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Dedicated to the Memory
of Acsdemician Sergey
Pavliovich Korolev

PREFACE

Expounded in the book are certain theoretical bases and the most important
practical methods of investigation and calculation of motion of the center of
massas of gulded long-range ballistic rockets.

“he book is intended basically for those who for the first time are enccuntered
with the btallistics of long-range rockets. Therefore, the authors have tried as
far as poasible to give a presentation on sll problems o ballistle character
with which one must encounter in the process of the design:ng of rockets, Along
with an acccunt of questions of the theory of flight and methods of calculation of
the trajectory, the reader will find in the book the formulation of & nusber of
problems whose development can be of considerable interest, These are basically
problems referring to the selectlon ¢f the form of trajectory and to methods of
control of the flight range of rocketis.

The book consists of four parts,

In the first part there is conducted an analysis of forces and moments having
an effect on the rocket; there are general equations of motlon; there 1s investigated
the possibility of their simpiification depending upon the character of the
problem to be solved and, finally, integration is conducted of egquations of motion
for free flight in s vacuum and the solution of these equations is investigated,

In the second part questions are examined connected with the practical
solution of the besic problem of btallistics end problem of designing: the method
of calculation of the trajectory and composition of preliminary tables of firing
and an analysis of the influence of btasic design parameters on {lying characteristics.

The third part is devoted to dispersion with the firirg by long-range rockets
and adjscent questions, ip particular, the influence of certain peculiarities of
the control system and propulsisn system on the accuracy of fire,

Examined in the fourth part is the problem on the selection of the so-called
pltch-law prograz of the change in angle of inclination of the axls of the rocket.
The pitch progran determines the form of the powered-flight trajectory and thereby
influences both the fiying range of the rocket, its other flying characteristics,
including the accuracy of firing.

FTD-MT-24-177-€7 1
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This bocxk ¢sn serve as &n &#1d for students of-higher educational institutions
and engineers specializing in the rleld cf ballistics of rockets,

Contiibuting to sepevrate paragraphs of the book were P, P, Karaulov ard S, S.
Rozanov; a number of useful remarks were made by M, S. Florianskly, The authors
are grateful to a1l of thex for the help rerderel.

FTD-MT-24-177-67 2
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INTRCDUCTION

By long-rsnge rocket {PJl]) we mean a controlled sircraft with a reactive
engine intended for the transfer of 2 payload at great distances on a preassigned
trajectory, a greater part of which passes in very rarefied layers of the
atmosphere.

Long-range rockets possess & number of peculiarities separating them in an
independent class of aircraft. The dynamics of their flight has much in common
with the dynamics of flight of eircraft, artillery shells, unguided rockets, but
et the same time 1t obeys in many details its speclal regularities and therefore
requires independent investigation.

The PAI trajectory consists of two sharply differentiated sections. On the
first section, which is called the powered section, the rocket ¢nllects kinetic
energy. By the quantity of accumulated kinetic energy at the end of the powered
gection the PAJl sharply differs from other transport means. Having a mass of
paylomd of the same order as that of a bomber aircraft, the P[f attains a speed
considerably exceeding the speed of artillery shells, But this speed is gathered
by the rocket gradually and is attained In greatly rarefied layers of the atmosphere,
which permlits btringing toc a minimum of the expenditure of energy on surmounting
atmospheric drag. The quantity of accumulated kinetic energy is the most important
index of the P[JU perfection.

On the second section, called the free-flight trajectory or the free ballistic
path, the accumulated energy 1s used for transportation of payload at a great
distance. According to the character of the use of the PJI energy, it is possible
to divide rockets into two basic groups:

a) ballistic rockets flying after the turning off of the engine similar to

artillery shells and controlled only prior to the moment of the turning off of the
engine;

b) glide rockets, controlled during the period of the entire trajectory,
which use sercdynamlc 1ift to increase the flying range.

In this book only bellistic Plllare examined.

Long-range rockets, Jjust as artillery shells, fly on trajectories assigned them
befcre launch, But, in contrast to srtillery shells, the PIll are contrclled in
filight, enabling the possibility to & considerable degree to compensate the
influence of a number of causes having an effect on the powered section and leading
to a deviastion of the actual trajectory from the assigned. The control system
of the ballistiec PIJ} solves the following problems:

FID-MT-24-177-67 >
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a) maintaining the assigned, gradually variable during flight, orientastion
of sxes of tne rocket in space (control of motion around the center of gravity);

b) maintsining the assigned direction of flight and form of trajectory and
also of the given value and direction of the speed of flight (control of the
motion of the center of gravity);

c} turning off of the engine at the moment when the kinematic parameters of
motion of the center of gravity of the rocket (speed, its direction and coordinate
of the center of gravity)} in totality provide flight for the assigned distance
{range control of the flight).

: The control system thus provides flight of the rocket in accordance with the
: performed aiming and setting of the rontrol instruments, but the very problems of
g aiming or guiding of the rocket &t the %tarzet are not solved by it,
£

. After turning off of the engine the grester part of the flight of the
ballistic rocket occurs in practically a vacuum under action of forces not
controllable but those which are exactly well-known, This, on the one hand,
excludes the possibility of control on the greater part of the section of free
flight and on the other hand, increases the accuracy of firing.

B The named peculiarities of the PJfI determins the specific character of

. ballistics — the theory of their motion, On the powered flight trajectory the
motion of the rocket should be examined taking into account, first, the great speed
of change of the mass of the rocket and, secondly, the presence of control. The
first circumstance makes the laws of mechanics of bodles and systems of constant
mass inapplicable in flnal form to the study of motion of the rocket, and the
second compels one to examine the motion of the center of gravity of the rocket
Jeintly with the motion of the rocket around the center of gravity. It should be
noted that just as in ballistics of artillery shells the motion of a rocket around
the center of gravity is exsmined neglecting the small oscillations around the
center of gravity. Bases for this are even greater that the control system should
extingulish oscillations of the rocket.

In examining the motion on the section of free flight, due to the great
distance, altltude and speed of the flight, it is necessary to consider s change
in acceleration of terrestriesl gravity in magnitude and direction and the influence
of rotation of the earth. But then the investigation of the trajectory is
facilitated by the small magnitude of aerodynamic forces on the free ballistic
path and at the end of the powered section. There appears the possibility of
methods of approximation of the calculation which possess high enough accuracy but
at the same time are simple.

¥ o L

Ballistics of PIH should soclve the following problems:

1. Determination of the trajectory and other basic characteristics of the
motion of the rocket with well-known design parametcers ol contircl system with
assigned sighting data (direct basic problem) or, under those same conditions,
determination of sighting data from assigned launching points and the target
{inverse problem),

:
4
:
e
¢
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2. Selectlion of the form of trajectory providing the best use of posslbilities
of the rocket {selection of the control program}.

3. 1Investigation of the dependence of flylng characteristics of the rocket,
in the first place, range of its flight, on the design parsmeters for the purpose of
selection of most advantageous combination of these parameters {ballistic designing).

4. Investigation of the influence of different perturbing factors — scattering
of design parameters, change in extern=2l conditions of fiight, errors in control
instruments — on flying characteristics of the rocket (investigation of dispersion
and relasted questions).

L These problems are closely connected with the solution of a number of other
problems related to aerodynamics (determination of the magnitude of aerodynamic
forces and thermal regime of construction depending upon the selected trajectory),




dynamics of construction {design of elastic osciliations and osciliations of ligquid
in the tanks), theory of automatic control (investigation of processes of
stabilization and stability of motion of the rocket on its calculated trajectory,
selection of laws of control), calculation of design of the rocket for strength
(determination of loads on the construction and their dependence oa the flight
path), and other disciplines. The great role of ballistics in the solution of
design problems is very great: the selection of the configuration of the rocket,
its design and values of its constructive and power characteristics, which in the
very best manner correspond to requirements presented to the given rocket, All
these adjacent questions are partially and briefly touched upon in the bcok only
in connection with the solution of the above-mentioned problems of ballistics,

The very problems of ballictics, which are thus reduced to the investigation of
the undisturbed moticn of the center of masses of rocket, are examined neglecting
many, sometimes very important, detalls In order to pay attention to the basic
peculiarities of these problems, the regularities with which they cobey, and methods
of their solution, Knowledge of these methods and regularities will allow an
engineer to begin independent work in the field of ballistics of rockets,




TR Te he s 44 T 2o

PART ONE

GENERAL THEORY OF MOTION

Preceding Page Blank

R I T R

L e L A




TR TR g e T Ty m AT e e

- m— e e P P A N e

CHAPTER I
SYSTEMS OF COORDINATES

§ 1. Terrestrial Coordinates

We will examine the motion of rocket in the rectangular coordinate system
Oxyz, which is motionlessly connected with earth (Pig. 1,1). This system of
coordinates will be called terrestrial., The axis Ox of the terrestrial system will
be directed along the tangent to the surface of earth
at the point of launch in the direction of aiming,
axils Oy - vertically upwards at the point of start,
and axis Oz = in such a way to obtain the right-handed
system, i.e., perpendicular to the plane Oxy to the
right of the direction of aiming. We consider earth
8 sphere with a radius R = 6,371,110 m (the voiume of
such a sphere is equal to the volume of s terrestrial
spheroid)}. The point with coordinates (x, y, 2z} has
with respect tc the center of the earth radjus vector

rexs'4 R+9)0 + 22 (1.1)

the length of the vector

r=V Ry + O+ 8 (1.2)

153 the distance of *his point from the center of the
earth. The altitude of this point above the surface
Fig. 1.1, of the earth is equal to

borr— Ru YR+ yP+ 5+ & —R. (1.3)

The terrestrial system of coordinates is not inertial, since it participates in
the rotation of the earth around its axls, accomplishing a full revolution in one
stellar day (86,164 s). The angular velocity of rotation is equal to

“= g =120 107 L (1.4)

The vector of the angular velocity of the earth ¥ is directed along the axis

of rotation from the south pole to the north, since the rotation of earth occurs
from west to east, If we designate the geographic latitude of the point of launch
by q;, then vector ’s can be decomposed into two corponents (Fig. 1.2): vertical,

e e T g3 A e - e ——
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«,
’ ’ - directed along the axis Oy.
2 “3"303518Q'.

\ and horizortal, directed in the plane Oxz onr the
\ tangent to the meridlsn:
L\

v
Vg =T O, 089,

axes Ox and Oz into components

6y, w0, 08¢, COS %,
@y, = @, COS €, SiDY.

. ’ &‘. “"T —_— The horizontal component in turn can be decomposed on

* 1
R4
[

]

[ 4

¢

L 4

’

Thus the vector of angular velocity of the earth
can Le represented in the form

-,-.u,(cosq,cmt.t"-i-sln,f—-cosc,smﬂ'} {2.5)

Fig. 1.2.

Motion of the center of gravity of earth in space will be considered
rectilinear and uniform, disregarding the curvaturc of the terrestrial orbit,

The point moving relative to the terrestrial system of ccordinates, with
moving coordinates in this system X, ¥, B, has a relative speed of

. . . 1.6
omidt pf it (2.6)
and relative acceleration
Jr=xxr 4y 1 - (1.7)
Absolute acceleration of this point will be equal to
=L+ 1+ {(1.8)

where §, 1s the translational acceleration equal to Jo=wy X (wy X r)=w,(9y-7) — e,
J.=2%;X9 15 the Coriolis acceleration.

Using expressions {1.1), (1.5) and (1.6}, we will find the decomposition
of vectors J‘ and 3c about axes of the terrestrial system of coordinates. The

scalar product = <y can be given in the form

t ]
03 - F =3,
. where
r,=xcosq, cos¢+ (R + y)sing, — zcosq, sinp. {(1.9)
. is the projectlion of radius vector ¥ on the axis of rotation of the earth.
Consequently,
) J,au,r,c,—ngrsagf(r_cos;,cosv—.r)x‘«!- (1.10)

+{ryshag,— R— )y +(— '.m'r“n*_""l
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and
= y
Jomm2fMyc0sx, cosd w sing, —e cotq siad |
x y s

- %K;mt,ﬂﬂt + Esnf,)x' +
(-~ xcosg sing — Fcosq, cos )y 4
4 (= Zsing, + ycotq, cos $) £ (1.11)

§ 2. Bound Coordinates

Begides the terrestrial system of coordinates, we will use the rectangular
system of coordinates olxlyiz1 {rig. 2.1) connected with the rocket. 1In short

we will call this system bound. We place the origin of the bound system of
coordinates at the center of gravity of the rocket and direct the axis lel along

the longitudinal axis of the rocket toward its summit, At ‘aunch the rocket is set
vertically, and therefore at the time of launching axis 0%, coincides in direction

with axis Oy of the terrestriasl system of coordinates. Axis 0121 will be directed

in such a manner that it at that same moment is parallel to axls QOz; then axils
01y1 will take a direction opposite the direction of the sxis Ox. In other woras,

the direction of axes of the bound system of coordinates at the time of launch
will colncide with directiong of corresponding
axes of the terrestrial system if one were to turn

the latter 2t an angle of 90° around axis 0z in
a direction from axis Ox to axis Oy.

In flight the directions of axes of the
bound system of coordinates with respect to the
terrestrial are changed. We will determine then
by angles of three turns, which it is necessary
to produce in definite crder in order to combine
directicns of axes of the terrestrisl system with
directions of axes of the bound system of
coordinastes.

Since we are now interested only in the

direction of axes which are not changed with
Flg. 2.1 parallel translation, then we preliminarily combine
¢ eene by means of parallel translation the origin cof the
terrestrial system of cocordinastes O with the origin

of the bound system 01. After that we will perform the following operations:

1. Let us turn the terrestrial system at angle @ around axis Oz in such a
manner that the plane Oxz passes through axis Oxi; the obtained system will be
designed Oxiy'g¢,

2. With a turn around axis Oy' at angle £ we combine axis Ox' with axis Oxl;
the obtained system will be designated Ox"y"z".

3. With a turn around axis Ox" at angle 7 we combine axes Oy" and 02" with
axes Qyi and Ozi.

As a result of these three turns, the terrestrisl system will be combined with

the bound system. Let us find the formulas of transition from one system of
coordinates tc the other. The transition from system Oxyz to system Oxtytzt! is

10




expressed by formulas

&' em xcOby -+ ysiag
Y = —xsing -ycosq, {2.1)
L==gp

[, )

Formulas of transition from system Ox'yiz! to system Ox"y"z" have the form

X2 x con} — s,
Y=y, {2.2)

2" = x"sin} 4 2" cosl.

Pinally, the transition from system Ox"y"z " to system Oxly121 is carried out
by means of formulas

‘lﬂx.,
Fi==y'corn+2“sinn, {2.3)
nm—y'sian4-2"cosn.

Substituting exprissions {2.1} for x', y', z' into formulas {2.2), we obtain:

x"smxcosqcoslf-ysingcos: —zsink,
Y = — xsing }-ycose,
Fexcosgsinlifysingsinl -4 zcosl
If these expressions for x", y", 2" are substituted in forwmulas {2.3}, then

we will find the formulas interesting 0o us of the direct transition from the
terrestrial system Oxyz to the bound system leiygz,‘ {on the above-menticned

condition that the origins of both systems of coordinates O and O, are comblnedj:

5y X Cosqcos} -4 ysingcost — rsiad.
n=x{—slagcos g-f-cosgsinalsiang) -
4+ ylcospcosn--singsinls i)+ zcosisinyg, (2.4}
2, == x{singsinn-cosqsintcos )4
4 y{—corgsiant-singsintcos ) zcos Yooy

The geometric méaning of angles g, £ and n is the following: the angle ¢
determines the position of the inclined plane perpendicular to plane Qxy and
passing through the longitudinal axis of the rocket, the angle £ is the angle
{in this inclined plane) between the longitudinal axis of the rocket and plane
Oxy, and finally, the angle n is the angle cof rotation of the rocket about the
longitudinal axis, It is accepted to call 9 the pitch angle, £ — the yaw angle,
and 3 — the rgll angle,

One of the problems of the control system of the flight of the rocket is that
in order not tc allow the appearance of great values of angles £ and v, and to
change angle @ according to the assigned law defined beforehand.

3ince we examine the normal flight of the rocket with s properly working
control system, we will consider angles £ and r small and replace their cosines
with unity, and the sines with the angles themselves:

cosi==coan==1, siai=1 sinn=y

Producing such replacement in forurilas of transition (2.4) and rejecting terms

i1
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conteining the product of small quantities £ and r, we will obtain the following
simplified formulas which we will use hencaforth:
Xy = xc08¢ 4 ysingp— 2}
¥y = x8ia§ 4 ycos§ + 20 (2.5)
smx{icosg ~nslag) 4y Qsing—meosq) 4 2.
Cogfficients in theae formulas are cosines of angles between axeg of the

1(:;:‘;5%:'1&1). and bvound systems of coordlnates or the so-called direction cosines
e 2,1},

Table 2.1
Ox oy Or
0,2, e sing s |
O —niay <os g L]
O § Lesgfnsiag | Lsing —yeuy !

If components of a certain vector A on axes of the terrestrial system of
coordinates are equal to Ax’ A), Az. then on axes of the bound system this vector

has the following components:

A= Aycong 4 A sing— AL )
Ay, — Agsing - A cos9 + An, {2.6)
A, = A Gcosg Fyslng) + 4, Gsing—ncos) 4- A,

Conversely, the vectorial components in the terrestrisl system are expr=ssed
in terms of components in the bound system ty means of sucn formilas:

,1,==A,,ces¢-A,,siu:+.~i,‘(;ccsq-+ ysiag)
Ayu= A slng + Ay cos ¢+ .1, G sing — ncos g (2.7)
Ay==— AL+ Ayn+ Ag.
During the fiight of the rocket angles ¢, £ and 4 d0 not remain constant.
Let us designate their derivatives, as ususl, by @, 5 and 71, and let us find the

form of nonholonomic constraint among thesz derivatives and projections By s By
5 1

v, of the angular velocity of the rocket on the axis of the bound system of
i -

coordinates, Veclor ® is directed along the axis 0z of the terrestrial system of

cocrdinates. Its direction cosines coinclde with coefficients at £ in equations

2.4) and in simpi.ried forx are contalned in the last column of Tatle 2.1. Vector
is directed along the intermediste axis Oy' (Oy") iying in plsne :.)y,z1 and

generator angle 7 with the axis Oy, and angle g0° + n with the axis Ozl.
Consequently, its direction cosines in the bound system of coordinsgtes Oxlyiz1 will
be (0, cos ., -sin q). Pinslly, the vector 1.3 is directed along the axis Ox, and

-

has direction cosines (1, O, 0), C(Consequently, the nonhclonomic cuastraint
interesting to us has the form

o= g3inl 40
w, = gcosisian - feosn, (2.8)
o, =gcortcosy—{siny.

or, in simplified fora,

iz
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FORCES AND MOMENTS ACTING ON THE ROCKET

By rocket as a mechanlcal system we will imply all those masses which at the
given morent of time are included in the volume limited by the external surface of
body and conircl surfaces of the rocket and by the plane of exit section of the
nozzle {or nozzles) of the engilne.

On the rocket the following external forces act: gravity, aerostatic and
aerodynamic forces and forces from controls. Gravity is the mass force, i.e., is
composed of elementary forces applied to each particle of mass of the rocket. The
remaining forces which are surface, namely, aerostatic and aerodynamic forces, are
composed of elementary forces applied to each elementary srea of the body surface
of the rocket, and forces from controls in this way are composed of elementary
forces on the surface of the control surfaces.

Let us proceed to the investigation of these forces and moments.

§ 3. Gravity
Gravity, or the weight of rocket, G, is expressed by well-known formula

Caumg. {(3.1)

The mass of the rocket m ls determined by operating conditions of the engine
{flow rate per second) from switching on of the engine prior to the examined
moment of time. If by m we designate the flow rate per second of mass through the
nozzle exit section, i.,e., the absolute value of the derlvatlve mass In time:

CPRT "y (3.2)

then for the mass of the rocket at the time t will be obtained by the following
expression:

[}
B, —~ f,;.a, (3.3)
toa

where tg,, 1s the moment of the switching on of the engine prior to which the mass

of rocket is not changed and is equal to B oen

14
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The flow rate per Becond, in general, is inconstant. Considerable changea in

the flow rate occur in transient conditions of the operation of the engine (switching
on, switching te a smaller thrusi, complete turning off), But also during operation

¢of the engine in the steady-state operation there take place changes of the flow
rate per second caused by the change in acceleration of the motlion of the rocket,
the altitude of levels of liquids in tanks, and so forth. Therefore, the

calculation of the mass of the rocket in general should be produced by the formula
(3.3).

By acceleration of terrestrial gravity g we mean pure Newton acceleration,
caused by only the action of the force of mutual attraction between earth and the

rocket. Since earth is considered a sphere, the acceleration of terrestrial gravity

depends o.aly on the distance of the point to the center of the earth:

== F (3.4)

and i{s directed to the center of the esarth.

Here f = 6.6’{0-10'11 mj/kg-s2 is the gravitational constant; M = 5.9765-102# kg

is the mass of earth (fM = 3.9862 x 10** @/s%); g, = 9.8204 u/s® is the
acceleration of terrestrial gravity at the surface of earth.

Usually the acceleration of terrestrial gravity is united into one guantity
with centrifugal acceleration caused by the rotation of earth, since the physical
manifestation of both accelerations for bodies quiescent on the surface of earth
is absolutely equal, But we will not do this in general because the magnitude of
these accelerations is determined by various factors,

§ 4. Atmosphere

Terrestrial atmosphere is the medium in which flight of the rocket occurs.
For a determination of the quantity of forces having an effect on the rocket it
1s necessary to know the basic characteristics of this medium: density, pressure
and temperature, These quantities greatly depend on a number of factors: altitude
of the point avove the surface of the earth, geographic latitude, time of season
and day, and so forth. But for practical purposes there 1s taken into account
the dependence of characteristics of the atmosphere only on altitude. This
dependence iz given in tables of standard atmosphere [4] utilized during

calculations of trajectories., The atmosphere is considered motionless, i.e., wind
is not considered.

Temperature T, pressure p and air density p are connected with each other and
with the altitude above the surface of the earth by the equation of state

P=pRT (4.1)
and by the differentisl relation of equilibrium

dp=— gpdh. (4.2)
Here R = 287.05 m2 is the gas constant for 1 kg of mass of air,
sedeg
Excluding p from (4.1) and (%.2), we will obtain

.t
? T R

and after integration from Pg to p and from O to h:

- »
m-’!.-..._[.ﬁ‘l,

[
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From expression (4.1) it follows:
{4 7,

TR

or, inserting p/py from (4.3),
8
[
v, -§ (4.4)
£-3707

§ 5. Aerodynemic Forces

Flight with nonoperati engine. Aerodynamic forces are the result of the
influence oY Lhe env!rommeng on gﬁe surface of the rocket during its motion. From
the general surface of the rocket S we separate the external surface of the body
Se, and the surface, more accurately the section of the exit plane of the nozzle

Sa. The surface of jet vanes and forces having an effect on it are not as yet

examined. Acting on every element of the surface are, in general, the normal
force 0dS and tangent force 1dS (o and 71, conseqguently, designated the normal
and tangent forces having an effect per unit of surface area of the rocket at
the examined point; see Fig. 5.1). The total force having an effect per unit of
surface area of the rocket will be designeted by p, so that

. =4t (5.1)

Fig. 5.1.

If rocket is motionless, then v = 0, and ¢ = p (p — air pressure). During
motjion of the rocket T # O and ¢ ¥ p. The difference

om=o—p (5.2)

1s the excess pressure of alr on the surface of the rocket. It can be positive
and negative, In the latter case it is called also rarefaction, which is created
at a given point of the surface of the rocket,.

The force R, appearing as a result of the influence of air on the whole
surface of the rocket, is equal to

Rz!yd& (5.3)

16




This integral can be divided into two integrals, the external surface of the body
of the rocket Se and the area of the nozzle exit section Sa‘

R=~fpd$+ Ipds- (5.4)
) s

For the motionless rocket the pressure of air over “he entire surface of the
rocket is balanced:

R==0, {5.5)

but each of the twc integrals
[2es ena IpdS (5.6}
8’ 3‘

is not equal to zero. Let us designate the vector with length p, directed on the
nermal to the element of the surface d8, by Py

Integrals {5.6) for the motionless rocket can be recorded in the form

I}Lds' and !jgds.
3, 5,
since p in this case coincides with P and equality (5.5) takes the form

R= [p.as+ f puds=0. (5.7)
. L 2

. L J

Inasmuch as surface sa is flat and perpendicular to the axis Oixi, integral
‘Iphds,whlch is the force of alr pressure on this surface, is equal to
)

* J pudsm=S,pat, (5.8)
C. -

and on the basis of {5.7)

"! pdS = —,‘f Ps‘s="s.l’3:- {5.9)

The integral of the formf p;ds is called aerostatic force having an effect on

the surface S, Equality (5.75 shows that the aerostatic force, having an effect

on the whole surface of the rocket, is equal to zero, Strictly speaking, this
force, according to the law of Archimedes, 1s equal to the weight of air in the
volume occupied by the rocket, But this gquantity can be fully disregarded because
of its smallness in comparison with not only the remalning forces having effect on
the rocket, but also with errors of determination of these forces, Formula (5.9)
gives the magnitude of the serostatic force having an effect on the exterral surface
cf the body of the rocket,

Returning to the case of the moving rocket, eacn of the integrals entering

into formula (5.4), on the bvasis of expression (5.1), will be divided into the
sum of two integrals

17
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R== chs-}- [1d$+ I:d$+ [us._
‘0 ‘0 ‘- ‘0

In thils expression each of the integrals from the normal force
O = pa 4+ o' (where o° 1s the excess normal pressure) in turn can be represented in

the form of the sum of the two integrals:

. d das iS4 ' dS ., .
® ‘!p.ds-&-.{c 4s+';{1 +’{p. "f +'!u$ (5.10)

The sum of the first and fourth terms in this expression (see formula {5.7))
is equal to zero.

Porces determined by integrals of the form ,IC' 4s wd!‘ﬁ- and also by

F ] .
sums of such integrals bear the name of serodynamic forcegs. Aerodynamic forces
turn into zero both for the whole motionless rocket and Tor separate sections of

its surface.

Equalities (5.10) and (5.7) show that the force R, with which air acts on the
whole surface of the rocket with a nonoperating engine, constitutes an aerodynamic
force which we will call full serocdynamic force.

The motion of air In the nozzle exlt section can be disregarded and then the
tangent forces will disappear:

1".==0. {5.11)

{(from this it follows that the sixth term in formula (5.10) turns into zero), and
the normal pressure about the quantity will be constant:

C’Li==cohst

This constant will be designated oi, and let us call the bottom rarefaction
for the nozzle section of the engine (it is assumed that the rocket does not fly
with the nozzle forward and, consequently, oi < 0). The constant pressure ck on

the surface sa gives a force of pressure xln, egual to

Xhu,je'dsas‘c;.!:. (5.12)

i.e., the fifth term in formula {5.10) constitutes a force in magnitude equal to
Sald;l and directed along the axis of the rocket from the summit to the tail,

Porce ){“x will be called base drag, or the suction drag behind the engine

nozzle,

Let us note that the base drag will be formed not only behind the nozzle but
also behind other face areas on the rocket which we have inclvded in the external
surface Se' Base drag xlne’ forming behind these areas, will . - a pert of the

integral ch’ds. « This whole integral 1s the resultant of excess pressures
L/

.
about the external surface of the rocket body. Let us expand this resultant into
two vectors: vector K,u, directed along the axis of the rocket, and vector Yi’

directed along the perpendicular to the axis:

[
<o




Ir‘lS:X“-}-Y.. (5.13)
‘0
We will call force x1B ine axlal force of pressure, and force Y1 the normal
or lateral aerodynamic force.

Finally, the third term in expressim (5.10) constitutes the resultant of
tangents forces, or forces of friction, about the external surface of the rocket,
This resultant is almost exactly directed along the longitudinal axis of the rocket,
We will disregard its deflection from the longitudinal exis of the rocket and
consider only the axial component of this force, which we denote by x and call
the axial frictional fcrce: irp

Xy 2 cha‘. (5.14)

Thus the expression {5.10), on the basis of equalities (5.7), (5.i1)-(5.13)},
can be thus recorded:

R=Xu+x‘""{"xh*:" Yl’ (5'15)

The sum of the flrst three terms (5.15) constitutes a force directed along the
axis of the rocket, which we will call axial aerodynamic force and will designate

by Xl

X=Xt Koy + X (5.18)

Finally

REXg'*-y‘. (5.17)

If the axis of the rocket is directed along the tangent to the trajectory, then
the flowing around of the rocket will be symmetric relative to its axis. The
distribution of pressures and forces of friction will be symmetric snd,
consequently, the normal aerodynamic force will be equal to zero.

If, however, the axlis of the rocket will form with the tangent to the
trajectory a certain angle a, called the angle of attach, then for rockets close
in form to the solid of revolution (and only such rockets are examined by us), the
flowing arocund will be symmetric with respect to the plane passing through the
axis of the rocket and through the tengent to the trajectory. With this the normal
aerodynamlc force and, consequently, the full aerodynamic force will be disposed in
this plane,

During norzal flight of the rocket the angle of attack occurs small, of the
crder of several degrees, Experimental and thecretical research shows that for
such angles of attack the axlal aerodynamic force and all its components depend
little on the angle of attack, and the normal aerodynamic force is directly
proportional to the angle of attack:

Yi=Ya (5.18)

The full aerodynamic force is frequentiy distribuied not on the axial and
normal components but on the dr X directed along the tangent to the trajectory
opposite the direction of the mction of the rocket and 1ift ¥, direzted along the
normal to the trajectory (Fig. 5.2). On the figure point O, is the center of

gravity of the rocket, and point D is the center of pressur; (point of application
of force R).
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of dreg and 1ift, Frejecting forces xl and Yl an
directions ot the tangent and normal to the
trajectory, we cobtain

X om X, cotet ¥, sing,

¥ ae - X, siza 4 ¥, cosa (5.19)

For small angles of attack one can assume that
cos & = 1, anld s8in a - a; using equality {(5,18),
we copy these expressicns in the form

X::X,-{-er-:,\"+?;¢’-

Y-—X,:-&-Y,m(ﬁ-—xl)umf'c.} (5-20)

where
Y =ri— X (5.21)
Solving equation (5.19) with respect to X, and ¥,, we find inverse relation:
x‘ﬂxmﬂ— Y‘!“-
¥;=2 Xsiaa-} ¥Ycosa.

or, spproximately,
XX~ Yo X — Vet

Vyme Xa+ Y == (X 4 Ve (5.22)
Usually aercdynamic forces are expressed thus
X-‘ﬁ. : (5-23)
Ve gS =ceSe. (5.24)
Xl”‘lﬁ' (5-25)
Yyw= e, 65 = ¢, ¢Sa, (5.26)

2
where q = p % — velocity head; p — air density at a given point of the

trajectory; 8 -- charecteristic area of the rocket {for example, area of the
midsection — the largest cross section); Cys cy’ c;, Cy.? cy s c§ — dimensioniess
1 1 1

coefficients bearing the name of aerodynamic coefficients.

Powered fl}g%t. We will consider that the distribution of pressures and forces
of frictlion aboul the external surface of the body of the rocket does not

depend on the operation of the engine, i.e., during flight with an cperating
engine it remains the same as with a nonopersting engine. Regarding the nozzle
exit section, the operation of the engine excludes any influence of environment
on the plane of thls section.

Designating the average pressure in the nozzle exit section by pa, We can write

fpas =52 (5.27)
3




With the cperation of the engin» the pressure P, afid also the whole integral depend

only on cperating conditions of "he engine, and action cf air on the rorket
appears only in the form of an intezral on the external surface of the body of
the rocket

[ oas. (5.28)
"0

Porce p, having an effect per unit cof surfare area of the rccket, 33 before
can be represented in the form of the sum of norusal atmospheric pressure p,,

excess pressure o' and frictional force T, Accordingly t-.e integral {5.28} can be
reccrded in the form of the sum of the Integrals

jpdSa jp;dS-}- I:'ds-i' [-:a.’;. (5.29)
s, 3, s,

s

For each of these integrals former expressions and degignartcns (5.9}, {5.13)
end (%.18) remein in force, and therefore

JraS=—S 54X, 1V 4 x, (5.30)
‘0

In the case of the motionless rocket p = pﬂ, ' 2 3, v = 0, and acting on the
rocket from the side of the external surface is only the aerostaiic force

I,,;s.._s_px:. (5.21)
’O
This force will be united with integral (5.27), and we will call the sum

Powm [paS+ [ paS=S,(p,~ % 5.32)
% )

(
static thrust,

Let us call the full aercdynamic force for the rockst with an operatlng engine
the sum of caly aerodynamic forces in the formula (5.30)

Ry, =X+ Xy + Y. (5.33)

Thus for the rocket with an operating engire the external surface force is
composed of the aerodynamic force Rp 1 and static thrust P"T’ Comparing (5.33)

with {5.15), we see that into the full aerodynamic force with the operating

engine there does nct enter drag of suetion behind the nozzle of the engine, and in
other respects it colincides with the full aercdynamic force with a nonoperating
engine:

RBR’-!'*'XII' (Stja)

Normal aerodynamic forces with an operating and nonoperating engine coincide,
and the axial forces differ from each other by a value of the base drag behind
the nozzle:
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l',"—)’,. .\',N-;x,_-{-xm-xl_xu. {5.35)

Formulas of transition (5.20) from the axial and normal aerodynamic forces
to drag and 1ift and also expressions (5.23)-(5.26) for these forces preserve
their form for the case of powered flight.

§ 6. cControl and Control Porces

Control syste& should hold in the sssigned iimits deviations of parameters of
the motion of the rocket from their computed values and thereby provide the
assigned accuracy of firing.

The coapies ©of parameters measured and controlled by the control system can
be rather diverse, Let us consider the simplest control system regulating only
the angular parameters of the motion of the rocket around the center of gravity.

The control system should consist of sensing devices which reac: to deflections
of the rocket from the assigned law of motIon and measure these deflections,
effestors which create forces necessary for the change in motion of the rocket, and
converting devices which receive signals from the sensing devices and produce
commands for the effectors,

Since the rocket in motion with respect to the center of gravity possesses
three degrees of freedom {for us, in particular, these three degrees of freedom
correspond to the three angles ¢, £, 1), the effectors of the control system should
also have three degrees of freedom, With a2 smaller quantity of degrees of freedom
of controls the latter cannot determine the motion of the racket around the center
of gravity by all three degrees of freedom; with a large quantity the problem of
control becomes indefinite, since the assigned motion of rocket in this case will
correspond to not one definite law of the motion of controls but an infinite
nuzber of such laws., But also under the condition that the number of degrees of
freedom of controls is equal to three, there exists an unlimited possibility of
the concrete realization of these crgans,

In exactly the same way sensing devices of the control system can be fulfilled
by the most diverse principles and in different form,

Consequently, equations connecting the motion of controls with the motion of
the rocket (so-called control equations) can have an absolutely different form
with various principles of operstion and design of control system. In general
they can be thus written:

P (0. 20, y (@, 2(1). g (0. 3(D. (=0,
Fyldy (1), x (0. 3(0, 2¢t1, ¢ () 3D v =0, (6.2)
Py ). x(0). y(O). 2(0). ¢ (0. 3(0. (N} =0,

where 61, 62, 5) are deflections of effectors of the control systenm; Fi’ ?2, 3

are functionals froam functions taken in brackets, l.e., gquantities depending
not only on current values of these functions tut alsc on thelr preceding values
starting from the moment of launch., This depern-ence can be rather complicated.

In the subsequent account as an example we will dwell on the control system
of the rocket the sensing devices of wnich are gyroscopic instruments —
gyro horizon and vertical scope, effectors — Jet vanes, and converting devices —
amplifier-converter and control actuators.

The right ani left jet vanes (see below Fig. 7.1) are deflected synchronqusly
{(and at an identical angle), and thus the number of degrees of freedom of controls
is indeed equal to three.

Gyroecopic instruments each consist of a gyroscope and two f-ames, internal
and external, the location of which at the time of launch 1s shown on Pig. 6.1,
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In the flight the axes of rotation of the
gyroscopes maintaln a consiant attitude, l.e., the
axis cof rotaticon of the gyroscope of the gyrs horizan
G x remains all the time parallel to the axis Ox
of the terrestrial system of cocrdinates, and the
axis of rotation of the gyroscope of the vertical
gyro Onzs remsins parallel to the axis Oz of *he

terrestrial coordinste system. Axes of rotation of
external frames of the gyro-1ngtruments are connected
with the body of ine rocket, Conseguently, in

flight the &xis of rotation of the external frame of
the gyro horizon orzr 1s parallel tc axis Oizi of

the bound system of coordinastes, 2nd the axis of
rctation of the external frame of the vertical gyro
ana is parallel to axis Glyl of the bLound systenm.

We will characterize directions of axes by
their unit vecters so that

25 29, (6.2)
a2, (6.3}
3= (6.4)
R &-5)

Fig. 6.1,

Now it is easy to determine the direction of
the intermediate axes of gyroscopic instruments — axes of rotation of internal
frames. The intermediate axis of the gyro hoerizon Oryr is always perpendicular to

two other axes of this instrument, O x snd C z , and conseguently,
rr rr b

AL
e £xa __ dxs (€.8)
N PR T IrY
In exactly the same way the intermediate axis of the vertical gyro 0833 is

perpendiculsr to OBZB and OpzB and, therefore

nxs  Axs
7= ] T (€

. With the help of Table 2.1 we obtain

2l .;‘:.—_:‘:x(x;‘costp-y‘:smt( 42 (icosg +asing))=
=s g¥cos ¢ + 20sing,
AXA=IX (it =+ ]

As before, disregarding the second degrees of quantities £ and 1, we cobtain that

9% 2= B X #|=1

and, consequently, formulas {6.6) and {6.7) can be rewritten in the form
== xlsing+ycos y, {6.8)
P2 (6.9)

If in flight the axis of the rocket has an assigned direction, i,e., the angles
€ and 7n are equal to zero and angle ¢ is equal to the program angle °np’ then
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cursors of the potentiometers are at a zero position, In the vertical ro

this is attained automatically, since the entire instrument, together wlth the

body of the rocket, turns about the axis of the spin of the rotor, and the relative
position of the frames doegs not change. In gyro horizon both frames and the

cursor of the potentiometer connected with the external frame do not change
position relative to the earth's axis, and so that the cursor will remain at zero
the body of the potentiometer turns about the axis 0121 with respect to the body

of the rocket et the same angle at which the rocket should be incained according
to the prcgram from its initial position (i.e., at an angle of G0~ - ¢hp). With

deflection of the rocket from the assigned position the angles £, n and
49 = @ - an become diff.rent firom zaro, and there simultanecusly appear

displacements of cursors of potentiometers from the zero position: &' —
displacement (angle) of the poteni . ometer cursor on the axis of rotation of the
external frame of the vertical gyro, n' — displacement of the cursor of the
potentiometer on the intermediate axis of the vertical gyro, and 49 — displacement
of the potentiometer cursor of the gyro horizon (on the axis of rotation of the

external frame).

Examining the diagram of gyro-instruments (Fig. 6.1), it is easy to check
that with the appropriate selection of directions of the reading the angle

o
90o - £' 18 equal to the angle between axes 0121 and onya' angle 90~ - n! 1is
equal to the angle between axes 01y1 (Onxn) and Ogzy, and angle @' = an + Ap!
1s equal to the angle between axes Oly1 and oryr' The connection between angles

€, n, 49 and €', n', and Ap' can be obtained by calculating scalar products of
unit vectors of corresponding axes with the help of formulas (6.9), (6.3) and

<03 (90° ~ 3’)=z‘.’.,a:=z‘.’.(_g?+;f;)'
¢°3l9°’-'l')ﬂﬂ'32==y;‘-(—x?3+y;‘q+z{).
¢03(1"+A€')=y‘.’-y2=y;'-(:;’sln¢+y{cosq).
whence
llut’-g,
sin '-”,
€03 (§og -+ 3¢”) = cos p.
Thesé relations bermit béing once again convinced of the smallness of angles §!

and nt¢,which enables replacing thelr sines by the angles themselves and writing
following formula:

V=1, (6.10)
Wen (6.11)

and also
A"-’—'.'--". (6.12)

Pormulas (6,10)-(6.12) give the connection between deflections of the rocket from
the assigned position and reaction of gyro-instruments on these deflections.

We will not touch upon the work of the amplifier-converter and control
actuators, which convert the voltages taken from potentiometers of the
gyro-instruments, which are directly proportional to displacements of cursors of
these potentiometers, into angles of deflection of the jet vanes. Let us consider
the concluding link of the control circuit — forces having an effect on the control
surfaces,
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The full force having an effect on the control surfaces found in the gas
flow will be decomposed into three components — drag of the control surface qp

directed along the axls of flow, i.e., along the axis of the rocket, lift Bp

directed perpendicular to the axis of the rocket and to the axia of the control
surface, and axial force directed in parallel to the axis of the control

surface. The last force 1s small, and therefore we will disregard it,
especlally as for two opposite control surfaces the axial forces are balanced
(vholly, if the angles of deflection of the control surfaces are ldenticel, and
partially if the angles of deflection are different).

Approximately one can assume that the lift of the control surface is
proportional to the angle »f deflection of the control surface:

R,= RS, (6.13)

and the drag of the control surface depends on the angle of deflection of the control
surface according to the parabolic law:

Q'-Qp-f-’”. (6.1‘6)

Furthermore, forces having an effect on the jet vane can be expressed as any
gas-dynamic forces in the form

o2
Q’“‘Q—%Lsr (6.15)
] 2 *
Rymcp 22 S mec) 202 5,

where pp —~ density of gas in the section of the stream of the engine passing
through the leadling edge of the control surface; up -~ gspeed of gas flow in the
same section; S. -~ arsa of control surface; Cqr Cpe cﬁ — gas-dynamic coefficient

depending on the Mach number of gas flow and on the angle of deflection of the
control surface.

In the first approximation c,, analogous to the drag of the control wheel
qp, depends on the angle of deflection of the control surface by the parabolic
law, c¢_ is proportional to the angle of deflection of the control surface, and

cﬁ thus does not depend on this angle.

Subéequently we will examine only the total forces for all four control
surfaces: axlal force xip, equal to the sum of drags of the four control surfaces,

or, on the basis of (6.14),

Xip==4Qu+ 7. (8] -+ 87 + 0} 4-8}), (6.16)

and lateral forces: Y1 » equal to the sum of 1ifts of control surfaces 2 and 4,
and zip’ equal to the sum of 1lifts of control surfaces i and 3.

Directions of reading of angles of deflection of control surfaces will be
selected in such a manner that the positive angles of deflection of the control

25




v

7% 9 T O 3T O T

PR

o it s

s o

f
§
:
¢
P

surfaces correspond to positive lateral forces, T - we will consider positive the

deflections of control surfaces 2 and 4 downwards, nd control surfaces 2 and 3 -

to the left, depending on the flight (Pig, 7.1), = n such condition we obtain
¥ip== RS+ RO, = 2R, (6.17)
2y, =R&+ RS,

§ 7. Moments of Forces

et us find expressions for moments of forces examined by us with respect to
the center of gravity of the rocket. We will consider that the center of gravity
lies on the axls of the rocket at a distance X, from the summit,

Gravity G always acts along a straight line passing through the center of
gravity and does not create a moment withh respect to the center of gravity,

Up till now only the msgnitude and direction of aerodynamic forces were
discussed. The line of action is fully determined only for the complete aerodynamic
force R. The point of intersection of this line of action with the axis of the
rocket 15 called the center of pressure. Let us agree to consider the full
aerodynamic force appIied In the center of pressure; then the lines of action of
all components of this force xl, Yi’ X, Y and so forth will pass through the center
cf pressure {see Fig. 5.2).

