step or impulse response waveforms. If the estimated ramp response

waveform has a finite integral over all t' then the first two moment




45

conditions are automatically satisfied. Forcing this finite integral to

be proportional to the Rayleigh coefficient (Eq. (15)) then satisfies

the first three moment conditions. Finally, it has been shown| 13]

that whereas many values of the phasor response are required to
synthesize an estimate of the impulse response waveform, as few as

five values of the phasor response can be used to generate an estimate

of the ramp response waveform. The required input data are low fre-
quency harmonics with the fundamental wavelength approximately 10
times the maximum linear dimension of the object. Note that the neces-
sary phasor response data could be obtained from experimental measure-
ments as well as theoretical calculations; consequently, an experimental-
ly derived first estimate of the ramp response waveform is also feasi-
ble[ 13] . Regardless of the method used to generate this first estimate,
the corresponding estimate of the phasor response will be a low-fre-
quency, i. e., Rayleigh and low resonance region approximation.

In most previous applications of the time response concepts,
direct estimates of the impulse response waveform have been attempted
employing segmental exponential sum approximations similar to Eq.
(27). In specific cases, sinusoids or polynomials in t' have been
used in place of an exponential sum in some sub-intervals. In general,
the physical optics approximation is used to predict the short time

behavior of the response waveform. Later portions of the waveform
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are selected either from a knowledge of the character of the response
corresponding to specific geometrical features of the object or simply
from a rough guess as to its probable form. These various pieces of
the waveform are then joined with sufficient undetermined parameters
to permit the known moment equations to be satisfied. Exactly this
type of approach is used in Chapter II to obtain an estimate of the
impulse response waveform of a prolate spheroid target; the extension
being to a general orientation of the spheroid and an arbitrary linear
polarization of the incident plane wave.

The approach outlined above for ottaining estimates of the
impulse response waveform of an object is clearly inadequate. The
fact that such a procedure has led to significant contributions to
electromagnetic scattering theory is probably the strongest possible
recommendation for further study in the time domain. The most
obvious difficulty with the method above is that a successful estimate
of the impulse response waveform is almost wholly dependent on the
ingenuity of the analysist in deducing the character of the response
waveform for other than short times. The moment conditions can
also lead to problems in that enforcing the moments results in a
system of simultaneous nonlinear equations. Even a very simple
model for the response waveform can lead to an extremely difficult

system of equations. Thus in many cases it is necessary to devise
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a model such that a soluble system of equations is obtained, and this
usually requires some sacrifice in the desired character of the wave-
form. The approach also lacks the property of finality in that if an
additional exponential term is added in any one sub-interval, then all
of the coefficients must be redetermined. The final criticism is that
there is no established procedure for selecting the distribution of pa-
rameters in the various sub-intervals which are to be determined
from known conditions or the +aveform. It seems appareut that a
need exists for studies on techniques for securing estimates of the
response waveforms of distributed constant systems. It is not in-
tended to pursue such an investigation in this research beyond the
point of indicating suime possible lines of attack. The reader should
note that one feature of the segmental impulse response waveform
will probably be retained, ultimately, in any derived estimate of the
response waveform of a given object. The singularities, disconti-
nuities, and peaks in the impulse response waveform are directly
associated with the arrival of reflected and diffracted fronts from
specific geometrical and physical features of the object. Since the
arrival time of these fronts can usually be accurately predicted,
procedures for estimating the response waveforms of the object

must, at one point, successfully exploit this knowledge.
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In considering alternative methods for estimating the response
waveforms, one is naturally led to a consideration of the techniques
developed for time domain synthesis and time domain identification
in network and control system studies. The literature, as was noted
in the case of linear system analysis via transform methods, is pre-
dominantly devoted to a consideration of lumped constant idealizations.
Horowitz[ 28] has discussed a number of these techniques. Two main
points are noted; emphasis is on expansion of the impulse response
waveform in a finite series of orthogonal functions, and an error
criterion, usually the integral square-error or the weighted integral
square-error is used to judge the accuracy of the approximation.

