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Dedicated to the Memory
of Academician Sergey
Pavlovich Korolev

PREFACE

Expounded in the book are certain theoretical bases and the most important
practical methods of investigation and calculation of motion of the center of
masses of guided long-range ballistic rockets.

:he book is intended basically for those who for the first time are encountered
with the ballistics of long-range rockets. Therefore, the authors have tried as
far as possible to give a presentation on all problems o. ballistic character
with which one must encounter in the process of the design.Lng of rockets. Along
with an account of questions of the theory of flight and methods of calculation of
the trajectory, the reader will find in the book the formulation of a number of
problems whose development can be of considerable interest. These are basically
problems referring to the selection cf the form of trajectory and to methods of
control of the flight range of rockets.

The book consists of four parts.

In the first part there is conducted an analysis of forces and moments having
an effect on the rocket; there are general equations of motion; there is investigated
the possibility of their simplification depending upon the character of the
problem to be solved and, finally, integration is conducted of equations of motion
for free flight in a vacuum and the solution of these equations is investigated.

In the second part questions are examined connected with the practical
solution of the basic problem of ballistics and problem of designing: the method
of calculation of the trajectory and composition of preliminary tables of foroet
and an analysis of the influence of basic design parameters on flying characteristics.

The third part is devoted to dispersion with the firing by long-range rockets

and adjacent questions, ir particular, the influence of certain peculiarities of
the control system and propulsion system on the accuracy of fire.

Examined in the fourth part is the problem on the selection of the so-called
pitch-law program of the change in angle of inclination of the axis of the rocket.

V The pitch program determines the form of the powered-flight trajectory and thereby
influences both the flying range of the rocket, its other flying characteristics,
including the accuracy of firing.

FT-MT-24-177-_67



his boct can serve as or, old for &tudents of higher educatio~nal inptitutions
if " and eng•ineers specializing in the field of ballistics of rockets.

Contributing to seperate paragraphs of tne book were P. P, Karaulov and S. S.

Rozanov; a number of useful remarks were made by M. S. Florianskiy. The authors
are grateful to all of them for the help renderel.
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INTRODUCTION

By long-range rocket (p?4) we mean a controlled aircraft with a reactive
engine intended for the transfer of a payload at great distances on a preassigned
trajectory, a greater part of which passes in very rarefied layers of the
atmosphere.

Long-range rockets possess a number of peculiarities separating them in an
independent class of aircraft. The dynamics of their flight has much in common
with the dynamics of flight of aircraft, artillery shells, unguided rockets, but
at the same time it obeys in many details Its special regularities and therefore
requires independent investigation.

The P1. trajectory consists of two sharply differentiated sections. On the
first section, which is called the powered section, the rocket collects kinetic
energy. By the quantity of accumulated kinetic energy at the end of the powered
section the P•J sharply differs from other transport means. Having a mass of
payload of the same order as that of a bomber aircraft, the PAA attains a speed
considerably exceeding the speed of artillery shells. But this speed is gathered
by the rocket gradually and is attained in greatly zarefied layers of the atmosphere,
which permits bringing to a minimum of the expenditure of energy on surmounting
atmospheric drag. The quantity of accumulated kinetic energy is the most important
index of the PiU perfection.

On the second section, called the free-flight trajectory or the free ballistic
path, the accumulated energy Is used for transportation of payload at a great
distance. According to the character of the use of the PAR energy, it is possible
to divide rockets into two basic groups:

a) ballistic rockets flying after the turning off of the engine similar to
artillery shells and controlled only prior to the moment of the turning off of the
engine;

b) glide rockets, controlled during the period of the entire trajectory,
which use aerodynamic lift to increase the flying range.

In this book only ballistic PJ]Aare examined.

Long-range rockets, just as artillery shells, fly on trajectories assigned them
before launch. But, in contrast to artillery shells, the PAR are controlled in
flight, enabling the possibility to a considerable degree to compensate the
influence of a number of causes having an effect on the powered section and leading
to a deviation of the actual trajectory from the assigned. The control system
of the ballistic P= solves the following problems:

FTfD-k4T-2 4-177-67
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~ I a) maintaining the assigned, gradually variable during flight, orientation
of axes of tne rocket in space (control of motion around the center of gravity);

b) maintaining the assigned direction of flight and form of trajectory and
also of the given value and direction of the speed of flight (control of the
motion of the center of gravity);

c) turning off of the engine at the moment when the kinematic parameters of
motion of the center of gravity of the rocket (speed, its direction and coordinate
of the center of gravity) in totality provide flight for the assigned distance
(range control of the flight).

The control system thus provides flight of the rocket In accordance with theperformed aiming and setting of the e-ontrol instruments, but the very problems ofaiming or guiding of the rocket at the target are not solved by it.

After turning off of the engine the greater part of the flight of the
ballistic rocket occurs in practically a vacuum under action of forces notcontrollable but those which are exactly well-known. This, on the one hand,

excludes the possibility of control on the greater part of the section of free
flight and on the other hand, increases the accuracy of firing.

The named peculiarities of the PjU determino the specific character of
ballistics - the theory of their motion. On the powered flight trajectory the
motion of the rocket should be examined taking into account, first, the great speed
of change of the mass of the rocket and, secondly, the presence of control. The
first circumstance makes the laws of mechanics of bodies and systems of constant
mass inapplicable in final form to the study of motion of the rocket, and the
second compels one to examine the motion of the center of gravity of the rocket
jointly with the motion of the rocket around the center of gravity. It should be
noted that just as in ballistics of artillery shells the motion of a rocket around
the center of gravity is examined neglecting the small oscillations around the
center of gravity. Bases for this are even greater that the control system should
extinguish oscillations of the rocket.

In examining the motion on the section of free flight, due to the great
distance, altitude and speed of the flight, it is necessary to consider a change
in acceleration of terrestrial gravity in magnitude and direction and the influence
of rotation of the earth. But then the investigation of the trajectory is
facilitated by the small magnitude of aerodynamic forces on the free ballistic
path and at the end of the powered section. There appears the possibility of
methods of approximation of the calculation which possess high enough accuracy but
"at the same time are simple.

Ballistics of PAA should solve the following problems:

1. Determination of the trajectory and other basic characteristics of the
motion of the rocket with well-known design parametcrs .. ,J control systen with
assigned sighting data (direct basic problem) or, under those same conditions,
determination of sighting data from assigned launching points and the tareet
(inverse problem).

2. Selection of the form of trajectory providing the best use of possibilities
of the rocket (selection of the control program).

3. Investigation of the dependence of flying characteristics of the rocket,
in the first place, range of Its flight, on the design parasmeters for the purpose of
selection of most advantageous combination of these parameters (ballistic designing).

4. Investigation of the influence of different perturbing factors - scattering
of design parameters, change in external conditions of flight, errors in control
instruments - on flying characteristics of the rocket (investigation of dispersion
and related questions).

These problems are closely connected with the solution of a number of other
problems related to aerodynamics (determination of the magnitude of aerodynamic
forces and thermal regime of construction depending upon the selected trajectory),

4



dynamics of construction (esign of elastic oscillations and oscillations of liquid
in the tanks), theory of automatic control (investigation of processes of
stabilization and stability of motion of the rocket on its calculated trajectory,
selection of laws of control), calculation of design of the rocket for strength
(determination of loads on the construction and their dependence on the flight
path), and other disciplines. The great role of ballistics in the solution of
design problems is very great: the selection of the configuration of the rocket,
its design and values of its constructive and power characteristics, which in the
very best manner correspond to requirements presented to the given rocket. All
these adjacent questions are partially and briefly touched upon in the book only
in connection with the solution of the above-mentioned problems of ballistics.
The very problems of ballictics, which are thus reduced to the investigation of
the undisturbed motion of the center of masses of rocket, are examined neglecting
many, sometimes very important, details in order to pay attention to the basic
peculiarities of these problems, the regularities with which they obey, and methods
of their solution. Knowledge of these methods and regularities will allow an
engineer to begin independent work in the field of ballistics of rockets.

4L.
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PART ONE

GENERAL THEORY OF MOTION
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1. ~ ~ 'I Teretra Cordnae
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A

CHAPTER I

SYS'I)S OF COORDINATES

§ 1. Terrestrial Coordinates

We will examine the motion of rocket in the rectangular coordinate system
Oxyz, which is motionlessly connected with earth (Fig. 1.1). This system of
coordinates will be called terrestrial. The axis Ox of the terrestrial system will

be directed alone, the tangent to the surface of earth
at the point of launch in the direction of aiming,
axis Oy - vertically upwards at the point of start,
and axis Oz - in such a way to obtain the right-handed
system, i.e., perpendicular to the plane Oxy to the
right of the direction of aiming. We consider earth
a sphere with a radius R = 6,371,110 m (the volume of
such a sphere is equal to the volume of a terrestrial

A spheroid). The point with coordinates (x, y, z) has
with respect tz, the center of the earth radius vector

r s + r(=--R- - lJO,-+ z•. (1.1)

the length of the vector

' (1.2)

is the distance of this point from the center of the
ear'h. The altitude of this point above the surface

Fig. i.I. of the earth is equal to

The terrestrial system of coordinates is not inertial, since it participates in
the rotation of the earth around its axis, accomplishing a full revolution in one
stellar day (86,164 s). The angular velocity of rotation is equal to

e ect r"of the7.2 (1.- )

The vector of the angular velocity of the earth a is directed along the axis
of rotation from the south pole to the north, since the rotation of earth occurs
from west to east. If we designate the geographic latitude of the point of launch
by 9, then vector a can be decomposed into two components (Fig. 1.2): vertical,
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directed along the axis Oy.

and horizortal, directed in the plane Oxz or the

tangent to the meridian:

The horizontal component in turn can be decomposed on
axes Ox and Oz into components

Thus the vector of angular velocity of the earth

Fig. 1.2. caa be represented in the form
um(csictz. u,'1.s2.ma'. (154*4--1ý*(C* %, C"'to +$a. qP-- COT Sin • (.

Motion of the center of gravity of earth in space will be considered
rectilinear and uniform, disregarding the curvature of the terrestrial orbit.

The point moving relative to the terrestrial system of coordinates, with
moving coordinates in this Eystem x, y, z, has a relative speed of

+ 'ýYp +(1.6)

and relative acceleration

+,= ; .+ A + (I* ,-.)

Absolute acceleration of this point will be equal to

l=J,+.+l•(1.8)

where is the translational acceleration equal to (

J,=2w3 XV Is the Coriolis acceleration.

using expressions (1.1), (1.5) and (1.6), we will find the decomposition

of vectors J. and J Cbout axes of the terrestrial system of coordinates. The

scalar product ma-r can be given in the form

where

S,= cos cx• os t+( + y)sfni,- zoos •ar (1.9)

is the projection of radius vector r on the axis of rotation of the earth.

Consequently,

J.- hI. - 07r4 - K-€. rCoS, - .)o + (.1 0)

Ti
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and

J-2 *3eaCO* *oS• eslyg, -- ,Cosa , a

-- s K*l(; cog ,,sin + ; s inir,) 0" 4.

+ q, +(-io s, -- cof4r, cost)9 A.

t 2. Bound Coordinates

Besides the terrestrial system of coordinates, we will use the rectangular
~I system of coordinates 0 x~y~z, (Fig. 2.1) connected with the rocket. In short

we will call this system bound. We place the origin of the bound system of
coordinates at the center-o-rTgravity of the rocket and direct the axis 01 x1 along

F the longitudinal axis of the rocket toward its summit. At h.aunch the rocket is set
Ivertically, and therefore at the time of launching axis 01 X, coincides in direction

with axis Oy of the terrestrial system of coordinates. Axis 0 z I will be directed
in such a manner that it at that same moment is parallel to axis Oz; then axis
Oiy, will take a direction opposite the direction of the axis Ox. In other wor.is,
Fthe direction of axes of the bound system of coordinates at the time of launch

will coincide with directions of corresponding
axes of the terrestrial system if one were to turn

the latter at an angle of 900 around axis Oz in
a direction from axis Ox to axis Oy.

In flight the directions of axes of the
bound system of coordinates with respect to the
terrestrial are changed. We will determine then
by angles of three turns, which it is necessary
to produce in definite order in order to combine

' directions of axes of the terrestrial system with
directions of axes of the bound system of
coordinates.

Ale Since we are now interested only in the
direction of axes which are not changed with

F•. 2.1. parallel translation, then we preliminarily combineby means of parallel translation the origin of the
terrestrial system of coordinates 0 with the origin

of the bound system 0.. After that we will perform the following operations:

1. Let us turn the terrestrial system at angle v around axis Ox in such a
manner that the plane Oxz passes through axis Ox,; the obtained system will be
designed Ox'y,z*.

2. With a turn around axis Oy' at angle t we combine axis Ox, with axis OX,.

the obtained system will be designated Ox'y'z".

3. With a turn around axis Ox* at angle n we combine axes Oy" and Oz' with
axes OY, and Oz,.

As a result of these three turns, the terrestrial system will be combined with
the bound system. Let us find the formulas of transition from one system of
coordinates to the other. The transition from system Oxyz to system Ox'y'z' is

10
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expressed by formulas

C-- xi,¢ +'- Y &1 9.(.1

Formulas of transition from system Ox'y'z' to system Ox"y"z" have the form

f:" 1 (2.2)

Finally, the transition from system Ox"y"z" to system OxlY'Z, is carried out
by means of forivalas

Substituting exprLssions (2.1) for x1, y', z' into formulas (2.2), we obtain:

emus COsI coz4-+yS1uq cost - ssil..

em- z cos ,st •-+ y si,% sis,- + z cost.

If these expressions for x", y", z" are substituted in formulas (2.3), then
we will find the formulas interesting to us of the direct transition from the
terrestrial system Oxyz to the bound system 0 1x'yAz, (on the above-mentioned

condition that the origins of both systems of coordinates 0 and 0, are comblntd):

i,= x(- fSqcs1k+cosG sia&S1eq).+,="z--qcos qcoso+s m sfts LstIm cs•al.(2
+8 x (aO2s4OSi 1q+ cos t si A Le+s csq-

-+Y(--C*2 q &1&1-•q+1A 516t.ostj + z Cos %

The geometric meaning of angles c, F and I is the following: the angle 9
determines the position of the inclined plane perpendicular to plane Oxy and
passing through the longitudinal axis of the rocket, the angle t is the angle
(in this inclined plane) between the longitudinal axis of the rocket and plane
Oxy., and finally, the angle I is the angle of rotation of the rocket about the
longitudinal axis. It is accepted to call v the pitch angle, • - the yaw angle,
and 11 - the r angle.

* ,One of the problems of the control system of the flight of the rocket is that
in order not to allow the appearance of great values of angles k and n, and to
change angle i according to the assigned law defined beforehand.

Since we examine the normal flight of the rocket with a properly working
control system, we will consider angles t and I small and replace their cosines
with unity, and the sines with the angles themselves:

CO5 Wt CosI. Vi ==. sn.q s=' .

Producing such replacement in fomrilas of transition (2.4) and rejectinj terms

ii



J • Containing the product of small quantities E, and T1 , we will obtain the following
BImrlitfled fo.•la- s which we will use hencýforth:[7 7 3n--xslu•+,eos;+nI. (2.5)

Xt m {•€O+ -?IIa f) + y(~siny-? iosyq)-{- .

Coefficients In theae formulas are cosines of angles between axes of the
terrestrial and bound systems of coordinates or the so-called direction cosines
(Table 2.1).

Table 2.1

-day OWm

If components of a certain vector A on axes of the terrestrial system of
coordinates are equal to AX, A)1 Az, then on axes of the bound system this vector

has the following components:

A , c 3sj+ A,gisy-A,i
A~A, sinq+A~ct+ 4 ~ (2.6)

A,, Ailco -F- +,S40%)-+ A,(sisr--rvicS f;) + A,.

Conversely, the vectorial components in the terrestrial system are expressed
in terms of components in the bound system by means of sucri formulas:

.4, ACos q - A sin 9 + A,, (cosq- q+ sins.
A, -= A cs -'- .', -- I CO ).) (2.7)

A, A.- ,'. + ,Apq + A4_

During the flight of the rocket angles 9, ti nd I do not remain constant.
Let us designate their derivatives, as usual, by 4, 4 and i, and let us find the
form of nonholonomic constraint among thesz derivatives and projections %i3 Y"

xi yi
Oz of the angular velocity of the rocket on the axis of the bound system of

coordinates. Vector 4 is directed along the axis Oz of the terrestrial system of
coordinates. Its direction cosines coincide with coefficients at z in equations
2.4) and in simplýfied form are contained in the last column of Table 2.1. Vector

is directed along the intermediate axis Oy' (Oy") lying in plane Oyiz and

generator angle q with the axis Oy, and angle 90 + r- with the axis OzI.

Consequently, its direction cosines in the bound system of coordinates OxlY1 Z1 will

be (0, cos q. -sin n). Finally, the vector ; is directed along the axis Ox. and

has direction cosines (1, 0, 0). Consequently, the nonholonomic ccistraint
interesting to us has the form

Cos o da14 ita %.(2.8)

* or, in simplified form,

12
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CHAPTER Ii

FORCES AND MOMENTS ACTING ON THE ROCKET

By rocket as a mechanical system we will imply all those masses which at the
given motent of time are included in the volume limited by the external surface of
body and control surfaces of the rocket and by the plane of exit section of the
nozzle (or nozzles) of the engine.

On the rocket the following external forces act: gravity, aerostatic and
aerodynamic forces and forces from controls. Gravity is the mass force, i.e., is
composed of elementary forces applied to each particle of mass of the rocket. The
remaining forces which are surface, namely, aerostatic and aerodynamic forces, are
composed of elementary forces applied to each elementary area of the body surface
of the rocket, and forces from controls in this way are composed of elementary
forces on the surface of the control surfaces.

Let us proceed to the investigation of these forces and moments.

Gravity, or the weight of rocket, G, is expressed by well-known formula

0-,,sg. (3.1)
The mass of the rocket m is determined by operating conditions of the engine

(flow rate per second) from switching on of the engine prior to the examined
moment of time. If by & we designate the flow rate per second of mass through the
nozzle exit section, i.e., the absolute value of the derivative mass in time:

-Il -4m (3.2)

then for the mass of the rocket at the time t will be obtained by the following
expression:

~m fadt. (3.3)

where t 8is the moment of the switching on of the engine prior to which the mass
of rocket is not changed and is equal to m
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The flow rate per second, in general, is inconstant. Considerable changes in
the flow rate occur in transient conditions of the operation of the engine (switching
on, swit.hing to a smaller thrust, complete turning off). But also during operation
of the engine in the steady-state operation there take place changes of the flow
rate per second caused by the change in acceleration of the motion of the rocket,
the altitude of levels of liquids in tanks, and so forth. Therefore, the
calculation of the mass of the rocket in general should be produced by the formula
(3.3).

By acceleration of terrestrial gravity g we mean pure Newton acceleration,
caused by only the action of the force of mutual attraction between earth and the
rocket. Since earth is considered a sphere, the acceleration of terrestrial gravity
depends oily on the distance of the point to the center of the earth:

, -=.. _(3.4)

and Is directed to the center of the earth.

Here f = 6.670-10 m3 /k-s 2 is the gravitational constant; M = 5.9763-1024 kg

is the mass of earth (fM - 3.9862 x 1014 *3/s2); gO 9.8204 m/s 2 is the
acceleration of terrestrial gravity at the surface of earth.

Usually the acceleration of terrestrial gravity is united into one quantity
with centrifugal acceleration caused by the rotation of earth, since the physical
manifestation of both accelerations for bodies quiescent on the surface of earth
is absolutely equal. But we will not do this in general because the magnitude of
these accelerations is determined by various factors.

§ 4. Atmosphere

Terrestrial atmosphere is the medium in which flight of the rocket occurs.
For a determination of the quantity of forces having an effect on the rocket it
is necessary to know the basic characteristics of this medium: density, pressure
and temperature. These quantities greatly depend on a number of factors: altitude
of the point above the surface of the earth, geographic latitude, time of season
and day, and so forth. But for practical purposes there is taken into account
the dependence of characteristics of the atmosphere only on altitude. This
dependence is given in tables of standard atmosphere [4] utilized during
calculations of trajectories. The atmosphere is considered motionless, i.e., wind
is not considered.

Temperature T, pressure p and air density p are connected with each other and
with the altitude above the surface of the earth by the equation of state

jP -pRT (4.1)

and by the differential relation of equilibrium

dp Z- gdhk. (4.2)

Here R = 287.05 m2  is the gas constant for 1 kg of mass of air.

S 'deg
Excluding s from (4.1) and (4.2), we will obtain

and after integration from pO to p and from 0 to h:

15 j j
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or

From expression (4.1) it follows:

F. ro j

or, inserting p/p0 from (4.3),

a

§ 5. Aerodynamic Forces

Plight with nonoperating engine. Aerodynamic forces are the result of the
influence or the environment on the surface of the rocket during its motion. From
the general surface of the rocket S we separate the external surface of the body
Se, and the surface, more accurately the section of the exit plane of the nozzle
S. The surface of Jet vanes and forces having an effect on it are not as yet
exam~ned. Acting on every element of the surface are, in general, the normal
force adS and tangent force -dS (o and -, consequently, designated the normal
and tangent forces having an effect per unit of surface area of the rocket at
the examined point; see Fig. 5.1). The total force having an effect per unit of
surface area of the rocket will be designated by p, so that

(5.1)

Fig. 5.1.

If rocket is motionless, then 1 0, and a • p (p - air pressure). During
motion of the rocket i # 0 and o • p. The difference

9=g-- (5.2)

is the excess pressure of air on the surface of the rocket. It can be positive
and negative. In the latter case it is called also rarefaction, which is created
at a given point of the surface of the rocket.

The force R, appearing as a result of the influence of air on the whole
surface of the rocket, is equal to

R /Pas (5.3)
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This integral can be divided into two integrals, the external surface of the body
of the rocket S and the area of the nozzle exit section Se a

* f" + f+ d-. (5.4)

For the motionless rocket the pressure of air over the entire surface of the
rocket is balanced:

R-0. (5.5)

but each of the two integrals

fPS and f (5.61
S S4

is not equal to zero. Let us designate the vector with length p, directed on the
normal to the element of the surface dS, by p

Integrals (5.6) for the motionless rocket can be recorded in the form

f~dS and fpdS.

since p in this case coincides with p, and equality (5.5) takes the form

"- f
R- f AdS+ fJPdS - 0. (5.T)

Inasmuch as surface S. is flat and perpendicular to the axis OX,, integral

pdS. which is the force of air pressure on this surface, is equal to
so

& p -dSSP.,1 (5.8)

and on the basis of (5.7)

p.l PdS f p.dS I~S.p~il.

(5.9)

The integral of the form pdS is called aerostatic force having an effect on

the surface S. Equality (5.71 shows that the aerostatic force, having an effect
on the whole surface of the rocket, is equal to zero. Strictly speaking, this
force, according to the law of Archimedes, is equal to the weight of air in the
volume occupied by the rocket. But this quantity can be fully disregarded because
of its smallness in comparison with not only the remaining forces having effect on
the rocket, but also with errors of determination of these forces. Formula (5.9)
gives the magnitude of the aerostatic force having an effect on the external surface
of the body of the rocket.

Returning to the case of the moving rocket, eacn of the integrals entering
into formula (5.4), on the basis of expression (5.1), will be divided into the
sum of two integrals

17
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S#% So So S
m- f .d+ f 'dS+ ui''+ fwd-

In this expression each of the integrals from the normal force
o - P. + O' (where o' is the excess normal pressure) in turn can be represented in

the form of the sum of the two integrals?

i ... JPuS+ J a+ IIS+ J,.S+ fe'a+ J-is.(

The sum of the first and fourth terms in this expression (see formula (5-7))

is equal to zero.

Forces determined by integrals of the form J'dS a d '•" and also by

sums of such Integrals bear the name of aerodynamic forces. Aerodynamic forces
turn into zero both for the whole motionless rocket and for separate sections of
its surface.

Equalities (5.10) and (5.7) show that the force R, with which air acts on the
whole surface of the rocket with a nonoperating engine, constitutes an aerodynamic
rorce which we will call full aerodynamic force.

The motion of air in the nozzle exit section can be disregarded and then the
tangent forces will disappear:

.,,o. (5.11)

(from this it follows that the sixth term In formula (5.10) turns into zero), and
the normal pressure about the quantity will be constant:

This constant will be designated a', and let us call the bottom rarefaction
A

for the nozzle section of the engine (it is assumed that the rocket does not fly
with the nozzle forward and, consequently, o' < 0). The constant pressure o' on

A A
the surface Sa gives a force of pressure X1.E. equal to

XU=. . 1,dS =S.o,. (5.12)
5.

i.e.? the fifth term in formula (5.10) constitutes a force in magnitude equal to
SaIOI and directed along the axis of the rocket from the summit to the tail.

Force X will be called base drag, or the suction drag behind the engine

nozzle.

Let us note that the base drag will be formed not only behind the nozzle but
also behind other face areas on the rocket which we have included in the external
surface Se. Base drag X Ije. forming behind these areas, will . a pErt of the

integral J.'dS. . This whole integral is the resultant of excess pressures
diretedralon thpprpndcsartothes1

about the external surface of the rocket body. Let us expand this resultant into
two vectors: vector X,,, directed along the axis of the rocket, and vector Y,,

directed along the perpendicular to the axis:



S(5.13)

We will call force X1B toe axial force of presure, and force Y1 the normal
or lateral aerodynamic force.

Finally, the third term in expressiin (5.10) constitutes the resultant of
tangents forces, or forces of friction, about the external surface of the rocket.
This resultant is almost exactly directed along the longitudinal axis of the rocket.
We will disregard its deflection from the longitudinal axis of the rocket and
consider only the axial component of this force, which we denote by X... and call
the axial frictional force:

f,= 't ,•s. (5.14,)

So

Thus the expression (5.10), on the basis of equalities (5.7), (5.11)-(5.14),
can be thus recorded:

R X1. + X,,, + (. V1.

The sum of the first three terms (5.15) constitutes a force directed along the
axis of the rocket, which we will call axial aerodynamic force and will designate
by XI :

X1.m + X,. + X,..

Finally

R = X, + Y,.

If the axis of the rocket is directed along the tangent to the trajectory, then
the flowing around of the rocket will be symmetric relative to its axis. The
distribution of pressures and forces of friction will be symmetric and,
consequently, the normal aerodynamic force will be equal to zero.

If, however, the axis of the rocket will form with the tangent to the
trajectory a certain angle a, called the angle of attack, then for rockets close
in form to the solid of revolution (and oly such rockets are examined by u., the
flowing around will be symmetric with respect to the plane passing through the
axis of the rocket and through the tangent to the trajectory. With this the normal
aerodynamic force and, consequently, the full aerodynamic force will be disposed in
this plane.

During normal flight of the rocket the angle of attack occurs small, of the
order of several degrees. Experimental and theoretical research shows that f.r
such angles of attack the axial aerodynamic force and all its components depend
little on the angle of attack, and the normal aerodynamic force is directly
proportional to the angle of attack:

rn Tia- (5.18)

The full aerodynamic force is frequently distributed not on the axial and
normal components but on the d X directed along thc tangent to the trajectory
opposite the direction of them77ion of the rocket and lift Y, dire:ted along the
normal to the trajectory (Fig. 5.2). On the figure point 0 is the center of
gravity of the rocket, and point D is the center of pressure (point of application
of force R).
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L i Let 'is find the expression for the value
of drag and ift. Frcjectili forces X and Y an

directions of the tangent and normal to the
trajectory, we obtain

X-ix,.CM4 Y1,1.0.S•' -Xae-t Y, e6L(5.19)

Por small anglea of attack one can assume that
cos a - 1, anJ sin a a; usi•g equalitj (5.18),

£: :we copy these expresaimas in the form

X MM X, + Yf3I X, + YS.

Pis 52(5.)

where

Y, Yt- X 1 . (5.21)

Solving equation (5.19) with respect to X and Y., we find inverse relation:

X,.= Xcosu - Yslse.

YA Xsl24+ -cose.

or, approximately,

XI -x- Ya= X - r'a t
Vr,-X0+ Y=IX+ Y').L (5.22)

Usually aerodynamic forces are expressed thus

"X--€,$. (5.23)
Y CM9s =.Cf$4e. (5.2)

. C, ,eS. (5.25)
,- ,(5.2)

where q - p - velocity head; p - air density at a given point of the
trajectory; S- characteristic area of the rocket (for example, area of the
midsection - the largest cross section); cx, ce, c1,c . Cyi, c'y - dimensionless

yi y 1 y l
coefficients bearing the name of aerodynamic coefficients.

Powered flight. We will consider that the distribution of pressures and forces
of friction abou-Tthe external surface of the body of the rocket does not
depend on the operation of the engine, i.e., during flight with an operating
engine it remains the same as with a nonoperating engine. Regarding the nozzle
exit section, the operation of the engine excludes any influence of environment
on the plane of this section.

Desigrnating the average pressure in the nozzle exit section by pa' we can write

j' pdS=- S.p4 (5.27)

_ _ _ _ _ ~20 _ _ _
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With the operation of the engine the pressure pa acid also the whole integral depend
only on cperating conditions or 'e engine, and actlon cf air on the rocket

appears only in the form of an integral on the external surface of the body of
the rocaet

f udS. (5,28)
DJ

Jo.

FPcrce p, having an effect per unit cf surfae-e %rea of the rocket, aa before
can be represented in the form of the sum of norissl atmospheric pressure p..

excess pressure o' and frictional force i. Acordlnigly t:e Integral (5.28) can be
reccrded in the form of the sum of the Integral*

J pdus' f pdS-+ f t'dS+ fJ-4S. (.9
St S, So S6

For each of these integrals former expressions and ds'ignations (5-9), (5.1)
end (5.14) remain in force, and therefore

I ,,+x-S.PX?+Xb÷Y±X W,. (5. A)
si

In the case of the motionless rocket p = p• V' = C., 0 - , and acting on the

rocket from the side -of the external surface is only the aerostatic force

This force will be united with integral (5.27), and we will call the sum

P._, ,ds+ P. p s-. (PSa -P)Ze (;.32)
S a

static thrust.

Let us call the full aerodynamic force for the rocket with an operating engine
the sum of oaly aerodynamic forces in the formula (5.30)

fivS -Xt,+ X1P +Y1-(5.33)

Thus for the rocket with an operating engine the external surface force is
composed of the aerodynamic force RP., and static thrust Pc " Comparing (5.33)
with (5.15), we see that into the full aerodynamic force with the operatingengine there does nct enter drag of suction behind the nozzle of the engine, and in
other respects it coincides with the full aerodynamic force with a noroperating
engine:

RuR,.+X1 .(5-34)

Normal aerodynamic forces with an operating and nornoperating engine coincide,
and the axial forces differ from each other by a value of the base drag behind
the nozzle:
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ll", w. m ,. XI'.--XI.+ "X,--Xt.' (5.35)

Formulas of transition (5.20) from the axial and normal aerodynamic forces
to drag and lift and also expressions (5.23)-(5.26) for these forces preserve
their form for the case of powered flight.

ten l6. control and Control Forces

Chontrol system shoýd hold In the assigned dimits deviations of parhmeters c-f
the motion of the rocket from their computed values and thereby provide the
&$signled accuracy of firing.

"eThe comples of parameters measured and c nntrolled by the control system can
be rather diverse. Let us consider the simplesf control system regulating only
the angular parameters of the motion of the rociet around the center of gravity.

t The control system should consist of sensinc devices which reacs to deflections
of the rocket from the assigned law of motionU an-measure these deflections,

effectors which create fornes necessary for the change in motion of the rocket, and
achverethnre devices which receive signals from the sensi to devices and produce

• commands for the effectors.

Since the rocket in motion with respect to the center of gravity possesses
three degrees of freedom (for us, in particular, these three degrees of freedom
correspond to the three angles 9, t, n), the effectors of the control system should
also have three degrees of freedom. With a smaller quantity of degrees of freedom

of controls the latter cannot determine the motion of the rocket around the center
of gravity by all three degrees of freedom; with a large quantity the problem of
control becomes indefinite, since the assigned motion of rocket in this case will
correspond to not one definite law of the motion of controls but an infinite
number of such laws. But also under the condition that the number of degrees of
freedom of controls is equal to three, there exists an unlimited possibility of
the concrete realization of these organs.

In exactly the same way sensing devices of the control system can be fulfilled
by the most diverse principles and in differeat form.

Consecuently, equations connecting the motion of controls with the motion of
the rocket (so-called control equations) can have an absolutely different form
with various principles of operation and design of control system. In general
they can be thus written:

PsIb(N). X(t). y(f). Z(ft). (. (t)(6t-J-O, I
#•(• •(•- Yn I( •(n .. 1(oI--0.

where 5,1N 5" are deflections of effectors of the control system; F., P F3

are functionals from functions taken in brackets, i.e., quantities depending
not only on current values of these functions but also =n their peceding values
starting from the moment of launch. This deper,-oence can be rather complicated.

In the subsequent account as an example we will dwell on the control system
of the rocket the sensing devices o' wnich are gyroscopic instruments -
gyro horizon and vertical sccne, effectorb - Jet vanes, and converting devices -
amplifier-converter and ,control actuators.

The right anl left Jet vanes (see below Fig. 7.1) are deflected synchronqualy
(and at an identical anle), and thus the number of degrees of freedom of controls
is indeed equal to three.

Gyroscopic instruments each consist of a gyroscope and two f.-.mes, internal
and external, the location of which at the time of launch is shown on Fig. 6.1.



- 4

In the flight the axes of rotation of the
gyroscopes maintain a constant attitude, i.e., the*1fax~.s zf rotation zf the gyra~copc ;.A the- gijrc hzrlzarn
0 x remains all the time parallel to the axis Ox

of the terrestrial system of coordinates, and the
axis of rotation of the gyroscope of the vertical
gyro Oez9 remains parallel to the axis Oz of the

terrestrial coordinete system. Axes of rotation of
external frames of the gyro-Instruments are connected
with the b4ody of the rocket. Consequently, ini
flight the axis of rotation of the external frame of

I the gyro horizon O is parallel to axis O r of

r # the bound system of toordinates, and the axis of
A*, rotation of the external frame of the vertical gyro

Is parallel to axis Oly1 of the bound system.

We will characterize directions of axes by
their unit vectors so that

i*t. (6.2)

4 (6.3)
~5)

Mg. 6..
Now it is easy to determine the direction of

the intermediate axes of gyroscopic instruments - axes of rotation of internal
frames. The Intermediate axis of the gyro horizon 0y is always perpendIcular to

two other axes of this instrument, 0 x and 0 z , and consequently,
r r r (

_4<____4z

14X 41- " X
In exactly the same way the intermediate axis of the vertical gyro Oy 3 is

perpendiculcr to Ox) and O and, therefore

zz _____(6.7)

Ix, 1 ,
With the help of Table 2.1 we obtain

As before, disregarding the second degrees of quantities g and q, we obtain that

and, consequently, formulas (6.6) and (6.7) can be rewritten in the form

) i~usfmt+4 Cos T. (6.8)

If in flight.the axis of the rocket has an assigned direction, i.e., the angles
Sand n are equal to zero and angle 9 is equal to the program angle np' then

2-II
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cursors of the potentiometers are at a zero position. In the vertical gro
this is attained automatically, since the entire instrument, together with the
body of the rocket, turns about the axis of the spin of the rotor, and the relative
position of the frames does not change. In gyro horizon both frames and the
cursor of the potentiometer connected with the external frame do not change
position relative to the earth's axis, and so that the cursor will remain at zero
the body of the potentiometer turns about the axis OzI with respect to the body
of the rocket at the same angle at which the rocket should be inclined according
to the program from its initial position (i.e., at an angle of 90 - %p). With

deflection of the rocket from the assigned position the angles t, q and
AT - 9 - 9ri become diff..rent from zero, and there simultaneously appear

displacements of cursors of potentiometers from the zero position: V -
displacement (angle) of the poten', ometer cursor on the axis of rotation of the
external frame of the vertical gyro, q' - displacement of the cursor of the
potentiometer on the intermediate axis of the vertical gyro, and AV - displacement
of the potentiometer cursor of the gyro horizon (on the axis of rotation of the
external frame).

Examining the diagram of gyro-instruments (Fig. 6.1), it is easy to check
that with the appropriate selection of directions of the reading the angle
900 - t' is equal to the angle between axes 01zI and Oy., angle 900 - 7' is

equal to the angle between axes 01 y1 (Ox,) and Oz., and angle q' -Tnp + AV'
is equal to the angle between axes 01YI and 0r y r. The connection between angles
t, q, Aq and t', 1', and AV' can be obtained by calculating scalar products of
unit vectors of corresponding axes with the help of formulas (6.9), (6.3) and(6.8):

S+ ( son co

whence

These relations permit being once again convinced of the smallness of angles V
and Ti,which enables replacing their sines by the angles themselves and writing
following formula:

'--. •(6.10)
q'--" q.(6. i±)

and also

A -- - .. (6.12)

Formulas (6.10)-(6.12) give the connection between deflections of the rocket from
the assigned position and reaction of gyro-instruments on these deflections.

We will not touch upon the work of the amplifier-converter and control
actuators, which convert the voltages taken from potentiometers of the
gyro-instruments, which are directly proportional to displacements of cursors of
these potentiometers, into angles of deflection of the Jet vanes. Let us consider
the concluding link of the control circuit - forces having an effect on the control
surfaces.

24
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The full force having an effect on the control surfaces found in the gas

flow will be decomposed into three components - drag of the control surface

directed along the axis of flow, i.e., along the axis of the rocket, lift

directed perpendicular to the axis of the rocket and to the axis of the control
surface, and axial force T directed in parallel to the axis of the control

surface. The last force is small, and therefore we will disregard it,
especially as for two opposite control surfaces the axial forces are b3lanced
(wholly, if the angles of deflection of the control surfaces are identical, and
partially if the angles of deflection are different).

Approximately one can assume that the lift of the control surface is
proportional to the angle of deflection of the control surface:

R,=R'6. (6.i3)

and the drag of the control surface depends on the angle of deflection of the control
surface according to the parabolic law:

Furthermore, forces having an effect on the Jet vane can be expressed as any
gas-dynamic forces in the form

P4 as,1 (6.15)

where Pp -- density of gas in the section of the stream of the engine passing

through the leading edge of the control surface; u p- speed of gas flow in the
same section; Sp - area of control surface; c 0, cR, ch - gas-dynamic coefficient

depending on the Mach number of gas flow and on the angle of deflection of the
control surface.

In the first approximation cQ, analogous to the drag of the control wheel
depends on the angle of deflection of the control surface by the parabolic

law, cR is proportional to the angle of deflection of the control surface, and

cA thus does not depend on this angle.

Subsequently we will examine only the total forces for all four control
surfaces: axial force Xip, equal to the sum of drags of the four control surfaces,

x,, -- QN4 +; Qo. +• QP + 0,,.

or, on the basis of (6.14),

X,,- 1 + .(e, + ,(6.16)

and lateral forces: Yip, equal to the sum of lifts of control surfaces 2 and 4,
and Zip, equal to the sum of lifts of control surfaces i and 3.

Directions of reading of angles of deflection of control surfaces will be
selected in such a manner that the positive angles of deflection of the control
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surfaces correspond to positive lateral forces. T we will consider positive the
deflections of control surfaces 2 and 4 downwards, nd control surfaces I and 3 -
to the left, depending on the flight (Fig. 7.1). V' h such condition we obtain

ri - R6 + Jr6, (6.1R*)
z -af'%+fe.R 1 (6.R7)

§ 7. Moments of Forces

Let us find expressions for moments of forces examined by us with respect to

the center of gravity of the rocket. We will consider that the center of gravity
lies on the axis of the rocket at a distance x. from the summit.

Gravity U always acts along a straight line passing through the center of
gravity and does not create a moment with respect to the center of gravity.