L
| Stattlizers

rig. 7.1,

Thus the axial aerodynamic force X1 acts zlong the axis of ithe rocket and

therefore does not create a moment with respect to the center of gravity. The same
can be sald in the case of powered flight for static thrust Pcr'

The normal aerodynamic rorce Yl creates with respect to the center of
ravity of the rocket the momert Ma, equal in value to

My==¥, (£, — x). (7.1)

where x.u is the distsnce from the summlit of the rccket to the center of pressure.

This moment, just 4s the full aerodynamic force, acts in a plane passing
through the axis of the rocket and through the tangent to the trajectory; in other
words, the vector of this moment is perpendicular to the axlis of the rocket and
to the tangent to the trajectory.

If the center of pressure I1s behind the center of gravity, then the moment
of normal aerodynamic force acts on the decrease of the angle of attack and is
called in thic case the stabilizing aerodynamic moment, and the rocket with such
location of the center of pressure and center of gravity 1s statically stable. If,
however, the center of pressure lies ahead of the center of gravity, then the
rocket 1s called statically unstable; the moment of the normal aerodynamic force
acts for such rocket on the increase of the angle of attack and bears the name
destabiiizing aercdynamiz momernt.

R Ao e < P U SNS—




Let us consider moments of forces from jet vanes,

The point of intersection of the iine of action or the full gas-dynamic force
having an effect on the control surface with the plane of symmetry of the control
surface will be called the center of pressure of the control surface. The position
of the center of pressure 1s changed during movement of the control surfa~z, but
this change will be disregarded, is considering that the center of pressure of the
conirul surface always lies in the plane of the corresponding stabilizer at a
distance !, from the summit of the rocket and at distance h, from the axis of the

1 1
rocket {Pig. 7.1).

Drag of the control surface Qp creates with respect to the center of gravity
of the rocket a moment equal in value t¢

Mo, = Qply. {7.2)

For control surfaces 2 and 4 force of @ are equal with each other, since the
angles of deflection of the control surfaces are identical and, consequently,
moments MQ are equal in value. But the directions of these moments are opposite,

and therefore they are mutually balanced. Angles of deflection of control surfaces
1 and 3, in general, can be different, but this difference at small angles of
deflection very little affects the vane drag and, consegquently, the moments qu;

these moments will also be disregarded.

Lif% cf the control surface Rp creates with respect to the center of gravity

of the rocket a moment which can be represented in the form of the sum of two
moments with respect to two mutually perpendicular axes passing through the center

of gravity: the moment with respect to the longitudinal axis of the rocket egual
in value to

jthgkﬂb (7-3)
and the moment with respect to the lateral axis parallel to the axis of rotation
of the control surface

{
My, y2= Ry (hh — xy). {7.4)
We will £ind the total moments from jet vanes relative to the bound axes

if we substitute in {7.3) and (7.%) expressions (6.13) for 1ift of the control
surfaces and consider rule signs for angles of deflection of control surfaces:

My Ry (=8, -8y -8y — 8 = R, (b, — 8,).
M, =R (I, — x )+ 8). (7.5)
3y, - Rl — x)(— 8 — ) = — 2R, — x )8,

§ 8. Damping Moments

Up till now, in examining aerodynamic forces having an effect on the rocket,
we were nct interested In its angular velocity. Strictly speaking, our certain
affirmations and formulas, for example (7.1), are true only at an angular velocity
of the rocket equal to zero. If the rocket flies with speed v and angle of attack
a and has at this angular velocity » # O, then the flowing around of the rocket and
distribution of pressures along its surface will be different than when » = O,

Consequenily, aegrodynamic forcec and moments depend not only on v, o, p, T,
but also on w. There 1is importance not only of the value of angular veloclity but
also its direction with respect to the axes connected with the rocket.
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For an approximate aporaisal of the magnitude of additional forces and moments
appearing with the rolling of the rocket, l=t us examine the mction of the rocket
in plane lelyl, being limited for simplicity by the case of the zero angle of

atteck,

If the speed of the center of gravity of the rocket is equal to v, and the
component of angular velocity slong the axis Oiz1 perpendicular to the examined

plane is equal to L, s then the point of the body of the rocket found at distance
-4
-

x, from the center of gravity of the rocket, has, besides speed v, a peripheral
velocity B, Xya Consequently, the full speed of this point will form with the speed
1

of the center of gravity the angle

Agom 20Tt (8.1)

. .
By this magnitude 1s changed the angle of attack in the examined point of the bedy.
These additional sngles of attack are the cause of the appearance of

additional forces and moments. The mean value of the additional angle ~f atéani om
the gtabilizer is equal to

Ag, = O (‘.-..::"“r) . (B.2;
where x is the distance of the center of pressure of the stabilizer from the

HA.CT
summit of the rocket.

The additional 1ift corresponding to this angle is equal to

A =c, 95\, (8.3)
where

Gam TR =52,
cycr is the coefficient of 1ift of two blades of the stabilizer referred to the

area S.
Having substituted (8.2) in (8.3), we obtain

” e (X 1) L
. v g nlree T b
'\Yds"u 2 s . 37‘1-;195(":.«"“':){“:,' (8.4)
This force is directed to the side opposite the direction of the motion of the
stabilizer in the rotation of the rocket. It creates an additional moment effective
in the directicn opposite the direction of rotation of the rocket and is called
therefore the dampiqg moment. The magnitude of the damping moment wili be

Aa“‘.ﬂ—-Ayﬂ(.!;n-—-l'):z—;—c;"QS(x‘_q_.x')fm‘._ (8.5)

In reality the magnitude of the damping moment 1& somewhat greater than that
calculated by the formula (8.5), since the damping moment 1s created not only by
the stabilizer but also the body. Therefore, not increasing the order of the
error, 1t 1s possible to assumre

F Y o

ya ™ty X

[4
e~ Xy Y.




Then we will ob%tain the following approximate expressions with an srror to the
greater side:

A, = | £jpStve, . (8.6)
‘Mt.""’{";"sp“«.' (8.7)

Analogous expressions can be written for an estimate of moments with respect
to the other lateral axis:

(82, = — ¢ ¢}pStrw,, (8.8)

1,
Adly = - g eeShe,. (8.9)
Let us consider the rotation of the rocket about the longitudinal axis with
an angular velocity P . With such rotation the section of the stabilizer, which
1

is at distance h from the axls of the rocket, has, besides speed v, the peripheral
velocity hwx . Consequently, the full speed of this section will form with the
1

speed of the center of gravity the angle

Ag = “" (8-10)
<]

which also constitutes an increase in the angle of attack of the section of the
stabilizer. On the average for the stabilizer, the increase in angle of sttack from
the rotation about the longitudinal axis consists of

Sog =20,

where th is the distance of the center of pressure of the stabilizer from the
longitudinal axis,

This additional angle of attack causes an additional 1ift of the stabilizer
blade equal to

g : D)
O

ot
{we designate the coefficient -%;z, gince the 1lift of -me blade is examined, and
it is natural to refer coefficlent c§CT to two blades), or

| I
AV = T ‘, ﬂps‘““’.‘

Force AY is directed opposite the direction of motion of the blade with rotation,
Consequently, for two opposite blades forces AY will form a pair with the moment

1.,
-24¥;b“-=—~§¢;“pﬂegn5r
The additionsl moment from all four blades is equal to

’ 2
A.H“ =—e “pSh“m‘..
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Approximately one can assume that

1 .. op
Aa"‘.-n-—-‘—t,ps’:'ﬂ’.. (8.11)
where lcr is the span of the stabilizer. This moment acts opposite the rotation of
the rocket, i,e., it is also damping.
In the common form we will use the following expressions for damping momentsa:
AM, = — ng‘Sﬁam‘..
A.!!,‘ = — mSpva,, {8.12)
Ajhkua-n:SFbaa,
ey 1y &3
where m_ and =-m
X vy T Py

determined either with the help of special aerodynamic experimenis or by means of
more accurate aerodynamic designs.

are dimensionless coefficients o aercdynamic damping

Additional forces of (8.6) and (8.8}, in view of thelir smallness, will be
disregarded,




CHAPTER IIIX

GENERAL EQUATIONS OF MOTION

§ 9. Equations of Motion in Vector Form

A rocket with an operating engine continuously expends mass contained in 1it,
and therefore for the final interval of time the laws of dynamics of a solid or
system to it are directly inapplicable. But for an infinitesimal interval of time
dt it is possible to solve the problem of the motlion of & rocket with the help
of thecorems of dynamics of the system with the following assumptions:

i 1. We examine as a single system all the masses contained in the rocket at
the moment of time ¢,

2. Let us disregard forces having an effect on masses expending during
time dt {i.c., from the moment t up to moment (¢t + dt) through the nozzle exit section.

We will call the mass exiting for time dt through the nozzle exit section
infinitesimal waste material,

T T T T

Thus the examined s%stem coincides at the time t with the rocket and at the
time t + dt consists of e rocket and waste material, and this 1s the first
assumption, According to the second assumption, forces, having an effect on the
examined system coincide with forces having an effect on the rocket,

‘ Equations of motion of the rocket are easily obtained, proceeding from
equations of the motion of the system, which, as is kKnown, have such form:

-%--: F, (9-1)

19
-'%'-8 L) (9'2)
- -
where X, — the momentum of the system; P — resultant (main vector) of external
forces having an effect on the system; Iéc — angular momentum of the system with
. respect to the center of gravity of the system; .(c) — total moment {maln moment)

of e¢xternal forces with respect to the center of gravity of the system,

In order to turn to equations of motion of the rocket, let us find first of
all the expression for the momentum of the rocket. Let us divide the rocket into
elementary particles, where for one of such particles we will take the infinitesimal
waste product whose center of gravity coincides with the center of the exit section
of the nozzle. The position of the center c¢f gravity of the rocket at the moment

3
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of time ¢ is det2rmined by the equality

ur—¥-g,+ﬁdlr,; (9.3)

where m -~ the mass of the rocket at the moment of time ¢; P — thc radius vector of
the center of gravity of the rocket relative to a certain motionless center; r, =

the mass of the elewentary particle not abandoning the rocket during the time dt;

r, — the radius vector of the same particle; & ~ flow rate per second of mass

{see § 3); & dt — the masas of waste material; r, — the radius vector of the center .
of gravity of waste material, 1.e., the geometric center of the nozzle exit section.

buring the time 4€ the mass of the rocket is changed by the magnitude

dmes —m 42, (9.4)
the radius vector of the center of gravity of the rocket by the magnitude
dr=ggt (9.5)

. (¥ is the speed of the center of gravity of the rocket relative to the motionless
. syatem of coordinates — absolute velocity); the masses of particles are not changed,
and their radii-vectors are changed by

dr, = dt, (5.6)

where vy is the absolute velocity of the particles. Waste materisl no longer

enters Intoc the rocket, and the position of its center of gravity is determined by
the egquality

(m— -‘-¢n(r+¢r)-§-,fr.+m (9.7)

Subtracting expression (9.3} from (9.7), we will find

LR T FIPT I  y dWTRE OR NS

Bdr— mrdt — mdrdiw X u, dr — mr, dt. (9.8)
v
If in {9.8) we disregard the infinitesimal of higher order m dr dt, and we

: replace dr and dr, by their expresaions (9.5) and (9.6) and then reduce by dt
Aoy we will then obtain

3 S . - _\‘ .
t_ v ry 0r- "-.m'gv-. wr‘_

“J
Noting that the sum .\;."y?. s correct to an infinitesinal momentum of waste material,
coincides with the momentum of the rocket K, we can write the followinz expression

for K;
: K:::":u‘fa.;: no 'i'l}’.f‘--~r);::m;+ ..b. (9'9)
; where
by —r {9.10)
is the vector connecting the center of gravity of the rocket with the center of
the nozzle exit section. «

Differentiating (9.10), we find b = ¥, - ¥, l.e., the speed of the center
exit section of the nozzle A\ is equal to

'.-’-{-‘. (9'11)

E 3e




Desixnating the speed of the center of gravity of waste material with respect to
the center of the nozzle exit section (exit velocity) dy u, we will obtain for the
absulute velocity of the center of gravily of waste material the expression

Pty = O+ a4 b+ a, (9.12)
. whence the morentum of waste matarial is equal to (eince this value is infinjtesimal,
we designate it by JK )
oTop
Aoy e= M AID o == m (v - w - B ar. {3.12)

At the time ¢ the momentum cf the examined system is equal to the momentum
of the rocket Ié « K. At the moment of time t + dt the momentum cf system is

cempesed ¢f the momentum of the rocket and infinitesimal momentum of waste material

Kb dRoao K 4 dK + dE ooy
Conseguently,
K, == K + 2K gy (9.14)
The change in momentum of the rocket is easily found from (9.9):
K=md?+odn 4o i+ bdm = mdo - v dt + mbdt + bndl, (.15}
where
i=%=~.f‘.‘f_, (9.16)

Inserting (9.13) anc (3.15) in (9.1%)}, we cbtain

@K, = m d9 — w0t + mbdt - b dt w0 dt 4
S rudt - mbdl == i d9 - i df + 2ab dt -+ @bt ($.17)

E Replacing dxi in eguation (9.1) by expression {9.17), we find the following
vector equation of motion of the center of gravity of the rocket:

PN TER M E-TN (9.18)
Let us turn to the equaticn of motion of the rocket about the center of gravity.

At the moment of time t angular momentum of the system with respect to ithe
center of gravity of the systenm Léc) coincides with the angular momentum of the
rocket relative to its center of gravity L:

lf’=-£==§(r.—r)x 8.0, (r, — ) X BV ey dt. (5.19)

Here, by examining the waste material as the elementary particle, we disregarded
. its intrinsic angular momentum.

At the moment of time ¢t + dt the angular momentum of the system with respect
to the center of gravity of the system is composed of the angular momentums of the

SO,

. rocket and waste material relative to this point:
L0+ a0 = L+ 415y (9.20)
Angular momentums in (9,.20) are determined by the well-known formulas
L wy= L4 AL+ (r + dr — ro— dr) X (K + 2K, {9.21)
dl;;.-:dl"b-}(gl4—4?;,,—»!;—-¢q3)<¢l;nr (9.22)
33
(S — -
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where L + 4L is the angular momentuam of the rocket relative to its cenler of gravity
and dnaTOp is the intrinsic angular momentum of waste material with which, further-

more, we will disregard.

Radius vectors ¢of centers of gravity of the system, rocket and waate material
are connected by the relation

B(r - dr) =s(m - mdl)(F - dr) 4w dE(0, - dF o).
or, correct to infinitesimals of the second order,
r;i—dnp-twkdr-ffrdti~£}r;di;=r4-¢r4-i}t¢m {3.23)

We insert obtained expressions (9.21)-{9.23) in the relation {9.20}:
4 d =t +al— 202t X (K+-aK)+ :
+(r.+¢r,.,-r- dr—-—:-bdl) X 0K ey

and, comparing with the first part of equality {9.13}), we find ccrrect to
infinitesimals of the second order:

b5 b b D rw s bt A
“ T

J&”-d&—--i'—b)({dt-{—(r.—-r))(dkw (9.24)

Now using exiresstoas (9.9) and (3.13) for X and d‘O?Gp‘ we obtain the following
expression for dlhc H

[ESA

U w Il — 2 b < (m0+ MBI+ X O+ u+ §) 2 dt o AL+ 2D X (m 4 By at. (9.25)
;r'_ ¥e replace dxéc) in equation (9.2) by expression (9.25):

kb X (u By A,

Since at the moment of time € the rocket and system coincide, instead of l(c)

it is poasible to write the sum of moments of external forces with respect to the
center of gravity of the rocket N; then we will obtain the equation of motion of
the rocket with reepect to the center of gravity in the form

e e e

]
el B

L SR aith=-a (9.26)

The derivative of vector b in the motionless system of coordinates can be
thus represented:

e AR P

(L SR (9.27)

uhere ah/dt is the derivative of vector b with respecti to the body of the rocket
{local derivative) and @ is the angular velocity of rotation of the body of the
rocket.

But we assume that the center of gravity of the rocket and center of the
nozzle exit section lie on the longitudinal axis of the rocket, and therefore
. vector B, and, consequently, and its local derivative, will be parallel to the
ok axis of the rocket, It follows from this that

sx2 -0 (9.28)
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Disregarding geometric and gas-dynamic asymmetry of the expiration of gases, we
will consider that vector uw, the speed of the center of gravity of waste material
with respect to the center of the nozzle exit section, is parallel to the
longitudinal axis of the rocket and vector b. Consequently,

06X u=0. . (9.29)

Substituting expressicu (9.27) in equation (9.26), and using equation (9.28) and
(9.29), we obtain

j—f+&ox(ux»)=u. (9.30)

We will designate by L the speed which the particle m, would have if it were
rigidly joined with the body of the rocket, and by u,, the speed of this pacticle
with respect to the body so that

o, =w,+ s, (9.31)

On the basis of (9.19) we can write the following expression for L correct
to the infinitesimal:

L= :":'mv(rv"")x’v=-?mv('v—')xc'+

+2'}mv(r.-r)><u¢ (3.32)

The first component in (9.32) constitutes the angular momentum of the rocket LT

on the assumption that it moves as a solid, It is known that this angular momentum
can be represented in the form

== .1 LI AR o7 3
Lr_m5§lrm%yl,0%q.

where A, B, C are moments of inertia of the rocket as a solid with respect to the
principal axes lel, Olyi' 0121; Wy my » ®, are projections of angular velocity
1 1 1

of the body of the rocket on these axes. In virtue of symmetry of the rocket
B=c. (9-33)

The second component in (9.32) is the angular momentum Lr of masses moving

with respect to the body of the rocket in this relative motion. It would have
been possible to separate from thls moment the separate components, for example,
the angular momentums of rapidly revolving masses inside the rocket, the angular
momentums of liquid found in tanks of the rocket, and so forth. But we will
disregard all the angular momentum L& from those considerations that particles

having great relative speed “v consists of a very little part of the total mass
of the rocket, and the majority of the particles moves at small relative speeds.
It is important to consider these additlional moments connected with the mobility
of separate masses inside the rocket and also with deformations of the body with
8 detalled study of the oscillatory motion of the rocket. However, in ballistics
only such oscillatory processes are important whose period is of the same order
as the duration of the powered section, and in such slow processes the rocket can
be completely examined as a solid,

Thus, we will consider that

L=l = Ac, 2} + By 30+ Co, 2. (9.3%)
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Here, in contrast to the solid, the principal moments of inartis with respect to
time are inccnstant, and therefer

& dA do, of 48
= TGO TAG O+ A Gt o+t
«< de,
+8%£+&,%'+?°..'H coaten g,
The principal momenis of inerils, Jjust as Lhe mass of Lthe rockel, decrease
with burnout, and, consequently, their time derivatives are nsgetive, Let us
designate by i. B, and C the absolute quantities of these derivatives:

,t..l.‘.-!.l,a_..!‘::._

-] G i---—-—— (9.35)

As ig known, derivatives of vectors xg’. yg, zg are expressed by formulas

«é-s.xx.@(ﬂ 2ra f—i—w XX {x‘-:a y’-—o
and, analogously,

whence

‘é__[.‘ S —(B—0u0, - Aw ]4-!-
+p 2 —c—uge -8 I+
+[c-;ﬁ-—-(4—830., -c“:,]‘:’ (9.36)

The second companent on the left side of equation {9.30) will be transformed
in the following way:

DX By & (—brX[f, 58+ 0,0, X (D
-.b’.l‘)((ﬁ“f‘-b )= ub-(a’.f-!- X 713 (9.37)

Finally equation {9.30) will be thus transformed:
[4-——--{3 Craw, — An }

~,-[B~—-—~-(C-- Aw, u"+(mb=~-3)u ]ﬁ-’-
+e G —(1-Bu,p, i G0 -ba ] (9.38)




§ 10. Reaction Force and Moments

Let us write the equation of motion of the center of gravity of the rocket
(9.18) 1in the form

n Sl =P — na—2ub— mb. (10.1)
Comparing it with the equation of motion of a soli&

,,_5‘:.._.,,_ (10.2)

we see that the center of gravity of the rocket moves just as the center of gravity
of a s0lild with a mass equal to the mass of the rocket, on which acts, besides
forces having an effect on the rocket, the force

P, = —(ma-2mb 4 mb). (10.3)

This force will be called reaction force (or dynamic thrustz. The equation of
motion of the center of gravity ol the rocket can now be written thus:

.7“:_,'_,_,. (10.%)

We will apply this equation to the case of operation of the rocket on the
stand (without jet vanes).

On the basis of (9.11) 1t is possible to write: w = -b, since the center of
the nozzle exit section 1s motionless, Hence

-;;--—‘ (10.5)

From external forces of the rocket act gravity @, static thrust 'ET’ which isa
equal according to the formula (5.32) to

P.'-S‘(p‘—’);’.
and the reacticn of supports of the stand Q, so that
FmQ+P,+4Q (10.6)
Substituting (10.3), (10.5) and (10.6) into equation (10.%), we will obtain
—mb=0 P+ Q— mu—2mb- -mb,
whence
Q+ G4 Poy-ma+mb4-29% 45 4. L™y 0;
(1] ot ‘7‘7 J
or
Q+ 0Py ma . LN g (10.7)

Equation (10.7) shows that on th2 stand supports, besides the weight of the rocket,
there acts the force

Pﬂ—l'll-}-s.(p.—p)x:.{.i“;ﬂ., (10.8)

which we will call thrust.
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Examining different concrete cases, it is easy to be convinced of the fact

that terms mb, 2mb, mb and de(mb)/dte are very small as compared to other terms in
formulas (10.3) end (10.8). Therefore, henceforth we will disregard them use the
following expressions for reactive force and thrust:

Po=—ma, (10.9)
Pm —ma +S,(p,— p) )= P,+ P, (10.10)

Exit velocity u was defined above as the speed of the center of gravity of
waste material with respect to the center of the nozzle exit section of the engine,
But the weste material, having an infinitesimal mass, possesses final dimensions
and in turn can be split into particles dmn' moving at different speeds uu relative

to those points of the nozzle exit section through which they pass. Therefore, the
concept of exit velocity u should be definitized,

Every particle dmu will imagine as a mass passing through the element of area
of the nozzle exit section dSu. Designating the density cof gases in the volume
occuplied by the particle dmn, by Py we can express the mass and momentum of this

particle in the form

dng = (i, - dS,) 8,
u,dm=zpu (0, - dS)de,

where d&n is the vector of external normal to the element of area dsn, where
|dS, | == dS.,;

herce the momentum of all the waste material recorded eartier as um 4t (the question
is about relative motion) 1s equal to

\
}.‘ O (i, dS )l =< ot f pu(u - dS).
] s,

Thus, by u we mean the quantity
a=7:- [ous-as). (10.11)
3
[ ]

Using expression (1C.11), 1t is possible to present the reaction force and
thrust in the form

p,-a-fpu(u-m. (10.12)
“
Pxa f pdS— pu(u-dS)— S, pxf. (10.13)
$

In formula (10.13) s‘paxg 1s replaced by a more exact expression

I pds.,
F)

where p denotes the pressure of gases on the elementary area of the nozzle exit
section.

Earlier it was already menticned that the vector u 1i1s considered directed
along the lorgitudinal axis of tae rocket from the summit to the tail,

18
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Consequently, the reaction force and thrust constitute vectors effective along the
longitudinal axis or the rocket in a direction toward the summit. Values of these
vectors are equal to

P, == ma, (10.14)
P=ma+S,(pa= P)- ' (10.15)
Gas-dynamic calculations and experiments show that for engines with P, > 0.8 Po

with a change in operating conditfons in not very great limits, 1t is possible to
consider the exit velocity m constant and the pressure Pg variable directly

proportional to the flow rate per second ﬁ, both of these values not depending on
the external pressure p, Let us call the quantity

n’-l+s,€..‘! == const

the effective exit velocity. Then
P = n;.'—s.p_ (10.16)

This formula describes the dependence of thrust on the flow rate per second and
on the external pressure, i,e,, can be assumed as & basis of both the throttle
and altitude performance of the engine. In particular, the thrust of the engine
in a vacuum 1s egual to

P = ax', (10.17)

t.e,, directly proportional to the flow rate per second, and the thrust of the
engine on earth is expressed by the formula
Pyme mu’ — S, p,. (10.18)

whence

o m Dot Sete (10.19)

L)
The thrust of the engine on earth Pb and the flow rate per second in
terrestrial conditions ﬁo can be determined during bench tests of the sngine. The

thrust in flight, depending upon the flow rate and on the external pressure, is
determined by formula (10.16), where instead of the effective speed of efflux u!
it 1s possible to substitute its expression (10.19):

P-i(P,-{-S,p‘)-—S.p. (10.20)
In particuiar, if the flow rate in flight remains constant, then
P =Py 4S,(po - p). (10.21)

The quantity

Pranecl  PtSme _ Sup ¥ Sep

mys L34 my, & mge

will be called specific thrus:.

Specific thrust in a vacuun is equal to

P’,L.g: .g!_.ﬁﬂ = .—' - (on:'
Lot Y 13 Lo
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(does not depend on the flow rate), and at an arbitrary altitude

S.p =’ S,
P =P, ,— 2f S el
m e Lol 1] £e LJ {]

In particular, on earth

-’ Sabe
P, o= — 8P
¥z 0 z =8

Let us now compare the equation derived in § 9 of the motlon of the rocket
about the center of masses (9.38)

do dw,
l.-l -‘-"—' —8—-0 “'r."’:.] x4 [B .&'-_ - {C—A) u‘.mtj 9+
de
ﬁ-ﬁ?-;fl-(d-—-Bbuha%]l?az
-AI-{:-.-iu“a’,‘-—(ib’—ﬁ)a"y‘l’—(&b'-'-—au“:? (10.22)
with the Euler equation of motion of a solid about the center of gravity
do.
[+ 2 —E—cmp )+ [ T~ c— o8]0+
+[C%~—(.4 —8)&"6"]4::: M. (20.23)

A comparison shows that the motion of the rocket about the center of gravity
occurs just as the motion of a solid with those main moments of inertia, which for
the rocket at the given moment of time on which act, besides moments having an
effect on the rocket, the moments

. % ]
Mb‘r-.‘ﬂ‘.x:.
M‘,.-_—..—(;:.th’—ﬂ.)mhy"" {10.24)
A.ln‘s-.:— (md?—- C )m._‘t:.

These moments will be called reaction moments.

The first of these mowents is the swaying, since 1t acts in the direction of
rotation of the rocket about the axis °1x1’ but it is very small and, furthermore,

is to a considerable degree compensated by a damping action of waste material
unaccounted for by us, which removes with itself a certaln angular momentum,
Subsequently we wlll not consider 1t. Two other reaction moments, as is easily
verified, are damping moments.

Let us transform the coefficient entering the expression for these moments
to a more convenlent form

. . aB ., dm
-— e —_ —_—
mb? — B gt — € = i

The moment of inertia of the rocket with respect to the lateral axis passing
through the center of gravity can be expressed in terms of the moment of inertia
with respect to the parallel axis lying in the plane of the exit nozzle section:

B=8,— mp, (10.25)
whence
R

3=
[&]




and

* 48, [{J d a8,
01— B 8 25 (m G + 0L ) o LPe 2y L) (10.26)

at dt °

Derivatives entering into the last equality can easlly be calculated, We will
examine separately liquids expending in flight of the rocket from every tank. Let
us designate §he absolute value of the flcw rate per second of liquid from the
i-th tank by m; and the level of 1liquid above the nozzle section by h, (we consider

the mirror of the liquid parallel to the plane of the nozzle exit section). Then
for the time dt from the surface of the liquid there will be expended the mass

my dt, and inside the volume remalning filled with liquid the distribution of masses
can be considered constant, Consequently, if we disregard the intrinsic moments

of inertla of expended masses of liquid, the change in the moment of inertia

Ba will be equal to

dBy = — _\‘j hjm, de,
and the change in static moment with‘respect to the same axls 1ls equal to
d(mh) = — 1_“ hym, dt.
Substituting these expressions in equation (10.26), we will obtain
ab—B= -_:’_ e 4-2b .Tj him; == _\; B QY —h) m;. (10.27)

Hence we obtailn convenient expressions for reaction damping moments with respect
to lateral axes of the rocket:

May, == — @y, S0 (20--h) m.,
‘ . (10.28)
I"Rt. == - )y, ‘7‘ B (2h — A)m,.

The .“.‘.";(2"—@);:;, will for brevity be designated mlg.

Let us explain the physical essence of the reaction torce and reaction moments.

Gases passing from the nozzle of the engine have a speed u with respect to the
body and u + b with respect to the center of gravity of the rocket, Value
m(u + b) constitutes a force which must be applied to these gases 1n order to impart
to them such speed. 1In virtue of the third law of Newton, to the center of gravity
of the rocket on the slde of the gases will be applied the force m(u + b), which
is the main term of the reaction force,

In order to understand the origin of the other two terms in the formula for
reaction force, 1t 1s necessary to comprehend the origin of the quantity mb in
expresrion (9.9) for momentum of the rocket, This quantity is nothing else but the
momentum of expended mass with respect to the center of gravity of the rocket.
Actually, In a closed system whose mass 1s not expended, the momentum coincides
with the momentum of the materlal particle with a mass equal to the mass of the
system and with the motion ldentical to the motion of the center of gravity of the
system, It is a different matter in the case of the rocket — system with a
variable more accurate with the expending mass.

If at the mom~nt of time t we consider all its mass concentrated at one point,
then after the time dt all this mass m will shift at a distance v dt, but, further-
more, as a result of the internal motion part of the mass m dt will shift at a
distance b from the new position of the center of gravity. The first shift

corresponds to the momentum

mo dt
“ - Mv.
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and the second to momentum

_‘L:_“.’..:..'.a.
It is clear that for an increase in the sacond component of momentum there is
necessary a force equal to
dimd) _ -. , -
——‘-'-—318&—;-!“0.
Since this fcorce acts on the increase in momentum of masses in the rocket with
respect to the center of gravity, then according to the third law of Newton the

opposite force, mb - mb should be applied from the side of moving masses to the
center of gravity of the rocket,

in the same way it is easy to explain the origin of resction moments, 1el us
consider, for example, the rotation about the lateral axis Oiyl‘

Owing to the efflux of gases the angular momentum of the rocket decreases
by the magnitude

{dBle,, = Loy, dt.

But the very gases passing from the rocket possess, with respect to the center
of gravity of the rocket, the angular momentum

nde, d¢.

Consequently, during the time dt they obtain, because of the rocket, the angular
momentum

abey, dt — Bo,, dt,

for which to them there should be appllied from the side of the rocket the moment
of forces

(m5- - Byey,

In virtue of the law of counteraction on the rocket from the side of the exhaust
gases, there should act the moment about axis Oly1

- (é_’ﬂ - é) Oy,

which is the reaction moment.

In summarizing, we can say that the reaction force {moment)} is equal in value
and opposite in direction to the force (moment) which must be applied to gases
paseing from the rocket for a change in their momentum {angular momentum}),

Iet us sum up our whole analysis of forces and moments having an effect on
the rocket and the derivation of equations of motion.

We established that for the rocket it is possible to use equations of motion
having the form of equations of motion of a solid {10.2) and (10.23) if to the
forces having an effect on the rocket from without — gravity, aercdynamic forces,
static thrust and forces from controls, — we join the reaction force, and to external
moments — aercdynamic destabilizing or restoring moment — we join reaction moments.
The reaction force together witk the static thrust we united 21n the first approxi-
matiocn) into a single tractive force.

Now it remained to pass from the vector form of equdtions of motion to the
ccordinate form, for which it will be required to find component forces and moments
having an effect on the rocket along axes of coordinates.




§ 11. Resolution of Forces and Moments Along Axes of Coordinates

To determine the vectorial components along axes of coordinates it is necessary
to know the dlrection cosines of this vector, The direction cosines of unit vectors
ot axes of the bound system of ccordinates, with respect to the terrestrial system !
of coordinates, are already well-known. Thereby we determine in both systems of
coordinates by means of formulas (2.6) and (2.T7) direction cosines of all forces
and moments effective along axes of the bound system of coordinates, namely, tractive
forces comprised of the reaction force and static thrust, forres and mcments from
controls, aerodynamic damping moments and reaction moments.

Gravity acts in the direction opposite to the direction of the radius vector
of’ the rocket

r=x2+ R+ )5 28 g

and, consequently, has along axes of the terrestrial system of coordinates the
following direction cosines (Table 11.,1):

EEEle 11.1

Ox Oy Oz
X |_REy| _2
a r r r

It remains to find direction cosines of aerodynamic forces and their moments,
which both 1In magnitude and in terms of dlirection depend on the velocity vector of
the rocket v relative to the terrestrial system of coordinates.

The direction of the velocity vector, in other words, the direction of the
tangent to the trajectory, will be determined by two angles 0 and o, which are
determined 1n the following way. Let us draw through the velocity vector an inclined

plane perpendlicular to plane Oxy (Fig. 11.1). The
angle composed by this plane with plane Oxz will be
designated by ¢, and the angle between the veloclty
vector and plane Oxy by o, These angles are
analogous to angles ¢ and € determining the direction
of the longitudinal axls of the rocket relative to
the terrestrial system ot the coordinates. We will
consider the angle & positive if the velocity vector
> is directed upwards, and the angle o if this vector
is directed to the left of the plane Oxy. Then the
vectorial component of speed along the axis 0Oz will
be equal to

¥

v, = —usino, (11.1)

Fig. 11.1.
and the projection on plane Oxy to -v cos ¢. The

latter can in turn be plotted on axes Ox and Oy, as a result of which we willl
obtain

vg==ocosoces0, o, =oucososind. (11.2)

o

In view of the smallness of angle o during normal flight of the rocket, we
will assume

cosg=1, sing-=o, (11.3)

whence .

Vy==0¢030, v, ,==vsind, v,=—ve. (11.4%)
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Hence we find the direction cosines of vector v and opposite to it the vector of
X (Table 11.2).

Table 11,2

Ox Oy Oz
. <os @ sl -y
P 4 —tos® ] —sn® .

It was already mentioned (& 7) that the vecter of the aercdynamic moment ¥,

1s perpendigcular »oth to the langitudinal axis of the rocket and alsc to the tangent
to the trajectory and, congequently, differs only by a numerical factor from the
vector product of unit vectors xg and vo, where 1f this le the restoring moment
then it 18 directed along vector xg x vo, and if it is the destabilizing moment
in the oppoalte direction. Noticing that the modulus of the vector product xg X vo,

by definition is equal to sin o & a, and the guantity of the aerodynamic moment on
the basis of formula (7.1} is equal to

M, = c;gs (=, — x)e

{for the restoring moment M, > 0, for destabilizing, M, < 0), we obtain that the
vector of aerodynamic moment can be thus expressed:

M = c;.qS(xj —x,)c 44:("==¢;.q.‘.i(.v.;-—x,)(.r‘,’\(v'). {(11.5)

Lift ¥ is perpendicular to vectors vO and xg x v° and coirnsides in direction
with vector 0 X (xg x vo). The modulus of this vector is also =quel to a (since
vectors vo and xg x vo are gputually perpendicular), and therefore 1lift can be

represented in the followlng way:

Vo 080 XX o gson s (at xon (11.6)

We use equality xg = yg X zg and transform the vector product xg X W0 to the

form

X=X H)X P = {7 33— (- ).

Then expressions (11.5) sn? {11.6) will take th=z form

ﬂ.“‘;'s(’."‘t)i(""'ﬂ"x"‘(""‘7)’:]"’"-.'*“‘",.- (21.7)
Yo o5 X (o - )8} — (& - 20)y)| =¥, + Y, (11.8)

where
‘“—c;g.‘.'(x.-x'){utyﬂﬂ. (11.9)

B, = — S (5,-- 2 ) -

o
1




¥, =\ eS(v ) (v X &)
7}"““;55(""13(">(Jf}
Decompogitions of (11,7) ard (11.8) have geometric meaning: 1ift is presented

in the form of the sum of two forces directed along the normal to the trajectory,
one of which, Yy’ lies in plane Oixlyi' the other, Yz, in plane Clxlzi’ and the

aerodynamic moment is replaced by the cum of moments of these forces. Convenlence
of such decomposition consists in the fact that for vectors Y}, and Y,, and

expecially for “ay and Haz s it is easy to find their magnitudes and direciion
1 b

(11.10)

cosines. Actually, vectors Hay and ¥,, are already represented in the form
i ‘1
ot products of scalars

M, == - e as(x, — o' - 2 (11.11)
and .
M, = GyS (5, — )= 5) (11.12)

0 0
on unit vectors ¥y and 2y

It is found that vectors (vo x zg) and (vo X yg) entering into expressions for
Yy and Yz with an accuracy accepted by us can also be considered unity. Really,

if we disregard the square and pairwise products of small angles £, n and o, and
for the small angle ¢ - & we assume

sinig —~ 0) =9 —0. } (11.13)

cos(g —8)y=1,

x* i F
X = cos @ sin® ~—0|=
gcosg - yslag Ising— ncosep 1
s (sing < losing —nacos¢) x*
+{(—cos @ —jocosq -~ nosing)y® 4
+{}sing ~— ncosqlcos B — (T cosg -nsing)sinO) 2 ax
 x%stnd — y2cos@ — oy, {11.14)
X y 2
PXW=] <cosd sinb —ol=
~sing coS@® % .
== (150 8 4- 0 c08 4) 2* 4 (— ncos D +-asn)y +
- 08 (¢ — 0 2% w x*(nsin0 L-acosy)
+ Y (—qccavfosing) 3% {11.15)

then .

For quantities of these vectors the following equalitles are correct

jo" X ] =Vsin'0+cos’0 f-f = 1,
[ stj=
= ¥ (asin® - ocosgP +-(—qcos@ fosing 1 1.
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¥We write expressions (11,10) in the form

’
Y, =—geS( A X )
. ]
Yc = ‘hvs(d' : “D(" X ")'
and scalar factors with vectorx zg x vo and yg x vo will be taken fcr quantities

of forces ‘z'y and Yz:

r, e~ aS(e- )
¥,=c o5 )

Expressions (11,11}, (11.12) and (11.16) show that scalar products

(11.16)

o cos0(—zing) +-stadcosg — o = sin(@—q) =« 0—9

and
o - S mcosBcosy + nsing) 4 cind((slng—ycosq)~a
wicos(p—6) ;- asia(¢~0 —o=i—0

can be examined as numerical values of angles of attack in planes O1 4¥q and
0;x,2,, which we designate by a, and a, {(with a change in the sign for vo-yl)

a,—-c'-’:cg—-a, {11.17)
o, et M-} —o. {11.18)

wWith these designations formulas {(11.11}, (11.12) and (11,36) will take the
following form:

Mi’u —— ‘;ﬂs(“l - "t)cr ,

M“nue;.ﬁ(x‘—x')n,; (11.19)
Y, =95,
Y, =c,¢Sa, K {11.20)
These formulas determine magnitudes of moments M » M , andé forces Y
ay," azg Y
and Y . Directicn cosines of these vectors coincide with components of unit

o]

vectors yi, zg, zi x vo and yg x v  respectively.

§ 12, Summary of Formulas for Forces and Moments
Having an kffect on the Rocketl

For the best clarity of formulas derived above let us put them into Tables
12.1 and 12.2,
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§ 13. Equations of Motion in Coordinate Form

Let us project equation (10.2) cn the axis of the terrestrial system of
coordinates, With this by dv/dt one should understand the full acceleration of the
center of gravity of the rocket in absolute motion determined by formula (1.8),
and In vector F unite all forces reduced in Table 12,1, As a result we obtain:

m (% Y It L )= —mg ’:-. —¢,qScos0 —
—¢, 48 [a, sin0-l-«, (ysin0 {-gcos af)] ~—.X,’cos T—

— 2Ry, sing -+ R* (3, +-3)(icosq -} ysing) - Pcosep,

R -y
r

m .';--{—]" +Je) == — mg —c,qSsin0+
+c;.qS.[n’ cos 0+ «, (ijcos 0 —osin 9] - X, sinp
+2R'Q;cosq + R (3, + 8) Csineg — ncosq)4- Psineg,
m @k Lot Jo) = — mg 7 4,450 + ¢, g8 (e,n—a,)+
+ Xpi+ 2RO+ R (3, 4-98) — P;.
In these cquations we can disregard terms containing pairwise products of small

angles, including the products of angles € and n on angles of deflection of the
control surfaces, as a result of which equation will take following form:

x u=-£- [(P - X,')cosq: —_ quScosO - t;.qS(cp —Msind —
) - 2R'635'"'6] "'-:' g - ]o.r - ]a'
j;.'--;'.-'(P—X..)slnq-c.quan-}-c;qu(v- 8)cos 0 4
R (13.1)
* 2R cosq) "‘# §—=Joy—Joye

Fem— 1P — X )i—cg50+69SE—0)—

—R'(al'*'&;)] - ':‘”“‘ju -ju'

The vector equation (10,23) 1s more convenient to project on the axis of the
bound system of coordinates, 1In this equation it is necessary to include in M
all moments given in Table 12,2. Projecting and considering that B = C, we wiil
obtain:

do
A ._“11 = R'hl (63 _ 6.)-— m‘,"Spr’..

d .
B—;‘—"— —(B— Ao, 0, = —c ¢5(x, — )G —o0)+

+R (h—2)(4 +8) — miSFora, — myo, . (23.2)

dw ’
8 —d_lﬂ' +B - Ne,0, =—c ¢S(x,— x)(¢—0)—

— 2R (1, — x,)8, — wy Stpve, -- maw, .

e S o A TR



To equations (13.1) and (13.2) it 1s necessary to add the nonholonomic constraint

between v, 6, ¢ and_i, &, i, and also between w_ , o, D and é. €, ne
! Xy ¥y zy

x=vcos0, .
y=vsin0, (13.3)
£=—oa
Qﬂ==-_é=4'i‘
“ oy, =qn+, (13.4)

"l = 6 - i'l' .

Tne relation é 3.3) coincide with equations (11.4) and relations (13.4) with
equations (2.9).

Finally, for tie determination of angles of deflection of the control surfaces
there are necessary these equations of control
Py %y, 2. 9.8 =0,
Fyld. x. y. 2. @. 3. =0, (13.5)
Faldy 2. y. 2. 9. 3. N]=0
The fifteen cquations (13.1)-(13.5) permit determining these functions:
X, ¥» 2, 9, £, n, v, 0, a, mxl’ myi, mzi’ 61: 520 6}-
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CHAFTER Iv
SIMPLIFICATION OF EQUATIONS OF MOTION

§ 14, Equations of Motion for Powered-l'light Trajectory

Equations of motion obtained in § 13 can be assumed as a basis of the solution
of the many problems of the dynamics of flight. But prectically into these equations
always are introduced those or other simplifications the essence of which is c¢losely
connected with the content of the problem to be solved,

Let us start with the derivation of equations for the solution of a definite
class of problems, problems of ballistics of long range rockets, In these problems
the most important magnitude subject to determination and investigetion is the
complete flying range. Flying range depends mainly on the trajectory of the center
of gravity of the rocket., Motion of rocket about the center of gravity is examined
in ballistics so far as it affects the trajectory of the center of gravity. In
particular, in the solutlon of problems of ballistics it i{s possible to be distracted
from tne influence on trajectory of small oscillations of the rocket about the center
of gravity., Thus the most important equations for us will be equations (13.1) and
(13.3) and less important, equations (13.2) and (13.4) in which we will preduce
main simplifications.,

In equations (13.1) the members depending on angles of deflection of control
surfaces are secondary in their value, Therefore, equaticns of control (13.5) can
be used in conslderadbly simpiified form. Further, in equations of motion of the
center of gravity (13.1) and (13.3) the first two equations depend little on what
will be the solution of the third equation (for z and £), and, consequently, in
certain cases equations for x and y can be examined independently of equations for
z, Finally, there are possible simplifications of equations of motion as & result
of rejecting certain emebers immaterial with a certain accuracy of calculations,
in such a plan and we will start the simpliification of equations of motion for the
investigation of motion of the rocket on a powered-flight trajectory.