Both time domain synthesis and time domain identification are con-
cerned with the following problem. How does one find a frequency-
dependent response Hy(s) whose inverse transform approximates a
given time function f(t) ? As previously stated, H;( s) is usually
assumed to be a rational function of s. Clearly, the problem at hand
is somewhat different. Simply stated it is; how does one find a time-
dependent impulse response waveform whose transform approximates
the phasor response of a system over the range of practical frequen-
cies, given certain conditions on the waveform and estimates of its

value at particular times? There are common areas of the problems,
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however, which enable one to consider application of some of the
techniques described in the literature.

It was concluded previously that the initial estimate of the
time-dependent waveform should be made on the ramp response
waveform of the target. From a mathematical viewpoint it would
seem that the ramp response waveform should be expanded in a
set of functions, complete and orthogonal on the range 0 to @ .
The reason for this is that if it is assumed that the ramp response

waveform FR( t') is square integrable

2 2
(32) S |Fp(t) | at < ,
0

and is expanded in an orthogonal series which is complete

N
(33) FR(t') ::Z Andy(t) ,
n=0
then
- N
( 34) lim S IFR(t') -Z Apdn(t') ,’-dt' =
N=®0 n=0
Also, if Fp(t') is continuous then
N
(35) lim Z Apén(t') =FR(t')

N=e n=0
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In a great many cases it is reasonable to expect Fgr(t') to be continu-
ous, since a jump discontinuity in Fgp(t') would mean a doublet in the
impulse response waveform. The coefficients in such an expansion
have the property of finality, an obvious advantage. The problem of
course is in obtaining the coefficients A, in the expansion. Formally,

if the ¢, are assumed to be an orthonormal set then

@

(36) Ap = S.FR( t') dn(t')dt'

0
Note that one could therefore express estimates of the ramp response
waveform obtained by any method in the form of Eq. ( 33).

Kautz[ 29] has described the conversion of polynomial sets
which are orthogonal over a finite interval into exponential sets or-
thcagonal over the semi-infinite interval 0 < x < ®. An advantage of
this technique is that whereas simply transforming sets orthogonal
over a finite interval into sets orthogonal over the semi-infinite inter-
val leads to poles in the s plane equally spaced along the negative real
axis, ¥ the exponential set permits an arbitrary location of the poles.
Assuming a set ¢, orthonormal over the semi-infinite interval Kautz

forms

* An exception is the Laguerre polynomials, orthogonal over the
semi-infinite interval with weight e~%3t | which lead to a simple
multiple order pole at s = -a[ 29] .
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(37) $1(t') = ReCy e ®F

¢z( t') = ReC;_; e'slt'

$¢3(t') = ReCy e S1t 4 ReC;,; e~ 82t

- ' -
ReC, e it ReCs; e B2t . ReCgy e~53t

dy(t')
etc. ,

where the sy = ax + jBk are arbitrary. From the orthonormal con-
dition on the ¢, it is shown that the coefficients Cvl can be determined
and relatively simple computational techniques are given involving
partial fraction expansions of the Laplace transform of the ¢,. From

Eq. (36), taking as an example the third coefficient

@

[ o)
(38) Ay = ReS Cy e 1Y Fp(t)dt + ReS Cyz ™52t Fp(t)) dt'.
0 0

But from Eq. (5),

[+ o)
-st' 1 "= l
(39) € FR(t)dt = o 2
0

Thus Eq. ( 38) becomes

Cy G(s) Cs2 G(s;)
Py + Re ’
c s} c sg

( 40) A; = Re

or in general[ 29], A, is replaced by the sum
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n
(4 G(s
( 41) A, =Z R ot )

2
(o} 8
1=1 2

Now if all the poles are chosen to lic equally spaced along the
jw axis ( 8 = jPk) then this configuration corresponds to a Fourier
series in the time domain, and each orthonormal function of the set
consists of a ningle sine or cosine term. Note that G( jBy) is the
phasor response of the scatterer at the angular frequency By, a
measurable quantity. For the special pole configuration leading to
a Fourier series, the result is simply an alternative Fourier synthe-
sis procedure. However, the pole locations (s)) are arbitrary and
one could choose unequally spaced imaginary poles or any desired
combination of real and complex poles. For example, the above
procedure could be used when calculated or measured values of the
phasor response were available at nonharmonically related frequen-
cies. t When only imaginary poles are utilized Kautz[ 29] (for
equally spaced poles) suggests a predistortion of the response wave-

form

(42) FR(t) =e " Fp(t)