V
Up till now only the magnitude and direction of aerodynamic forces were

discussed. The line of action is fully determined only for the complete aerodynamic
force R. The point of intersection of this line of action with the axis of the
rocket is called the center of pressure. Let us agree to consider the full
aerodynamic force app' n he center of pressure; then the lines of action of
all components of this force XI, Y1 1 X, Y and so forth will pass through the center

of pressure (see Fig. 5.2).

Stat! Uzars

Fig. 7.1.

Thus the axial aerodynamic force X1 acts along the axis of the rocket and

therefore does not create a moment with respect to the center of gravity. The same
can be said in the case of powered flight for static thrust PoT

The normal aerodynamic force Y creates with respect to the center of

ravity of the rocket the moment Mai equal in value to

.If= = Yz •, --x,).(7.1I)

where x• is the distance from the summit of the rocket to the center of pressure.

This moment, just is the full aerodynamic force, acts in a plane passing
through the axis of the rocket and through the tangent to the trajectory; in other
words, the vector of this moment is perpendicular to the axis of the rocket and
to the tangent to the trajectory.

If the center of pressure is behind the center of gravity, then the moment
of normal aerodynamic force acts on the decrease of the angle of attack and is
called in thlt case the stabilizing aerodynamic moment, and the rocket with such
location of the center of pressure and center of gravity is staticallZ stable. If,
however, the center of pressure lies ahead of the center of gravity, then the
rocket is called staticaly unstable; the moment of the normal aerodynamic force
acts for such rocket on t ;e se of the angle of attack and bears the name
destabilizing aerodynamic moment.
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Let us consider moments of forces from jet vanes.

The point of intersection of toe line of act .on of the full gas-dynamic force
having an effect on the control surface with the plane of symmetry of the control
surface will be called the center of pressure of the control surface. The position
of the center of pressure is changed during movement of the control surfa-e, but
this change will be disregarded, is considering that the center of pressure of the
control surface always lies in the plane of the corresponding stabilizer at a
distance t.! from the summit of the rocket and at distance hi from the axis of the
rocket (Fig. 7.).

Drag of the control surface creates with respect to the center of gravity

of the rocket a moment equal in value to

M%~ ~k,.(7.2)

For control surfaces 2 and 4 force of Q are equal with each other, since the
angles of deflection of the control surfaces are identical and, consequently,
moments M are equal in value. But the directions of these moments are opposite,

and therefore they are mutually balanced. Angles of deflection of control surfaces
I and 3, in general, can be different, but this difference at small angles of
deflection very little affects the vane drag and, consequently, the moments MH;

these moments will also be disregarded.

Lift of the control surface RP creates with respect to the center of gravity
of the rocket a moment which can be represented in the form of the sum of two
moments with respect to two mutually perpendicular axes passing through the center
of gravity: the noment with respect to the longitudinal axis of the rocket equal
in value to

= Rh 1 .(7*3)

and the moment with respect to the lateral axis parallel to the axis of rotation
of the control surface

M•,•= 8,t, - x•(7.4)

We will find the total moments from jet vanes relative to the bound axes
if we substitute in (7.3) and (7.4) expressions (6.13) for lift of the control
surfaces and consider rule signs for angles of deflection of control surfaces:

M I.- - £&)(*-6 1- = (7.5)

§ 8. Damping Moments

Up till now, in examining aerodynamic forces having an effect on the rocket,
we were nct interested in its angular velocity. Strictly speaking, our certain
affirmations and formulas, for example (7.1), are true only at an angular velocity
of the rocket equal to zero. If the rocket flies with speed v and angle of attack
a and has at this angular velocity w j 0, then the flowing around of the rocket and
distribution of pressures along its surface will be different than when u = 0.

Consequenuiy, aerodynamic forces and moments depend not only on v, a, p, T,
but also on u. There is importance not only of the value of angular velocity but
also its direction with respect to the axes connected with the rocket.
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• • For an approximate appraisal of the magnitude of additional forces and moments
appearing with the rolling of the rocket, let us examine the motion of tht rocket
In plane 0 xlYl, being limited for simplicity by the case of the zero angle of
attack.

If the speed of the center of gravity of the rocket is equal to v, and the
component of angular velocity along the axis 01 z1 perpendicular to the examined
plane Is equal to • then the point of the body of the rocket found at distance

x from the center of gravity of the rocket, has, besides speed v, a peripheral
velocity ozl xi. Consequently, the full speed of this point will form with the speed

of the center of gravity the angle

By this magnitude is changed the angle of attack in the examined point of the body.

These additional angles of attack are the cause of the appearance of
additional forces and moments. The meart value of the additional angle ^f ft~rkn
the stabilizer is equal to

Awlý' am(8.2;

where xA0 cT is the distance of the center of pressure of the stabilizer from the
summit of the rocket.

The additional lift corresponding to this angle is equal to

ar ;~s (8.3)

where

c is the coefficient of lift of two blades of the stabilizer referred to theYCT

area S.

Having substituted (8.2) in (8.3), we obtain

A-S i(x-)'c 2 (8.4&)

This force is directed to the side opposite the direction of the motion of the
stabilizer in the rotation of the rocket. It creates an additional moment effective
in the direction opposite the direction of rotation of the rocket and is called
therefore the damping moment. The magnitude of the damping moment will be

AV, (X C. -, Z')
T C31--as --. X-- ,Va, • (8.5)

In reality the magnitude of the damping moment is somewhat greater than that
calculated by the formula (8.5), since the damping moment is created not only by
the stabilizer but also the body. Therefore, not increasing the order of theerror, it is possible to assume
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Then we will obtain the following approximate expressions with an '?rror to the
greater side:

Ar -lo,,,,,. " (8.6)

AM,. T(8.7)

Analogous expressions can be written for an estimate of moments with respect
to the other lateral axis:

AA , - (8.8)

A'•f = -3 ::•f",,"(8.9)

Let us consider the rotation of the rocket about the longitudinal axis with
an angular velocity u . With such rotation the section of the stabilizer, whichxi
is at distance h from the axis of the rocket, has, besides speed v, the peripheral
velocity h-xl. Consequently, the full speed of this section will form with the

speed of the center of gravity the angle

aa , (8.10)

which also constitutes an increase in the angle of attack of the section of the
stabilizer. On the average for the stabilizer, the increase in angle of attack from
the rotation about the longitudinal axis consists of

where h is the distance of the center of pressure of the stabilizer from the
longitudinal axis.

This additional angle of attack causes an additional lift of the stabilizer
blade equal to

Coh

(we designate the coefficient since the lift of ne blade is examined, and

it is natural to refer coefficient cyCT to two blades), or

Force 6Y is directed opposite the direction of motion of the blade with rotation.
Consequently, for two opposite blades forces AY will form a pair with the moment

The additional moment from all four blades is equal to
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Approximately one can assume that

- •- ;•s."•,..(8.11)

where lt is the span of the stabilizer. This moment acts opposite the rotation of

the rocket, i.e., it is also damping.
i-i- In the common form we will use the following expressions for damping moments:

AM

'-Ni

where m and m mza are dimensionless coefficients o-' aerodynamic damping
X-l Yd 11

determined either with the help of special aerodynamic experiments or by means of
sore accurate aerodynamic designs.

Additional forces of (8.6) and (8.8), in view of their smallness, will be
disregarded.
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V(

C HA P TER III

GENERAL EQUATIONS OF MOTION

§9. Equations of Motion in Vector Form

A rocket with an operating engine continuously expends mass contained in It,
and therefore for the final interval of time the laws of dynamics of a solid or

dt it is possible to solve the problem of the motion of a rocket with the help
of theorems of dynamics of the system with the following assumptions:

1. We examine as a single system all the masses contained in the rocket at
the moment of time t.

2. Let us disregard forces having an effect on masses expending during
time dt (i.e., from the moment t up to moment(t + dt) through the nozzle exit section.

We will call the mass exiting for time dt through the nozzle exit section
infinitesimal waste material.

Thus the examined system coincides at the time t with the rocket and at the
tim t dtcosiss o th-rcke an watematerial, and this-Ts~e first

assumptof. Accor~ding tthe second assumption, forces, having an effect on the

examined system coincide with forces having an effect on the rocket.

F. (9-1)

S(9.2)

where K - the momentum of the system; P resultant (main vector) of external

forces having an effect on the system; c)-angular momentum of the system with

respect to the center of gravity of the system; K(c) - total moment (main moment)

of cxternal forces with respect to the center of gravity of the system.

In or(ier to turn to equations of motion of the rocket, let -as find first of
all the expression for the momentum of the rocket. Let us divide the rocket into
elementary particles, where for one of such particles we will take the infinitesimal
waste product whose center of gravity coincides with tht~ center of the exit section
of the nozzle. The position of the center of gravity of the rocket at the moment

I
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of time S is determined by the equality

mr m m,+m dire. (9.3)
V

where i - the mass of the rocket at the moment of time t; r - the radius vector of
the center of gravity of the rocket relative to a certain motionless center; % -

the mass of the eleuentary particle not abandoning the rocket during the time dt;
- the radius vector of the same particle; & - flow rate per second of mass

(see j 3); A dt - the mass of waste material; r. - the radius vector of the center
of gravity of waste material, I.e., the geometric center of the nozzle exit section.

aDaring the time dt the mass of the rocket Is changed by the magnitude

•- -- --ua, (9.•)

the radius vector of the center of gravity of the rocket by the magnitude

- (9.5)

(V Is the speed of the center of gravity of the rocket relative to the motionless
system of coordinates - absolute velocity); the masses of particles are not changed,
and their radii-vectors are changed by

-- (9.6)

where , is the absolute velocity of the particles. Waste material no longer

enters into the rocket, and the position of its center of gravity is determined by
the equality

(i-- di ) l0+ +v) -- f,+dr.+ L (9.7)

Subtracting expression (9.3) from (9.7), we will find

a dr- t -;jmt m.,,.,- i . (9.8)

If in (9.8) we disregard the infinitesimal of higher order ik dr dt, and we
replace dr and dr1 by their expresaions (9.5) and (9. ) and then reduce by dt
we will then obtain

r1V

Noting that the sum -- Q, , correct to an infinitesinal momentum of waste material,

coincides with the momentum of the rocket K, we can write the following expression
for I;

" '= Igo .,-.(9.9)

where

1,--r.-- p(9.10)

is the vector connecting the center of gravity of the rocket with the center of
the nozzle exit section.

Differentiating (9.10), we find S =V - v, i.e., the speed of the center

exit section of the nozzle va is equal to
a--,+ (9.11)
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Designa'lir4 the speed of the center of gravity of waste material with respect to
the center of the nozzle exit section (exit velocity) by %i, we will obtain for the

&4i_ýLe viocity of the center of gravity or waste material the expression

*.~,i,9.+,,,-+- 6+2. (9.12)

whence the momrentum of waste matarial is equal to (since this value is Infinritesimal,
we designate it by OK oTOP)

At the tire t the momentum of the examined system is equal to the momentum
of the rocket IKt - K. At the moment of time t + dt the momentum of system is
ccmpcsed of the aomentum of ti~e rocket and Infinitesimal momentum of waste material

S+ M. - It + di+ d

Consequently,

dir, Zd'K + dirmw (9.14)

The change in momentum of the rocket is easily found from (9.9):

dmd~edm ut b~b~s= dw--;~df+iabd I-b~adl. (9-i5)

where

dl dim (9.16)

InsertIng (9.13) and (9.15) in (9.14), we obtain

dX m ,d- ma.1t +- m'bd#t -bdte- dt +--??Mudl ±,mb,/ = mde± taud? + 2'b dl+. bt (9.17)

Replacing dK in equation (9.1) by expression (9.17), we find Lhe following
vector equation of motion of the center of gravity of the rocket.

U- + ;gx+2býh + =a- (9.18)

Let us turn to the equation of motion of the rocket about the center of gravity.

At the moment of time t angular momentum of the system with respect to the
center of gravity of the system L-c) coincides with the angular momentum of the
rocket relative to its center of gravity L:

L (-r.•,.-,) X -. v,.+ (,-,r) X ;v.•, d. (9-19)
w{

Here, by examining the waste material as the elementary particle, we disregarded
its intrinsic angular momentum.

At the moment of time t + dt the angular momentum of the system with respect
to the center of gravity of the system is composed of the angular momentums of therocket and waste material relative to this point:

+ - + (9.20)

Angular momentums in (9.20) are determined by the well-known formulas

La•, + IL + (r +dr --. , -- drg) X (Jr+ M&. (9.21)
4 -L L ,+(1t + dr. I ,tr.- dr X A~ (9.22)
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L r

where L4 dL is the angular momentta of the rocket relative to its center of gravity
and dLMrgp Is the intrinsic angular momentum of waste material with which, further-

Radius vectors of centers of gravity of the system, rocket and waste material

-I -are connected by the relation

or, correct to infinitesimals of the second order,

,.+J,.-,+d, (9.23)

We insert obtained expressions (9.21)-(9.23) in the relation (9.20):

4'V+ Lr L 4tL-b dtX (K+ dIO+

+ (r. + dr, - r - - -*

and, comparing with the first part of equality (9.19), we find correct to
infinitesimals of the second order:

i Now using ex ress (9.9) and (9.13) for K and dXOT6p' we obtain the following
expression for• d%)

We replace d¢C) in equation (9.2) by expression (9.25):

Since at the moment of time t the rocket and system coincide, instead of M(C)
It is possible to write the sum of moments of external forces with respect to the
center of gravity of the rocket X; then we will obtain the equation of motion of
the rocket with respect to the center of gravity In the form.

#+;9bX(,+,)-M. 
(9.26)

The derivative of vector b in the motionless system or coordinates can be
thus represented:

+ •= -+ X b. (9.27)

where lb/dt Is the derivative of vector b with respect to the body of the rocket
(local derivative) and a is the angular velocity of rotation of the body of the
rocket.

But we assume that the center of gravity of the rocket and center of the
nozzle exit section lie on the longitudinal axis of the rocket, and therefore
vector b, and, consequently, and its local derivative, will be parallel to the
axis of the rocket. It follows from this that

bx (9.2)
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Disregarding geometric and gas-dynamic asymmetry of the expiration of gases, we
will consider that vector u, the speed of the center of gravity of waste material
with respect to the center of the nozzle exit section, is parallel to the
longitudinal axis of the rocket and vector b. Consequently,

bXu-o. (9.29)

Substituting expressio3i (9.27) in equation (9.26), and using equation (9.28) and
(9.29), we obtain

dL
d- + bX (o X b)-M. (9.30)

We will designate by wV the speed which the particle MV would have if it were
rigidly joined with the body of the rocket, and by %, the speed of this pa.ticle
with respect to the body so that

V=V - ,± . (9.3+)

On the basis of (9.i9) we can write 6he following expression for L correct
to the infinitesimal:

L- T m. •.--,) V. = 4 M,(,.--,) × W'+
V V

inK -- ,.) ×-• (9.32)
V

The first component in (9.32) constitutes the angular momentum of the rocket LT
on the assumption that it moves as a solid. It is known that this angular momentum
can be represented in the form

L, = +,,;••%# , ?
where A, B, C are moments of inertia of the rocket as a solid with respect to the

principal axes 0x 1 3 0y" 01 z 1; 1x1'# Oy1 ' I are projections of angular velocity

of the body of the rocket on these axes. In virtue of symmetry of the rocket

B-C. (9.33)

The second component in (9.32) is the angular momentum L of mn.sses moving
Twith respect to the body of the rocket in this relative motion. It would have

been possible to separate from this moment the separate components, for example,
the angular momentums of rapidly revolving masses inside the rocket, the angular
momentums of liquid found in tanks of the rocket, and so forth. But we will
disregard all the angular momentum L from those considerations that particles
having great relative speed u V consists of a very little part of the total mass

of the rocket, and the majority of the particles moves at small relative speeds.
It is important to consider these additional moments connected with the mobility
of separate masses inside the rocket and also with deformations of the body with
a detailed study of the oscillatory motion of the rocket. However, in ballistics
only such oscillatory processes are important whose period is of the same order
as the duration of the powered section, and in such slow processes the rocket can
be completely examined as a solid.

Thus, we will consider that

L-4,- Ae,,.., + X.y .0, + coA,.0. (9.34)
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[1 ,Here, In contrast to the solid, the principal moments of Inertia with respect to
time are lon tant. and therefore

AL #Ado, at 48

+ la Jr+ ,,,a+-W 4Dt OAc d +% . • el+.

The principal motents of inertia, just a& the w,&sa or the rocket, decreaie
with burnout, and, consequently, their time derivatives are negstive. Let us

des.ignate by a. n, and C the absolute quantities of these derivatives:

-- I (9.'51As is

As is known, derivatives of vectors xi 1 '~ , Y z are expressed by formulas

and, analogou•aly,

dat

+ [ a -(

: . t -(a-- %,% -- '4+

8).,,.,-(9.36)

n. second component on the left side of equation (9.N)) will be transformed

in the following way:

J~X(.OX6)u ;I

Finally equation (9.N0) will be thus transformed:

--A -(B- C).,N -- ,

- (C)- - M.), +(azb %]-- .K+

I+ + it
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§ 10. Reaction Force and Moments

Let us write the equation of motion of the center of gravity of the rocket
(9.18) in the form

dv

Comparing It with the equation of motion of a solid

dv (10.2)

we see that the center of gravity of the rocket moves Just as the center or gravity
of a solid with a mass equal to the mass of the rocket, on which acts, besides
forces having an effect on the rocket, the force

(10.3)

This force will be called reaction force (or dynamic thrust). The equation of
motion of the center of gr-vity of the rocket can now be written thus:

"4. (10.4)

We will apply this equation to the case of operation of the rocket on the
stand (without jet vanes).

On the basis of (9.11) it is possible to write: v- -6, since the center of
the nozzle exit section is motionless. Hence

d* (10-*5)

From external forces of the rocket act gravity 0, static thrust PT' which is
equal according to the formula (5.32) to

and the reacticn of supports of the stand Q, so that

P- o + P., + Q. (10.6)

Substituting (10.3), (10.5) and (10.6) into equation (10.4), we will obtain

0..t- P., + Q ;x- 2;:b- -gb.

whence

or

Q " ;a+0 (10.7)

there acts the force

P=-+ (Pe P)Xi+ dt (10.8)

which we will call thrust.
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Examining different concrete cases, it is easy to be convinced of the fact

that terms mb, 2mb, mb and d 2 (mb)/dt 2 are very small as compared to other terms in
formulas (10.3) end (10.8). Therefore, henceforth we will disregard them use the
following expressions for reactive force and thrust:

P,=-- ua (10.9)

P ;.88 + S.(P,.--P) =P, + P'. (10.10)
Exit velocity u was defined above as the speed of the center of' gravity of

waste material with respect to the center of the nozzle exit section of the engine.
But the waste material, having an infinitesimal mass, possesses final dimensions
and in turn can be split into particles dmA , moving at different speeds UX relative
to those points of the nozzle exit section through which they pass. Therefore, the
concept of exit velocity u should be definitized.

Every particle dm% will imagine as a mass passing through the element of area
of the nozzle exit section dSX. Designating the density of gases in the volume
occupied by the particle dm,, by p., we can express the mass and momentum of this

particle in the form

J.IM.: it,(u 4 . ,1 . ),to.

UI, 4lt. == P 4 , (it . S!$,) df.

where dS is the vector of external normal to the element of area dS, where

PIS, I =:dIS:

hence the momentum of all the waste material recorded earlier as Ui dt (the question
is about relative motion) is equal to

•(,, dS4),1t: f ,l (u , (•S,).

Thus, by u we mean the quantity

i l 4 -= fIu(u. •dS). (10.11)

So

Using expression (10.1i), it is possible to present the reaction force and
thrust in the form

A am-f-- u ( -. dS). (10.12)

P f fp dS- p(u. dSij--S.p4, (10.-13)

So

In formula (10.13) S&pa 0 is replaced by a more exact expression

where p denotes the pressure of gases on the elementary area of the nozzle exit
section.

Earlier it was already mentioned that the vector u is considered directed
along the longitudinal axis of the rocket from the summit to the tail.
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Consequently, the reaction force and thrust constitute vectors effective along the
longitudinal axis of the rocket in a direction toward the summit. Values of these
vectors are equal to

P, o(10.14)
P An• + ,.(P, -. Pý (1o.15 )

Gas-dynamic calculations and experiments show that for engines with pa > 0.8 PO
with a change in operating conditions in nut very great limits, it is possible to
consider the exit velocity a constant and the pressure pa variable directly
proportional to the flow rate per second ;, both of these values not depending on
the external pressure p. Let us call the quantity

e =- a + S 4P* = const
U

the effective exit veloc'ity. Then

P- raa'-S.p. (10.16)

This formula describes thp dependence of thrust on the flow rate per second and
on the external pressure, '.e., can be assumed as a basis of both the throttle
and altitude performance of the engine. In particular, the thrust of the engine
In a vacuum is equal to

P.= jg' (10.17)

i.e., directly proportional to the flow rate per second, and the thrust of the
engine on earth is expressed by the formula

ps-A6,'--S. P (10.18)

whence

le (10.19)

The thrust of the engine on earth P0 and the flow rate per second in

terrestrial conditionso can be determined during bench tests of the engine. The

thrust in flight, depending upon the flow rate and on the external pressure, is
determined by formula (10.16), where instead of the effective speed of efflux u'
It is possible to substitute its expression (10.19):

PumiP.+~po)~P.(10.20)Pa 4- (PO + So*) - S.P. (Io o

In particuiar, if the flow rate in flight remains constant, then

Pz P +s (p, (10.21)

The quantity

-P Pmf gA mgS

will be called specific thrus:.

Specific thrust in a vacuum• is equal to

Py,. as=-- coast
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(does not depend on the flow rate), and at an arbitrary altitude

ý,=,. P. p _'_•
me$ o ag e,

In particular, on earth

me Sep.
+~Z i a.m~~

Let us now compare the equation derived in § 9 of the motion of the rocket
about the center of masses (9.38)

+ C ( - B) e
ttM + he .sorthe , (10.22)

with the Euler equation of motion of a solid about the center of gravity

[., (A[
[AC

A comparison shows that the motion of the rocket about the center of gravity
occurs just as the motion of a solid with those main moments of inertia, which for
the rocket at the given moment of time on which act, besides moments having an
effect on the rocket, the moments

(10.24)

These moments will be called reaction moments.

The first of these moments is the swaying, since it acts in the direction of
rotation of the rocket about the axis Ox., but it is very small and, furthermore,

is to a considerable degree compensated by a damping action of waste material
unaccounted for by us, which removes with itself a certain angular momentum.
Subsequently we will not consider it. Two other reaction moments, as is easily
verified, are damping moments.

Let us transform the coefficient entering the expression for these moments
to a more convenient form

The moment of inertia of the rocket with respect to the lateral axii passing
through the center of gravity can be expressed In terms of the moment of inertia
with respect to the parallel axis lying in the plane of the exit nozzle section:

= -a-h 2.. (io.25)

whence

4ja L -- ,P
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and

;tp8h dB_ b d bOIm, d8B d~iub)(-M•-2 (L W 2 dd do ': (10.26)
Derivatives entering into the last equality can easily be calculated. We will

examine separately liquids expending in flight of the rocket from every tank. Let
us designate the absolute value of the flow rate per second of liquid from the
i-th tank by mi and the level of liquid above the nozzle section by h, (we consider
the mirror of the liquid parallel to the plane of the nozzle exit section). Then
for the time dt from the surface of the liquid there will be expended the mass
mi dt, and inside the volume remaining filled with liquid the distribution of masses
can be considered constant. Consequently, if we disregard the intrinsic moments
of inertia of expended masses of liquid, the change in the moment of inertia
Ba will be equal to

dt.

and the change in static moment with respect to the same axis is equal to

d (mb)

Substituting these expressions in equation (10.26), we will obtain

b-b- -2' h/aa+b hsn =-- hI h, --hi) ;in. (0o. 27)

Hence we obtain convenient expressions for reaction damping moments with respect
to lateral axes of the rocket:

x=,, - - o hi (2b -- h•) A;. I (10.28)

The •hi(2o-hi)'*j will for brevity be designated m .

Let us explain the physical essence of the reaction rorce and reaction moments.

Gases passing from the nozzle of the engine have a speed u with respect to the
body and u + b with respect to the center of gravity of the rocket. Value
•(u + b) constitutes a force which must be applied to these gases in order to impart
to them such speed. In virtue of the third law of Newton, to the center of gravity
of the rocket on the side of the gases will be applied the force m(u + b), which
is the main term of the reaction force.

In order to understand the origin of the other two terms in the formula for
reactio:a force, it is necessary to comprehend the origin of the quantity ;1b in
expresnion (9.9) for momentum of the rocket. This quantity is nothing else but the
momentum of expended mass with respect to the center of gravity of the rocket.
Actually, in a closed system whose mass is not expended, the momentum coincides
with th' momentum of the material particle with a mass equal to the mass of the
system and with the motion identical to the motion of the center of gravity of the
system. It is a different matter in the case of the rocket - system with a
variable more accurate with the expending mass.

If at the moment of time t we consider all its mass concentrated at one point,
then after the time dt all this mass m will shift at a distance v dt, but, further-
more, as a result of the internal motion part of the mass zi dt will shift at a
distance b from the new position of the center of gravity. The first shift
corresponds to the momentum

MV dt
21 = ...
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and the second to momentum

.dl

It is clear that for an increase in the second component of momentum there Is
necessary a force equal to

Since this force acts on the increase in momentum of masses in the rocket with
respect to the center of gravity, then according to the third law of Newton the

opposite force, ab - mb should be applied from the side of moving masses to the
center of gravity of the rocket.

.1n the same waa it is easy to explain the origin of reaction moments. Let us
consider, for example, the rotation about the lateral axis 01 yI.

Owing to the efflux of gases the angular momentum of the rocket decreases
by the magnitude

Idh)Ism 8 &)y, dt.

But the very gases passing from the rocket possess, with respect to the center
of gravity of the rocket, the angular momentum

dt.

Consequently, during the time dt they obtain, because of the rocket, the angular
momentum

for which to them there should be applied from the side of the rocket the moment

of forces

In virtue of the law of counteraction on the rocket from the side of the exhaust
gases, there should act the moment about axis Oly1

- (rn- - A)c,.I

which is the reaction moment.

In summarizing, we can say that the reaction force (moment) is equal in value
and opposite in direction to the force (moment) which must be applied to gases
passing from the rocket for a change in their momentum (angular momentum).

Let us sum up our whole analysis of forces and moments having an effect on
the rocket and the derivation of equations of motion.

We established that for the rocket it is possible to use equations of motion
having the form of equations of motion of a solid (10.2) and (i0.23) if to the
forces having an effect on the rocket from without - gravity, aerodynamic forces,
static thrust and forces from controls, - we join the reaction force, and to external
moments - aerodynamic destabilizing or restoring moment - we 4oin reaction moments.
The reaction force together with the static thrust we united (in the first approxi-
mation) into a single tractive force.

Now it remained to pass from the vector form of equttions of motion to the
coordinate form, for which it will be required to find component forces and moments
having an effect on the rocket along axes of coordinates.
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§ 11. Resolution of Forces and Moments Along Axes of Coordinates

To determine the vectorial components along axes of coordinates it is necessary
to know the direction cosines of this vector. The direction cosines of unit vectors
of axes of the bound system of ccordinates, with respect to the terrestrial system
of coordinates, are already well-known. Thereby we determine in both systems of
coordinates by means of formulas (2.6) and (2.7) direction cosines of all forces
and moments effective along axes of the bound system of coordinates, namely, tractive
forces comprised of the reaction force and static thrust, forces and moments from
controls, aerodynamic damping moments and reaction moments.

Gravity acts in the direction opposite to the direction of the radius vector
of the rocket

r= xx+(R-+ Y)f)9" zz
and, consequently, has along axes of the terrestrial system of' coordinates the
following direction cosines (Table ii.i):

Table ii.1

O- ROy Oz
___ ox o7J

It remains to find direction cosines of aerodynamic forces and their moments,
which both in magnitude and in terms of direction depend on the velocity vector of
the rocket v relative to the terrestrial system of coordinates.

The direction of the velocity vector, in other words, the direction of the
tangent to the trajectory, will be determined by two angles 0 and o, which are
determined in the following way. Let us draw through the velocity vector an inclined

plane perpendicular to plane Oxy (Fig. ii.i). The
IY angle composed by this plane with plane Oxz will be

designated by 0, and the angle between the velocity
vector and plane Oxy by 0. These angles are
analogous to angles T and ý determining the direction
of the longitudinal axis of the rocket relative to
the terrestrial system of the coordinates. We will
consider the angle & positive if the velocity vector
is directed upwards, and the angle o if this vector

beplttdis directed to the left of the plane Oxy. Then thel\ vectorial component of speed along the axis Oz will
be equal to

Fig. 11.1.

and the projection on plane Oxy to -v cos a. The
latter can in turn be plotted on axes Ox and Oy, as a result of which we will
obtain

Le == V CO AlCS0 c • uososin0 O.2

In view of the smallness of angle a during normal flight of the rocket, we
will assume

Cosa-1|. siln-=a. (ii.3)

whence

".t, aCos 0. v, vsin 0. v, -- t. (11.4)
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Hencet we find the direction cosines of vector v and opposite to it the veitor of
X (Table 11.2).

F Table 11.2 ..

Ox oy or

0 w c s in# -d0
X

It was already mentioned (0 7T) that the vector of the aerodynamic moment U.
is perpendicular both to the longitudinal axis of the rocket and also to the tangent
to the trajectory and, consequently, differs only by a numerical factor from the
vector product of unit vectors x01 and v , where if this is the restoring moment
then it is directed along vector x0 X v , and if it is the destabilizing moment

o 0il the opposite direction. Noticing that the modulus of the vector product x,. x v
by definiti-m is equal to sin a % a, and the quantity of the aerodynamic moment on
the basis of formula (T.1) is equal to

(for the restoring moment 0. > O, for destabilizing, Ma < 0), we obtain that the
vector of aerodynamic moment can be thus expressed:

40

Lift Y is perpendicular to vectors v0 and X, X v0 and coi-r.ides in direction
with 'ector Y0 x (X0 x vO). The modu•lus of this vector is also equal to a (since

0 0 0vectors v0 and xi x v are mutually perpendicular), and therefore lift can be
repreaented in the following way:

rum zxuP)X IC. -qSup Xxx (X81 6)

00 0
We use equality x0 x z10 and t-ansform the vector product x 0 x v0 to theform

Then expressions (11.5) &nd (11.6) will taie tha form

K,-' (•,- J "o q- (÷ 4 a - +1.A (ii.+)

X-L x* E-YD,- 21)ý. •,• V+ vie(.•

where

a, -'e ,t(- )(7, X 1 0 ' (11.9)

L--, (,--__(•
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P C.- -,qs (, .J ( X" - 1 (11 .10)

Decompositions of (11.7) and (11.8) have geometric meaning: lift Is £resented
in the form of the sum of two forces directed along the normal to the trajectory,
one of which, Y y, lies In plane Olxlyp , the other, Yzs in plane C.xlzl, and the
aerodynamic moment is replaced by the cum of moments of these forces. Convenience
of such decomposition consists in the fact that for vectors Y and Y., and
expecially for M1 and MK , it is easy to find their magnituues and dire.tlon

cosines. Actually, vectors Ma and Me.. are already represented in the form

of products of scalars

C' _ -:,S _. " - .)(4W - ZJ 1.I

and
: S", -- -)(OA (11.12)

0 0on unit vectors y, and z,.
0 0 0 0It is found that vectors (v x z a) and (v x yO) entering into expressions for

Y and Y with an accuracy accepted by us can also be considered unity. Really,
if we disregard the square and pairwise products of small angles •, w and a, and
for the small angle T - 6 we assume

sIO(Vf- 0)- •-0.
1ot-0=I (11.13)

then " 3

C cos sin a
OSi---• RSIOfF 2S1inRq--JCOSy

--(sne8 + ;a• SF 4 -- '0 Cos 4F) x-I+
+ (--o O-- to os W, -- W sin q)e +

S Cos , O- osOuz• q (11.14)
| -sing €OS9 it

S•qi a + a Cos if) 4" + (- TnosB + o do u)yl+

--+C os (r, -- Oz w J( SIaR 0+ocos q)+

For quantities of these vectors the following equalities are correct

1 , I , = 'V•i6- 0 + C:oe - ,0 --?1%01

116 sin + a Cosir T(-iCos -±a S(;uy9+ I -:W .

l÷X/,l,

______________
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We write expressions (11.10) in the form

0 y v willbetenfruatis
and scalar factors with vectorx z, x v and yo xv be taken fcr quantities

of forces Yy and Y?:

L pressions (11.11), (11.12) and (11.16) show that scalar products

="Jn"Cal0 - :in q) +- stn Ocust • - aq =w sin (B--) -w 0--9

and
-u'. COSO(•cow1 + qsiaq) + Fine (,.t Sa-- Cosq)-G -

can be examined as numerical values of angles of attack in planes 01 xY1y and
Z., which we designate by ay and az (with a chage In the sign for vO-y1):

e,-- g,•.=•-e.(11.17)

With these designations formulas (11.11), (11.12) and (11.i6) will take the
following form:

Y,-C-,qf. |J (11.20)

These formulas determine magnitudes of moments May1, Ma , and forces Yy

and Y.. Direction cosines of these vectors coincide with components of unit0 0 0 v0 .0 0O
vectors y., zI, zi x v and y1 x v respectively.

§ 12. Summary of Formulas for Forces and Moments
Having an Effect on the Rocket

For the best clarity of formulas derived above let us put them into Tables
12.1 and 12.2.
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13. Equations of Motion in Coordinate Form

Let us project equation (10.2) on the axis of the terrestrial system of
coordinates. With this by dv/dt one should understand the full acceleration of the
center of gravity of the rocket in absolute motion determined by formula (1.8),
and In vector F unite all forces reduced In Table 12.1. As a result we obtain:

n'(.O + 4. 4- 1J,.) A _ , _,,Scos~O _

- c;,.s[(a in o t , (sln" 0 -a Cos '01) - X,.cosi, -

- 2/R' sin + -- ' (6, j- )(,cosq J-`- i|si1u;) + PcosaT.
,n, " + J.--" , M9 - ,e•-€qS s,, Io0+

+c;,qs[•acos 0 -+ . (t,(cos 0 -osn.)J - X,11 •np +

+ .2R'6J COs q "- R' 16, +t- 63) (1 siiirp -. uls 'f) - .Psi,,r.

t,1 (-I- J, + Jt g + cqSo + c'qs(,,q- a,) +

+ - +t- 2 RV'ti + R' ("1 + 6j) - P.

In these equations we can disregard terms containing pairwise products of small
angles, including the products of angles k and I on angles of deflection of the
control surfaces, as a result of which equation will take following form:

• =-- (P -. ,,)Cos% - c.OVScoS 0- C;,qS(q, - 0)si, o -

s'-~ ji(P- X,,)sfn -•c .qSs nO+C;,qS(,- O)CoSO +

"+ 2RR% cosq] - + (13.1)
Z !'P X11) __¢q$o + l, qS (t 0)_

r-'•,@ "g- J,, --L,.

The vector equation (10.2,3) is more convenient to project on the axis of the
bound system of coordinates. In this equation it is necessary to include in M
all moments given in Table 12.2. Projecting and considering that B = C, we will
obtain:

A R• 11

"Ye -• - - ,,.= -c.,qS(x, - xr,)-o) +
+ R'(, - x,)(, + 6) - n,,,SIp.no- m.,. (- .2-)

B-r(B A) R I.
+ (- .),,,, = c- ,qS(x - x,)(F -0)-

- 2R' (1 - ,)- -.



To equations (13.1) and (13.2) it is necessary to add the nonholonomic constraint
between v, &, a and x, y, z, and also between Dx, w'y, wz, and j:

£=vCOS 0.Jy=vln.-(13.3)
=-n J.

=o,-- '+q.

Tne relatiQn (.13.3) coincide with equations (11.4) and relations (13.4) with
equations (2.9).

Finally, for tile determination of angles of deflection of the control surfaces
there are necessary these equations of control

X Y,[. Z. 5.9. I. -OI
• l,. 16. X. Y. 5Z. T. ZL I--O. (35
PS INp .Xey. Z. v. I. ,I--U

The fifteen equations (13.1)-(13.5) permit determining these functions:
x9 y z V '1 0 y/, 0, a) z A, bil 6 20 6
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CHAFTER IV

SIMPLIFICATION OF EQUATIONS OF MOTION

14. Equations of Motion for Powered-light Trajectory

Equations of motion obtained in § 13 can be assumed as a basis of the 6olution
of the many problems of the dynamics of flight. But practically into these equations
always are introduced those or other simplifications the essence of which is closely
connected with the content of the problem to be solved.

Let us start with the derivation of equations for the solutlof of a definite
class of problems, problems of ballistics of long range rockets. In these problems
the most important magnitude subject to determination and investigation is the
complete flying range. Flying range depends mainly on the trajectory of the center
of gravity of the rocket. Motion of rocket about the center of gravity is examined
in ballistics so far as it affects the trajectory of the center of gravity. In
particular, in the solution of problems of ballistics it Is possible to be distracted
from the Influence on trajectory of small oscillations of the rocket about the center
of gravity. Thus the most important equations for us will be equations (13.1) and
(13.3) and less important, equations (13.2) and (13.4) in which we will produce
main simplifications.

In equrations (13.1) the members depending on angles of deflection of control
surfaces are secondary in their value. Therefore, equaticns of control (13.5) can
be used in considerably simplified form. Further, in equations of motion of the
center of gravity (13.1) and (13.3) the first two equations depend little on what
will be the solution of the third equation (for z and i), and, consequently, in
certain cases equations for x and y can be examined independently of equations for
z. Finally, there are possible simplifications of equations of motion as a result
of rejecting certain emebers immaterial with a certain accuracy of calculations.
in such a plan and we will start the simplification of equations of motion for the
investigation of motion of the rocket on a powered-flight trajectory.

If we disregard small oscillations of the rocket about the center of gravity,
then the motion of the rocket will be accomplished with insignificant angular speeds
and accelerations. For example, the angular velocity of the slope of axis of the
rocket is 0.O1-0.03 i/s and is changed very slowly with the exception of separate
points. Quite insignificant are angular velocities with respect to axes OixI and

O.Yii Consequently, in equations (13.2) it is possible to disregard members
proportional to angular velocities and accelerations, and these equations take the
form of conditions of equilibrium between aerodynamic moments and moments from
controls:

"• ~ ~~~R'hl(-")=O

r a s(X., - ,) , -e + 2K (, -) p,). + o.
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S Figure 1. .i snows for one of the rockets
valves of angles of deviation of Jet vtnes

4' necessary for compensation of the aeradynamic
damping moment (5, reaction moment (r).
and the surmounting of the moment of inertia
( A5 can be seen from the figure, all
these angles are minute (range of turn of .let

2' v&nes .xceeds *20°).. From the same consideration_ it is
;I, possible to record the equations of control
S4 (135.) as conditions of equilibrium between
_ commands proJuced by sensing devices of the

-..... conrol system and deflectlorn of the effectors.
Z S • In the first approximation the deflections of

Fig. 14.1. the effectors can be considered directly
proportional to the commands proceeding from

the sensing elements. It is clear that zero comni=r3 correspond to zero defiections
oV the effectors.

As was shown in § 6, with a deflection of the axis of the rocket upwards from
the program position on the potentiometer of the gyro horizon the displacement Ar'
appears. We will consider that it corresponds to the proportional deflection of
Jet vanes 2 and 4 downwards (which we consider a positive):

6, o~Aip'.(14..2)

Deviation of the axis of the rocket to the left of the assigned plane of firing
causes cisplacement .' of the potentiometer on the axis of the external frame of the
vertical gyro. We assume that proportional to this displacement Jet vanes I and 3
are deflected to the right (this deflection is considered negative). Finally, with
the turn of the rocket about the longitudinal axis clockwise (depending on the
flight) on the intermediate axis of the vertical gyro there appears a displacement
of the potentiometer T11 and, according to our assumption, this will induce deflection
of jet vane I to the left and Jet vane 3, to the right. Considering parameters of
the control system with respect to lateral axes identical, we can write:

61 - - CA, + bo~ .}(14. ,3)

Coefficients a 0 and bo characterize the sensitivity of the control system:
the higher their numerical value, the greater the reaction of control surfaces on
deviations of the axis of the rocket. They are called by stai plification
coefficients, since they characterize the reaction of the cor suFaces on a
constant (or slowly changing) signal from the gyro-instruments.