If we disregard small oscillations of the rocket about the center of gravity,
then the motion of the rocket will be accomplished with insignificant angular speeds
and accelerations. For example, the angular velocity of the slope of axis of the
rocket is 0,01-0.03 1/s and is changed very slowly with the exception of separate
points, Quite insignificant are angular velocities with respect to axes Oix1 and

0131' Consequently, in equations (43.2) it is possible te disregard members
proportional to angular velocities and accelerations, and these equations take the

form of conditions of equilibrium between serodynamic moments and moments from
controls:
RA 3, — &) =0,
choS(.r‘—.x")(g—-t‘l)----l«l"(."—.r“)(bl +8)=0, (14.1)
€ 4S(x, — x ) e —6)-+2R (1, — x )9, =0.
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d Figure 1<.1 shows for one of *he rockets
vaives of angles of deviation of Jet venes

% necessary for compensation of the aerodynamic
damping moment (59")' reaction moment (5;
- A
. % and the surmounting of the moment of inertia

(.} As can be seen from the figure, all
these angles are minute {(range of turn of jJet

. ! vanes 3:xceeds 1200).
From the same considerations 1t is
s 4 possidble to record the egquations of control
é, {13.5) as conditions of equilibrium between
4, commands produced by sensing devices of the

A === - conrcl system and deflectlons of the effectors,
z & LA A {8 In the first approximetion the deflectlons of
Flg. 14.1. the effectcrs can be considered directly
proportional to the commands proceeding from
the sensiag elements., It is clear that zero commands correspond to zeoro detflections
or the effectors,

As was shown in § 6, with a deflection of the axis of the rocket upwards from
the program position on the potentiometer of the gyro horizon the displacement Ap!
appears, We willl consider that it corresponds to the proportional deflection of
Jet vanes 2 and 4 downwards (which we consider a positivegz

8=, = 0, M. (14.2)

Deviation of the axls of the rocket to the left of the assigned plane of firing
causes cisplacement £' of the potenticmeter on the axis of the external frame of the
vertical gyro. We assume that proportional to this displacement Jjet vanes 1 and 3
are deflected to the right (this deflection 1is considered negative). Finally, with
the turn of the rocket about the longltudinal axis clockwise (depending on the
flight) on the invtermediate exisz of the vertical gyro there appears a displacement
of the potentiometer 7! and, according to our assumpcion, this will irduce deflection
of Jet vane 1 to the left and Jet vane 3, to the right. Considering parameters of
the control system with respect to latersl axes identical, we can write:

‘l"*“b5[4'5¢f~}

o 14.3
8= — gyl — B0’ (14.2)

Coefficlents ag 2nd by characterize the sensitivity of the control system:
the higher their numerical value, the greater the reaction of control surfaces on
deviations of the axis of the rocket, They are called by static amplification
coefficlients, since they characterize the reaction of the Control Surfaces on a
cohstant (or slowly changing) signal from the gyro-instruments.

Using expression (6.10}-(6.12) for £', n' and 49', we will record the equation
of control of the rocket in the form

- 6l=""t:3’i"’o"l-
8=, =a,q. (14.5)

8y == — a} — b
We can now exclude angles of deflection of control surfaces from egquations (14,4}
2R’k|a°n == o.
t;'qS(r.—x')(;-—o)-i-?R'(ll—x')aozzo. (1%.5)
,;‘qS(x‘ -— x,)(q -0+ ‘ZR'(I‘ — ') a‘.&q = .
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The first of these equations gives
q==0.

The second equation (14.5) can be transformed in the following way:

{:a :b"s("l"‘ft) 6.
G §5 (&, — 25} + 2R (1 ~ £7)

Finally, we transform the third equation (1%.5):

¢ ¢S(x,—=x)— 0+ 28R (L, —x ) [(s - ) — (¢,,—0)] =0,

or
—8 . M“I—Jv‘) — ).
e S Gt IR ey D
If we designate by A the quantity
A - 20,k {1, — %)

OIS (x, — 1)+ 2R (I — x) *

then equations {14.5) lead to equations

"‘"“J(l'.,-')-
§={1—A)e,
R0, :

From equation {15.,10) 1t follows:

=@ — To=—(1 — A) (1, —0).

Using these equations and expressions (14.4) for angles of deflections of control

(14 .6)

(14.7)

(14.8)

(14.9)

(14.10)
(14.11)
(14.12)

{15.13)

surfaces, we will transform equations of motion of the center of gravity (13.1):

= 1
X e
)

-t;'qS g—Msind4-2a R (1~ ,.1)(.;"_ Wysin tr] —

[P — X eosg -cyScosd—

£
*’;g—la—l.u'
;'-—-w—.‘-‘- [P~ X Msing —e,q5sin0 +
T e g —ecs =20 R (1 - (1, —0)c0sg) —
Rt
"""7_!"- -’li ""Icy'

CEm— e - X0 — Mo —c,ySe—

— o uSde+20 R (1 — o) —Z2g--J —]..
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In these equatinnc it is expediently to turn to variables v, 6, and o, using relation

{13.3). Differentiating the latter, we will obtain

f::écose——vdﬁnﬂ. (14.15)
y=9sin0 4 vcoso,

or, solving with respect to v and v8,

U= xcos0 4 ysin®, (14 .16)
D= — xsin0 + ycosO.

Let us insert in (14,16) % and ¥ from equations (14.14):

- -:-.- [P — Xy)cosig ; 0)—c, 0S5 +
+ 20 R (1 — A) (1, — 0)sinlq — 0)] —
— (& &+ LestSes) cos0—~(EEL g5, 1,,) im0, (14.17)

0= 7"-_ [(P— X, )sin(g—0)4c,qS(g—0)—
— 23R (1 — A)(up — 0)cos (g — 0)] -+

+ (—:'8' T Jos +Ja) sin 0‘(1.;'1 g ‘i'lcx"’/u) cos 0. (14.18)

Up ti1ll now approximate equalities (11.13) were used only in secondary members,
In order to use them in members having the largest magnitude in equations of motion,
for example, in the first member of equation (14.,17), it is necessary to give one
self a report in the magnitude of the error committed. From tables of trigonometric
functions it 1s easy to verify that, considering cos a, = 1, we commit an error not
exceeding Y

0,1% when ¢, <23,
0.2%; when «, <35,
0.5¢; when a, <3
1% when 0,8,
2¢; when a,<11°%
5% when a,<§l$%

Since for ballistic missiles the angle of attack usually does not exceed 2-}°,
and the thrust and drag of control surfaces are known correct to 1-2% of the thrust
value, then the accuracy of the member (P - xip) cos ay almost will not suffer from

replacement of cos ay by unity. An even smaller error is given by replacement of
sin a_ by a,. The third member in brackets in equation (14.17) has the order a2

and on the same basis can be rejected (let us note that this rejecting partially
compensates replacement of cos ay by unity in the first member),

Subsequently we will use the following principle of simplification of motion
equations, If in the equation there are contained such members whose absolute value
is less than the possible error in the main gin value) members, then these members
can be rejected without damage to accuracy of the equation, The influence of
accuracy of the equation on the accuracy of 1ts solution is not investigated. Let
us consider from this point of view members considering the attraction and rotation
of the earth in equations (14,17) and (14.18), The accuracy of these equations is
determined by member (P - Iip)/m, which in the beginning of flight of the rocket
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has & msgnitude not smaller than the acceleration due to gravity g, ~ 9.8 n,/se, and

toward the end of the powered section because of the decrease in mass of the rocket
it increases & few times, The accuracy of this member, as was already mentioned, is

equal to 1-2¢, 1.e,, not higher than 0.1 u/sz. In equstions {1&.,17) =nd (1L,18)
we will not consider members smaller than 0.05 m/s? or 0,005 g,

Thusg, the member = F £ can ve disregarded when x < 0,005 r, 1.e., &ll thc more

when x 8 0,005 R ~ 30 kn, and taking into account factors sin 9 and cos 6 when x < 50
' km, The factor (R + y)/r when g can be considered equal to unity when R + ¥ > G.995 1,

‘ xR ¥ < 00112,
P 2 < 8,17 = 00 km.

: Members Jex and Je consitute vectorial components 3. whose value does not
: exceed rwg. Congidering r < 7000 km, we obtain

£, <1-10(7.3- 10°% < 0,04 w/s2,

This means that centrifugal acceleration during calculation of the powered section
1 can be disregarded., Finally, the value of Coriolis acceleration 3 does not exceed
‘ amsv < 1.5¢1077 v, It will be less than 0,05 q/se, it v < {0. 05)/(1 5. 107y - 300

m/s. The speed of the rocket takes considerably greater significence, but the
component of speed Vp = 2 of the value 300 m/s usually 1s not reached., Therafore,

members with ¢ £ in expressions {1.11) for vector Jo in the calculation of the

powered section can be disregarded, and we can use the foullowing approximate
expressions:s

¥ ) -ahx_‘y«sqrsmea"ru;cosq singsin®,
1"=-—"a3xcow‘sint= —Zrw. 08¢, siny cos B,
(14.19)
j“——-zuaxslnq,-f- 2u,ycosq,cos¢-
== 2oy (— sing, cos 04~ cosq, cos ¢ sin @),

Taking into account these remarks equation (14.17; takes the form

%-%(P—X,,- ,qS)-—gsin-é:-gcose. {14,20)

since, on the basis of fermulas (1%.19),

Jeocos0-f f  sind =0

In equation (14.18) we will produce analogous simplifications and will tekz out
: after the brackets the value ¢ - = A(q:n - = ay. Let us then divide 2quation
i {14.18) by v and find:

J9 l(l,
oft [ ]

i—-4
- -;[P— X, 6,95 — N -T]—gcosn - -‘;—(slne-i-?w;cosq,sinf}.

or, taking into account expression (14.9),

R I R
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1 fe,? EPERE M U . R .
;.s-.-{ :‘llP-— X|’+(! — -‘-‘-‘-_-_-.z-)tth]— ‘v;osﬂ-,—-; gszno}-khacasq'x.nw.
or, finaily,

& i{s 6 —x. . . .
o 2P - %yt TG a8) - o4 £ gaind] £ 20j00sgsiny. (34.20)

Equatlonz (14.20) ard {14,.21) can .e integrated Jointly with the first two equations
gsj.j), since they will form a system of the first order eguatlons with four unkown
functions x, ¥y, v and S,

To these differential equations 1t {8 necessary to add the dependences {3.3),
(10.20), {31.17), (1%.9), (14.13), (6.16) and (14.4) for the determination of m, P,
a,, l‘p, where the value of arag of jet vanes can be considered constant; if, however,

there are reliable characteristics of Jet vanes, then it 1s possible to consider the
dependence Ilp only from the deflection cf control surfaces 2 and 4, disrezarding

the influence of very small angles of deflection of control surfaces 1 and 3 on the
value of the total dreg of the control surfaces.

The influence of small periodic¢ osciliations of control surfaces on drag of
control surfaces can be considered on the average. 7The mean ‘ralue of the increase
in vane drag from oscillations of control surfaces consists of half of the increase
from the constant deflection of control surfaces by a value of the amplituue of
osclillations.

After the motion of the rocket in plane Oxy is calculated, one can determine
motion of the rocket in a lateral direction.

Differentisting ihe lavter from equaliities (13,3}, we obttain

s " )
or
du - ds
oo I gd
o) ¢t

Substituting Z and dv/dt from equations {14.,14) and (14%.20), we will find:

o " - ’ P
v%:: -;— [P- Vp—eoS—{P - Xy - GaSya+
DELN U] A SR MR S A

—_ -E—-(P — Xyp--c g2+ {g sin 0 <4 i:— Foos B)o.

After transformations, ihe considering expression
e, = — Ao,

emanating from equations {11,18) and (1%.11), we will have

dao * 4 1—A , . - Y
ﬂ—dei‘.—[P_le"c.\'ﬂS— ":{——Qauk}‘}' ';g+j¢:+jn‘(g smO-,——:—&’COSO)ﬂ.

Considering the remarks made on the possible simplifications in last members,

using expression (14.19) for ch and transforming the bracket just as with derivation
of equation {14.21), we will obtain equation
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- 3 (sing, <080 — cosy, custrlal), {1 .22)
which together with
Lo (15.25)

{see third equation of {11.§)) sarves for calculetion of iateral deflections,

Thus, the moEt general system of equations for balllstic calculations (14,20},
fs.21), 513.3 , (1%.22) and (14.23) 1s obtainec . This system can be used direct
or numsrical integration only when a number of constructive deata of the rocket is
known, namely:

a) acrurate laws of the change {n :nrust P a:d flow rate per second ® in flight;

b) eccurate values of eerodynamic properties (cx, e, CJ:) for different
conditions of flight (M, h, aj; ¥y

¢) accurate characteristics of Jet vanes (R!, Q, A);

d) parameters of the control system, In the first place, “program” of inclination
of the axis of the rocket (:prr } and proportionality factor between the mean deviation

of the axis of the rocket from the position prescribed to it by the control system
ané the umean deviation of the jet vanes (ao).

Purthermore, it is assumed ihat calculation is produced for & definite position
of the launch point and direction of firing (q:r. ¥).

In the first stages of designing of the roeket enumersted constructive data
Are known only very approximstely or are quite unknown. Their mocre precise
definition 1s possible only on the baslis of a number of labsratory, static and flight
tests of the rocket and i{ts units, These tests and the entire designing of rocket
as 8 whole should be hased in turn on prelininary calculations of trajectories,
which are fulfilled on the besls of more or less cimplified equations of motion, In
these preliminary calculations of trajectories, which are fulfilled on the basis of
more or less simplified equations of motiun. n these preliminary calculations there
usually 1s nc special interest in the influence of the rotation of earth on the

trajectory, since the mAin problem 15 the determination of mean values of flying
characteristics of the rocker,

Our immediate problem will be the composition of simplified equations of motion
which would correspond to some presence of initial constructive data and degree of
their accuracy. Rotation of earth will not be considered, knowing that when
necessary it can be considered by intrcduction of member &us cos8 tpr sin ¢ into the

equation for 46/dt and member oans(sin 9. cos & - cos @, cos ¥ 3in 8} into the

equation for do/dt, Then equation {14,22) at initial conditions £ = 0 = O when

t = 0 gives for the whole powered section o = C, and therelore iLenceforth we wili
not write equations Jor s and z, implying that aotion 1s accomplished in plane Oxy.
The angle e, turns into zero, and angle ay coincides with the angle of attack a,

Subsegquently we will use designation a instead of Qy’

Comparative calculations of trajectories and certain theoretical considerations
show that & change in the form of the powered flight trajectory, i.e., & change in
the dependence C on t, has comparatively little influence on the speed of the rocket
at the time of the turning off of the engine on the full flying range. Therefore,
when the main problem is determination of distance, simplification of equations of
motion can be allowed mainly owing to the equatior for d6/dt,

In pariicular, if there are no data on the magnitude of ccefficient L




characterizing the sensitivity of the control syctecm of the rocket, it is possible
to consider contrul syster of "ideal," which corresponds to an infinite value of
the coefficlent &,. Passing to the 1limit in the equation (14.8) when a, = ®, we

will obtain
a==v;-0==q~,,—0. (14.24)

and equations of motion take the form

—?}e%(P— Xip— €9 —£sin0— égcosﬁ.
E ] =

-—gcoso-i--:-gsan]. (14.25)
%aruoso. . .
%avslnﬁ:

If it 1s necessary to determine the program angle of the deflection of Jet
vanes 62, then 1t is possible, by using the last of relations (14,1), to obtain the

expression

a8 (x, —x,)

Y74 U._m‘(‘l"“ 0). (1“.26)

6“ =

If now .one were to consider that when a, = ® in the limit 1s found to be ¢ = °np‘ as

this ensues from relation (14.24), then expression (14,26), will take the following
form:

c"qS (.v, —-.r,)
b=—Srti=rn w0 (14.27)

The system (14,25) is most commonly used in those cases when there 1s produced
a checking calculation of the trajectory for the purpose of determining the parameters
of motion of the rocket and loads having an effect on rocket on the powered section,

If the form of the trajectory, 1.e., the dependence of the angle of inclination
of tangent 6 on the time of flight 1s assigned beforehand, then in system. (14,25)
one should jointly integrate only the first and the last two equations with unknown
functions v, x and y. The second equation of this system can serve for the
determination of the angle of attack

a9 x
miv——t-rcos0— = g:4ind
( dt r ) (14.28)

qx==
(4

h—x
P-—-X|'+7::-x—:-¢,.'s

The angle of inclination of the axis of the rocket is determined with this by the
formula

The absence of exact values of aerodynamic coefficients and centering of the
rocket is indicated greatest of all in the determination of the angle of inclination
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cf tengent ¢ frou the equatlicn for 28/8%, in which the member lJepending on i, - X,

A
11 - X, and c)" {s the oain one in value, It is natural that the angle of attack

1
a is determined inaccurately., Since the angle of attack of long-range rockets in
flight is usually smmll, 1t is8 impossible, disregarding 1t, to calculste the
trajectory by wquations cbialned from (14.25) when O = ¢ {in this cese It is
b

poesible to disrezard the member 5,7 €):

o ]
'.!:' el - Xy om0 1S) e g vy,

d= . b 30
S LT . . {15.30)

o .
2 asin Tas

ot

The error practically npmrig in the acceleration of rocket is less than the error
due to the inaccuracy of 1C-20% in value of the coefficlent of drag.

The systes ﬂ.}Ol should be used for all design calculations, for further
simplification of equations of motion, for appraisal of the influence on the motion
of the rocket of different facturs little connected with the form of trajfectory, and
in other cases not requiring speclal accuracy.

§ 15, Rquations of Motion for the Region of Fres Flight

In the solution of the basic protlem of ballisties 1t is assumed that the
rocket accomplishes free flight with an angle of attack equal to zero, It follows
from this firet that on the rocket act only two forces of all those examined by us:
gravity and drag. Secondly, there is not need for egquations of motion about the
center of gravity. Consequently, the equations of motion (13.1) for the section of
free flight take the form

- B

xn-:r‘chosﬁ-—;g-—ﬂln Jege

- 1 .,

r-—-;&.#sﬂno— kf""‘la""lc,- (15-1}

- 1 2

rrm e qS0~ 8= Jor— Jeue
whare v, 8 snd ¢ are determined by relation {13.3}. The latter can ve rewritten
thus:

cas0— v
-
¥y

sin0— . (15.2)

G== —.!.L
=.

Considering that g = (pv2/2), and using expressions {1.9)-{1.1i), we will record
equations of motion for the section of free flight in the following form:
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e S .
"'.7?!' == - €OV, — -”‘:- X -y {lxcos . cos ¢ |-
T+ (R~ y)sinqy -~ = cos 4, sla §] cOs ¢, cOS h — &) —
— 203 (v, cosq, sinf - v, sinq,),

Ao s I 4 )
-J{- == — g €000, — = (R4~ y) = 05} {[x cos ¢ o8 f 4

+ R+ y)singqe — zuosq, sint]sing, — (R4-y)} 4
+ 203 (v, cosy, sin} 4 v, cos . cos}),
1".;'{. - _-2%'- c pov, — —:— z —a} {—{xcosq, cos:!
-+ (R4 y)sinq, — 2cosq,sin}]cosq, singd — -' -
+2w3 (v, sing, — o, ves ; o0e),

or finally in the following form which 1s more convenient for celculations by 1t:

’JT";"”-*"F‘:'”‘_ '5’ x+ ayx-tap R4+
+ a3z + 8139y -+ My,
¢ e
-Tl;!-a—-kc,-;;oo,——;(k-i-y)-}-a,,x-f- (15.3)

. + a5 (R4 y) 4 @z + by 0, + bny0,,
%Lg.--kcl_:; TY, — '%' s+ c;]-'"— dn(R-’-y).’.
| + an? 4 by, + A0,

where

k=30 (15.4)
a,, == .7 (sin*p, - cos ¢, sin? ).
a, == ay == -eising_cosq, 08,
a,,= a == wfcos” q sin f cos b,
a,, == ojcos?q, (15.5)
0,,== a, == o sing, cosq, sinw,
a g, = o} (sin* 7, +- cos* ¢, cos? )
by =2 — by = — 203 c08, sind,
b,y =2 — by = —203sine,, (15.6)
byy 7= —Byy 2= 2003 cos f, cOS

are constant for the given trajectory coefficients.
Equations (15,3), together with equations

dx
=V

d
o =0, (15.7)

dz
=%

should be applied in those cases when it 1s necessary to calculate the trajectory
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with great accuracy, for example, in the compilation of preliminary tables of firing
for flight tests of a rocket,

It i8 necessary to considar that in the determinaticn of flying range the
accuracy of calculation of the section of free {light has much greatsr importance
than the accuracy of caleculation of the powered section, Actually, the deflection
from the calculated trajectory which the rocket has at the end of the vowered gection
t0 & greater or lesser Cegree 18 compensated by the control system, namsly, the
instrument, sluthing off the engine. Tuning of this instrument is prodnces by
proceeding from calculation of the trajectory of free fliight. Thus, the main faciors
affecting colincidence of calculation and sctual range are the perfection of the
control system and accuracy or calculation cr the section of free flight.

On the other hand, possibilities of accurate calculstion of th2 trajectory for
free flight are consliderably greater than those for the powered ssction, since a
larger part of free flight lied in 80 rarefied layers of the atmosphere that the
only force subject to calculation in equations of motlion is gravity, which is well-
known with great accuracy. If one were to consider the flatness of earth, one can
determine the acceleration of gravity g with an accuracy of the order of 0,0204%,
The assumpticn made by us on the sphericity of earth considerably lowers the accuracy
with which the acceleration of gravity is determined, which 1s clear from Tabie 15.1.
In this table R denotes the mean radius of carth and R!, the true distance of the
point from the center of earth,

Table 15,1
e N
o]l g lala] e
¢ 93514 9.620 6,658 9,703 —0,016
x 9919 i 9,820 0o 3315 0,51
& 3,528 9,620 —0,00% 9.848 0,020
@ 9532 9,820 -—0,012 9,664 0,032

Hence 1t 1s clear that formula

5]
““‘!?‘ (15.8)

possesses an accureey of the order of 0,01 m/sE, or 0.1%. Furthermore, Table 15.1
shows that it is expedient quantity r to calculate by the formula

re=R b,

where h 18 the actual aiiltude of the print above the surface of earth, If, however,
by r we mean the true distance of the proint from the center of earth, then the
accuracy of formuls (15.8) will be reduced almost three times.

Thus the accuracy of the right sides of the system {15.3) does not exceed 0,01
q/s2, and we have the right to disregard in them members smaller than this value,
Since the value of coefficients 8, doea not exceed wg, members of the form
a,,x and &, .7 can be disregarded when |x} or |z} « (0.0l/wg) = 2-10% m = 2000 km,
Members with coefficients bik can be disregarded, if the absolute value of the
corresponding component of speed Joes not exceed
001 oul

—_— bl - 7,
masiba] T g 0 WE.

T™his ¢oncdition for long-renge rockets can satisfy only vy the component of speed V-

T o s b
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In *ne member % x it is possible to replace r by R, if

x x elxh 2
gl_r.-.ﬁl-_--._,‘,—/\o.o! m/s<,
1.e., vhen
0,01Rr
Jxh] < i

and all the more when

[xh|<ﬂ:-,ﬁ'-z 10000 km=,

which takes place ebout the whole trajectory for - firing ranges up to 500 km.
Analogously one can sssume that

£:-8,

when
| zh] < 40000 kn©.

In all members containing r, it is possible to replace it by R + y, if
B_%_K > 0.999 (wroczeding from an accuracy of 0.1%), and this 1s fulfilled if

(R y»* > 0,998r2,
x? < 0.002r2,
x < 0,045r

and all the more if x < 0,045R =~ 280 km.

Let us now turn to the simplification of equations for the section of free
flight, Above it was already said that for calculation of average flying
characteristics of the rocket the rotation of earth can be disregarded., With this
't is better not simply to reject members considering the rotation of earth but
replace them by mean values. At first we will calculate the mean values of
coefficlents 845 and b1k for the arbitrary point of launch on the surface of earth,

changing the azimuth of firing ¥ from O to 21. These mean values of coefficients
will be noted by primes. They are calculated by the formulas

=
o), = %1 J adp. 1 k=1, 23 .

Carrying beyond thc integral sign the ¢ factors not dependent on, we see that
the calculation of coefficients 1s reduced to the calculation of integrals
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=
J“-=2a.
2« = T

!mtdv- I cosp dp =0,

e e
Iuﬂqawu[cos*tdvgm
[ ] | ]

=
f s1n % cos § dp wa 0.
H
Thus,
1;,-=u§(un'q~,+-;-cos’v,).
8y wm &) cos?y,,

o= sin’v,-}--;-cos’t,).

» ’ » . 1 4 ’
8 a8, m= g8, ux 8, = nataucb:

(15.9)

— bjy = b, e 2 sing,, } {15.10)

.;Iaxb;. -b;‘Bb;_.sao.

N i3 "
Now let us find the mean values a,, and by, of coefficients aj, and bj, (there

will be at the same time the mean values of coefficients a,, and bik) over the entire
surface of the earth S, These mean values are egual to

. 23 1n 23
J ‘f 2iy S Id'). f a;y €O by 2z I aj, cas g e
8

= L]

or, fimally,

Calculating the definite integrals

an
l sin®g cns(;dq::%-,
-an -

]
f siagcosqgdg==0,
FA .

-,
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We find values of cocefficlents interesting to us

l:‘-l a;a-:c;:— %—6)3-53.5‘5- 10°? —%r.
a;:aana;‘taéeaana;zﬁ. {i5.12)

b;nb;= h;': h;zb;;zb'aﬂo,

Consequently, the mean flying range of the rocket can be determined by
integration of the system

do, L ,1__1)

i == — ke, — vo, (' i B

dv, ) £ 2 .3 15,12
_.d.‘_.a....kcl_ oo, _(?_3.';3’(R+ )-)‘ ( 5. )
do » (g 2 .

= ke vo,—(E—Fui)

together with equations (15.7).

The last equations of systems {15.7) and {15.12) show that at initial conditions
z = 0 and v, = ¢ these equali*ies will be fulfilled along the entire trajectory, i.e.,

the mean trajectory of the - - 2t lies in plane Oxy. Thus, the need in equations
for z and Vs is eliminated.

System (15,12} is .. awhat simplified during transition to polar coordinates,
i.e,, with replacement .. coordinates by the formulas
x=rsiny, (15.13)
R4-y=rcosy,

where x 1s the: central angle formed by rays drawn from the center of earth to the
point of launch and to the rocket, in other words, the angle between the radius
vectors of the launch point and rocket, Differentiating relations {15.13), we find:

x=rsing- rycos .
.. . {15.14)
yw=rcosy— rysiny:
X=rsiny - 2rgcosy — rysiny -+ rycosy.
S A i (15.15)
y==rcosy — 2rysiny — ry cosy -- rysiny.
From equations (15.13)~(15.15) the following relations ensue:
 xslag+4-(R T+ y)cosg=r, }
xeosy—(R+y)sing=0; (15.16)
xsia g+ ycosy=r.
A , (15.17)
XCOSY — ysiny==rg;
xsiay+ yeosg=r — 1t
(15.18)

Xcosy — ysing=2rg+4 rY.

Substituting in relations {15.18) X and ¥ from equations (15.12) and using relations
(15.126) and {15.17), we will obtain a system of equations of motion in polar
coordinates:
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r-— rz'3=-.k:,£:v}-g+§—u3r,

R . . (15.19)
rg42ri—= -k:,;?; ory.
Speed v, on the basis of equations {15.14), is expressed by r and y thus:
P iy 0 (15.20)

Altitude h and flying range slong the arc of the earth's surface yield expressions

her—R (15.21)

Finally, if the altitude of flight 18 50 great that drag can be disregarded,
system (15,19) results in the form

Forf= gt yedn (15.23)
2y =0 ’

or, taking into account expression (15.8),

- . A . ) 2
f-*'z’—!;r"'rg%-

‘. (15.24)
D=0
The secand equation of {15,24) iz written on the basis of equality
’("i+2;i)-%("i)~ (15.25)

If in the first of equations (15.24) we disregard the member §a§r, which will

lead, obviously, to an insignificant decrease in the calculation range as compared
tu the true, then we will obtain the system of equations

;_.’iig- '!;‘;'{o
. 15.26
%%(ﬂﬁ)==0. . (15.26)

which is easily integrable in genersl form, We will arrive at this system if we
examine not the relative but the absoluie motion of the rocket at high altitudes,
1.e., the motion in the inertial system of coordinates the origin c¢f which moves

together with the center of the earth, snd the axes maintain a constant direction
in speace.

The absclute wotion of the rocket is composed of the roiation of the earth and
relative motion of the rocket., With motion at high altitude where aerodynamic forces
are negligible, it is simpler to determine the relative motion not directly with

the help of equationsé%ﬁ.)) but using the absolute motion which 18 described by

simple equations (15. These questions are analyzed in Chapter V in gresater
detail,
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§ 16. More Precise Definition of Equations of Motion

In the preceding paragraphs in speaking of the terrestrial system of cocrdinates,
we did not distingulsh two possible positions of this system, In § 1, for example,
it was implied that axis is directed a_ong the radius of the earth, and in other
places, in particular, in § 2 and 6, it was assumed that at the time of launch the
direction of axis Oy coincides with the direction of the longitudinal axis of the
rocket, i.e., with the direction of the plumb line. In the first assumptlion plane
Oxz touches the surface of the sphere with the center coinclding with the center of

earth, but in the second one it is the tangent plane to the actual surface of the
terrestrial sphercid.

Deviation of the plumb iine from the radius of the earth is caused, first, by
Vi iaci WAL Oon the buay guiescent at the surfece of the earth, besides the
attractive force mg, there acts 2 centrifugal force mnSR cos 9, directed on the

perpendicular to the axis of rotation of the earth. The resultant these forces mg’
is gravity, and i1ts direction 1s the direction of the plumb line. As can be seen
from FPig. 16.1, this direcction will form with the direction of the attractive force
the angle ¥', the value of which can be easily determined by the theorem of sines

finy’ __ting,

me3, R cos L X me

The centrifugal force is small as compared to gravity (not greater than 0.35% of the
latter), and therefore angle ¥' is small and with
sufficient accuracy one can assume that it 1s equal

to
?R °
==f}£simr, tostr,r-é?;-sm?»r.- {16.1)
Thg)maximum value of angle ¥! consist of {for latitude
45
R
Youg = 572 ==0,00173 == ¢’.

Fig. 16.1.

Secondly, the very direction of the attractive
force does not coincide with the radius of the earth
and due to the deviation of the form of earth from a sphere will form with the radius
of earth (more accurately, with a straight line comnecting the given point with the
center of earth) the angle YY", As & result the plumb line is deflected from the
radius of earth at angle

Y=Y +Y. (16.2)

The value of angle Y is easlly determined from the condition that the plumb line
is normal to the surface of the terrestrial spheroid, If one were to assume the
latter as 2 ellipsoid with a flattening a = (1/298.3) (Krasovskiy's ellipsoid), then
for angle Y there can be obtained an expression accurate to values of the order of

02,

y==asin2q,. (16.3)
Angle v has at latitude 45° a maximum value equal to
Yonss == @ wu 0,00335 2= 11,8,

Thus, at the surface of the earth the centrifugal force caused by the rotation
of the earth gives the -ame effect as that of flatness of the earth,
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Ist vr zeep the designation Oxyz for the system of coordinates rigidly joined
with the earth, for which the origin is located at the launch point, axis Oy is
directed upwards along the vertical diresctly opposite gravity, and axis Ox, lying
Just as axis Oz in a horizontal plane, will form with the plane of the prime
meridian the angle vy, This angle is called azimuthal aiming, Such a system of
coordinates wiil be called launch, since at Jdunch the connected axes of the rocket
are oriented along axes of The launch system, namely, the Oix1 axis is combined with

the Oyaxis, Oiy1 axis 1is directed aside, directly opposite to Ox axis, and Oiz1 axis

is directed in parallel with axis 0z. Consequently, the axis of the gyro-instruments
at launch are orianted along axes of the starting system: The axis of rotation of
the gyrosccpe of gyro horizon is along the Ox axis, and the axis of rotation of the
vertical gyro is along the Oz axis,

The second inaccuracy which was sllowed up till now consists in the affirmation
that the axis of rotation of gyroscopes of gyro-instruments ramain in parallei with
axes ol the terrestslal system of coocdineiez, In reaiity they rermain in parallel
with the directions which had corresponding ax3s of the launch system at the time
of launch. Axes of the launch system, being rigidly Joined with earth, turn at
time t at angle w,t about the axis of rotation ¢f the earth. Por one minute the
angle w,t reaches a magnitude of 154,

The position of axes of the launch system at the time of launch will be
designated by the index "0," Thus we wili use three systems of coordinates: bound
01‘1’1’1' launch Oxyz and initigl launch Oxoyozo.

Everything sald in § 6 remsins correct if instead of the terrestrial system we
use the initial launch system of coordinates, In particular, angles 9, £ and n should
also be counted off with respect to the initi~1 launch system, Consequently, Table
2.1 of direction cosines is correct for axes s the bound system of coordinates
with respect to the initlal launch system {Tidle 16.1),

Subsequently everywhere we will disregard the squares and pairwise products of
angles Y, oyt and other small angles. It is easy to verify thst the direction cosines
between &xeé of the initlial launch and launch systems of coordinates will be
determined by Table 16.2,

Table 16.1
Ox, Oy, Oz,
O,x, cosyg B —*-sian' __:-;
—O.y,, —siagp cos g 3
0;:.’ icosg4-qsiuy LAy —geosy 1

Table 16.2
Ox Oy [+
Ox, 1 uyteos g, sing o fsing,
0y, —efiosy, sa i —afcas g cosp
Oz, -—-,lsan; wyfcos g, cos g l ) i

Let us introduce designations for the small angles appearing in Table 16.2:

Yy==oyfcos g, cos,
Yy == ayfsing, {16.4)
VL W TY

6€




With these designations Table 16.2 will take the fo)lowing form (Table 16,3):

Table 16.3
Ox } Oy | Oz
O, L -V \{]
Oy, 2l 1 {—w
IR

AR e et s G

COmparmg Table 4€,1 and 1€,3 {multiplying mairices}), we will cbtain values of
direction cosines between axes of the launch and bound systems of coordinates (Table
16.4). Here, on the basis of the smallness of angle ¥, it was accepted that

stayy=y. sosyp=1
and, consequently,

cos (g — v =cosy L y;siag,
sin( — vy) =sing — y,cosq.

Table 16,k

Ox Oy . [+24
Oxf cosfp—yy) sla{y —~yy) Vatusy —yyviny —3
O3] —sin(g —1)) Wiy —1  [-Vicesy —ypsing
0.2 L§<051+l351ﬂ7--\'a Seiny —qeosy iy 1

As was already noted, deviation of the plumb line from the radius of czarth is
caused almost in equal degree by the centrifugal force, conditioned by the rotation
of earth, and the flatness of earth, Consequently, conisidering this devistion and
determining its value by the formula {(16.3), we are obiiged at the same time to
consider the deflection of the acceleration of the earth's gravity from the law
expressed by formula (15.8),

It is known that the acceleration of terrestrial gravity, with an accuracy of
values of the order of cblateness of the earth a, can be decomposed into two
components:

radial

&= g;”-%’@w‘-— B

and meridional

‘.a% sing, cos @,

where r ig the distance of the examined point rrom the center of earth; Py - the
geocentric latitude of the point; fM = 3.9862 x 10 m /s — the product of the
gravitational constant by the mass of earth; u = m {a - 2-) = 26.2&5-1024 ms/se;
B = (o a3)/(n4) the ratio of centrifugal acceleration to the acceleration of
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5 gravity at the equatcer,

Tre radial cosponent &, is Jdirected to the center
of earth, and the meridional 8n ia perpendicular to
it and lies in s plane of the meridian ani is directed
in the direction of the equator {Plg. 16.2).

It is expadiently to decompase vector & into
twc {non-orthogonal}, componerts gf and g, ine

direction of radius OA and axis of rotation of earth
. ON, From the triangle ABC there cen be obtained
Mg, 16,2, for thege components expressions

, )
£ =2ata= iy, (15.5)

Su=&a ;,;l;. = -?:4- siag,.

Component g' acts in a direction directly opposite the direction of the radial
scceleration By These two components of acceleration can be united in one expreseion

:iﬂéi'-*%@ﬂn’e.-—l)- (16.6)

Thus, in the composition of equations of motion, taking into account the flatness
of earth, it is necaassary to consider two components of the acceleration of
terrestrial gravity: Efs directed to the center of earth and &, directed in parallcl

to the axis of rotation of earth. We will again deduce equations of motion; re.eating
the way already done in § 11-1%,

As a basis will use the launch system of coordinates. Angles 6 and ¢ will
determine the direction of the tangent to the trejectory in this system, Conseguently
foxl':ulas ng) and (11.2) and all of them ensuing, including {13.3) and (1%.16),
wi force.

Direction cosines of tractive force and forces from controls in the launch
system of coordinates can be found from Table 16.%, since these forces act along
axes Of the bound system of coordinates, Two component forces of terrestrial gravity

have s#irection cosines represented {n Tadble 16.5. In this table Xos Yor 2, BT

coordinates of the center of earth in the launch system of coordinates, They can be
calculated by tne formulas

Y= —1,c08Y.
2, — pysinysing,

X, == rysinycos §.

£36.7)
where T, is the distance of the launch point from the center of earth, With an
arror having an order of ae, the following formula are correct:

row= & (1l —asin?q.) ) {16.8)
X, = ag sin2¢, cos ¢. }

Yo = — a{l —asin’q,)

£, — casinlg, sin. (16.9)

The value of component force of terrestrial gravity appearing in Tadble 16.5 is
determined with the help of formuias (16.5) and (16.6). Entering intc these formulas,
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Table 16.5
Ox Uy O¢
ug, - - Ik =
A 1 “3,
Bt o3 Wy “

the gquantities r &nd 9., are determined by the formulas

14

re VRS FFG s =2 F (16.10)
and
stug e pt wdes ETIAT O TN, FE )y (16,11)

Fuy -
where T, is the projection of the radius vector r on the axis of rotation of earth
expressed by formuls

- (X =& )wge BX =59, F(T—2)uy,
w; .
Pormulas for the determination of vectoriml components of angular velociiy of

the rotation of earth on axes of the launch system of coordinates do not differ from
those derlived in the first part:

Ty

(16.12)

@, ==i;008 7, Cosp,
83, =@y slag, (16.13)
8, =2 — 8, Cos ¢ siny

For the determination of aerodynamic forces and moments it Is possible, as

before, to use vector formulas (11.7)-{11.10) and formulas {11.19) and (11.20)
ensuing from them, where in the latter

g, == —o% -y =cosOsia(s — v} —sinfcos(g ~v) +
+o(—ycosg—y;sing )
asin(g — 0~ we— 1,8,
6,m . ffa= cosO( cos g4 qsing -v)+
+sin0@sing —qeosg - y) —ow
micos(p—0) + msinlgy —8) 5 y;sinb—y,cn58 —0,

The lest formulsa, since angle ¢ - 6 is small, can be rewritten in the form
&= {—0 47, rin0— ycos0.
Direction cosines of mcments Hay and Nu coincide with components of vectors yg
1 3

and zg {Table 16.4} and direction couines of forces Yy ard Y, , with direction cosines
of vectors
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...'xz:-
» »y *
- e cud sial —0 ]~
feosg +nsing—v; Ising — ncosgby, |

e — 31008 4 cos 8y - (4 — v, O3 0 — y,5in @) 3¢

and
_aX£-~
¥ ¥y 2»
-~ — el sal - ~
- glalp — 7y COS(§ — ) — W Ctg—y g+ 9§

- (g 08§ — Yysing)sin0 b ocos(p—y)la 4
+ K- 10088 ~ pungicosl— osinfe —~ wiiy —
—co l§—~n—0)st

Here 1t 1s possidle to assume cos (¢ - Y- ) « cos cy = 1, Both vecotrs vo X :g

and v x yg, Just a8 in § 11, can be considered unity.

Now it is ;gin possible to copy tables oOf forces and moments having an effect
oh the rocket (Tsbles 16.6 and 16.7), where d;mping soments will not be considered,
Hence with <hose came assumptions a8 in & 13 and 14, we will cbtain the following
equations of motion:

B(E 4Lyt Loy = —m [-‘;’-(x—x.)-i%:-a;,]-

—& S ccr 8 -c;qS(Q — ¥y~ O)sin®+
+ (P — Xy)cos(g — v — 2R'Y; sta (¢ — 1)

-6+1.,+:,,)--.[-‘;(,_,‘,+{=’. ]..
— e 4Ssin 8+ €05 (s — v, — O)cos0+
+(P— X Ysin(g — 1)+ 2R cos (9 — 1))
BE 4 oyt S --(—',1(z-x.)+5‘.;-.,]+

+epSo—~c oS - o+\-,si_-l--7,m')—-
—{P— K B+ vising — vyc08¢) + R @, 4+ ),

Ray@—3)m=0,
- ;‘QS(J,-:,}(;-Q_-(- v‘shi—\',eu!)-}-
' R 2y B+ 0) =0,

~ 8o, YO~ T~ )~ W 2J4=0.
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Table 16.6

Pormula (1%.%) for angles of deflection of control surfaces remain in force,

Yomre® of Jel varas
1 and 3 with respect
ts axis g7y

Nose it ©F fet vares
1 and 3 with restect
ta axis 237y

Homt of jet vares
2 amd & with resest
teo wxis Oyx;

M, = Rh 3y ~3)

My, =R (1, —x (8, +&9 o 1 14

M, == 2R (I, - x )3, -] [} ]

and using them, we obtain:

N
e

Zeoirm :f ancle with azi
Foras dantit’
[-7] [/} i
wavits a' -u‘: _.{-_—;..‘.‘. _.L:’.Zf- ._-..—:;-::‘
G, m=mg, kP -y oy,
rei X = g$ -0 O ~sind g
et Y, - c;'g.s., - n cos ¢ =~y, £0s U—y, 50 b
urn ¥, =, qSe o By | COS Y API (1 =y COB @ = vy 80 §) < -1
$wTT v 518 0 e @ COS {9 =y} xcalo-aua('v-w
srtxd torsy trur x"--i?'.-{» o COF {7~ Va) - & (¢ — v » MYy Mag —yCony
» A3+ 4+
s 4 -— — -
arers AT L™ -2Rh, sin (o —v) €at (¢ ~ v3) gy COS § —Y3 sifty
2 ard 4 !
: Z, =R - - o
aunirarn (D, @RG+d) | Lewednssy—n | tuae—yoaety, { !
T and 3 T,
»
ren P o = (PSP} con (9 — v} wa{e ~va) —f—yialng 4
&, s +Yiios g
Table 46.7
Conirm or angle
with awiy
Yopant [+ > .4 L ¥
o, I o5, | o
fotradrrmnie .
o s Ay = —r,.c,'S(x‘--.I') 51 0 t ]
ity M, = —e,qS{r,—x)s,| O 0 1

g v
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= -;:- [P = X, pcosip — vp) —c 48 cos 8 —
- ;ﬁs(? S P 0;,.:1-10 —2a,R M sinfg — Vi)l"'
,
£ &,
-l x,)*--;%ahmj“—j“_
9"“% kP - X, psintg — v — e, g8 siabf
-6, 95(% — vy~ O)cos 0 4-2¢,R" \qcoslp —y)] — (16.14)
" £, :
- -;'." ’y‘)_-’;; ”h-.lq-lry' :
Fam— % KP—‘Yl’ +‘;ﬂs)(§ + Y‘Sfﬂ(; —Y_zcosc;).._
— (&, +¢)eS0+ 20 P73 —

¥4 [ 9 .
_7(:“"‘)-*;;@31";1 '-Jul

7= °¢
c;.qS(x. —x )3 --0+v,si0 0 — y,cos 0+
+2“R'“‘ — I‘)’;a 0.
¢;‘¢S(:9 -zMe—v— 0)+ 2a R (I, — %) = 0.