* A procedure for this situation was also suggested in Reference 30.
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1t before ex-

That is, the ramp response waveform is divided by ¢
pansion and then multiplied by e 2t afterwards. This has the effect
of multiplying the error bound as a function of time by e'at'[ 29].
Thus far it is clear that an analytical estimate of the ramp response
waveform can be put in the form of an orthonormal expansion and that
an initial orthonormal expansion estimate of the ramp response wave-
form can be obtained from calculated or measured data on the phasor
response. It is also known[ 13] that such data should be predominant-
ly low-frequency.

An attractive feature of an orthonormal expansion is that it
automatically minimizes the rms error[ 29] . That is, if FRr(t') is

the actual ramp response waveform and FRa(t') an orthonormal

approximation such as Eq. ( 33) then

@
(43) ¢t = § [FR(t) - Fralt)]® at ,
becomes

5 4
( 44) ¢ =S Fg(t') dt -Z A}

0 n=0

From Parseval's theorem[ 20] , Eq. (43) interpreted in the S domain

is

Jcn

1 s
( 45) ez='.—zg IG(S) ALK ds :
jwc g2
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where G(s) corresponds to FR( t') and G,(s) to FRA( t'). Equation

(45) may also be written as

@
. 2 Al i 2
(46) ‘2 = -—l? [Ar(Jw )] + [.L(J_‘:)l] dw >
wC w? w?
where

A(jw) = B(jw) +jo§(jw) =G(jw) - Gp(jw) .

Regardless of how the approximation of the ramp response is obtained,
an estimate of the rms error can be obtained from phasor response
data. How good an estimate of the rms error one can obtain clearly
depends on the extent and nature of the phasor response data. In any
practical situation, at most a band limited knowledge of the phasor

response may be known and Eq. (46) becomes

~ 1 o restien? raitie ?
o el ).
0 w? (o)z

where ws is the cut-off frequency of the band-limited phasor response.
Note that if in the range 0 < w < wy, the maximum value of A(jw)/w?
occurs at wp then

2

~ 1
€ O)f

2 <
nc2

A( jup)
2

“p

(48)
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Both FR(t') and Frua(t') must be causal time functions, therefore

Eq. (47) may be written as( 20] *

wf . wf :
~ 2 A i A jw
( 49) € » — ([_ﬁ.ﬂ] dw ng[ il ) dw i
nc? b w? nc : w?
and in the notation of Eq. (48),
~ 2 A (jw,.) ]2 2 Ai(jw,) 12
( 50) €2 < 2[’:P]wf= z[‘p w
mc wh mCc w;

In a great many practical cases, only data on the radar cross section
are available. One possible method for securing an error estimate,
not of the waveforms themselves but of the waveforms convolved with
themselves, can be given.

It can be shown that if a ramp response waveform is convolved
with itself, i. e, , the autocorrelation of the ramp waveform, the re-

sultant waveform is given by

- 3 1 - o
(51) Frp(t) = %j 1 |G(Jw) 2} _ _‘{1 o(jw)

w? e w?

* Equation (49) actually only holds for ws = @, but for the present
case, i. e., G{( s)/ s%, it is felt to be a reasonable approximation
for finite wg.
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Thus forming the error measure

®
(52) G%SS [FRR(tl) - FRRA(t')]zdt' '
0
and
ot}
(53) ez~ _I.S o(jw) - oaliv) |2 o
wC b w4

Data on the phasor response or radar cross section are usually given
as a function of an electrical length, say kf. The equivalent expres-

sion for Eq. (53) is

2(k1)
(54) :i =;2: [a(zkz) - al2Zkt) 12 g '
0 (2ke)*

where t, = 24/c is set equal to unity. Note that the error estimates
given above are applicable to any approximation of the ramp response
waveform. They are not confined to orthogonal expansions of the re-
sponse. Also, similar expressions involving the step and impulse re-
sponse waveforms of the target can be obtained with the restriction
that these waveforms be real, causal, and square integrable. Itis
possible therefore to obtain an estimate of the rms error for a given
approximation and deduce from this when further modifications of the

model are not justified. Such a gauge is important in that there are
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really three approximation problems to be solved, sequentially the
ramp, step and impulse response waveforms of the object, and one
must economize the treatment of the preliminary steps.