Using expression (6.10)-(6.12) for t', 7' and t•,, we will record the equation
of control of the rocket in the form

6,- ael + 60%

63=--1 (14.4)

We can now exclude angles of deflection of control surfaces from equations (14.i):

2R'h,Aq --0. )
4.S(X, - .,J)(2 - a+ 2R'(,1 - xj a = 0. (e,';+• (-. - J, (',P - 0) + 2R"(1, -- .,) a,, o."
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The first of these equations g!vps

q--0. (14.6)

The second equation (14.5) can be transformed in the following way:

eLfqS(,-It (14.7)
z,.#S (zi -Aj + 2j& (R, -c,))

Finally, we transform the third equation (14.5):

o,•;qS(z.-z-j - 0) + 2oR (1,-) [j (-,t -(,-O)J 0.

or

_ I *h Sqx, x,4+ 0  l -A,) (•"" , €.• • •,•( -

• ~s*-*)+ o..•.- 0If we designate by A the quantity

Am ( (14.9)

then equations (14.5) lead to equatians

) qp-OmA~qfp--f).(14.10)

: l,=~~t(l -- A)*.(I .I

From equation (14.10) it follows:

Usin these equations and expressions (14.4) for angles of deflections of control
surfaces, we will transform equations of motion of the center of gravity (13.1):

X

-• -- [P -X,• eos,• -s $in c 0 --

-- -,q-l,,--JR.

- I_
W-4a.• + 2avR"(1 - ,A) *-I • "Y. ,
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In these equatinnL it is expediently to turn to variables v, 0, and ', using relation
(13.3). Differentiating the latter, we will obtain

=vCosa -- Vsin. . (14.15)

= "sin0 +•d Cos 0.

or, solving with respect to ¢" and vJ,

;= xCos8 + yjsine. (14.16)
vb-•--sin0--ycosO. (

Let us insert in (14.16) M and Y from equations (14.14):

;--i I(P-- X')COs(f - O)--,$qS+
+ 2aj" (I - A) (cr,- 0) sin % - 0)l-

U!- (. -t-i,,) Cos, ( 0 - + - 0i.) (141

- 2a4W (I - A) (p,, - 0) cos (q - 0)] +

+(-!'J"J")~nO('+- e+"-r")CsO-(14.18)

Up till now approximate equalities (11.13) were used only in secondary members.
In order to use them in members having the largest magnitude in equations of motion,
for example, in the first member of equation (14.17), it is necessary to give one
self a report in the magnitude of the error committed. From tables of trigonometric
functions it is easy to verify that, considering cos ay 1 I, wp commit an error not
exceeding

0.1%. when u, 215.
0.2,% when 0J, - 35.

0.5% when a, . 5'.
1% when a,• Y '<
2% when Gi I1<.
5%• when ay@ 18'.

Since for ballistic missiles the angle of attack usually does not exceed 2--°,
and the thrust and drag of control surfaces are known correct to 1-2% of the thrust
value, then the accuracy of the member (P - X1p) cos ay almost will not suffer from
replacement of cos a by unity. An even smaller error is given by replacement of

y 2sin a by ay. The third member in brackets in equation (14.17) has the order ay
and on the same basis can be rejected (let us note that this rejecting partially
compensates replacement of cos ay by unity in the first member).

Subsequently we will use the following principle of simplification of motion
equations. If in the equation there are contained such members whose absolute value
is less than the possible error in the main (in value) members, then these members
can be rejected without damage to accuracy of the equation. The influence of
accuracy of the equation on the accuracy of its solution is not investigated. Let
us consider from this point of view members considering the attraction and rotation
of the earth in equations (14.17) and (14.18). The accuracy of these equations is
determined by member (P - Xip)/m. which in the beginning of flight of the rocket
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ha•s a manituhe nor smaller than the acceleration due to gravity g0 . 9.8 m/9 and

toword the end of the powerel section because of the decrease in mass of the rocket
It increases a few times. The accuracy of this member, as was already mentioned, is
equal to 1-2%, i.e., not higher than 0.1 ,/8 . In equations (14.17) .nd (14.18)

we will not consider members smaller than 0.05 m/s or 0.005 g.

' Th1s, the member E g can be disregarded when x < 0.005 r, i.e., all the more
when x 6 0.005 R - 30 kin, and taking into account factors sin 9 and cos 0 when x < 50
km. The factor (R + y)/r when g can be considered equal to unity whern R + y > 0.995 r,

Sl ~X1 :- (R -r- y)2 < 0.01 fl.
x < O.1r~v 600 km.

Members 1ex and j consitute vectorial components ae whose value does not
exceed no. Considering r < 7000 km, we obtainI

J,< 1.l(TS 0- f< 0.Oe ,/S2.

This means that centrifugal acceleration during calculation of the powered section

can be disregarded. •inally, the value of Coriolis acceleration J. does not exceed
2w v < 1.5.1o04 v. It will be less than 0.05 r/.a, if v < (0.05)/(1.5.10-4 300
m/s. The speed of the rocket takes coosiderably greater significance, but the
component of speed vz . I of the value 300 m/s usually is not reached. Therefore,
members with 4 * in expressions (1.11) for vector J. in the calculation of the
powered sectiQp can be diarogarded, and we can use the following approximate
"expresfions:

,, -2 cos q, sin '" 2 -€CoS q, sin't Cos .

4= -2o*.~ssq, 2iaos~cos= 1(14.19)
-26vý.i(sin q, + 203o, Cos fsiuCos

Taking into account these remarks equation (14.17) take6 the form

(P" "n p -X,,- .qS) -gino- 4 gcose, (14.20)

since, on the basis of formulas (14.19),

JCA Cos 0 -+ 1, sin 0.

In equation (14.18) we will produce analogous simplifications and will taka out
after the brackets the value v - e 0 A(p - 1)= u. Let us then divide equation
(14.18) by v W find:

orP,. Zt! z: rl c s0 ýEgsln8+2;'cosq,sinij.-

rr

or, taking Into account expression (14.9),

54!



-.---- { 'P- X.,-+.( - - j C 8+ g6-.On + 2- 3 COS T,. I. I?.

or, finally,

", [ , - ./. X--r'-' gCO, +-L-si,, 'r-2o•.LOs,,n.. (i .21)

Equationz (14.20) and (14 .21) can -.e integrated Jointly with the first two equations
W3.3), since they will form a system of the first order equations with four unkown

ntions x, y, v and 0.

otheze differential eauations it is necessar- to add the dependences (3.3),
(10.20), (ll.17), (14.9), (14.13), (6.16) and (144.4) for the determination of m, P,
avo X.p. where the value of orag of Jet vanes can be considered constant; if, however,
there are reliable characteristics of Jet vanes, then it is possible to consider the
dependence 1 1p only from the deflection Cf control surfaces 2 and 4, disregarding

the influence of very small angles of deflection of control surfaces I and 3 on the
value of the total drag of the control surfaces.

The influence of small periodic osci!iations of control surfaces on drag of
control surfaces can be considered on the average. The mean 'ralue of the increase
in vane drag from oscillations of control surfaces consists of half of the increase
from the constant deflection of control surfaces by a value of the amplituie of
oscillations.

After the motion of the rocket in plane Oxy is calculated, one can determine
motion of the rocket in a lateral direction.

Uiffercntiating the iatter from equalities (15.5), we obtain

or
do

Substituting 2 and dv/dt from equations (14.14) and (14.20), we will find:

' .'Ci1.- s--(P -- .v,. 4,,,S).I +

-ti(P - .,P'- CS -S .

After transformations, the considering expression

ua, ,Au.

emanating from equations (11.18) and (14.1i), we will have

Considering the remarks made on the possible simplifications in last members,
using expression (14.19) for Jcz and transforming the bracket Just as with derivation
of equation (14.21), we will obtain equation
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which together with

(see third equation of (11.4)) serves for calculp.tion of lateial deflections.

Thus, the most general system of equations for ballistic calculations (14.20),
124.21), (13.4), (2).22) and (i4.Z23) is obtainec This system can be used directly

ýor numerical integration only when a number of constructive data of the rocket is
known, namely•

a) ac',urate laws of the change in z.nrust P a'-d flow rate per second & in flight;

b) accurate values of aerodynaMic properties (cr, cx , c) for different
conditions of flight (A, ,

c) accurate characteristics of jet vanes (R', Q, X))

d) pazameters of the control system, in the first place, "program" of Inclination

of the axis of the rocket (1p and proportionality factor between the mean deviation

of the axis of the rocket from the position prescribed to it by the control system
&nd the mean deviation of the jet vanes (ao).

Furthermare, it is assumed that calculation is produced for a definite position
of the launch point and direction of firing (4p a).

in the first stag"•s of designinc of the rekot enumerated constructive data
are known only very approximately or are quite unknown. Their more precise
definit.on is possible only on the basis of a number of laboratory, static and flight
tests of the rocket and its units. These tests and the entire designing of rocket
as a whole should be based in turn on preliminary calculations of trajectories,
which are fulfilled on the basis of more or less cimplified equations of motion. In
these preliminary calculations of trajectories, which are fulfilled on the basis of
more or less simplified equations of motilun. In these preliminary calculations there
usually is no special interest in the influence of the rotation of earth on the
trajectory, since the main problem is the determination of mean values of flying
characteristics of the rocket.

Our immediate problem will be the composition of simplified equations of motion
which would correspond to some presence of initial constructive data and decree of
their accuracy. Rotation of earth will not be considered, knowing that when
necessary it can be considered by introduction of member 2 n COS (r sin * into the

3 requation for dO/dt and member -2-u 3(sin 9- cos a - cos 4P cos # sin 0) into the

equation for do/dt. Then equation (14.22) at initial conditions a - a - 0 when
t w 0 gives for the whole powered section o - 0, and therefore henceforth we will
not write equations :or a and z, implying that .otion is accomplished in plane Oxy.
The angle az turns into zero, and angle ay coincides with the angle of attack a.

Subsequently we will use designation a instead of a.

Comparative calculations of trajectories and zertain theoretical considerations
show that a change in the form of the powered flight trajectory, i.e., a change in
the dependence 0 on t, has comparatively little Influence on the speed of the rocket
at the time of the turning off of the engine on the full flying range. Therefore,
when the main problem is determination of distance, simplification of equations of
motion can be allowed mainly owing to the equatior for dG/dt.

In particular, if there are no data on the magnitude of coefficient a 0
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characterizing the sensitivity of the control syctcrn of the rocket, it is possible
to consider contr'l system of "ideal," which corresponds to an infinite value of
the coefficient aO. Passing to the Vimit in the equation (14.8) when a -- 0 , we

will obtain

Ga=,- 0==1 %-0 . (14.24)

and equations of motion take the form
dr IC') i Cs0
-. .(P-- Y,- cXqS - "slnO-- geese.

"- - I - + ,-' 0

-,cos 0]+ L gsin (14.25)

dxdl"- f' LOS e.

dt

If it is necessary to determine the program angle of the deflection of jet
vanes b2, then it is possible, by using the last of relations (14.1), to obtain the

expression

.qs(.,.. (14.26)•'=21C' (It -- x,)

If now ,one were to consider that when a 0 -* a) in the limit is found to be v - as

this ensues from relation (14.24), then expression (14.26), will take the followingS~form:

The system (14.25) is most commonly used in those cases when there is produced
a checking calculation of the trajectory for the purpose of determining the parameters
of motion of the rocket and loads having an effect on rocket on the powered section.

If the form of the trajectory, i.e., the dependence of the angle of inclination
of tangent e on the time of flight is assigned beforehand, then in system (14.25)
one should jointly integrate only the first and the last two equations with unknown
functions v, x and y. The second equation of this system can serve for the
determination of the angle of attack

-1X (14.28)

The angle of inclination of the axis of the rocket is determined with this by the
formula

9--e+C (14.29)

The absence of exact values of aerodynamic coefficients and centering of the
rocket is indicated greatest of all in the determination of the angle of inclination
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of ta"ngent 9 from *..e euatic for d4/dt. In wc the member lepenlng , X

I X and c, is the vain one in value. It is natural that the angle of attack
I -Yi

a is determined inaccurately. Since the angle of attack of long-rsnge rockets in
flight is usually sell, It is Impossible, disregarding it, to calculate the
trajectory by •quations obttined from (14.215) wt.en 0 - v, (in this case !t is

possible to disregard the member E i):

S.'9

"di .... 7.,.

The error practically appearing in the acceleration of rocket Is less than the error
due to the inaccuracy of 10-20C in value of the coefficient of drag.

The system (14.320) should be used for all design calculations, for further
simplification or equations of motion, for appraisal of the influence on the motion
ef the rocket of different factocrs little connected with the form of trajectory, and
in other cases not r..qulrlng special accuracy.

§ 15. Egations of Motion for the Region of Free Flight

In the solution of the basic problem of ballistLcs It is assumed that the
rocket accomplishes free flight with an angle of attack equal to zero. Tt follows
froin this firet that on the rocket act only two forces of all those examined by us:
gravity and drag. Secondly, there is not need for equations of motion about the
center of gravwity. Consequently, the equations of motion (13.1) for the section of
free flight take the form

- | *
* - A#ca- 0 -!Z

JrPMCASGtfl 71 151

where v, 0 and o are determined by relation (17.3). The latter can be rewritten

thus:

--p (15.2)0-

Cosýsiderlng that q - (pv 2 ), and using expressions (1.9)-(1.11), we will record
equations of motion for the section of free flight in the following form:

____ ____ __ _____



S

dieu._ -C~ , 7 flx Coso, cosit -
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C f'V-- - + -) -- (.+) fix cos IVcos 'i +
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or finally in the following form which is more convenient for calculations by it:

d ,

+ OOZ + b,2v, + N•.b3 ,

- -kc, 2-rv,- (R' +y) +B + (15.3)

+ an (R + y) + a:+ b+ , " +b kA..

Ln kC, - V :+ C31X -a (R + y)-p r

+ 433Z -j- bVv + Ahv,.

where

= ;-, (15.4)

- SifltrC- •sin Cs, COS h'P.

a. ', .= ; Cos! itsil I Cos t.

a . (42 C. o S2Tr,, i (15i5)

a.== o((sIne-, 4- cos ', Cos
b12 - b&- 2oj cos -f sin l,
b.3 -- 1  = -- 2o sin ?" (15.6)
bu - -v -= 2(') Cos I0r, cosh

are constant for the given trajectory coefficients.

Equations (15.3), together with equations

dx

d• =y. (15.7)

should be applied in those cases when it is necessary to calculate the trajectozy
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with great accuracy, for example, in the compilation of preliminary tabies of firing
for flight tests of a rocket.

It is necessary to consider that in the determination of flying range theaccuracy of calculation of the section of free flight has much greater Importance
than the accuracy of calculation of the powered section. Actually, the deflection
from the calculated trajectory which the rocket has at the end of the nowered section
to a greater or lesser degree is compensated by the control system, namely, the
instrument, sluthing off the engine. Tuning of this Instrument Is produced by
proceeding from calculation of the trajectory of free flight. Thus, the main factors
affecting coincidence of calculation and e.ctual range are the perfection of the
control system and accuracy of calculation cf the section of free flight.

On the other haind, possibilities of accurate calculation of the trajectory for
free flight are considerably greater than those for the powered section, since a
larger part of free flight lied in so rarefied layers of th' atmosphere that the
only force subject to calculation in equations of motion Is gravity, which is well-
known with great accuracy. If one were to consider the flatness of earth, one can
determine the acceler-ation of gravity g with an accuracy of the order of 0.0004%.
The assumption made by us on the sphericity of earth considerably lowers the accuracy
with which the acceleration of gravity is determined, which Is clear from Table 15.1.
In this table R denotes the mean raldius of earth and R1, the true distance of the
point from the center of earth.

"Table 15.1

F lI~'
6W 9ým 9 .6" oACO 9.8S 0.0--0.•

W cca2 re I -- 012 9f.6 0.01•2

Hence it is clear that formula

possesses an accuracy of the order 0t O.01 M/s or 0.1%. Furthermore, Table 15.1

shows that it is expedient quantity r to calculate by the formula

'R-R-h.

where h is the actual altitude of the point above the surface of earth. If, however,
by r we mean the true distance of the point from the center of earth, then the
accuracy of formula (15.81 will be reduced almost three times.

Thus the accuracy of the right sides of the system (15.3) does not exceed 0.01
Ws 2 , and we have the right to disregard in them members smaller than this value.

2Since the value of coefficients a k does not exceed L3 members of the form
a ix and a 3 z can be disregarded when fxf or Izi - (0.01/)-) - 2-106 mi 2000 km.

Members with coefficients bik can be disregarded, if the absolute value of the
corresponding component of speed does not exceed

0.01 ,',imm~i,,l -"u-• •;0 M/s.

Thia condition for long-range rockets can satisfy only uy the component of speed v .
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In +ne member x it is possible to replace r by R, if

X,- .0 <0.1 r/s2

i.e., when

Ixi .O IRr

and all the more when

IxhII< :;w -O000 km2 .

which takes place about the whole trajectory for firing ranges up to 500 km.
Analogously one can assume that

I Z

when

IzhI < 40000 km2.

In all members containing r, it is possible to replace it by R + y, if

B + X > 0.999 (proceeding from an accuracy of 0.1%), and this is fulfilled if
r

(R+ y) > 0.998r0.
X2 < 0.002r2.

x < 0.045r

and all the more if x < 0.045R - 280 km.

Let us now turn to the simplification of equations for the section of free
flight. Above it was already said that for calculation of average flying
characteristics of the rocket the rotation of earth can be disregarded. With this
'_t is better not simply to reject members considering the rotation of earth but
replace them by mean values. At first we will calculate the mean values of
coefficients aik and bik for the arbitrary point of launch on the surface of earth,

changing the azimuth of firing * from 0 to 2z. These mean values of coefficients
will be noted by primes. They are calculated by the formulas

a --- f ai,(hr. 1. k r= 1. 2. 3.

Carrying beyond the integral sign the * factors not dependent on, we see that
the calculation of coefficients is reduced to the calculation of integrals
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sinA d t cfd
on'm dtI cost,#d#=O

0 0

-•(��(if,, + C-o.s 4p

£26 elatcooltfe

&-•;--(--2,,,W; . , ). (15.9So)

and b" of coefficients a1 l and bjk (there

will be at the same time the mean values of coefficients a and bi) over the entire

surface of the earth S. These mean values are equal to

.f J,* JS f J A ,fa ,. , f"C,,

or, finally,

Calculating the definite integrals

X4

SsInV cos Vdq =2'

6oeq dy-_
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We find values of coefficients interesting to us

aao .=,- .4 -,3.545. 10-' 1-1

hi , = hi , h: . ,• . = h; = b .= o.

Consequently, the mean flying range of the rocket can be determined by
integration of the system

W, p g 2 •

"-- - kc,- vv- -' + (15.12)

together with equations (15.7).

The last equations of systems (15.7) and (15.12) show that at initial conditions
z = 0 and v. = 0 these equal 4 lies will be fulfilled along the entire trajectory, I.e.,
the mean trajectory of the et lies in plane Oxy. Thus, the need in equations
for z and vz is eliminated.

System (15.12) is awhat simplified during transition to polar coordinates,
i.e., with replacement •. coordinates by the formulas

x = sin z
R+y= r Cos Z.I

where X is the: central angle formed by rays drawn from the center of earth to the
point of launch and to the rocket, in other words, the angle between the radius
vectors of the launch point and rocket. Differentiating relations (15.13), we find:

x ssinZ+ -,co sz. s

XV~tX~t 2joszjrsgx r~es1.(15.15)
yomIcosi- 2rxswinz- rjrcosx-- riulal.

From equations (15.13)-(15.15) the following relations ensue:

zsf Z +(R +y) Cos -.
R(15.16)xc z -- (R-t y) Min .=J 0.

•a~z •.,z-e;+ r•(15.17)
irS1GZ+jCOsZ=V - jil

ieos~;s~m m~rjrj j(15.18)

Substituting In relations (15.18) M and Y from equations (15.12) and using relations
(15.16) and (15.17), we will obtain a system of equations of motion in polar
coordinates:
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S... (15219)
Sed teiso qa tions -. is e sdy

or, Altitude hand flyint range along the arc of the earth's surface yield expressions

SA =' - R. (15.2±)

I=RZ.(15.22)

S-•+ - inally, it the altitude of flight is so great that drag can be dIsregarded,

Ssystem (15.19) results in the bora

gj+ + 2F • 1 v (15.23)

a2 IThe seeon equtation of (15.24) is written on the basis of equali•ty

"If in the first of equations (15.,24) we disregard the member 03r, whlich •ill

lead, obviously, to an insignificant decrease in the calculation range as compared
to the true, then we will obtain the system of equations

-- 1 (15.26)

which is easily integrable in general form. We will arrive at this system if we
examIne not the relative but the absolute motion of the rocket at high altitudes,

i.e., the motion in the inertial system of coordinates the origin cf which moves
together with the center of the earth, and the axes maintain a constant direction
in space.

The absolute motion of the rocket is composed of the rotation of the earth and
relative motion of the rocket. With motion at high altitude where aerodynamic forces
are negligible, it is simpler to determine the relative motion not directly with
the help of equations 15.-3) but using the absolute motion which is described by

simple equations (15.V2). These questions are analyzed in Chapter V in greater
detail.

I -
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§ 16. More Precise Definition of Equations of Notion

In the preceding paragraphs in speaking of the terrestrial system of coordinates,
we did not distinguish two possible positions of this system. In § 1, for example,
it was implied that axis Oy is directed a-ong the radius of the earth, and in other
places, in particular, inl 2 and 6, it was assumed that at the time of launch the
direction of axis Oy coincides with the direction of the longitudinal axis of the
rocket, i.e., with the direction of the plumb line. In the first assumption plane
Oxz touches the surface of the sphere with the center coinclding with the center of
earth, but in the second one it is the tangent plane to the actual surface of the
terrestrial spheroid.

Deviation of the plumb line from the radius of the earth is caused, first, by
, .i• I& Lat on Lne buuy quiescent at the surface of ýhe earth, besides the

attractive force mg, there acts a centrifugal force anu3R cos 'ro directed on the

perpendicular to the axis of rotation of the earth. The resultant these fo.rtes img
is gravity, and its direction is the direction of the plumb line. As can be seen
from Fig. 16.1, this direction will form with the direction of the attractive force
the angle W', the value of which can be easily determined by the theorem of sines

wviR Cos T, me

The centrifugal force is small as compared to gravity (not greater than 0.35% of the
latter), and therefore angle Y' is small and with
sufficient accuracy one can assume that it is equal
to

4R*

The maximum value of angle ' consist of (for latitude
1450)

Fig. 16.1.
Secondly, the very direction of the attractive

force does not coincide with the radius of the earth
and due to the deviation of the form of earth from a sphere will form with the radius
of earth (more accurately, with a straight line connecting the given point with the
center of earth) the angle Y". As a result the plumb line is deflected from the
radius of earth at angle

1•,= '• -I-y".(16.2)

The value of angle Y is easily determined from the condition that the plumb line
is normal to the surface of the terrestrial spheroid. If one were to assume the
latter as a ellipsoid with a flattening a = (1/298.3) (Krasovskiy's ellipsoid), then
for angle Y there can be obtained an expression accurate to values of the order of
a2

T-- asin 2%,. (16.3)

Angle -y has at latitude 450 a maximum value equal to

T -- a- = O0.S5-- m I'.5.

Thus, at the surface of the earth the centrifugal force caused by the rotation
of the earth gives the lame effect as that of flatness of the earth.
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Let li keep the designation Oxyz for the system of coordinates rigidly joined
with the earth, for which the origin is located at the launch point, axis Oy is
directed upwards along the vertical directly opposite gravity, and axis Ox, lying
Just as axis Ot in a horizontal plane, will form with the plane of the prime
meridian the angle 0. This angle is called azimuthal aiming. Such a system of
coordinates will be called launch, since at TuncF i thenected axes of the rocket
are oriented along axes of T Feunch system, namely, the 0lXI axis is combined with

the Oyaxis, OlY axis is directed aside, directly opposite to Ox axis, and 0z1 axis
is directed in parallel with axis Oz. Consequently, the axis of the gyro-instruments
at launch are orisnted along axes of the starting system: The axis of rotation of
the gyroscope of gyro horizon is along the Ox axis, and the axis of rotation of the
vertical gyro is along the Oz axis.

The second inaccuracy which was allowed tup till now -onsists in the affirmation
that the axis of rotation of gyroscopes of gyro-instruments rsmain in parallel with
axes uf the terresal ai system of =cdnatcs. In reality they rcnain in parallel
with the directions which had corresponding ax•-s of the launch system at the time
of launch. Axes of the launch system, being rigidly joined with earth, turn at
time t at angle (03t about the axis of rotation cf the earth. For one minute the
angle wt reaches a magnitude of 15'.

The position of axes of the launch system at the time of launch will be
designated by the index "0." Thus we will use three systems of coordinates: bound
0XlYlzl, launch Oxyz and initial launch Oxoy 0 z0 .

Everything said in § 6 remains correct if instead of the terrestrial system we
use the initial launch system of coordinates, In particular, angles 4p, ý and zj should
also be counted off with respect to the initi~l launch system. Consequently, Table
2.1 of direction cosines is correct for axes _f the bound system of coordinates
with respect to the initial launch system (Tisle 16.1).

Subsequently everywhere we will disregard the squares and pairvise products of
angles Y, w3t and other small angles. It is easy to verify that the direction cosines
between exes of the initial launch and launch systems of coordinates will be
determined by Table 16.2.

Table 16.1 L O JOn, y

0'X4 Cosq I S8y

Table 16.2

Oy, ! 0j OS , --, , Cos

0'. .is . 3t WS 1, Cos$

Let us introduce designations for the small angles appearing in Table 16.2:

"Yn CO T, CcoS

2a - IVCs i
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With these designations Table !6.2 will Lake the following form (Table 16.3):

Table 16.3

O 07O Oz

Or, ! - Y. I

0'. -- ¥" I j-i
0" 1

Comparing Table 16.1 and 16.3 (wultiplylng matrices), we will obtain value& of
direction cosines between axes of the launch and bound systems of coordinates (Table
16.4). Here, on the basis of the smallness of angle 73 it was accepted that

sin V3= V1. Cosy !j

and, consequently,

cos (- Y) = Cos q -j sin if.

sin(' -- y) sian -- V4 Cos T.

Table 16.4

o0 0 0.: J
0,col (it ft -qo' rV i 1

As was already noted, deviation of the plumb line from the radius of earth is
caused almost in equal degree by the centrifugal force, conditioned by the rotation
of earth, and the flatness of earth. Consequently, considering this de-iation and
determining its value by the formula (16.3), we are obliged at the same time to
consider the deflection of the acceleration of the earth's gravity from the law
expressed by formula (15.8).

It is known that the acceleration of terrestrial gravity, with an accuracy of
values of the order of oblateness of the earth a, can be decomposed into two
components:

radial

= .-- (saI-)

and meridional

so Si ~TaCS Va.

where r Is the distance of the examined point from the center of earth; 9H- the
geocentric latitude of the point; fM - 3.9862 x 10 1 m3!s2 - the product of che

gravitational constant by the mass of earth; 4 = fMa2 (a - m) . 26.245"10 • -/8

m (w a3)/(fM) - the ratio of centrifugal aeceleration to the acceleration of
3
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. gravity at the equator.

. I The radial component ir Is directed to the center

of earth, and the meridiornAl g is perpendicular to

it and lies in & plane of the meridian ani is directed
in the direction of the equator (Fig. 16.2).

It 16 expedientLy to decompose vector gm into
two (non-orthogonal), componer.ts g' and g, in a
direction of radius OA and %xis of rotation of earth
ON. From the triangle ABC there can be obtained

Pig. 16.2. for these components expressions

LOS 0A * (6
S-=- =•I

Component g' acts in a direction directly opposite the direction of the radial
i.cceleration gr" These two components of acceleration can be united in one. exprestion

g" LýL- ILA(16.6)

Thus, in the composition of equations of motion, taking into account the flatness
of earth, it is necessary to consider two components of the acceleration of
terrestrial gravity: g•, directed to the center of earth and g, directed in parallcl
to the axis of rotation of earth. We will again deduce equations of motion; rejeating
the way already done in § li-14.

As a basis will use the launch system of coordinates. Angles & and c will
determine the direction of the tangent to the trajectory in this system. ConseqLeritl,

- formulas (11.1) and (11.2) and all of them ensuing, including (13.3) and (i1..16),
S will rerain In force.

Direction cosines of tractive force and forces from controls in the launch
system of coordinates can be found from Table 16.4, since these forces act alongaxes of the bound system of coordinates. Two component forces of terrestrial gravityhave Airection cosines represented in Table 16.5. Tn this table Xe, Yet z are

coordinates of the center of earth in the launch system of coordinates. They can be
calculated by tne formulas

r#,- sins yos'. I
X, - rac~ CSy. 116.7)

where r0 is the distance of the launch point from the center of earth. With an
2error having an order of a a the following formula are correct:

•, -- • , COG . 1.
y,--(! -- sa,) (16.9)
S, cS4 Si•in ,SiR

The value of component force of terrestrial gravity appearing in Table 16.5 Is
determined with the help of formulas (16.5) and (16.6). Entering into these formulas,
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"fTble 16.•-

I.I

Ot O Or

"S, I -_ I _-_• _ --_

the quant~ties r anid are leterained by the rormulas

, - -- (16j1o)

and

(s *4.J + ( Z,( -3 ), r, 16.11)

where r is the projer-tion of the radius vector r on the axis of rotation of earth

expressed by formula

r,, -- • (16.12)
W3

t Formulas for the determination of vectorial =omponents of angular velocity of

the rotation of earth on axes of the launch system of coordinates do not differ from
those derived in the first part:

J.E, 03 cows T Os. f

For the determination of aerodynamic forces and moments It is possible, as
before, to use vector formulas (11.7)-(1I.10) and formulas (11.19) and (11.20)
ensuing from them, where in the latter

a,- -VP (-'SCOSS1l~i - YJ Sint OjSuI +
-a (-- Y, costq - sinj +V q) M

+snO(•sint-q'qCoSq + )-O-
ft Ieos(-0) + I( + - ViO) T Stu$ - csO -a.

The Isst formula, since angle 1 - 0 is small, can be rewritten in the form

"a,- to-- + yV :fne-- y•cos6.

00
Direction• cosines of mouents May and 1azI coincide with components of vectorsy0

and zI (Table 16.4) and direction co-ines of forces Y y and Yzj with direction cosines
of vectors
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Table 16.6

o, GJ• , . ...

cat 00o

.Y,•X,pme¢, gs- €,I0 -a•n4 U

COAS 0ft~ 4-7j COS .yYalSM 01Yt~ ~ ~ ~~K (i -•,.j -- 4u 0o i-- c --Y, CO

;A tore I ~ r4 o I A 2 - anOf -y1w ~Cos Ofea -iV31JJI-a o

2 %rA 4

1 i14 3

Table 16.7

£.with sal,& r All" 'nI'r.IL r

06.40 0

-, .,, th r#- -,et

t'a • ..- R -1 0 0 0

haftr 0: )at v!**
2 -,-- R sir.)(re-~a) t

U was,0---2R"(/I---x 1 )6 0 0 1

Formula (1I.4) for angles of deflection of control surfaces remain in Torce,
and using them, we obtain:
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iXJfL -xCos (If~ -CA$SCOS

-j$(f- V- 'jr-inO -2.!? At sir.,* - i3j-

(4
I I

#t, t1

- IO

+ -- " ( J- I

i -O (X. .+j (F 3,)s, + ?a•j ('I - jA

,,,

&fld

';S,-- , - V,- 0)-+ .24R 'Q, -- 0J .

Slmplifyin•g these equations in the same way as in deriiing dependen-is (14.10)-
(f4.i3), we obtain;

e ,-,- A (a - v, sin $I + yj cosO) (16 .15)

1-0- )(a- sin- +• Cos e

,- • (q-- V-- 6). " (16.16)

where by A, as before, we designate the quantity

A (i (-- x,) (16.17)t (it O -- , + eas (,-•)

The equations obtained differ from equations %§ 13 and 14 by the presence of
members containing the coefficient " (in components of the acceleration of gravity),
and members depending on Pngles Y1, ^Y and *Y (in equations of motion about the center
of gravity). It is not alwa-'s necessary to consider these members. The group of
members containing 71, 72 and -3, characterizes the behavior of gyroscopes with

reapect to the system of coordinate6 revolving together with the earth. Calculation
of these members gives during calculetion of the powered section approximately the
same effect as that of the calculation of Coriolis acceleration, and should be
produced in all those cases when the latter is taken into account. During calculation
of the section of free flight this group of members, naturally, loses Leaning.

Calculation in eq'ations of motion of members dependent of 4 gives a result of
one order, takLig into account centrifugal acceleration. During calculation of the
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powerc.' section and section of free flight for distances of the order of several
hundreds of kilometers these membars, along with centrifugal acceleration, can be
disregarded. Such an assumption Is equivalent to the fact that the field of gravity
is assumed central and purely Newtonian: the acceleration of gravity is found to be
inversely rroportional to the square of the distance from the attracting center
located on axis Oy.

After these remarks we will write the equation of motion for the powered section
and for the section of free flight.

For the powered section in the launch system of coordinates we o0tekin the
following equation with the help of the same transfozmations as in § 1Z4:

S=¼ p- *, P- -,,.-I "- 'S .?4-=. 1- ,4 : _ S -

- [-,+- X,,4
di V= as -, -- r,-gco•, ' -gsao -+ 2w- cos f, s- a t.

C-ocoso•, sin 0).

.Cuso 0.

fit
az

where for the determination of angles and az, the relations (16.15)-(16.17) serve,
and angles 71, 723, - are determined by the formulas (16.4). The a:celerstion of
gravity g is calculated by the formula

C an C,- (16.19)

It is expedient to determine the acceleration of gravity at the surface of earth gO
depending upon the latitude of the launch point by the formula

ga'q.7805 + 0,0519 St•,,. (16.20)

Equations of motion for the section of free flight in the launch system of
coordinatis with those same assumptions (for small flying ranges) have the form

a=1-he 1'VV, - -L + buyv, -4 bli,,.

-" e -v,- 7 "(R + + 1,2W. +b,,.

di (16.21.)
dX

'aj

IN.
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where ucafficients k and bik cre expressed by formulas (15.4) and (15.6), and g is
determined w-th the help of formulas (16.19) ai;d (i6.20). It is recommended to use
these equations fnr distances of the order 5M0 km Lnd below. For greeter distances
o A.hould use the equation o- motion composed in the launch system of coordinates,
takiag into account toe noncentralness of the field oV gravity. We will obtain them

. e6.14) in the same wky, as were Oerived equations (15.3) from
iqbation+ (13.1

+. ± , --_.')+bg,+b3•mv.

•V +- (Y - Y)•=, "t'3,
"di U.r 12

+ lis O~'r +02(Y Z,)#j +

P! + (X-x.ý+ + byg.

ds

where

(16.23)

• =.- -=8 - - •,= -• -=.(16.24)

cain~~~~ 4 n4 20 a -~I. 0 - '.i

quantities g; and g are determined by the formulas (16.6) and (16.5), and quantities

wm , 0a)y and z by the formulas (15.13).

Por the determination of the altitude of the point of trajectory above the
survace of the earth, it is possible to use formula

k=cr -r3.

where r is the radius vector of points of the surface of the terrestrial spheroid
for a geocentric latitude v it is determined by the formula

F,$----a (t --- lu n'y,).

Calculation of the section of free flight is conducted according to encounter of the
rocket with the surface of the earth, i.e., prior to h 0.
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The flying range and azimuth of the launch line to the Impact point can bedetermined with the heip of geodesic tables. It Is also possible to recommend the
following method of approximation. The central angle 0 is calculated by the formula

( '1 +(16.25)

(the index "r" pertains to the impact point), and the flying range is determined by
the avproxtmnte formula

L. +1 rI. (16.26)

The angular deviation of the impact point from the plane of aiming is calculated
by the formula

19 Ata '!a* (i6. 27)
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Iii
C H A PT E R V

THEORY OF FREE FLIGHT AT HIGH ALTITUDES

S17. Absolute and Relative Motion

Motion of the rocket on the section of free flight, on the assumption that
the angle of attack all the time is equal to zero, occurs under the action of
two forces: gravity and drag. If one were to examine the motion only at high
altitudes where the drag Is practically equal to zero, then gravity remains the
only force subject to calculation in equations of motion.

In this chapter again we will consider earth as a sphere, the field of gravity
central, and the acceleration of gravity variable inversely proportional to the
square of the distance from the center of earth:

It is found profitable to use the inertial system of coordinates O'x'y'z'
(Fig. 17.1, moving forward, evenly and rectilinearly together with the center of
the earth where we place the origin of coordinated 0'. Equations of motion in
such system have the form (5 15)

XI----,E.

If we arrange the system O'x'y'z' in such a manner that at the initial noment
* of motion the plane O'x'y' passes through the radius vector of rocket r and
through the vector of absolute velocity vt (i.e., velocity in the system O'x'y'z'
and not speed v relativ tO the terrestrial system), then we will have initial
conditions

e.-= i=o. (17.2)

and the third equation (17.1) shows that equality (17.2) will be fulfilled during

the entire flight, i.e., the whole trajectory will lie in plane O'x'y'.
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Fig. 17.1
Introducing in this plane the polar coordinates

X* r COSX. y'S r2lnx.

and producing the same transformations in • 15, we obtain the equations, of motion

4- , (17.3)

coinciding with equations (15.26). Let us remember that equations (15.26) were
obtained for the determination of the average flight trajectory (with different
positions of the launch point and directions of firing) in the uninertial system
of coordinates connected with earth. Hence beccmes clear the importance of the
system (17.3) for calculation of both the absolute (in the system O'x'y'z'), andrelative (in the terrestrial system Oxyz) motion of the rocket.

ut the importance of this system is not exhusted by the determination of
the flight path at high altitudes. If the problem consists only in the determina-
tion of flying range, then the system (17.3) can be used for the approximate
calculation of the whole section of free flight, since the influence of drag of
air on the form of the trajectory and on the full distancE proves to De very small.
It decreases with an increase in range ano, consequently, the speed of flight.

So that the problem of absolute motion of the rocket becomes defined, it is
necessary to find initial conditions for this motion, assuming initial conaitions
for the relative motion of the rocket, i.e., coordinates, of the rocket x , y

HH
z, speed v and its direction determined angles 0 and a in the terrestrial}IHH H
system of coordinates Oxyz are well-known.

Let us introduce one more inertial system O'x"y"z", rigidly Joined with the
system O'x'y'z'. Let us dispose it in such a manner that at the initial moment
of time (i.e., at the time t ) the plane O'x"y" coincides with the plane of the

equator and plane OtxCz"i p asses through the origin 0 of the terrestrial system
of coordinates (Fig. 17.1). We will call the initial point for the absolute motion
point H. Then at the time t coordinates of this point x", ", z" will be
connected with coordinates x, YH' y z by formulas
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Zen Ze¢ C" TCm +(*+ YJ,)UT, v- Z. C'os qr,,int.
Oowpononta Of relative speed v about axes of the system O'x"v"z" arpS..... e~pretfed In terms of and by anj-logous formulas. Begarding the absolute

velocity vi, It is composed of the speed v and velocity of following

S",x,.-- x x (x.x4+ .,)

Thus components of absolute velocity will be

where quantities i, ý, i. are determined by the formulas (13.3):
* ,. . 1e .

=xtolrtlu --., • cist,• , ( i.t.

Tet us designate the geograpide latitude of point H by •IpH the longitude byandr longtude of launch a point by XOe Then along with formulas (17.t) we wilf

have(Fig. (17.6)

F. aA..

S": .