Simplifying these equations in the same way as in derising dependencas (14.10})-
{24,13), we odtain:

R0,
8, = — A{0--v,sind } yco88), (16.15)
Fam{t — A)(o— ysin0 -y, cosb)
G Al — v, —®. - } {16.16)
Ag=—(1 - A)(q,, ~ Y, ~- O

where by A, as before, we designate the quantity

e 20RUx)
A 'Znok’(ll-— ‘,)+f;.qs (X“'—X') - (16.17)

The equations obtained differ from equations §§12 and 14 by the presence of
members containing the coefficient u {in components of the acceleration of gravity),
and members depending on angles Yy '72 and 7} {in equations of motion about the center

of gravity). It is not alwa,s necestary to consider these members. The group of
wembers containing 1'1, Yo and 7}, characterizes the behavior of gyroscopes with

re3pect to the system of coordinates revolving together with the earth, Calculation
of these members give:s during calculetlon of the powered section approximately the
same effect as that of the calculation of Coriolis acceleration, and should be
produced in all those cases when the la*tter is teken into account, During calculation
or the section of free flight this group of members, natu-ally, loses ueaning.

Calculation in equations of motion of meumbers devendent of u gives a result of
one order, taking into account centrifugal acceieration, During calculation of the

~d
N




powered section and section of free flight for diatances of the order of se¢veral
hundreds of kilcmeters these membzrs, along with centrifugal scceleration, can be
disragarded, Such an assumption 1s =equivalernt to the fact that the field of gravity
is aseumed central and purely Newtonian: the acceleration of gravity is found t¢ be

inversely rroportional to the square of the distance from the attracting centes
located on axis Oy.

After these remarks we will write the equation of motion for the powered section
and for the gection of free flignt,

For the powered sectlion in the launch system of coordinates we ovtain the
following equation with the help of the same transformetions as in § 14:

-:—&'-:.nu—‘i-(P--X,,-—c‘,,q.S“)--gsmO-—5,;.1&»30.’q

P | (l,-— ‘)t:,b ]

K7 :(;L[P- X+ =z ¢

~geosd4 2 gsioﬁ} + Zwscory, sing,
Jeo 1}a (] [
W:as{fip—,v,, (‘, __;) A s]+
-+ gasinﬂ} —- 25 {sing, cosd — 1 (16.18;

— €05 ¢, cos §sin ),

- =T vcoes,

:” == psind,

dz

o= .

where for the determination of angles a, and & , the relations (16.15)-(16.17) serve,
and angles Yy, Yo, ¥y are determined by thoe formulas (16.4), The aczceleration of
gravity g is calculated by the formula

=g (16.19)

It is expedient to determine the accsleration of gravity at the surface of earth &
depending upon the latitude of the leunch point by the formula

&o=0.7805 + 0,0319 sinlg,. (16.20)

Equations of motion for the section of free flight in the lsunch system of
coordinatcs with those same assumptions (for small flying ranges} have the form

dv L £
1‘; = —ke, 20 0 S xbyo, 4+ 8,0,

L p £

..“_’g oy T ;vv,—--—;(R-}- P+ by, 4 by,
%--—kc,;w,—»—}:fbuo‘+bﬁ,. (16 y
16.21
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where ucsfficients x end b,, &re expressed by formulas {15.4) and (15.6), and g 1s

determined with the heid o* formules {16.19) and (16,20), It is recommended to use
+hege aquations far distances of the order 500 km end below, For greater distances
o should use the equation o; motion composed in lhe leunch system of coordinates,
takigg into account tne noncentiralness of the fleld of gravity. We will obtain them
Srom equations $16.1h) in %the same way, as were derived equations (15.3) from
2quations (13,1

-"—;in -—kc,%e-v, —~=lix— x,)-%u;. +
+onls —x) - au(y ~ 33+
+ou(v— 23 +b,50, + by,
%” —*‘:‘:TW, -“;5'0'—-.\',)*%03,-% ,
+an(s—sitonly—y)+
+ g2 — 2) -+ 40, + by,

) , (16.22)

#
& - &o
“a_kg‘_“'_.’i(:_g‘)_.._“_'-

+oy(x—x)+only—y)+

- g7~ 29+ by, -F-byy,.
fmen
"ﬁ""'r

a2
T

where

. lu%—:. (16.23)

e melul. Cuens m—ts 0y, Dywm—p =0,
, Spymal—wl g a0, bywz—b, =20, (16.2%)
o=, Gpmeym—uyey, bym—by =T,
quantities g} and g are determined by the formulas (16.6) and (16.5), and quantities
Wags By and u,, by the formulas (15.13).

For the determination of the esltitude of the point of trajectory above the
survace of the earth, it is possible to use formula

Rzzr —r3,

where r3 is the radius vector of points of the surface of the terrestrial spheroid
for a geocentric latitude vu; it is determined by the formula

r3=a(l — asinq,).

Calculation of the section of free flight is conducted according to encounter of the
rocket with the surface of the earth, i.e., prior to h = O,




e Tr .Y

The flying range and arimuth of the lsunch line to the impact point can be
determined with the help of geodesic tables. Tt is also possible to recommend the
following method of approximation. The central angle 8 is calculated by the formuls

) cosp=(-’i_‘c) ‘~'l—-"¢)+‘."0"3;-‘,’:."n"‘7¢, +(2.— 2.) (&, — ) (16.25)

(the index "n" pertains to the impact point), and the flying renge is determined by
the approximate formuls

e St i o A

Lo DoFlayg (16.26)

The angular deviation of the impact point from the plane of aiming is caiculated
by the formula ;

tgat,.:;:, (16.27)
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CHAPTER V

THEORY OF FREE FLIGHT AT HIGH ALTITULES

§ 17. Absolute and Relative Motion

Motion of the rocket on the section of free flight, on the assumption that
the angle of attack all the time is equal to zero, occurs under the action of
two forces: gravity and drag. If one were to examine the motion only at high
altitudes where the drag is practically equal to zero, then gravity remains the
only force subject to calculation in equations of motion,

In this chapter again we will consider earth as a sphere, the field of gravity
central, and the acceleration of gravity variable inversely proportional to the
square of the distance from the center of earth:

=8

It is found profitable to use the inertial system of coordinates QO'x'y'z'
(Fig. 17.1) moving forward, evenly and rectilinearly together with the center of
the earth where we place the origin of coordinated G'. Equations of motion in
such systesm have the form (§ 15)

- 2

8’8--‘;".

;-__4“ ‘ (27.1)
-  d

f-——-;—‘.

If we arrange the system 0O'x'y'z' in such a manner that at the initial moment

" of motion the plane O'x'y' passes through the radlius vector of rocket pr and

through the vector of absolute velocity v' (i.e,, veloclty in the system O'x'y'z!
and not speed v relative to Che terrestrial system), then we will have initial
conditions

=1 =0, (17.2)

and the third equation (17.1) shows that equality (17.2) will be fulfilled during
the entire flight, i.e., the whole trajectory will lle in plane O'x'y’.




Fig. 17.1
Introducing in this plane the polar coordinates

x’'marcosy, y =rsiny,

and producing the same transformetions in § 15, we obtain the equations, of motion

P it IM
Foritm =iy (17.3)

-;‘- (r3) = 0,

coinciding with equations (15.26). Let us remember that equations (15.26) were
obtained for the determination of the average flight trajectory (with different
positions of the launch point and directions or firing) in the uninertial system
of coordinates connected with earth, Hence beccmes clear the importance of the
system (17.3) for calculation of both the absolute (in the system O'x'y'z'), and
relative (in the terrestrial system Oxyz) motion of the rocket,

But the importance of this system is not exhausted by the determination of
the flight path at high altitudes., If the problem consists only in the determina-
tion of flying range, then the system (17.3) can be used for the approximate
calculation of the whole section of free flight, since the influence of drag of
air on the form of the trajectory and on the tull distance proves to be very small,
It decreases with an increase in range and, consequently, the speed of flight,

So that the problem of absolute motion of the rocket becomes defined, it 1is
necessary to find initial conditions for this motion, assuming initial conditions
for the relative motion of the rocket, 1,e.,, coordinates, of the rocket x , yH,

z , speed vH and 1ts direction determined angles OHand oH in the terrestrial
system of coordinates Oxyz are well-known.

Let us introduce one more inertial system O'x"y"z", rigidly Joined with the
system O'x'y'z', Let us dispose it in such a manner that at the initial moment
of time (i.e,, at the time tH) the plane 0'x"y" coincides with the plane of the

equator and plane 0'x"z" passes through “‘he origin O of the terrestrial system
of coordinates (Fig, 17.1). We will call the initial point for the absolute motion
point H. Then at the time t, coordinates of thls point x", y;. z; will be

H
connected with coordinates xH, yH, zH by formulas
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X = — x slag, cos ¢-HR+y)cosq, 42, sing, sl
Yow x sing 4 2, cos g,

(17.4)
- X cosq, cost+ (R4 ¥ )sing,— 2z, cosq, sing.

Components of relative speed v _ about axes of the system o'

expressed in terms of ;‘n’ ¥y» and iu by analogous formulas. Regarding the absolute
velocity vl!!, it is composed of the speed vy 8nd veloclty of following

. S Xy (0 z:ﬁ-z oy 5ex)
e 107 Sl A3 5

i —

xn-v "Z H are

B LA A
-

TR aEY

_Thus components of absolute velocity will be

TR
coa

X e — A sing oosd |y cosy, 4 Tesing sl wyyl,
*e S L e .
Yoo w s bt cus e vl

(17.5)

So==x c08q, 08 +¥, sinq, — I, cosiy, sin$,
where quantities x,, - z, are determined by the formulas (13.3):

Xy = Y088,
Ya=t,sind,,

y {17.6)
= — 0,0,

E From quantities xJ, Yy» 25 and i;;, Yys Zh it 1s easy to turn to geographic
coordinates of point H.

et us designate the geograrnic latitude of

point H by wrﬂ, the longitude by
}‘n and longitude of launch point by A

g+ Then along with formulas (17.4) we will
have (Fig. 17.2)

X =r_cosq, cos(l, — ).
x:‘ 'lm¢n“ﬂ(;'l - ’Y)’
'z;-: r siag,.

Sl Tic ok

’” whence .

20 —22= 5.

2 - 2 cos(2, —1) )

= - (17.7)
, ‘:"" ’: Ta
Fig. 17.2 ,._V;f'm_ 2,

$IC Oy
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Pinally, we desigrate by $§ the angle formed by

the vector of abssolute velocity
v’; with the horizontal plane at point H,

and by $l;, the absolute azimuth, i.e.,
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the angle which the horizontal component of absolute velocity will form with a
direciion vo the north, Let us find components of absolute velocity in the

directfon of the meridian, parallels, and verticals, at point H, projgctiqﬁ
girectly on these direction

& vector v and separately its components x;, ¥, and é;
{see Flg. 17.2):
U= U, 08 0] cos ) = — }; siag,, cos(l, — 1)~
-y shaq sinf), -2+ Hensy,
%= cosd sing) o
- ISk, —~ 20+ Foeosh — 2
v;nv;ﬂno;-i;cuqum(l.-—l,)-{-
+y,co8@, 30, — 1)+ 2lsing,,

{17.8)

Hence it {e already essy to find v'K. &;{ and w;iby the formulas analogous to (17.7):

L

 /
e
ot o siag’ o
Olam b %t T8 . (17.9)
% . « Voo
® o v " v+, -V

Pt cosd]

Formulas (17.4)-(17.9) determine int
rocket on the section of free flight

tial conditiong of the absolute motion of the

Our most immediate problem is tue integration of system (17.3). BResults of
integration will be directly applicable to absolute motion, but for relative

motion they give only a mean trajectory for different directiong of firing ang
launch points.

§ 18, Integration of Equations of Motion

We approach the integration of egquations of
which have the form

motion of the rocket in a vacuur

r- rifs-—,.':-l._ (18.1)
4 =0, (18.2)

where (Fig, 18.1) r ~ the polar radlus vector of the center of gravity of the
rocket with respect to the renter of earth; x — the angle between the radius vector
T and some axis pagsing through the center of earth and accepted as origin of the
reading of the angles x; f — the gravitational constant; M ~ the mass of earth,

Let us denote k = fM. As was already said in $ 3, quantity k 1g equal te

E==3,9862 - 101 w/s°.
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:fuf Integrating equation {18,2), we obtain
e, (2E.2)
. Let us write thls expression thus:

- . '(’%}-‘P
g : With this
i » '-g_-.” .

where v’ is the horizontal component of speed at & given point of the trajectory,

Deslgnating by & the angle of inclination of the velocisy vector to the local
horizon, we obtain

. = vcos D,

DU dhere v is the speed along the trajectory,

b0 Vet AT & O L)

S et

Fig. 18.1
Then formula (18.3) will be thus copled:

o =rocos 8. {18.%)

Value ey will be determined from initial cunditions of the motion of the rocket

3 Gmrw,cosd, {18.5)
; We copy equation {18.1) and (18.2) in such a form:

Feritem— . (18.6)

2ij+ 0. (e

Multiplying equaticn (18.6) by 2r, and equation {18.7) by 2x, and sdding the results
term by term, we get
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Differentiating expression {15.20) for spsed
L] ;3.{,. rigt,
we have

2 o2 i+ 7D,

Comparing expressions (18.8) and (18,10}, we find

424 5(2)
i.e., ‘ 2
W(’ﬂ“m
or

This relation is correct for sny moment of time, in particular, when ¢t = tB

we will cbtailn

2
EyomOp e

Proc equations (18.9) and (18.11) we have

L
whence .
;"'f'§~F-7--{f5?.
considering that .
rus ar. i
s

and (from equation (18.3))

: &

g'#-,
. de e o/ o a
fs-ﬁ--;?.-a c’-}-T,-ﬂ .

we will have

whence
4

o e e dr.
: d
Veri-2

PEp——
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(18.11)

(18.12)

{18.13)
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12t us convert the denominator:

e e e G
-y e ei/ (g.;_"’

Let us show that the guantity under {irst radical {s not negative:
o
at x>0

Indeed, by inserting instead of ¢; and ¢, their expression {:8.5) and (18.12), we
will obtain

l

o,
ta
[+
-

Mastt

‘1+2"-v"“'—~'-‘."

.r-v-un't
& \2 Mg O, \7
= (e~ i) +(5E2) >0
If vPr £ k or ¢ ¥ 0, then
HH H

P
&tz >0
and we have the right to designate

(-2 =,

(18,15}
‘s+2’
whence
02
D (18.16)
t ‘l+‘;
pifferentiating, we find
A — S (18.17)

Consigdering expressions, (18.14), {18.15) and (18,17}, we reduce equation
{18.13) to the form

/]
===z

Integration gives

L==3rccosa + £,
or

o= cos{g <) (18.18)

Returning to the variable r, from expressions {1£.16) and (18.18) we obtain

[€4]
[y¥]
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Deslgneting for brevity ine

4
el 3 (18.19)

tm]l/ 1+, (18.20)

will find the equation of trajectory in the form

"mzaza:z;- (18.21)

It is known that this is the eguation of conic section in polar coordinates where
p 1s the parameter of ihe section, and is its eccentricity.

Let us introduce angle {see FPig. 18.1)
P=1 — Yo
where XH is the angle characterizing the position ¢f the initial radius vector

r, with respect to the axis accepted as the origin of reading of the angles, and

8 1s the angle determining the position of the rocket &t any moment of time
relative to the initial radius vector. Consequently.

L=t +8 (18.22)
Substituting the expression (18.22) in eguation (18.21), we obtain

r== l+¢£n—s¢$’+z.-¢g' (18.23)
Let us designate ﬁn as the angle corresionding tc the peak of the trajectory.
At the pesk of the trajectory (8 = 33) r has a maximum value, From (18.23) it
follows that this can be only if

OBy 4 Lu— )=z,
1.e., when
Kt 2y—~g=a
Hence we have Ye~€=ma—p,. {18.2%)

Inserting (18.24) in (18.23), we finally obtain the equation of the trajectory

R BT ey (18.25)

Since the form of the trajectory is characterized by the eccentricity, lat us fing
the expression for e. Inserting into formula (18.20), instead of ¢, and LPY their

values (18.%) and (18.11), we cbtain
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. Vrl N (o’-—z:-)r’v'cos’o _

[ ]
.n‘/ 1 +(£“?-— 7‘:.")t:os’o .

Introducing the new value

.,,;":, (18.26)
we find
e=}1--(2—=v)v.oos' 0. (18.27)
From initial data we have
]
Ulu (18.28)

V. = x .

e= ‘,I o (2—"n) \‘noc052 on" (18'29)
Formula (18,29) shows that the trajectory will be

elliptic when Yy < 2, since e < 1;

parabolic when vy = 2, since e = 1;

hyperbolic when Yu > 2, since e > 1,

Thus the trajectory of the rocket in its absolute motion with respect to earth
is a conic section one of the focuses of which i1s in the center of earth.

For a long time parabolic and hyperbolic trajectories, departing into infinity,
were practical, For this reason the theory of motion of bodles in a vacuum under
the action of the attraction of earth obtained in ballistics the name_elliptic

theory.

Subsequently we will examine only elliptic trajectories and use designations
shown in Fig. 18.2; F — center of earth which is one of the focuses of the ellipse;
0 — launch; H — initial point of elliptic section of the trajectory; ¢ — impact
point of the rocket; x and y - coordinates of initial point with respect to the

launch point; rP — radius vector of initial point with respect to center of earth;
v — speed at initial point; SH — angle of inclination of velocity vector at the
initial point to the horizon; R = ¥s — radius of earth (radius vector of impact

point); B — peak of the trajectory; b6 — central angle corresponding to powered
flignt trajectory; ec — central angle corresponding to section of free flight;

Bn ~ central angle determining position of peak of trajectory relative to the
initial radius vector.

We will consider that angle U and the initial radius vector T (or the initial
altitude hH - rH - R) are known, since they are easily determined from the assigned
coordinates Xy and y of the initial point with respect to the launch place.

H
Actually, from Fig. 18.2 we have
. P {

g8 =515 (18.30)
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and

re=ftp =35 (18.31)

For 8 solution of the practical problems the whole section of free flight will
be takan as elliptic, including with respect to the 1little atmosphere the section
during approach to the target, This will not introduce
great error in the determination of the distance,
since great drag of air on the atmospheric section
almost does not change the elliptic form of the
trajectory. It has consideratble influence only on
the speed and time of motion of the recket,

Let us agree by flying range to mean ithe length
¢l the &rc on the surface of earth, Then full flying
range from launch to the target wiil be egual to

Ll 4,
where LH — distance of powered section; zca -

distance of section of free flight, Subsequently we
will consider that the distance of the powered
section is already defined by the formuls l“ = Rb,

where & is from equatio~ (18.30).

§ i9. Applications of Elliptic Theory

Iet us enumersate six practically important
problems:

Fig. 18.2 i. To find distance from the assigned to speed,
altitude and angle at the initial point,

2. From the assigned distance, al:titude and angle find the necessary speed, *

3., From the assigned distance and altitude find the optimum angle requiring
the minimum speed,

%, From the assigned speed and altitude find the optimum angle providing the
ultimate range,

5. To determine the change in dlstance depending upon small increases in
altitude, speed and angle at the time of the turning off of the engine,

é, To determine parameters of motion about the trajectcry.
Let us turn to detailed examination of the enumerated problens.

1. From the assigned to speed vH, altitude hH, and angle SH to find distance

L.
From equation {18.25) we have
cos(ﬂ.-—ﬁ)=—:'(l - ;’-) (19.1)
Using relations (18.4), (18.26) and (18.19), obtsin
=-’1'::—°’:-°- = vrcos’ 0, {19.2)
in particulsr, ¢
P=v,r,cos?d,. (19.3)

X
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We substitute (19.1) hy (19.2):
08 @y —P) =1 (1 —vconr®). (19.4)
It 18 obvious that

sin(f, — )=V V—cosi(f,—P} = ]/ 1 — -};(1 —veos?)? =

1
—-‘-Ye’-(l - vcos? &),

Considering expresston {18.27), we will have

sia{p, — Y= -:-Vt —2veos* 0 + v cos? 3 — 1 +2vcosd &—1cost D,
1Oel’ N '
sia (@, —p) = vsindcos 9. {29.5)

With extraction of the root there is preserved only the plus sign, since on
the ascenting ph&se 8 < BB and & > O, and on descending B8 > BB and $ < 0, {i,e,,

sin (Ba - B) and sin ¢ always have identical signs,
When 8 = O we obtain
] R 2
cosfy == — (1 — v, cos? 0. (19.6)

sin “.s:;‘-\"s‘uo“os o-n‘ (19.7)

Let us present expression {19.1) in the following form:
1
cosp.cosn-}—siup.smps-‘-(l —-;)

Substituting instead of cos 63' sin en and p their expressions (19.6)}, (19.7) and
{19.3), we will find

1 — v co8?8)cosP + v, sind cos B, slap=
L-s_f_g‘;’_’.. (15.8)

Expressing sin g and cos 8 1in terms of tg % according to formulas

and multiplying beth sides ol the equation by 1 + tg2 % we have

a -r,cos=o.)(l —tg? ;.)... Pysind,cos0, 1 § =
' -1 — 222 1+ f).




We obtained the quadratic equation with respect to tg% . Let us gite in it similar

members:
vary 08§, )
(2—v,cos’0.—_.e_’__...!.) wgd— .
- h.sln&.coso.tg% Fy,cus?l, — Tuls k S 0,
or

127 - (ry4-r)v cos® 6‘} l-."—;- ——

2% rsin®, cos O, t2 % —{ry—r)v,cos’d, =0,

- Dividing by coses , we obtain
H

2r-E 1200 — (e v g2 —
Lvrigt g —(r,—vy=0, (19.9)

This equation, connecting the current values r and g with initial values rH.
Vo &H, essentially colncides with equation (18.25), but in form is considerably

more convenient since the initlal values enter intc it in evident form, With its

help it is easy to solve the majority of applied problems of elliptic theory set
above,

We will designate for brevity the coefficients of this equation by

a=2r(1 41870 —(rya+ riv,. {19.10)
b=y, rigd, (19.11)
e=x,{ry— 1) {19.12)

The equation will take the form of
agrd-mgl oo
Solving this equation with respect to tg -52—, we find

. (19.13)

where the minus sign corresponds to angles 8 of the ascending phase.

ofmrarrEE

Consequently, to obtain the distance of the whole elliptic section it is

necessary to assume r = R and in formula (19.13) to take the plus sign. Then we
will obtain

’ T
gof =2t e l (19.14)

o= RPc-

Thus we have the followlng diagram of calculstion of distance:
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8=2R(1 +1g20) —(r, 4+ R)v,
b=wR120,
€=, (fy— R) = v,

o= Ric.
L=ty L,

For the particular case r = r_we have % = B, and from equations (15.10)-(19.12)

H
e 2r, (1 41220, —vw). b=vr g0, =0

Consequently, from equation (19.13) we obtain

%
i.eo' w.;a‘g’.=;.,.
tgp,= v.!g_’.w )
and TFige,—~ (19.15)
Lm2R,

2. To find the necessary speed Y from the assigned distance L, angle ‘x’
altitude h_,
From formula (18,28) we have

"-"V%- (19.16)

Consequently, it is necessary to find Vs which can be Gone by the following
two methods:

First method. From equation {19.9) we have
[(’l"")‘g:';"*"z"gol'g‘;"".‘ ']'u-
=2rig2f (11270

hence

e datwon
gl togog b T (19.17)

Ty ==




When r = R and 8 = ac we ottain

2R1g? -’,‘-‘ 4173
Ny &= = .

(’H+R)".”!§c‘ 3 "339-':—‘.19 tre—R

Second method. From (19.8) we have (when r = r, and 3 = 8

c ¢)
recosPe — rocosfocost O, v, 4
+ resinf sin0,co80, - v, + 7,087 2, v, =7,
i,e,,

. rs(l-ccs’c) e
w0 (5,08 ¥, ~r cosP.coid +rosnp, s
:=lg!k e infe
2 ¢us &.;{r.-—-rcmsﬂc;ms 4, i-rctm}!(. snv ]

v =

b
=i . — .
2 cosﬂ.(-"-'-’—c:‘%t;i}icos B0+ oin a.)

On FPig. 18.2 we draw segments HC and CK perpendicular to HF,
@ angle FHC, we wlll have

CX rstta}
Qo = TR Wy
Considering (19.18), we get
s 1
=1z =t
: {'mo.(‘:;:' +smo.)

’ sae
k& Y Y T T

and, finally,

$ sine
""“? o8 Vg cos (0 — 02 °

Designating by

{29.18)

(19.19)

Thus we havé the following two diagram of the calculation of speed, The

first diagram of calculation: ,
fie =.'-_}€s . .
2R( 1220 1"

(r.+R)ig’—'§ +'.’Rigﬁ.lg—'f +ri—R

Oy =3 gl

“w"=

The second diasgram of calculation:

s .
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R
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.
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In & particular case, 1f r = T and 8/2 = B‘. then from equation {19.17) we

obtain
14120, .
-
=R e
3. To find from the assigned distance L and altitude hﬂ the optimum angle

) requiring the minimum speed v

# ont gmin®

From equation {19.16) we have

=} B (19.20)

Congequently, if is necessary to fine Yamin® This can be done by two methods.

First method. Let us differentiate expression {19.9), exsaining v, as the

implicit function froa tg ’a’ and let us equate to zerc 7‘-:—"5. Considering
r=T, and £ = Bc, we will obtain
l':'-—'!#-“’:':’-'}fl’u--t
1.0- s
’
Yeate ™= 21 ‘f"’n—- {15.21)

Solving Jointly equations {15.9) and (19.21, we will find
. K. S
[Va't"c)'i;‘ff ERI <L P ‘; ‘i"-“’c}gtg% 120, =
B -
22 20 1205 (1 4 1270, 0,).
or . p
[(’I+ Ie "‘:7: '.f'*"g"c]".' ‘}l(al =fc "o' '2(:(' - ’gza-on:)-
what can be rewritten in the form
£,
Zraly -

28 O
320, e 2B 0 . (19.22
» 3 r (.'J °;eu (’.+rc):-£_'2£.+r.—rc )

Calculation of the angle &H
introduce the angle

onT is considerably simplified if one were to

e =20, cay "'r"f'- {19.23)
Then we will find:




[ &

L
2
2 —n————
[ 2
t— tgi’@ug,lg%g :rctg-&‘. !29

[(r.-;—rt)!g'%‘ Tl =T 3'(} !g-:-,ﬁ

.r'-i-rc)tg'%i-i-r.—-rc “g’c’g’%‘—
== " ;'C){“*-‘g,-’f) s .'ig

Fk“’ﬂﬂ(‘i'kfqu 2

cem 250 ., Fr
k‘ '.__’c t:"ﬁ (19.a)

Finally:

and from equation (19.23) we have

AR}

{19.25)
Knowing 8 .. from formules (19.21) and (19.20) we find Y. oin and
gmin®
Second method., From equation {19,159} we obtain;
| sing
ACRRRA B APy e £ (19.26)

As can be seen from formula (19.18), the value of angle @ does not depend on 4
and therefore y, will be least when cos (QSH - w) = 1, i.e., under the condition

2y =0 (19.21)

Using equation (19,18), we obtain

e .sinf
it ')
!J-o:un =~£——¢T-'."”¢m - (19'28)
When cos (QSH - w} = 1, from equation (19.26) we have

sing ; B, @
T T ey

Considering relation (19.27), we will finally have

'unln."""!g%g

) -8
'l-l.’:Q'g’gg‘g°‘m (13.2%)

and by formula (19.20) we fingd $min®
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'rh\;s we have the following two disgram of calculation Y on and % min {when
l‘c - Ro
The first diagram of calculation:

‘c-fci—"--

SRR 173 1T S

Yy uin = P “'f:';ﬁL .

The second diagram of calculstlon:

L~ i
ku-—wi_.
Rsap
QQGnm”: 7:-:7525‘5;'
'ldl = 2'2"{": 0.“].
Cyuta == ‘v—;:‘h"'.

In the particular case when r, = r, and %- 85, from formuia (19.24) we have
tg e nx® i.2,, € = 90°, Consequently, from equation (19.25) we ottain

) B,
a,_,a-xs'-»-}aw--.,s. {19.30)
4. To find from the assigned speed vy and altitude hH the optimum angle 3, ...,
providing the maximum range L'ma.x

Differentiating expression {19.9), considering tg 8 of the implicit function

from tg 33 and equating the derivative ::f: to zero, we will obtain {when r = Ta
S

bctg‘-’sfr"-i'lgo,“—'h_:ctg!%’_‘.go.
1.811

L v
o el T e (19.31)

Solving Jointly the equations 13.9) and (16.31), we will find

[2re(t+ 828, ,.) —ira 4 ravl:
-hl’ctoumfﬁ:‘-('. —-r,;)v.-ao.

»
Cuone
or

2'('. + 2’(‘-"‘°a~ -('- + ’C)‘z -
— 00, oy — (P, — 1) - A28, =0,




l.c.,

lz"lc'f' d(r, - 'c)l '8”.- -'-la'c - {*, 'f'",'.l-

Consequently,

'I!T'c.—{’..*-’ )’-!
i B e = 2("¢'C+2(’."cc)j .

{19.32)
Thus the given preoblem can be solved by the following diagram (when To = R):

7,
. .
[/ R A By,
Bhwm=V 7 Friea~R
ﬁgm b
'z * = 5’3'---“'
Ly ar == R mine
Lyga=le + 0y, 02

'.n

: For the particular case ry = Trg

from equation (19.32) we have
Ghee=V1—w (13.33)

} 5. Determining the change in distance L deperding upon small changes of
: alrtitude hn' speed Yy and angle &x.

E Obviously, it is necessary to find derivatives
% ey B
TEf" o, 206 3‘5‘
We will use equation (15.9), and namely,
2r o ’
2re i +1820) — (ru+ vl 5 —
-Q'I'C'z’c'g$"' (ra—re)v,=0.
In common form this equation will be thus recorded:

| P(re Ve O, Bc)=0.

Let us differentiate:

o » o w o,

- 35 At G e+ 00, + A=, (19.34)
E a3

:




R M

ST T

Inasmuch as vn depends on \k ang rxx

Vo= f(o,, 1),
thern

) a
d‘:'“';ikd?. 1‘3:&‘1¢f

dubstituting {139.35) into {19.3%), we obtain

(gf +g.g;’.)ar,+ s;i;m, 4- 2 1o, [—-3{;4‘3:::0.
Hence
oF of
1 (J.F ;. 262 oy de

dic=—gr\ar
* £

and, conseguently,

%g:==—-(&l oF 6!) yﬁ .

(l\’l'f

- (] ] (4
;;E..._ dF‘/df
A ! e
¥We find derivatives
[ 4
Pt L S

~F

o
‘.‘.:"“""’(’-"“’c)‘:"f' --bclgo,g-’zi.- {re— re)

But from equation (39.17) we have

| L
(f.‘r’c)'g""'l""c ‘g""’-_'c=
P

!
e L

T +1g70) cgr-’;'-

-Congequently,

o 2,
T T TRE0) ‘8’—’-,5-

s

{19.3¢6)

(19.37)

(19.38)
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Since v,=z—1". then

and

Purihner,

$
e @Y~ PN — sl
3;“ wl%

But from equation {19.9) we have

Rre(t+ 9100 — (ra+ 12 f — e g0y om

e R

‘ . $oy
- m‘.(’,—-’c‘r’c'g'.tg-{)-——’-n_
. Qf
Consequently, 3
. 3 ’
oF v’tr‘-rc-irrctg%i:-f)
= b b
LR R 3
and, finally,
rr.
ar _ eEY By ) :
= m’-—::;‘(" oyt B~
Inserting the found derivative into espressions {19.36)-{19.38), we wili obtain:
' :
B .8, :'
tn -5 cos? -5 :
e 2 2 __x ?
oy . e ird P
A PRl ;
x[—s- 2 e g0p]- ;
FC ’, 2 :
¥ o=
7 : o
2 ) ey
e.+7sn+:g-0¢sann,§ 5, 5
= 3 ‘ 'L'?. (19.39) :
v_(r_-—rc -}-rclga.tg ) ;‘
f
5
Lo
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L
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o

of oyt %‘- Q4B oyt %‘- erst . v,
me

==
%

f 8
s vz (r. —retr ozt g —JC-) v,
o gz+tg=agm’%f-lg%i o
-.;;. r . (19,“0)
* ., (r. —~retrolgt g -’C)

re'g %‘{*r- 2t %‘itu 0..)!: %‘icw _’,;
m:’l"i('t"' re ot 5.“-’%)

o

Z, (r.—rc-f retyd, Sg%ﬁ) ] Y

( Thus foz)' the solution of the given problem we have the following formulas
when r, = Rj:
c

28 s B, B
.'a — " + -'_:. (‘ + ‘g. a-) sia? .26_ ‘g _22

T .
* v.,(r,——R+ Rig O, tg %&')
Hy a2 U *"3-""*”‘“’%':"3!{'
Foe T v ( [ A% (19.%2)
“wira—~R-|-Rigd,g 3

. L L
Uy _ o ig’o"(""‘"g ""'g‘i‘)““"z—

[
v r.—R+Rtg{‘,!g~§§)

In the perticular case Fam= ru from equations (19.39)-(19141) we easlly obtain
the following formulas:

v.+2m’-’§u+:g«o.)

= .
Yo alig 0

4sin %‘i (41520
“uln 18 ’u '

(ﬁ—2l!'-ts-’§)(‘+!g'0.jmlc
Yaig¥, N

& My Ms

M

B T - T et v s ) e s e
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6. Determining parameters of motion h, v, $, t &t &y point of the trajectory
determnined by the central angle 8,

&) Altitude of flight above *the surface of =arth at any point of the
trajectory is equal to

Resp ~ Q.

For the determination of r we have expression [18.2%):

I !—““a.-,;;

with this we find p and e by the formulas {19.3) and (18.29), namely,

Prvr.cos?d,,

e== T — (22— v vostd,

The value of £ will be found from equations {19.8) and {1G.7):

v, 5in 8, cos 3,

{or e S WD
g8 b--v oo™,

The following form  us &re also useful, From (18,11) we obtain

whence, taking into account designation (1£.26),
24 v -2

a1
& I

On the other hand, from (18.19) and (18,20) it follows:

€ _ ot —1
—77—,
Hence we obtain:
r
= = 12 (19.43)
in particular,
2 =rta- (39.00)

Formula (19.43) permits easlily expressing any of the quantitiles r, ¥, p, € in terms
of the three others,

From (18.25) we obtain
l-—-ccosﬂk-—-ﬁ)::-%

and, or the tasis of (19.%3),
l—aa:os(p,-p)=-‘f—:?, (19.45)
whence 11e
-— .
cos (8, — ()= pry e el

120 cos (B~ P) 4 ¢
"“‘1—‘70.%:%}'-—- (219.46).

O
-~}

S . i m o s bW g e

'



BRES E  e E

N b) Speed of flight at any point of the trajectory can be found if one uses
o forrula {18.26):

: =y -

S If one were to express ¥ in terms of r with the help of formula (19.43), then we
i will obtain

o=y ¢{; ~35).

R AR T
. y

Cl which it 15 possible with the help of formules {19.44) and (18.28) to write in the

form
;- - T i
1 It is possible alsc on the basis of formulas (18.25) and (19.46) to obtain for

speed v the expression directly in terms of angle B:

v} S0~ 2ecosp,—-p+e3.

cl We find the angle of inclination of the velocity vector to the local horizon
4, noticing that on the basis of formulas {19.5) and (19.%)

vsin@cosd= esin(p, —f),
veos? =<1 — ecos (B, —p).

whence

TR WA

go=ptntob (19.48)

From relation (19.2) we cbtaln another simple formula:

- - m’-sy -5:- (19.49)

(18 c)l) Time of flight to any point of the trajectory 1is determined from equation
18.3):
A

Dividing the verlables and integrating, we will obtain

3
' g
i From equation (18,22)

X=1.+p
dy = dp.

Considering also (18.25), we will have

- S —

ol

5
"”cl:'!n—no‘s’u!,-m!' (19.50)

Yy
4]

oo




We accomplish integration in the following way. Let us introduce the new
variable x connected with 8 by the relation

£tcosx
{tecux®

(19.51)

cosifi, — f)=

Differentiating, we obtain

sin, — pyap == (2R I EE N0

(l—a)stax

For ths elimination of sin (BB -~ B) let us use relation {(19.51}1

. et ccsxteostx (1 —e(l —costy)
sin* (B — P o= 1 TidHcnxreconiz . Uacossy

whence

s, —F= —T——-V“‘; cunx (19.53)

So that the connection between B and X 1s single-valued, let us dwell in formula

(13.53) on one of the signs, namely, on the minus sign; then from relations (19.52)

and {19.53) we will obtain
yi=o&

9B= [Fecur 4™ (19.5%)
Further from expression {19.51) we find
| g?
1= ¢ecos(p,— )= T (19.55)

which permits recording the integral (19.50) in the form

F 4
{1l }-ecosx) Vi—& .
t= -s' J. - u"_‘..}, Tﬁ&‘}-ll.‘——-
- '.

£
— » . .
_W;{ 4 ecosx)de=

|
a—ere (¥ +esinx) L (19.56)

Relation {19.53) {teking into account the selected sign) and (19.55) give

Yi—& sin(p, —8)
slax==— G —h "

Comparing this formula with formule {1G.48), we obtain

slaxam— YT, g 0. (19.57)

]
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Prom a comparison of formulas (19.45) and (19.55) we also find

2—veu=l{ecosx,

whence
1 —v

€08 X ==

On the btasis of the obtained formulas it 1s possible to write:

-m‘—-‘-’-—! on the ascending phase of trajectory,

Xan
m'—"'-! on descending phase, (19.58)

Let us substitute expression {19.57) for sin x into formula (19.56):

fum m‘zﬁﬁ(-"‘ Vi—dgo— x,+ VT—igo)=
—t [ EoEe _ L] 0...
H{l—eY) (73-—5 w0tk )
A constsni coefficient in this formula it is possible by using formula (18.19) and

ailso to transform (19.44) and (19.2) to the form

4V, €05 Oy

=
Ti=a = 1—‘#‘} F=tw—a

so that we finally obtains

1/_( e L

l~-‘- Yieet
Fa¥s . x—.x“_ _
re {2 —v,) (} P =vgva +sind,—cos 0 "’o) (19.59)

where x and x, are determined by the formula {19.58), For the most widespread

case when the initial point of the section of free flight 1s located on the
ascending and the final point on the descending phase of the trajectory, we obtain

o
, arccos ;
i 4 "'( ‘;q._,: < +’¥°u'—130). (19.60)

Thus we have the following diagram of calculation for the determination of
parameters of the trajectory at any point of it assigned by the central angle B:

=
D SRS - LH

0]
L fc:.-,ﬁ%——:_ e
O<h<TIwvn 0,50 —a<p <0 s 8,0
- - Py, co8td,-
o e YT —@=v)vcon ¥,;

[
()
(&)




s)mx.--l-'-;-:l-. sign of sin x, 1s opposite to sign of sin 4 ;

6) "'17:7?5$ﬁ§::1f:

1)) hemp—R;
- ') '-z“ﬂ‘.—:ﬂ:

14
VE,
N =y 5

; 10) cos 0= ]/ -"7 . sign of sin # coincides with the sign of stn (B, - B);
1) cosx == =¥
&

. Bign of sin x is opposite to sign of sin (BB -8%

S

1 =2V E (3 rut-ut)

Particular Case 1, Parameters of motion at the peak of the trajectory.
Altitude at the peak 1s determined thus:

.l=’.""R-
{subscript “s" correspends to peak of trajectory).
When 8 = 8 from equation (18.25) we obtain

I.==-T£}-.
Considering (19.44), we will fingd

ro= 5{'-;'-(1 +e. (19.61)

The angle of inclination of the tangent in the peak of the trajectory is equal to
zero,

F To determine the speed at the peak from equations (18.4) end (18.5) we have

F0, 083, = r v, cos,;
since ‘z = 0, then
1 «slh‘
ryg-
Considering equation (19.61), we will obtain

: 'l =
£
.

2 — v vacos By,
N T~ (19.62)
! Further froa expression (19.46) it follows

: b B

Voo ] — o,
. and from formulas {19.58) we obtain
Xy==0.
Inserting this value into formula {19.59) and considering that ‘n = 0, we will

obtaln the following expression for the time of flight up to the peak of the
trajectory:
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e ‘ 2 % X
L "n‘_"‘ %QO. m:&j "
, ._II'L.._(; [ Y
) = a—v % yastee)- (19.63)
3 1 Particular Case 2, Vertical launching, For this case we find the maximum
: altitude and tixe of flight up to the peak. Since with vertical launching $, = 7/2,
o< 4 then
' = YT (@~ )v, 0=1.

- x . Consequently, from equation (15.61) we obtain

"
:% LY Sk el (19.&)
—— *‘.ﬁf‘."‘ku

whare subscript "». n" corresponds to the case of vertical launching,

We find the time of flight up to the peak from equation (15.63), considering
- ¥/2 and considering formula {19.58):

. arccos (1 —v,)! .
= ne—o (l+ Ya—viv )' (19.69)

or, in another form,

g (vt V 2 e —).