Simply stated, the suggested approach to the approximation
problem is as follows: From a combination of theoretical estimates
and experimental data, a basic model of the ramp response waveform
is obtained. This is a low-frequency model and the number of pa-
rameters involved should be minimized consistent with obtaining an
rms error of possibly 5to 10 percent. The model is then interpreted
as a step response waveform ( differentiation), additional parameters
added and an rms error of again 5 to 10 percent achieved. Note at
this point that two simultaneous conditions must be satisfied by the
added parameters. A specified minimum error in the step waveform
is sought but at the same time the ramp response error must be
maintained. Proceeding to the impulse response waveform, addition-
al parameters are once again included. At this point it is desired to
build into the model all available information. That is, approximate
or asymptotic high frequency estimates of the reflected and diffracted
fields, natural points of discontinuity or rapid change of the response
corresponding to geometrical or physical features of the object, high
frequency experimental data, etc. There are now three conditions to

satisfy, the ramp, step and impulse response error.

R .+ O 1
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Realistically, it must be recognized that how meaningful these
errors are depends upon the extent of the phasor response data avail-
able. A band-limited estimate of the area beneath the real and im-
aginary parts of the phasor response as a function of frequency clearly
requires much more data than to estimate the area beneath these
same curves divided by the frequency squared. The point is that a
reasonable estimate of the integral in Eq. ( 49) might be obtained
from a few properly distributed values of Ay( jw) or 4j( jw), but the
corresponding integrals for the step and impulse error would require
an increasing density of known values. The upper bound on the error
given in Eq. (50) is somewhat conservative. Lacking sufficient data
to estimate Eq. ( 49) directly, a more reasonable estimate than Eq.

( 50) would be to assume the average A,( jw )Y w? or Ay ( jw)/w? to be

independent of frequency. That is, given Q values of Ay(jw)/ w2, let

Q
( 55) a= 1 Z Arlion) ,
Q n=1 “’%1
then
2
(56) €2 o L
nc?

Since the ramp waveform is a low frequency estimate, a weighted

sum

1 a A_( jwn)
(57) 8, = 52 {1-¢ (¥ -“n)y ——f;’—“— ;
n

n=1
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might also be used. The choice depends upon hoth the cut-off frequen-
cy wy and the distribution of the data within this bandwidth.

If one is to use an orthonormal expansion to estimate the re-
sponse waveform, the major problem is to select the proper set of
orthogonal functions. Strictly speaking, this involves the pole lo-
cations of the orthonormal expansion and hence the natural resonances
of the transient. That is, the optimum location of the poles is at the
natural resonances of the scattering object. The flexibility of the
orthogonal expounentials of Kautz[ 29] , described earlier, have an
advantage in this regard rince the pole locations may be arbitrarily
specified. However, unless all the specified poles have negative,
non-zero real parts, the orthogonal functions do not have the neces-
sary decaying behavior with large time and a predistortion wculd be
required. The set of orthonormal Laguerre polynomials have a
decaying behavior for large time, but correspond to a single multiple
order real pole[ 29] . It can be shown that if a given time function is
expanded in a set of orthonormal Laguerre polynomials, the coef-
ficients in the expansion are a linear combination of the coefficients
of a power series expansion of the corresponding frequency domain
function about the real pole. Thus such an expansion eliminates the
possibility of directly determining the expancion coefficients in terms

of measured phasor response data. It is not possible, at this point,
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to recommend one particular set of orthogonal functions for expansion
of the response waveforms. There are numerous possibilities[ 29],
and perhaps the most expedient procedure would be to compare ex-
pansions for several known ramp response waveforms[ 13] . Note
that the objective is not a sclacted set for each individual scatterer
but rather one particular set which has a reasonable applicability to
numerous objects. Assuming that a particular orthonormal set has
been selected, logical procedures for estimating the ramp response
waveforms of an object can be postulated.