Fi .1/. 
Y:v (+g 72 ~o~0 cs -i)

Finally, we designate by 4.1 the angle formed by the vector of absolute velocity
V, with the horizontal plane at point H, and by • the absolute azimuth, I.e.,
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the angle vhieh the horizontal corvonent of absolute velocity will fcrm vzth adirection to the nortoh. Let us find components of absolute velocity In thedirection of the meridian, parallels, and verticals, at point H, proJectinidirectly on these directions vector v1 and separately its components x",, Y and
(see Fig. 17.2):

UV1tV5F CosDCos vn oXSfr. Cos( 3 .J4.
-- jS4r .. OnCosy.

cot O . M 0sit, %.

+ Y. -Cos + :Stu Q +

hence it iE already easy to find v a Snd P by the formulas analogous to (17.7):

Wet

06

V C,4--• -, sm- .=i= V7.

Formulas (17.4)-(17.9) determine initial Conditions of the absolute 7t9on of the

rocket on the section of free flight.
Our moat immediate problem is ttie integration of system (17.3). Results ofintegration will be directly applicable to absolute motion, but for relativemotion they give only a mean trajectory for different directions of firing andlaunch points.

1 ±8. Integration or Equations of Notion

We approach the integration of equati.•na of motion of the rockct in a vacuumwhich have the form

,., .(18.,)

where (Fig. 18.1) r - the polar radius vector of the center of gravity of therocket with respect to the center of earth; x - the angle between the radius vectorr end some axis passing through the center of earth and accepted as origin of thereading of the angles X; f - the gravitational constant; M - the mass of earth.
Let us denote k - fM. As was already said in § 3, quantity k is equal to

h=w3.9W262. -I01 m/s2-
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Integrating equation (18.2), we obtain

Let us write this expression thus:

With this

L-

where Vr is the hiorizontal component of speed at a given point of the trajectory.
Designating by I the angle of Inclination of the velocity vector to the local
horizon, we obtain

where v i the sp-e4i along the trajectory,

Iz --

r~e

Fig. 18.1
Then formula (18.3) will be thus copied:

Value ci will be determined from initial cunditions of the motion of the rocket

C1, - . C", (8.:51

We copy equation (18.1) and (18.2) in such a form:

;_ f?. &(18.6)

2,;j+D•i-o- (18.7)

Multiplying equation (18.6) by 2i, and equation (18.7) by 2j, and adding the results
term by term, we get
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or
-"*; (18.8)•(;+ r;i + ,eib. 7.

Differentiating expression [15.20) for speed
,' -- •-'+ •'.(18.9)

we have
' -- 2(r;+ ,i' +,"Uz). •.o

Comparing expressions (18.8) and (18.10), we find

d(iJ)26df d( )

I.e.,

or
S~(18.11)

This relation is correct for wVny moment of time, in particular, when t R t

we will obtain

d,..,,,._...". (18.12)

From equations (18.9) and (18.11) we have

whenci

considering that

and (from equation (18.3))

we will have

whence

F, -_ __r.

-. .2k •ll



. .et us convert the denominator:

(1 1

Let us show that the quantity under .irzt radical Is not negative:

Indeed, by Inserting Instead of C1 cnd c2 their expression (18.5) and (18.12), we

will obtain

If v 2 r # k or S. XO, then

and we have the right to designate

whence

m-= (18.16)

Differentiating, we find

Considering expressions,. (18.14), (18.15) and (18.17), we reduce equation
C18.13) to the forim

Integration gives

1= CLOS it +ca.
or

a Cos Q18.he1e8)

Returning to the variable r, from expressions j18.16) and (18.18) we obtain



4I
TT

4
T• ((18.19)

will find the equation of trajectory In the form

0 co (Z-(18.21)
It is known that this is the equation of conic section in polar coordinates where

p is the parameter of the section, "nd is its eccentricity.

Let us introduce angle (see Fig. 18.1)

where )( is the angle characterizing the position of the. i•itlal radius vector
r. wiith respect to the axis accepted as the origin of readIng of the angles, avd

SIs the angle determining the position of the rocket at any moment of time
relative to the initial radius vector. Consequently,

Substituting the expression (18.22) in equation (13.21). we obtainF
"-'=(i8.2~

Let us designate • as the angle correslonding to the peak of the trajectory.

At the peak of the trajectory ('% - 0 ) r has a maximm value. From (18.23) it
follows that this can be only if

i.e., when-

Hence we have (i8.1•)

Inserting (18.24) in (18.23), we fl-ally obtain the equation of the trajectory

' (18.25)

Since the form of the trajectory is characterized by the eccentricity, let us find
the expression for e. Inserting into formula (18.20), instead of c 1 and c2. their

values (18.4) and (18.!1), we obtain
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Introducing the new value
Or"----f' (18.26)

we find

SII - - (2 - v)v'os• . (18.27)

From initial data we have

e (18.28)

S1 - (2 -- v.) ,,co 0;. (18.29)

Formula (18.29) shows that the trajectory will be

elliptic when v. < 2, since e < 1;
parabolic when v. = 2, since e - 1;

hyperbolic when v H > 2, since e > 1.

Thus the trajectory of the rocket in its absolute motion with respect to earth
is a conic section one of the focuses of which is in the center of earth.

For a long time parabolic and hyperbolic trajectories, departing into infinity,
were practical. For this reason the theory of motion of bodies in a vacuum under
the action of the attraction of earth obtained in ballistics the name elliptic
theory.

Subsequently we will examine only elliptic trajectories and use designations
shown in Fig. 18.2; F - cpnter of earth which is one of the focuses of the ellipse;
0 - launch; H - initial point of elliptic section of the trajectory; C - impact
point of the rocket; x and y - coordinates of initial point with respect to the

H Hlaunch point; r - radius vector of initial point with respect to center of earth;
vH - speed at initial point; S - angle of inclination of velocity vector at the

Hinitial point to the horizon; R - rc - radius of earth (radius vector of impact
point); B - peak of' the trajectory; 6 - central angle corresponding to powered
flight trajectory; 80 - central angle corresponding to section of free flight;
B - central angle determining position of peak of trajectory relative to the
initial radius vector.

We will consider that angle 6 and the initial radius vector rH (or the initial
altitude h - r - R) are known, since they are easily determined from the assignedH H
coordinates Y, and y of the initial point with respect to the launch place.H
Actually, from Fig. 18.2 we have

tea 7 (18.30)
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and - 'ar,= • -- •q.'6"(18.31)

For a solution of the practical problems the whole section of free flight will

be take3n as elliptic, including with respect to the little atmosphere the section
during approach to the target. This will not introduce
grcat error in the determination of the distance,
since great drag of air on the atmospheric section
almost does not change the elliptic form of the
trajectory. It has considerable influence only on
the speed and time of motion of the rocket.

Let us agree by flying range to mean the length
of the arc on the surface of earth. Then full flying
range from launch to the target will be equal to

L - i..I
where I - distance of powered section; I -

H C
distance of section of free flight. Subsequently we
will consider that the distance of the powered
section is already defined by the formula I - R6,

H
where 6 is from equatio- (18.30).

§ !9. Applications of Elliptic Theory

Let us enumerate six practically important
problems:

Fig. 18.2 1. To find distance from the assigned to speed,
altitude and angle at the initial point.

2. From the assigned distance, altitude and angle find the necessary speed.

3. From the assigned distance and altitude find the optimum angle requiring
the minimum speed.

4. From the assigned speed and altitude find the optimum angle providing the
ultimate range.

5. To determine the change in distance depending upon small increases in
altitude, speed and angle at the time of the turning off of the engine.

6. To determine parameters of motion about the trajectory.

Let us turn to detailed examination of the enumerated problems.

i. From the assigned to speed v , altitude h , and angle 4H to find distance
L.

From equation (18.25) we have

Using relations (18.h), (18.26) and (18.19), obtain
Pa F29 Co, ,rCos?. (i9.2)

in particular,
p = ;,r COS2 #r (19.3)



We substitute (19.1) by (19.2):

WCS @-0)-0-(i -Vco,,#). (19.4)

It is obvious that
- I.

sil-- (h-(I - vcossA

K L!Co nsidering expression (18.27), we will have

s~ofD.- ~ I -1' -2 vi C+ v2c 1'+-2 v 2coasvz os*
i.e.,

gia --p)invsARO cos . (19.5)

With extraction of the root there is preserved only the plus sign, since on
the ascenting phase 8 < 8a and I > 0, and on descending 8 > 5 and < 0, i.e.,

sin (S - 5) and sin 4 always have identical signs.

When 8 - 0 we obtain
COS& V, (I- ;Cos? , (i9.6)

sin , - sin 0. .to$(19.7)

Let us present expression (i9.1) in the following form:

Substituting instead of cos 8 , sin B and p their expressions (19.6), (19.7) and

(19.3), we will find

(! - , 2t0,) •OS + '•,sis o, os &. SlapF=
,•1 v€•'e,(19.8)

Expressing sin 1 and cos 1 in terms of tg according to formulas

2I.

Cosm it

and multiplying both sides of the equation by I + tg 2 O we have

(I ~vcat- eO1J 4f)+ 2%, sin 0,cos0,tg.

or, COS'

S. .. . •. . .. . . . . - . , -, -• . . .. ..6



II

We obtained the quadratic equation with respect to tg • . Let us site in it similar

members.

(2--coO.,- Van. ciost t•l(-;€t. =0

-2v. sin .mO~~sO~ . a C- 62SO1

or

Pr, (r.+r)V~COs2mO;II 1 2F
-- _?vr sin IV. cos 0. 19 - (r. r- ) v. cos; 0. 0- .

'Dividing by cos 2 4 , we obtain
H

12,! -A..- ( 0,)* -- (r. + r)v. . -

2 I-.or . tg 0r- '. . (19.9)

This equation, connecting the current values r and a with initial values ,
V I essentially coincides with equation (18.25), but in form is consIderably

more convenient since the initial values enter into It in evident form. With its
help it is easy to solve the majority of applied problems of elliptic theory set
above.

We will designate for brevity the coefficients of this equation by
a = (I + L.-'! -- + r, .. {±.o

r (19.12)S--- w.,r gO (19.1.1)

The equation will take the form of

Solving this equation with respect to tg E, we find

• _ •.Vlm%-,. .(i9.i3)

where the minus sign corresponds to angles 8 of the ascending phase.

Consequently, to obtain the distance of the whole elliptic section it is
necessary to assume r = R and in formula (19.13) to take the plus sign. Then we
will obtain

(19.14)

Thus we have the following diagram of calculation of distance:
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IR % ,-- 0-.

=e R) -h•. .

For the particular case r - rH we have -13 anrd from equations (19.iO)-(19.i2)

a - 2r. ( + te 6i~. - = v) C.O.

Consequently, from equation (19.13) we obtain

i~te..

and

2. To find the necessary speed vx from the assigned distance L, angle II1 alttude H

From formu.la (18.28) we have

9""•r, •(19.16)

Consequently, it is necessary to find v which can be done by the following
two methods:

First method. From equation (19.9) we have

hence

0,g 4c+ 0g4G)
- (19.17)

I

_ _ -. . . .
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iI
When r R and 5 8 C wp obtain

2 R • - -"( I + Ig ' #

C . .

Second method. From (19.8) we have (when r - r and a BC)

r;COS - rc Cos PC Cos! V. +

+ rc sin PC sin , Cos. V, + ,•-. -- , re.

i.e.,

", C r.- C Cos p t. + S, Uj.)"
f ,• "i

Co 0,(- 9 rs 0.+ Ia1

On Fig. 18.2 we draw segments HC and CK perpendicular to HF. Designatlng by
w angle FHC, we will have

CK r sine

Considering (19.18). we get

* ' Cos *+Um #

and, finally,

a'-t m #a Costo|-e)" .9

Thus we have the following two diagram of the calculation of speed. The
first diaWram of calculation:

2R(ilt=o {,--

" (r. + R)t Z+ 2R fr&. tg + r--

The aecond diagram of calculation:
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In a particular case, If r r and 5/2 -0*then from equation (19.17) we
obtain

3. To find trom the assigned distance L and altitude h. the optimum angle

ii O requiring the minimum speed vjmin

Prom equation (19.16) we have

Consequently, it is necessary to fine This c-%n be done by two methods.

First method. Let us differentiate. e:xpression (19.9), examining v as the

implicit function from tg 4 , and let us equate to zero Considering

r rC and BC, we will obtain

i ' $~~rev' ll -- 4rc•e e)'- $

i.e.,

, "at,-- tg# •..,. (19. 2-1)

Solving Jointly equations (19.9) and (19.21, we will find

fis ' t:-~a~O ,_€.~j ±rsrc•(g! + =za •)

or c 2 rc + IZ2*~)
i or

rc) + '+r. -*46109 a c ;1 C2 (1 t2O.
what can be rewritten in the form

P.

-- C;(19.22)

Calculation of the angle I is considerably simplified if one were to
H OrlT

Introduce the angle

', (19.23)
Then we wil find:
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Ig21 ...÷I • r rc)l• 14 I r. -- rcIo
1 2n dT tr o e u t i o I9 ) ! C2 ~2 *

+ 21

F,,
""-- C (19. 2)

2 ~C

Kneeing•H . ,from formulas (19.2i)1 and (19.20) we find an

FinallT: , .l,

vF min"
R m in *I

Second method. From equation (19.19) we obtain;

2 + o CIO*- o)(19.26)

As can be seen from formula (19.18), the value of angle w does not dep'end on S.
and therefore v. will be least when cos (24 - W) 1, i.e., under the condition

0. (19.27)

Using equation (19.18), we obtain

~c . (19.28)
When cos (2t, - w) 1 1, from equation (19.26) we have

Considering relation (19.27), we will finally have

2A =4 1- 06O (19.29)

and by formula (19.20) we find IPmin"
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i Th us ye have the following two diagram of calculation #N 0n n i we

The first diagram of calculation:

r -*

The second diagram of calculation:

In the particular case when r 0 - rH and from formula (19.24) we have

tg C -, i.e., 6 - 90°. Consequently, from equation (19.25) we obtain

frm .43'a M fo5'l (19.20)
p 4. To find from the assigned speed vH and altitude h the optimum angle SH OST'providing the maximum range ••

Differentiating expression (19.9), considering tg 8 of the implicit function

from tg and equiating the derivative to zera, we will obtain (when r =rC

2re tg2 0 " 2,._- 2.,c, tgC ---- 0.

20

S(19.31)

Solving Jointly the equations 119.9) and (19.31), we will find

or"

-#VcEuat*.. (r.- ro -4tgeupjruO.
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[2v.Yg€ 4(r, rc)it g -v. InIJC - (,i -rc)J.

Consequently,

=r +.i~ P C) **•) .I F-
,e•,., •+2 +2(--12 1.•

Thus the given problem can be solved by the following diagram (w"en rC R):

-2P - -o.

For the particular case r , rc from equation (19.32) we have

5. Determining the change in distance L deperding upon small changes of
altitude N, speed v. and angle $H.

Obviously, it is necessary to find derivatives

We will use equation (19.9), and namely 3 O,.

In common form this equation will be thus recorded:

Let us differentiate:

op+, -rl + dA- 0•e+ -=y: . (19.34)
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IriO~uch ae 1, depen~d a n v anl9.r i

FI

then.

Substituting (19.35) into (19.3-4), we obtasin

.1

AP OP 4

+ g~~--.I. ( U. d. dO. d&..

SHence

1 -i

and,, consequently,,

Mr "a ar

S(19-37)

We f.ind derivativea

•--(,.+,2r'
~ .- - o P--{.-e.

But from equation (19.17) we have

Conlequently,

J=r 0,

i2



Z41n-e VL~*. then

and "

Purth'er,

ir cl P + Wai-- (re + PC •I V-1 Is -- , "cIg 0.

But from equation (19.9) we have

'c (I + 'et) (r,. + r "dJ to- vc 'e.--

Coisequentl.y,

and, finally,

PC_

Inserting the found derivative Into espressinns (19.36)-ji9.38), we will obtaint

,*c 2 2__= - 9 iX
'" -rc +'c tz•)

V|

X +2

+ 

-+
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PC rg - R):

S2k

Inth prtcuarcae , 4rH fro____ 2qain 2 ( 1)- 99.Jwee 4 2 ) ota

cap; =- V. (I. -~Rj c +g '.Ir (I+ I Z01.
(1+ ie ~ svu~r.R(19.41'

the following tormul uls:

-- . ,R +1 PI 0 g C

4~ ~ (19.42)+t,2

Rg.m ,. ?-

52
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6. Determining parameters of motion h, v. 4. t at any point of the trajectory
determined by the central angle a.

a) Altitude of flight above the surface of earth at any point of the
trajectory is equal to

h =r - R.

For the determination of r we have expression (18.25):

with thi- we find p and e by the formulas (19.3) and (18.29), namely,

V-.'- v~r. Cos, 0..

The value of 5 will be found from equati3ns (19.6) an,] (19.7):
B

The following f'*rm i•s are also uzeful. From (18.11) we obtain

e2=z

whence, taking Into account designation (18.26),

V-2

On the other h&nd, from (18.19) and (18.20) it follows:

Hence we obtain:

(19.43)
in particular,

____-(19.44)

Formula (19.43) permits easily expressing any of the quantities r, v, p, e in terms

of the three others.

From (18.25) we obtain

*-Ceos (- g

and, or the bar-s of (19.43),

(19.45)
whenc e I

Cos(--Pp-

Ž-2aos(.~ 5+.'(.19.46).



b) Speed of flight at any point of the trajectory can be found if one uses
forrula (18.26):

If one were to express v in terms of r with the help of formula (19.43), then we
will obtain

whirlh it U possible with the help of formulas (19.44) and (18.28) to write in the

form

w -2 (19.47)

It is possible also on the basis of formulas (18.25) and (19.46) to obtain for
speed v the expression directly in terms of angle B:

c) We find the angle of inclination of the velocity vector to the local horizon
1, noticing that on the basis of formulas (19.5) and (19.4)

Vs•O$os6= I Cs(&--)

>.< • whence

From relation (19.2) we obtain another simple formula:

d)) Time of flight to any point of the trajectory is determined from equation

Dividing the variables and integrating, we will obtain

From equation (18.22)

Considering also (18.25), we will have

"t �I 1f 'I o�do (19.50)
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We accomplish integration in the following way. Let us introduce the new
variable x connected with a by the relation

co+ps P 3 (19.51)
Differentiating, we obtain

sinG,--p)d• == +, (--sIfx)--, . _._C,. _(--_ .,

(I +-*Cos Xr Fm

( eCosX d. (19.52)

For the elimination of sin (8 - a) let us use relation (19.51)t
of + 2':.-.s X -,L- costx ( 0 0-0-]( C-oo X)

P)m + 2,CO A -, Cos, X (1 + Cos ZA

whence

-i+,€• " (19.53)

So that the connection between 8 and x is single-valued, let us dwell in formula
(19.53) on one of the signs, namely, on the minus sign; then from relations (19.52)
and (19.53) we will obtain

di r - x, (19.54)

Further from expression (19.51) we find

I • " (19-55)
which permi+9 recording the integral (19.50) in the form

I. co4 -

IWO

+ l_-e05osx)dx=

(. +Osi.+)[ (19.56)

Relation (19.53) (taking into account the selected sign) and (19.55) give (
sln=--• -- I -- es csi (1, -- I0) '

Comparing this formula with formula (1 9 . 48), we obtain

,a,= x 90. (19.57)
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From a coaparison of formulas (19.45) and (19.55) we also find

whence I-,

On the basis of the obtained formulas it is possible to write:

_uI-- on the ascending phase of trajectory,
=='I --,,(19.58)"4.�4 I�j msewn on descending phase.

Let us substitute expression (19.57) for sin x into formula (19.56):

,.,•-,.,t• - • + f g.A constoe.t coefficient in this formula it is possible by using formula (18.19) and

also to transform (19.44) and (19.2) to the form

I 2' P 17 r'V' Cos*.N

so that we finally obtain:

.! /7(-.x.

where x and xare determined by the formula (19.58). For the most widespread
cae when the initial point of the section of free flight is located on the
ascending and the final point on the descending phase of the trajectory, we obtain

PIP + 1 - to 0). (19.60)

Thus we have the following diagram of calculation for the determination of
parameters of the trajectory at any point of it assigned by the central angle a:

f< < a 0,>O. X-<1,<0 * <0:

i0o



5) t•J.- . sign of sin x is opposite to sign of sin

Sr-,, 1--1e-Cos~f-•

7) &--r-- .(I

At) ios 0-t-hepeak sig of sin e coincides with the sits of sin 053 -);
11) cosx= ----,.sign of sin x Is opposite to sign of sin ( )

Particular Case 1. Parameters of motion at the peak of the trajectory.
Altitude at the pe-ak"s determined thus:

k. - r, - R.

(subscript "i" corresponds to peak of trajectory).

When 8 13, from equation (18.25) we obtain

sinc I 0,the 'S T .

Considering (19.94), we will fond

0 + (19.61)

The angle of inclination of the tangent in the peak of the trajectory is equal to
zero.

To determine the speed at the peak from equatlons (18.4) and (185) we have

rorua COS (. =8 rawoa COS o;.
since 4. 0 , then

ro-
Considering equation (19.61), we will obtain

Further from expression (i9.46) it follows

and from formulas (19.58) we obtain

Inserting this value into formula (19-59) and considering that 4 0 , we will,

obtain the following expression for the time of flight up to the peak of the
trajectory:
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a I1

L]L
_( 9.63)

Particular Case 2. Vertical launching. For this case we find the maximum
altittde • ta or flight up to the peak. Since with vertical launching , -/2,

= Vi-("- 2v )v,, o

I m ~ (19.624)

where subscript "s. ne corresponds to the ease of vertical launching.

We find the time of flight up to the peak from equation (19.63), considering
&M a Y/2 and considering formula (19.58):

l•,+. *was 0 ! 4" (19.65)

or, In another form, ' -/'_Jafc.oS (-

Fig. 19.1, 19.2, and 19.3 depict the families of chaiicteristic flight
paths of the rocket. Trajectories on Fig. 19.1 are obtaineo -,t a constant initial
speed but at different angles of departure 4p. Fig. 19.2 shows the trajectories
obtained at an optimum angle of departure for different v < i. Fig. 19.3 depicts
trajectories at v > 1 and 4 - .H

Fig. 19.1 Fig. 19.2 Fig. 19.3
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1 20. Return to Relative Motion

The formulas obtained above permit solving the problem about the absolute
motion of the rocket. In examining the relative motion these formulas are useful I
only for the determination of the mean trajectory, from which deviations to various
Bides are possible due to the rotation of earth. But in many cases absolute motion
is inte:-Tsting not by itzelf, but by the fact that from it it is possible to turn
to the relative motion, considering, along with the motion of the rocket, the
rotation of earth.

By knowing the geographic coordinates of the initial point of free flight
v and X , absolute azimuth * and the central angle passed by the rocket In

nH
absolute motion S', it is easy to find the geographic coordinates i' and X, of

r
point P, on the assumption that earth is motionless, by the formulas of sines
and cosines of spheric trigonometry I (Fig. 20.1):

-os(" € 9,or
Ssla; $101rfCOSA' +COsf,,114P'COZt,,. (20.i1)

and

whence

stew ).Jz (20.2)

'The basic formulas of spheric trigonometry are derived in the following way.

Let us consider on a sphere unit radius with the center at point 0 the triangle
AABC, formed by arcs of great circles (Fig. 20.2). Let us construct an auxiliary
system of coordinates Oxyz, directing the axis Ox about the radius OA and
combining plane Oxqy with the plane OAB. Radii vectors of points A, B, C will
have in the system Oxyz these components:

?(cos r, sin r, 0).
Sos5.sos.4. sA):

Calculating the scalar product of unit vectors WE and W, we will obtain
ros A C € CS&osc -HUSb uc d c s A.

This formula is called the formula of cosines.

Let us calculate the mixed product of the three vectors •, •J and W

'lo SW 0 - siab MaeetaA.

Icub WsabcasA siubsaAt
Prom considerations of symmetry it is possible to write two other expressions:

Dividing by (sin a sin b sin c), we obtain the formula of sines

d.A 4 5 siaC

.. •.
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Fig. 20. 1 Fig. 20.2

We consider now that earth revolves simultaneously with the motion of the
rocket. As a result of this rotation the point with the geographic coordinates
Sand Xý will depart in parallel on angle wbt - (where t is the time of flight
from the initial point) in the direction of the rotakon of earth, i.e., eastward.
Consequently, under rocket (on the same radius with it) will be the point with the
same latitude *r - 9= but with the longitude X - X1 - %t. Thus the geographic
coordinates of the rocket in relative motion can be defined by formulas

, siu. , "---sin.CO/SP' -- osq,,stin " A,. (20. 3)

By the geographic coordinates it is easy to find the central angle j3 passed
by the rocket in relative motions and the angle *• formed by the plane of meridian
with the plane passing through the center of earth, point H, and the rocket:

Cos = =•e oF, sin ', + cris Tf%:asf, oZ {. ( L .. (20.5)

" Q (20.) -

The ablolute azimuth at point P will be determined from the formula

sla* os Ir(20.7)

Having values v', $' and *1 for absolute motion at a fixed point, the
geographic coordinates of which Ap and X are calculated by the formulas (20.3) and
(20.4), according to formulas similar to (17.8) and (17.9) we can determine the
parameters v, 4 and * relative to the motion for this point in the terrestrial
systeA of coordinates, taking into account that

'r. V-, O,, P -• Cos go,
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i•_C H A PT E R VI

!-•- METHODS OW• DESIGN CAICUIATION OF FLYING CHARACTERISTICS

21. Classification of Ballistic Calculations

• At different stages of the development of new models of long-range guided
S" rockets ballistic& has before it different problems in accordance with which all

ballistic caloulations; can be classLfied.

In the beginning of sketch designing there are conducted m,. so-called design
calcualations, havin &a their purpose the determination of limits of values of
basic design parameters of a rocket according to assigned operational requirements
(OR) mid the selection of the most advantageous values of these parameters taking
in~to account all real conditions. These parameters are subsequently Initial in
the desigin of th~e rocket (design, selection of power scheme of the rocket, etc.).

Depending upon the assig•ned requirements with the design calculations designs
there can be encountered the most various problems, but most frequently the problem
appears by definition of basic design parameters of the rocket corresponding to
the greatest sig~hting range, payload weight and accuracy of hit assigned the OR.
Its solution, as a rule, is accompanied by an Investigation of the influence of

. different parameters on flying-technical characteristics.

Thus the maethod of design ballistic calculations should allow, not resorting
to cv~bersow calculations and nmwerical Integration, a rapid determination of
flyirg cha acteristics of the rocket according to Its design parambeters and,
inversel~y, accordin to the assigned flying-tactical characteristics the desig•n
paramters of the rocket.

This meth~od should also allow estimation of the influence of a change in the
basic design paramenters on flying-tactical cha~racteristics of the rocket in )rder
to oe lbe the selection of the most advantageous combination of these paramseters.
The accuracy of design ballistic calculations has presented to it nonrigid
requtirements. An accuracy of 2-5% in the direction of a decrease in flying
characteristics is fullyr established by project orLigintors.

In conclusion of the sketch designing there Is conducted a checking and design
ballistic calculation whose purpose is a more precise definition of flyirg-tactical
characteristics of the rocket with paramters of the rocket obtained as a -esult of
sketch doa•gndn, and a check of their conformity to the •ssaigned operational

As a result of this calculation in the first approximation of the form of the
trajectory of the powered section should be selected, sand basic Initial data
ntecessar'y for calculations of construction for strength (extrenal loads) an~d initial
data necessary for calculations of the stability of flight and development of control
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With t|hete sasc calcuUlaion3 an esti.aate should be produced of the accuracy
,i1 thle hit with the selected principles of control, and there should be produced

,(-or cnL•i equipment and propulsion system, wnich m,-at be observed
:'.r the execution of O6 according to the accuracy of hitting.

In the proce.zs of further designirng of a rocket and the manufacture of
,x-erim ental models c-here are produced more precise definitions of check calculations
• c.•rding to th: more precise definition of initial data. Both in design and check
bailliztc caiculati,-,ns the inl.uence of the rotation of the ea-thn is not considered,
Since project orl-ginators and designers are interested in the mean value of flying
characteristlcs of the rocket-.

Prior to the moment of plant flight tests of the first ex-erlmental models of
iong-range rockets there should be ;omplied prelimnary tibies of firing containing
in the first approximation the dependences of sighting data. of rockets from the
distance of firing (fcr defined coirdinates of the place of launcl and direction
of firing corresponding to the selected proving gr~und).

These tables are complied for the whole assigrn•d Ci of the firing range on
the basis of definitized ballistic calculations, taking Into account peculiarities
of the control system and the use of definitized initial da~a, obtained by calculat3on
and experimental means (actual weight of consttuction and position of thle center of
gravity, experimental aerodynamic properties, test engine performance, experimental
parameters of control equipment, etc.). At the same stage calculation of dispersion
is produced.

The next stage of ballistic calculations is the compilation of tables of
sighting firing according to data of experimental and special shootings. The basic
requirement for the calculation of tables of sighting firing is the Increase in
accuracy of calculations up to such a degree that there be removed systematic
diveragences between calculation data and data of firings at any distances and
under conditions of firing.

Methods of the design calculation of flying chiaracteristis of rocket expounded
in this chapter are applied in the first stage of sketch designing, i.e., for the
purpose of determination, as was indicated above, of limits of values of basic
design parameters of the rocket.

Proceeding from tie reduced requirements for the accuracy of such calculations,
we will examine some of the possible diagrams of construction of the approximation
method.

2 22. Approximation Method of the Determination of Speed

In § 19 it was shown that the full fiying range is determined by four kinematic
parameters at the time of the turning off of the engine, for example, speed, angle
of' its inclination to the local horizon, altitude and distance from the point of
launch, i.e.,

f Lf(t. #.. £3. 4(22. )

Decisive among these parameters is the speed at the end of the powered section.

The angle of inclination of the tangent to the trajectory $ is rather rigidly joined
with speed by conditions of providing the ultimate range, and therefore there is
no independent value in the majority of design problems.

The powered-flight trajectory in its extent consists of a small part of the
full flying range (4-10%). Therefore, even rather considerable errors in coordinates
of tfe ind of the powerea section cannot have great Influence on the full flying
ra•ge. Subsequently we will snow that it is possible to be limited by very simple
graphic dependences, allowing consideration of part of the poaered sect.on. Thus
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the basic should be given to the determination of speed at the end of the powered
%_ct Ion.

p Let us use equations of motion of the
rocket as a material particle which consider
only the basic forces effective in flight
(Fig. 22.1):

#I du P--X
-We =-X g sinG. (22.2)

dx-=VcosO. (22.3)

dy =, v sinO. (22.4)
....__ __ __ d'- -

Fig. 22.1 Here m - the mass of the rockets; P - thrust;
g - acceleration of gravity; X - drag; 6 -

angle of" inclination of the tragent to the trajectory with respect to the horizon
(angles of attack are disregarded).

For thrust there is taken the following lay of change with altitude:

P P, + S, (P@C- P). (22.r5),

Let us note that thrust attains a maximum value when p 0 O, i.e., in a vacuum:

PSm,.,-S.p 0. (22.6)

Drag is determined by expression
V9

x C 'S. (22.7)

Let us write equation (22.2) in a somewhat different form:

dv snO -ld (22.8)

and let us introduce the following designations:

, --.• .". (22.9)

(22.10)
m

;=, (22.11)

-- [ " (22.12)

P.'=- 611 Y](22.13)

Y o a (22.14)
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where from (22.9) 9nd (22.IC nriue the relations

F W (22.16)

t.= r -p),(22.17)

r um (22 .18)T--1

in these expressions:

jL is the dimensionless coefficient characterizing the relative weight of the
rocket, i.e., showing what part of the initial weight is maintained by the rocket
at an examined moment. Coefficient L theoretically can be chweed from I to 0. At
the time of launch jL = 1, at the time of the turning off of the englne L takes the
miaimum value for the given trajectory t,. Quantity 4 to a known degree

K
characterizes the perfection of construction. Quantity (i -,) shows that part of
the Initial weight is expanded to the examined moment.

T is the ideal time, i.e., the time of operation of the engine of such an
"ideal" rocket, for which the final value L - 0. In other words, T is the time

during which at a given constant flow rate per second a quantity of fuel equal in
weight to the initial weight of the rocket would burn. Quantities T and t are
connected with each other by defined dependences (22.16), (22.17) and (22.18).

u is the fictitious exhaust velocity of combustion products on land and is
calculated as the ratio of absolute thrust for cn land (after subtracting losses to
control) to the flow rate per second of mass.

u is the fictitious exhaust velocity of combustion products and in a vacuumn
is calculated as the ratio of absolute t!Lrust in a vacuum (after subtracting losses
against control) to the flow rate per second of mass.

Neither u0 nor u are the tri-a exhaust velocity of gases from the nozzle,

which practically does not depend on the altitude of flight of the rocket. The

fictitious exit velocities1 ".0 and u0 physically mean the quantity of absolute

thrust ýfter subtracting losses to control, arriving on each unit of flow rate per
second of mass.

Rv flow rate per second of mass is meEant to tokal flow rate of all components
participating in a de-rease in weight of the rocket. Its change with the course
)f time will be disregarded.

p is the initial load on the middle section of the Lransverse load, i.e.,

the initial weight arriving per unit area of the largeuit cross section of tha rocket.

FyAo -- specific thrust or efrth.

'Subsequently instead of the term "fi::titious exit velocity," for brevity
we will use the term "exit velocity."
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- specific thrust in a vacuum.

From (22.11) and (22.14) we can obtain:

or

4-- vor (22. )V

and, analogously,

S ,,(22.20)

In expression (22.10), on the basis (22.11) and (22.19),

- Pe

therefore

T'Ap..o ! , I. (22.21)

here

We will transform every member of the expression (22.8) separately. First member
P/m: considering (22.5), (22.6) and (22.9)-(22.12), we have

P P. + s ~ - _.__._______P.

i,--(p -, -2_HT-
We leave the second member in constant form. The third member X/m:

U PS

Inserting these values in equation (22.8), we obtain:

From (22.17) we have

d-- -rTa. (22.22)
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Therefore, finally

where the impact pressure pv2 /2 iz dezignated by q.

Let us Integrate the equation obtained from v 0 to v and from ti to a:

P#

+T f sin~dp+1ffýAdp.

As the lower limit of integration we take the parameters of motion at the time of
launch, i.e., v = 1, v 0 = 0. Let us obtain

I

Aa P *

-T gsin 0dia- AT V- dp (22.23)
f * P f S

We will designate in equation (22.23)

Ir-a- f sinO O . (22.24)

P

' aC' (22.25)

a

(22.26)

Thus for the calculation of speed we will obtain the following basic expression:

,,- .•,fh,-T.,,- (--(,.-,, (22.27)

or, consiuering (22.19)-(22.21),
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From (22.27) it is clear that the speed of the rocket is determined by the
following basic design parameters: L - ratio of running weight to the initial;
PyA.n - specific thrust in a vacuum; w0 - ratio of initial weight to the initial
thrust; pu - initial load on the middle section; P O- specific thrust on earth, or
the difference (P - P = &P , determined by the nozzle height of the engine.

In formula (22.27) the member -u in v determines the speed of the moving underr
a condition of the absence of attraction of the earth and influence of the atmosphere.
The exit velocity of the gasecs (and, consequently, thrust) wiiI in this case be
constant and maximum. The member TIi determines the loss of speed Induced by the

action of gravity. This loss is most considerable among all others and should be

concidered first. The third component 1- 12 is a loss of speEd for th- surmounting
of drag. The relative magnitude of the loss of speed to the surmounting of drag

&is less the more powerful the rocket. Being important factor in the

determination of the speed of small rockets, this loss gradually decreases,
consisting for long-range rockets 2-3% and even less.

Since the rocket moves in an atmosphere where the pressure of the atmosphere
varies with altitude, then the thrust according to (22.5) will be variable, being
increased from a minimum ground value up to a maximum in a vacuum. Therefore, the

product -u in g gives an over estimated value of speed. The last member of
equation (22.27) (u' - Uo) I represents a corresponding correction considering

this circumstance.

If all the characteristics of rocket are assigned, the calculation of the first
member of equation 22.27) causes no difficulties. Calculation of the second
member of equation (22.27) is connected with the determination of the numericalvalue II. For this it is necessary to know g and sin 6 in function L. or t.

In the first approximation and with sufficient basis (altitudes on the pow;ered
section as compared to the radius of earth are small), it is possible to consider
g = const. However, it is impossible not to consider angle e constant, neither to
take it as some mean value, not risking the making of a gross error. At the same
time it is known that the dependence 6 = e(w), selected taking into account real
limitations, for all long-range rockets has approximately the same character. It
is also known that small changes in the dependence 6 = O(v) influence insignificantly
the terminal velocity.

Therefore, wishing to free from the great number of variations of the dependence
S- 0(u) and thereby facilitate calculation and make them applicable for a more
general case, it is expedient to take for all trajectories a single dependence.
If the accepted dependence after appropriate calculations and comparisons with more
exact methods will show satisfactory accuracy, then it can be used in all further
calculations without change. Such a dependence can be accepted in the form of a
curve, on which the following conditions are superimposed.

Prior to the moment of time tl. corresponding to the beginning of the curvilinear

flight (beginning of the "program"), the angle 6 = 90°. The value of the relative
weight v at this instant will be designated 4i"

The necessary final angle of inclination of tangent tc the trajectory is
reached at the time t 2 corresponding to 6 = L2. At this point the derivative of
angle 0 in time (and at 4) is equal to zero. In the interval between 1 ý P and

v a - 2 the angle 0 is changed by a square parabola.

After = u2 the angle of inclination of the tangent to the trajectory remains

1!onstant prior to the woment of turning off of the engine.
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It is convenient to record equation of parabola in the form

*mA(j&- KP+B(p -p 2)+C. (22.28)

Coefficient A, B and C are easily determined from shown conditions. So that the
problem is more concrete, it is necessary to assign defined value ýi and al2 constan, ts

for all possible cases of calculation. It is possible to consider established that
tne vertical section coatizues up to values ;of i close to 0.95. Therefore, it is
quite natural to assume v, - 0.95.

Further, the powered sections of almost all long-range rockets possess that
property which after i = 0.4-O.5 the trajectory 1z either rectilinear or very
closely approaches a straight line. At the same time values of iH greater then

0.3-0,4, as a rule, are not encountered. Proceeding from this , It is possible to
consider sections of the trajectory after 4 - 0.45 for all rockets rectilinear and
differing from each other only by a value of the angle of inclination, so that
6L2 = 0.45.

Inasmuch as it is profitable to conduct firing at optimum angles, then OF for

various trajectories will be different. Thus losses of speed from gravity will be
a function of the final angle 0. and v.

The dependence e = e(ii) with parameter 6 satisfying all the conditions, has

the form

2- .O. 0.95>A;0O,.4. (22.29)

The dependence 6 = 0(u) is represented graphically on Fig. 22.2. Values of the
a

are given in Table 22.1 and on Fig. 22.3, which one should use in carrying out the
concrete calculations.

if

JV•"

Fig. 22.2
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Integral 12 expresses influence of drag:

I

In order t,, catculato t~his Integral, it Ies niee:':'t[y bef'rt~qa•arad t.,, |'I.w qi= 2~,,

Cx(?-I, h) in function P. To obtain these dependf-nc-es w-' wi I I tire Lih, r r'nt tw,,

members of equation (22.27), giving speed in futclu Idn w under Uie cr,'ifi.ttl (,f' the
absence of the atmosphere.

Let us denote

Then the altLtides corresponding to these speedo will be

I I

Y-f v snd-=T f v, sin 0 dlL. (':'. ,1)
* 0

IAt us c ll I V,'nd y, th-' rpeer] stri
•k-f q$it.I 1ude of' th" f'lt i ,,pt sq.;ir,ximuttl'.n.
4. Kni,w.l vir 1 v and y I, it I", ''tsy t,, : 'I ac tr '

I

$lurIng kalcu1 1tti On ,,f' T., ln-r .Y'f,'l

of v w+. will triu:,rt v 1 ; 1. will ho.' 1.,,k,;n

tint f'rom the true vtilu' W y blit 1/,; Cx
wiLL alou b(! dri.•.vrmlil,:d wit.I ri.e2',,. t,,

V I find y1 .