Fig. 19.1, 19.2, and 19.3 depict the families of charscteristic flight
paths of the rocket. Trajectories on Fig. 19.1 are obtainec -t a constant initial
speed but at different angles of departure sp . Fig. 19.2 shows the trajectories
¢ obtained at an optimum angle of departure for different v ¢ 1. Fig, 19.3 depicts
I trajectories at ¥, > 1 and ‘x - 0, H

AY >

e g— GRR———

(9T
Pig. 19.1 Fig. 19.2 Fig. 19.2

(24
LX)




§ 2C., Return to Relative Motion

The formulas obtalned above permit solving the problem about the absolute
motion of the rocket. In examining the relative motion these formulas are useful
only for the determination of the mean trajectory, from which devistions to various
sfdes are possible due to the rotation of earth, But in many cases absolute motion
15 interesting not by itcelf, but by the fact that from it it 1s possible to turn
to the relative motion, considering, along with the motion of the rocket, the
rotation of eaith,

By knowing the geographic coordinates of the initial point of free flight
o and ). , absolute azimuth v and the central angle pasaed by the rocket in

TH
absolute mo”on &', it is ea.sy to find the geographic coordinates o' and A* of
peint P, on the assumption that earth is motionless, by the formulas of sines
and coslnes of spheric trigonometry * (Fig. 20.1):
cos (90" —¢;)=

= cos (20" — ¢, ) cosp’ +3in (90" —g_)sinp’ cos ¥,
or ’

slaq;asmgncosp' +-cosq, sinf coe (20.1)

safa’~1) sav,

£ "

sisp’ tody,

and

whence

sin}’ sia g,
(L — 2) == ————, .
sin{ o Py (20.2)

lthe basic formulas of spheric trigonometry are derived in the following way.
Let us consider on a sghere unit radlus with the center at point O the triangle
AABC, formed by arcs of great circles (Fig. 20.2). Let us construct an auxiliary
system of coordinates Oxyz, directing the axis Ox about the radius QA and
combining plene Oxy with the plane QAB., Radil vectors of points A, B, € will
have in the system Oxyz these components:

Ol 0 o,
{cos ¢, sine, O),
_OC(cos 5, sinbros 4, sind <in d):

Calculating the scalar product of unit vectors OB and OC, we will obtain
€03 4 = cos bcosc fsinbsincens A
This formula is called the formula of cosines,

Let us calculate the mixed product of the three vectors O&, OB, and 00
'y . °
OA (OB XOC)ym]cose  sinc o msinbsscen A
cosh sinbcosd sinbsind

From consliderations of symmetry it is possible to write two other expressions:
OA (DB OC)msinasincsnBmsingsinbsaC
Dividing by (sin a sin b sin c), we obtain the formula of sines

#ad _ siaB saC
daa  sis}  Tgacq
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> Fig. 20.1 Fig. 20.2

We consider now that earth revolves simultanecusly with the motion of the
rocket, As & result of this rotation the point with the geographic ccordinates
@, and x;. will depart in parallel on angle a,t — (where t is the time of flight

from the initial point) in the direction of the rotaion of earth, i.e., eastward.
Conseguently, under rocket ion the same radius with it) will be the point with the
same iatitude ¢, = 94 but with the longitude A = At - @,t. Thus the geographic

F coordinates of the rocket in relative motion can be defined by formulas

TR, A

D)

sing, =sing, cos§’ +cosq, sin peos ¥, (20.3)
sinf’ sin g,
siafd — b, -+ ) == T LA (20.4)

By the geographic ccoordinates it 1s easy to find the central angle f passed
by the rocket in relative motions and the angle WK formed by the plane of meridian

with the plane passling through the center of earth, point H, and the rocket:

] G BN

cosf = sin g, sing, + a5, , cosq, cos(X — 1), {20.5)
o sing, o= SBRER0 ) (20.5)

The atsolute azimuth at point P %ill be determined from the formula

oS g, sin b,
sy = T T . {20.7}

Baving values v!, $' and ¥' for absolute motion at a fixed point, the
; geographic coordinates of which @, and A are calculated by the formulas {20.3) and

{20.4), according to formulas similar to (17.8) and (17.9) we can determine the
parometers v, § and ¥ relative to the motion for this point in the terrestrial
systes of coordinates, taking into account that

'.—:v'-,

T g

td
o, = v, “f' ot §,.

b
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CHAPTER VI
METHODS OF DESIGN CAICULATION OF FLYING CHARACTERISTICS

§ 21, Classifieation of Ballistic Calculations

At different stages of the development of new models of long-range gulded
rockets ballistics has before it different problems in accordance with which all
ballistic calculations can be classilied,

In the beginning of sketch designing there are conducted thl so-called design
calculations, having as their purpose the detarmination of limits of values of
basic design parameters of a rocket according to assigned operational requirements
(OR} and the selection of the most advantageous values of these parameters taking
into account all resl conditions. These parameters are subsequently initial in
the designing of the rocket {design, selection of power scheme of the rocket, etc.},

Depending upon the assigned requirements with the deslign calculations designs
there can be encountered the most variocus problems, but most frequently the problem
appears by definition of dasic design parameters of the rocket corresponding te
the greatest sighting range, payload weight and accuracy of hit assigned the OR.
Its solution, as a rule, is accoxrpanied by an investigation of the influence of
diffarent parameters on flying-technical characteristics,

Thus the method of deaign ballisiic calculations should sllow, not resorting
to cumbersome calculations and mumerical integration, a rapid determinstion of
flying characteristics of the rocket according to its design parameters and,
inversely, according to the assigned flyling-tactical characteristics the design
parameters of the rocket.

T™his method should also allow estimation of the influence of a change in the
basic qesign parameters on flying-tactical characteristics of the rocket in )rder
to enable the selection of the most advantageous combination of these parame-ers.
The accuracy of design ballistic calculations has presented to it nonrigid
requirements, An accuracy of 2-58 in the direction of a decrease in flying
characteristica ia fully established by project originators.

In conclusion of the sketch designing there is conducted a checking and design
ballistic calculation whose purpose is & more precise definition of flying-tactical
characteristics of the rocket with parameters of the rocket obtained as a —esult of
sketeh deaigning, and 8 check of their conformity to the assigned cperaticnal

requirements,
As & result of this calculation in the first approximation of the form of the
trajectory of the powered section should be selected, and basic imitial data

necessary for calculations of construction for strength {(extrenal loads) apd initial
data necessary for calculations of the stability of flight and development of control
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S aipment anould be Jdetermlned,

With these samc calculailons an estimate should be produced of the accuracy
.1 the hit with the selected principles of control, and there should be produced
ceguitesents {or cont-ul equipment and propulsion system, which miat be observed
sor the erxecution of (R saccording to the accuracy of hitting.

In the precess of furiner designirg of a rocket and the manufacture of
oxperimentsl models there are produced more precise definitions of check calculations
acnording to the more preclse definition of inltlal data. Both in design and check
bailistic calcuiativns the infiuence of the rotation of the eaith 18 not considered,
since project originators and designers are interested in the mean value of flying
2haracteristics of the rocke:,

Prior to the moment of plant flight tests of the first experimentsl models of
iong-range rockets there should be complled preliminary tabies of flring containing
in the first approximation the dependences or sighting date of rockets from the
distance of firing {fcr defined covrdinates of the place of launch and direction
st firing corresponding to the selected proving gro> ).

These tables arz coamplied for the whole assigne? R of the firing range on
the basis of definitized ballistic calculsticns, taking inlto account peculiarities
of the conirol system and the use of definitized initial dsaca, obtained by calculation
and experimental means [actual weight of construction and pcsition of the center of
gravity, experimental aercdynamic properties, test englne parformance, experimental
parameters of control equipment, etc.)}. At the same stage calculation of dispersion
is produced.

The uext stage of ballistic calculations is the compilation of tables of
sighting firing according tc data of experimental and special snootings. The basic
regquirement for the calculation of tables of sighting firing is the Increase in
accuracy of calculations up to such a degree that there be removed systematic
diveragences between calculaticn data and data of firings at any distances and
under conditions of firing.

Methods of the desiegn calculation of flying characteristis of rocket expounded
in this chapter are applied in the first stage of sketch designing, i.e., for the
purpose of determination; as was lndicated ahove, of limits of values of basic
design parameters of the rocket.

Proceeding froar tae reduced requirements for the accuracy of such calculations,

we will examine some of the possible Jlagrams of constructicn of the approximation
methed.

§ 22. Approximation Method of the Determinaticn of Speed

In § 19 it was shown that the fyll fiying range is determined by four kinematie
parameters at the time of the turning off of the engine, for example, speed, angle
of its inclination ¢ the liccal horizon, altitude and distance from the point of
launch, i.e.,

L= f(On Oy &y £)-° {22.1)

Lecisive among these parameters is the speed at the end of the powered section.
The angle of inclination of the ilangent to the trajectory $ is rather rigidly joined
with speed by conditlons of providing the ultimate range, and therefore there is
no independent value In the majority of design »robleas.

The powered-flignt trajectory in its extent consists of a small part of the
full riyving range (4~i10%). Therefore, even rather considerable errors ir coordina‘es
of the 2nd of the powered ssction cannot have great influence on the full flying
range. Subsequently we will snow that it is possible to be limited by very simple
graphic dependences, allowing conslideration of part of the posered saction. Thus
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the basic should be given to the determination of speed at the end of the powered
scction,

P Let us use equations of motion of the

rocret as a material particle which consider

only the baslc forces effective in flight
(Fig. 22.1):

g
J dv P—X
0= - g sinl, (22.2)
dx
?—i‘ - JCOSO. (22.3)
¢
dy _..
- —d—-‘———\’slno- (22'4)
Flg, 22.1 Here m — the mass of the rockets; P — thrust;

& — acceleration of gravity; X — drag; 6 —
angle of 1nclination of the tragent to the trajectory with respect to the horizon
(angles of attank are disregarded).

For thruct there 1s taken the following lay of change with altitude:

A}

P=Py+S,(p— p). (22.5)

Let us note that thrust attains a maximum value when p = 0, i.e., in a vacuum:

P.:aP°+S.p°_ (22.6)
Drag 1s determined by expression
o?
X==-"T-c,3. (22.7)
Let us write equation (22.2) in a somewhat different form:
F X A
doz(-’-'-_-gsmo—?)dt (22.8)
and let us introduce the following designations:
m
B= (22.9)
T==S52{e), (22.10)
. P
¢.=-;.°*[ : ] (22.11)
P ’
'.==T'[ : ] (22.12)
ra=3[¥] (22.13)
P 22,1k
55m0=='7§'[ iﬁs? ]' ( 1)
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where from (22.9) and (22.1C =nsue the relaticns

=_?_=n—n‘ﬂ':= _4¢ 22.16
B - ~————~—-—.!. 1 T' ( )
f=T(1—p) {22.17)
=i {22.18)

= (22,

in these expressions:

b 1s the dimensionless coefficient characterizing the relative weight of the
rocket, 1.e,, showing what part of the initial welght is maintsined by the rocket
at an examined moment, Coefficient u theoretically can be cranged from 1 to O, At :
the time of launch p = 1, at the time of the turning off of the engine u takes the :
minimum value for the given trajectory u . Quantity ¢ to a known degree

characterizes the perfection of construction, Quantity (1 - u) shows that part of
the initial vweight is expanded to the examined moment.

T 1s the ideal time, 1,e., the time of operation of the engine of stuch an
"ideal” rocket, for which the final value By = 0. In other words, T is the time

during which at a given constant flow rate per second a quantity of fuel ecusal in
weight to the initial weight of the rocket would burn., Quantities T and ¢ are
connected with each other by defined dependences (22,16}, (22.17) and (22.18)}.

L

v, is the fictltious exhaust velocity of combustion products on land and is

caleculated as the ratic of absolute thrust for cn land {after subtracting losses to
control} to the flow rate per seccond of mass.

g g . k1 e A

1 H
un is the flctitious exhizust velocity of combustion products and in a vacuum

is calculated as the ratio of absolute tarust in a vacuum {after subtracting losses
against cont.ol) to the flow rate per second of wass.

Neither u; nor u; are the true exhaust veloclity of gases from the noz:le,
which practically does nat depend on the altitude of filight of the rocket., The
fictitious exit velocities? ué and u; physically mean the guantity of absolute
thrust «fter subtracting lesses to control, arriving on each unit of flow rate per
second of mass.

Ry flcw rate per second of mass is meant to toial flow rate of all components
cvarticipating in a de~rease in weight of the rocket. Its change with the course
of time wili be disregarded,

P, is the initial load on the widdie secticn of the cransverse load, i.e.,
the ifnltfal welght arriving per unlt area of the largewt cross section of thz rocket.

?yno ~ specific thrust on e¢arth,

lsubsequently instead of the term "fistitious exit velocity,” for brevity
we will use the term "exit velocity,"




]

| gyn.n—-specific thrust in a vacuun,
] From {22.11) and (22.14) we can obtain:
] .;“P’.p-

f -
: : or

‘ =P . (22.17)

and, anslogously,

4 e s

S a=gP, . (e2.20)
In expression {22.10), cn the basis (22,11) and (22.19),

Py

m= flyu'

therefore

mgPy GPys0 -
3 T~= s =-—P:'—=.—.\-up"° bl (22.21)

here

-

We will transform every member of the expression {22.8) separately. First member
P/m: considering (22.5), (22.6) and {22.9)-(22,12), we have

‘> P_BtSip—p PemPa—pPol

f - L “g

| - % [i-w-n2]

We leave the second member in constant form. The third member X/m:

X ?yesSe -
: C R m% "I
i ’ Inserting these values in equatilon (22.8), we obtain:
1 1. Y £y .
; "'!Tr[‘-"('-—'-?:]-"‘“'*%g‘; "‘-
; !
e From {22,17) we have
i
; = —Tay (22.22)
:
S 110
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Therefore, finalliy

..-[- - (& - c;)-t-]—+g1'sln!du+‘-—£’ldu.

where the impsact pressure pvz/e is designated by q.

Let us integrate the equation obtained from v, to v and from Ko to i
. ) . H
v-—-v.-=-c.ln-'-.-+(-.-—- u,')f-’%-—’-—+
"
. »
+7 I‘sinﬂdy-{- -"—:— f
»

As the lower 1imit of integration we taske the parameters of motion at the time of
launch, i,e,, by = 1, Vo = 0. lLet us obtain

3
4
v —alap—(s,—u) | L2
[z
J_ [
—T | gsin0dp— &7 | 24, (e2.23)
femon-g 12
We will designate in equation (22.23)
3
':-=f:siaﬁdn. (22.24)
[ ]
- &
’I !qt, "3 (22.25)
- ' ’
he L% (22.26)
»

Thus for the calculatlon of speed we wiil obtain the following basic expression:
. T .
n'u—c.hp—rl,—%l,—(l.-cal‘. {(22.27)
or, considering (22.19)-{22.21)},
P,

'-"3’;;-‘“!“"'?3;.’5’ "‘"‘;".‘:’a“
~ 8Py o —Ppdly
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.

: From (22.27) it 1s clear that the speed of the rocket is determined by the
i following basic design parameters: u — ratio of running weight tc the initial;
Pyn n= specific thrust in a vacuum; Vo — ratio of initial weight to the initial

: thrust; Py~ initial load on the middle section; P g 0 g™~ specific thrust on earth, or
the difference {F vn() APy , determined by the nozzie height of the engine.

yR.R
In formula (22.27) the member -u in p determines the speed of the moving under

a condition of the absence of attractian of the earth and Influence of the atmosghere.
The exit velocity of the gases {and, consequently, thrust) will in this case be
constant and maximum, The member TI1 determines the loss of speed induced by the

action of gravity. This loss is most considerable among all others and should be

; congidered first, The third component JL—Q 13 a loss of speed for the surmounting
5 of drag. The relative magnitude of the lcss of speed to the surmounting of drag

’ ‘L~lgb is less the more powerful the rocket, Being important {actor in the

determination of the speed of small rockets, this loss gradually decreases,
consisting for long-range rockets 2-3% and even less,

A e o

Since the rocket moves in an atmospnere where the pressure of the atmosphere
varies with altitude, then the thrust according to (22.5) will be variable, being
increased from a minimum ground value up to a maximum in & vacuum, Therefore, the

] t

. product -u_ ln u gives an over estimated value of speed, The last member of

4 3 ]

equation (22.27) (un - uo) 15 represents a corresponding correction considering
this circumstance,.

! If all the characterisvics of rocket are assigned, the calculation of the first
! member of equation &22.27 causes no difficulties, Caliculation of the second
member of equation (22.27) is connected with the determinstion of the numerical
value Ii‘ For this it 1s necessary to know g and sin 6 in function i or t.

g U e

: In the first approximation and with sufficlent basis (altitudes on the powered
g section as compared to the radius of earth are small), it is possible tc consider

g = const. However, it iIs impossible not to consider angle 6 constant, nelither *o

take it as some mean valiue, not risking the making of a gross error. At the same

. time it is known that the dependence 6 = 6{u), selected taking into account real

e limitations, for all long-range rockets has approximately the same character. It

is also known that small changes in the dependence 6 = 6(u) influence insignificantly

the terminal velocity.

N 1 T N

Therefore, wishing to free from the great number of variations of the dependence
8 = (1) and thereby facilitate calculation and make them applicable for a more
general case, it is expedient to take for all trajectories a single dependence,
If the accepted dependence after aprropriate czlculations and comparisons with more
exact methods will show satisfactory accuracy, then it can be used in all further
calculations without change. Such a dependence can be accepted in the form of a
curve, on which the following conditions are superimposed.

TR A AT Fawnaa T

i Prior to the moment of time tl, corresponding to the beginning of the curvilinear
] : flight (beginning of the "program"), the angle 6 = 90°. The value of the relative
) welght ¢ at this instant will be designated uy.
The necessary final angle of incilnation of tangent tc the trajectory is
$ reached at the time ty corresponding to u = Mp. At this point the derivative of
¢ angle 6 in time (and at u) is equal to zero. In the interval betwesn u = My and
Bo= Ry the angle ¢ is changed by a square parabola,

After i = iy the angle of inclination of the tangent to the trajectory remains
ronstant prior Lo the moment of turning off of the engine.

112

AR MU sk b et Lt s e s e e i

| i




e atrtiatid

It is convenient to record equation of parabola in the form

O AR~ p P+ B —p)+C. (22.28)

Coefficient A, B and C are easily determined {rom shown conditions, SO that the
probiem is more concrete, it is necessary to assign defined value By and Uo) constarnts

for all possible cases of calculation, It is possible to consider established that
the vertical section continues up tc values of ¢ tlcze to 0.95, Therefore, it is
quite natural to assume u, = 0.95.

Further, the powered sections of almost all long-range rockets possess that

property which after p = 0.&4-0.5 the trajectory 1s elither rectilinear or very
closely approaches a straight line. At the same time values of by greater then

¢.3-0,4, as a rule, are not encountered. Proceeding from this, it is possible to
conslder sections of the trajectory after u = 0,85 for all rockets rectilinear and
differing from each other only by a value of the angle of inciinatlion, s0 that

B = 0.45,
Inasmuch as it is profitable to conduct firing at optimum angles, then 6, for

various trajectories will be different. Thus losses of speed from gravity wiil be
a function of the tinal angle sx and u,.

The dependence 86 = 6(p) with parameter €x satisfying all the conditions, has
the form

8907 wan 1552095,
0-‘4(-}4.)@-0.45)%8. wer. 0,953 1 30,45, (22.29)
08'- whel 0.45);.

The dependence € = 6(u) is represented graphically on Fig. 22.2. Values of the
[
= [ gsintay
R

are given in Table 22.1 and on Fig. 22.35, which one should use in carrying out the
concrete calculiations.

r |
fa
i
&}
44
¥« &ewr
&
L
x, 7] “ v « ,
Fig. 22.2
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Fig. 22.3
Table 22.1
L

» -lup L

e | gan | oo | sue
190 0,0000 0,000 0.000 0.000 0,000
4% 0,054 0978 0978 0979 089
6,50 02231 1.887 1.899 1.910 1919
4% 06,3567 2655 2,700 2,731 2m
a5 05108 3283 3381 3472 3588
.50 0.6631 3811 9% 4130 42712
0.4 06,7943 4058 425 a7 4520
0.0 09163 4303 4590 4,262 4987
4% 15498 4548 4522 5077 3313
0% 12080 4794 5103 SN 5682
224 12730 4,892 5218 5519 519
0% Lun 4390 5328 S$545 53
oM Lan 5088 5441 s 8,02
22 15141 5,106 5,553 NS
a4W 15004 5284 5,666 8023 634
419 18807 53 L%y 8423
18 L7148 2w .78 4,149 8.
a7 L1120 5431 58M s | 6212 .52
Ll 1528 54%0 5.991 653
18 1.am 559 5547 6.1
(X 19081 5519 6,013 6.401 47%
(3 200102 5628 6,050 6,454 450
a2 2.1268 &8r7 6.216 8527 5,908
411 2073 %y ] 8,112 551 8978
818 230% 5718 828 6.654 1008
s 2079 S84 6235 6717 117
o 2.5357 A3 6,341 1780 7,166
wr 25503 AT .57 6843 1.258
(7 22108 am 6383 ! 4905 128
s | 290 6,020 6510 ‘ 6,969 7.4

i e o At e
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Integral 12 expresses influence of drag:

=] 2en

5~ nnd

In order to caleculate thls integral, it ls necersagy beforehand Lo Fuow g===g

cx(M, n)in functivn u, To obtaln these dependences we will use Lhe Flest tan

members of equation (22.27), glving speed 1n func!ion u under Lhe condlitlon of Lhe
absence of the atmosphere,

Let us denote
o= —ua lop T/, (ex, o)
Then the altltyndes corresponding to these speeds wlll be

! 1
.Vl"f0|SIn0df=va,sandp. (e, 51)
. .

Let us call vy and ¥y, the spead and

6% o-20 nititude of Lthe Llerst approximnti-on,
. dv Knowling v, and Yqr 1t Lo oeury to anlcuinte
1
pr!
o-u h= f T
iring calculation of T?, Insbend
o a-2¢ o' v we will insert Vii g WL be taken
. not tfrom the true value ot y but 743 Cy
'3/ will alsu be determined with pocpeet, G
v, and y,.
1 1
0-2f
Thr great quantlity of crleundtlons
0-3 conducted for the purpo.e off detorminatlion
a0 of 12: permitted establiching the t'ollowing
-2 emplrical dependence: valu«s of the
g integral corresponding to the same value
0-d6 o' upeced, plotted on the graph depending
‘ - upon quantity?
o : a-44
. f porad -3
% - g o=TVa,sing, 107, (22.32)
‘.
- ] ] 1]
é 5!- where u, = (u + uo)/2, have insignificant
scattering around a certain mean curve,
Therefore, it was found possaible to
. y Y AT construct the dependence I, = f(v,) with
Flg. 224 * parameter o (Fig. 22.4 and Fig. I of the
€. : Appendex‘). Values of 12 are obtained

l1With the calcuation of ¢ by the formula (22.32) it is necessary to take T per

L
s, and Yep m/s.
2Tn the Appendex graphs are given which can be used for design calculations.
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quite close to the real, since speeds during calculations of I2 nre Lasen oyers-

estimated (from the rirst approximation), and the densitlie: understate 1 (becmu:
of overestimated altitudes of the first approximatlon).

Thus for the determination of the loss o speed on demgs LU Lo survieione. 1o,
calculate i
-y
omTY l"’ sin@_-10

and,itaking it as u parameter, to find I2 depending upon speed vy known beforchand
from the first approximation, Obtalned 12 muiit then be multiplicd by quuntlty !’.L,

which characterizcs cach rocket taken separately, Hence it iz clear that toe Voo
of speed ftor overcuming drag depends on the transverse load, The groenter the
transverse load, the less the loss of speed during the pussage ol the roeret
through the atmosphure, Therefore it is desirable to have pM ®i; large an pocosible

not éausing damages, however, to other flying charactericstles of the roeket,

It is necessary o note that with ealeulation or I, tor «ll roeret ldonticn!
coefficients of C, wore accepted, Thls ecircum:tance, however, doss not 1oaqd ot
considerable crrors according tu the fullowlng causzeo:

1) for all rockets or normal ballistle ccheme ceetrtflelent: ¢ ar: usrve.zips .y
identical; -

2) dependence.: ¢ _{¥, ni,on which are conducted exact culeulation: r'or coner
rocket:, themselves jussess conclderable »reors;

3) the influence ot drag, in general, 1: .mall, espeeinlly for ciwarfur g oven:
designed ror flring at great dlstances.  Thereiwre, the error owlny o ¢, huo
insignificant influence,

L '
The last correction (un - uO)I} conciders the change in thrust wivh altluud ,
For the calculation .r I3 1t 14 necescury to know the dependence -’L-:j(u), bl
(]

be known If the altitude y in function u 1s known, There were conducled a greut
number of calculatlons t'or the purpose of the determination of I., wherc utitwde-

y were taken from the second approximation, We call the altitude o1" the cecond
approximation the altitude obtained during integration of equation (22.4), in
which speed 1s determined by the formula (272,27) taking into account %the ['Lr.t
threz members, 1i.e.,

1
y,—;f[—l;lnp-—Tl,--"—:;I,]Tsinﬂdu. (22.33)

As a result of processing these calculatlons w2 succeeded for quantity - equal

n=0.001x, v I:' sin0_/,,

tol

in establishing the empirlcal dependence on the parameter vy and time of flight t.

1In the calculation of n it 1s necessary to take u;p in m/s.
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7 This dependency ls deplcted on Fig. 22.5 and
» Fig. 11 of the Appendex.
Parameter Yo is calculated by one of
%L three formulas:
e
. vt r r o
. ‘- -L— R m—— .
' "'g
e
. %:&PGQ Thus, having a concrete rocket, we calculate
% for it v, and fird the parameter n the the
] moment cof time interesting tc us. Then we
calculate I, by the formula
1
§ fyom . (22.34)
- ’ .
001a,, l? -q' Ha @,
. . The product Ij(u; - ué) gives the unknown
/ lass of speed for overcoming the
Y ) . counterpressure of air,
? : After determination of all the losses
} we calculate formula {22.27) the final speed.
Fig. 22.6 gives curves allowing on a
" particilar examplet to trace the change of
’ & » -3 & 2. speed depending upon i and the relation
between separate members of formuasl (22.27}.
Fig. 22.5 Plotted on this graph downwards are losses

of speed vy, Av2 and Avj, referred to the
true speed of v,

.
LI
&
D
¥

r 7 ¥’} & Up
Fig. 22.7

-
lWith the follcwing initial conditions: v. = 0.577; P =288 mE ;P =
A o 1 o ¥&.n ya©
= 240 %!’; pu = 10,000 m% H BK: )8 20 .
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Here there are designated: v, = TI — loss of speed for overconing gravity;
av, = -‘-—I, - loss of speed for overe ming drag; Av) = (un -
for overcoming counterpressure of the atmosvhére,

O)I} - iuss of speed

R L BRI

. y Pty :
oy 3 A
&% X
‘vg 1 irproxtsation metnpd
d ! 4
Remrisnl fptegratior
#t E
o “ p 4w o [ 57
Fig. g2.8 Fig. 2.9

Fig. 22.7, 22.8, 22.9 give a comparison of separate losses (Avi, &ve, av,)

calculated for the same example by two methods, namely, numerical integration of
the system {22.2)-(22.4) and the method just now expounded.

§ 23. Determination of Full Range

For pwiposes of designing it 1is possible teo propose simple dependences which
enable the possibility of rinding the full flying range in a function of the speed
attained up to mement of turning off of the engine or, conversely, the speed
necessary for achievement of the assigned distance, without recourse to the
calculation of coordinates cf end of the powered sectlon. The propssed formulas
are nct exact, but for the first approximation they give qulte satisfactory results.

Iet us express the full range as

L=k, (23.1)

Here by Ibn iz meant the range concluded between the two radii MK and MN, conducted

from the cznter of the earth and intersecting the trajectory on its ascending and
and descending phases at an altitude of =nd >f the pcwered section (Fig. 23.1).

Thus coefficient k expresses the ratioc of full range to its purely elllptic - E
part determined by arc ED along the surface of the earth, We use (nly corditionzlly
the term “purely elliptic part of the trajectory,™ understanding by this only ths
fact that the influence of the atmosphere affects the flight engligibly., We determine
the flying range corresponding tc this section ¢f the trajectory by the formulas .
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Of all the diasgram of cslcuiations examined for
this casc we will use cnly the one correspounding to
the case of {iring at an optimum angle (see {19, 31)
and {12,2%}):

!l-t-;??g:-- {23.2)

wnence, considering that L, = 2853,
L= kby, = 2RR AT — e . (e3.3
=ALw, ®avi=e #:3)
Here®
o
= W

<

If one were to take T, = R, then Ve =

Substituting this value v, intc (23.3), we will

Fig. 23.1 obtain

- v
L= 28R arcly _"—M Vs = 3 . (23.8)

is taken in degrees, then

o
Y T

If the arc arcig

”
Lo 222, 4k arcty 2 . {23.5)
s Vess~d

' 1,1

“ -

/4 \

v ’.a.
3 !

" )

4 o0 2 w v 2 e 3

Fig. 23.2

The value of coefficients k is not identical for different rockets but depends

on the speed or range snd on basic design parameters. in the first place on those

*In this and subsequent formulas it follows to express Yy in k®/s, and r ,
K

R and L in km.
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Fig. 23.4
by which is determined duration, more correctly the extent of the powered section.
Such parameters are g}no and Yo the influence of which in totality can be replaced

by value T = voPyno.

To determine k on Flg. 23.2 (Fig. III of the Appendex) there is the curve
k = k(vx} with parameter T plotted on the basis of analysis of a large « antity

of accurate cealculations.

If we copy formula (23.5) with respect to Vi then we will find

e,-::l.m}/:g-,&ﬁtg(;s'_ : ".“). (23.6) )

In {23.6) the quantity L/222 Lk is measured in degrees. To determine k depending
upon the range on Fig. 23.3 (Fig. IV of the Appendex) there is plotted the curve

k = k{L)} with varameter T. By the formulas (23.5) and (23.06) calculations are
performed, and on Fig. 23.4% (Fig. V of the Appendex) there is plotted the dependence
L = f(vx), using which it is possible to solve the direct and inverse problem of

ballistics.
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§ 24, F'nal Fermulas for a Rough Estimate of Flying Range

In design ballistic calculations it {5 sometimes found useful to establish at
. least a very approximate dependence of flying characteristics of a rocket from its
: baslc design paramsters expressed by means of final for-ulas. Such a dependence
{ - can be obtalned by examining the motion of a rocket under the action of only two
P bacic forces: thrust P and welight G, considering that the acceleration of gravity
; g ras the same value (in magnitude and the direction) at all points of space,

Let us direct the x axls of the rectangilar system of coordinates on the tangent

. to the surface of the earth at the launch point and the y axis vertically upwards.

We will consider that at the initial moment (when t = O) the coordinates and speed

of the rocket are equal to zero. Motion wiil be consldered flat; this 1s as it

should be, if besides the assumptions made we demand thal the tractive force during

the whole time of operation of the engine act in cne plane. The angle which this

foree composes with the plane of the horizon {with x axis) will he designated @,

Then the equations of motion of the rocket will have the form

-%—‘}-el’ccsc,
.%{-aPsiny—-a.

or

%— = FRCos Y.

- (24.1)
A =rasing—1),

where . designates the ratio P/G {G-forces), which we will consider by the known
function of time n = n{t).

Integrating twice equations (24,1), we cbtain:

%-:[ & (%) cosg (x)dx,
* (2y4,2)

%.:,(! .mm;mm-—t)
t %
x-g.j ‘_f n (v)ycos g (1) de dv,,

"« (2%.3)
y-:([lc(vmmrm«,—-‘,'»).

In the obtained double integrals the region of integration in the plane of variables
T and Ty constitutes of triangle determined by inequalities

. 01yt

Changing the order of integration, we obtain

[ . s
&L= ‘!!l(‘l)m‘(t)ﬁ.ﬂ-‘! t—Da(t)cosg(c) e
A
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Ty

and, analogously,
R .
’=L’(J {t—tyn(x) sin«" {(Hde — ;.)‘

Let us assume that the time of operaticn of the engine (duration ¢f the powered
section) 1is equal to tr 8° that

&gt L when 02K,
a()=0 when >4,

Then for t % t'x these formulas will be correct:

)
',-zgfncosqd‘t.

¢
%
v,-g(; asing d‘l--t):

&
x-.—.;!(t—t)ucowdt.

)
”-‘(J (t—t)aslnqrh--;-).

where n and ¢ integrand expressions are function:s of 1. These formulas can be
used, in particular, for the determination of coordinates of the impact point,
substituting in them instead of t, the time of flight prior to the encounter with

the surface of earth t, {assuming, of course, that te > tx):

{24 .4)

N
O =g | mcosedr,
C 4 (24 .58)
O,‘--tUtsincdt—lc):
s
Xe=g I (tc - tYrcosqdt,
y (24.6)

e
%
,c-s‘([ (tc-t)xsinq-dt——!—).




To determine the complete time of flight t. it is neces=ary tc ins-.rt expressions
fo. x. and y . inte equatien of tne surface of earth

y=/(2) (2%.7)

and solve the equati~n with respect to ‘C' We will net specify as yet the form
of function £{x) in equevlon {2&.7).

It is natural to approach the obtalning of the ultimate raiwe of flignt of
the rocket. Therefire, we will solve the following variational problem: what
should function @ = ®(t) be so that the abscissa Xe of the point of impact is

maximum. For this we will find varlations ax, and &y, owing to the variation 5@,

As usual, we can write:

Axc=5xc+".c~c. } (2,‘-8)

Byc » dyc + 9,0 AL,

where 5tc is the variation of time of the flight and Ox e and éyc are varlations
of coordinates at the fixed value t = t.. These variations are equal

. 5
dxom= —-‘J (fc —v)rsingpde dv,
(2%.9)

&
e,cgg!(tc—l)ucosqdvtr.
#

Excluding from equations (24.8) and {24.9) quantities &t ., Bx; and Byp, we will
cbtain

— O Are 4 v, Ay =
&

—g! (tcft)n(v,‘siu; + v, cc05q) 8¢ dv.

Furthermore, Xe and ¥ are connected with each other by the equation of the surface

nf earth
Ye=J(xc

and therefore
dye = [ (xo)dx,. (24.10)
Thus
=% T 9/ (xc)) Sxp =

‘
-gI(tc‘-t)n(o,c:lnc-i-v,ccosc)bvlt.
4

-
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The necessary cenditicn of extremum of quantity Xn is the identical conversion

intc zero of the first variation &x in other words, tne fuifiiiment of cquaiity

C.‘

Y
f(tc-r)-(u,csmg+a,,_.:os¢)&pw.=o,
1 ]

The variation 59 in cur formulation of the problem has no limitations on it, so that
basicaily the lemma of calculus of variation is applicable, from which it fallcws
that angle ® should satisfy equation

gnﬂgg-yv,cﬂnq-o. {2h,11)
at ieast for those values of 1, where n # 0, and only such values interest us,

The value of # satisfying condition (24.11) will be des'grated by 95+ Condition
{(2%.11) can be rewritten in the form

' L J
Cem — = — gl

where 6, is the angle composea by the velocity vector at the impact point on the
X axis. It follows from this:

“a°ct ';‘.

Tmus for achievement of the ultimate range of flight it is necessary that
during the entire time of operation of tne engine the diresction of the thrust
remain constant,; where in such a way that the direction of speed of the rocket
at the time of its encounter with the surface of earth is fcund perpendicular to
the direction of the thrust, Let us study in greater detail this cptimal state
of motion of the rocket.

let us introduce these designations:

a

Ind’tsﬂ. (24.12)
[ ]

4

!"‘"‘”1- {24.13)
[ ]

when @ = @, = const expressions (2k.5) and (2%.€) can be rewritten in the form

OwaNM“
Oy w= g (N sinqy — 1o); } (24.18)
Xcw= g (Nt — Nj)cos ey,
(24.25)

jcng [(Ntc - N,)sinq,—-‘;i} .

We will insert exprescions (24.14) for v,c &nd Vye into equaticn {28 11}, wrioh
should satisfy the optimum angle @0. Let us cbtain

F(Nslag —to)stngy + gN coal gm0,
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or

N —~tcoing,=0, (2h.16)
whence

. = N "

¢ dany (28.17)

This expreasion for tc will be substituted into formulas {24,15) for coordinates
of the point of impact:

xc...,(;;".'&._. N)eore, (24.18)
. ycm‘[(-‘—‘g-;-:—Nl)Siﬂf‘,— 2'5';;]' {24.19)

Instead of gquantities R and Ni it will subsequently be more convenient to
use dimensionless quantities

« =k (24.20)

Do Ig’_. (24.21)

where R is the radius c¢f carth. 1In these designations

R R
‘ar— WK e —
N ] ¥, £

and
Xome ROCE T, (1 — asing) (24.22)
Re gy 1
,cgm(hin’gn-»!vsl 1) (24.23)

The equatlion for angle 9, can be obtained as a rasult of the substitution

of these expressions into the equation of earth's surface (24.7). 1If one were to
consider the earth a sphere with radius R, then this egquation (more exactly, the
equation of a saction of the earth's surface by the plane of firing) has the form

y=—R+ V=R,

Instead of it we will use the approximate equation which is obtained ii we decompose

]’ﬁ-—p" in series in powers cf x/R and are limited by two members of this
decomposition:

y=—~R+R(: —ﬁ})
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or
’-—1';.-- (24 .24)

Derivation of this equation Justifies 1ts use with small x. However, the
appllcation of the same equatlon for large x is not deprived of bases., It is *
known that in the central field of gravity a body thrown on a tangent to the

surface of earth with an initlal speed vy= m.-will move all the time in a circular

orbit along this surface, 'In the examined field of gravity the body, to which
at the orlgin of coordinates is imparted the same speed Vo in a horizontal direction,

will move, as 1t is easy to determine, about a parabola described by equation (24.,24),
Thus this parabold in a certain meaning is the analog of the surface of earth for
bodies moving with an initial "circular" speed vy

Inserting into equation (24.24), instead of x and y expressions (24.22) and
(24.23) for Xa and Yo we obtain

i"—‘-i'g’—"’-(l —asing,),

f,%?.(? sin?q,—2asindgy—1) = —

or

2sin*gy— 2asin’qy— 1 = — A cos?qy (1 — asing).

Replacing cosztpo by 1 - sinetpo and transferring all members to the right side,
we reduce this equation to the form

a%sin'qe+-2a(l — ) sinqy—-(2— 0+ a®) sin® g, 4
+ 2absing,+1 —5==0. (24.25)

This equation can easily be soived by a certain numerical method, There converges
rather quickly for example, interational process, founded on the formula

sin g= ['2%5 (a% sin*qy -+ 2a (1 — B) sind gy —
—c’bsln’c,-{-?abslnq,-}-l—b)]'.n. (24 .26)

ensuing from equation (24%,.25).

Thus, if the law of change of load factor n(t% is assigned, then formulas
{24.12) and (24.,13) for N and Ny, (24.20) and (24.21) for a and b, equation (24,25)

for 9, and, finally, formulas (24.22) and (2%.23) permit determining coordinate
X and Yo of the point of impact of the rocket, Coordinate Xo can be considered an

approximate value of the flying range, in any case for small distances where
equation (24.24) quite well described the form of the surface of the earth. -

In order to obtain the best accuracy for great distances, let us examine the
limiting case of the instantaneous burning of fuel (tx-' 0). In this case the

1ntegta'l N has the final limiting value connected with speed at the end of the
powered section by the relation

Oy mm g
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{see formula {28.,8)). Fur the integrai N,, on the basls of fcrmuia {2&.12), we
<btaln '

S - 4 ;
N‘-J etds < I of, d+ = NI,
]

and, ccnsequently, the limiting vatue of N, , and at the same time of u, is equal
tc zero,

Formula (%.20) gives when a = ¢
wese= =5
after which by tne [ormula (24,22) we oblain

R
ey (24.27)
With the instantanecus burning of fvel cocrdinates xH and yk obvicusly, are

equal tc zero. The problem of the detsrmination of the ultimate range of flight
under ccnditions of the elliptic theory was solved in § 19 Chapter V. For the
case r = r. = R we ohtained formula {19.33):

Che=V1i—v,.

where

W, APR :
e e

Frow formulas {13.31) and {13.33} it follows:
!
Lo )
€ 2 2V %

Comparing this ferasulas with formula {2%.27), we obtain

wlepn o 5

whence, taking into account that when xu = yE =0

L-Q‘-:R‘@

we find

L 2R iy 3§ (24.28)

This formula, which establlished the relation between ti:e flying range L under :
conditions of the elliptic theory and coordinate x_, calsulated by the avdove- :

described method, can be expediently used when a # 0. Uniting formulas {24.28)
and {24.22) in one, we will obtain

Lazkudg[-g- ctgg,(l — eumv,)].
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Tne expounded methoed in pure form 1s too coarse for the jetermination of
~distance mainly because.in it are nct considered losses of speed (and consequently,
distance) for <vercoming drag to the motion of the rocket., However, alrecady

the formula i

L==0,75x,

gives for distances u» tu 5000-7000 km an crror not exceeding 10% with a change
in design parameters of the rocket almost in the whole range of practically
reasonable values,

Iet us dwell now on the question of the expression of integrals N and N1

in terms of design parameters of the rocket, Let us conslider the case of the
multistage rocket, consisting of m stages. Let us designate the thrust of the
engine of the 1-th stage by Pi’ the flow rate per second of fuel on the i-th stage

by Gi’ the initial weight of the 1-th stage by GOi’ the time of the end of operation
of the 1-th and (for i < m) of the beginning of the operation of (i + 1)-th stage
by txi' During the period of operation of the 1-th stage, l.e., when txi-i <tz tul

2
'quantities Pi and G1 will be considered constant, Then when txi-i <t s txi for
the load factor n{t) we obtain the expression

--—Plaa L
*® 0 Oyu—Gi(t—tg;-y) '

or

n (=2,

—
where Iﬂ.,.:{;Lis the specific thrust of the engine of the 1-th stage,
4

r.-%;i-m.,-,. (24.29)

In these designations

fe - ‘et
Alalf n(0d7==lg ‘[ i;gg?‘*
[ ]

, el [P
- (4
P’. "
Aﬁ"jz: f -17::7-dt
I2]] l. 1=
But . R

P
fy.’_—'.dts—P,.ln(r—o.

Pt PyalT—(T—1)
[ d:==f—’4—r:-.—-‘“=”ul'*”“tr-“”"'-

it follows from this that

=
Ty—tyg.
anP",lu -r-—-'—“_"“' . (24.30)

ing
v 7
Ld
Nl-ﬁp,.'[r"n ‘,‘—-.':‘. +"“‘- Cl]' (24'31)
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§ 25, Design Calculation: with the Use of Electronic Computers

The effect rrom the use of electronic computers is especlally great in the
solutlon of such problems which require multiple appeal to the same algorithm,
which 1s the most labororious part of the total calculation, ngign-ballistic
calculat.ouns, conducted for the purpose of selection of basie design parameters
of the rocret, pertaln exactly to such kind of problems.

Really, 1if it is required, for example, to investigate the influence on
flying range of the rocket of only some three independent parameters and to give
to each of these parameters at least five values, then the quantity of possible

combinations of parameters will be equal to 53 = 125, For each of these combinations
it 1s necessary to select the trajectory realizing the maximum of distance, If one
were to consider that five calculations for detecting the optimum trajectory

are sufficient, then the total amount of calculations of trajectories will be

equal to 5.1256 = 625,

The main part of the time will be occuplied by integration of the system of
differentlal equations of motion rereated £25 times. heducing results into a
defined system convenient for analysis (grids of curves or table), it is possible
to select the most profitable combination of parameters interestlng to us, In
certain cases on the machine can be placed the solution of an extreme problem
according to some number of parameters, not calculating the grids but applying
one of well-known methods of investigation of the extremum by many variables,

In similar cases, for the sake of saving time, it 1is recommend to drrive
for printing not all the obtained trajectories but only the final results of the
calculations and only for severzl variants is it possible to derive trajectories
for the use of them in calculations of loads, stability of motion and controllability,
in the carrying out of thermal and aerodynamic designs, and so forth. As a rule,
for purposes of selectlon of deslgn parameters there is used a system of equations
of motion (14.25) written in the assumption of an ideal control system (ao = ),

but considering the presence of angles of attack. The program of pitch angle for
a single-stage rocket 1s given in the form of a one-parameter or two-paramecter
family of curves, where for one parameter there is taken the maximum value of the
angle of attack on the subsonic section of the trajectory and for the second, the
origin of turn of the axis of the rocket in pitch.1?

For a two-stage rocket there 1s the possibility of the varlation of two more
parameters of the program: the initlal value of the pitch angle on the second
stage and angular veloclity taken as constant for the given trajectory.

Absolutely analogous’ calculations are conducted for exposure of the influence
of deviations in comparatively small limits of basic design parameters on the flying
range, The obtained change in distance attributed to the increase in the investigated
parameter, is equated by a corresponding derlvative 1f one were to solve the problem
in a linear formulation,

It is necessary only to note that in the carrying out of similar calculations
the program of pitch angle should not be taken the same for perturbed trajectories
as for undistrubed, but each time should be selected from the guaranteed condition
of the maximum of range., Derivatives obtained as a result of such calculations
can be used in certaln other design probiems. Let us assume that it 1s required,
for example, to establish between some two design parameters xl and 12 a relation

corresponding to the constancy of the maximum range of the flight. The relation
of derivatives

/- 8

lror the assignment of the program of the pitch angle see in greater detail
in Part Four,
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gives to us the needed value without carrying out additional calculations. Usually
with-design calculations we are interested in mean values of flying characteristics
of the rocket, and therefore the influence of the rotation of earth will be
aisregarded. However in the programming of problems for a machine reading, in
equations of motion 't is recommend to preserve the appropriate members, since in a
number of cases the investigations taking into account the rotation of earth are
needed very much. In remaining cases superfluous operations can be avoided,

setting in initial data the angular velocity of the rotation of earth equal to zero.

In many cases the determination of the rull flying range is expedlient conducted
not with the help of transition to formulas of the elliptic theory, but by continuing
integration of equaticns of motion up to the moment of the encounter with earth.