An initial estimate of the ramp response waveform can be se-
cured in several ways; the Fourier synthesis procedure using experi-
mental data and an analytical approach combining the physical optics
approximation and the second moment condition as mentioned previ-
ously. It is not expedient to adopt the latter approach, precisely
because of the necessity for selecting a specific functional form for
the model. There is no reason, however, why one cannot simply
sketch a curve for the ramp waveform utilizing exactly the same
information, i. e, , physical optics, the geometry of the object, and
the second moment. Such a possibility has been suggested previ-
ously[ 13] . Envisoned is some type of analog interplay with a digital
computer whereby one could very rapidly, by trial and error, secure

a ramp waveform similar to that predicted by physical optics over
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most of the illuminated region of the target, which had the proper net
area, and which agreed with experimental data. It must be stressed
that the anticipated estimate of the ramp waveform is a simple, con-
tinuous curve with at most pcssibly three significant zero crossings.
Thus either from a Fourier synthesis of experimental data or the
above described sketched estimate, a first model for the ramp re-
sponse waveform is secured. The model is simply a curve in graphi-
cal form, and is not described analytically. This model can now be
approximated by an orthonormal expansion, the integrations in Eq.
(36) being approximated using digital computer techniques. The
fact that a time-limited model for the ramp response waveform is
used makes this approach feasible. One also seces the advantage of
using one orthonormal set for at least a class of objects; the ortho-
normal functions need only to be calculated once, over an initial time
range, at suitable increments.

The second moment condition introduces a constraint on the
coefficients. Let &,(s) be the Laplace transform of ¢,(t), from

Eqs. (15) and (36)

* A complicated (in terms of geometrical or physical properties)
target may have a ramp waveform with more than three significant
zero crossings, but a first estimate of this waveform would proba-

bly not recognize this fact.
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N
-K t}
( 58) Ap®n(0) = ———
(2m)° c
n=0

Other constraints may also be introduced, for example
N

(59) G(Sy = c S Z AL, (S;)
n=0

relating calculated or measured data at a specific frequency to the

expansion coefficients, or

N
( 60) Fg‘(t;) =Z An¢;n(t;} m=0,1,2,---,

n=0
whereby the ramp response or its derivatives is constrained to a
specific value at a fixed time. It is not clear at this point which
constraints should be utilized, aside from that in Eq. ( 58), or at
what point in the development they should be introduced. Note that
the type of constraint in Eq. (60) is an obvious way to introduce
into the model both a knowledge of the arrival time of diffracted
fronts and asymptotic estimates of their value. When constraints
on the orthonormal expansion are introduced, minimization of the
rms error in Eq. (43) requires the use of a Lagrange multiplier.
A generalized method for the case of several constraints of the
form of Eq. (60), yielding the Lagrange multipliers and the new

expansion coefficients has been given[ 29] .
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A systematic procedure for progressing beyond the ramp re-
sponse waveform, i.e,, to the step and impulse response, is more
difficult to formulate. The first estimate of the step response ( adding

M terms to the ramp model)
N+M
(61) Fy(t') =Z Ap®n(t')

n=0
has M undetermined coefficients. The constraint in Eq. ( 58) must
now be imposed on the N+M coefficients. It need not have been im-
posed explicitly on the N coefficients of the initial ramp waveform
since the sketched or synthesized raimmp response satisfiea the second
moment. The form of solution with the constraint requires that the
M added coefficients be calculated without the constraint and then a
new set of N+M coefficients be computed. Therefore M'adjustments

on the step response waveform can be made. That is, the corrected

step waveform is
N+M

(62) Fylt') =Z Apdplth) .
n=0

where

A =Ap+\8,(0)

and
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N+M

-Z A &.(0)

n=0
N+M

Z ®3(0)