Thr' great fluantity of cirurtlona;
eonducted for the purp,.:,, ol' ()tI rirlnation

AMP U ofl 121 permitted estabiLl.hIng h. t , fIlowing
empirical dependence: valu'is cf the

0.44# integral corresponding to the same value
0.,18 ,!of opeed, plotted on the graph dep,:nding
6-•'41 upon quantity'

- 9T'- M6.0 4O9 (22.32)

where - (u' + uo)/2, have Insignificant

scattering around a certain mean curve.
Therefore, it was found possible to

416- JIP • • i4*? construct the dependence 12 - f(v 1 ) with
Fg parameter o (Fig. 22.4 and Fig. I of the

Fig. 22.4 Appendex2). Values of 12 are obtained

'With the calcuation of a by the formula (22.32) it is necessary to take T per

s, and ucp m/s.

2In the Appendex graphs are given which can be used for design calculations.
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quite close to the real, since speeds during calculations of* T2 ar,: W.~~&'V

estimated (from the first approximation), and the densitle:, under.tAUL! I (btvc'.&u.;'.
of overestimated altitudes of' the first approxlmattion).

Thuz for tht.c deL. rminatiori of the -r :--pwed on dr.ag It 1.:1;iWi v.'
calculate

GMTVl/-7s1AS.- 10O8

and, taking It as a parameter, to find 12 dependine upon speed v1I known befor'.h-arid
from the first approximation. obtained 12 muot then be mult.IplPif by ftru~il.1t~y &E.
which characterizcs (ýaek rtocket taken separately. Hence it !- Cll':ar that. tie lox
of speed t'or overcoming drag depends on the tran~sverse load. rhe e1rcabL-r th'.
transverse load, the less the loss of' spoed during the pat-oage uf' the- nocY.et
through the atmospht-re. Therefore It is (IC rablo to have 11Aa:; hLrgf; !vf;
not causing damages, however, to other flying chiaracteri-.tics; of* thr- r. C! t,-:

It is necessary .o note that with calculation of T2 f'or ,.Il rockol. ld; ni~, v
* coefficients ofV c ,;-'re accepted. This circum;,t,*nce, h(;wo~vvr, d.j-s ri t. 1-0al

* considerable errors atccording to the folL~niwitg cause;*:

1) f or al. I roe ke t of r ormat I ba I I I.-t I e -ch mv coe 'flr Ic i nt e 'ir -.o rt r:', cI 1

identical;

2) dependence.-. c_`,1, nl, :on which are (aLilductied( exact cal cuJ.'Ltotui 1'-r COW,(`
rocketc, themselvL:5 ;osse-;: connldor-tbl -c rrnrs;

3) the influonc2ý or' drag, In general, I., sl1 eopf.cirtlly I".r' iw,ý-rfi r
designed ror firing at great dl.;t.ncc.%.P~':,v the error ownin ~oc:/ h%'
insignificant influence.

The last correction (it -u 0) con;'idur;; the change( In thrust wii ltltu+3
For the calculation -f I It I. necena;'ary to know the deplenctence&= p) :11:h
be known If the altitude y in function 4± is known. Thterc. were conduct.ed a g;rea-tt
number of calculations for the purpose of the determination of I, whterc aLititude-

y were taken from the zecond approximation. We call the altitude of' the second
approximation the altitude obtained during, interration of equation (22.4.), 1'r.
which speed Is determined by the rormula (22.27) taking into account. '.hr' Vir. ?ý
threa members, i.e.,

Y
2 JLSPIn , .Tit.Pr- vrpsi(22.d5)

As a result of processing theae calculations wa succeeded for quantity -~equal

to,-

11 =10.0018, V 'g, sin 63

in establishing the empirical dependence on the parameter v 0 and time of flight t.

'In the calculation of I~ it is necessary to take u Iin ii/s.
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This dependency is depicted on Fig. 22.5 and
Fig. It of the Appendex.

Parameter YO Is calculated by one of

three formulas:

aaI

Thus, having a concrete rocket, we calculate
"for it v. ard fii.d the parameter , the the
moment of time interesting to us. Then we
calculate IA by the formul&

U 4m-~:: =:=. (22.34)

The product - uo) gives the unknown

loss of speed for overcoming the
counterpressure of air.

After determination of all the losses
we calculate formula (22.27) the final speed.
Fig. 2?.6 gives curves allowing on a
partivilar example ' to trace the change of

if4 * • g • speed depending upon jL and the relation
between separate members of formual (22.27).

Fig. 22.5 Plotted on this graph downwards are losses
of speed Av1 , eV2 and av., referred to the
true speed of v.

j S

#

Fig. 22.6 Fig. 22.7

'With the following initial conditions: v0  0.577; P = 288 %g ; - o -
=240 ~;p i0,0o O ; 9 X380202. Y
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Here there are designated: Av. - TI, - loss of speed for overcoming gravity;

loss of speed for ,vercnmnir drag; v 3 ,v (un - Uo)I3 - ioss cif zpeed

for overcoming counterpressure of the atmosthere. E

*4

4a

Fig. 22.8 -Fi. -2.9

Fig. 22.7, 22.8, 22.9 give a comparison of separate losses (Av,, &VV2 Lv3)

calculated for the same example by two methods, namely, numerical integration of
the system (22.2)-(22.4) and the method just now expounded.

§ 23. Determination of Full Rae

For p•i•oses of designing it is possible to propose simple dependences which
ienable the possibility of finding the full flying range in a function of the speed

attained up to mement of turning off of the engine or, conversely, the speed
necessary for achievement of the assigned distance, without recourse to the
calcu.lation of coordinates cf end of the powered section. The proposed formulas
are not exact, but for the first approximation they give quite satisfactory results.

Let us express the full range as

Lrnh4.(23-1)

Here by La is meant the range concluded between the two radii MK and MN, conducted

frzrm the cznter of the earth and intersecting the trajectory on its ascending and
and descending phases at an altitude of ,nd 3f the powered section (Fig. 23.1).

Thus coefficient k expresses the ratio of full range to its purely elliptic
part determined by arc ED along the surface of the earth. We use -nly c....ti. nally
tve term "purely eillLtic part of the trajectory," understandirqg by this only the
fact that the Influence of the atmosphere affects the flight engligIbly. We determine
the flying range corresponding to this section of the trajectory by the formulas

0I



abCý.t Wý4Cn was " .-

Of all the diagram of calculations examined for
this casc we will use only tae one corresponding to
the case of firing at an optimum angle (see (19.31)
and (1').1-):

• P"" a• "(213.2)

wnence, con:iciering triat L•,o 2Rfi

*= , = 2kR atmtg 2 23

Here'

If Qne were to takee r. = R, then V-
Substituting this value P Into (23.3), we will

Fig. 23,i obtain
L 223R a-"t

I U R cte -(2 3 .4 )
IsA V62-37 " W.'

If the arc arctg is taken in degrees, then
Lthen

L-- .4k"arg (23.5)

Fig. 23.2

The value of coefficients k Is not identizal f-)r different rockets but depends
on the speed or range and on basic design parameters. In the first place on those

'In this and subsequent form•ulas it follows to express v in an/s a r
R and L In km. I rK



Fig. 23.3

.l."

Fi~g. 23.4,

by which is determined duration, more correctly the extent of the powered section.
Such parameters are P and -•0, the influence of which in totality can be replaced

by value T = voP O.

To determine k on Fig. 23.2 (Fig. III of the Appendex) there is the curve
k - k(v,) with parameter T plotted on the basis of analysis of a large c antity
of accurate calculations.

If we copy formula (23.5) witq respect to vH, then we will find

V."= "1."91 tZ( -• T,19-7 Wk). (2.6)

In (23.6) the quantity L/222.4k is measured in degrees. To determine k depending

upon the range on Fig. 23.3 (Fig. IV of the Appendex) there is plotted the curve
k = k(L) with parameter T. By the formulas (23.5) and (23.6) calculations are
performed, and on.Fig. 23.4 (Fig. V of the Appendex) there is plotted the dependence
SL f(v ), using which it is possible to solve the direct and inverse problem of

ballistics.
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§ 2M. F'nal Formulas for a Rough Estimate of Flyn1g Range

In design ballistic calculations it ii sometimes found useful to establisr, &tleast a very approximate dependence of flying characteristics of a rocket from its
basic design parameters expressed by means cf final for-ulas. Such a dependencecn be obtained by examining the motion of a rocket under the action of only twoba:ic forces: thrust P and weilght G, consideiing that the acceleration of gravityg Pas the same value (in magnitude and the direction) at all points of space.

Let us direct the x axi: of the rectangxxlar system of coordinates on the tangentto the surface of the earth at the launch point and the y axis vertically upw&rds.We will consider that at the initial moment (when t a 0) the coordinates and speed
of the rocket are equal to zero. Motion will be considered flat; this is as itshould be, if besides the assumptions made we demand tnat the tractive force during
the whole time of operation of the engine act in one plane. The angle which this
force composes with the plane of the horizon (with x axis) will be designated T.Then the equations of motion of the rocket will have the form

or

- Z- ifCOS 4. 1(2.)
$u~f~siu; 1))

where designates the ratio P/G (G-forces), which we will consider by the known
function of time n ý n(t).

Integrating twice equations (24.1), we obtain:

.11

and

iragf (a(1) Cosy4F('C)eie 1tdl

In the obtained double integrals the region of integration in the plane of variables
¶ and v constitutes of triangle determined by inequalities

Changing the order of integration, we obtain
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and, analogously,

y= (I-- ,) 4 (,) sin.( (,) d,-

Let us assu-e that the time of operation of the engine (duration cf the powered
section) is equal to t , so that

a(t)>O when 0<t(1.
and

(t1=)O when I>fr

Then for t a t these formulas will be correct:E

V,.= f a iCos q O.

Suf(24.4)

91- ( sin q -t

* (I - ) a Sin q ft

where n and c integrand expressions are function- of T. These formulas can be
used, in particular, for the determination of coordinates of the impact point,
substituting in them instead of t, the time of flight prior to the encounter with
the surface of earth t. (assuming, of course, that t0 > Y:

SXc t ie . )) o c •

S" jV4-e A. O~i

gr f ý'e -. t) itcos ofdt.
si # (24 .6)

YC ~(tc T) xsin~4 4).
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To determine the complPte time of flight t:- it Is necessary to Insrt expressions

fc. Xr d y: into equation of tne surface of earth

(24.7)

and solve the equatl,-n with respect to tC. We will not specify as yet the form

of function f(x) in equt.ilon (24.7).

It ia natural to approach the obtaining of the ultimate ra:Le of flignt of
the rocket. Therefore, we will solve the following variational problem: what
should function 9 = 0(x) be so that the abscissa x of the point of impact is

maximum. For this we will find variations 6Y., and AyC owing to the variation bq,

As usua-l, we can write:

ASc-- abc+ c Atjc. (24.8)
t Yc~ 8 1eY + Vic MfC.I

where -tC is the variation of time of the flight and bxC and 6yC are variations

of coordinates at the fixed value t = t•. These variations are equal

8.t~ (24.9)

c--(tc -) Cds0 4P T.

Excluding from equations (24.8) and (24.9) quantities AtC. 5xC and 5y., we will
obtain

- UggAxe + V.e Aye -

Furthermore, xC and yC are connected with each other by the equation of the surface

nf earth

Yc " t€).

and therefore

AYC C= f c)Axe. (24.10o)

Thus

z-', + VCr (XC))I3.XC

Jf (tc - 1) £ (rC SIRI + ,,€ Cos 4r) &y ,.
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The necessary cQnditicn of extremum of quintity xC Is the Identical conversion

into zeru of the first variation lx,, In other words, tne fuifilment of equality

Q c - T) 4 (VC$i + VC Cos qr) 61 0

The variation 59 in our formulation of the problem has no limitationn on It, so that
basically the lemma of calculus of variation i3 applicablc, from which it f.illows
that angle 0 should satisfy equation

at least for those values of i, where n ý 0, and only such values interest us.
The value of 9 satisfying condition (24.11) will be dep.Iteunted by T0" Condition

(24.1i) can be rewritten In the form

YC

where iC is the angle composed by the velocity vector at the impact point on the

x axis. It follows from this:

Thius for achievement of the ultimate range of flight it is necessary that
during the entire time of operation of tne engine the direction of the thrust
remain constant, where in such a way that the direction of speed of the rocket
at the time of its encounter with the surface of earth is found perpendicular to
the direction of the thrust. Let us study in greater detail this optimal state
of motion of the rocket.

Let us introduce these designations:
IM

Ja d a At. (24.12)

farixmui.(214.13)

when T T-O coast expressions (24.5) and (24.6) can be rewritten In the form

-"" E g(q,,. a(2"4.14)

Xc- (Nfc- NJ)Cos T,.

Ych [(Nc - NJ) sin %_ " (24.15)

We will insert exprOs-i;,-s (24.14) for vx and v into equation ( .1,, wtc
xC yC

should satisfy the optimum angle T0" Let us obtain

C(N sin -- tc)si- + .N co00,T-.
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or

(214.16)

whence

(21. 17)

This expression for tC will be substituted into formulas (24.15) for coordinates
of the point of impact:

Xc~iff~.~N~)os%.(24.18A

(2 1 N 9 )

Instead of quantities N and Ni it will subsequently be more convenient to

use dimensionless quantities

4 f (24.20)

4 -- , (24.21)

where R is the radlu" of earth. In these designations

and

R# Cig V ( - a moe) (24.22)

YC TOr•(2 suP VO-- 2t sita -l g.e3
ae1 ~.-.2saq~ vS3 0  (24-23)

The equation for angle ;,0 can be obtained as a result of the substitution

of these expressions into the equation of earth's surface (24.7). If one were to
ccnsidctr the earth a sphere with radius R, then this equation (more exactly, the
equation of a section of the earth's surface by the plane of firing) has the form

Instead of it we will use the approximate equation which is obtained if we decompose
fR-2 in series in powers of x/R and are limited by two members of this

decomposition:
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or

=a
(24.24I)

Derivation of this equation Justifies its use with small x. However, the
application of the same equation for large x is not deprived of bases. It is
known that in the central field of gravity a body thrown on a tangent to the

surface of earth with an initial speed Vo=-fg..will move all the time in a circular

orbit along this surface. In the examined field of gravity the body, to which
at the origin of coordinates is imparted the same speed v0 in a horizontal direction,

will move, as it is easy to determine, about a parabola described by equation (24.24).
Thus this parabold in a certain meaning is the analog of the surface of earth for
bodies moving with an initial "circular" speed v 0 .

Inserting into equation (24.24), instead of x and y expressions (24.22) and
(24.23) for xC and YC' we obtain

b (2 s n q,-2asin'-1) R tg'•= (!asin

(2slij--2 si-c--I)') 2

or

2sinP *-2asinsqo- I h -- co qo(I -asin qG).

22
Replacing cos 2o by I - sin2go and transferring all members to the right side,

we reduce this equation to'the form

+2absino-+-I -b=O. (24.2 5 )

This equation can easily be solved by a certain numerical method. There converges

rather quickly for example, interational process, founded on the formula

sin qr (• sin# +oI 2a(I-b) sins %o• -~. 2.

ensuing from equation (211.25). -b)]. (24.26)

Thus, if the law of change of load factor n(t) is assigned, then formulas
(24.12) and (24.13) for N and N,, (24.20) and (24.21) for a and b, equation (24.25)

for l0 and, finally, formulas (24.22) and (24.23) permit determining coordinate

xC and yC of the point of impact of the rocket. Coordinate x can be considered anC C C
approximate value of the flying range, in any case for small distances where
equation (24.24) quite well described the form of the surface of the earth.

In order to obtain the best accuracy for great distances, let us examine the
limiting case of the instantaneous burning of fuel (t,-- 0). In this case the

integral N has the final limiting value connected with speed at the end of the
powered section by the relation
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(ree formula (24.60)). Far the In~tegral i, n the basis of formula '24.1,1), ut
•btaln

"10N--j -IIdt < f at. d Nt.

and, consequently, the limiting vaLue _f ?1,, and at the saMe time of f, Is equal

to zero.

Formula (24.Z6) gives when a - 0

after which by tne formula (2•4.22) we obtaia

*cm71~mr.(24,.27)7MO

With the instantaneous burning of fe'el coordinates anx y obviously, are
equal to zero. The problem of the determination of the ultimate range of flight
under ccrAitions of the elliptic theorj was solved in V 19 Chapter V. For the
case r,, rC = R we obtained formula (19.5):

whe re

91,r (SN)'R rAI

From formulas (.9.31) and (19.33) it follows:

Comparing this fcruvala with formula (2 4 .27), we obtain

whence, taking into account that when x y 0

we find

This formula, which established the relation between t.. flyJ-ng range L under
conditions of the elliptic theory and coordinate xCs cal'ulaZed by the aoove-
described method, can be expediently used when a i 0. Uniting formulas (24.28)
and (24.22) in one, we will obtain

L 2Rarctg[- cf ; (I --. ,c 4s ,v q..
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The exp.ýunJed methld In pure form is too coarse for the Jeternination of
distance mainly because Iln it are not considered losses of speed (and consequently,
distance) for *.ve-coming drag to the motion of the rocKet. However, already
the formula

L =a 0.75.c

gives for distances uo to 5000-7000 km an error not exceeding i0% with a change
In design parameters of the rocket almost in the whole range of practically
reasonable values.

Let us dwell now on the question of the expression of integrals N and NI

in terms of design parameters of the rocket. Let us consider the case of the
multistage rocket, consisting of m stages. Let us designate the thrust of the
engine of the i-th stage by Pi. the flow rate per second of fuel on the i-th stage

by Gi the initial weight of the i-th stage by Goil the time of the end of operation

of the i-th and (for i < m) of the beginning of the operation of (i + I)-th stage

by t i. During the period of operation of the i-th stage, i.e., when t i-1 < t t

quantities I and Gi will be considered constant. Then when ti 1 < t z ti for

the load factor n(t) we obtain the expression

01 061-010-t--S_)'

or

where Pm-A is the specific thrust of the engine of the i-th stage,

A. we + , (24.29)

In these designations

gas

N-f a ,(t) d= fj7-

Sf at, dt .
N,-- j 6-e7_ ,-.

But

f PYSdt P3, in (T-r d)

f -,.' d, f r,,-,- dt,, J

it follows from this that

N-- Id n -7,II, (24.30)
lot

U-i "

12i
aid ~ ~ -- [-, __. t (4.1

lot



25. Design Calculationz with the Use of Electronic Computers

The effect from the use of electronic computers Is especially great In the
zolution of such problems which require multiple appeal to the same algorithm,
which n L ne most labororious part of the total calculation. Design-ballistic
calculatuons, conducted for the purpose of selection of basic design parameters
of the rocKet, pertain exactly to such kind of problems.

Really, if it is required, for example, to investigate the influence on
flying range of the rocket of only some three independent parameters and to give
to each of these parameters at least five values, then the quantity of possible

combinations .f )arametera will be equal to 53 . 125. For each of these combinations
it is necessary to select the trajectory realizing the maximum of distance. If one
were to consider that five calculations for detecting the optimum trajectory
are sufficient, then the total amount of calculations of trajectories will be
equal to 5-125 = 625.

The main part of the time will be occupied by integration of the system of
differential equations of motion r-reatcd 625 tIllies. Reducing results into a
defined system convenient for analysis (grids of curves or table), it is possible
to select the most profitable combinatiota of parameters interesting to us. In
certain cases on the machine can be placed the solution of an extreme problem
according to some number of parameters, not calculating the grids but applying
one of well-known methods of investigation of the extremum by many variables.

In similar cases, for the sake of saving time, it is recommend to drrive
for printing not all the obtained trajectories but only the final results of the
calculations and only for several variants is it possible to derive trajectories
for the use of them in calculations of loads, stability of motion and controllability,
in the carrying out of thermal and aerodynamic designs, and so forth. As a rule,
for purposes of selection of design parameters there is used a system of equations
of motion (14.25) written in the assumption of an ideal control system (a 0 - CD),

but considering the presence of angles of attack. The program of pitch angle for
a single-stage rocket is given in the form of a one-parameter or two-parameter
family of curves, where for one parameter there is taken the maximum value of the
angle of attack on the subsonic section of the trajectory and for the second, the
origin of turn of the axis of the rocket in pitch.'

For a two-stage rocket there is the possibility of the variation of two more
parameters of the program: the initial value of the pitch angle on the second
stage and angular velocity taken as constant for the given trajectory.

Absolutely analogous calculations are conducted for exposure of the influence
of deviations in comparatively small limits of basic design parameters on the flying
range. The obtained change in distance attributed to the increase in the investigated
parameter, is equated by a corresponding derivative if one were to solve the problem
in a linear formulation.

It is necessary only to note that in the carrying out ýf similar calculations
the program of pitch angle should not be taken the same for perturbed trajectories
as for undistrubed, but each time should be selected from the %uaranteed condition
of the maximum of range. Derivatives obtained as a result of such calculations
can be used in certain other design problems. Let us assume that it is required,
for example, to establish between some two design parameters X. and X2 a relation
corresponding to the constancy of the maximum range of the flight. The relation
of derivatives

-L OL d-

'For the assignment of the program of the pitch angle see in greater detail
in Part Four.
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gives to us the needed value without carrying out additional calculations. Usually
with-design calculations we are interested in mean values of flying characteristics
of the rocket, and therefore the influence of the rotation of earth will be
aisregarded. However in the programming of problems for a machine reading, in
equations of motion 't is recommend to preserve the appropriate members, since in a
number of cases the investigations taking into account the rotation of earth are
needed very much. In remaining cases superfluous operations can be avoided,
setting in initial data the angular velocity of the rotation of earth equal to zero.

In many cases the determination of the full flying range is expedient conducted
not with the help of transition to formulas of the elliptic theory, but by continuing
integration of equations of motion up to the moment of the encounter with earth.
It is more convenient for calculation of the powered and free-flight section of the
flight to use the same system of equations of motion, excluding during calculation
of the free-flight section of trajectory members connected with the operation of
the engine and control system (setting, for example, the thrust to equal to zero).

With a machine reading the most convenient is the method of Runge-Kutta
integration, where the step of integration should be slected automatically,
proceeding from the assigned accuracy of the calculation. This guarantees both
against the uneconomical expenditure of machine time (if the step is assigned
very small) and insufficient accuracy of the calculation. In other respects it is
necessary to hold to recommendations general for calculations of trajectories with
any accepted system of equations of motion and given in Chapter VII and also in
Chapter XI, with respect to the selection of the program of the pitch angle.

§ 26. Determination of the Speed of Encounter of the Rocket with a Target

It is frequently important to determine the speed of encounter of a rocket
with a target, since with this speed are connected conditions of motion of the
rocket before encounter. This can be done by the following method belonging
to Prof. V. P. Vetchinkin [i].

Let us assume that with the entrance into the atmosphere on a descending
phare of the trajectory the rocket has the following initial parameters of motion:
altitude hM, speed vH and angle of inclination of the velocity vector to the local
horizon $ •. Let us assume the trajectory of the rocket on the atmospheric sectionH
to be rectilinear. This will not introduce great error into the calculation, since
the true trajectory is insignificantly deviated from the rectilinear. Further
we will replace the drag coefficient cx by its mean value and disregard the

dependence g on altitude. Thuq, we make the assumptions

I -r fein coast.

The equation of motion on the atmospheric section will have the form

dr e X'"P P .. .. (26. i)

where m - the mass of the rocket; S - area of midsection; p - air density at an

altitude; PO - air density on earth.

Equation of motion can be written thus:

do iw A es (26.2)

'In this paragraph, for convenience of calculations the positive direction of
the reading of angle S is accepted from the horizon clockwise.
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iiere h is the altitude of the rocket above the surface oi earth; P/Po is the

relative air density.

It is obvious that
dh

V s=- tsn . (26.5)

In*:erting (26.j) in (26.2), we obtain

•stn2, to •- • _Ksin '

a ( o cc F C $N P v 7 2 o
where--- n ,,---SL.• -go" (26.4)

We designate

2sinto. -- 2sint. pwhe re

orx

Th:ýn equation (26.4) will take the form

Integrating this equation from h = hH up to h = 0, we find the final expression

for the speed of encounter with a target

as a

_, +j 0u f. (26.5)
0

Considering that with the made assumptions

L dA= Sf gdjh --- f Ido .

forrnula (26.5) can be written in the following way:

IC.Ig,8 +2um, •dh. (26.6)

By formula (26.6) calculations were made graphs were plotted (Fig. 26.1-26.3
and Fig. VI-VIII of the Appendex). With this for the initial altitude of the
rectilinear section that altitude was taken on which the assigned initial speed v H

the acceleration from drag consists of 1/10 of the acceleration imparted to the
rocket by gravity, i.e., equal to

O.Ig ain 0, as sin 0..
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Fig. 26.1.

&.-& ah'

Fig. 26.2

t.Z.,

Pig 26.3

41g (26.3
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According to equation (26.7) the graph y. = f(k, v ) is plotted (Fig. 26.2).

The calculation of speed v by the given graphs is produced in the follc Nwng

way. Knowing for the given rocket cxcp and p * and also the angles $,, equal to

the angle at the end of the powered section, from the graph of Fig. 26.1 (Fig. VI
we find k. From the calculation of the powered section there should be known
v and y•. From the graph of Fig. 26.2 (Fig. VII) with respect to v. and K we find

yH; it is moLt probable that the value of y will equal y•. Then we determine the

valuc of speed by the fornUla

(26.8)

With respect to the new value of speed vH and value K from the graph of Fig. 26.3

(Fig. VIII) we find the speed of encounter vC.

Calculations made from the graphs show that the error in determining vC,

as compared -o numerical integration, is quite permissib2.e for design calculations.
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II

CHA PTER VI1

BALLISTIC CHECK CALCULATIONS

Afterwards, with the help of the above-stated method of design calculation
Ga

main design parameters of rocket are selected: p. = L!- ratio of the final

weight to the initial; P - specific thrust in a vacuum; v0 T- - launch ratio
Go

of weight to thrust; P. --- load on midsection; APy YJ P yA.n -P yO -- the

altitude of performance of the nozzle expressed as the difference between specific
thrulsts in a vacuum and on Earth; ex(M) - law of drag. It is possible to approach
a more full and detailed designing with a further more precise definition of the
enumerated parameters.

This more exact data should correspond to more exact calculations, which are
conducted by equations of motion obtained in one part. The most suitable here
are systems of equations (14.30) and (14.25) for the calculation of the powered-
flight trajectory and systems of equations (15.19) and (15.1?) for the calculation
of the free-flight section.

Simultaneously with these calculations there is conducted a selection the"1program" or form of trajectory about which should be carried out motion cn the
powered section and in accordance with which instruments giving the rocket this
motion are designed. Questions connected with the selection of the program will
be examined in the fourth part of the book.

After a more precise definition of main design parameters of the rocket and
the selection of a program checking calculations are produced which consider
certain peculiarities of the control system, a fuller scheme of action of the forces
and, if it is necessary, a concrete point of launch and direction of firing. The
most suitable for this purpose are systems of equations (1i4.20)-(14.23) and
(16.18) for the calculation of the powered-flight trajectory and the system of
equations (15.3)-(15.7) for the calculation of the section of free flight. On
the basis of these calculations there are compiled preliminary tables of firing
and conducted flight tests of the designed rocket.

During calculation of the trajectory it is necessary first of all to select
a certain system of differential equations, proceeding from the required accuracy
of determination of the flying range and other elements of the trajectory
interesting to us and in accordance with the presence and accuracy of initial dota
necessary for carrying out the calculation. Appropriate recommendations on applica-'
tion of a certain system of equations of motion were given with the derivation
of these equations.
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In this chapter we will examine concrete systems of the most commonly used
equations for calculation and will give r,:commendations for carrying out n-zmerical
calculations.

§ 27. Calculation of Powered-Flight Trajectory

One of the most complete for calculation of the powered-flight trajectory is
the system of equations (16.18):

dv I i Z-•- -.- (-.-C-c.qS)--sfln6-- -gcosk.

-= It .. .,--cq...

+fzsin,. + 2 1CosqTsin,#.

do Irp Zt 1z""- [P- Xr , + " - ' qS] + gj (7)•.- , [ [1 -, + ~ 0), 1-;:-; ,..)
2wu•.(sin p, cos 0- cos q, cosit sin 8).

dx

dy-W vslne.

ds

Here

X80-- f A t.

where m0 - mass of the rocket at the time of breakaway from the launchin" pad.

The value m0 does not coincide with the mass of a completely filled rr.ket.
but is less than it by a magnitude of the so-called pre-launch flow rate. by
which is understood the mass of fuel expended prior to the moment of breakawa;y
of the rocket from the launching pad. This moment is characterized by an enuelity
of thrust and weight of the rocket, and the corresponding quantity of fuel
expended up to this moment is determined or, the basis of availoble :;tatistlcs
from results of bench tests of the engine. Thus for the zero of time in ballistip
calculations is taken the moment of breakaway of the rocket from the launcher.

The !'low rate per second of mass ti is determined by characterislis of the
propulsion system. During calculation should be considered change A dependinp
upon ballistic parameters of motion and changes of conditions of the fuel feed
dependent on them for every component separatcly. Calculation of the character
of accretion ti after the switching of the engine and fall i after the turning off
of the engine is obligatory.

Thrust is determined by the formula

P= A- €,0+S. P "- 4(27.2)s' •-(o as Pso - ~p=

where for quantities not variable during flight there are introduced designitions

e,- Pe,+SA1
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P0 and Pre noimnal vaiuita tnri8 und flcw rate u; ;ez-nd ýa mass on

earth. Formula (27.2) considers throttle (frr siai: changes of flow rate) and
altitude eharacteristics of the engine. Ratio P/P 0 is rate taken fromr ta'Aes of

standard (normal) atmosphere depending upon the altitude of flight.

: The drag of the jet vanes is equal to

Xr* #Qo +;-W + 8 +AD41L~-

v=4 (QOa+ -),+s aj

where and X are determined experimentally; a is the average amplitude of

oscillations of control surfaces around the program po-sitior,.

Since in the calculation angles of deviation of control surfaces I and 3 do
not appear, then for a determination of the total loss of thrust on the con'-ol
surfaces this formula is used

Xsr ~ i- arm 4€Q, +2. -3+ A

where there is designated

" 4 (Q. +,4).
e4 ML

Member cxqS, for convenience of calculation, is presented in a somewhat

different form:

where there is designated

cX is taken depending upon the Mach number M (or quantity w = MX0 , where a. is the
speed of propagation of sound on earth) and the Reynolds number (or altitude of
the flight) with a correction for angle of attack; the ratio p/po is taken fro=

tables of standard atmosphere depending upon the altitude of the flight.

The acceleration of gravity g is calculated by the formula

where the acceleration of gravity at the surface of Earth ý0 should be determined
depending upon the latitude of the point of launch Tr by the formula

a•975AO0191f-,. 1..

The altitude of the flight of the rocket above the surface of Earth is
determined by the formula

*1



where

If the distance of the powered seetion is too great, then the altitudj should
be calculAted thus:

*V(*T+ TY +R+

where

R == 6371 xx.

It is convenient to record member l cqS in a some;:het different form:

C 2

Here c'm~ and care taken -fromz tables of' aerodynamic coefficien'.z' deperndinr

upon the M number; I A Is the quantity constant for the rocket; x 17"/1 is taken

from the graph or table' which is most convenient of all to have depending upon

the mass of the rocket.

For the integration of' equations of notion (27.1.) there is used "he methol
of Adams. For the calculation of initial points there is applied the method of
consecutive approaches, proposed by Aced. A. N. Kryjlov, who recommended the Adams
method for solution of the basic problem of external ballistics. During. integraýrn
of equations of motion (27.1) it is necessary to use certain final relations;

sinO+ V,1 Cos

where A designates the quantity

A 2e.W (1& - _r)+C (Zr)-

here is the coýfficient of the st.tic den7ence between the tngle of devatior.
of the rocket's axis and angle of deviation of the jet vanes 2 and t h:

'These are formulited in the process of designing of the rocket In the forn
of weight, centering and aerodynamic designs.

1.3?
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Value a 0 depends on characteristics of control system and controls and should be

assigned. Equations of this paragraph allow both a constant and variable value of
a0 . Further, R' is a derivative of lift of the Jet vane according to the angle of
its deviation. R' depends on the configuration and area of the Jet vane and
characteristics of the gas stream. Considering the angles of deviation of the
control surfaces small, and the characteristics of the stream and control surfaces
themselves constant in flight, it is possible to take R' as some mean value. In
reality, because of the burning of Jet vanes and the change in characteristics of
the stream, R' does not remain constant, but this change, as experiments show, is
small.

The values yl, 21 -Y3 necessary for calculations, considering the rotation of

the launch system of coordinates, are calculated by the formulas (16.4):

y =403 t cosy ,cos 't.
Y3 03t $in 4. (27.4)
;= -- Gat cos y sin,.

where

17.2921. -1

ip - latitude of the point of launch; W - azimuth of the direction of firing.

The true position of the axis of the rocket is determined by angles

1-0( - A)d-oy 8 sin f+y-cosg).

The third and sixth equation of the system (27.1) can be integrated from a
certain moment t / 0. As such moment it is recommended to select the end of the
vertical section with initial conditions

In all calculations the program change of the angle of inclination of the
axis of the rocket qnp should be assigned in the form of tables with an interval
equal to the step of numerical integration.

Equations of motion obtained in § 14 differ from equations of § 16 only by
the absence of members considering the departure of gyroscopes with respect to
the terrestrial system of coordinates due to the rotation of the latter. Therefore,
all calculations are somewhat simplified. The system of equations itself has
such a form:
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-- XCos's+ x si ,,0 s+ 2,cos s,.
'- -'.-tg[-- A,,+4t-*' "qsI-

-P - +X + CimO) 4 Or 2 e.5sin#

W 7-

wher-e

7, T ((,-,.t)

•.- 2i.~,(inP. 6-cs+oro~a

Ed--( wcro- O)

EVýer•ything said with respect to the calculation of separate values ý'or the +
s~st em of equations (27.1) and its inteeration remains In force for the system

For the calculation of the powered-flight trajlectory., neglecting the rotation
of ear~h and in the assumption of an "ideal control s-ystem (a,= cD), it is necessa ry
to use the system of equations (14.2z;);

-&- L ( P -- X ,V- t qs) -- ,sle- = •Case,

W • 7; -- +.

It' I S
Ed~~ ~ TL'B, "

L 7 1S6
40ZS-j

W* Vos8



If a change in 6 in time is known beforehand, and !ne program change of the
direction of the axis is unknowm, then the second equattcn or the syster. written
above can be used for the determination of a an1 iv,

P- X1+-

Simpflicatic.,n, as a result oý" which the last system was obtained permt In
the calculations disregarding the change in flow rate nr see-orlq o' meas -!nd t-.e
change in losses of thrust on the 4et vanes depending upon their defleý;tion and
taking As their mean value (Xp - Is the average loss of thrust on the

Jet vanes). in exactly the same way the thru-t Itself Is derermined by neglectinr
the-se cnan es, taking Into *ccoint only t.he eltitude perfcrrance of the engine.I

With the necessity of determining the angle o' deviation of' program control
surfaces it Is possible to use the expression

Finally, the simplest sýsten of equatimos of motion is the system fi•.Yj:

4s 1

obtained from the system of equations (it.2), if we disregard the angle of attaick

a and member ýg.

Since the system of equotions (14.30) is used for rough calculations necessary
mainly in the designing of the rocket, many parameters and initial date can be
not completely accurate. Therefore, here there is no sens. in considering the
accretion of thrust after switching on the engine. Flow rate per second end loss
of thrust on Jet vanes are taken on the entire powered section to be constant.
A change in c x depending upon altitude is also possible not to consider. Owing

to these peculiarities the step of integration can be selected sufficiently large,
i.e., up to 4-5 s, and sometimes more.

2 28. Calculation of the Coasting TraJectory

In § 15 it was shown that the main factors affecting coincidence of calculation
range with the actual are perfection of the control system and accuracy of
calculation of the section of free flight. During ideal operation of the range
control system any error in the calculation of free flight section will leai to
a divergence between the calculation of sections of "ree flight with firing at
the outlined target or with compilation of tables o' firing Is absolutely necessary.
Such accuracy is satisfied by the system of equations (16.22):
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-rn-- -- yd +

+ all((x-- t')+0- an (Y - Y'

+ G.ad(z- ') + bav. + &AV'

on go2- a

- n so -U, SRl"as a

43 -a 4CO si*o%

-ý an sin 2q, M, T,4

4M I(SWi'YF +C0S2V9,Sfaq)
- a USCOu9,mes, 594

~ aaY coo #,scos

All these values for the given trajectory are constant snd their values are
calculated beforehand; c7 Is determined from tables of aerodynamic coefficients

depending upon the M4 number (or value w) and altitude. Dependence c~ on the

angle of attack is not considered, since it is assumed the flight occurs without
an angle of' attack.

Values and gre determined from tables or standard atmosphere depending

* upon the altitude.

Components of the acceleration of gravity g anid g. -re caLculited by the
formulas
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For the determination of r and p!I these formulas qr,- used

l-(x-- x) 2 +(y-y,) 2+(z- z,)?.
s ,(x -+r)cosVcos-(Y-Y,) in ,r-(z - z,)cos r sin

Altitude -h can be defined by formula

0-•• (1- asnln•pJ.

'For the calculation of angles determining the direction o!" the tangent to
the trajectory and the magnitude of velocity v we use the following relations:

VS

Cos .Cosa

Constants entering into the equation of motion have the values

-6 378 245 A.

JA- 3.9862.- 1014 rc-

Ia-26.243•1024 2

Calculation is produced by-means of numerical integration of equations of
motion by the Adams method. Initial conditions for integration are parameters ocf
the end of the powered-flight trajectory.

The examined system of equations of motion for free-flight section (2-3.i) is
not obligatory for all ranges. For ranges not exceeding OO km it is possible to
use equations given in § 15 in which the flatness of earth is not considered:

- =-~~1-$,x+ a,,x+ a ,(R±Y)+

+ AuZ + b, 2V, + bva.
!! - kca ! •, --Y-•F kc V (R + y) + 02,z+

dt PO r

+ a= ( + y) + a2z + b21,, + b23.V.
do, . F. V__ .UX

+ 62( +A + 0Z+b31v,+bi-,.

The remaining equations and relations remain as before, with the exception of
expressions for g,, g.), r and h, instead of which one should use formulas

r- V(R+yP+zx+z'.
A- -- R.
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If the flatness of eartn is not considered, then it is recommended to use
the calculations aonly as long as drag has an influence on the motion. The
subsequent part of the free-flight section should be 2alculated by formulas of
elliptic theory obtained in Chapter V. With this it is necessary to use the
transition from the absolute motion to the relative, as was shown in § 17 and
§ 20. The sequence of calculations is the followinw.

Having initial data x . y , Z , H y we turn to the auxiliary system
H H H H! H H

of coordinates:

t=(**cosit- z'6Sina)Sin4,+(R+y.)COST'.
Y, a= X, sia 't+ 'cg.C ft~.

z.-(x~cos - z~sin$)cosq,+(R+y.jsiaqv,.