It is more convenient for calculation of the powered and free-flight section of the
flight to use the same system of equations of motion, excluding during calculation
of the free-flight section of trajectory members connected with the operation of
the engine and control system (setting, for example, the thrust to equal to zero).

With a machine reading the most convenient is the method of Runge-Kutta
integration, where the step of integration should be slected automatically,
proceeding from the assigned accuracy of the calculation. This guarantees both
against the uneconomical expenditure of machine time (if the step is assigned
very small) and insufficient accuracy of the calculation, In other respects it is
necessary to hold to recommendations general for calculations of trajectories with
any accepted system of equations of motion and given in Chapter VII and alsc in
Chapter XI, with respect to the selection of the program of the pitch angle,.

§ 26. Determination of the Speed of Encounter of the Rocket with a Target

It is frequently important to determine the speed of encounter of a rocket
with a target, since with this speed are connected conditions of motion of the
rocket before encounter, Thils can be done by the following method belonging

to Prof. V. P. Vetchinkin [1].

Let us assume that with the entrance into the atmosphere on a descending
phase of the trajectory the rocket has the following initial parameters of motion:
altitude hH, speed vy and angle of inclination of the velocity vector to the local
horizon $H1 Let us assume the trajectory of the rocket on the atmospheric section

to be rectilinear. This will not introduce great error into the calculation, since
the true trajectory 1s insignificantly deviated from the rectilinear. Further
we will replace the drag coefficient Cy by its mean value and disregard the

dependence g on altitude, Thug, we make the assumptions

0 == 0, == const,
¢‘-¢'¢,-Mﬂ.
& == gy == const.

The equation of motion on the atmospheric section will have the form

de 'x
T E et m 20T 2 e, (26.1)

where m — the mass of the rocket; S — area of midsection; p — alr density at an
altitude; Po — air density on earth,

Equation of motion can be written thus:

%-%%-——5—“”"’ &o’+:,sln0.: (26.2)

1In this paragraph, for convenience of calculations the positive direction of
the reading of angle $ is accepted from the horizon clockwise.
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here h 1s the altitude of the rocket above the surface ol earth; p/p is the
relative air density. 0

It is obvious that

(L]

73-=—03an.. (26.3)
Inserting (26.%) in (26.2), we obtain

do € cp PoS -
vsind, 23 =_‘_;?;—_£"”‘ £osin B,

ur
‘(""_‘t:phs (4 2 —9
I T TY A i (26.4)

We deslignate

CrepPy S &y  Crep

k= 2sn®, =™ 230, pa °

where
_G[x
P=T|W )"
Th2n equation (26.4) will take the form

4 (o) »

Integrating this equation from h = h, up to h = 0, we find the final expression
for the speed of encounter with a target

&
-ﬁI '-:-a ., -n| La
o

W} =vle +[2e ¢ (26.5)

Considering that with the made assumptions
& [ )
L gp = J:Mg 'f —p
-_ —_—— | dpu= 2
l[" & o J =

forrula (26.5) can be written in the following way:

“2cp(Pe="s) ER 2ep(%e=?
vimole %Rl +2:{ PR (26.6)

By formula (26.6) calculations were made graphs were plotted (Fig. 26.1-26.3
and Fig. VI-VIII of the Appendex). With this for the inltlal altitude of the
rectilinear section that altitude was taken on which the assigned initial speed Vu

the acceleration from drag consists of 1/10 of the acceleration imparted to the
rocket by gravity, i.e., equal to

0.1g3in 0, aesin 0,
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Fig. 26.3
Thus altitude is found from equality
%"Qﬁ-;":snm’v i
consequently, '
2o mna 1
L gy -p;. (26.7)
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According to equation (26.7) the graph y, = f(k, v ) is plotted (Fig. 26.2),.

m
[

H
The calculation of speed Yo by the given graph s produced in the following

*
way. Knowing for the given rocket cxcp and p , and also the angles SH
the angle at the end of the powcred section, from the graph of Fig. 26.1 (Fig. VI
we find &, From the calculation of the powered section there shouid be rnown

Yy and Yy o From the graph of Fig. 26.2 (Fig. VII) with respect to v, and k we find

Yyi it 1s most prcbable that the value of ¥y will equai Vg Then we determine the

, egqual to

valuc of speed by the formuls
£ —Ja) .
O =0, + o . (26.8)

With respect to the new value of speed Vi and value x from the graph cof Fig, 26.3
{(rig. VIII) we find the speed of encounter Voo

Calculations made from the graphs show that the error in determining Ve
as compared .¢ numerical integration, is quite permissible for design calculaticns.
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CRAPTER VII

BALLISTIC CHECK CALCULATIONS

Afterwards, witn the help of the sbove-stated method of design calculation
G

main design parameters of rocket are selected: ., = 55 ~ ratio of the finel
0
weight to the initlsl; Pyn a= gpecifiec thrust in a vacuum; vy = 59 — launch ratio
- o}
G
. - 2 ton: - - -
of welight to thrust; Pu T load on midsection; APyn Pyn.n PynD the

altitude of performance of the nozzle expressed as the difference between specific
thrusts in a vacuum and on Earth; cx(M) — law of drag. It is possible to sppreach

& more full end detalled designing with a further more precise definition of the
enumerzted parameters.

This more exact data should corresponé¢ to more exact calculetions, which sare
conducted by equations of motion obtained In one part. The most sultable here
are systems of equations (14.30) and (14.25) for the calculation of the powered-
flight trajectory and systems of equations {15.19) and (15.12) for the ceslculation
of the free-flight gectilon,

Simultanecusly with tiiese calculations there is conducted & selection the
"program” or form of trajectory about which should be carried cut motion cn the
powered section and in eccordance with which instruments giving the rocket this
motion are designed. Questions connected with the selection of the program will
be examined in the fourth part of the book.

After a more precise definition of main design parameters of the rocket and
the selection of & program checking calculations are produced which consider
certain pecullarities of the control system, & fuller scheme of action of the forces
and, 1f it 1s necessary, & concrete point of launch and direction of firing. The
most sultable for this purpose are systems of equetions (314.20)-(14.23) and
(16.18) for the calculation of the powered-flight trajectory and the system of
equations (15.3)-{15.7) for the calculation of the section of free flizht. On
the basis of these calculations there are compiled preliminary tables of firing
and conducted flight tests of the designed rocket,

During calculation of the trajectory it 13 necesasary first of all to select
a certain system of differential equations, proceeding from the required accuracy
of determination of the flying range and other elements of the trajectory
interesting to us and in accordance with the presence and accuracy of initial dsata

necessary for carrying out the calculation. Appropriate recommendations on epplica-’

tion of a certain system of equations of motion were given with the derivation
of these equations.
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In this chapter we will examine concrete systems of the most commonly used
equations for calculation and will give rccommendations for carrying out numaricsl
calculations.

§ 27. Calculation of Powered-Flight Trajectory

One of the most complete for calculation of the powered-flight trajectory 1s
the system of equations (16.18):

%—"-=-—-(P Xip—c,95)—gsin®-- 7 gcosb,
a0 1
'}F:v{ [P X,,-r‘ qS] gcos® 4
+;—gsln0}+2&acos¢,slnv.
do 118 h—xg , R
, '&T‘?{:[P—X-r+z:;‘,¢5]+°¢""°}- (27.1)

3(sin ¢, cos @ — cos q, cos ¢ sin 8),

-‘-faiaocoso.

dy
-o = osin@,

— s U0 . J

dt

Here

"““o“f“dl
o
where n, — mass of the rocket at the time of breakaway from the lasunching pad.

The value m. does not coincide with the mass of a completely filled rc-ket,
but 1is less than it by a magnitude of the so-called pre-launch flow rate, by
which 1s understood the mass of fuel expended prior to the moment of hreskawsy
of the rocket from thrhe launching pad. This moment 1s characterized by an enuelity
of thrust and weight of the rocket, and the corresponding quantity of fuel
expended up to this moment 1s determined on the basls of avallable =tetistics
from results of bench tests of the engine. Thus for the zero of firme in btallistie
calculations 1s taken the moment of hreakaway of the rocket from the launcher,

The rlow rate per second of mass m is determined by characterishivs of the
propulsion system. During calculatlon should be considered change m depending
upon ballistic parameters of motion and changes of conditions of the fuel feed
dependent on them for every component scparatcly. Calculation of the character
of accretion m after the switching of the englne and fall m after the turning off
of the engine 1s obligatory.

Thrust 1s determined by the formula

P=-:—.(p,+s,p,)_s,p=c,_:__,,.}, (27.2)
(] (]

where for quantities not variable during flight there are introduced designitions

&y == P. + S.’..
€==S_py:
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PO and bn ere nominal valiuss o tarusi and ficw rate pei second of mass on
earth. Formula (27.2) conslders throttle (for small changes of flow rate) and
altituvde characteristics of the engine. Ratio p/po is rete teaken from ta.les of

standard {(normal) etmosphere depending upon the altitude of flight.

The drag of the Jet vanes 13 aquel to

K= Qp+ L0+ 2+ )+ A F =
o 2
=80+ 2 F)+2(l+ 2]+ )
where on and X are determined experimentally; & is the aversgec emplitude of
osciliations of control surfaces around the program positlior,

Since in the calculation angles of devistion of control surfeces i1 2nd 3 do
not appear, then for & determination of the total loss of thrust on the con*=ol
surfaces this formula is used

[
x,,-4(q,,+ z.-i-)-;-m?ac,q-e.p}. .
where there is designated
a=1{ee+2§).
cqom 0.

Member qus, for convenlence of calculation, 1s presented in s somewhat
different form:

t,qS-:c,i—v’%-ac,i-*‘,

om0

Cy is taken depernding upon the Mach number M {or cuantity w = Mso, where 2, is the

speed of propegation of sound on earth} and the Reynolds number {or sltitude of
the flight) with a correction for angle of sttack; the ratio p/po is taken from

tebles of standard atmosphere depending upon the altitude of the flight.

where there is designated

The acceleration of gravity g is calculated by the formula
[ i
L Soad ‘- o
where the acceleration of gravity at the surfaece of Earth <o should be determined
devending upon the latitude of the point of lsunch @F by the formula

Lo 9.1805+0.05!93£n’¢,[ - ]

The altitude of the flight of the rocket above the surfsce of Earth is
determined bty the formula

Amy b,
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where

&
Y-S

ot
]

the distance of the powered seciicn is too gres*, then the sltitude should
be calculated thus:

where
R =837 xa.
8 —x,
It is convenient to record member ; ’.c;gs in & gomeihst different form:
[ B §
[{
Iy —xy » 7""“1
e gSz=¢, — PP e ¢’ (7.7}
=% S =GE TR
t i

e
Here c;-s‘-‘-’— and ¢ are taken from tables of aerodynasmic coefficientz? dependiing
upon the M number; Z?/l is the guantity constant for the rocket; x,_/1 is tsken
from the graph or table?! which 1s most convenient of sll to have depending upon
the mass of the rocket,

For the integration of equetions of motion (27.%1) there is used the metnod
of Adams. For the calculation of initiel points there 1s spplied the method of
consecutive approaches, proposed by Acad, A, K. Krylov, who recommended the Adens
metnod for solution of the basic problem of external ballistics. During integrztion
of eguations of motion {27.1) it 1s necessary to use certain final relstlions:

p=— A{o— y,;sin0 4 y,cos8),
ex=A(fy— % — 6.
A9 — (1 — A) (g~ V3~ 8),

where A designates the guantity

A i M“v—‘h\ -
R {fy ~ x)+ A4S (£, x3)

o wefee3)
R =) o)

dere 2. 13 the coerficlent of the steticz Jeponlience between the angle of deviation
of the"rocket's axis and angle of deviation of the jet vanes 2 and 2:

4 =18, =ayAp.

imnese are formulaxted in the process of designing of the rocket in the form
of wWeight, centering and serodynamic designs.
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Value ao depends on characteristics of control system and controls and should be

assigned. Equations of this paragraph allow both a constant and variable value of
a5. Further, R' is a derivative of 1ift of the jJet vane according to the angle of

its deviation. R' depends on the configuration and area of the jet vane and
characteristics of the gas stream. Considering the angles of deviation of the
control surfaces small, and the characteristics of the stream and control surfaces
themselves constant in flight, it is possible to take R' as some mean value. In
reality, because of the burning of jJet vanes and the change in characteristics of
the stream, R' does not remain constant, but this change, as experiments show, is
small,

The values Yyr Yo 73 necessary for calculations, considering the rotation of

the launch system of coordinates, are calculated by the formulas (16.4):

Yy =@yt cos @, cos ¥,
V= 0yfsing,. (27.4)
Yy= —wyfcosq sing,

where

o =72921-10"[ 1 ];
®p — latitude of the point of launch; ¥ — azimuth of the direction of firing.

The true position of the axis of the rocket 1s determined by angles

: ¢ =Qu+ Ay,
L= (l — A)(0—v,sin0+4y,cos 8).
The third and sixth equation of the system (27.1) can be integrated from a

certain moment t # O, As such moment it 1s recommended to select the end of the
vertical section with initial conditions

0= 90" —vy,,
‘ - "o

In all calculetions the program change of the angle of inclination of the
axils of the rocket ®, should dbe assigned in the form of tables with an interval

equal to the step of numerical integration.

Equations of motion obtained in § 14 differ from equations of § 16 only by
the absence of members considering the departure of gyroscopes with respect to
the terrestrial system of coordinates due to the rotation of the latter. Therefore,
all calculations are somewhat simplified. The system of equations 1itself has
such a form:
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rs 1 4 i
—_— (P X, — - in8—x £cosh,
i P 1p—CA5) - gsin A §
I 3
-‘. ;
':g_ P Au”’T ‘fs f
-1 ;
——gcos&-}-x;s&un}+2a3cosq,siat.
] .
de 1NN 7"’-‘1 H
7_:{:[;; — Xt i x v"s}““‘""’s} (27.5) :
. T 'i' j
-~ aa,(sinc,cose —cos g, costsial)
%svt&&
%uvﬂa’.
%—v—w. . '

wnere

8= A(Gy—0). B==—As,
[}
Am M(i-"’!} .
M( ' )+tr'$ (t.‘* —;’)
8 = 2, 3%. ’
4= —(I — A}, —0).
=9y - 00

o

Tveryithing sald with respect to the caiculation of separate values Jor the
s(s;sst.,m of equations (27.1) and its integration remains in force for the system
27.%).

For the calculation of the powered-fli§ 114 traiectory neglecting the rotstion
of earcth snd in the essumption of an "idez1" control system (a, @), it is necessary
to use the system of eguations {18,25):

A AU ioie ABA P oA L

-:‘-'-’- -l—(PvX,’- ,q&)-hgsme——-gcos&.
4
. } {.,—0 T—:I R
7':. a P~ Xyt L x4 -
H 7
i
~geost 4 2 paino}, |
dx I
% = veost, §
= osinl, E
Q= gy —0. i

™
A%}

A A Kbt e Ve ¢ -

I
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If & change in 6 in time 1s known beforehand, ani “%e program chenge of the
direction of the axis is unknown, then the second equation 0f the system written
above can be used for the determinstior. of 2 snl @  :

o

» s

- ('7+¢¢ﬂ0~—,—cnu)
by — x4 I
P !
x~+7—~—‘_" fﬂs

Sp=l+t e

Simpliricativns, &8 a result o which the last gystem was obtained permis n
the calculations disregsrding the change tnh flow rate per second of mgss and 4ne

change ir losses of thrust on the fet venes depending upon thelr defleztion and
taking as thelr mean value (xip - xip ep t3 the aversge loss of thrust on the

Jet vanes). In exactly the sane way the thrust 1tsel! is derermined by neglecting
theae cnanges, taking into sccount only tre altitude performanice of the engine

)

With the necessity of determining the angle o deviation of program conircl
surfaces it is posgible to use the expression

S (£, — 1)
%ﬂ—- “.—x.} {‘.__0)‘

Finally, the simplest system of equations of motion is the system [15.3%0):

%né{P—X”-—» €,g5)— gsinga,.
%-.- vmc.,. .
%ﬂ'ﬂl@v

obtained from the system of equations (14.25), if we disregard the angle of atiaczk

3 and member ;g.

Since the system of equations {14.20) is used for rough calculstions necegsary
mainly in the designing of the rocket, many parameters and initial dats can be
not completely accurate. Therefore, here there is no sensc In considering the
accretion of thrust after switching on the engine, Flow rate per second snd loss
ef thrust on jet vanes are taken on the entire powered section tc be constant.
A change in <, depending upon altitude is 2lso possible not to consider. Ouwing

to these peculiarities the step of integration can bte selected sufficiently lerge,
{i.e., up to 4-5 s, and sometimes more.

§ 28, calculation of the Cossting Tralectory

In § 15 it was shown that the main factors affecting colncidence of calculation
range with the actual are perfection of the control system and accuracy of
calculstion of the section of free flight. During ideal operation of the renge
control system any error in the calculation of free flight gection will leai to
a divergence between the calculation of sections of “ree flight with firing at
the outlined target or with compilation of tables ¢” firing is abvsclutely necessary.
Such accuracy is satisfied by the system of equations (16.22):
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av Lo [ 2
-7'-—“,;.-”,—7'(:«-:,)—-;3-01'-&-

+aplx—z)+eqir—yi+

v,
i ] L™

+agls —x)roq(y—yJ)+

+ oglz ~ z) 4 8yv, +- b0,

. [
— - vy, - T‘J'-}',)'-‘“:’;“;,‘"

 lmmer | e

+ oI~ 2 )t b, - 4y0,, -

‘ te, » £ 2 {2-.11
k . 7--—&(,;?9‘*-"'—(2-—3‘)‘-&;&&'}-
E . +'8(“" x¢)+‘n(y""’¢)+
E + onlz—~ 2+ ouv, 4-bpv,.
i dx
&=
<y
=%
Fm
“nere
- .
x, = gasinlq,cos . 3
Yo — gl —asintey,),
2, — agsinle, siags
&, = u}(sia?ﬁ-{-cos’qfﬁn"}
8y =8, = —wlsing cosq cosy.
83 m= 0y == w]cos¥m sinPcosy,
8y = w] cot’s,.
A= 8 ==l ting, cosg, sing,
t ‘,-%(M‘,-}-Cos’v.m!’)
’a-——%ﬁﬁhsmotﬁ”.
by by — 20, sing,.
bym= — by 20, cot g, cos g
£11 these values for the given trajectory are constant and their values are
calculatad reforehand; <, is determined from tables of aserodynanmic coefficients
depending upon the M number {or value w)} and altitude. Dependence e, on the
angle of attack is not considered, since it is assumed the flight occurs withcut
an angle of attack.

Yalues -:-. and "/ T" gre determined from tables of

stundard stmosphere depending

ﬁ. upon the asltitude,
Components of the acceleraticn of gravity g; gnd g, #re calzulated ty the
formulas
. M
é (,-sl;r—--;’.—(.'nln’q:l~l).
‘.""%’““‘t




For the determinaticn of r and Py these rormulas ar-~ used

=V P+ -y (- 2P
(x —x)cosg,cost+(y—y )sing, — (2~ z,)cosq, Sin
1 4

sing,=

Altitude 1 can be defin¢d by formula
A==r- o(l - asin?q,).

- For the celiculation of angles determining the direction of the tangent to
the trajectory 2nd the magnitude of velocity v we use the following relations:

»
"0-7’-,

gom= — -.:oso .
¢ 4

Om= e
cosOcoso °
Constants entering into the equation of motion have tLhe values
am=G378245 .
o= 33
SM==39862- 10" —"

== 26,243 . 10% s

s

Calculation 1s produced by-means of numerlical integratlon of equations of
motion by the Adams method. TInitial conditions for integration are parameters of
the end of the powered-flight trajectory.

The examined system of equations of motion for free-flight sectlon (23.1) is
not ohligetory for all ranges. For ranges not exceeding 00 km 1t 1s possible to
use equations given in § 15 in which the flatness of earth 1s not considered:
.‘_:‘.'-=--kc,f::w,— $I+¢ux+al:(R+y)+

+ 8uz + 8,0, + b,y0,.
dv (] 1 4
—r=—he, v, — R+ )+ aux+
+ on(R+ y)+ 812+ 8319, + b9,.
.‘_":..=—kc,-":w,—-§z+¢ux+

dt
+ (2™ (R+ }') + 8332 + b;]v' +bnv,.

The remaining equations and relations remain as before, with the exception of
expressions for g!'_, €, T and h, instead of which one should use tormulas

—22.
r=V®R+yp+ 141,
A= r—R.

Jp—
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If the flatness of eartnh is not considered, then 1t is recommended to use
the calculations cnly as long as drag has an influence on the motlon. The
subgsequent part of the free-flight sectlon should be ~elculated by formulas of
elliptic theory obtained in Chapter V., ¥With this 1t is necessary to use the
transition from the absolute motion to the relstive, as wes shown in § 17 and
§ 20. The sequence of calculations is the following.

Yeving initlel date x , vy , 2z, X . ¥ , 2z ,we turn to the suxiliary system

H "H H B H H
of coordinates:

x = —(x cos§— 2 sin¥)sing, +(R+y]Jcosq,.
y == x sing 4z cos g,
2, == (x cosp— 2z sing)cosq, + (R4 3 )sing,.
We deteyrmine the components of sbgolute veleolty in this suxilisry system:
x5, = —(x c0s9— z sin¢)sing, + y, cos g, — sy,
y, = X sint + 2, cosb+a,x’.
2z, =(x cos§ — 2 sin{)cos g, + ¥, sing,.

We find spreric coordinstes of the initisl point (longitude is read off from
the point of lsunch)

=5 _ ncosd, .
‘g,'l X; . ‘g‘\ﬂ I; s '. ﬁﬂ",’ -

We determine the components of sbsolute velocity sbout the meridian, perellel
and redius of Earth:

o, = —(x,co82, + y.sin 2,)sing,, + 2, cosq,,.
o, = — x_sind + ylcosk
o, =(x,co8) + ¥.sind Jeosq,, + z sing,,

We calculate the absolute azimuth .
s W,

QO == —.
T

angle of Inclination of the tangent to the absolute trajectory

& L4 L4 £
. )
wo.u Illmtl - 'ﬂ“h"
S ™
and gquantity of absolute velocity
. W
O = e,
4 sae

We further determine the suxillery varameter v'ﬂ:

;" ""' as 1 >
=g (r=30s2. 108 ),
we calculste the central angle in absoslute motion
'y \';lg’;
- grery e
2 140 —y,
cglculate the auxiliary quantity x}'{ from the relation

g

. 1-v
cos x’ = =
P Vi—@—v)v,cos’s, "
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where .<3;<.. and find the time of flight by ihe fcrmula

P TV (ﬂﬂ’;"]‘y 5 )

':(""";) @—v)v,

We find €he geographic coordinates of the end point (lying at oue altitude

with the initial point r, = rH)

8 0rp = SR, OS’ + COB g, iR’ cOn WY,
: onp ey
sl btef ) - -
and determine the azimuth st the end point
. Nat cng,
Then obtain the components speed at the end point:

'.,-';m 0, cos .
V= v cos b sing, —ay, corg,,.
Vppum - O RO e )

and find the azimuth and angle of inclination of the tangent at the end point in
relative motion

=2,
t"’mt v tny
"’-"!-’ '-J"' ,.

_ also magnitude of relative speed

"_p-?:-’f’-.

To determine only the full range the formulas of elliptic theory can be used
up to the point of impact on earth, since atmospheric drag on the descending
phase of the trajectory for distances over 600-800 km does not have considerable
influence on the range,

With the necessity, to determine, besides range, other elements of the tra-
Jectory on the fall section in the atmosphere, for example, azceleration, speed.
?gg.,)it follows, starting from moment t', again to use the system of equations

.1).

In this case after calculation of the section of fall in the atmosphere with
initial datao,, 9, ¢, . Ay=A, by equations {28.1}), we again introduce an

auxiliary system of coordinates in which we determine coordinates of the point of
Lmpact by the formulas

Xgme —(xoco89, — :cﬁn¢,)sln¢,, +(R+ Yc)cos §,,.
Y= Scsiag, -+ 2. co8,. .
© sgu=(Socost, — zcslag,)cos e+ (R +yc)cing,,.
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Then we {ind geogrephic cocrdinates of the point < Impact

g(a.c-u,)-;’:r.

zocon (Ao —1,)
xe ¢

BCc=
after whicn there is determined the zzimuth of direction on the pcint of impact

"’rc“’“': —cos A_sing,
d‘k‘ “1¢

and full flying range
sia m'cml:'
fe= tage L= Rpe.
lateral deviation from the sighting plene can be defined by formulas
sin 3o == sinPe sin (Voo —
:C:R!"
In the case ©0." the calculation of & trajectory for the purpose of Jdeterminstion

of mean flying characteristics, it is possibl~ to use the system of equstions
(15.12):

dv, ; 2

7 =““’3’: W,—(-E—--sﬁs):.

dv » £ 2

..‘_‘1,—_-_&:‘; vv,—(-;—-'sﬁ%)(n‘!'”- (25.2)
dx

a =%

%ﬂ:'r r

Speed and angle @ are determined by the formula
b J
&‘n;;-
L/
=t
Altitude sbove the surface of Earth can be found by the formula

hu==y+ A2,

where Al-:-&- is determined depending upon coordinate x. It 1s possible also to
zalculate the sltitude as

b= VREF+I—R.

During calculations of trajectorles for a very great dlstance it is more
convenient to use the system of equations of motion Iln polar coordinates (15.1S):

F—rit=—te, Lor—g+3 el

- . . - (28.3)
ri+ 20 = — he, 2 ory.
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. Introducing designations sfmms3; — doubled areal velocity of the rocket with
Tespect %0 the center of earth and Jms Ry — distance eslong the arc of earth's
surface, it is easy to obtain from the system of equations (28.3) the system

‘ ds
G=-rge
N . & L
b %'W‘—""—""i’”‘—(‘“%";’)' {25 4
By & {29.4)
- &=
S a_a
LA
H The speed and angle of inclinstion of the tangent are determined from the
relationships
v,
= (78.5)
®me s
reos ¥ °

- The values -&. "/ 1}' and g necessary for calculation are tsken from tatles depending

upon the asltitude. It is usefully also to have the table of values of the guantity

t——-}o}r. als> dependent on sitltude.

§ 29. Use of Electronic Computers for Check Celculations

Not touching upon the technology of the programming of problems for cerryins
out ballistic celculations, we very briefly will dwell on certain distinctions
between menual and machine calculation.

This, first of all, is the method of assignment of Aifferent varisbles, which
with hand celculation are assigned either graphs (for example, aerodynsmic and
centering characteristics) or tables {for example, parsmeters of the stmosphere)
allowing linear interpolation. In principle 4t %s possible in machine calculation
to use tables which permit managing only by linear interpolstion. However, such
tables are bulky, occupy impermissibly large capacity in the operative storage
of the machine, or, being placed in devices of external memory, require {reguent
appeals to these devices, and thereby sharply reduce the rate of work leading to
unproductive expendltures of machine time. Furthermcre, the preparation ani input
of these data Into the machine also requires additional rather long time.

The most wildespread, therefore, is the method of assignment of similar
dependenses wlth help of polynomials, An approximated curve is divided into
series of sections, each of which can be represented in the form of a polynomisl
{ususlly third degree) with required accuracy. Neighboring sections shouléd give
with equal arguments equal values of the function and its first derivative.

The most convenient form of the recording of such form of polynomials is:
Y=nt0=O =D +I0 -DIA -y, — iyl (29.1)

where
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tem 225
By = Xy

v (), =(E) - '
v (&)= (), e - o

; ¥y and ¥, are velues of the approximeted function on ends of the sections (i.e.,
when x = x, and x = x2), angd (:“Z) ani (%), are derivatives gl the same points.
| - ]

If for some reasons it 1s impossible to calculste directly the values of
derivatives on the ends, then it is possible to use the following method of their
determinetion. We divide the section into three equal parts snd take from the
graph values ¥yv Yo y3, and ¥y corresponding to Xys X% x3, and Xx,. Values of

2)

i e s

derivativesl%) and (%) with the conditlon of passege of the polynomial through
N 1 4

all four poilnts, are determined by the formulsas i
- (.%)‘, SUEIUEL X548

= =23, 487, — 18y, 4 13y,
1&"'&%%). E] ¢

e O R o o £

Here
B 2,
&y Xy

It in possible to divide the section intc four parts, as was shown on Fig. 29.1.

From the condition of passage of the polynomial through the designated four
points, it is possible to write for derivatives on ends of expression

s

‘,‘(_‘g_).a =3y, -+ 8y, ~ 24y, + 19y,

. The process ©f the selection of coefficlents and partition on the necessary ;
guantity of se~tiong can also be assigned to the machine. This operation is !
fulfilled vefore~~nd, and with the basic calculation of the trajectory there are 4
used sectione and coefficients already selected by the described method, !

In certain cases it is more convenient to use not the approximating polynomials
but additional differential equations integrable in parallel with the basic
system ¢f equations, For example, instead of determining the pressure and density
of the atmospnere from tables or with the help of expressions (4.3) and (4.%) i
containing the integrals, it is possible to use differentlal equation (4.2}, which
1s reduced to the form

I
7 d H
F=--oF5--F5 :
The derivative dr/dt, using relationship (1.2), can %
L% be replaced by the expression
. - pe 1 dy - Az lx]
l’. F e (R R b _
e T * - 2t (Rt )9, 420,

. Flg. 29.1. . : r
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sa that

1‘; "l+(.+”"+"‘_ (29.2)

[ 4

a4
7--.

. This equaticn should be joined to the system of differential equations of motion.

An increase in the order of the system does not cause fundemental difficulties
during its numericel integration, but it is eimpler to calculate the right side

of equation (29.2) than to rind value p with the help of approximating polynoulzls
or from expression {4.3). PFunction T = T(h} entering intoc equation (29.2) consists
of several linear sections, sand therefore 13 also very simply calculated. Air
density ¢ is found with help of expresaion

r
L e

However, density in eguations of motion 1s present only in the expression for

impact pressure
o=t (29.3)

which can be transformed in the following way:
3
=y p(s AP,

where M is the Mach number and a, the speed of sound in ailr, whi-h i3 expressed
by the formula

am ls.
k = 1,505 18 the ratio of heat capacities. Thus,
c—-;»nl'. {29.%)

Since p and M are used in siher members of equations of motion, expression {26.4})
1s more preferable for lmpact pressure than (29.3).

For integration of equations of motion it is convenlent to use the method of
Runge-Xutta. Selection of the pitch of integratlon depends on problems formuleted
beforc the calculation, If only final results are important then it 1is better tc
use the automatic selection of pitch, essigning the required accuracy of calculation.
If, however, it is required to obtain all elements of the trajectory with respect
to time of flight, then 1t is hetter to conduct integration with the assigned con-
stant pitch, which ahould not be grester than that permissible from conditions
of the assigned accuracy of the calculation, -

It is recommended to integrate in parallel the apperent acceleration of the
rocket (load factor multiplied by g£.) in the projection on the longltudinal axis,
since the corresponding integral (ggparent speedg in many cases is the tuning
value for the automastic range control machine.?!

Machine calculation iz very convenient in the solution of boundary value
problems., Most frequently encountered is the problem by definition of the azimuth
of sighting and moment of turning off of the engine {i.e., initilal conditions),.
providing a hit at the point of the earth's surface #ith the assigned coordinates,
rectangular or, more frequently, geographic. Of the number of possible methods

lconcerning the flight range control see § 36 and § 37 of part three.




of the solution of the boundary value problems we will explain only one, founded,
essentielly, on the successive approximation to the assigned boundary conditions

with the help of the assumption of the linear dependence between assigned coordinates

and initlal conditions.

Let us designate P and XO — the assigned latitude and longltude of the point
of aiming; to and wo — unknown initial conditions, 1.e., time of turning off of

the engine and azimuth of the direction of aiming. 1In the beginning calculstion
is conducted of a certain refer=nce trajectory at some values t = ¥ and ¢ =

and corresponding values 9 and X are determined:; then there are computed two
trajectories, each of which differs from the reference because of some deviation,
&t or AY, Ratios of obtained deviations A9 and AX to deviations At or AY are
taken for the corresponding derivatives

A N A
“o d. ”. W'
Further, assuming the dependence between assigned coordinates and initlsl data to
be linear in the whole interval, we determine what should be the corrections of
At, and Awi for ¥ and ¥ in order to fall into the assigned point. For this we

1
solve the system from two equations:

e qy—q =% dy
AMy=qo—g= ot -"|+7'-AQ|.
A’-l——-,‘—' o == al.A’.'*‘%A’..

Let us take new values t1 =t + Ati and wi =¥ + Awi and again calculate the
trajectory and obtain coordinstes of the point of impact % and Ai. Again taking

this obtained trajectory as a reference, the whole cycle of calculations is
repeated, The process continues until we obtain coordinates of the point of

impact with the assigned accuracy,.

§ 30. Compilation of Preliminary Tables of Firing

Preliminary tables of firinz are compiled by calculation data end contein
basic values by which setting of instruments controlling distance 1s produced.
Preliminary tables of firing are used with the conducting of experimental firing
from the assigned point of launch accordinz to the assigned direction. Therefore,
before we proceed to their composition, it is necessary to know the latitude of
the point of launch and azimuth of firing. Regerding the method of compilation of
these tables, 1t consists in the following.

From the most exact equations of motion which can be used for calculation of
the trajectory in accordance with the presence of initiasl data calculation 1is
produced of the powered-flight trajectory.

For the calculation of sections of free flight there 1s selected a serles of

- moments of the turning off of the engine. The points of turning off are character-—

1zed by eiements of the trajectory txi’ xxi’ yRi’ Vii® Gki, where 1 =1, 2, ...,
n 1s from the guantity of selected reference points.

Calculations are made for n free sections and for each of them the following
are determined: L — full range; C1 — setting of the instrument controlling the

range (turning off the engine), and other interesting characteristics of the
trajectory, for example, hBi — maximum altitude of the trajectory; Vgy — speed st

peak of the trajectory; Veg = speed at point of collision; Ti — full time of

flight, and so forth. Taken as the baslc parameter depending upon which other
-values contalned in tables of firing will be determined is the range L or setting
of instrument C,

14,
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With the help of one of common methods of interpclation basic elements of
the trajectory for any intermediate values of L or C are determined. For example,
1f there is ugsed the Lagrange interpoletion formula

"""g(“"ﬂ'”ﬂ""ﬁz
Y= s -~ l“l)---l‘c"‘d+

+,. “—‘_LL“-‘Q;---"_'J + ...

e

a—x)la—x) ... (—xa
oy RN X (X )

el [P R Ty W A

then into 1% are gsubstituted:

instead of Ygr ¥pr sees Yp = values of some element obtsined as » result of
the calculation of n trajectories;

instead Of x4+ X, oees X = values of L (or C) chlalned as a resul® of the
caleulaticn of n trajectories;

ingtead of x — the intermediate velues of L {or ¢} for which it 1s desirable
to determine other elements of the traelectory contained in the vreliminary
tables of firing.

It ir not recommended to take number of r¢« ference points n too large {atove
n = 3-4), Even if there is calculated & great number of reference trajectories,
tren for interpolation one should use not 81l the obtained date but only dste

from three-four reference trajectories nearest to that for which interpcletion is
produced.

In the descrided method of compillation of preliminary tables of firing which
are usually used during manusl calculation, the selective reference points sre,
in general, arbitrary, and it is necesssry only to see to it that they more or
less evenly cover the whole assigned range of distances.

In the use of electronic computers there is the possibility of solving seversl
boundary problems from &8 number of assumed purposes &nd determining &ll the
necessary adjusting data Tor instruments and elsco flight pasths precisely for these
purposes.

It 43 useful {o supply preliminary tables of firing by tables of corrections,
which allow considering the influence of smell changes of design characteristiics
of the rocket and sighting data on the flight path of the rocket, in particular,
on coordinates of the point of impact. Methods of calculation of such corrections
are examined in the next chapter.
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CHAPTER VIII
FORMULATION OF THE PRORLEM

§ 31. Certain Information From the Probability Theory

As 1is known, if quantity u is a linear function of independent random
quantities x, ¥, ..., t

u=gax-+by—4 ... 4+ At. (31.1)
where these values have normal distribution with mean values X, ¥, ..., t and

stendard deviations ox,_oy, ..., ot, then quantity u also has normal distribution
with the mean value of u equsal to

O ox4by+ ... +AF

and with standard deviation ou equal to

o.-:V(aax)’-{-(boyf-{— eee $-(ROt2. (31.2)

In the theory of firing dispersion frequently 1is characterlzed by the
probable (mean) deviation B, connected with the standard deviation by relationship
B = 0.07450, For the maximum deviation A there is usually taken such a value
that the probability p of obtalnlng greater (in absolute value) deviations 1is
quite small, This value 1s also connected by certain constants proportionality
factor with the standard deviatior o, Thus when A = 4R = 2,6980 = 2,70 the
probablility p is equal to 0.007, and when A = 30 p = 0,003, Thus the maximum
deviation is a conditional concept, but rather convenient for practical purposes
if one were to thoroughly remember its meaning. For probable and maximum deviation
of random variable u formulas being the result of formula (31.2) are correct:

BV (@ BxF+ G ByY+ ... + (R Bif

Avmm V(0 AxY (G AyY+ ... -H'ur)f.

It follows from this that 1f u is the common function u = f(x, y, ..., t) of
independent values x, ¥, ..., t. obeying the normal law of distribution, and the
maximum deviations Ax, Ay, ..., Ot are so small that partial derivatives

and
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cén be consldered coristant when

i—Ax<x<x+Ax,
y—-Ar<y<y+dy

P R SR ST B T S R |

I M<i<ct+ M

. then the mean value u can be determined by the lormula

Tt LG+ G-+ o+ LG (31.3
- where Xg. ¥gu oves t, are certain fixed (nominal) values of quantities x. ¥, ...,
t, quite close to the mean values these quantities X, ¥, .... U (su that
510 - Xi < & and so forti, and n, . f(xG, Yor oo ta).

The root-mean-sguare, mesn ard maximum deviaticn of quantity u ere expressed
by the following formulsas:

““‘/(%")"H.%“’)r‘* “"(%L“)t' (31.%)
&—V(%Bx)’-}(gsy)’-g- +(-¥-8:)1. (31.5)

An-V(-gAx)’-i-(%b'r):-!- (L) (31.€)

In formulas {31.3}-(31.6) there is a difference between the systematic
deviations and standard, mean and maximum devistions. If systemstic deviations
are added, as formula {31.3) shows, according to the law

icam LG+ Lo+ .. v Ha-n

fn cimilar cases will say thet quantities sre added algebraically), then the
standard, mean sand maximum deviations are sdded according to the law expressed by
formulas (31.4)-(31.6). We will say that such values are added geometrically.
Let us note that separate probable deviations are added algebraically:

- & - - .
.-caé(x-x)-i-%;—(r-y)—f— +¥(‘*ﬁ-

5 32. Formulation of the Prchlem of Dispersion

During firing by long-range rockets there sppear both accidentel and systema‘ic
deviations. Conseguently, actusl trajectories of the rockets differ from the
calculation and for every rocket released differ in their own way.

What are the causes of the deviation of the trajectory of the rocket from
the calculation?

First, a whole series of constants entering into the equation motion actuelly
nas values dlstingulshed “rom those which are accepted during calculation. The
most important of these values are the following: 4initial weight of the rocket,
nominal thrust of the engine on earth determined by the specific thrust and
flow rate per second, adjusting dsts of control instruments, parameters of the
atmosphere on earth, and go forth,

Secondly, the gctual laws of the change in the number of guantities from
law accepted during calculation. Such laws are the accretions of thrust and flow

rate per second with the switching on of the engine and decrease in these
quantities with the turning off, changes ¢f low rate per second in flight, changes
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of aerodynamic coefricients, changes o the angle or ir: .ination of the axils of the
rocket, changes of parameters of the atmosphere on al‘i-.de and so forth.

Thirdly, a number of factors, in general, i1s not considered in equations of
motion. Examples can serve as perturbing forces and moments appearing as a resul®
of geometric asymmetry of the rncket, *hc presence of angles of attack during
free flight of the rocket, etc.

Such a division is to certain degree conditional, For example, by methods
of the theory of random processes (random functions) pracitically all possible
forms of the law of change of any quantity can be represented with a sufficient
degree of accuracy in the form of a family, depending on several independent
accidental parameters. These parameters on a2 level with constants of the first
group determine the flight of the rocket, and the influence of both thcse and
others can be investigated by ldentical methods.

Regarding the third group of factors, it depends on the form of equations
of motion utllized Tor calculation of the trajectory. In principle 1t 13 possitle
to write the equation of motion considering any factors whose physical manifestation
1s quite well-known, but these equations, in view of thelr cumbersomeness, by
far cannot always be used for numerical calculation of the trajectory even on
electronic computers. Therefore, for an appralsal of the influence of such factors
on the flight and dispersion of rockets there have to be developed special methods,
Usually problem is reduced to proof of the possibility to disregerd these factors,

All quantities causing dispersion, be it deviations of constants from their
nominal values or deviations of varlables from nominal laws of thelr change, or
causes which are not considered in equations of motion, will be called perturbing
factors. Perturbing factors can be both systematic and accldental. «ertain
faciors, for example, deviations of aerodynamic coefficients from their computed
values, have chiefly a systematic character, whille others, for example, deviations
in specific thrust of the engine, are chiefly an accldental nature.

In deriving general equations of motion for the solution of problems of
ballistics, we disregarded oscillations of the rocket with respect to the center
of gravity, since they affect little the motion of the center of gravity. 1In the
same place it was noted that the law of change of the angle of inclination of the
tangent affects little the flying range.

Therefcre, during the investigatlion of dispersion we will consider the angle
or inclination of the tangent the assigned function and will assume as a basis
only the first, third and fourth equations of the system (14.25), where during the
calculations we will disregard the member with By ¢ For the section of free flight

we will use formulas of the elliptic theory. The influence of the rotation of
earth will be disregarded since it leads only to systematic deviations from the
trajectory, calculated neglecting this rotation, and only for very large distances
is it necessary to be considered with the dependence of this deviation on the form
of the perturved trajectory.

Thus, the investigation of motion of the rocket consists of the following
basic stages:

1. Preparation of initial data: determination of basic deslgn data of the
rocket, engine and control system, sxposure of perturbing factors and an appraisal
of their randcm characteristics (mean values and standard deviations).

2. Ballistic calculation, having as 1ts purpose to determine with a certain
degree of accuracy the average motion of the rocket with about nominal values of
all the desizn parameters, neglecting perturbing factors and osclllations of the

rocket.,

3. Calculation of stability of yawing motion as a result of which there 1s
determined the influence on the flight of the rocket of those perturbing factors
which cannot be introduced into the equations of motion for balllstic calculation
and also of oscillations of the rocket about the center of gravity.
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With calculaticn of the stability of yawing motion examined jointly are equa-
tions for angles of the direction of the tangent (& and o), equations of the
motion about the center of gravity (for o, £, 1), and equations of control (for
angles of deviation of effectors). Values of speed and coordinates of the rocket
are taken from the ballistic celculation, since theilr deviation affect little the
investigated values. When necesssry deviations of speed and coordinates can be
examined as perturbing factors,

4, Calculation of stability in longitudinel motion or calculation of range
dispersion, the assignment of which 1s to determine the influence on flight of
the roc~ket of guch perturbing factors which can be clearly introduced into equations
of motion, not changing the form of the lstter. With this there are examined
Jointly equations of motion of the center of gravity of the rocket (for speed and
coordinates}, and the direction of tangent (angles ¢ and o) ani other engulor
values 4n which the necessity can be met are taken from the dballistic calculation,
eince the influence of deviations of these values on speed and the coordinstes 1s
small. If thls 1s necessary, deviations in the direction of the tangent are
introduced as perturbing factors, Of course the scheme of the calculation of
range disperslon can and, in certain cacses. should be complicated. But since the
formulas only become somewhat bulkier, and the methods of calculation of dispersion
in principle are not changed, then we will 1limit ourselves to this simplest scheme.