n=0

A =

The problem is in calculating the M new coefficients without the con-
straint. It is these coefficients which are to add the necessary ad-
ditional detail to the step waveform. Given sufficient phasor response
data to estimate the rms error in the step response waveform in Eq.
(61), the new parameters could be adjusted to reduce this error.
Lacking such data, two alternatives are seen. The firstis to in-
corporate certain theoretical estimates of the step response detail
into a revised sketch of the waveform and then proceed as with the
ramp model to calculate the coefficients. New coefficients would
then be computed as in Eq. (62). The second alternative is to in-
corporate additional constraints of the form in Eq. (60), calculate
the additional unconstrained coefficients from the ramp model, and
then solve for the new coefficients subject to the constraints. When
more than one constraint is introduced, a system of linear equations
must be solved to determine the Lagrangian multipliers. Essentially
the same problems and alternatives exist in going to the impulse re-

sponse waveform. In this case one should not attempt to incorporate
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into the model delta function or higher order singularities in the wave-
form, since these can be added independently.

An attempt has been made, in the preceding pages, to outline
a systematic general procedure for estimating the canonical response
waveforms in a transient electromagnetic scattering problem. The
effective integration of analytical and experimental data into a single
model is stressed, along with an orderly, predictable method for
determining the parameters of the model. The use of orthonormal
expansions of the response waveform estimates has been suggested,
and certain advantages of such an approach discussed. The feasibility
of the approach has not been demonstrated, and hinges primarily on
the availability of a set of functions, orthogonal and complete on the
semi-infinite interval (0, ®), which will permit a reasonable estimate
of the ramp waveform with just a few terms. Two sets, orthogonal
exponentials and Laguerre polynomials, satisfying the orthogonality
and completeness criteria have been suggested, but their applica-
bility has not been shown. No claim is made that the suggested attack
on the problem represents an optimum procedure, and it is evident
that future research should investigate not only orthonormal expan-

sions but other possible approaches.
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One rather important conclusion can be drawn from the discus-
sion in this section. For any given combination of tiieoretical esti-
mates and experimental data, the best hope for achieving a waveform
estimate which closely approximates the true object response lies with
the ramp response waveform. Corresponding estimates of the step
and impulse response waveforms will be less exact, if derived from

limited theoretical and experimental data.



CHAPTER 1I
THE ELECTROMAGNETIC BACKSCATTERING
BY A PERFECTLY CONDUCTING
PROLATE SPHEROID

The investigation of scalar and vector boundary value problems
in general ellipsoidal coordinates, and more particularly in the de-
generate cases of prolate and oblate spheroidal coordinate systems,
has been a favorite of the mathematical analysist for almost nine
decades. Flammer[ 32] in his ''Spheroidal Wave Functions' gives
an excellent historical survey of the main contributions to the develop-
ment of the spheroidal wave functions and the applications of these
functions to various boundary value problems. More recently,
Sleator[ 33] has reviewed the analytical and experimentél contributions
to the acoustical and electromagnetic scattering by prclate and oblate
spheroids. It is vividly evident in this latter work that despite the
long history of interest in the subject, very few numerical results
have been obtained for the vector problems. The reasons for this are
discussed by both Flamimer and Sleator, and are briefly reviewed
below. The point, however, is that a good approximate general solu-

tion to the plane wave scattering by spheroids has not been obtained

67
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even in a formal sense. Those approximate solutions which are
amenable to computation, even with modern high speed digital com-
puters, are limited either to a particular range of the spectrum or
to specific orientations of the spheroid.

Recently, solutions for the scattering from conducting spheroids
have been reported by Andreasen[ 34] , Oshiro[ 35], and by
Waterman[ 36]. These results, while differing somewhat in specifics,
are essentially all applications of the '"point matching'' approach to
electromagnetic scattering problems. As such, there is a practical
limitation imposed by the size of present electronic computers and the
costs involved on the maximum spheroid size which can be handled
successfully. Estimates of the maximum size which can be handled
vary, and much depends upon what one considers reasonable in terms
of computer running time. For example, Waterman[ 36] reports a
running time of two hours on an IBM 7030 computer to compute the
scattering pattern of a 2:1 prolate spheroid with a minor circumference
of 10 wavelengths. In any event, such solutions must be supplemented
by approximate high frequency methods to cover the entire spectrum.
A nvost useful application of these 'point matching'' scolutions for
spheroid targets would be the computation of sufficient phasor response
data at harmonically related low frequencies to generate the ramp re-

sponse waveform for specific orientations via Fourier synthesis.