We determine the eomponents of absolute velcoity in this euxillary system:

;.a -. +Zsin. c oSo, + Yf.. 9

We find spheric coordinates of the initial point (longitude is read off from
thc point of launch)

Za a X6i'

We determine the components of absolute velocity about the meridian, parallel
and radius of Earth:

.COS)• " • , . + k..,a Q.1 •o,, . + i . CO P..
a * -tSIR + COJL,
(X Cos A~+ j. $fn 1.) csq 4r. +~ fin ',

We calculate the absolute azimuth

'a.

angle of inclination of the tangent to the absolute trajectory

-7-
V* Cos st

and quantity of absolute velocity

V6

We further determine the auxiliary parameter 71;H

V., - 7 -JA4.62 firA J
we calculate the central angle in absolute motion

1
g- 2 ,+,eo.-..'

calculate the auxiliary quantity x' from the relationH

Cos x' = _-____--__.__o

8)
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wher pnd find thetieoflgtLth Cm-

I _We find hse geographic coordinates of the end point (lying at one altitude
with the initial point r. - r.)

and determine the azimuth at the end point

Then obtain the components speed at the end point:

w eCos 0 *r

.-- Cos 1t ,,.- esp. Cosy,,.

and find the azimuth and angle of inclination of the tangent at the end point in
relative motionT

.1!9P

also magnitude of relative speed

To determine only the full range the formulas of elliptic theory can be used
up to the point of impact on earth, since atmospheric drag on the descending
phase of the trajectory for distances over 600-800 km does not have considerable
influence on the range.

With the necessity, to determine, besides range, other elements of the tra-jectory on the fall section in the atmosphere, for example, a~celeration, speed.
etc., it follows, starting from moment t', again to use the system of equations

In this case after calculation of the section of fall in the atmosphere with
initial datav, 4p %,m, A k,.A=6, by equations (28.1), we again introduce an

auxiliary system of coordinates in which we determine coordinates of the point of
impact by the formulas

1 4.'. -(s~ca.*p - as~dn,#)sMaqp +(R+ yC)cos Vp.

4, P~ otgpiS Z~CUU*P.C"PPF+V)JV
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Then we find geographic cocrdinates of the point impact

XC

4 C"(IC- )

ZC

after which there is determined the azimuth of direction on the point of Impact

and full flying range

si 9,€ Lncaa- y saa€ L= R 4•

Lateral deviation from the sighting planý, can be defined by formulas

sin• ;C= in PC i a (,to- •

zc - RIC.

In the case o-' the calculation of a trejectory for the purpose of determination
of mean flying characteristics, it is possibl- to use the system of equations
(15.12):

dwy VV,=2

"-Zb 73-€ 1?. .,- -- )(R ,.(.)

4,

Speed and angle e are determined by the formula

Altitude above the surface of Earth can be found by the formula

h-= ,+Ah.

where is determined depending upon coordinate x. It is possible also to

calculate the altitude as

, Y~(R+y' 2+zx--

During calculations of trajectories for a very great distance it is more
convenient to use the system of equations of motion in polar coordinates (15.iG):

(28.3)
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Introducing designations uwmr,. - doubled areal velocity of the rocket with

respect to the center of earth and ImR1 - distance along the arc of earth's
surface, it is easy to obtain from the system of equations (28.3) the system

ke h, 4 vs.

r j

The speed and angle of inclination of the tangent are determined from the
relationships

Sr S

The values-L. And g necessary for calculation are taken from tables depending

upon the altitude. It is usefully also to have the table of values of the quantity

2 4r. also dependent on altitude.

S29. Use of Electronic Computers for Check Calculations

Not touching upon the technology of the programming of problems for cerryinz
out ballistic calculations, we very briefly will dwell on certain distinctions
between manual and machine calculation.

This, first of all, is the method of assignment of different variables, which
with hand calculation are assigned either graphs (for example, aerodynamic end
centering characteristics) or tables (for example, parameters of the atmosphere)
allowing linear iiterpolation. In principle it is possible in machine calculation
to use tables which permit managing only by linear interpolation. Powever, such
tables are bulky, occupy impermissibly large capacity in the operative storage
of the machine, or, being placed in devices of external memory, rem.ire freauent
appeals to these devices, and thereby sharply reduce the rate of work leading to
unproductive expenditures of machine time. Furthermcre, the preparation and input
of these data into the machine also requires additional rather long time.

The most widespread, therefore, is the method of assignment of similar
dependenses with help of polynomials. An approximated curve is divided into
series of sections, each of which can be represented in the form of a polynomial
(usually third degree) with required accuracy. Neighboring sections should give
with equal arguments equal values of the function and its first derivative.

The most convenient form of the recording of such form of polynomials is:

where
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y and Y2 are v&luee of the approximated function on ends of the sections (i.e.,

when x =x, and x Y, and 14re derivatives al. the same points.

If for some reasonr it is impossible to calculate directly the values of
derivatives on the ends, then it is possible to use the following method of their
determination, We divide the section into three equal parts and take from the
graph values yl, y2 , y3 , and Y4 corresponding to x1 , x2 , x., and x 4 . Values of

deriz/atives() and with the condition of passaae Of the pclynomial through

all four poInts, are determined by the formulas

MhI 2

Here

gum

It i• possible to divide the section into four parts, as was shown on Fig. 29.1.

Fiom the condition of passage of the polynomial through the designated four
points, it is possible to write for derivatives on ends of expression

The proces -of the selection of coefficients and partition on the necessary
quantity of sections can also be assigned to the machine. This operation is
fulfilled beforý--,nd, and with the basic calculation of the trajectory there are
used sections and coefficients already selected by the described method.

In certain cases it is more convenient to use not the approximating polynomials
but additional differential equations integrable in parallel with the basic
system ef equations. For example, instead of determining the pressure and density
of the atmosphere from tables or with the help of expressions (4.3) and (4.4)
containing the integrals, it is possible to use differential equation (4.2), which

is reduced to the form

The derivative dr/dt, using relationship (1.2), can
A be replaced by the expression

Fig. 29.1.

I 4I~fI~}2.~ ~ [4-



so that I (29.2)

. •This equation should be joined to the system of differential equations of motion.
An increase in the order of the system does not cause fundamental difficulties
during Its numerical integration, but it is Gimpler to calculate the right side
of equation (29.2) than to find value p with the help of approximating polynuniials
or frma expression (4.3). Function T - T(h) entering into equation (29.2) consistsof several linear sections, and therefore is also very simply calculated. Air4 .. density p Is found with help of expression

However, density in equations of motion is present only in the expression for
impact pressure

i .(29.3)

which can be transformed in the following way:

where M is the Mach number and a, the speed of sound in air, which is expressedS~by the formula

k - i.405 is the ratio of heat capacities. Thus,

-I- 'pA. (2q.4)

Since p and M are used in WLher members of equations of motion, expression (29.4)

is more preferable for impact pressure than (29.3).

For integration of equations of motion it is convenient to use the method of
SRunge-Kutta. Selection of the pitch of integration depends on problems formulated
beforr the calculation. If only final results are important then it is better to
use the automatic selection of pitch, assi~ning the required accuracy of calculation.
If, however, it is required to obtain all element.t of the trajectory with respect
to time of flight, then it is better to conduct :integration with the assigned con-
stant pitch, which should not be greater than that permissible from conditions
of the assigned accuracy of the calculation.

It is recommended to integrate in parallel the apparent acceleration of the
rocket (load factor multiplied by g,) in the projection on the longitudinal axis,
since the corresponding integral (a parent speed) in many cases is the tuning
value for the automatic range control machine.'

Machine calculation is very convenient in the solution of boundary value
problems. Most frequently encountered is the problem by definition of the azimuth
of sighting and moment of turning off of the engine (i.e., initial conditions),
providing a hit at tha point of the earth's surface eith the assigned coordinates.
rectangular or, more frequently, geographic. Of the number of possible methods

'Concerning the flight range control see § 36 and § 37 of part three.
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of the solution of the boundary value problems we will explain only one, founded,
essentially, on the successive approximation to the assigned boundary conditions
with the help of the assumption of the linear dependence between assigned coordinates
and initial conditions.

Let us designate c0 and X0 - the assigned latitude and longitude of the point
of aiming; t0 and P0 - unknown initial conditions, i.e., time of turning off of
the engine and azimuth of the direction of aiming. In the beginning calculation
is conducted of a certain reference trajectory at some values t = T and ' =
and corresponding values " and 7 are determined; then there are computed two
trajectories, each of which differs from the reference because of some deviation,
At or A,. Ratios of obtained deviations A1 and AX to deviations At or A* are
taken for the corresponding derivatives

Further, assuming the dependence between assigned coordinates and initial date to

be linear in the whole interval, we determine what should be the corrections of

.At and A* for Y and T in order to fall into the assigned point. For this we

solve the system from two equations:

W.,= -= la At A1

Let us take new values t1 = t + AtI and = + A*, and again calculate the
trajectory and obtain coordinates of the point of impact 1 and X . Again taking
this obtained trajectory as a reference, the whole cycle of calculations is
repeated. The process continues until we obtain coordinates of' the point of
impact with the assigned accuracy.

§ 30. Compilation of Preliminary Tables of Firing

Preliminary tables of firing are compiled by calculation data and contain
basic values by which setting of instruments controlling distance is produced.
Preliminary tables of firing are used with the conducting of experimental firing
from the assigned point of launch accordina to the assigned direction. Therefore,
before we proceed to their composition, it is necessary to know the latitude of
the point of launch and azimutn of firing. Regarding the method of compilation of
these tables, it consists in the following.

From the most exact equations of motion which can be used for calculation of
the trajectory in accordance with the presence of initial data calculation is
produced of the powered-flight trajectory.

For the calculation of sections of free flight there is selected a series of
Smoments of the turning off of the engine. The points of turning off are character---

ized by elements of the trajectory tKi, xKi, YKV vKi' e., where i = 1, 2, ... ,

n is from the quantity of selected reference points.

Calculations are made for n free sections and for each of them the following
are determined: L - full range; Ci - setting of the instrument controlling the

range (turning off the engine), and other interesting characteristics of the
trajectory, for example, hBi - maximum altitude of the trajectory; vBi - speed at

peak of the trajectory; vci - speed at point of collision; Ti -- full time of

flight, and so forth. Taken as the basic parameter depending upon which other
-values contained In tables of firing will be determined is the range L or setting
of instrument C.
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With the help of one of common methods of Interpolation basic elements of

the trajectory for any intermediate values of L or C are determined. For example.
If there Is used the Lagrange Interpolation normult

e o at) y . - ales o. o(s - JW, t-x(NA.- XI... V4-4) +
PL ..-- JO,)z--.00; ... x4--)

--n Ixl- •d(xit-- NJ) ... (--, *

than into it are substituted:

instad f Yi Yi ... Yn-vauesof some element obtained as ,result of

the calculation of n trajectories;

instead of x,, x., *.., Xn - values of L (or C) obtained as a result of tht

calnulation .f n trajectories;

instead of x - the intermediate v~lues of L (or C) for which it is desirable
to determine other elements of the trajectory contained in the preliminary
tables of firing.

It ir not recommended to take number of rt terence points n too large (asove
n - 3-4). Even if there is calculated a great number of reference trajectories.
then for interpolation one should use not all the obtained date but only data
from three-four reference trajectories nearest to that for which interpolation Is
produced.

In the described method of coinpilation of preliminary tables of firing which
are usually used during manual calculation, the selective reference points are,
in general, arbitrary, and it is necessary only to see to it that they more or
less evenly cover the whole assigned range of distances.

In the use of electronic computers there is the possibility of solving severpl
boundary problems from a number of assumed purposes and determining all the
necessary adjusting data for instruments and also flight paths precisely for t.hese
purposes.

It is useful to supply preliminary tables of firing by tables of corrections,
which allow considering the influence of small changes of design characteristics
of the rocket and sighting dLta on the flight path of the rocket, in particular.
on coordinates of the point of impact. Methods of calculation of such corrections
are examined in the next chapter.
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C H A P T E H VIII

FORMULATION OF THE PROBLEM

§ 31. Certain Information From the Probability Theory

As is known, if quantity u is a linear function of independent random
quantities x, y, ... , t

u-ax-+by+-... +kt. (31.1)

where these values have normal distribution with mean values x, y .... t and
standard deviations ax,_ay, ... , at, then quantity u also has normal distribution
with the mean value of u equal to

8-ax+by+ ... +k1

and with standard deviation cu equal to

am 5 (40ax)'+(buy)2 + ... +(kuotp. (31.2)

In the theory of firing dispersion frequently is characterized by the
probable (mean) deviation B, connected with the standard deviation by relationship

= 0.6745a. For the maximum deviation A there is usually taken su'ch a value
that the probability p of obtaining greater (in absolute value) deviations is
quite small. This value is also connected by certain constants proportionality
factor with the standard deviation a. Thus when A = 4P = 2.698a t 2.7o the
probability p is equal to 0.007, and when A = 30 p = 0.003. Thus the maximum
deviation is a conditional concept, but rather convenient for practical purposes
if one were to thoroughly remember its meaning. For probable and maximum deviation
of random variable u formulas being the result of formula (31.2) are correct:

and-huV(a&xA9+(bW8y),+ ... +(*RBt.
and_____________ _

AN,- l(aAx)+ (Ayb s ... +(IA0i3,

It follows from this that if u is the common function u = f(x, y, ... , t) of
independent values x, y, ... , t. obeying the normal law of distribution, and the
maximum deviations Ax, Ay, ... A At are so small that partial derivatives
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ca•n be considereJ coristaqt when

* then the mean value u can be determined by the formula

Swhere xO. YOt . . . . t0 ari, certain fixed (nominal) values or quantities x, y, ... ,

t, quite close to the mean vAlues these quantitits . Y ...... U (su that
- xf < ilx and so for-ti, and u.o

The root-mean-square, .mean and maximum devietIon of' qu•atity u are expressed
by the following formulest

Be V air -+ l- By OY(31.15)

In formulas (31.3)-(31.6) there is a difference between the systematic
deviations and standard, mean and maximum deviations. If systematic deviations
are added, as formula (31.3) shows, according to the law

(in c.milar cases will say that quantities are added algebraically), then the
standard, mean and maximum deviations are added according to the law expressed by
formulas (31.4)-(31.6). We will say that such values are added geometrically.
Let us note that separate probable deviations are added algebraically:

-

§ 32. Formulation of the Proclem of Dispersion

During firing by long-range rockets there appear both accidentrl and systematic
deviations. Consequently, actual trajectories of the rockets differ from the
calculation and for every rocket released differ in their own way.

What are the causes of the deviation of the trajectory of the rocket from
the calculasion?

First, a whole series of constants entering into the equation motion actually
has values distinguished from those which are accepted during calculation. The
most important of these values are the following: initial weight of the rocket,
nominal thrust of the engine on earth determined by the specific thrust and
flo': rate per second, adjusting dat& of control instruments, parameters of the
atmosphere on earth, and so forth.

Secondly, the actual laws of the change in the number of quantities from
law accepted during calculation. Such laws are the accretions of thrust and flow
rate per second with the switching on of the engine and decrease in these
quantities with the turning off, changes of flow rate per second in flight. changes
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of aerodynamic coefficients, changes of the angle o:r hI( ination of the axis of the
rocket, changes of parameters of the atmosphere on ql'- ide and so forth.

Thirdly, a number of factors, in general, is not considered in eouations of
motion. Examples can serve as perturbing forces and mo'cents appearing as a result
of geometric asymmetry of the rocket, +hc presence of angles of attack during
free flight of the rocket, etc.

Such a division is to certain degree conditional. For example, by methods
of the theory of random processes (random functions) practically all possible
forms of the law of change of any quantity can be represented with a sufficient
degree of accuracy in the form of a family, depending on several independent
accidental parameters. These parameters on a level with constants of the first
group determine the flight of the rocket, and the influence of both those and
others can be investigated by identical methods.

Regarding the third group of factors, it depends on the form of equations
of motion utilized for calculation of the trajectory. In principle it is possible
to write the equation of motion considering any factors whose physical manifestation
is quite well-known, but these equations, in view of their cumbersomeness, by
far cannot always be used for numerical calculation of the trajectory even on
electronic computers. Therefore, for an appraisal of the influence of such factors
on the flight and dispersion of rockets there have to be developed special methods.
Usually problem is reduced to proof of the possibility to disregard these factors.

All quantities causing dispersion, be it deviations of constants from their
nominal values or deviations of variables from nominal laws of their change, or
causes which are not considered in equations of motion, will be called perturbing
factors. Perturbing factors can be both systematic and accidental. Certain

ha-cts, for example, deviations of aerodynamic coefficients from their computed
values, have chiefly a systematic character, while others, for example, deviations
in specific thrust of the engine, are chiefly an accidental nature.

In deriving general equations of motion for the solution of problems of
ballistics, we disregarded oscillations of the rocket with respect to the center
of gravity, since they affect little the motion of the center of gravity. In the
same place it was noted that the law of change of the angle of inclination of the
tangent affects little the flying range.

Therefore, during the investigation of dispersion we will consider the angle
of inclination of the tangent the assigned function and will assume as a basis
only the first, third and fourth equations of the system (14.25), where during the
calculations we will disregard the member with gx" For the section of free flight

we will use formulas of the elliptic theory. The influence of the rotation of
earth will be disregarded since it leads only to systematic deviations from the
trajectory, calculated neglecting this rotation, and only for very large distances
is it necessary to be considered with the dependence of this deviation on the form
of the perturued trajectory.

Thus, the investigation of motion of the rocket consists of the following
basic stages:

i. Preparation of initial data: determination of basic design data of the
rocket, engine and control system, sxposure of perturbing factors and an appraisal
of their random characteristics (mean values and standard deviations).

2. Ballistic calculation, having as its purpose to determine with a certain
degree of accuracy the average motion of the rocket with about nominal values of
all the design parameters, neglecting perturbing factors and oscillations of the
rocket.

3. Calculation of stability of yawing motion as a result of which there is
determined the influence on the flight of the rocket of those perturbing factors
which cannot be introduced into the equations of motion for ballistic calculation
and also of oscillations of the rocket about the center of gravity.
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With calculation of the stability of yawing motion examined jointly are equa-
tions for angles of the direction of the tangent (8 and a), eouations of the
motion about the center of gravity (for v. k, 1), and equations of control (for
angles of deviation of effectors), Values of speed and coordinates of the rocket
are taken from the ballistic calculation, since their deviation affect little the
investigated values. When necessary deviations of speed and coordinates can be
examined as perturbing factors.

4. Calculation of stability in longitudinal motion or calculation of range
dispersion, the assignment of which is to determine the influence on flight of
the ro'ket of such perturbirng factors which can be clearly introduced into equations
of motion, not changing the form of the latter. With this there are examined
jointly equations of motion of the center of gravity of the rocket (for speed and
coordinates), and the direction of tangent (angles 6 and o) and other angulor
values in which the necessity can be met are taken from the ballistic calculation,
since the influence of deviations of these values on speed and the coordinates is
small. If this is necessary, deviations in the direction of the tangent are
introduced as perturbing factors. Of course the scheme of the calculation of
range dispersion can and, in certain cases. should be complicated. But since the
formulas only become somewhat bulkier, and the methods of calculation of dispersion
in principle are not changed, then we will limit ourselves to this simplest scheme.

The main problem will subsequently be the analysis of questions connected with
the calculation of range dispersion. We will start from the determination of the
influence of small perturbing factors on the trajectory of the rocket and only
at the end will establish the connection between average characteristics of
dispersion of these factors and appropriate characteristics of the dispfrsion of
rockets. Since systematic and probable deviations are added algebraically, we
will not make a distinction between them until the question is about average
characteristics cf dispersion. This means that the obtained results can be
applied not only to the investigation of dispersion but also to determination of
the influence of small changes of design parameters of the rocket on its flying
characteristics.
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CHAPTER IX

INFLUENCE OF SMALL PERTURBING FACTORS ON THE TRAJE'TO.RY OF A ROCKE-T.
CALCULATION GF DISPERSION

§ 33. Deviations on the Powered Section cf the Trajectory

As a concrete example we will :'ve the general method for investigation of
the Influence of small perturblng factors clearly entering Into equations cf mction
on the trajectory of the i-ocket. Equations of motion for the powered section will
be taken in the form

4, P-X,,-x $

.• ,simfO. (55.1)

where according tc (10.16), (6.15), (5.23) and (3.3) when n const
P= u'--$. (55.2)

X- 4. ,. (33.3)

Quantities m, u', cQ, up, Sp will be considered random, i.e., variable from rocket
to rocket, but constant during the period of the powered section. We will assume,

as earlier, that i and u' do not depend on each other, that the density pp of the
gas flow Incident on the control surface is proportional to the flow rate per
second ;, that the coefficient of drag of control surface cQ is inversely prCportional

to the speed up of flew incident en the control surface (law c = const/M IS fully
acceptable for small changes of the M number of the gas flow), and finally that
quantity up is directly proportional to the fictitous exit velocity u'. Then
expression (33.3) for the drag of jet vanes can be rewritten in the form

where k Is a certain constant, and the thrust after subtracting losses on the
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control surfaces can be represented by the expressien

where

is the specific thrust of the engine in a vacuum taking into aocount losses on
control surfaces, which dl.tingulshed only by a constants factor from the fictitious
exit velocity ut; G = is the weight of the flow rate pcr zcccnd ot luel.

In order to cor.sider possible deviations cf the coefficient of drag c on the
computed value, let us intrQduce into formula (33.4), as is accepted in ballistics,
the form factor i:

X ==4 -i-- £ S.

Finally, the expression for mass m will be written in such a form:

, .o

Equations of motion take the form

Go -- sinO.

A--ty 1. (33.6)

W - , cos.

Let us investigate, in particular, the influence on the trajectory of small
deviations of the following parameters with which will assume the designations Xk:
X Go - initial weight; X2 = G - flow rate per second; X P - specific

ipoS

thrust; X• " - coefficient in the expression for drag; X5 - SaPo - coefficient
of altitude performance.

Coefficient X4 can change both owing to a change in the form factor i and
due to the air density an earth po. Coefficient ), is considered the possible change

5
in air pressure on earth and also the change in altitude performance of the engine.

Finally, in order to consider possible deviations in the form of the trajectory
from the calculation, we will consider the angle of inclination of the tangent 9
variable according to the law

o • O,.,.+ ),, + .,t.(•3 .7)

The member X constitutes a constant deviation of the angle e from the
calculation ePacm' and the member X•t is a uniform departure of this angle from the

calculation law of change. Nominal values of parameters X6 and X7 are equal to zero.

As an exercise the reader is offered to examine the system of equations which
will be obtained if the system (33.1) supplements the equation
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~I

serving for the determination of 6 jointly with v, x and y.

Expression (53.7) should be replaced by expressioll

where X6 and X7 have a former meaning but determine the error in the assignment

of the program of the pitch angle, and tI is the time of the beginning of the

program turn. Possible deviations from the face value of the functionr -- LA

can be disregarded. For an expanded system it is possible to make calculations
fully analogous to those which will be made in this and the following paragraphs.

The general form of equations of motion (33.6) with the accepted designations
Is the following:

- (33.8)

(1.

where

kS A4 (3359)

Under initial conditions

gi=D. y-=O. X'=O (f=O) (33.10)

the solution of system (33.8) has the form

•- -- t,(. 4. 4 ..-.. jl)-

,-V = l•. It. .... 4).

These expressions show that speed and coordinates of the center of gravity of
the rocket depend not only on the time of flight t but also on values of parameters
L,2 X2f ... , X., Let us investigate this dependence. At small changes of time t

and parameters Xk one can assume that
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ad r

i.e., the dependence v, y and x on A•k will be determined Ps only partial

rV I

derivatives - will be known.

Let us Introduce the designations:

'X.s

Ay, 9 •LAI, _. 1(33.13)

All these partial derivatives should be computed at nominal values of parameters
Of Xk and at values v, x, y, 6 taken for every value t from the calculated trajec-tory.
In these designation~s the dependences (33.12) take following• form:

Quantities e ,ny, yare determined with Integration of the system (33.8). In

order to obtain a sy3tem of equations to determine values zik interesting to us,
we will differentiate equations of the systen. (33.8) with respect to Xk. Since

k kLnetr sitrdc the deno fntosignatons:rmtrX eedolyv n k ewl

obtain:

All tu ca the oedpartialffderivative hudb ont anth nomina valdes of parh eter

Inteua on aduse designations tofepnene (33.12) tk olwn om
I ~ jt~ 2  Ala J 34i~

x--x,#f+~ Z3,L. j:3 i

whse ilsl cf theor differentiate uationt o the sefinit respect of tx is nce
unde thtionsig of fus nactions onfpa amt X k de only , (3 and 3k e i ll..

def

2Z15 + t + (33-15)

4Li +

This system of linear differential equations with definite assumptions (existence
and continuity of partial derivatives an I,' j3 1. 2, 3, k 1, 2, T.,7)
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can serve to determine quantities zl. Strl.t .rc: n

found in the general theory cf sys'ema of differential equations.

Since no changes of parameters X can influence the initial values (33,iC) of

functions v, y, x the initial cont'itions for integration cf the system (53.1-)
will be z 0 when t - 0.

In order to find evident expresstons for partial derfvat~x"•s and
Swe will differentiate expression (33.q• for functions f. with re.pect Lo v, v and

Il
k, and for the simplification of results of differentiatin we will use the

foru•ulas (in which M3 and R denote the ness and radius ol eart.h):
-- p

I f r-- +.

Let us also take into account that the coefficienit of" drag cx depends cn the Y.number and on altitude y and the absolute air temperature T only on alt-Itude.

After rather long, but not complicated, computationa there can be obtained
the following expressions:

I 4r d 2 (33.17)

• ~,.

Su •= cos 6•

cae. (.2)
4/ -7. (3.2)

-cooe. (33.26)

• umma-m-- (33.27)



o= Vcos 1. (33.28)
-= tcoSe. (33.29)

(33.30)
-- vsln . (33.31)

p,4 =--wtS~nO. (33.32)

Values of quantities

Mc 'sic, g •- A.-r 1" ?

are calculated with the help of tables or graphs of aerodynamic coefficients of
the given rocket and tables of the standard atmosphere [4]. Remaining quantities
necessary for calculation of coefficients (33.16) to (33.32) are taken from
ballistic calculation.

After determination of all the necessary coefficients of quantity zik systems

(33.15) are calculated by means of numerical integration. When these values are
found, determination of the influence of small deviations of parameters Xk on a
powered-flight trajectory is reduced to the use of formulas (33.14).

§ 34. Deviations of the Point of Turning Off of the Engine

Applying equation (33.14) to the point of turning off of the engine, we will
obtain the connection between deviations of the time of turning off of the engine,
speed and coordina'tes at the time of the turning off and the deviations of
parameters Xk

A VI ---- J At, + Z I, it .
A Y 9, t + Z2&%)&. (34.1)

AX- i, At, + X z A). .

But these three formulas for the determination of four deviations At1 , Av1,
Ay, and Ax1 are insufficient. The inadequate relationship can be obtained proceeding
from the equation cf operation of the instrument controlling the turning off of
the engine. Let us consider the following three methods of the turning off of
the engine:

1) turning off at an assigned moment of time, considering from the moment
of launch;

2) turning off with achievement by the rocket of a set value of speed;

3) turning off from an integrator of G-forces.

With the turning off in time the deviation of speed and coordinates at thepoint of turning off of the engine is determined by formulas (34.1), in which
instead of At1 it is necessary to insert the instrumental error At of the timing14
mechanism sending the command for the turning off:

Awl-; At..

Ay.-. , At.+X . aZ(. 34.2)

Air, .At. + A
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In the case of the turning off with speed the deviatiun of speed at the time
of turning off from the assigned value constitutes an instrumental error AV of
the instrument measuring speed:

The prime will denote quantities pertaining to the turning off of the engine
with speed.

By formulas (34.1) we find the deviations of remaining quantities charac-
terizing the point of turning off of the engine:

or * =A

A;= LAV + •ZU A. ( 3x

PgeVe U

where there is desig~nated AY.,- 4'av.+ Z Ax(314.3)

Before we derive a formula for deviations at the point of turning of f of the
engine with a turning off from the integrator, let us examine the somewhat

simplified theory of this instrument.

&i• Let us consider the material particleconnected with the body of the rocket.
BDisregarding rotation of the rocket about thee n i t urning off center of gravity, we will consider that the

•/ acceleration of this material particle is

c. equal to the acceleration of the center of
gravity of the rocket. But the acceleration
of the examined point is created by two forces:
gravity m*g (m* is the mass of the point)
and the force R having an effect. on the point
from the side of the rocket (Fig. 34.1).

"Let us write the equation of motion of
* the point in projection on a certain direction

a4 forming'the angle a* with the tangent to the
trajectory of center of the gravity )f the
rocket and the angle q*, equal to

Fig. 34.1.
a+e+•. (34.5)
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with the horizon (as the horizon we take the Ox axis, and we consider the direction
of gravity parallel to the Oy axis). This eqiiatl'n has the form

me (Cos e+ sino*) = R,. -- s- sin q (34.6)

where v cos a* is the projection uf the tangent acceleration ot" the center or gravity

of the rocket on the examined direction; v, sin a4- projection of the normal
acceleration of the center of gravity of th-ý rocket on this direction; P•. - projec-
tion of force R on the same direction; -m*r sin i* - projection of gravity on
the same direction. Such a material partiule is a senoing device of every integrator.

Force t*. causes some physical effect whose action is integrated during the
period of the entire powered section. For example, in one of the constructions
of the integrator, the gyroscope, whose center of masses does not coincide with
the center of suspension (gyroscopic pendulum), precesses under the action of force
Rq* with an angular velocity, proportional to this force. The measured value is
the angle of precession.

Thus the integrator produces a magnitude proportional to the integral

a

f R,dt.

or, since mass m* remains constant, the integral

9

Oqpdt (34.7)

This integral will be called apparent speed and the integrand quantity

A0,. . p (34.8)
a ;r=- -

the apparent acceleration. Apparont acceleration is nothing else but a G-force
in the direction 9* multiplied by go. The direction determined by angle q*, along
which occurs integration of the G-force is called the direction of sensitivity
of the integrator.

Substituting R•. from equation (34.6) into formula (34.7), we will obtain

v,- f~ccOSe+v~sins'+gsinP*)dt-
0 I I * U

-f icosd.,+ f ivsioa't+ f gsI," df.

We integrate the first component by parts:

1;CO cos ed1, cos 6' [ f d(cesd6')

Since v 0 when t = 0, then

f;cosed:-~cose.+ u iv sin ed6

163



and

a a

u, V Cos+f v b+ 'sin o df+ f gsin dt.
0 0

But on the basis of equality (34.5)

9'= 6 +E*...

therefore

a a

,=VCos e-+ f oý'sin"ed+ gSin q•d. (34.9)
* 0

in particular, when t t

SI am
V*..-VCO, O+ f ,sl.,-,, ftisfa'd.,

* 0

We will limit ourselves now to the consideration of the integrator rigidly
secured on board the rocket so that the direction of sensitivity coincides with
the direction of the longitudinal axis of the rocket. With this

4p. e =a.

O ý V, cosa, + f- gslnqdt+ f sInadt. (34.10)

* 0

The last member is small, since the angular velocity of inclination or the
axis of the rocket j and angle of attack a are small. In the first member cos a1
is close to unity. For an appraisal of the dispersion it is possible to use the

approximate formula

-- ,- 4sin9 dt. (34.11)

or

,- V-Jg sin indt. (34.12 )

With the examined method of the turning off of the engine the current value
of the apparent speed is continuously compared with the assigned value to which the
integrator is tuned. When these two values coincide, the instrument sends a command
for turning off the engine. From formula (34.12) it is clear that deviation of
terminal velocity vi is conditioned by the error Av s with which it is possible to
sustain the assigned value of apparent speed vs5 , the deviation AtI of the time of
operation of the engine and deviation b6 of angle 4 during the period of the whole
powered section. Furthermore, deviation of g is possible owing to the change in
altitude, but it can be disregarded, and therefore

,,- +A ,-,,-,+AV.-" J Isin (9 +8)dt.

We note by double prime values referring to the turning off of the engine with
the help of the integrator. Considering cos 6y = i and sin bp = bq, we will obtain:
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teI
pJ

'a si it - t dt - g 61 ct or

r .

The latit member having aa order of &6tqbw can be disregarded, and In the pern'-1timate

we cain cunsider ein -m constant in the time interval. from t. to t. + t,". Then

#1+lei -0.'1 +} AV.- sm -

Subtractirg hence term by term the equalitj (54.12), we will obtain:

buu a AV. gag6 CO$qdt gf, an q at.

We will designate the second member by 6v

4t,-,=-.I Jr• €o, yp. (Y'.i5) .

Its value can be found if the law of deviation of the axis of the rocket from the
calculation position is )mown. Finally

Substituting into the first of formulas (34.1) the expression (54.14), we
obtain:

whenco

W~ +a(i34115)

Now, Inserting expression (34.15) into formu~lak (34.1), it is easy to find the
deviation of remaining values at the point of the trajectory, where from the
integrator a commnd is fed for turning off the engine:
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Aft* +,±L!!..)aL,.

.".+ 4 ) +

:~o +s W(mit, ,\

+i 49.1 + A.

Let us introduce for brevity these designations

Zal

as gai9 II ,s

+, gtI, Ongp,

Z, +

Then formulas (34.15) and (34.16) will take such form:

•. Ia 9 .;. A, + 20) .: .' *.+g + ...

-r 99+99 mee JV 1IF- 2
A;- , A-. V-)+ Z ev.

Formulas (34.2), (34,3) and (34.ib) give solution to the problem of deviatio'ns
at the point of turning off the engine with different methods of turning off.

3 55. Influence of the Process of Turning Off
the Engine on Dispersion

Let us examine che section of the trajectory oetween the point at which moves
the command for the turning off of the engine and the pc~nt where the process of
turning off is finished. The time interval (ti, t 2 ) between both points will be
selected constant and such that with practically any posslble law of decrease in
thrust the process of turning off will succeed In being zcmpleted during that time.

Let uz make the following assumpt'ons:

1) turning off of tte engine is graouated, i.e,, after the first command
fed at the initial moment t! of the examined interval of time there occurs only a
decrease in the value of the thrust up to a certain interrmedia~e value arid only
after the second command fed inside the examined interval of time does the thrust
start to qrop to zero;
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2j the angle of attack is so small that in equations of motion it can be
disregarded;

3) the change in the angle of inclination of the tangent with time is the
same regardless of the law of drop in thrust;

4) towards the moment of termination of the drop in thrust the drag of the
rocket is negligible.

With these assumptions equations of motion of the rocket take the form

dp P--Xm- _X

V sine. (35.1)

its

where HR is the projection of all forces having an effect on the rocket, except

gravity, on the direction of the axis of the rocket. Designating the moment of
the feeding of the command for complete turning off of the engine by t., we can
write:

or

A dS- (35.2)

The second and third members are the increase in speed owing to all forces
except gravity on sections respectively between the two commands and after the
command for complete turning off. These increases due to the great scattering in
the nature of a drop of thrust are themselves subject to great scattering. For
the section between the two commands (t., tE) this scattering can be minimized with

the proper method of feed of the second command. It is easy to verify that with
our assumptions in such a way there will be the turning off from the integrator.
Actually, on the basis of the first equation (35.1), the second of the above-made
assumptions and formula ( 34 .11)

a W@ +S5neo WdS~tV -==•-+ r ise -~ +gsla's = -•-

and, consequently,

fA dt=4,--A'" (35-3)

In virtue of formula (35.2) and the third assumption

ý&.V-Aw + + 46 d) (35.4)
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and this means that the error in speed at time t :,, ,..mnDoLud of the error at time t1
and scattering of integrals 2

If L td and f _idt.Is,
The error in the quantity of the first integral will be minimum when the

command for full turning off is fed by the instrument measuring the magnitude of
this integral. Formula (35.3) shows that such an instrument is precisely the
integrator of axial G-forces.

Turning to the second integral, let us note that after the command for full
turning off of the engine the mass of the rocket m practically has not changed.

a4 .Lf. IJ~I *u to5 I

where the letter I is designated the so-called aftereffect pulse, the total pulse
of all forces (except gravity) having an effect on the rocket after feed of the
command for full turning off of the engine. The main force of these forces is the
thrust created by the engine due to the burning and expiration of fuel components
remaining in the chamber and in fuel manifolds between the chamber and cutoff valves.
Part of the aftereffect pulse is caused also by the delay in operation of the cutoff
valves after feeding command for turning off the engine. Forces Xlp and X do not

play an essential role in the process of the after effect and, according to our
assumptions, turn into zero together with the thrust towards moment t < t 2 , sc that

the examined integral does not depend on the selection of time t 2 provided the

above-mentioned conditions are observed.

The magnitude of scattering of the second integral in flight can in no way
be limited, and as for its decrease one should take care of it on land. Other
things being equal, this scattering will be less the lesser the pulse of the
aftereffect. The latter can be decreased owing to a decrease in thrust towards
the moment of feeding a command for full switching on of the engine (this is the
meaning of the graduated turning off) and also due to a faster drop in the thrust.

Integrating second and third equation (35.1), we find

4+
+j ,a fsin ead.

a.(35.6)
z 8-- z1 -+ f co.O dl.41

and, consequently, 
A

6321mm~ A sin+ 8 Awhdt.A-"Ay,- I ~l~l

S(35.7)
AzuAXI + f AVCos0dt.

Quantities of the order of Av(t 2 - tY) can be disregarded, since the duration

of the process or turning off is small. But then the error in the coordinates
during transition from point ti to point t 2 are not changed:

AY2 AYy". (35.8/
AX2 Ax 3.
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These formulas, together with expression (35. 4), solve the problem of
deviations of the basic ballistic parameters at the end of the section of the
turning off of the engine. In partic'lar, If the ccmnand .fr full turrni.ng .ff is
fed by the integrator, then on the basis of equations (35.3) and (35.5)

A, -= AV, + A (VM -- '") +- A ( ALM (35.9)

Formulas (35.4) and (35.9) will be recorded briefly thus:

uV+AV,- + Ag. (35.10)

where

A~ a,•A + &(35.11)
+!

in general, and

AVISus A(9,(35.12)

with turning off from the integrator.

Finally, let us note that everything discussed remains in force if for the
moment tI we take not the moment of feeding the command for a decrease in thrust,

but the moment t of the feed of the command for full turning off of the engine.

As t it will be necessary to take the moment separated by the constant interval

of time from t,, and we will obtain

Am -AID. + Ara, (55.-13)

where

(35.1 )

A y s - & y . . ( 3 5 .1 5 )

Formulas (35.i3)-(35.15) should be used when the second command moves
independently of the first.

S36. Range Dispersion

In examining the range dispersion we will limit ourselves to the case when
full turning off of the engine is finished during negligible drag. Then the greater
part of the section of free flight will lie in practically a vacuum, and for the
calculation of dispersion it is possible to use formulas of the elliptic theory.
Dispersion from the influence of atmosphere at the end of the descending phase of
the trajectory should be investigated specially, and we will not touch upon it.

The influence of deviations v., h. and S. at the initial point of the elliptic

trajectory on the range of free flight is expressed by formulas (19.42) (with
replacement of rH by R + hH):
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f 2

whe re

_ ,,I- #•" :(<6.2)

C itg •-. s the positive root of the quadratic equation

P2RQt+ %2 1.)- (2R +hk)vj IIIf

-v.R V V# -- ,.v= 0. (36.3)

The full flying range L is composed of range I. prior to the initial point

(for which we takc point t 2 ) and range IC of free flight:

L- a+ m. ((36.4)

where

Quantities 5, h5 and S are connected with xH, y. and 6  by relations

Si~R + y, (R + k,) cos 6.

S ,. ==(R+h)siab.I (36.5)

Let us trace how the flying range depends on kinematic quantities vW, Y."

x and & at the initial point of the section of free flight. With a change in
R H

vH there is changed only ICB in formula (36.4). With a change in xH or yH, hH is

changed affecting L and also 5, on which depends both ý and i (in terms of &,j);

finally, with a change in G , changes, and together with it I" Therefore,

(k6.6)

(36.7)

For the calculation of partial derivatives Ty, . and we will
differentiate relations (36.5):

Oymdhco&6- (R+k,)s~n6O4
SdA. si a6 + (R + hj cosb6.
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whence
,," d7.€l + #sM A

Consequently,

_ ,_ c 4 (36.9)

On the basis of the last of formulas (56.5)

m i-" " '' (36.10)

Substituting expressions (36.9) and (16.10) Into formulas (36.7), we will obtain

It &_

WT ,• I-k W1,1. -

Thus the connection between small deviations of speed, coordinates and the
angle of inclination of the tangent in the beginning of the section of free flight
and the deviation of the flying range can be expressed by the formula

AL -%'P.+ AY.+ - -A-X.+ WIDB.- (36.12)

where coefficients with deviations tv, * yA , AxH, &e0 are determined by the formulas

(36.i)-(3.5.), (36.6), (36.8) and (36.11), and the actual deviations by formulas
of the preceding paragraphs.