The main problem will subseihently be the analvsis of guestlons connected with
the calculation of range dispersion. We will start from the determination of the
influence of small perturbing factors on the trajectory of the rocket and only
et the end will establish the connectlion between average characterlistics of
dispersion cof these factors and approprlate characteristics of the dispersion of
rockets, Since systematic and probable deviations are added algebraically, we
will not meke a distinction between them until the question is about average
characteristics cf dispersion. This means that the obtained results can be
applied not only to the investigation of dispersion but 2130 to determination of
the influence of small changes of design parameters of the rocket on its flying
characteristics.

A 4 A




R P T

CHAPTER IX

INFLUENCE OF SMALL PERTURBING FACTORS ON THE TRAJEZTORY OF A ROCKET.
CALCULATION CF UISPERSION

§ 37. Deviations on the Powered Secticn c¢i the Trajectory

As a concrete example we will :'ve the general method for investigation of
the 'nfluence of small perturbing factcrs clearly entering intc egquations c¢f mcticn
on the trajectory of the rocket. Equations of motion for the powered section will

be taken in the form

%-—zvsmﬁ. (33.1)

where according tc (20.16), (6.15), {5.23) and {3.3) when m = const

P=av —3,p, (33.2)
x,,uu,igis,. (33.3)
X=e 55 (33.4)
o my— |t (33.2)

Quantities ﬁ, ut, cQ, up, Sp will be considered random, i.e.,, variable from rocket
to rocket, but constant during the pericd of the powered section. We will assume,
as earlier, that m and u' do not depend on each other, that the density pp of the

gas Slow incident on the control surface 1s proportional to the flow rate per
second m, that the coefficient of drag of control surface cQ is inversely proportional

to the speed up cf flow incideat cn the control surface (law cq = const/M is fully

acceptable for small changes of the M number of the gas flow), and finaily that
quantity up is directly proportional to the fictitous exit velocity ut, Then

expression (33.3) for the drag of Jet vanes can be rewritten in the form

where k 1s a certain constant, and the thrust after subtracting losses on the
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control surfaces can be represented by the expressicn

E P—-\'l’-z(l -—k)lml —S,p= OP"‘._' S.pa_;.'
; where
E
; N e I
. Pruy= o

is the specific thrust of the engine in a vacuum taking intc acccunt losses on
control surfaces, uhich dA-tinguished cnly by a constants factor from the fictitious

- exit velocity u'; G = gom is the weight of the {low rate per secocnd or fuel,

In order to ccnsider possible deviatlons cf the coefficlent of drag c, on the

computed value, let us Introduce into formula {33.4), as i{s accepted in ballistics,
the form factor 1:

Finally, the expression for mass m will be written in such a form:

]
Equations of motion take the form
b dP,,_._,—S.p.-!-—%'s—c,-Lr'
b By b __gsind
G.—-Gf *
:‘ - vsind, {33.6)
} %-vm&.

let us investigate, in particular, the influence on the trajectory of small
deviations of the following parameters with which will assume the designations kk:

Ay = GO — initial weight; X2 = G — flow rate per second; i, = P, — specific

1905 3 YR..p
thrust; lk = —— = ceefficient in the expression for drag; X5 = Sap0 — coefficient
of aititude performance,

Coefficlient xu can change both owing to a change in the form factcr i and
due to the air density m earth R Coefficient x5 is considered the possible change
in air pressure on earth and also the change in altitude performance of the engine.
Finally, in order to ccnsider possible deviations in the form of the trajectory

{from the calculation, we will consider the angle of inclination of the tangent 6
varlable according tc the law

. LT S TS ) (33.7)

The member A6 constlitutes a constant deviation of the angle 6 from the

. calculation epacu’ and the member A7t ig a uniform departure of this angle from the
calculation 1aw of change. Nominal values of parameters A6 and XT are egual to zero,

As an exercise the reader is offered to examine the system of equations which
will be obtained if the system (33.1) supplements the equation

-3
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=3l —= (P X.,+‘ h" }-—gcoso
serving for the determination of 6 jointly with v, x and y.
Expression (33.7) should be replaced by expression

-‘ whee ‘(‘,.
P bt Nt byt =8 e €34,

where 16 and X7 have a former meaning but determine the error in the assignment
or the program of the pitch angle, and ti 1s the time of the beginning of the
program turn, Possible deviations from the face value of the function

#y =2y
=% 5

can be disregarded, For an expanded system 1t is possible to make calculations
fully analogous to those which will be made in this and the following paragraphs.

The general form of equations of motion (33.6) with the accepted designations
is the following:

%’-‘fﬂt- O ¥ Ry Ln By 2y 2y g D),
.8
=1 0 0 1),

where

Y it L -
1=t Y — 5 510 Bpace+ 2o 210,

. {(33.9)
=310 Bpees + 25+ 110.
J3=9c08 (Opre -+ g+ 140 '
Under initial conditions
om0, ywl, =0 (=0 (33.10}

the solution of system (33.8) has the form

LA T ' (A Ny N A
TN 2 W YORR XY (33.11)
xmeglf, 2, 4, ..., ).

These expressions show that speed and coordinates of the center of gravity of

the rocket depend not only on the time of flight t but alsc on values of parameters
Ay lz. veus XT' Let us investigate this dependence., At small changes of time t

and parameters Ak one can agssume that
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ax,. (33.12)

A1 A ok AT b R AL S S5 AP+

?
1 4
Vv
P

Ax-%?wﬂ-f,

- i.e., the dependence v, y and x on Akk will be determined a8 only partial
derivatives BTi will be known.
K
L2t us introduce the designations:
%gl::v, r 3 =y, 1i-==x ;{}==3u,

33.13)
9/ e 9/, ¢
;;f==¢u- 15?-—00- ;if==’u- {

All these partial derivatives should be computed at nominal valuss of parameters

of Ay and at values v, x, y, € taken for every value t from the calculated trajectory, t
In these designations the dependences ({33.12) take follewing form:

Ag=6u+; 2,82,
By =y 8+ X ou by, (33.14)
Ax==x.&l+;: :nd}-.‘ '

Guantities v, y, x are determined with integration of the system {33.8). In
order to obtain a system of eguations to determine values 2k interesting to us,

| we will differentiate equatiuns of the syster. (33.2) with respect to Ag- Since
E under the =sign of functions fi on parameter Xk depend only v, y and Ak, we will
obtain:

A (8)= 5+ e

() £+

[ x ofs

= (F) -8 T+# |

E Let us change the order of differentiation in the left sides ¢f these
E eguations and use designations of (33.13):

N “7"!"‘ 0,13, -+ 83225 + Buae
%B%;u.p;,,. (33.15)
:g?L"¢u’u‘fl-

This system of linear differential equations with definite assumptions {existence
3 and continuity cof partial derivatives UIJ and Bik’ 1, J=1,2, 3, k=1, 2, ..., T)

A
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can serve tc determine juantities 2y Stri:t frec: .. ..0x afrirmaticn can be

found in the generel theory cf sys'ems of differential «quaticne,

Since no changes of paramcters lk can influence the initial values (33.1C) cf
functions v, y, x the initial conditions for integration c¢f the system (33.1%)
will be i = O when t = O,

In order to filnd evident expressions for partial derivativaes aij and ﬂik’
we will differentiate expression ()}.9} for functioens £, with respect Lo v, v and
kk,‘and for the simplification of results of differentigtinn we will use the
formulas (in which M, and R, denote the miss and radius of earthj:

M-_-:-.

Iet us alsc take intoc account that the coefficient ot drag T, depends on the M
number and on altitude y and the absclute air temperature T only on altitude,

After rather long, but not complicated, computations there can be cbtained
the following expressions:

3 s'. M A TE 10
."-ég-‘-—_("""ﬁ'ﬁ)' (23.:¢}
= Elsas heo(fr+

i &ar M e, dey . )
+?7i’("+“z"i'ﬂ)"7;)]+ 3;'-s-ao. (33.17)
il
Oy = o0 sin®, (35.18)
=Rt (33.19)
F) P—Xyy—
lac;’g'a-———;—:.: x. (33.20)
‘!' P = l =R 4
- 7: '+"—;;r(P—.\’,'-X), (32.21)
’"g%’"%' (33.22)
‘“g%:— -’ A (33.23) ‘
=$=--1 2,24
b =31, = £. (33.25)
b= 3t = — gcose, (33.25)
'n"%e"-ﬂm& (33.26)
bu ===y =3 =0, (33.27)
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P = vcos i, (33.28)

Py = vtcos @, (33.29)
ha’nzhzh:hgo. (33.30)

= —osinb, (33.31)
By = — ot sin0. T (33.32)

Values of quantities

M dc dex 1 o1
‘l+_f?ﬁ' Ty’ B » T?T

are calculated with the help of tables or graphs of aerodynamic coefficients of
the given rocket and tables of the standard atmosphere [4]. Remaining quantities
necessary for calculation of coefficients (33,16) to (33%.32) are taken from
ballistic calculation,

After determination of all the necessary coefficients of quantity 25k systems

(33.15) are calculated by means of numerical integration., When these values are
found, determinaticn of the influence of small deviations of parameters xk on a
powered-flight trajectory 1s reduced to the use of formulas (33.14).

§ 34, Deviations of the Point of Turning Off of the Engine

Applyling equation (33.14) to the point of turning off of the engine, we will
obtain the connection between deviations of the time of turning off of the engine,
speed and coordina‘es at the time of the turning off and the deviations of

parameters lk

Av,=1v, 3 + 3 z,4,.
[ ]
By =y at + 3 2, 30, (34.1)

Ax, = :l'l All + B Ih A’..-
[]

But these three formulas for the determination of four deviations Ati‘ Avl,
Ay, and Ax1 are insufficlent. The inadequate relationship can be obtained proceeding

from the equation cf operation of the instrument controlling the turning off of
the engine. Let us consider the following three methods of the turning off of
the engine:

1) turning off at an assigned moment of time, considering from the moment
of launch;

2) turning off with achievement by the rocket of a set value of speed;
3) turning off from an integrator of G-forces,
With the turning off in time the deviation of speed and coordinates at the

point of turning off of the engine is determined by formulas (34.1), in which
instead of Ati it is necessary to insert the instrumental error Atm of the timing

mechanism sending the command for the turning off:

A‘l- a

A’l-;l A’-+ z “.Al'. (3’4.2)
By my, 80,4+ 3 2,81,

Ax,mx, 01,4+ 3 2, A,
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In the case of the turning off with speed the deviaticn of speed at the time
of turning off from the assigned value constitutes an instrumental error Av. of
the instrument measuring speed: u

Av; - Ap__

The prime will denote quantities pertaining to the turning off of the engine .
with speed.

AT g

By formulas (34.1) we find the deviations of remalning quantities charac-
terizing the point of turning off of the engine:

. 1 N Z.»

M|==-':'- AU. '—LT:-A‘...

By,= 2 8o, + 3 (2u— 3t 2u) .
. X x
'=—;'fAv.+z(Za—-;’.-:- zn)Al,.

’ 1 ’
Aﬁ =—:AU.+ 2 Zoa Aa..,

Av; = Ao,

or

-

. 4,
Ay;=%:-Av,+2:;. Ax,, (34.5)

. X Yoo
A;.g—‘.lAv.-{- 'ZuM..
where there 1s designated -
z
2 = -t
([ ] 'l.

‘;t-’a-%:"u=’n+;'l‘3r (34.4)
L= :,.—-;,'l 2, =2z, x50,
3 ;

Before we derive a formula for deviations at the point of turning off of the

engine with a turning off from the integrator, let us examine the somewhat
simplified theory of this instrument,

Let us consider the material particle
connected with the body of the rocket.
Disregarding rotation of the rocket about the
center of gravity, we will consider that the
acceleration of thils material particle is
equal to the acceleration of the center of
gravity of the rocket. But the acceleration
of' the examined point is created by two forces:
gravity m*g (m* is the mass of the point)
and the force R having an effect on the point
from the side of the rocket (Fig. 34.1). .

Let us write the equation of motion of
the point in projection on a certain direction
forming®the angle a* with the tangent to the .
a’<d §<d trajectory of center of the gravity of the
rocket and the angle ¢*, equal to

=040, (34.5)

o i AT BN

e

Fig. 34.1.
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with the horizon (as the horizon we take the Ox axis, and we consider the direction
of gravity parallel to the Oy axis). This equation has the form

m* (vcosa®+ «0sino’) = Rge — m*g sing®. (34.6)

whgre v cos a* is the projection of the tangent acceleration of the center ot gravity

of the rocket on the examined direction; v’ sin a¥=- projection of the normal

acceleration of the center of gravity of' the rocket on this directlon; Rps — projec-

tion of rforce R on the same direction; -m*y sin ¢9* — projection of gravity on

the same direction. Such a materlal particle 1s a scncing device of every integrator,

Force R@’ causes some physical effect whose action 1s integrated during the
period of the entire powered section. For example, in one of the constructions
of the integrator, the gyroscope, whose center of masses does not coincide with
the center of suspension (gyresccplc pendulum), precesses under the action of force
Rp» with an angular velocity, proportional to this force., The measured value is
the angle of precession.

Thus the integrator produces a magnitude proportional to the integral

[
'I R.- dt,

or, since mass m* remains constant, the integral
‘R
'
o,::} % a. (34.7)

This integral will be called epparent speed and the integrand quantity

R R
T T G -8)

the apparent acceleration, Apparent acceleration is nothing else but a G-force
in the direction ¢* multiplied by 8- The direction determined by angle ¢*, along

which occurs integration of the G-force 1s called the direction of sensitivity
of the integratcr,

Substituting R , from equation (34.6) into formula (34.7), we will obtain
' ’
0, = J(Gcosc‘l-}-vﬁsina‘—}-gs!nq')dl—
¢ t ' : ] :
- Iécosc’dt-;-[oésma'dt-;- I gsingdr.
e [ '

We Integrate the first component by parts:
[}

[
Jééosc’dt—ocpsa'[—‘[vd(cosc').
[ ]

Since v = 0 when t = O, then

: [
‘fimo'dt—vcosa'-i-!vslu a'a’ dt
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and

] ' ,
o, = vcosa’+ I v+ a”)sine’ dr I gsing*dt.
¢ 4

But on the basis of equality (34.5)

therefore
' '
v,==vcosu‘+Izﬁ‘slna‘dt—i—fgsinq,‘dt. (34.9)
é .
in particular, when t = t1
3 t,
v,, = v,cosa; + f gsing’dt+ I vq°sina®de.
® e

We will limit ourselves now tc the consideration of the integrator rigidly

secured on board the rocket so that the direction of sensitivity coincides with

the direction of the longitudinal axils of the rocket. With this

¢ =9, oc'=a,
- b
v,,-o,cosc.+[;sln¢dt+ stlnudt. (34.10)
o e

The last member is small, since the angular velocity of inclination of the
axis of the rocket 9 and angle of attack a are small., In the first member cos a,

1s close to unity. For an appraisal of the dispersion it is possible to use the
approximate formula

A
v,,-o,+'fgslu9dt. (34.11)

or
[
v.—o,,—!;slnth. (34.12)

With the examined method of the turning off of the engine the current value
of the apparent speed is continuously compared with the assigned value to which the
integrator is tuned. When these two values coincide, the instrument sends a command
for turning off the engine. From formula (34.12) it is clear that deviation of
terminal velocity vy is conditioned by the error Avs" with which it is possible to

sustaln the assigned value of apparent speed Vg1 the deviation At1 of the time of

operation of the engine and deviation b9 of angle ¢ during the period of the whole
powered section. Furthermore, deviation of g is possible owing to the change in

altitude, but it can be disregarded, and therefore o

3
"f“‘

',+Ao:-v”+ml,_.~ . ! € sin (¢ + dq) dt.

We note by double prime values referring to the turning off of the engine with
the help of the integrator. Consldering cos 6¢ = 1 and sin bp = by, we will obtain:
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R o e e e e 1= 1,

oss
o, +Avme, A0 — ‘r S0ing - coaglg)dlwm

[} b
-v,.-b-&v,-—!(mqﬂ-[‘&;tm'ﬂ-—

s .
e dhy 0]
- I gung st — ! & & corqdt,
& [ 3
The last member having as crder of mt;w Can be disregarded, gnd in the penuliimate
we can cunsider g 6in ¢ constant in the time interval from t, to t, + 67, Then

v‘-i-.h:-u“-}-dv..--!gsin(dt—-
'
-!ghca'a-— Lising, 845,
Subtractirg hence term by term the equality (34.12), we will obtain:
&
Av; wme A, — Ig&ccoscdt — g sing AL,
.

We will designate the second member by avsvz

X
&onu--!;hm@di. {3%.13)

Its value can be found 1f the law of deviation of the axis of the rocket from the
calculation position is known. Flnally

Av; == Av_ + Av, — g, sing, s, {34.13)

Substituting intc the first of formulas {34.1} the expression {(34.14), we
obtain:

Ao+ Ay, — g sing, &) o= 0,88 + Bz, AL,

whencu

1 . N\
A A 2 - 3 +
BT A O T T o)

Now, lnserting expression {34.15) into formulae: {34.1), it is easy to find the

deviation of remaining values at the point of the trajectory, where from the
integraior & command is fed for turning off the engine:
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. . +2(2L .l+'I“.'I)M.‘
Ay} = Ll (B0, + Ao+

o +Litne, {34 ,1€)

+ 3 (- g e

o+ ging

8= s, Ot o+

L+ Bl )

1et us introduce [or brevity these designations

l. -—.—.—'—‘.!___‘
or "t+‘$“"l
,;:.-g”_...,_'_'_*‘_"._._=—gts!nq_z;.,
's""‘ll““ﬁ * (34.17;
L
* Xu‘n = B
i v 44isiae, a +x‘ or
Then formulas (34.15) and (34,16) will take such form:
Aff = '.+ Yy (bv,, Ao )+vx“ -
b= TF al%l (Bvm + 80,9+ X 1l 80, (34.18)
Ay = ;——;—f—‘;—(&v“ +480,)+ Y, 5, A%,
Ax; == Aﬂ _\ A) .
} ”l+l| ( + v )+§‘z,,

Pormulas (34.2), (34.3) and (34.18) give sciution to the problem of deviaticns
at the point of turning <ff the engine with different methecds of turning «ff,

§ 35. Influence of the Process of Turning Off
the Engine on Dispersion

Let us examine che section of the trajectory cetween the point at which moves
the command for the turning ofy of the engine and the pcint where the process of
turning cff 1is finished. The time interval (t:, ts) between both points will be
selected constant and such that with practicalfy any pessivle law of decrease in
thrust the process of turning off will succeed in being ccmpleted during that time,

Let uc make the following assumptions:

1) turning off of the engine 1is greauated, i,e,, after the first comnand
fed at the initial moment t, oy the examined interval cf tlme there occurs only a

decrease in the value of the thrust up to a certain intermediate value and only

after the second command fed inside the examined interval of time does the thrust
start to arop to zero;
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2j the angle of attack is so small that in equations of motion it can be
disregarded;

3) the change in the angle o5 inclination of the tangent with time is the
same regardless of the law of drop in thrust;

4) <cowards the moment of termination of the drop in thrust the drag of the
rocket is negligible,

With these assumptions egquations cf motion of the rocket take the form

& P—X,—X
-———}-——-gsiuﬂ::%---g:in..

£ - vsin, (35.1)

%-omﬂ.

where R:p is the projection of all forces having an effect on the rocket, except

gravity, on the direction of the axis of the rocket, Deslgnating the moment of

the feeding of the command for complete turning off of the engine by tg, we can
write:

6o -j(—:!--:mo)d- ‘

-[—zla-{- f—:!a- J:.:slntdr.

& H

or

.,-.,-;.jéa-pf-:&a— fgu-ut. ' (35.2)
& 4

The second and third members are the increase in speed owing to all forces
except gravity on sections respectively between the two commands and after the
command for complete turning off. These increases due to the great scattering in
the nature of & drop of thrust are themselves subJect to great scattering. For
the section between the two commands (t,, tR) this scattering can be minimized with
the proper method of feed of the second command, It ls easy to verify that with
our assumptions in such a way there will be the turning off from the integrator,

Actually, on the bsasis of the first equation (35.1), the second of the above-made
assumptions and formula (34.11)

dv dv de
%=7‘-+‘mo=-‘—‘-+umq= -“4

and, consequently,

[Ra=vu—v.. (35.3)
Py

In virtue of formule (35.2) and the third assumption

e 5
dmmbo 8| [ Rar)ral [Zrar). (35.4)
t‘ g‘
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and this means that the error in speed at time t

. wmpoused ot the error at time t
and scattering of integrals 1

2 : .2

Jﬁgéld! and jbééldt

The errcr in the quantity of the first integral will be minimum when the
command for full turning off is fed by the instrument measuring the magnitude of
this integral. Formula (35.3) shows that such an instrument is precisely the
integrator of axial G-forces.

Turning to the second integral, let us note that after the command for full
turning off orf the engine the mass of the rocket m practically has not changed.

[ ; £
1 1 .
I%‘dfﬂ::jk'dl=-.—.-, (BJ'J)

' &

where the letter I is designated the so-called aftereffect pulse, the total pulse

of all forces (except gravity) having an effect on the rocket after feed of the
command for full turning off of the engine. The maln force of these torces is the
thrust created by the engine due to the burning and expiration of fuel components
remaining in the chamber and in fuel manifolds between the chamber and cutoff valves,
Part of the artereffect pulse is caused also by the delay in operation of the cutcff
valves after feeding command for turning off the engine. Forces le and X do nct

play an essential role in the process of the after effect and, according to our
assumptions, turn into zero together with the thrust towards moment t < t2, s¢ that

the examined integral does not depend on the selection of time t2 provided the

above-mentioned conditions are observed.

The magnitude of scattering of the second integral in flight can in no way
be limited, and as for its decrease one should take care of 1t on land. ther
things being equal, this scattering will be less the lesser the pulse of the
aftereffect. The latter can be decreased owing to a decrease in thrust towards
the moment of feeding a command for full switching on of the engine (this is the
meaning of the graduated turning off) and also due to a faster drop in the thrust.

Integrating second and third equation (35.1), we find

&
= Y:+!vsln0¢l.
Y 5.6
} A (35.6)
N x.+Iocosedt.
and, consequently, &
. [
Ay, m= Ay,-i-IAvslnﬂdl.
'
® . (35.7)
Ax,-A:,-}-IAvcostf.
&

wuantities of the order of Av(t2 - tl) can be disregarded, since the duration

of the process cf turning off is small, But then the error in the coordinates
during transition from point t1 to point t2 are not changed:

Ay,=Ay,. '
35.8
Ax’ = A"l' } ( /
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These formulas, together with expression (35.4), sclve the problem of
deviations of the basic ballistic parameters at the end of the section of the
turning cff cf the engine. 1In particular, if the ccmmand for full turning off is
fed by the integrator, then on the basis cf eguations (35.3) and (35.5)

Av,=Av,+A(v,—v,,)+A(;"—). (35.9)
FPormulas (35.5) and (35.9) wlll be reccrded briefly thus:
Avy e Aoy 4 Avgy. {35.10}
where
by
f 4
Avye=—A j%d’ -i-A(—'-;) {35.11)
in general, and
oy = A (0, — o)+ (L) (35.12)

with turning off from the integrator,

Finally, let us note that everything discussed remeains in force if for the
moment t, we take not the moment of feeding the command for a decrease in thrust,
but the mcment tK of the feed of the command for full turning coff of the engine,
As t. it will be necessary to take the moment separated by the constant interval
of t;me from tB’ and we will obtain

Avy =z Ao, 4 Av,,, {(35.13)
where
. " ,
Av,=A !-?dt -.‘.\(;:); (35.14)
N .
A,' -A’..
Ax:-Ax!. ) (35.15)

Formulas {35.13)-(35.15) should be used when the second command moves
independently of the first,

§ 35. Range Dispersion

In examining the range dispersion we will limit ourselves to the case when
full turning off of the engine is finished during negligible drag. Then the greater
part of the section of free flight will lie in practically a vacuum, and for the
calculation of dispersion 1t is possible tc use formulas of the elliptic theory.
Dispersion from the intluence of atmosphere at the end of the descending phase of
the trajectory should be investigated specially, and we will not touch upon it.

The influence of deviations Vs hu and SH at the initial point of the elliptic

trajectory on the range of free flight is expressed by formulas (19.42) (with
replacement of Ty by R + hﬂ):
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{36.1}

where R
tg »¢ 15 the positive root of the quadratic equation
2R (1 4+ %78 — @R+ kv et B —
—2V.R'go.!g!29-—h.\-,==0. (36.3)

The full flying range I is composed of range l” prior to the initial point
{for which we take point te) and range lCB of free flight:

b=l 1, (36.4)

where

L= RS,
ley = R,
!gbﬁ i‘f”n -

Quantities b6, ha argd sn arz connected with Xy ¥, and EH by relaticns

R+ yy=(R4+1J)cosd,
Xa= (R4 4)sind, (36.5)
0, =8,
Iet us trace how the flying range depends on kinematlc quantities Vi Yy
Xy and 611 at the initial point of the section of free fiight, With a change in
v, there is changed only 1.4 in formuls (36.4). With a change in xzor y,, h, is
changed affecting Lew and also b, on which depends both }, and i{,p (in terms of §.);

finally, with a change in GH, § . changes, and together with it lCB' Therefore,
== (36.6)
ot N, o o8 Ol O, él., 9%,
W =&t TR e st s o (56.7)
o _ Ny ey B Oy Ok | Ol N '
=t = e e e, |
.‘;‘:_%‘a-%—:. (36.8)

For the calculation of partial derivatives -?—'— -::—:- -:;o-'- and -:-:: we will
differentiate relations (36.5):

dy, == 0k, 038 — (R + 1) sindd®,
dxym dh 5128 + (R+ h) cosddt,

&




whence
dh, == dy, cosd 4 dx sind,
B — R T A
! Consequently, .
;‘;.l == c08 O, % - gind,

®__ wm ® _ copd (36.9)
I e ¥, KM
On the basis of the last of formulas {36.5)

f M, N N s
s BT W T (36.10)

Substituting expressicns {36.9) and {36,10) into formulas (36.7), we will obtain

5= 32— A (R 52). 6.1
oL cos b A Wy ’
T}Tmr—-—-—_*_"(k - 'ﬁ:) - Slﬂbo'..

Thus the connection between small deviations of speed, coordinates and the
angle of inclination of the tangent in the beginning of the section of free flight
and the deviation of the flyling range can be expressed by the formula

oL ; ok ., of oL
M=o 30t - St s A+ 5 30, (36.12)

where coefficients with deviations vy, Ayu, AxH, Aéliare determined by the formulas

{36.1)~(36.3), (36.6), (36.8) and (36.11}, and the sctual deviations by formulas
of the preceding paragraphs.

Let us turn to concrete methods of the turning off of the engine,

&
With turning off at the fixed moment of time, using formulas {34.2), {35.8)
and (35.10), we obtain

‘AL';“§5:(635’-‘?:E:zursit‘*‘5'h)‘F
-k‘iér(i:aﬂr+{2:=n1”h +
‘*“5%:(515414‘1533.51&)‘*”;%:5‘L-

et us introduce designations:

ot ie ht L (36.13)

{—',_-ahu-blo- (36.14)

. . -:‘;‘:M-*M.- (36.15)
%rg+;‘§:z‘;’+%tf3=t‘:- (26.16)

where the superscript (n) designates the quantity of primes, i.e., indicates the
method of the turning off,

With these designations
Alewe L 80, + X 2300, + AL+ Mo (36.17)
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Iet us note that this formula remains ccrrect if <he deviaticn ¢f the time
of turning off the engine Atm is caused not bty errcrs of measurement tut by any
other causes,

(35 siaasl to t?e turning off with respect to speed, we use formulas {34.3),
. and {35.10):
I o oL 1 <,
AL = (3, +Arg) + (Bt X -‘\’-.)+

+_% (i.',: do,+ Yz, 00,) + %_:: a8,

or, with the again introduced designations,
AL’--.L.'lAv.+2:;,A1,+AL,,+AL,. (36.18)

For the turning off from the integrator on the basls of formulas (34,18},
(35.8) and (35.10) we obtain:

s +av, . L
"a-i- Ty, + z b2+ A"’) +
A (mt I .

+0:- (“n‘l'la“ﬁ "+xz"&‘)+

oL ”"-*-A. . “ - it
o [y At D)

. o
ar = o=

In designations {36.13)-(36.16)

ik Ty ("'“"'A‘fx) + 8,0, AL, AL, (36.19)

let us analyze formula (36.17)-(36.19). The first members in the right sides
of these formulas depend con A‘“’ Avn, Avsp, i.e,, they appear du= to instrumental

errors of instruments controlling the turning off of the engine., They can be
decreased owing to design improvement of these instruments but cannct be cumpletely
suppressed, since ideally exact instruments do not exist., Members of the form

::‘:A}.'constitute methedical errors of instruments of the turning off of the

engine, Ti2y appear due to the fact that these instruments control parameters
not connected directly with flying range, ~ time, speed cr apparent speed. If
certain source, for example the deviation AAK of parameter Rk’ caused a change in

trajectory, then the flying range will be changed by the magnitude zéﬁ)akk even

under the condition that the controlled parameter at the time of the turning off
exactly is equal to the assigned value., Methodical errors can be considerably
lowered and almost even suppressed {see § 37) as a result of the improvement of

the principle of operation of instruments of range control. In particular,
calculations show that the application of the integrator instead of the timing
mechanism reduces methodlcal errors ten times, and replacement of the integrator by
the turning off with respect to true speed additionally gives approximately a
triple reduction in methodical errors.

Also methodical error is the last member in formulas (36.17)-{36.13). It
appears because with not one of the examined methods of turning off is there con-
sidered the influence of the angle of inclination of the tangent on range at the
time of the turning off. It can be eiiminated by considering this influence with
turning off of the engine. But it is possible to proceed ancther way, by selecting

172




the fcre of the trajfectory in such a manner that the influence of deviations in
the angle of inclination on distance is reduced to zero, With this it woulsd bde
insufficient to reduce to zerc the last memter in formulas (36,17)-(36.19), seeking

fulfillment of the equality g%- = 0, It Is necessary to consider the influence
“H

o:: range of not only the final angle of inclination of the tangent but &lso of the
change 'n the angle of inclination of the tangent during the pericd of the entire
controlled flight. For us this influence is charscterized by members #BA) 4 28180,
and in general they should be replaced (in sum with 4L,) by the variaticn in full

. range depending upon the variaticn of function &{t). Thus the prcblem of the
h remcval ¢t range dispersion appearing due to the deviaticn of the angle of
inclination of the tangent is & variational problem,

1 Let us note that the variation of full range{and in our case, the members
ﬁ PN, 42282, ) depends on the method of the turning off of the engine. Consequently,

the solution to the variational problem will also depend on it. These questions
are examined in Chapter XI in greater detail,

Irrespective of the method of turning off, into the range error there is
introduced the guantity AL12, which 1g the deviation due to possible scattering

of forces having an effect on the rocket after the command is fed for final turning
cff of the engine, i.e., after complete cessation of control. In a number of these
} forces there appear, Tirst of all, thrust, then drag, and alsc forces connected

i with the design of the rocxet (for example, 1f from the rocket parts are rejected,
then the pulse transmitted toc these parts is sent to the rocket in the opposite
direction}. The methcds of the decrease in guantity AL, , were discussed above

in connection with possibilities of & decrease in Aviz.

§ 37. Methods of Decreasc in Dispersion

It was established above that range dispersion depends bcih on instrumental
and methodical errors of the contrcl system, mainly from errors of instruments
g turning off the engine. 1Llet us consider in broad terms possible ways of reducling
these errors.

Let us start from integrators of axial G-forces., As was mentioned gbove, the
methodical error in range, obtained with the turning off from the integrator, is
three times higher than the error with the meintaining a constant speed of flight
of the rocket during the turning off. In other words, a greater part of the error
in turning off from the integrator appears owing to the deviation of speed at the
time of the turning off, Formula (}k.ikz shows that a deviation in speed appears
due to the following of three fsctors: nstrumental error of the integrator,
deviation of the axis of the rocket and deviation of the time of turning off, where
in numerical examples it is easy to check that the deviation of the time of turning
off plays in this case a decisive role. This suggests to combine the integrator
with the timing mechanism, i.e., to turn of!t the engine when a ceritain function
from the apparent Vg and time t

v, =0,(0,. 0 (37.1)

reaches the assigned value

0,(v,. Nr=0,. \37.2)

Such a procedure is called introduction into the lntegrator by time
. compensation.

For the mean trajectory the apparent speed is uniquely connected with the time
of flight, and, consequently, the mean values of both the apparent speed &t the time
of the turning off and of the actual time of the turning off are uniquely determined
by formula (37.2)., But for every actuml trajectory equality (37.2) will be
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fulfllled with other values of apparent ., and time Clstinguished frcz the mean
by &Y., and at, respectively, In virtue of ejuality (7.2} we hav-

B de,+ 8t m b,

correct to aagaitudes of higher order of smallness. Here avW is the instrumental
error of the instrument producing the quantity v,.
Hence
1
"u"":“x‘l'ﬁ“w
whete

b /32

Coefficient k4 18 called the coefficlient of compensation of the integrator.
Our problem will be selected by this coefficlent in such a way as to reduce as
far as possible the range dispersion., Substituting in formula (34.1%) AV, instead

of Av., we cobtain the following connection between the deviaticn of speed at the
time of the turning off and the deviation of the turning off:

A’t"‘ (b, — gy 3ingy) 88y + A0+ é“&

using the first formula {34k.1), we have:

(h—:.ﬂ!vbN.+Av..+;,;—:Av‘.-=6. a4+ Y2 an,,

- 1
Aty ‘r———-—-..+““"_.. Ao, 4
+ - Ao, —
;‘E}Cﬂi-nﬂ".-—i.) .
Al
—_—Y T 4
L't"“l“'t“‘l A,... (57.%)
Formulas {3%.1) give with this

-t sv,+ % Ao, ——\ap

. whnday—4 " 2(3.-}-:.-“,—:,) “+2(‘" '-+lad-'.-l.) »°
A - 3 Av ] — b | -
,l"'"“*h-" ~+%“'+&“ﬁ‘-‘d%+z( ';‘I‘lx“'l‘-‘a)m} (37.3)

[V S——— & S T 1)
T htasan—a %“\‘}“cﬂl’n-m A'"+2(‘. 'l'f'll“’h—'l) *
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Using these formulas and also relations (35.8)-(35.10) and (26.12), we obdbtalin
in designations (36.13)-{36.16)

[
= o+ asiag—4 &";4-
- -+ — Av, +
% i+ gosing, ~ &) .
Ly _ 2 .
. +""(:u 'l+‘l“"l""!)”'.+ Hu+&l..

Let us examine the part of the deviation &L induced cnly be random devimtions
of parameters lk:

a‘s"}S(ﬁw“T“‘££&£————)Alr

vt gsag -2

Let us assume that xk are independent values subordinated to the ncrmal law of
] distribution with standard deviations oA . Then cn the basis of formula (31.4)

o= Sfra— ity .

We take for the independent variable

S T
e Frme—n Gr.8}

and find the minimum with respect tc q of gquantity

)= Bz — 2, P (@) (37.7)

For this let us note that the derivative

i%.l-—zX(z,—qz,.)zu(M—
""2}B¥hﬁufﬂhr'F2i!;‘iﬂ?ﬂir

"%iﬂ' (37.8)
ey

Wwith this the standard deviation in range due to the deviation of only parameters
Xk will be minimum, since the second derivative

3:§E?!1==9:§:‘§.@“mf~

- is positive. From (37.6) &nd (37.8) we find value of k
optimum for the time tlz

turns into zero when

17 which will be callri

L, 3 oy {37.9)

. ) él .
= sing, — = ¥, H R e
b=+ g,siaq T -+ £ singy S rusha) Gasie)
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This formula determines the optimum coefficlent of compensation of integrator

. ky as a function of the time t,. From (37.3) we obtain that function v, should

satisfy the partial differential equation

h,,‘.!:-+3§'L=o. (37.10)

The simplest solution of such an equation will be the functlion
]
v,—v,—-!h,dt. (37.11)
'y

Time to is selected arbitrarily but in such a manner so that it does not exceed

the time of work of the erigine with firing at minimum range. If a comblnation of
the integrator with the timing mechanism producing quantity (37.11) 1is constructively
difficult to realize, as a function of Ve it 1s possible to take

9=y, — Rt (37.12)
For such a function equation (37.10) willl be satisfied only during the time ot the
turning off equal to t,. Consequently, at the assligned distance there should be
tuned not only the qua;tity Vs according to which will be turned oft the engine,
but alsoc quantity k1, the coefficlent of compensation.

This method of the decrease 1n dispersion can give good results under the
condition that the errors Avsv’ AL12, ALy are small, and chiefly if coefficients

Zuk and 2,y Preserve an approximately constant ratio for different parameters of
Xk’ expecially for those which give greater values of the product zukoxk, il.e.,
greatly affect the range. This can be seen from formula (37.7).

Let us dwell in broad terms on other methods of reducing dispersion with the

- use of the integrator. Let us consider the Integrator stabilized in space, 1i.e.,

with a constant inclination of the axis of sensitivity (p* = const), For such
an integrator formula (34.9) will take the form

[A . [
©,, = 0, cosa}-sinq® I g dt=v,cos(¢*—0,)+sinq* I gadt.
[ ] [ ]

If the command 1s fed at the assigned value Vaqs then
Ao, cos (g’ —0) + v sin(¢®— 0,) A6, -+ g, sing* A8, = 0. (37.13)
We substitute here the expression for av, from formulas (34.1):
(A4 X 2, 32, )cos (9" — 8) +
<+ o sin(g* —0,) A0, 4 g, sinq° AL, =0,
whence

0, 8in (¢ —8,) 0, 4-cos (¢* — 8,) ¥ 2, AL,

u g — 1)
! v, c03 (¢°—0,) 4 g, sing®

If we substitute this expression for Atl instead of At“ into formula (36.17), then
we obtain, considering expression (36.15):

- - Licos(g°—0) 2 AL oL Lv sin(s* —0,)
aL 2(:“ '.1‘“("".1)""! sing® s (“- "lm("~°|)+l| """)_‘el-’-.‘l‘u‘
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Hence it it clear that with the proper selectlon cf inclination of the axis of
penaitivity o* 1t is possible tc compensate part of the influence of the final
angle of incliination of the tangent on the flying range, turning in zero the

coefficient with Aai. in the cbtained expression for AlL. Really, equating this

coefficlient to zero, we obtain
3 Lo saiy®--0)

T YT A

This equallcon s easily soived withi respect 10 Lg @%:

lt'l“"l"'#:‘lm.i

Locon b — S G tq)

L L

However, as was already discussed at the end of the preceding paragraph,
des.ruction of the member with Asi in the formula for AL dcees not completely remove

the influence of deviationa of the angle of inclination of the tangent on the range
error. A more improved approach to the solution of this problem would de to find
the dependence oL on angle * and then to determine the value of @* delivering the
minimum oL, &8 this was done above with the determination of the optimum coefficlent
of compensation,

However, the formulas derived by us are insufficient for solution of the problem
in such a formulation (those readers which managed tc advance forward, adding to

the system {33.1) the equation for g%, are in the best position). It is possible to

go even further: to introduce into integrator, the axi: of sensitiviiy of which is
inclined to the horizon at s constant angle * {ar to the longitudinal axis of the
rocket at the constant angle v*}, the time compensation with coefficlient ki, to

examine the dependence ol on two parameters ¢+ {cr *) and ki’ and to find the

minimum of this function of two varishles., This will allow reducing disperslion tc
even smaller values than with the use of only time compensation or only the setting
of the integrator at an arbitrary angle.

It is possidle to try to obtain further improvement by using a double integrator,
which in combination with the timing mechanligm can reduce to nought range errors
due to deviations in spced, coordinates and slope of the tengent at the time of the
turning off of the engine. This 1s carried out by means of proper selection cf
the coefficient of compensation and directions of sensitivity with the first and
second integration, Range dispersion will remain only owing to instrumental errors
of the first and second integration, the scattering of forces effective after the
command for full turning off of the engine, and the disturbances cbtained by the
rocket durin}k free flight.

Being distracted with what instrument will turn off the engine, we wi’l cbtain
the equation which such an instrument should operate in order to reduce to a
minimum the methodical errors. We will proceed from equations (35.13), (35.15)
and (36.12), taking for the initial point of free flight the point t,:

oL st ol oL
Mu;(&v.-{-.\e‘)-&- "-,:Ay'-*'-—u-:h'-*'t”r (}7-1“)
Since tx is close to tz, one can assume that

30, == AB, == A8,

The instrum2nt, producing the gquantity
Umfoot gyt S x+ 50 (37.15)

and sending the command to turn off the engine at the time when this gquantity
attains the assigned value
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L!lﬂ-'—v’m"l"?—)'m"l" e xmv""w:epm
satisfies the mentioned requirement. Actually, from (37.15)

AL, == - (Ao,+.\v.)+ (-\r.+ -\y.)-i-
+ (.\x.-}- .\r.)-l- —_- (A0, -+ AD,), (37.16)

where AL; is the error in development of the commani; Avy, — deviation «t actual specd
from calculated at the time of the turning oft; Av“ — deviation ¢f measured speed

from the actual; AyK. AxK, AHx Ay“, Axu, Au“ are analogous quantities tor courdinates
and the angle of inclination of the tangent at the time ¢t the turning ott.

Comparing (37.14) and (37.16), we obtain
AL AL.+-—-(—A0,+Av‘)—.,‘1'..A)...
— 3 a0 (37.17)

It 1s clear that methodical errors decrease with a similar method of turning off.
In reality small methodical errors remain due to the lnaccuracy of expression
(37.14), in which members of second order about Avy, Ayy, OXy, AG are rejected,

. In formula (37.15) quantity L' depends on four kinematic parameters: v, y, X
and 9, But the same result can be obtained being limited by measurement of only
two parameters: projections of speed on a direction which form with the calculated
direction of the tangent to the trajectory angle w, determined from the relation

oL
'é0= T. .
o
: (3
and projections of passed by the rocket, on a direction forming with the horizon
of the point of launch the angle ¥, where

V=3[

Really, we will designate the first of these parameters v and the second
sw. For vy the expression
' 0, = 0C0s .
is correct. Let us calculate Avw correct to the linear members, noticing that with
a change in the actual direction of the tangent to the trajectory Aw = -A8:

Av, = Avcosw— vsinw Aw= Avcosm+vsln650.

Hence
eo:o %’:Ao.—%:Av-}-v-%";!gmMz _
== - Av 3546, (37.18)
Fgrther,
8gma xCOSYP-} ysing,.
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consequently,

Asymr Axcos -+ Aysio®

1M oL o -
Ty m M= T A5 H g B0y

ol al p
-s:-‘-.-Ax-i--;;'—.Sy. {37.19)
Thus, if the instrument produces the juantity

- i oL | (/%
Lo o Ot Gt oy B

and sends & command to turn off the engine at that moment when this quantity reaches
the computed value, then for the moment ¢f feeding of this coamand the following
relation between actual deviations av, . and Aswx of gquantities v and s, and errcrs
¢f measurements ALQ, &v, .., and 8s, . is correct:

& R VA

v 1 4
AL.—-(O“ vy

W00+ A0, + e Je(Aey o F Asg )

Hence we obtain, taking intc account formulas (37.14), {(37.18) and (37.19):

. 1 oL 1 oL . aL R
A=A — 3 Fop e n T ¥ 0m e T g e (31.20)

Thus just as in formula (37.17) there are absent here linear components of methodical
errors induced by deviation of kianematic parameters at the end of the pcwered
section, The range errcr depends cnly on errcors of measurements and calculaticn

cf quantity L" and on causes effective after feeding the command for turning off

the engilne,

§ 38, _Lateral Distpersion

Lateral dispersion 1s determined mainly by the following factors: errors in
aiming in direction, deviations of roordinate z and lateral speed v, from their

computedc values, and disturbances having an effect on the free~flight section.