69

In this Chapter, an approximate general solution for the electro-

magnetic backscattering by a perfectly conducting prolate spheroid is

derived using time domain concepts. The formulas obtained hold for
arbitrary orientation and axial ratio of the spheroid and for arbitrary
linear polarization of the incident plane electromagnetic wave. These
results have the extremely attractive feature that calculations using
the derived formulas are quite simple, involving nothing more compli-
cated than exponential functions.

The major difficulty in obtaining a rigorous solution of the plane
wave scattering by spheroids is that the vector wave equation is not
separable in either oblate spheroidal or prolate spheroidal coordi-
nates[32]. Specifically, what goes wrong for the prolate spheroid can
be seen from a consideration of the simplest case, that of a plane
electromagnetic wave incident along the major axis of a perfectly con-
ducting prolate spheroid. This is the problem which was considered
by Schultz[ 37] . As shown by Schultz[ 37] , the incident field can be
expanded in an infinite series of vector spheroidal wave functions.

An expansion for the scattered field as the sum of two infinite series
of vector spheroidal wave functions can also be devised, and such an
expansion properly is a solution of the vector Helmholtz equation,

has zero divergence, and satisfies the radiation condition at infinity.

However, in attempting to satisfy the boundary conditions at the
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spheroid surface it is found that the field cannot be resolved into com-
ponents such that individual terms in the series can satisfy the bounda-
ry conditions. This difficulty arises for two reasons: (1) the angle
functions have different indices in the expansion of the incident and
scattered fields, and ( 2) the scale factors involved in the definition

of the vector spheroidal functions appear explicitly in the expansions.
In the classical solution of the sphere, the angular dependence is the
same term by term in the expansions of the incident and scattered
fields. Therefore one can utilize the orthogonality of the angular
functions to obtain equations relating the cnefficients of the expansions
of the incident and scattered fields. For the spheroid, this cannot be
done, i. e., the known and unknown coefficients cannot be related for

a finite number of summation indices. It is at this point that the rigor
of Schultz's solution is lost since an infinite system of equations for
the infinite set of coefficients must be truncated to obtain a solution
for the expansion coefficients of the scattered field.

Although, as related by Sleator[ 33] , certain advances have
been made in the approximate or asymptotic theories for high and low
frequencies, the returns from the numerous studies of the problem
have been woefully meager. The situation is summarized (prior to

the '""point matching'' results) by Sleator[ 33] as follows:
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"Since the work of Schultz[ 37] and the computations based

on this by Siegel, et al.[ 38] , virtually no progress has

been made in the solution of the vector problem in the reso-

nance region. All existing techniques either break down

completely or become prohibitively difficult or tedious in

this region, and the need for a totally new approach becomes

more and more apparent. '
It is to this new approach that the work in this Chapter is directed.
The new approach is an application of the time domain concepts dis-
cussed in Chapter I. The application of these concepts is in its
infancy, i. e., a new approach to electromagnetic scattering problems
is being developed, and the approach is via a '"'model' rather than a
sophisticated extension and application of a well-known technique.
Consequently the treatment will be mathematically simple and the
philosophy of an engineering approximation liberally applied. The
goal of this study is the development of a general model for the
electromagnetic backscattering by a perfectly conducting prolate
spheroid for arbitrary orientation and axial ratio and arbitrary linear
polarization of the incident field. What is sought is an estimate of the
response waveform of the target capable of yielding a reasonable

approximation of the scattered field for a variety of orientations,
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polarizations, and frequencies. A precise determination of the model
for one fixed combination of these parameters is not intended.

The first section of this Chapter briefly reproduces a solution
for the axial impulse response waveform of the spheroid published by
Moffatt and Kennaugh{ 11] in 1965. The reason for the inclusion of
this result is two-fold; first, much of the study for the general case is
predicated on retaining the essential character of the axial waveform,
and second, the axial result is intimately related to the response wave-
form of a sphere, an understanding of which is essential for later dis-
cussions of the spheroid waveforms.