Let us turn to concrete methods of the turning off of the engine.

With turning off at the fixed moment of tJme, using formulas (34.2), (35.8)
and (35.10), we obtain

A~~•L U "+ v.L~m-.(At+ A z~.+5 )

+ '~( 1~ + YX Z M +

Let us introduce designations:

-+ A , Jun,- O. (36.13)

(36.15)+.Z + t.-- it,. (36.516

where the superscript (n) designates the quantity of primes, i.e., indicates the
method of the turning off.

With these designations

1 +(36.1)
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Let us note that this formula remains ccrrect ir "hf deviation cr the time
of turning off the engine at is caused not by errors cf measurement but by any
other causes.

assing to the turning off' with respect to speed, we use formulas (34.3),

S.....- or, with the again introduced designat~ons,

For the turning off from the Integrator on the basis of formulas (34.18),(35.8) and (35.10) we obtain:

he . ,O•,•, . . .+

.( •m+ # I -$+"'/'m- *; 5 .+AU--

+ A,, 3v+.. A. ;,U

+

In designations (,.13)-(3.i6)

4' swo +i Ax. a W.

Let us analyze formula (36.17)-(36.i9). The first members in the right sides
of these formuilas depend on tAr , AVM, Av~p, i.e., they appear due to instrumental
errors of instruments controlling the turiing off of the engine. They can be

decreased owing• to design improvement of these instruments but eanunot be come letely
sutppressed, since ideally exact instruments do not exist. Members of the forn
(constitute methodical errors of instruments of the turning off of the

am ag

engine. T~.ey appear due to the fact that these instruments control parameters
not connected directly with flying range, -- time, speed or apparent speed. If
certain source, for example the deviation AAk of parameter •k" caused a change in
trajectory, then the flying rang•e will be changed by the nagnatude ,(n)AA even+ k
under the condition that the controlled parameter at the time of the turning off
exactly is equal to the assigned value. Methodical errors can be considerably
lowered and almost even suppressed (see § 37) as a result of the improvement of
the principle of operation of instruments of range control. In particular,
calculations show that the application of the integrator instead of the timing
mechanism reduces methodical errors ten times, and replacement of the integrator by
the turnhing off with respect to true speed additionally gives approximately a
triple reduction in methodical errors.

Also methodical error is the last member in formulas (36.i7)-(36.i9). It
appears because with not one of the examined methods of turning of f is there con-
sidered the influence of the angle of inclination of the tangent on range at the
time of the turning• of f. It can be ellminated by considering this influence with
turning• off of the engine. Nt it is possible to proceed another way, by selecting
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the fore of the trajectory In such a manner that the influence of deviations In
the wngle of inclination on distance Is reduced to zero. With this it would be
insufficient to reduce to zero the last member in formulas (36.17)-(36.19), seeking

fulfillment of the equality ( _ 0. It Is necessary to consider the influence

o. range of not only the final angle of Inclination of the tangent but also of the
cnange 'n the angle of Inclination of the tangent during the period of the entire
controlled flight. For us this influnc-- Is chiran'tprized by members erA6-e4' 7

and in general they should be replaced (in suxm with AL.) by the variation in full
range dependin# upon the variation of function &(t). Thus the problem of the
removal ci range dispersion appearing jue to the deviaticn cf the angle of
inclination of thr tangent is a variational problem.

Let us note that the variation of full range(and in our case, the members

-,O%} +-'-.f•.%] depends on the method of the tarning off of the engine. Consequently,
the solution to the variational problem will also depend on it. These questions
are examined in Chapter XI in greater detail.

Irrespective of the method of turning off, into the range error there is
introduced the quantity •L 1 2 , which is the deviation due to possible scattering
of forces having an effect on the rocket after the command is fed for final turning
off of the engine, i.e., after complete cessation of control. In a number of these
forces there appear, first of all, thrust, then drag, and also forces connected
with the design of the rocKet (for example, if from the rocket parts are rejected,
then the pulse transmitted to these parts is sent to the rocket In the opposite
direction). The methods of the decrease in quantity aM were discussed above
in connection with possibilities of a decrease in Avl.2

1 37. Methods of Decrease in Dispersion

It was established above that range dispersion depends both on instrumental
and methodical errors of the control system, mainly from errors of instruments
turning off the engine. Let us consider in broad terms possible ways of reducingthese errors.

Let us start from integrators of axial G-forces. As was mentioned above, the
methodical error in range, obtained with the turning off from the Integrator, is
three times higher than the error with the maintaining a constant speed of flight
of the rocket during the turning off. In other words, a greater part of the error
in turning off from the integrator appears owing to the deviation of speed at the
time of the turning off. Formula (3 4 .14 shows that a deviation in speed appears
due to the following of three factors: instrumental error of the integrator,
deviation of the axis of the rocket and deviation of the time of turning off, where
in numerical examples it is easy to check that the deviation of the time of turning
off plays in this case a decisive role. This suggests to combine the integrator
with the timing mechanism, i.e., to turn off the engine when a certain function
from the apparent vs and time t

V1iV ('-,. (37.1)

reaches the assigned value

V, $(9 9) (37.2)

Such a procedure is called introduction into the integrator by time
compensation.

For the mean trajectory the apparent speed is uniquely connected with the time
of flight, and, consequently, the mean values of both the apparent speed at the time
of the turning off and of the actual time of the turning off are uniquely determined
by formula (37.2). But for every actual trajectory equality (37.2) will be
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fulfilled with other values of apparent ., and time ..stlnguimhed frcr the mean
by Avl anW At 1 respectively. In virtue of ejuality ('47,2' we havy

correct to mgagitudes of higher order of smallness. Here :v ty the Instrumental

error of the instrument producing the quantity vt.

Hance

Coefficient kj is called the coefficient of compensation of the integrator.
Our problem will be selected by this coefficient in such a way as to reduce as
far as possible the range dispersion. Substituting in formula (34.14) av 8 1 instead

of Av"w we obtain the following connection between the deviation of speed at the

time of the turning off an the deviation of the turning cff:

IUsing the first formula (34.1), we have:

it At, + +O,, + + z-Al

Al- . (At,+

or,,l,.s (3.1) give with thi.

= r"--~~& ,+~.+X l(z. -....

+&A~~ gas &

+•

AI,,,. ~~ ~ ~ MT -A,+•. • ,•(.-

-i.(

+ A% + YJ
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Using these formulas and also relations (35.8)-(35.iC) and (36.12), we obtain
In designations (36.i3)-(36.16)

. fL n. =n~_ t

+ +z - s,•.- "A,.

,.d[ 31, +a •,-i/"+ U1., + A4.

Let us examine the part of the devlation &L induced cnly be rmndom deviations
of parameters X

Let us assume that X are independent values subordinated to the normal law of
distribution with standard deviations jjk. Then on the basis of formula (31.4)

We take for the independent variable

1- +,, U ,-(37.6)

and find the minimum with respect to q of quantity

(37.7)

For this let us note that the derivative

* -- -- (eZi)-- qz,) zu (o3),9-
.- 2 *3

=-2v: 4  J 2qj (*)'A?

turns into zero when

(37.8)

With this the standard deviation in range due to the deviation of only parameters
xk will be minimum, since the second derivative

is positive. From (37.6) and (37.8) we find value .;f k.. which will be callfA
optimum for the time ti:
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This formula determines the optimum coefficient of compensation of integrator
ki as a function of the time ti. From (37.3) we obtain that function vt should
satisfy the partial differential equation

or, (37.10)

The simplest solution of such an equation will be the function

Tim- is sltd dt. (37.11)

Time tO is selected arbitrarily but in such a manner so that it does not exceed
the time of work of the engine with firing at minimum range. If a combination of
the integrator with the timing mechanism producing quantity (37.11) is constructively
difficult to realize, as a function of vt it is possible to take

S- - Alt. (37.12)

For such a function equation (37.10) will be satisfied only during the time of the
turning off equal to t1 . Consequently, at the assigned distance there should be

tuned not only the quantity vt, according to which will be turned oft the engine,

but also quantity k1 , the coefficient of compensation.

This method of the decrease in dispersion can give good results under the
condition that the errors AvSq, AL1 2 , ALe are small, and chiefly if coefficients

and Zik preserve an approximately constant ratio for different parameters of

Xk, expecially for those which give greater values of the product Z4kOXk, i.e.,

greatly affect the range. This can be seen from formula (37.7).

Let us dwell in broad terms on other methods of reducing dispersion with the
use of the integrator. Let us consider the integrator stabilized in space, i.e.,
with a constant inclination of the axis of sensitivity (T* = const). For such
an integrator formula (34.9) will take the form

iV'1'V1C~ q gdt-VaCos(q--O,1 )+sinq" dt.

If the command is fed at the assigned value vsl, then

, COS (q-- Oi)-" sin (i-- )A-,-ssinAt,=. ((37.13)

We substitute here the expression for Av1 from formulas (34.1):

a(,& + IZ ';,,v)Cos (-) +
+- v sin (4V - 81) SO,8 + g, sin S" At, 0.

whence

we sin (go-- 0j) so, + Cos (t. -- e,) 2 Z1,) A4
•I -- 91 Cos 01- O) + es sin 0"

If we substitute this expression for Ati instead of AtM into formula (36.17), then
we obtain, considering expression (36.15):

AL +, As, A-176
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Hence it It clear that with the proper selection of inclination of the axis or
sensitivlty q;* it Is possible to compensate part of the influence of the final
angle of Inclination of the tangent on the flying range, turning in zero the
coefficient with 69V in the obtained expression for AL. Really, equating this

coefficient to zero, we obtain

M6 &,cft %* -O• + , Oaf"

71-A equatlon Is easily solved with 'egpect to tg 4*:

However, as was already discussed at the end of the preceding paragraph,
des~ruction of the member with A6S in the formula for AL does not completely remove

the influence of deviations of the angle or inclination of the tangent on the range
error. A more improved approach to the solution of this problem would be to find
the dependence aL on angle (* and then to determine the value of tpo delivering the
minimim oL, as this was done above with the determination of the optimum coefficient
of compensation.

However, the formulas derived by us are insufficient for solution of the problem
in such a formulation (those readers which managed to advance forward, ariding to

dethe system (33.1) the equation for , are in the best position). It is possible to

go even further: to introduce into integrator, the a"!: of sensitiviV.y of which is
inclined to the horizon at a constant angle ;f (or to the l~ngitudinal axis of the
rocket at the constant angle 7k), the time compensation %Ath coefficient k,, to

examine the dependence aL on two parameters p* (or j*) and k1 , and to find the

minimum of this function of two variables. This will allow reducing dispersion to
even smaller values than with the use of only time compensation or only the setting
of the integrator at an arbitrary angle.

It is possible to try to obtain further improvement by using a double integrator,
which in combination with the timing mechanism can reduce to nought range errors
due to deviations in speed, coordinates and slope of the tangent at the time of the
turning off of the engine. This is carried out by means of proper selection of
the coefficient of compensation and directions of sensitivity with the first and
second integration. Range dispersion will remain only owing to instrumental errors
of tCe first and second integration, the scattering of forces effective after the
command for full turring off of the (nvgine, and the disturbances obtained by the
rocket durinr free flight.

Being distracted with what instrument will turn off the engine, we wil.l cbtain
the equation which such an instrument should operate in order to reduce to a
minimum the methodical errors. We will proceed from equations (35.13), (35.15)
and (36.12), taking for the initial point of free flight the point t 2

AL Av.+ A 4- u+ (A7.14) +

Since t is close to t 2 , one can assume that

The instruirnnt, producing the quantity

AL + L V ++ AL(37 -i 5 )

and sending the coamand to turn off the engine at the time when this quantity
attains the assigned value
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satisfies the mentioned requirement. Actually, from (37.15)

8L dL

+ (X. + A.r.) + J-(I0. + AO.). (37.16)

where AL. is the error in development of the commani; 6v, - deviatiun <,r actual spe(.a

from calculated at the time of the turning oft; AvX - devlatlon oQ mt.-asured speed

from the actual; Ay,, AxA AO Aym AxV, AUM, are analogous quantities rcr coordiiates

and the angle of inclination of the tangent at the time (i the turnJng i, .

Comparing (37.14) and (37.16), we obtain

AL, + + .)- ay.

- .--. ,. (37.17)

It is clear that methodical errors decrease with a similar method of turning off.
In reality small methodical errors remain due to the inaccuracy of expression
(37.14), in which members of second order about Av., AyH, Ax., A&) are rejected.

In formula (37.15) quantity Lf depends on four kinematic parameters: vs y, x
and 0., But the same result can be obtained being limited by measurement of only
two parameters: projections of speed on a direction which form with the calculated
direction of the tangent to the trajectory angle w, determined from the relation

OL

and projections of passed by the rocket, on a direction forming with the horizon
of the point of launch the angle *, where

Really, we will designate the first of these parameters v. and the second
sa. For v, the expression

lwe- 1P COS 0.

is correct. Let us calculate Av, correct to the linear members, noticing that with
a change in the actual direction of the tangent to the trajectory w = -Ae:

AV. -AV Cos W- Vsino = AVcos + V sin S6A.

Hence

I OEAV LAV+ O

- L AV (37.18)

Further,

a- - X Cosi + y s.in

178



consequently,

At,- AX Co.s+ AYSIG*

and

I *L AxL + ffh•A 7

us EL.AX+_Y_ y (17719)

Thus, if the instrument produces the quantity

E +L I OL

and sends a command to turn off the engine at that moment when this quantity reaches
the computed value, then for the moment of feeding of this co~amand the following
-olat~on between actual deviations 6v y and Asy of quantities v and s and errors

of measurements AL1, &V,, and As is correct:

-i AL (A. V. -L- L(s S

Hence we obtain, taking into account formulas (37.i4), (37.18) and (37.19):
U IL ' L As L
-aCs 5JL LAr (37.20)

Thus just as in formula (37.17) there are absent here linear components of methodical
errors induced by deviation of kLinematic parameters at the end of the powered
seccLon. The range error depenas only on errors of measurements and calculation
of quantity L" and on causes effective after feeding the command for turning off
the engine.

§ 38. Lateral Dispersion

Lateral dispersion is determined mainly by the following factors: errors in
aiming in direction, deviations of coordinate z and lateral speed vz from their
computed values, and disturbances having an effect on the free-flight section.

The error in aiming leads to the fact that quantities z and v., and also

any other quantities controlled by the control syotem, for example, the angle of
yaw t, the component of apparent speed in the direction of the z axis, etc., are
measured not in the system of coordinates in which it is necessary. It is clear
that the control system cannot correct this error. This pertains both to a com-
pletely autonomous system and to one which uses ground measurements foe control
over the direction of flight of the rocket. In the second case the control system
can reveal that the rocket was inaccurately oriented before launch and thereforp
began to move not in that plane. By commands from earth this inaccuracy can be
corrected, and the rocket will be brought into the assigned plane. But this
assigned plane itself can have an inaccurate direction and can even be not a plane
but a slightly distorted surface because of errors in installation of ground control
mreans (antennas of radar, direction finderr, etc.). Thus with ground control although
errors of aiming can be, as a rule, decreased, they can not be completely eliminated.
It is natural to consider aese errors as instrumental errors.

The task of control by yawing motion in principle differs from range control
of the flight by the nature of the commands passed. For range control it is required
to determine and exactly maintain only one quantity: the moment of turning off of
the engine. It is true that for the determination of this quantity, as we have seen,
car require quite o lot of measuring means, and the measurements should be conducted
continuously, at least at the end of the powered section. For the control of yawing

•m m m m m mm m m m m m m m m m m m m m m m m l7 m m



motion there are also needed uninterrupted measurements .1 i ,natii parameters, on
which this motion depends. But also commands of control o) yawing motion should
be sent and carried out continuously, so that towards the moment of turning off the
engine, whenever it comes, all the disturbances affecting lateral deviation of the
impact point would be compensated by a corresponding operation of the control
devices. The continuous character of control requires the application of specific
methods of investigation and calculation which,'as was already stated above,
usually do not pertain to the number of ballistic methods and are not examined in
this book. In ballistics only partial derivatives of coordinates of the impact
point L and Z are determined with respect to kinematic parameters of the point ol
turning off the engine. Just as for range controls, in the first place derivatives
4M lot UL andW. I T. I .andW a for control of yawing motion it is necessary, first of all,

andto know #Z and 7-
In the first approximation lateral deviation is expressed by the formula

41Z OZ .AZ A1011 A:,;
where Avz and Az, are deviations of the lateral component of speed and z coordinate

from their computed values.

However, for a great flying ranges, when all derivatives start to increase
greatly and the space curvature of the trajectory becomes considerable, it is

necessary to consider and other derivatives: Ri and L in the calculation of
6Z 6Z OZ •Z cýtsx W7l

range dispersion .--. -" -. - during the calculation of dispersion in a

lateral direction. Sometimes it is necessary to take into account the second partial
derivatives.

In order to make calculations of range and direction dispersion less dependent
on each other, sometimes we measure deviations AL and AZ in a system of coordinates
distinguished from that in which thus far we calculated L and Z. The origin of this
system of coordinates is at the calculation point of impact (in other words, at
the point of the target), axis AL is directed along a tangent to that line about
the surface of earth along which moves the point of impact with a change in time
of the turning off of the engine and with constant direction of aiming. Axis AZ
is directed in a horizontal (at point of the target) plane at a right angle to
axis AL.

§ 39. Calculation of Dispersion

In the preceding paragraphs there were discussed certain theoretical foundations
and methoas of calculation of range dispersion. Let us dwell more specifically
on the calculating side of the matter, since in practice calculations are frequently
conaucted with deviations from above-stated scheme.

Partial derivatives Zik' as was already stated, are determined with help of

system (33.15). However, besides the direct numerical integration of this system
there exist other procedures of detecting its solutions, allowing in certain cases
to reduce the quantity of calculations. The most important of such procedures
is the use of the conjugate system of differential equations.

Since it is frequently necessary to operate with systems of more general form
than that of system (33.15), we will examine the system of the n order:

dZ1 GJ, 1Z,& + .. + a,.,nk + Pk
dl...........Ga . ... ~h
di• (39.1)

S- a.,:,b + ... + a,,z, + F .
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where aij, Oik' i, j - 1, 2, ... , n; k = 1, 2, ... , m, are well-known functions of

time. Actually equalities (39.1) determine not one system but m such systems with
the same coefficients a,, with unknown functions zjk and changing from system to

system of free terms 0 ik. The second subscript for quantities Zjk and 1ik is the
number of the system.

Let us introduce auxiliary differentiable functions of time u1 , ... , un and

find the time derivative of function uiz1 k + ... + unznk:

W (EIZ 3, + ... + #.Zak)=
= - +, it, -, dih di

dzik
Instead of derivatives =t we insert their expression from equations (39.1):

d do, do.
-a (Rlz ,. + ... + B.z .&) = -• -Za + . .+ do z'* +

+ , (daza +... -+ al.za + ,J +

+... +,, ((aZA +... + , + P-*)

We will now group members containing zik, ... , Znk:

-(,, +.. + az:,)-

( + a,,&, ; +. .+ata) Z ..+ +( ? + ct ...

•+--F am.&&) Z.& "+ S, +-.- -F + (39.2)

The obtained expression will be considerably simplified, if one were to require
that functions u, ... , un satisfy the system of differential equations:

EM,de - -

S.. .. . . . .. . . (39.3)
dl - lUI-M . •• - E8 .#

This linear uniform system of the n-th order is called a system conjugate to system
(39.1), more accurately, any of systems (39.1) obtained with different values of k.
The matrix of coefficients of the conjugate system is obtained from the matrix of
coefficients of the initial system by transposition and change of sign of all the
elements.

Subsequently we will consider that functions u, ... un will form a solution
of system (39.3). Then equality (39.2) takes the form

(IZ,+. + .+ N:.,) - a!+&... + J..

Integrating this equality term by term from t = 0 to t = tI, we obtain

(,,,,,+ +,.,,)•' = Jo (,,, +... + #.&.)dr. (39.4)

We will consider that the particular solution of system (39.1) interests us with
initial conditions when t = 0:

So ... 0m (39.5)
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(so it is, in particular, for system (33.15) and those similar to it). Then result
of substitution of the value t - 0 into the left side of equality (39.4) turns into
zjro, and the equality takes the form

(NZ: + +. +f Z.A) L. f -f (EP~r+.• +ufph) dl. (39.6)

It is correct if u1 , ... , un is the arbitrary particular solution of system (39.3).

Let us now take some of the particular solutions of this system, namely, the
solution uii, ... , uni, satisfying when t = tI the initial conditions

Sjj--O wh,•.J-1. 
(39.7)

Actually formula (39.7) determine not one particular solution of system (39.3)
but n such solutions corresponding to different values i - 1, 2, ... , n. With
substitution of such a particular solution into relation (39.6) -ll components of
the left side except one will turn into zero, and we will obtain

to

S f (alifj + - + -•" ta*) dt. (39.8)

Thus if there are found n particular solutions of system (39.3) under initial
conditions (39.7) for I = i, 2, ... , n, then quantities zik at any k can he found,

no longer resorting to the numerical integration of differential equations, but
only with the help of a considerably less laborious process of calculation of
definite integrals In formulas (39.8) for i = 1, 2, ... , n; k = 1, 2, ... , m. If
the order n of system (39.i) is less than the number of m variants of this system,
then the total volume of calculations is reduced. Moreover, frequently it is not a
necessity to determine the values of all quantities Zik when t = t 1 . it is

sufficient to be limited to the calculation of their certain linear combination

(CIZlIN " -' "- - n.)I. (39-9 )

where ci, ... , c n are certain coefficients not depending on K. Thus from formulas
(34.4) it is clear that such linear combinations are quantities z Z I and z~k.

Formulas (34.17) show that the same property is possessed by quantities z"o,

Zk z' and zk" Finally, proceeding from formula (36.16), it can be concluded

that the same is correct with respect to 4k). For example,

j ZL . L - " 8/ A," -" + tslg. Zsifi

Z:. AL , DL AL 9l s, 91"!" Zi+

+ ,L i(slay 3 DL -. AZLV .. L : ±

g DL -L

4.-:,. + 'L Z~.

Linear combinations of (39.9) for k = 1, 2, ... m can be calculated having
determined preliminarily all Zik by the formula (39.6). This will require

integrating system (39.3) n times with initial conditions (39.7) for all values I
and then calculating n x m integrals (39.8). But if one were to integrate system
(39.3)'with initial conditions when t - tI

Ai==0 1. a, aCA (39.10)
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and to designate by U n the obtaineJ cart!z-iiar solution, then from formula
(39.6) It follows that

t,

Thus the calculation of linear combinations (39.f) for all values k can be reduced
only to a single integration of system (59.5) with initial conditions (59.10)
and to the calculation of m integrals (59.1).

The method of conjugate systems is not deprived of deficiencies. First, it
permits calculating by the described scheme of value zi, (zk, zk) only with one
value t equal to ti. If these values are needed for several values of t, then the
problem is Immediately complicated and becomes comparable in laboriousness with
direct integration of system (39.1). Secondly, integration of the conjugate system
of (39.3), the initial conditions for which are assigned when t - t,, should be
conducted with a decrease in t from t. to zero. Therefore, it is impossible to
conduct it in parallel with integration of the basic system of differential equations
of motion of the rocket In a direction from t = 0 to t = tI. If with manual
integration this does not cause special difficulties, then with the use of electronic
computers it is necessary either to calculate coefficients ai and 13k In parallel
with integration of equations of motion and to store them in the memory of the
machine (this requires a great volume cf memory) or to repeat integration of the
equations in the opposite direction (from t = t to t = 0). In parallel with
reverse Integration coefficients and aik are calculated, the conjugate system
(or systems) is integrated, and integrals (39.8) or (39.11) are calculated.

Both methods - direct integration of system (39.1) and the use of the conjugate
system (59.5) - require calculation of a great quantity of coefficients a and i
by rather bulky formulas. Therefore, with machine reading for standardization of
calculations and reduction of the volume of the program the influence of small
perturbations on the trajectory is frequently investigated by the method of finite
differences. Let us explain this method with an example. Let us assume that it
is required to find the derivative z" of the flying range by parazeter Xk with the
turning off of the eniine from the integrator. At first there is calculated the
nominal trajectory and determined the nominal flying range I., and value of apparent
speed vs 0 at tle time of the turning off of the engine. Then there is calculated
the perturbed trajectory for whiich all the parameters except Xk are assigned by
their nominal values, but parameter Xk is given a value distinguished from the

nominal by the highest possible value +&k" On this perturbed trajectory the
moment of the turning off of the engine is selected in such a manner so that the
value of the apparent speed at this instant would coincide with the earlier found
nominal value vso. The section of free flight is miscalculated, and the disturbed
value L" is determined. If for some reason there is confidence in the fact thatle+kthe dependence of the flying range on parameter Xk is linear with a change of the

latter in the examined limits, then it is possible to be limited by this and coniider
that

S,-(39.12)

However, more frequently there is miscalculated absolutely analogously the
perturbed trajectory corresponding to the maximum negative deviation, Axk of
parameter Xk at nominal values of remaining parameters. If L",, is the corresponding
flying range, then formula
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*&.-L7&.? L:,L: (39.13)

gives more a exact derivative than the preceding one, and expression

can serve for an appriasal of nonlinearity of the dependence of distanie on
parameter Xk* If this nonlinearity is great, then linear formulas of' type of
formulas (36.17)-(36.19) do not completely reflect the dependence of deviations of
the flying range on deviations of design and other parameters. However, in an
overwhelming majority of cases with nonlinearity in formulas of type shown, it is
possible not to consider.

Therefore, in an approximate determination of derivatives of a hipher order
with a use of finite differences it is possible not to discuss, although this is
done rather simply. Let us note that it is especially convenient to use finite
differences when calculations are made on the computer. On these machines it is
easy to provide a reserve of accuracy of calculations sufficient (norugh that with
the subtraction of close values L" and L" there is preserved the re 4uilrd numberth sbtacio o cos vlus +k Lk

of true signs. The fact that the actual calculations by tht :vethod ui' finite
differences are made by more monotypic formulas was already mentioned. It Is
obvious that with the help of finite differences it is possible t,, itsculate

derivativesroftthe typedL dL Xz
derivatives of the type - - .. especially in those cases whr. t•, secti •f

free flight is calculated by a more complicated method than was accepted in § 36,
for example, by numerical integration of equations of motion considering drag and
the flatness of earth.

One of taie methods useful for investigation of the dispersion of rockets in
the case of both linear and nonlinear dependences of coordinates of the point of
impact on the perturbing factors is the method for which there has been given a
number of names: method of static tests, method of Monte-Carlo, or, finally, the
method of mathematical firings, a term best of all reflecting the essence of the
matter. In this method dispersion is estimated on the basis of results of
calculation of several tens of perturbed trajectories. Calculation is produced by
as complete equations of motion as possible, in which there are considered all the
known perturbing factors or, at least, those of them whose calculation does not
complicate excessively the integration of equations of motion. Perturbing factors
are selected in such a manner so that they physically, or at least In a probabilistic
meaning, are independent of each other. Values of these perturbing factors are
assigned as independent random quantities for each of the calculated trajectories
and for every factor. As the basis of the assignment of these values there are set
the well-known or assumed laws of the distribution of perturbing factorr. As a rule,
this normal law with the mean value is zero with its standard deviation for every
factor. With the output of random values either tables of random numbers (usually
with manual count) are used or special random number transducers connected to a
computer, or subprograms producing sequences of so-called ýseudorandom numbers
externally behaving as accidental with the defined law of distribution.

For each of the perturbed trajectories there are calculated not only kinematic
characteristics but also values controlled by a control system, in particular, a
range control system. The moment of the turning off cf the engine io determined
proceeding from the selected control equation, i.e., the relation between magnitudes
measured by the range control system according to which this system determines the
moment of supply of the command for turning off. Thus at our disposal there appears
a set of a certain number N of perturbed trajectories, more or less exactly reproducirg
trajectories which can be realized during actual launches of rockets. For each of
these trajectories coordinates of the point of impact Li and Z are determined,
where I is the number of the trajectory (i 1 1, 2, ... , N), which then are processed
as if they are results of real launchings. Let us give well-known formulas by
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whith such treatment is -,-ndu:-teP, Mean values c.f ranrf- .. l.. ateral deviation are
calculated by the formulas

N

lot

gas
These values are also called courdinates of the center cf clustering of points of
impact. Further treatment- is given to the devlatn of points of- mpact from the
center c~f clustering: range error

and deviation in a lateral direction

AZ, Z,-- Z

The standard range deviation is found by the formula

OL= V ,j., (39-16)

and the standard deviation in a lateral directioth by the formula

cz= L.V . (39.17)

It is possible to manage without calculation of deviations from the center of
clustering and use directly deviations from the calculation point of impact; then
formulas for eL and oZ will take the form

GlM W " --T) (39.18

where L0 is the nominal flying range, and

Z -(",. NZ, - (39.19)

These formulas give the same values as those preceding but permit reducing the
calculations, especially if I. is a round number, which is important during manual
count.

The correlation moment between range errors and In a lateral direction is
estimated by tne formula

N

W-', a'AZ'. (39.20)
gas

or

Y-T Ž;(L' - LO)Z' - M -4 (39.2i)
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-If that moment is not equal to zero, then the dispersion (. points of impact is
characterized by an ellipse whose axes are turned with respect to axes L and Z.
The angle of rotation a can be found from the relation

tg 2= 2KLZ (39.22)rarm @)T--(oz2)T"

This relation determines the angle 2a correct to i? and, consequently, angle a
correct to v/2. In other words, formula (39.22) leavwer the possibility ,I selection
of one of two mutually perpendicular directions. So that selection becomes
unique, it is necessary to consider that when KLZ > ) the major axis or the ellipse

of dispersion is disposed between positive directions of axes L and Z, and when
KLZ < 0 it is between the positive direction one or' these axes and n, entive diroctx.

of the other. Usually the standard deviations oL and oZ are close In value, and
therefore the denominator of formula (39.22) and, at the same time, the vnlue of a

are determined with low accuracy. In the limit when oL = oZ if' with this KLZ
the ellipse of dispersion is turned into a circle and angle a, determining the
direction of axes or the ellipse, in general, becomes inderInite.

Other parameters characterizing dispersion, namely, L, Z. iL Pno ', ire
-determined by this method with an accuracy quite sufficient for pr,-t;eal purposs.
Thus, for example, if these parameters are estimated by results ofr th- calculation
r0 perturbed trajectories, then I is determined with an error not ex'. i-jng 0.40L,
and aL with a relative error-of not more than 30%. In the same rela. ,n errors of
the determination of Z and oZ occur towards value of oZ. Usually err,.rs cf the
determination of parameters of dispersion are found to be considerablj l:ss than
the limits shown here. The cause of the appearance of these errors is clear; the
calculation of perturbed trajectories is produced with the use of random numbers,
and therefore the characteristics of dispersion of these trajectories are them-
selves random variables subject to scattering. It is possible to increase the
accuracy of determination of these characteristics by Increasing the number of
trajectories, but the accuracy increases, more correctly the errors decrease, only
proportionally to the square root of the number of perturbed trajectories, so that
it is possible to determine eL or aZ with a guaranteed error of not over 10% from
results of a calculation of about 500 trajectories. Therefore, as already was
stated in the beginning, we usually put up with comparatively the highest possible
error in the calculation of oL and oZ but are limited by the calculation of several
tens of trajectories.

Quantities L, Z, aL, cZ and KLZ complete2y characterize the dispet-sion of
points of impact if this dispersion obeys the two-dimensional normal !., A distri-
bution. As a rule, the dispersion is influenced by a great number of i. -s, and
the influence of each of these causes is small in comparison with the total
influence of all others. In these conditions the law of distribution should be
close to the normal. For the distribution of devia~ions obtained as a result of
mathematical firing, the hypothesis about normal charact r of distribution can be
subjected to a check by dsing either Pearson criterion X of' the criterion of
Kolmogorov. The method of application of these criteria is not descii'bod here.

The method of mathematical firing has certain deficiencies along with a number
of merits. The basic one is the impossibility to separate the influence on the
di-;persion of separate perturbing factors, since during the calculation o: perturbed
trajectories there appears only their joint action. Therefore it is difficult to

=• determine with which of the causes effecting dispersion one should struggle first
if this dispersion is excessively great. In connection with this the method of
mathematical firings more frequently is used as a checking method, and design
calculations of dispersion are usually conducted by other methods similar to those
above described. However, even in certain design calculations the method of
mathematical firings can be useful. Let us assume, for example, that it is
required to compare several laws of range control and to select from them the
optimum, just as in § 37 the optimum coefficient of compensation of the integrator
was selected. For this purpose it is possible to conduct several series of
mathematical firings with their law of range control in each series. For each
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series there is determined the standard deviation in range aL, and that law is
selected with which aL is found to be minimum.

If in each of such series the values of the perturbing factors are assigned
independently of the other series, then the value oL, besides the law of control,
will be influenced by the set of values of perturbing factors accepted for the
given series. As a result the selection of the optimum law can appear erroneous.
In order to considerably decrease the probability of such an error, it is expedient
to use the same set of values of perturbing factors in all series. More precisely,
for different trajectories witb.in the first series the perturbing factors are
selected randomly and indepe-it.4y of each other. The selected values of these
factors are memorized. Wit,, ,;alculation of the i-th trajectory (i - 1, 2, ... , N)
of any subsequent series, values of perturbing factors will be taken the same as
for the i-th trajectory of the first series. As a res,:lt the dependence of
dispersion on the form of the law of control becomes more clear. If these comparable
laws of control are distinguished only the numerical value of one or several
parameters (for example, the coefficient of compensation of the integrator, the angle
of setting of its sensing device, etc.), then the dependence of characteristics of
dispersion on these parameters appears smooth and optimum values of the parameters
are easily found.

In many cases for an appraisal of the dispersion and in the solution of other
problems connected with the influence of small deviations of design parameters on
the range of flight, there can appear useful approximate formulas allowing the
calculation of range derivatives by design parameters not resorting to numerical
integration. Such formulas possessing an acceptable accuracy can be obtained on
the basis of the method of approximation of calculation of the f!ying range
expounded in § 24. Lnt u6 find at first partial derivatives of range according to
quantities N and Ni. Differentiating formulas (24.15) expressing xC and yC by

N, Ni, •0 and to, we will obtain:

dxc - 9cos q# (tc dN - dN,) +
+ -N coo % Wic -g (NIC - N,) sin qr d%

r g (N s a -t)dC rg (NIC - NJ cos qd%.

Let us exclude hence dqo:

cos qr dxC + sin q-, d•--=g (tc d.V-d.V,) + g(.V--c sin q,) dtC.

The coefficient at dtc, on the basis of formula (24.16), turns into zero.

Differentiating the relation (24.24), we find

dyC = dx- .

We substitute this expression for dyC in the preceding equation

(Cos 21",T-sin o.) d.c =-, (tI ., -- dN )

or, on the basis of formulas (24.1T) and (24.22),

Consequen(tly,

-. - CO- +a o
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"Cos (I -b + ab sln to) (39.24)

The derivative of coordinate xC by the design parameter X can be o-al.:ulated
by the formula

*rdN as dN.# x+
where partial derivatives 6N/)xk and dNl/3Xk -an be determined by dIofertntiation

of formulas (24.30) and (24.31) according to design parameters entering Jnto them:

-. in r-.
'OP.. I

Y2 U. I 1- 1)

___ " T-';t., 1,,-1.,'
ON 3T,1 n - t_ .

t--LY, T",[j ,,, •;,;,(r,-,,) 1"

71 n1 =0

ON ,--, in-.'

in these formulas one should consider

t,#=O.
PYS,0+l" O-0

If range is deteromined byle fonnete with then for transitihn fr(gtm8VX/Sk to 4L/a•k one should use formula

A a£ Orc , I IOXC+ ,+

40•. Maximum Range of" Firing

To the number of problems connected with the influenct,. on the flight cr the

rocket of small deviations of different factors belongs the problem of th.
determination of the maximum range of firing.

Let us consider a single-stage rocket whose propulsion system uses 'uel
consisting of two components, an oxidizer and fuel. Each of these compLrnents is
placed In its own tank.

For achievement of an assigned flying ra*ige L such a rtcket shculd oxpend a
definite quantity of oxidizer and fuel. However when one considers a whole series
of rockets of identical construction and with Identical nUmlnsl charaloteristics,
then it will appear that each of them uses a different quantity of both oxidizer
and fuel for achievement of the same flying range. This is explained by the fact
that the values of* basic technical characteristics c-f ihe rocket and als-
conditions of its flight are subject to random scattering.



To the number of characteristics of the rocket essentially affecting quantities
of the components of fuel necessary for achievement of the assigned flying range
belong the weight of construction of the rocket, weights of the oxidizer and fuel
filled in tanks of the rocket before its launching, specific thrust of the engine,
total flow rate per second of fuel (oxidizer and fuel together), relations of flow
rates of components of fuel, and others. Of the external factors the role of
temperature and density of air, wind etc. can be factors.

Random scattering of all the values named leads to the fact that remainders of
components of fuel in the tanks at the moment when the engine of the rocket is
turned off are also subject to scattering, i.e., are random variables. It follows
from this that the computed value of remainders of the oxidizer and fuel for nominal
characteristics of the rocket and nominal conditions of its flight should not be
too small. Otherwise the rocket cannot reach the assigned range because of premature
expenditure of one of the components of fuel.

To each value of the sighting range of flight L there can be set into conformity
the probability P(L) of the fact that reserves of components of fuel will appear
sufficient for achievement of this distance. The less the probability P(L) the
greater the sighting range of firing L, i.e., the distance at which the instrument
sending command for turning off the engine is tuned. If one were to assign certain
probability PO quite close to unity, then the value of range L for which

np
P(L ) = P0 J•s called the maximum range of firing corresponding to the reliability
P0 . Let us emphasize that the discussion concerns the Aistance accessible almost

by any rocket of the examined series. The rocket separately taken, with a
favorable combination of design parameters and in favorable conditions, can fly at
a distance considerably greater than L . On the other hand, a certain insignificant

np
portion of the rockets (I Po) cannot reach this distance. The maximum range

characterizes the whole series or a given type of rocket as a whole and does not
have a direct relation to the maximum possible flying range of the separate rocket. J

Nominal remainders of components of fuel in the tanks (i.e., remainders
calculated for nominal values of characteristics of the rocket and nominal external
conditions of the flight) corresponding to maximum ranges of firing are called
guaranteed reserves of components of fuel. In other words, guaranteed reserves
of fuel are such reserves whose presence in tanks of the rocket during its motion
about the nominal trajectory provides achievement of the assigned flying range with
the probability P0.

The problem of the determination of the maximum range of firing and guaranteed
reserves of fuel can be solved by different methods. A more accurate method is
based on the obtaining of the dependence P(L) and solution of equation P(L) - Po.

We will not proceed this way, since it leads to bulky analytical calculations and
time-consuming numerical calculations. Let us dwell on another less accurate
method which is simple in its calculation scheme. I

We wi7l consider that factors Xi affecting the trajectory of the flight of
the rocket experience only small deviations 6XI leading to small deviations in the(oo)ocT
flying range 6L and remainders of the oxidizer 6GoC and fuel 6G in tanks,
which the connection between these small deviations is quite accurately describedby linear equations of the form

(40.1)

U1.1" ý l~t+ 6:3 -t 4-(40.2)
+ b, -- + +.b.m.. +(40.3)

In these formulas it i! assumed that deviations 6L, bG(l) and 6G correspond
ox r

to the constant time of operation of the engine, which is equal to the nominal time
of work ti necessary for achievement of the assigned distance during flight on
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on the undisturbed trajectory. For achievumen' o, th.- .• .an'. JuuInl mLtlon
along the perturbed trajectory It Is necessary t-, change the time or upei'ation of the

engine. Derivatives of values L, GUCT), G(OC.) in time cf operaticn cf the engine

will be designated by a dot. Deviations of these values from. .he nomln'l values,
taking into account the change in time of operation of1 the enGine will Le designat,!d

AL, AGOCT) and AG.OcT). For them these expressions are correct

AL - 6L + i'-t.

"Ad.' =wr , J+ "=-- u,= -- b.t.

AOaCT = a,,C" + .bl1!"A, = -- &Ae1b,

where O and G designatý the flow rates per second of' the oxidizer and 1,uel:

O..=1 O'" I.

The change in time of operation of the engine on the perturbed r.-n4irctury

At1 will be determined from the condition of constancy of the flyln1 : rar' o

AL =0.

whence

Consequently,

AO?." 60.0" + 61L.

6r
Using formulas (40.1)-(40.3), we obtain

,,O'.- = '0t,, + A),...(4 .

In practically all the encounte•'ed cases we can assume that deviatins A),k o0

factors affecting the flying range and remainders of components of l'uel In the tanks
are independent random quantities subordinated to the normal law of distribution
with the mean value zero and with the standard deviation o. With this assumption

from formulas (40.4) and (40.5) there ensue the following expressions fcr standard
deviations of remainders of the oxidizer and fuel:

( a.+ A- (40.6)

5 ( )(o,..
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From formulas (40.4) and (40.5) it is possible also t,- conclude that remainders
of components of fuel are random variables having a normal law of distribution, and
that their mean values are equal to zero (=ee § 31).

Let us assign a certain probability P0 close to unity. From the equation

one can determine such value k that with the probability Po the random deviation

of quantity ý, obeying the normal law of distribution with the mean value zero and
standard deviation a, in absolute value will not exceed ka. As was already
mentioned in § 31, the most commonly used are values P0 M 0.997 corresponding to

k = 3 and P0 - 0.993, to which the value k - 2.698 - 2.7 corresponds.

As guaranteed reserves of the oxidizer and combustible are the values

.VO"- iso.09 (40.8)
and

-! k go:!," (40.9)
.OCT) or

respectively, where aGý, ) and cG(Oc') are standard deviations of remainders of

components determined by the ioi.iulas (40.6) and (40.7). Let us estimate the
probability of achievement of the assigned distance L during flight about any
trajectory, if reserves of components of fuel are selected so that during flight
for this distance along the nominal trajectory remainders of components at the
time of the turning off of the engine have values determined by the formulas (40.8)
and (40.9).

Distance L can be attained with flight on a certain perturbed trajectory, if

remainders of tlie oAldizer G(ocT) and fuel G(OCT) calculated for the moment of the

turning off of the engine on this trajectory corresponding to the flying range L,
are found to be positive. Let us consider each component of fuel separately. With
the probability Po the random deviation of the remainder of the component will not

exceed koG(OCT). In this case the remainder of the compcnent is knowingly positive,

since the nominal value of the remainder is accepted equal to koG(OcT). If, however,

the deviation of the remainder exceeds kaG (3T), then with respect to a shortage

of this component only the case of a negative deviation is dangerous. In virtue
of the symmetry of the normal law of distribution the probability of shortage of

a given component of fuel is equal to f(I - PO).

There are four possible results of the launching of a rocket:

1) or>• 0.. ,o > o;-
2) o.">o. o" < o;.

s) ."C. < o. ,09"'> 0;
4) 0.1" < 0. are" < o.

Their probabilities will be designated respectively by Pip P2 0 P3 and P4 . The sum

of these probabilities should be equal to one

A, +P2,+ P3+ P-- .(40.10)
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The shortage dt aa vxidlzer, having accurding to tnt ý i. .i, pr.AtU•llty
½(I - P0 ), is encountered at the third and fourth resulv, o tiat

Analogously the probability of the shortage of fuel is *,rual to

P. +P.-- = lo - P.). (40.!2)

Subtracting from equality (40.10) the sum of equalities (40.11) and (40.12) we obtaln

P,- P4 -= -(1 - p).
whence

P1 PO+P 4 >PO-

But P1 is the probability of only a favorable result, i.e., th,. prAobAbllity ,A
achievement of the assigned flying range. Thus the expounded method of A• •rminat.bn
of guaranteed reserves of fuel in the case of a single-stage rock t, I(.:- which the
reserve of fuel is placed in two tanks, provides achievement or" the aescgncd flyine
range with a probability though not exactly equal to P, but in any ,case not smaller
than Po. Because of its simplicity this method is used In mour, comoi. :ted casr:z,
i.e., for rockets with more than two tanks (the number of tanks ano not the numb,_r
of different components of fuel Is important, since the guaranteed reserve shoula
be foreseen in each separate tank). But in these cases it no longer allowed to
affirm that the probability of achievement of maximum range will nc- be lower than
P0.

In conclusion of this paragraph let us touch upon the method of determination
of coefficients ak and bk in formulas (40.2) ani (40.3). Coefficients I
characterizing the influence of different perturbing factors on the flying range,
coincide with coefficients Z4k introduced in § 36 and are calculated by methods of
the preceding paragraphs. Calculation of coefficients ak and bk is usually made

considerably simpler. Thus, for example, for the remainder of the oxidizer at the
time tI it is possible to write the expression

where G(0) is the weight of the oxidizer filled In the tank uf the rocket before
the launch. It is expedient to express the flow rate of the oxidizer 0 In terms
of total fuel consumption G and the relation of flow rates of components

"hum-.'U".

The fact is that for liquid-propellant rocket engines the quantities 6 and k can
be examined as independent random quantities, while the flow rates of components
Go and 6I are connected by a rather substantial correlation dependence. The
OR r p

expression for GOR In terms of G and k, obviously, has the form

so that

0  tl (40.13)
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and, analogously,

.(40.114)

Differentiating these dependences and replaclng the difforentials by finite
increments, we will obtain for t I const:

TT A- 1+ Ct Ak. (40.16)

Quantities G(O), (10), and k should be included in the number of parameters X

Tiae formulas obtained are a concrete reccrdirn of relations which in general form
weto represented by formulas (40.2) and (40.3). If any of parameters Xk, for
example, specific thrust PYA, does not directly affect remainders of components of

fuel (at fixed t = tY), then the corresponding coeffl"'ents ak arid bK in formulas
(40.2) and (40.3) should be considered equal to zero. In exactly the same way one
should consider : uefficierLs Ik equal t- zero with a deviation of such parameter Xk'
which enters into formulas (40.2) and (40.3) but does not affect the flying ranue
with a constant Lime of operation of the engine (for example, the relation of flow
rates of k components).

For different concrete schemes of engine installations dcpcndcrcZ (40.2)
and (40.3) can appear more complicated and contain a greater quantity of different
factors than in formulas (40.15) and (40.16), but this fundamentally changes nothing
in the method of calculation of the guaranteed reserves of fuel.

U9
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F ART FOUR

SELECTING THE FORM4 CF THE TRAJECTORY
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CHAPTER X

FORMULATION OF THE PROBLEM OF THE SELECTION OF I ROGRAfhi

§ 41. Requirements for the Program

In this part basic questions connected with the selection of th- prt';*ram of the
pitch angle will be discussed.

The program of the pitch angle, and sometimes and simply the prcrrom, is the
law of the change in the angle of inclination of the axis of the ri-cZt.77 Sometimes
the program is called the law of change in the angle produced by the programer.
Angles of inclination of the axis of the rocket and angles assigned by the programer
do not coincide. However, the influence of this noncoincidence on the basic properties
of the trajectory is in~significant. Therefore, in all ballistic calculations except
calculations by the most general equations of motion (% 14, 16), it is assumed that
the ayi= of the rocket strictly ful!fills ngl turns essigned to it by the programer.

Usually the law of change in the pitch angle is set d2pending upon the time.
The law of change produced by the programer is designated in the form of the function
np (t), and the true change of the angle of inclination of the axis is recorded in

the form of q(t). As was already mentioned, we will consider that q(t) = nF(t).

Equations of motion contain a program as an assigned function. Therefore, final
results of integratlon of equations of motion, i.e., vX, yX, MHS OX, the .'ull Airtnnce

L or other characteristics interesting to us to a considerable degree are determinedby fuhnction 9(t). The selection of this function is directly influenced by three

basic factors: design parameters of the rocket, peculiarities of control system,
and problems posed before the trajectory with the launching of the rocket.

If, for example, it is required to select trajectories providing ultimate range
for two different rockets with an identical control systems, then this will require

application of different programs of v(t). For the formaticn of trajectories
providing minimum dispersion for the same rocket different programs are required, if
one were to proceed from different principles of the range con4roi of firitig. ihe
same rocket with the assigned control system requires application of different
programs of the pitch angle depending upon whether it is required to provide maximum
range, minimum dispersion, maximum altitude of flight or some other quality of the
trajectory.

Thus to give a single rule for the selection of a program useful for all possible
cases is impossible. However there are certain general principles which one shouldfollow almost in all cases. We will dwell on them more concretely.

In Chapter V dependences were derived allowing the judging of the Influency of
the finite angle 60 on range. In the same chapter it was shown that for every pair
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of values v. and h there can be found angle 8. at which the distance will be
maximum. Such an angle was celled optimum because it permits the best use of the
energy acquired by the rocket on the powered section. qut the values themselves v.

and hK depend on the angle U. and function q(t).

In most cases, proceeding from requirements for the trajectory, the function T(t)
should be selected in such a way that the range is obtained the greatest possible.
However, this does not mean that before the program is placed the problem of the
achievement of maximum theoretical range as obligatory and essential, although flying
range is one of the most important tactical characteristics. The requirement of
obtaining maximum range when necessary should be subordinated to other more important
requirements whose fulfillment is technically more complicated than the achievement
of the assigned range. To them, in the first place, one should relate the requirement
of minimum dispersion. Therefore, the problem of the selection of a program is the
determination of such function 9(t), which for the assigned rocket with the accepted
method of control, in particular, the method of turning off the engine, would provide
the assigned distance insignificantly differing from the maximum with minimum
dispersion.

At present several solutions of the variational problem are known according to
the selection of optimum (from the point of view of obtaining range) program, but
the majority of them is obtained with certain simplifying assumptions or for
particular cases of motion and neglecting peculiarities of the defined control
system and method of turning off the engine.

But even in the presence of a common solution of the problem in our setting it
was necessary to check the obtained program from the point of view of fulfillment of
a number of requirements imposed by conditions of strength, stability, convenience
of exploitation and others. Consequently, for the solution of the variational
problem it is necessary *to impose corresponding additional limitations from conditions
of fulfillment of the mentioned requirements.

To such limitations, in the first place, pertain the following:

I) vertical launch and definite duration of vertical flight;

2) continuity 9(t), $(t), V(t) and limitedness 0(t);

3) limitedness of normal G-forces;

4) zero angles of attack at speeds close to sound;

5) special conditions caused by the method of control and turning off of the
engine;

6) firing at any distance in an assigned range with one or a minimum number
of programs.

Let us turn to the consideration of causes which are caused by requirements
mentioned.

I. Vertical launch is the most convenient and simple and requires no special
directrixes and other devices and apparatuses. To set the rocket vertically is
considerably easier than to set it exactly at an assigned angle.

Besides this, in a vertical launch there is a minimum of lateral shifts of the
rocket, which can take place with a slanted launch in the first seconds of flight.

Duration of the vertical section is determined mainly by the time necessary
for the controls to be sufficiently effective. This in turn is determined by engine
performance.

2. The requirement on continuity 9(t), f(t), 0(t) and limitednees 0(t) is
conditioned by possibilities of instruments and controls. Really, a break in function
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4(t) contradicts the physical meaning of the program, and a break in function $(t)
(or break in curve ((t)) corresponds to infinite controlling moments. A break in
functions t(t) corresponds to an instantaneous change in moments, i.e., angles of
deviation of control surfaces or infinite angular velocities of control surfaces.
The limitedness ýP(t) is dictated by limited possibilities of controls, since the
maximum value of 0(t) is determined by the maximum ieviatlon of the control surface5.

Thus the program assigned to a certain control circuit re•iulrfs fulfillment of
conditions of 6. 2. In certain cases the exact observance of these requircments can
be refused if the appearing mismatches between T and (P will not have considerable

influence on further flight, since they will be able to be d~pleted by the control
system for a sufficiently short interval of time.

3. Axial loads on the rocket are determined mainly by parameters, namely vC,

and ty" Therefore, the program cannot render considerable influence on G-forces in

an axial direction. Regarding transverse G-forces, they depend mainly on the
magnitude of the aerodynamic moment, which is closely connected with angles of attack
and, consequently, with the program.

This circumstance imposes on the program the requirement limitin[7 the magnitude
of the aerodynamic moment determined by the product

(formulas 11.17) and (11.19)).

Calculations show that substantial change in the moment van be reached only
owing to angles a, since the change c' - (c/ )and q = (pv•/2) on the trajectory

depends on the program in a much lesser degree. Thus with calculation of the program
it is necessary to limit angles of attack in such a manner that obtained aerodynamic
moments do not require too durable and heavy construction. It is clear that this
requirement with respect to the magnitude of allowed angles of attack pertains mainly
to sections of the trajectory with high velocity heads. it is desirable to pass
these sections with miminum or zero angles of attack.

4. As a rule, effectiveness of controls does not depend on the speed of the
rocket and conditions of the flowing around. But the region of speeds (!.Mach numbers)
M - 0.8-1.2 is characterized by a sharp change in aerodynamic coefficients. For the
operation of controls coefficients kc/oa and 6mz/oa have singular value. Desirinr

to reduce the influence of sharp changes of these coefficients to a minimum, it is
nrccsseay to take eare t-ht thp indicated region ) nqsse! with zero angles of attack.

5. Requirements of this point are not general and in an identical measure are
obligatory for all rockets. Depending upon conditions of the operation of systems
of measurements and instruments of control of the rocket and also the providing of
definite properties of the trajectory there can appear special requirements for the
program, for example, the requirement of providing rectilinearity of the trajectory
on some segment, limitation in assigned limits of the angle between the axis of the
rocket and communication line of the rocket with the ground center, motion at constant
angle pitch, and a number of similar requirements.

6. This point provides the possibility of firing at all distances in the
assigned range with one or a minimum number of programs. For rockets possecssin
comparatively small distances (up to 1500-2000 km) or greater distances but in a
quite narrow range, this condition is satisfied comparatively easy, since optimum
programs connot differ greatly from each other.

For rockets, possessing a wide ranige of distances, when it is impossible to
select a quite satisfactory program (one) fcr all distances, it can be necessary to
divide the range into several smaller ranges. In this case it is necessary to try
to bring the number of ranges to a minimum.

The requirement of this point, just as that of the preceding, is not obligatory
for all rockets.



§ 42. Maximum Range and Minimum Dispersion

Let us consider in the common form the conditions of obtaining the maximum
range and minimum aispersion.

In the solution of the problem of the achievement of maximum range we should
proceed from the fact that the rocket possesses a definite reserve of fuel, which
is completely expended during acceleration on the powered-flight trajectory. This
quantity of fuel at nomtrll values and design parameters of the rocket can be set
in conformity to the definite time of operation of the engine t.. Let us consider

for simpliciy the plane motion (analogous reasoning can be conducted for spatial
motion) with which the flying range can be expressed as a function of four kinematic
parameters, for example, speed, angle of its inclination to the horizon and of the
two coordinates taken at the time of the turning off of the engine:

L -f- (v ,. 0.. x.. (42.1)

We will modify the program of the angle of pitch, keeping all other parmmeters
of the rocket constant. This means that instead of the motion of the rocket on the
nominal trajectory with q) = np (t) there is examined the motion with qP - Tn (t) +
+ 5bq(t) where 6V(t) is the arbitrary deviation (error in the fulfillment of the
program5, possible in real conditions. With this we obtain the variation of
parameters of motion at the end of the powered-flight section and, consequently, the
variation of the full range. In conformity with that said above, these variations
should be taken for the fixed moment tK corresponding to the complete expenditure

of fuel, and the necessary condition of achievement of maximum range can be recorded
in the form

#L 6 D L 1 6L I - o.• "
8Lm-~4v~ +~0I 7ft1 + ~ "a,.(42.2)

Before writing down the condition of minimum dispersion, let us note that in
actual flight with an operating range control system the deviation of the impact
point from the assigned does not depend directly on the maximum time of operation
of the engine tK, but is determined by deviations of parameters of motion v., 9.,
x., and y. at the time of the actual turning off of the engine on command from

automatic range control device. Thus, designating these deviations Av., A' e.X(,

and by., the condition of minimum dispersion will be written thus:
& =L • -S-+ . +L AL Ax 8-0 

(23

More precisely, this is the condition of minimum influence of deviations of the pitch
program 69(t) on the deviation of the point of impact with an operating range control
system.

In general the turnings off of the engine by one of the possible methods (with
the help of the integrator of axial G-forces, with the achievement of the assigned
speed, with the achievement of the assigned combination of coordinates and speed,
etc.) of the variation of parameters of motion at the end of the powered-flight
section will be composed of variations of parameters at the calculated moment of
turning off of the engine t1 and variations induced by a change in time of the

turning off of the engine AtK so that
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Ae, L.,1 + - Al.

-, 1=* + (42.4)

A,. = , &,+ .,+

(let us recall that both these and other variations are caused in the examined case
only by a variation of the pitch angle 59(t)).

Substituting these variations into expression (42.3), the condition of minimum
diepersion will be obtained in the following form:

AL -6tij',I,+ + . 60t, + O 6XI,, +L b +

oL r + OL do + OL a(x + " W.- o.

or + t

S(42.5)

+AY +-A" t=O.

Comparing conditions of maximum range (42.2) and minimum dispersion (42.5), we
arrive at the conclusion that in general these conditions are not identical, and they
cannot be feasible simultaneously.

If the condition of the maximum range does not depend on the method of the
turning off, then the condition of minimum dispersion depends on the method of
turning off of the engine, since At will be determined namely by the method of the

turning off of the engine. Only in one particular case, namely, when turning off
of the engine is produced after achievement of the assigned time of operation, do
these conditions completely coincide and, consequently, are fulfilled simultaneously.

This by no means mean that such a method of turning off is good, and only
signifies the fact that of all the possible programs selected for such a method of
turning off the best in the sense of accuracy will be that one which simiu]taneouslycorresponds to the maximum range. The very method of turning off by time is not
applied in practice in view of the extremely great methodical errors peculiar to it.

Since with all other possible methods of the turning off of the engine conditions
of maximum range and minimum dispersion do not coincide, it is necessary during

calculation of the concrete program of the pitch angle to assign a condition whose
fulfillment should be provided in the first place, and fulfillment of the seconc
condition can be only checked; more correctly not the second condition but the degree
of deviation from it can be checked. In practice most frequently it is necessary to
discover a certain compromise solution, giving satisfactory accuracy and at the sametime not very great loss in range comparatively with the highest possible.

So that peculiarities of the selection of a program become clearer, it is
necessary to dwell on one more question. The fact is that it is important to provide
fulfillment of the condition of minimum dispersion not only for the upper limit of
the assigned range of distances of firing but also for any distance starting with
the minimum. In the opposite case firing at lesser distances will be produced with
greater errors than that for greater distances.
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In rrinciple such a problem Is feasible the more so because the condition of
providing maxiium- range drops with the Belec~ion of programs for flring at any
dist&ncea e..zept the region of maximum ranges, Thus the program providing fulfiliment
of the conitilon of minimu. disnersion on the whole range of distances fand without
vreat losses in the maximum range) would be best.

The sclition of t.,e corresponding %ariatiunal problem c&n dztermine the program
satisfy-ing the selected conditions only for one distance. If for this distance we
take the mavimum, then for any other distance lying between the maximum and minimum,
the obtained program will not provide minimum d:spersion, since for every dtiztance
solutioni of the variational problem will give its program different fiom 1that of
others. Thus we arrive at the conclusion that the solution of the variational prcolea
in principle doez not permit selecting such a program which would give mdiiimum
dispersion on the all range of distances. It is possible only by finding one of
solutions to check it for other distances for the purpose of clarifization of limits
of applicability of one program.

Irrespective of what the method of turning off of Lhe engine and what the
program providing minimum dispersion, the maximum range in all cases is checked by
the calculation.
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CHAPTER XI

METHODS OF SELECTION OF A PROGRAM

§ 43. Selection of a Program of Maximum Range

Let us discss the applied procedures of determination of the maximum range of
the rocket. Let us note that the exact solution of the problem on maximum range is
not obtained in final form. However, there is knuwn a number of solutions obtained
with certain simplifying assumptions, which give good orientation for tne selec ion.
of a program of maximum range in real conditions of the motion.

I 2 there is examined the variational problem by definition of the programof maximum range under conditions of a plane-parallel field of forces and the absence
of atmosphere. It is shown that a certain constant direction of traction of the
engine, decending on the basic design parameters of the rocket, realimes a maximum
of distancL.

Examined in article (i1] 's the variational problem by selection of the program
of pitch angle providing maxi-mum horizontal speed at an assigned altitude.

The problem is solved on the assumption that motion occurs outside the outside
the atmosphere in a plane-parallel field of forces. As a result of the solution it
is obtained that the tangent of the pitch angle with the optimum program should be
a linear function of time, i.e.,

It is possible to establish that the solution of the variational problem for detecting
the extremum of the functional, expressed in terms of the parameter of motion at the
end of the powered-flight section, leads to a program determined by equation (43.1)
or more general linear-fractional function

In this article there is examined another problem in a more complicated setting,
namely, there are considered the changeability of the field of gravitation and
rotation of earth. For obtaining an optimum program it is necessary to solve the
complicated system of transcendental equations, attracting numerical interatlon
methods.

Not dwelling on this more specifically, we will say only that various examples
of the numerical solution of the examined problem lead to pitch angle programs very
close to the linear dependence of the pitch angle on time:



9iny~jt.(43.2)
Depending upon basic design parameters of the rocket, the values and d assume
different meanings realizing a maximum of distance.

Up till now we have talked only about results and possibilities emanating from
the formulation and solution of variational problems with certain simplifying
assumptions. Hotv nmst we proceed with the detecting of optimum programs in real
conditions?

It is necessary to consider that everything stated above no matter what without
serious changes can be applied to sections of trajectory lying outside the atmosphere.
If the discussion is about a single-stage rocket, then this is correct for the most
final stage of the powered-f.ight trajectory, on which the role of the atmosphere
is already insignificant. If a multistage rocket is examined, then usually this
pertains to all the stages starting from the second. Possibilities of the selection
of a trajectory of the first stage of a multistage rocket and the greater part of
the trajectory of a single-stage rocket are rather rigidly limited by those conditions
about which it was mentioned in § 41.

Thus we arrive at following rather standard scheme of selecting a program of the
pitch angle:

i. Calculation is conducted of the vertical section of the trajectory up to a
certain moment t1. This time can vary %ith the selection of the trajectory and
therefore is examined as one of the free parameters.

2. Calculation continues of the trajectory from moment ti under the condition
that nonzero angles of attack can be allowed only up to the value of the Mach number
M = 0.7-0.8. After that angles of attack should be close to zero during the period
of the whole flight up to the moment when the influence of the atmosphere on the
motion will not appear sufficiently small. Such a condition corresponds well to the
dependence of the form

a =k (k -2. (43.3)

where

' is the limiting value of the angle of attack on the subsonic section of the
trajectory, and a is a certain constant coefficient usually selected for the entire
examined class of rockets. The trajectory is most sensitive to the quantity U,
which is examined as a parameter of the family of programs.

It is easy to see that the dependence (43.3) assigns the angle of attack in the
form of a curve, which rather quickly attains its maximum (in absolute magnitude)
value, and then decreases, at first quickly, but with an increase in time slower
and slower, tending to zero when t- c. Coefficient a will be selected in such a
manner that when M = 0.7-0.8 the angle of attack would already be practically equal
to zero. Thus it is possible to examine the family of programs of the pitch angle
dependent on two parameters: t. and a.

For single-staae rockets whose powered sections are sufficiently short, the
t ectory of the maximum range is selected from such a family of two-parameter
F grams. The problem usually is solved on an electronic computer by means of
calculation of a certain number of trajectories and detecting the extremal solution
by two parameters.

If the powered section is prolonged enough so that at the end of it, after
getting out of the region of intense aerodynamic action, it is possible to move again
with nonzero angles of attack, then usually from some moment we pass to the program
with a constant pitch angle. The basis for this is results of the solution of the
variational problem for the maximum of distance under conditions of the plane-parallel
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field of gravity and the fact that on the powered section this field differs little
from the plane-;arallel.

In the examined case the program of pitch angle has the form depicted In Fig.
43.1. In the same figure there is shown the character of the change in the angle
of attack. For programs obtained with every pair of values tI and 71, the magnitude

of angle 9 = const on the last segment is uniquely
connected with time t 3 of the transition to this

constant angle. Therefore time t 3 can be examinedas the parameter selected with the solution or the

extreme problem for the maximum of distance.

Thus In general the problem is reduced to a
three-parameter extremal problem if there are no
special conditions or limitations which determine
some of these rarameters independently of conditions
of the maximum range. It is possible to indicate,
for example, the limitations encountered In practice
by maximum value of the velocity head connected
either with conditions of loads on the rocket and

*--- its strength or w1th conditions of stabilization
with limited effectiveness of the controls. There
can be limitations acccrding to the maximum
permissible vhlue of angular velocity of the turn
of the rocket or the minimum permissible value of
time ti (or the path passable on the vertical
section of the flight).

With calculations of the trajectory by
selection of the program of pitch angle it is best
of all to use equations of motion of the form
(14.25), i.e.,:

Fig. 43.J.
id P--X sin - Cose.

V sin 0.
dod I

S (P- + ,) g coOO Csiao] .

On the vertical section the third of the equations of this system is not
integrated, since

On the interval from tI to t 3 the angle of attack pursues in accordance with the
dependence (43.3), where the above described procedure of the selection of the valuea provides smallness of the angle of attack in the transonic region.

The program pitch angle is defined as sum of the assigned angle a and the angle
8 obtained as a result of integration. After moment t 3 , conversely, the pitch angle

Is assigned 5n the form i - const and the dependence

is used as a static relation for determination of the angle of attack.

The problem of the selection of the program of pitch ar4gle, as can be seen from
the above mentioned recommendations, even for the simplest case, which is the

I
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condition of the maximum of distance for a simple single-stage rocket, in a
calculating relation is quite complicated. It is necessary to conduct many monotypic
calculations wh-ere the error in one of them raises douot ac.Qou• certain othters.
Therefore, the operation manually, as a rule, occupies a very ]ncng time, re juirec hiU~h
qualification of calculators and application of the thriftiest =mthods of detecting
optimum values of parameters of the pr ra-am. Now similar calculations are conducted
only with the use of electronic comluters, which permits freeing from the indicated
deficiencies of manual count.

Directly for calculations of the trajectory it is necessary to follow
recommendas'ions given in § 27. Regarding methods of detecting the extremal solution,
then, in general, it is possible to use any of the well-kr.own conducting calculations.
Methods of gradient or the very fastest descent are useful.

It is possible to use also the approximation of the dependence L f(ti, i, t3)
in the form of a polynomial of the second degree:

L =O + L4A, + L-. + L;, + y (Lrti + ' + Lt,., +

+ L*Of,+ 4•'A,., + L ,;6 (43.4)

ten coefficients of which are determined from the solution of the system of algebraic
equations composed from results of calculations of ten trajectories with ten different
combinations of parameters tv, E, and t Further, by equating to zero the first

deviatives from distance by each of the parameters, we obtain the system of three
algebraic equations:

, +L,, + La + L•4,3 O.

aw +L f 0i.(35

L:, + L t, + L"t,.= 0.
4 L W I 1.

the solution which gives the unknown values of parameters t1, z, and t , realizing

in the first approximation the maximum of range.

With detecting of the program of maximum range for a two-stage rocket we proceed
approximately the same way. The difference ismthat in principle the quantity of
parameters of the program can be increased up to any value, since limitations similar
to those which were on the atmospheric section here are absent. However, on the basis
of known solutions of variational problems, it is impossible to expect that programs
of more complicated forms than those linearly variable with time can give substantial
gain.

Not dwelling on proofs of this position, we will note only that by many
calculations there is checked the impossibility of obtaining practically a noticeable
gain in distance due to the complication of programs comparatively with the simple
ones. However, even consideration of linear programs delivers two additional
parameters, which are the initial angle lO I and the speed of its change on the
second step $III and thus the quantity of free parameters is increased to five, and

together with this difficulties of a purely calculating property connected with
detecting of the extremum increase. The problem in such cases is reduced to a three-
parameter one, proceeding from the following considerations.

Parameter t3 can be lowered completely, since owing to the variation of the

program on the short-duration section of the trajectory between moment t and the

end of first stage it is difficult to reach a practical gain. The duration of the
vertical section of the trajectory (up to moment t1 ) is selected as small as possible,
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since the larger it is the steeper the trajectory (losses in speed for overcoming
terrestrial gravity are increased) and the more difficult it is to achieve a turn of
the speed 3ubsequently (greater angles of' attack are reiulred).

Thus selection of the trajectory of the first stage is produced only ty one
parameter 4. To eact. of trajectories of this family there can be applied any prcgram
in the second stage of a two-parameter family fo i'-

It is necessary here to make one remark. The fact is that with a similar method
of composition of programs of the pitch angle. angles at the end of the first stage
V said in beginning of the second stage O 1. cannot be .1cined, and between them

there can be formed breaks of greater or smaller magnitude. This will disturb point
of requirema=4ts for Lne prograua " in 141. However, t- disturbance

will be only formal, since it is allowed only on the preiiminary stage of
determination of the most advantageous program. After the form and basic quantitative
characteristics of the program was determined, iubnequent!y it was "refined," i.e.,
acute angles on joints of neighboring sections were smoothed and "jumps" were
eliminated with help of smooth transitions from one section of the program to another.
With the organization of such smooth transitions we usually proceed from magnitudes
of permissible angular acceleration, determined by possibilities of the system and
controls.

Moving on the first part of the section of coupling with constant accltratlon
of one sign and on the second part of the other sign, it is possible to carry out
a sufficiently smooth transition between two s-signed sections of Drogram. as ics
shown on Fig. 43.2. With this the duration of the section of the proix-m on which

there is realized a jump of a given magntude will be
minimum.

"From everything that has been said it follows that
A the optimum in the sense of maximum range program for a

% two-stage rocket ia selected from the family of three-
% parameter programs, where as parameters there are

* selected the maximum magnitude of the angle of attack
5 on the subsonic section of the trajectory, the initial
pitch angle V and angular velocity cI on the second

stage. This method is expedient for rockets with a
number of stages greater than two. On all stages
starting with the second, the pitch a-ngle should be
described.by a single linear dependence of the form

g - 4t. Considerable deviations from it lead on!
Fig. 43.2. to losses of range. However, sometimes they are inevi e le

for the satisfaction of requirements mentioned above iý
point 5 § 41.

S44. Selection of the Program of Minimum Dispersion

Let us consider now, as is considered during the selection of the program, the
condition of minimum dispersion. From expression (142.3) it is clear that with
improvement of the m:thod of turning off the engine requirements put to the program
for the purpose of fulfillment of conditions of minimum dispersion are reduced, and
the role of the program is as reduced.

Really, in variation of range ALT there appear variations of kinematic parameters,
induced by only the deviation 69(t) of the program of pitch from the nominal. But
the perfected control system strives to turn the variation AL into zero independently
what is the cause of tne appearance of tnis variation.

It is possible to imagine the method of turning off of the engine founded on
the measurement of all six parameters of motion and continuous calculation with the
help of a special flying range computer:
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or

L-• (x). I -1. 2. 6.

where x., ... , x- are any six quantities connected one-to-one with Vx, ... , z, which

can be measured by the range control system. When a given function attains an
assigned value, the command for turnin:, off the engine is sent.

Obviously, in this case methodical errors, -Inriluding those induced ry deviation
"ýP(t), will be reduced to zero, and deviations in range will appear only as a result
of instrumental mcasuring errors of parameters of motion. Correct to linear members
hne range error will be equal to

*L OL U OL

AL-~ A AV+ Av, * + AV, + A x. +

6L %y. + A-%Z. (44.2)

or

e#L ii*

where Av,, Avyj, ... , Az or Ax are instrumental errors of measurements ofXA io
corresponding parameters.

The influence of the program of the pitch angle on range dispersi.on in the

examined case will appear in terms of derivatives 3L/v x, 3L/ýVy, ... , 6L/6z,

dependent on the computed values of paraneters of motion at the time of turning
off the engine. Therefore, in principle with the help of the selection of the
program it Is possible to minimize the magnitude of the standard deviation in range.
This deviation, if one were to consider instrumental errors Av x1, ... , Az 1 (Axi)

random and independent and designate the correspo:.ding mean quadratic errors of
measurements av, ... , cZ (axi), it is possible to record in the form

L .. V, av LOZ.) (44.3)

or

1/

Derivatives of distance with respect to parameters of motion should be considered
functions of parameters of the program, and such values of the latter, which reduce
the value of expression (44.3) to a minimum, should be found.

The formula for turning off the engine (44.i) can be presented in another form,
decomposing the function in Taylor series in the vicinity of the calculation point
in powers of deviations of parameters of motion from computed values:

£ AL= O(LA + dSL AX)

A I+ 20 +L . . .( 4 4
"Sol

+07 AXIAX+...=O.
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If in formula (44 . 4 ) we are limited by the final nucber of terms of expansion, for

example, only by linear members, then besides instrumental there error will appear
methodical errors in the form of the sum of reJected members. It Is clear that
with the telp of the program of pitch angle it Is p'ssible to influence not only the
instrumental errors but also the methodical, using the dependence of coefficients of
formula (44.4) (i.e., partial derivatives) from the pro~rrm. Put here another
circumstance Is imrortant, which occurr in the dependence of methodical Prrorz on
quantities Axi which in the end are determined by having an effect on the rocket ir
flight by random perturbations. Methods of the determination of the influence on
the trajectory of small deviations of design parmmeters "nd certain other causes
aer-e discussed in Chapter IX. Using these methods, on! can determine fo., an assicged
totality of random independent perturbations and for the asLigned program of pitch
angle the deviations in range under the conditiot, of the turning off of the engine
by the assiged formula. This will give to us methodical errors in range.

Thus the problem Is reduced to the selection of paramoters of the program from
3 the condition of the minimum of the total standard deviation in rs&nge owing to both

methodical and Instrumental errors of --ontrol.

The describwd avoroach to the selection of the proaram of minimum dispersion is
quite common arv is u•eful for any methosd of turning off of the engine. Let usdwell more concretely on methods connected with the appxlcation of Integra;Urs ofG-forces in different variants.

For the case when the turning off of the engine is produced fron the Integrator
of axial G-forces, the formulas for the determination of methodical Frnd instrumentsi
errors were obtained in • 36 and 37. The equation of the operation of the z.!mplestintegrator

S a

does not contain any coefficients, selecting which properly it would have been
possible to affect methodical errors in range. Thus both methodical and instum-!ntal
errors are only functions of parameters of the pitch angle program. It is assu -ed,
of course that the probability characteristics (in the first place standard
deviationI of t7e random error of measurement of apparent speed are the given valve.
Thus scatterings of perturbing factors are assigned. We see that the problem is
reduued to the determination of values of a certain quantity of parameters of the
program from the condition of the minimum of totai deviation in range.

The Integrator of axial G-forces with temporary compensation permits ordering
one more value, namely, the coefficient of compensation. For every program determined
by the totality of some quantity of its parameters, it is possible to eyamine the
turning off of the engine at different values of the coefficient of compensation,
but with assigned probability characterlstics of instrumental errors and perturbing
causes. The value of the coefficient of compensation with which will be realized
the minimum error in range will be optimum for a given program.

Inasmach as such a relative minimum exists for every p.-ogram of the examined
family, it is necessary to select that program and that coefficient which give
absolute minimum of deviation in range. However, the selection performed by the
described method will give the best result only for eome one ... moment of turning
off of the engine, i.e., for some one range. Thus, theoretically it would be
necessary to have an infinite quantity of programs and selected coefficients of
compensation respectively. In practice we manage with a small quantity of programs
covering a whole range of ranges. Of course, It is necessary for some ranges to
retreat from condi~ions of providing the minimum possible dispersion.

Approximate.y the same way is the matter with the selection of programs in the
czae or turning off of the engine from the integrator with a constant inclination
of the axis of sensitivity, i.e., installed on the stabilized platform. Here there
is examined the problem on the minisization of total deviation in range owing to
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the definite quantity of parameters properly of the program and angle of inclination
of the axis of sensitivity of the integrator.

If the controlling functional is complicated by the introduction of double
integration of the G-force, then with minimization of deviations in range the
direction of the axis of sensitivity along which calculation of the apparent path is
produced will also be subject to the determination.

It is not difficult to see that almost in all problems minimization should be
produced according to the quantity of parameters fluctuating from one to five.
Since the strict solution is sometimes hampered even with the application of
electronic computers, it is possible preliminarily to conduct an analysis of the
dispersion. With this instrumental errors depending upon the program and methodical
errors are examined separately for more or less suitable programs depending upon
coeffictents of the controlling functional (coefficient of compensation, directions
of axes of sensitivity, and so forth). In § 37 it was shown that optimum values of
the indicated coefficients from the condition of the minimum of methodical error
are determined quite simply. This occurs, as a rule, sufficiently in order to dwell
on some narrow beam of programs and formulate a concept about basic regularities
which are obeyed certain components of the total deviation in range.

By conducting similar calculations for the upper and lower boundaries of the
aczicn-d rAnpe of distances and also for one-two intermediate points, there can be
made a selection oi uut.a the number of prv'uramG and the r.umericai values of parameters
of these programs. It is necessary to remember that programs of both minimum
dispersion and maximum range essentially depend on the direction of firing and
latitude of the launching point. With firing to the east the effect of rotation of
the earth (Coriolis acceleration and turn of gyroscopcz expressed by the angle 7 3 )
as if lifts the trajectory, makes it steeper, and with firing to the west, conversely,
the trajectory is as if pressed to the earth and becomes more sloping. Therefore
programs of the pitch angle in the first case should place the rocket at smaller
angles of inclination of the tangent to the trajectory and in the second case, at
larger angles. It is natural that this effect is increased with a decrease in
latitude of the point of launching.

Everything that has been said does not exhaust all the problems connected with
selection of the program but gives an approach to the solution of problem and fixes
attention to the most essential sides of the problem.
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Fig. IVI. Graph of the change in coefficient k depending ponL and T.
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1 U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Italic Transliteration Block Italic Transliteration
SAa Ai A, a P p P , R, r
5 6 S6 B, b C C C c S, s
B. BD V, v T • T m T, t
r r ra G, g Y y Y y U, u

AD, d 0* F,
E E 8 Ye, ye; E, e* X x X x Kh, kh

W *x Zh, zh UU L" 4 Ts, ts
8 3s Z, z 4 , 4 e Ch, ch
M JIM I, i 1W " w Sh, sh
R R a Y, y LW 14l I Shch, shch
K XKi K,k kD liii

Ai X 7 a L, 1 W LJri Y, y
Mw kM M, m b h b

H K N, n 3 a 9 * E, e
S0 0 O,o a) 0 a 10 Yu, yu

n n I p, p A A 0 Ya, ya

L e initia.2y, after vowels, and after 1, b; e elsewhere.

en written as E in Russian, transliterate is yd or V.
The use of diacritical marks is preferred, but such marks
may be omitted when expediency dictates.
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MICATIaIS CV TIM TRIG=MSnIC FUNCTIBS

Russian Mbglsh

fsin sin

4c tam

COMOC oot

1'sh Binh
oh cosh
th tank
oth Oath

ach seek

are sin.@-

a=' a" 000-1

are th tank'
awe eth cot-a1

are sob fine'

are Ose cowl"

rotow
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