With this background a basic general model for the impulse re-
sponse waveform of the spheroid is then derived and calculated results
from this model compared with measured data on a 2:1 axial ratio
spheroid and calculated data (axial) for a 10:1 spheroid. The Chapter
concludes with a discussion of these results and the applicability of
the basic model for spheroids with other axial ratios.

In Appendix II, that portion of the sphere impulse response
waveform corresponding to the creeping wave is examined in some
detail. This digression to the sphere is used to illustrate the basic
nature of the creeping wave contribution in the time-domain. The

creeping wave contributions predicted by high-frequency asymptotic
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solutions are analyzed and certain inconsistencies resulting from their

non-causal nature discussed.

A. The Axial Impulse Response
Waveform

Consider the perfectly conducting sphere and the related per-
fectly conducting prolate spheroid with an n to 1 axial ratio shown in

Fig. 6. The spheroid has a semiminor axis equal to the sphere radius

-
\__/
N
\_

Fig. 6--Sphere and prolate spheroid geometries.
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which is taken as unity. Let the sphere and spheroid be illuminated

by a ramp type excitation propagating in the z and z directions re-

spectively.
(63) E(t') =t'u(t')

E(T) =t u(t") ,
where t' =t - z/c and t—' =t - ;/c

Now if the axial ratio of the spheroid is unity, clearly the response
waveforms will be identical for the sphere and spheroid. This, of
course, is true for any excitation As the axial ratio of the spheroid
is increased (n > 1) differences in the sphere and spheroid response
waveforms will occur. The basis for the approximate spheroid re-
sponse waveform derived in this section is the assumption that the
ramp response waveform of the spheroid can be obtained by simply a
change in the time scale of the sphere ramp response waveform.
Since the step and impulse response waveforms may be obtained by
successive differentiations of the ramp response waveform, a
change in time scale for the ramp response waveform results in a
change in amplitude as well as time scale for the step and impulse
response waveforms. To a first approximation at least, the ramp
response waveform of the spheroid undergoes only a time scale

change as can be shown in two ways.
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For the sphere, using Eq. (24) of Chapter I, the response wave-

forms predicted by the physical optics approximation are

[~ ¢t t'Z
(64) FR(t) = |- —;_’— + T] [u(t) -u(t'-ty)]
-t t'
Fr(t') = |- 2+ — t') -u(t'-t
oty = |- = 2][u< ) -u(ti-ty) ]
1y = tO 1
DS S e TR & 5[u(t') —u(t'-to)]

and those for the spheroid are

(65) Fp(t) = e 39E+ —ii [u(t) -u(t'-nty)]
L 2n 4n? |
Fy(T) = L to, B [u(t') -u(t'-nt,)]
b | 2n  2n? | =
Fft) = - fo 5(t') = —1—[ (t') -u(t'-nt,)]

where t, = 2a/c, and a bar has been used to dencte the spheroid wave-
forms. If, in the expression for the ramp response waveform of the
sphere the substitution t' = t'/n is made then the ramp response wave-
form of the spheroid is obtained. Obviously successive differentiation
leads to the correct physical optics step and impulse responses. Note
that the same change in time scale in the step or impulse response of
the sphere does not yield the spheroid physical optics result. It is

concluded therefore that insofar as the physical optics approximation
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is concerned it is the ramp response waveform which undergoes only a
time scale change.

A second argument for only a time scale change in the ramp
waveform is provided by the moment conditions; specifically the second
moment which relates the area beneath the ramp response waveform
and the Rayleigh coefficient of the target. The approximate axial ramp
response waveform of the spheroid according to this assumption is
obtained by a linear deformation of the time axis in the illuminated
region and a nonlinear deformation in the shadowed region. Corre-
sponding ordinates on the ramp response waveforms for the sphere
and spheroid are defined by equal cross sections in a plane perpen-
dicular to the line of sight. Corresponding abscissa are defined by
the shortest ray path to the given cross section following the line of
sight to the shadow boundary and the scatterer surface beyond.

Thus setting

(66) FR(t') = Fp(t) ,
and differentiating

67 Fylt) = Fy(t) =
(67) U U pr

a’t!
dt'?

tl

2
Filt') =F1(t')[:;_'] + Fylt')
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