The error in alming leads to the fact that quantities z and V. and also

any other quantities conlrollied by the control sysiem, {or example, the angle of

yaw €, the compconent of apparent speed in the direction of the z axis, ete,, are
measured nct in the system of coordinates in which it is necessary. It is clear

that the control system cannot correct this errcr., This pertains both tc a come
pletely autoromous system and tc one which uses ground measurements for control

over the direction of flight of the rocket. 1In the second case the contrcl system
can reveal that the rocket was inaccurately criented vefore launch and therefore
began to move not in that plane, By commands from earth this inaccuracy cen be
corrected, and the rocket will be brought intc the assigned plane, But this

assigned plane itseif can have an lnaccurate direction and can even be nct a plane
tut a slightly distorted surface tecsuse of =2rrors in installaticn of ground contrcl
reans (autennas cof radar, dlrection findere, etc.). Thus with ground contrcl although
errors of ailming can be, as a rule, decreased, they can nct be completely eliminated,
It is natural tc consider .aese errcrs as instrumental errors,

The task of control by yawing mction in princinle differs from range centrol
of the flight by the nature of the commands passed. For range control it is reguired
to determine and exactly maintain only one guantity: the moment of turning off of
the engine. It 1s true that for the determination ¢f this quantity, as we have seen,
car require quite 4 lot cf measuring mears, and the measurements should be conducted
continucusly, at least at the end of the powered section. For the control of yswing

Rad
~J
(V&)

At
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motion there are also needed uninterrupted measurements .. . inematic paranmeters, on
which this motion depends. But also commands of control ot yawing motion should

be sent and carried out continuously, so that towards the mcment of turning off the
engine, whenever it comes, all the disturbances affecting lateral deviation of the
impact point would be compensated by a corresponding cperation of the control
devices. The continuous character of control requires the application of specific
methods of investigation and calculation which, ‘as was already stated above,
usually do not pertain to the number of ballistic methods and are not examined in
this book, In ballistics only partial derivatives of coordinates of the impact
point L and Z are determined with respect to kinematic parameters of the point or
turning off the engine, Just as for range controls, in the first place derivatives

oL . ot R oL and oL and for control of yawing motion it 1is necessary, first of all,
Jog* dy, " Ix a8,
(] L §

9z .24
to know and r ol
L T e
In the first approximation lateral deviation is expressed by the formula

- (4 0z .
AZ E:A".-’- WAZ..

where sz and Az, are deviations of the lateral component of speed and z coordinate

from their computed values.

However, for a great flying ranges, when all derivatives start to increase

greatly and the space curvature of the trajectory becomi; considerable, it is

necessary to consider and other derivatives: and 35- in the calculaticn of

L

range dispersion _02 » ;}-. _O_Z_' 9z during thg‘ calculation of dispersion in a
duy, Xy Oy

lateral direction. Sometimes it 1s necessary to take into account the second partial

derivatives,

: In order to make calculations of range and direction dispersion less dependent
on each other, sometimes we measure deviations AL and AZ in a system of coordinates
distinguished from that in which thus far we calculated L and Z. The origin of this
system of coordinates is at the calculation point of impact (in other words, at

the point of the target), axis AL is directed along a tangent to that line about

the surface of earth along which moves the point of impact with a change in time

of the turning off of the engine and with constant direction of alming. Axis AZ

is directed in a horizontal (at point of the target) plane at a right angle to

axis AL.

§ 39. Calculation of Dispersion

In the preceding paragraphs there were discus3ed certain theoretical foundations
and methoas of calculation of range dispersion., Let us dwell more specifically
on trhe calculating side of the matter, since in practice calculations are frequently
conaucted with deviations from above~stated scheme,

Partial derivatives Zyr @8 Was already stated, are determined with help of

system (33,15). However, besides the direct numerical integration of this system
there exist other procedures of detecting its solutions, allowing in certaln cases
to reduce the quantity of calculations, The most important of such procedures

is the use of the conjugate system of differential equations,

Since 1t is frequently necessary to operate with systems of more general form
than that of system ?}3.15), we will examlne the system of the n order:

",‘:—;! =ayZy+ -+ CZuy + B

@ e = o & o s & ° & o & 2 0 @

“—::'.' =QuZp+ ...+ 0 ZertBur

(39.1)
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where aiJ’ ﬁik' i, J=1,2, .0., n; k=1, 2, ..., m, are well-known functions of

time. Actually equalities 539.1) determine not one system but m such systems with
the same coefficients “13 with unknown functions zJk and changing from system to

system of free terms Bik' The second subscript for quantities ka and Bik is the
number of the system,

Let us introduce auxiliary differentiable functions of time Ujs eoey Uy and
find the time derivative of function UgZgpe + con W 2000

-;“—(n,:,. + B2y =

dn ds dz dz
=-‘-7'-lu+...-f-—‘-t-!-z..-!-ﬂ.-?‘-'-.--‘}-...-!-l. ‘;.-

dz
Instead of derivatives -a% we insert their expression from equations (39.1):

%(C.:ﬁ-{- """m’n)=="7.‘i Zpt ... +-‘2.‘-'-g..+

+a(anzy+ -+ Za+b)+
+ cen +..(¢.'z‘. + o +¢..z..+’-.).

We will now group members containing Zygr e L

71-(.'2,.-*- ees + '.:..)-
= (—“—.‘—'- + @, + cee +¢.|‘.) t|,+. .o +('!a.'—. +G|..|+. .o
: N T S (39.2)

The obtained expression will be considerably simplified, 1f one were to require
that functions Uy eeey Uy satisfy the system of differential equations:

du
-‘T' =—ly— ... — Oy,

(39.3)

i'—'-==-u..ll.—- cee =Gy H,.

dr
This linear uniform system of the n-th order is called a system conjugate to system
(39.1), more accurately, any of systems (39.1) obtained with different values of k.

The matrix of coefficients of the conjugate system 1s cobtained from the matrix of
coefficlents of the initial system by transposition and change of sign of all the

elements,

Subsequently we will consider that functions uj, ..., U, will form a solution
of system ?)9.)). Then equality (39.2) takes the form

‘ .
""“'(’Izll’ + ...t o z)=af,+ ... + 0.8,
Integrating this equality term by term fromt = 0 to t = tl’ we obtain

‘ “ '
2zt ... +'-3n)t' = I (@bt ... +a.p.)de. (39.4)
[ ]

We will consider that the particular solution of system (39.1) interests us with
initial conditions when t = O:

:uﬂ...xl..-o (39-5)
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(so 1t 1s, in particular, for system (33.15) and those similar to it), Then result
of substitution of the value t = O into the left side or equality (39.4) turns into
zaro, and the equality takes the form

. L)
'“ﬂw+uv+hhﬂhﬁ=I@MH"~+%hﬂﬂ- (39.¢€)
)

It is correct if Ups eees Uy 1s the arbitrary particular solution of system (39.3).

Let us now take some of the particular solutions of this system, namely, the
solution Uggr eves Upngy satisfying when t = t1 the initial conditions

lﬂco when 1*‘. ’ (39'7)
Syms ] vhen Jum= .

Actually formula (39.7) determine not one particular solution of system (39.3)
but n such solutions corresponding to different values i = 1, 2, ..., n, With
substitution of such a particular solution into relation (39.6) =11 components of
the left side except one will turn into zero, and we will obtain

[
Ziglyey, = I (b= +a,b)dt. (39.8)
é

Thus if there are found n particular solutions of system (39.3) under initial
conditions (39.7) for i = 1, 2, ..., n, then quantities Zik at any k can be found,

no longer resorting to the numerical integration of differential equations, but
only with the help of a considerablg less laborious process of calculation of
definite integrals in formulas (39.8) for i =1, 2, ..., n; k=1, 2, ..., m, If
the order n of system (39.1) is less than the number of m variants of this system,
then the total volume of calculations is reduced. Moreover, frequently it 1s not a
necessity to determine the values of all quantities ™ when t = tl. it is

sufficient to be limited to the calculation of their certain linear combination
(‘I'ID+ e +‘lzl.)"¢'.' (39-9)

where Ci, eceey c, are certain coefficients not depending on k. Thus from formulas
(34.4) 1t 1s clear that such linear combinations are quantities zék, zék and zék.
Formulas (34.17) show that the same property 1s possessed by quantities zgk,

;k’ zgk and zgk. Finally, proceeding from formula (36.16), 1t can be concluded

that the same is correct with respect to zuﬁ . For example,

”
<

) oL . o _. oL _. oL & 3In @

— — —— P — ¢ s &
fu= ov, :"+ 9y ta-}- ox, = dv, v, g sing, +
aL y 2 a X 2is
2Lz, — 8 4--—-(2 —_—— ) =
+ 9y, ( *eta ﬂnv.) g 'Y o g 6ing,

| oL . oL « oL
— g, SO @ e Y e — Xy — | 2
= v, g sing, ("l % dv, ¢ dye ox, ) et

o . , oL
+ oy T + 5

Linear combinations of (39.9) for k = 1, 2, ..., m can be calculated having
determined preliminarily all 24 by the formula (39.3). This will require

integrating system (39.3) n times with initial conditions (29.7) for all values i
and then calculating n x m integrals (39.8). But if one were to integrate system
(39.3) with initial conditlons when t = t1

W€ .., Hax=C, (39.10)
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and tc designate by 31,
{39.6) 1t follows that

s Gh the cbtained cartizuiar scluticn, then from formula

hH
€Zu+ - -'-:,:,,)|,,,.=j Ghp+ - +apdtl. (39.11)
[ 3

Thus the calculation of linear combinaticns (39.9) for all valaes K can be reduced
only tc & single integration ¢f system (3§.3) with initisl conditions (39.10)
and to the calculation of m integrals (39.i1).

The method of conjugate systems is not deprived cf deficiencies. Firsi, it
permits calculating by the described scheme of value z,. (zik' zzk) only with one

value t equal to tl' If these values are needed for several values of t, then the

problem is immediately complicated and becomes comparable In laboriocusness with
direct integration of system (39.1)}., Secondly, integration of the conjugate system
of (39.3), the initial conditions for which are assigned when t = t,, should be
conducted with a decrease in t from L1 to zero, Therefore, it is impossible to
conduct it in parallel with integraticn of the basic system of differential equatlions
of motion of the rocket in a direction fromt = G Lo t = ti’ If with manual

integration this does not cause special difficulties, then with the use of electronic
computers 1t is necessary either to calculaie coefficlents “ij and ﬁik in parallel

with integration of equations of moticn and to store them in the memory of the
machine {this requires a great volume c¢f mewory) or to repeat Iintegration cf the
equaticns in the opposite direction {(from t = t, to t = $). In parallel with

1
reverse integration coefficients o, and Bik are calculated, the conjugate system
(or systems) is Integrated, and integrals {(33.8) cor (39.11) are calculated,

Both methods — direct integration of system (}9.1) and the use c¢f the conjugate
system (39.3) — regquire calculation of a great guantity of ccefficlents ay and B,
by rather bulky formulas. Therefcre, with machine reading for standardization cf
calculations and reduction of the volume of the program the influence of small
perturbations on the trajectory is frequently investigated by the method of finite
differences. Let us explain this method with an example. Let us assume that it
is required to find the derivative zzk of the flying range by paraneter Ak with the

turning off of the engine from the integrator. At first there 1s calculated the
nominal trajectory and determined the nominal flying range LO and value of apparent

speed Veo at the time or the turning off of the engine, Then thsre is czalculated
the perturbed trajectory for whiich all the parameters except Kk are assigned by
their nominal values, but parameter xk is given & value distinguished from the
nominal by the highest possible value +Alk. On this perturbed trajectory the

mement of the turning off of the engine is selected in such a manner so that the
value of the apparent speed at this instant wculd coincide with the earlier found
nominal value Vsor The section of free flight is miscalculated, and the disturbed

value L:k is determin=za, If for =cme reason there is confidence in the fact that
the dependence of the flying range on parameter lk is linear with a change of the

latter in the examined limits, then it 1s pocsible to be iimited by this and consziger
that

P La-ly (39.12)
[l vau ‘
However, more frequently there is miscalculated absclutely analogously the
perturbed trajectory corresponding to the maximum negatlve deviation, AAK of
parameter Xk at nominal values of remaining parameters, 1If Lﬂb is the courresponding
flying range, then formula

[N

RPN —
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- (39.13)

glves more a exact derivative than the preceding one, and expression

[fattee

-can serve for an appriasal of nonlinearity of the dependence cf distan:e on

parameter xk. If this nonlinearity is great, then linear formulas of type of

‘formulas (36.17)-(36.192 do not completely reflect the dependence of deviations of .

the flying range on devlations of design and other parameters. lowever, in an

.overwhelming majority of cases with nonlinearity in formulas of type shown, it is

possible not to consider,

Therefore, 1n an approximate determination of derivatives of a higher order
with a use of finite differences 1t is possible not to discuss, although this is

.done rather simply. Let us note that it is especlally convenient to use finite

differences when calculations are made on the computer, On these mechlnes it 1is

‘easy to provide a reserve of accuracy of calculations sufficient ¢rnough that with

the subtraction of close values Lik and L:k there is preserved the reyulred number

of true signs. The fact that the actual calculations by the amethud i finite
differences are made by more monotypic formulas was already mentioned., It is
obviocus that with the help of finite differences it is possible t«. catculate

derivatives of the type ';vi’ ;’L.g.especially in those caces whern Ui section ot
( ] ( ] [ |

free flight is calculated by a more complicated method than was accepted in § 36,
for example, by numerical integraticn of equations of motion considering drag and
the flatness of earth,

One of tae methods useful for lnvestigation of the dispersion of rockets in
the case of both linear and nonlinear dependences of coordinates of the point of
impact on the perturbing factors is the method for which there has been given a
number of names: method of static tests, method of Monte-Carlc, or, finally, the
method of mathematlical firings, a term best of all rellecting the essence of the
matter, In thlis method dispersion is estimated on the basis of results of
calculation of several tens of perturbed trajectories, Calculation is produced by
as complete equations of motion as possible, in which there are considered all the
known perturbing factors or, at least, those of them whose calculation does not
complicate excessively the integration of equations of motion. Perturbing factors
are selected in such a manner so that they physically, or at least in a probabllistic
meaning, are independent of each other, Values of these perturbing factors are
assigned as independent random quantities for each of the calculated trajectories
and for every factor. As the basis of the assignment of these values there are set
the well-known or assumed laws of the distribution of perturbing factors. As a rule,
this normal law with the mean value 1s zero with its standard deviation for every
factor. With the output of random values either tables of random numbers (usually
with manual count) are used or special random number transducers connected to a
computer, or subprograms producing sequences of so-called pseudorandom numbers
externally behaving as accidental with the defined law of distribution,

For each of the perturbed trajectories there are calculated not only kinematic
characteristics but also values controlled by a control system, 1n particular, a
range control system, The moment of the turning off ¢f the engine is determined »
proceeding from the selected control equation, i,e,, the relation between magnitudes
measured by the range control system according to which this system determines the
moment of supply of the command for turning off, Thus at our disposal there appears
a set of a certain number N of perturbed trajectories, more or less exactly reproducirg .
trajectories which can be realized durlng actual launches of rockets, For each of
these trajectories coordinates of the point of impact Li and Zi are determined,

where 1 1s the number of the trajectory (1 =1, 2, ,,,, N), which then are processed
as if they are results of real launchings. Let us give well-known formulas by
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whish such treaiment is conducted, Mean values cof rangce .2 lateral deviation are
calculated by the formulas

N

Iwyg Yt (39.14)
1l
N

2«3 Y2, (39.1%)
[ L))

These values are also called cocrdinates of the center ¢f clustepring of poeints of
i{mpact. Further treatment 1s given to the deviatlion of points of Impact from the
center of clustering: range error

Al,j=L,~L
and deviation in a lateral direction
A2, =2, Z.

The standard range deviaticn is found by the formula

—
vt S 50

in}

and the standard deviation in a lateral directicn, by the formula

= 1V .1
'Y 4 '&‘-T‘.\..,-‘Z:' (39.17)

It is possiole to manage without calculation of deviations from the center of
clustering and use directly deviations from the calculation point of impact; then
formulas for oL and oZ will take the form

-
‘L‘l/ﬁl‘ (E(L;—I-J"—N’(Z— L,)’). (35.18)
in}
where LO is the nominal flying range, and
/ e[ Sz-nr '
dc' wr:rﬁt.—-.v . (39.19)

These formulas give the same values as those preceding but permit reducing the
calculations, especially if IU is a round number, which 1s impcrtant during manusl
count.

The correletion moment between range c=rrors and in a lateral direction is
estimated by the formula

»
K=yl Tacaz, (39.20)
or
) N
xqu'.ltT(E(Lt"sz“N(Z—LQ)Z). (39.21)
del
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-If that moment is not equal to zero, then the dispersicn <: puints ot impact is

characterized by an ellipse whose axes are turned with respect to axes L and Z.

' The angle of rotation a can be found from the relation

. 2Kl2 G 2o
%= o=@y (39.22)

This relation determines the angle 2a correct to n and, consequently, angle a
.correct to n/2. 1In other words, formula (39,22) leaves the posslbility .t selectlon

of one of two mutually perpendicular directicns. So that selection becumes
unique, it 1s necessary to consider that when KLZ > 0 the major axis of the ellipse

of dispersion is disposed between positive directions of axes L and %, and when

KLZ < 0 1t is between the positive direction one ot these¢ axes and nogative direction

‘of the other. Usually the standard deviations oL and ¢Z are close In value, and
-therefore the denominator of formula (39.22) and, at the same time, the value of a
are determined with low accuracy. In the limit when oL = oZ 1if with this Kig = s

the eilipse of dispersion 1s turned into a circle and angle a, determining the

‘direction of axes ot the ellipse, in general, becomes indetinlite,

Other parameters characterizing dispersion, namely, T, Z, oL and 7%, ure
determined by this method with an accuracy qulte suftlcient for pre-tical purposeas,
Thus, for example, if these parameters are estimated by results cf th~ calculation
50 perturbed trajectorlies, then T 1s determined with an error not ex- v eding O.40L,
and oL with a relative error_of not more than 30%. In the same rela’  «n errors of
the determination of Z and o0Z occur towards value of oZ, Usually errcrs c¢f the
determination of parameters of dispersion are found to be considerably l:ss than
the limits shown here, The cause of the appearance of these errors is clear; the
calculation of perturbed trajectories is produced with the use of randcm numbers,
and therefore the characteristics of dispersion of these trajectories are them-
selves random variables subject to scattering. It 1s possible to increase the
accuracy of determination of these characteristics by increasing the number of
trajectories, but the accuracy increases, more correctly the errors decrease, only
proportionally to the square root of the number of perturbed trajectories, so that
it is possible to determine oL or ¢Z with a guaranteed error of not over 1C% from
results of a calculation of about 500 trajectories, Therefore, as already was
stated in the beginning, we usually put up with comparatively the highest possible
error in the calculation of oL and oZ but are limited by the calculaticn of several

tens of trajectories,

Quantities L, Z, oL, oZ and Kpz completely characterize the dispersicn of
points of impact if this dispersioh obeys the two-dimensional normal law of distri-
bution., As a rule, the dispersion is influenced by a great number of :2ures, and
the influence of each of these causes 1s small in comparison with the total
influence of all others. In these conditions the law of distribution should be
close to the normal., For the distribution of devia.ions obtained as a result of
mathematical firing, the hypothesis about normal charact%r of distributioun can be
subjected to a check by using either Pearson criterion x< of the crilterion of
Kolmogorov., The method of application of these criterla is not descrlbed here.

. The method of mathematical firing has certain deficiencies along with a number
of merits. The basic oune is the impossibllity to separate the influence on the
dispersion of separate perturbing factors, since during the calculation o! perturbed
trajectories there appears only thelr joint action. Therefore it is difticult to
determine with which of the causes effecting dispersion one should struggle first
if this dispersion 1s excessively great., In connection with this the method of
mathematical firings more frequentli i1s used as a checking method, and design
¢alculations of dispersion are usually conducted by other methods simllar to those
above described, However, even in certain design calculations the method or
mathematical firings can be useful, Let us assume, for example, that it 1s
required to compare several laws of range control and to select from them the
optimum, Just as in § 37 the optimum coefficient of compensation of the inlegrator
was selected, For this purpose it 1s possible to conduct several series of
mathematical firings with their law of range control in each series, Fcr each
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series there is determined the standard deviation in range oL, and that law is
selected with which oL is found to te minimum,

If in each of such series the values of the perturbing factors are assigned
independently of the other series, then the value oL, besides the law of control,
will be influenced by the set of values of perturbing factors accepted for the
given serles., As a result the selection of the coptimum law can appear erroneous,

In order to considerably decrease the probability of such an error, it 1is expedient
to use the same set of values of perturbing factors in all serles, More precisely,
for different trajectories witl.in the first series the perturbing factors are
selected randomly and indepent:y of each other, The selected values of these

factors are memorized. Wl ~alculation of the i1-th trajectory (1 = 1, 2, ..., N)

of any subsequent series, values of perturbing factors will be taken the same as

for the i-th trajectory of the first series. As a res:1lt the dependence of
dispersion on the form of the law of control becomes more clear. If these comparable
laws of control ere distinguished only the numerical value of one or several
parameters (for example, the coefficient of compensation of the integrator, the angle
of setting of its sensing device, etc.,), then the dependence of characteristics of
dispersion on these parameters appears smooth and optimum values of the parameters

are easily found.

In many cases for an appraisal of the dispersiocn and in the solution of other
problems connected with the influence of small deviatlons of design parameters on
the range of flight, there can appear useful approximate formulas allowing the
calculation of range derivatives by design parameters nct resorting to numerical
integration., Such formulas possessing an acceptable accuracy can be obtainec on
the basis of the method of approximation of calculation of the flying range
expounded in § 24, Let us find at first partial derivatives of range according to
quantities N and N, . Differentiating formulas (24.15) expressing X and Yo by

N,‘Ni, 90 and tc, we will obtain:

dxc == gcos g, (tc AN — dN )+
+ gN cosq, dfc — g (Nig — N))sing, de,

dye s guag. e dV Ny
-+ §Wsingy, — )Mt - g(N1c — Ny cosq, dy,.

Lei us exclude hence dwo:
cosq,dxc+sinq,dyc=g (tc AN—dN) - g(\'—1¢ sinq) dt,.

The coefficient at dt,, on the basis of formula (24.16), turns into zero,
Differentiating the relation (24,24), we find

' X
‘7:"“'7&“1b-
We’substitute this expression for dyC in the preceding equation
x
(‘“qo — *‘ sln¢°) d.\'c = ‘(’c d.\' — d~|)
or, on the basis of formulas (24.17) and (24.22),

N
o (s v —en))
Cos gy —dcos gy (l —asing,) °

‘Xe -

Consequer.tly,

= '” .
-'ﬁ-- singycosgy (I ~df-ebsing,)’ (39.23)
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ﬁ--m'.(l—b-f-chlnt.)' (39.24)

The derivative of coordinate Xo by the design parameter Xk can be cal:ulated
by the formula

dx. N  dx. ON,

Tl =+ I T .

where partial derivatives ON/OA,  and ON,/dr can be determined by di cferentiation
of formulas (24,20) and (24,31) according to design paramecters entering Intu them:

N a Ji—teis

’1111 =1 il"'al '
oN =P ( 1 _ 1 )==
-Tr;- yai Ti—tgtay T —1t,
e Prittai—ten
(Tt g ) (T —1¢ *
N Pps Praren i~ta-) (Ti—=2,))

o Nhi—ta o=t
N _ 7,0 Tzt ¢
) ikl Tt o=t

oN, [nr,—:.,_-._ Tl g —2i-4) ]
djl = "" T,—l., ‘ri“‘ul-l)(rl-"ul) *
oN, =( Pssy _ Pyt
gy Ti—tgy Tia—t, )%
Ih these formulas one should consider
‘l'go'
Pn-ﬂao-

If range is dete.mlned by the formula (2&.28), then for transition from
. axo/axk to bL/Bxk one should use formula

o 4L ‘Xc ] dxc
BTG R, TET
7*)

§ 40. Maximum Range of Firing

To the number of problems connected with the influence on the flight of the
rocket of small deviations of different factors belongs the problem of the
determination of the maximum range of firing.

let us consider a single-stage rocket whouse propulsion system uses tuel
consisting of two components, an oxidizer and fuel, Each ¢t these cumpunents 1is
placed in its own tank,

For achievement of an assigned flying range L such a rccket shcould vxpend a
definite quantity of oxidlzer and fuel. However when vne considers a whole series
of rockets cof identical construction and with identical ncminal characteristics,
then it will appear that each of them uses a different quantity of both oxidizer
and fuel for achievement of the same flying range. This 1s explained by the tact -
that the values of basic technical characteristics of the rucket and also
conditions of 1ts flight are subject to randum scattering.
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To the number of characteristics of the rocket essentially affecting quantities
of the components of fuel necessary for achievement of the assigned flying range
belong the weight* of construction of the rocket, weights of the oxidizer and fuel
filled in tanks of the rocket before its launching, specific thrust of the engine,
total flow rate per second of fuel (oxidizer and fuel together), relations of flow
rates of compcnents of fuel, and others, Of the external factors the role of
temperature and density of air, wind etc, can be factors,

Random scattering of all the values named leads to the fact that remainders of
components of {uel in the tanks at the moment when the engine of the rocket is
turned off are also subjJect to scattering, i.e., are random variables. It follows
from this that the computed value of remainders of the oxidizer and fuel for nominal
characteristics of the rocket and nominal conditions of its flight should not be
too small. Otherwise the rocket cannot reach the assigned range because of premature
expenditure of cne of the components of fuel.

To each value of the sighting range of flight L there can be set into conformity
the probabillity P(L) of the fact that reserves of components of fuel will appear
sufficient for achievement of this distance. The less the probability P(L) the
greater the sighting range of firing L, i.e., the distance at which the insctrument
sending command for turning off the engine is tuned, If one were to assign certain
probability PO quite close to unity, then the value of range an for which

P(an) = PO 1s called the maximum range of firing corresponding to the reliability
PO. Let us emphasize that the discussion concerns the “istance accessible almost

by any rocket of the examined series, The rocket separately taken, with a
tavorable combination of design parameters and in favoratle conditions, can fly at
a distance considerably greater than Ln . On the other hand, a certain insignificant

-portion of the rockets (1 - Po) cannot reach this distance. The maximum range an

characterizes the whole serles or a given type of rocket as a whole and does not
have a direct relation to the maximum possible flying range of the separate rocket.

Nominal remainders of. components of fuel in the tanks (i.e., remainders
calculated for nominal values of characteristics of the rocket and nominal external
conditions of the flight) corresponding to maximum ranges of firing are called
guaranteed reserves or components of fuel, In other words, guaranteed reserves

of fuel are such reserves whose presence in tanks of the rocket during its motion
about tne nominal trajectory provides achievement of the assigned flying range with

the probability Po.

The problem of the determination of the maximum range of firing and guaranteed
reserves of fuel can be solved by different methods. A more accurate method is
based on the obtaining of the dependence P(L) a1d solution of equation P(L) = Pg.

We will not proceed this way, since it leads to bulky analytical calculations and
time-consuming numerical calculations. Let us dwell on another less accurate
method which is simple in its calculation scheme.

We will consider that factors xi affecting the trajectory of the flight of
the rocket experience only small deviations Ali leading to small deviations in the
flying range 5L and remainders of the oxidizer EGgQCT) and fuel 66£°°T) in tanks,

which the connection between these small deviations 1s quite accurately described
by linear equations of the form '

OL == (A2 + 1AL, - ... 1,0, (40.1)
G == Ay 4 @A)y + ... +- 8,00 (40.2)
80T wm ByALy - BaA)z 4 ... - DaADs. (40.3)

('JCT\

In these formulas it 1r assumed that deviations 6L, bcon < and GGgocT) correspond

to the constant time of operation of the engline, which is equal tc the riominal time
of work ti necessary for achievement of the assigned distance during flight on
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on the undisturbed trajectury. For achlevemen: of the cuse alstance during motion
along the perturbed trajectory it 1s necessary to change the time of uperatlon of the

gngine. Derivatives of values L, GSSCT), G%OCT) in lime cf c¢peraticn cf the engine

will be designated by a dot. Deviatlons of these values rrom the nomlnal values,
taking into account the change in time of operation of the englne wlll te designated

ocT ocT
AL, AGSK ) and AG$ ). For them these expressions are correct

AL=dL+ L\, .
AOE" =805 4 GIXAL = 3G — G, A8
AGP™ = 0GP 4 G At = 3G — G,A¢,.

where éox and ér designate the flow rates per second ot the oxldizer and fuel:

au:‘-ld::""
&, =05,

The change in time of operation of the engine on the perturbed triajectory
Atl will be determined from the condition of constancy of the rlying range

T AL=0,

whence
it
Consequently,
Aa.":"=w:"’+%'= .
807" w807+ S ot

Using formulas (%0.1)-(40.3), we obtain

Aa‘r,c.-‘v.(d.-{- glzl. A’-.. (u(‘)'i’}
. 0 :
Aa'.'"’af‘:.(h.+ Toh)an, (40.)

In practically all the encountered cases we can assume that deviaticns Akk or

factors affecting the flying range and remainders of components o tuel In the tanks
are independent random quantities subordinated to the normal law of distribution
with the mean value zero and with the standard deviation olk. With this assumpticn

from formulas (40.4) and (40,5) there ensue the following expressions for standard
deviations of remainders of the oxidizer and fuel:

oo )/ X o ) o (40.6)
oaP =Y/ ;2_,(”e+ -f—'l. " oha2 . (40.7)
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From formulas (4#0.4) and (40.5) it is possible alsc tc ccnclude that remainders
of components of fuel are random variables having a normal law of distribution, and
that thelr mean values are equal to zero (cee § 31).

Let us assign a certain probability PO close to unity. From the equation

o Ces R
Pom [ A Farl [, Ta
— =
R AT _ %
one can determine such value k that with the probability Po the random deviation

of quantity €, obeying the normal law of distribution with the mean value zero and
standard deviation o, in absolute value will not exceed ko. As was alrcady
menticned in § 31, the most commonly used are values PO ~ 0,997 corresponding to

k = 3 and Po = 0,993, to which the value k ~ 2,698 =~ 2.7 corresponds.

As guaranteed reserves of the cxidizer and combustible are the values
05" = ko™ (40.8)
and
o:""-_ua',"" (4C.9)

respectively, where oGSQCT) and oogocr) are standard deviations of remainders of

components determined by the foymulas (40.6) and (40.7). Let us estimate the
probahility of achievement of the assigned distance L during flight about any

tra ectory, if reserves of components of fuel are selected so that during flight
for this distance along the nominali trajectory remainders of components at the

time of the turning off of the engine have values determined by the formulas (4C.8)

and (40.9).
Distance I can be attained with flight on a certain perturbed trajectory, if
remainders of ihe oaldizer GS§CT) and fuel G$OCT), calculated for the moment of the

turning off of the engine on this trajectory corresponding to the flying range L,
are found to be positive, Let us consider each component of fuel separately, With
the probability Po the random deviation of the remainder of the component will not

exceed koG(OCT). In this case the remainder of the compcnent i1s knowingly positive,
since the nominal value of the remainder is accepted equal to koG(OCT). If, however,
the deviation of the remalinder exceeds kcG(DCT), then with respect to a shortage

of this component only the case of a negative deviation is dangerous. 1In virtue
of the symmetry of the normal law of distribution the probability of shortage of

a given component of fuel 1s equal to %(1 - Po).

There are four possible results of the launching of a rocket:

)] =m0, GPM50;
2) . O%"»0, GFM<O;
3) atM<0. aP"M>0;
7)) o= <o, aG'M<o.

' Their probabilities will be designated respectively by Pi’ P2, P3 and Pu. The sum
of these probabilitles should be equal to one

Py+-Py4-Py4-P,em. (%0.10)
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The shortage «{ an ledluer, having according Lo the ,.r.oven tae proba! 1lity
5(1 - Po), 1s encountered at the third and fourth resul:s, so tuat

Pyt Py= 31— P). (s6.11)
Analogously the probability of the shortage of fuel 1s equal to
Py+P -_5(1 - Py. (40.22)

Subtracting from equality (40,10) the sum of equalities (40.11) and (40.12) we cbtain
Py— Py=1—(1 - P,

whence
Py=Py+ P, 5 Py

But P1 is the probability of only a favorable result, i.e.,, the probablility ot

achievement of the assigned flying range. Thus the cxpounded methcd of 4« ierminaticn
of guaranteed reserves of fuel in the case of a single-stage rockei, 1o which the
reserve of fuel 1s placed in two tanks, provides achievement ¢t the essigned flying
range with a probability though not exactly equal to PO but in any cace not smaller

than Po. Because of 1its simplicity this method is used In more comoi. :ated cases,

i.e., for rockets with more than two tanks (the number of tanks anc not the number
of different components of fuel is important, since the guaranteed racerve should
be foreseen in each separate tank). But in these cases it no longer alluwed to
affirm that the probability of achievement of maximum range will nc:i be lower than

Py

In conclusion of this paragraph let us touch upon the method of determinaticn
of coefficients a, and b in formulas (40.2) ani (40.3). Coefficients Lo

characterizing the influence of different perturbing factcrs on the flying range,
coincide with coefficients 2y introduced in § 36 and are calculated by methods of

the preceding paragraphs. Calculation of coefficients a, and b is usually made

considerably simpler. Thus, for example, for the remainder of the oxidizer at the
time t1 it is possible to write the expression

a‘:'.u o:- f.ﬂ .

where Ggg) is the weight of the oxidizer filled in the tank of the rocket betore
the launch. It 1s expedient to express the flow rate of the oxidizer G in terms
of total fuel consumption G and the relation of flow rates of component°

RY X
‘-.Tfl'
L4
The fact 1s that for liquid-propellant rocket engines the quantities G and k can
be examined as independent random quantities, while the flow rates of components

éox and G are connected by a rather substantial correlation dependence. The .
expression for G0 in terms of G and k, obviously, has the form
&
Ou= g7 :
so that
. 'y :
o= a:—m dh (%0.13)
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and, analogously,

o:'"'g,a?—%dt,. (40.14)

'Differentiating these dependences and replacing the differentials by finite
increments, we will obtaln for t1 = const:

ocn : [ .4 Gt
3G = NG — e 36 — gy (40.15)
" 4 . Gt 40,16
0GP = AGP — i AG + i Ak ( )

Quantities G&%?, G&P), é and k should be included in the number of parameters Xk.

The formulas obtained are a concrate reccrding of relations which in general form
were represented by formulas (40.2) and (40.3). If any of parametars X\, for

example, specific thrust gyn, does not directly affect remainders of compcnents of
fuel (at fixed t = tl)' then the corresponding coeffirients a, and bn in formulas

(#G.2) and (40.3) should be considered equal to zero. In exactly the same way one
should consider coefficient lk equal L. zero with a deviation of such parameter Ak,

which enters into formulas (40.2) and (40.3) but does not affect the flying rance
with a constant cime of operation of the engine (for example, the relation of flow
rates of k compcnents).

For differcnt concrete schemes of engine installations dependences (40.2)
and (40.3) can appear more complicated and contain a greater quantity of different
factors than in formulas (40.15) and (40.16), but this fundamentally changes nothing
in the method of calculaticn of the guaranteed reserves of fuel,
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CHAPTER X

FORMULATION OF THE PROBLEM OF THE SELECTIOHN OF IROGRAM

§ 41, Requirements for the Program

In this part basic questions connected with the selectlion of th~ proyiram of the
pitch angle will be discussed.

The program of the pitch angle, and sometimes and simply the progrum, is the
law of the change 1n the angle ol Inclination of the axis of the rockef. Sometimes

the program is called the law of change in the angle produced by the prosramer.

Angles of inclination of the axis of the rocket and angles assigned by the programer
do not coincide, However, the influence of this noncoincidence on the hasic properties
of the trajectory is insignificant, Therefore, in all ballistic calculations except
calculations by the most general equations of motion (§ 14, 16), it is ascsumed that

the aviz of the rocke? strictly fulfille angle *turns assigned to 1t by the programer,

Usually the law of change in the pitch angle i1s set d-pending upon the time,
The law of change produced by the programer 18 designated in the form of the function
9,5(t), and the true change of the angle of inclination of the axis is recorded in

the form of 9(t). As was already mentioned, we will consider that ¢(t) = wqr(t).

Equations of motion contaln a program as an assigned functlon. Therefore, final
results of integration of equations of motion, i.e,, Vs yn, et Gx’ the ull :distance

L or other characteristics interesting to us to a considerable degree are determined
by function @(t). The selection of this function is directly influenced by three
basic factors: design parameters of the rocket, peculiarities of control system,
and problems posed before the trajectory with the launching of the rocket.

If, for example, it 1s required to select trajectories providing ultimate range
for two different rockets with an identical control systems, then this will require
application of different programs of ¢(t). For the formaticn of trajectories
providing minimum dispersion for the same rocket different programs are required, if
one were to proceed from different principles of the range coniroli of firiung, The
same rocket with the assigned control system requires application of different
programs of the pitch angle depending upon whether it is required to provide maximum
range, minimum dispersion, maximum altitude of flight or some other jquality of the

trajectory.

Thus to give a single rule for the selection of a program useful for all possible
cases 1s impossible. However there are certain general principles which one should
follow almost in all cases, We will dwell on them more concretely,

In Chapter V dependences were derived allowing the Judging of the influency of
the finite angle GK on range., In the same chapter it was shown that for every pair
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- of values Y ard hx there can be found angle 9x at which the distance will be

maximum, Such an angle was called optimum because it permits the best use of the
~energy acquired by the rocket on the powered secticon. But the values themselves v,

and h, depend on the angle ¢, and function o(t).

K

In most cases, proceeding from requirements for the trajectory, the function o(t)
should be selected in such a way that the range 1s obtained the greatest possible.
However, this does not mean that before the program is placed the problem of the
achievement of maximum theoretical range as obligatory and essential, although flying
range 1s one of the most important tactical characteristics. The requirement of
obtaining maximum range when necessary should be subordinated to other more important
requirements whose fulfillment 1s technically more ccmplicated than the achilevement
of the assigned range. To them, in the first place, one should relate the requirement
of minimum dispersion. Therefore, the problem of the selection of a program is the
determination of such function @(t), which for the assigned rocket with the accepted
method of control, in particular, the method of turning off the engine, would provide
the assigned distance insignificantly differing from the maximum with minimum

-disnersion,

At present several solutions of the variational problem are known according to
the selection of optimum (from the point of view of obtaining range) program, but
the majority of them 15 obtained with certain simplifying assumptions or for
particular ceses of motion and neglecting peculiarities of the defined control

system and method of turning off the engine.

But even in the presence of a common solution of the problem in our setting it
was necessary to check the obtalned program from the point of view of fulfillment of
. & number of reguirements imposed by conditions of strength, stabllity, convenience
of exploitation and others. Consequently, for the solution of the variational
‘ problem it 1is necessary to impose corresponding additional limitations from conditions

~of fulfillment of the mentlioned requirements,

To such limitations, in the first place, pertain the following:
1) vertical launch and definite duration of vertical flight;

2) continuity 9(t), &(t), ¥(t) and limitedness ¥(t);

3) limitedness of normal G-forces;

L) zero angles of attack at speeds close to sound;

5) speclal conditions caused by the method of control and turning off of ile
engine;

6) firing at any distance in an assigned range with one or a minimum number
of programs,

Let us turn to the consideration of causes which are caused by requirements
mentioned.

1, Vertical launch is the most convenient and simple and requires no special
“directrixes and other devices and apparatuses, To set the rocket vertically 1is
considerably easier than to set it exactly at an assigned angle.

Besides this, in a vertical launch there 1s a minimum of lateral shifts of the
rocket, which can take place with a slanted launch in the first seconds of flight.

Duration of the vertical section 1s determined mainly by the time necessary
for the controls to be sufficiently effective. This in turn is determined by engine

performance.

2. The requirement on continuity o(t), $(t), ¥(t) and limitednecs ¥(t) 1s
- conditioned by possibilities of instruments and controls. Really, a break in function

197




ket st s
s bt o et .
e e gk,

70Q1ng to angles o, since the change c& = (acy/aa) and q = (pv

' depends on the program in a much lesser degree. Thus with calculation of the program
it 18 necessary to limit angles of attack in such a manner that obtained aerodynamic

. e - TEE T TR,

9(t) contradicts the physical meaning of the program, and a break in function &(t)
§or break in curve w(tiX corresponds to infinite controlling moments, A break in
unctions w$t) corresponds to an instantaneous change in moments, i.e., angles of
deviation of coritrol surfaces or infinite angular velocities of control surfaces,

The limitedness ¥(t) is dictated by limited possibilities of controls, since the
maximum value of P(t) is determined by the maximuim deviation of the control surfaces,

Thus the grogram assigned to a certain control circuit reaulres fulfillment of
conditions of § 2. 1In certain cases the exact observance of these reaquirements can
be refused if the appearing mismatches between ® and L will not have considerable

3
influence on further flight, since they will be able to be dJd:@:pleted by the control
system for & sufficlently short interval of time,

: 3. Axial loads on the rocket are determined mainly by parameters, namely v
and Wy Therefore, the program cannot render considerable influence on G-forces 1in
an axial direction. Regarding transverse G-forces, they depend malinly on the
magnitude of the aerodynamic moment, which 1s closely connected with angles of atteck

and, consequently, with the program,

- This circumstance imposes on the program the requirement limitin;; the magnitude
of the aerodynamic moment determined by the product

M, - ..-;qs (¢—0)(x,—x))
(formulas 11,17) and (11.19)).

Calculations show that substantial change in the moment S;n)be reached only
2) on the trajectory

moments do not require too durable and heavy construction. It is clear that this
requirement with respect to the magnitude of allowed angles of attack pertalns mainly
to sections of the trajectory with high velocity heads, 1t is desirable to pass
these sections with miminum or zero angles of attack.

4., As a rule, effectiveness of controls does not depend on the speed of the
rocket and conditions of the flowing around. But the region of speeds (Mach numbers)
M« 0,8-1,2 18 characterized by a sharp change in aerodynamic coefficients, For the
operation of controls coefficlents dc_/da and amz/aa have singular value, Desiring

to reduce the influence of sharp changes of these coefficients ‘o a minimum, it is
necessary %o take care that the indicated region »= nassed with zerc angles of attack.

S. Requirements of this point are not general and in an identical measure are
obligatory for all rockets., Depending upon conditions of the operation of systems
of measurements and instruments of control of the rocket and also the providing of
definite properties of the trajectory there can appear special requirements for the
program, for example, the requirement of providing rectilinearity of the trajectory
on some segment, limitation in assigned limits of the angle between the axis of the
rocket and communication line of the rocket with the ground center, motion at constant
angle pitch, and a number of similar requirements.

6. This point provides the possibility of firing at all distances in the
assigned range with one or a minimum number of brograms. For rockets possecsing
comparatively small distances (up to 1500-2000 km) or greater distances but in a
quite narrow range, this condition is satisfled comparatively easy, since optimum

programs connot differ greatly from each other,

For rockets, possessing a wide rauge of distances, when it is impossible to
select a quite satisfactory program (one) fcr all distances, it can be necessary to
divide the range into several smaller ranges, In this case it is necessary to try

to bring the number of ranges to a minimum,

The requirement of this point, just as that of the preceding, is not obligatory
for all rockets,

B i e e

it




4
x
2
&

i -4

o
I

s W o A

§ 42, Maximum Range and Minimum Dispersion

Tet us consider in the common form the conditions of obtaining the maximum
range and minimum aispersion.

In the solution of the problem of the achievement of maximum range we should
proceed from the fact that the rocket possesses a definite reserve of fuel, which
is completely expended during acceleration on the powered-flight trajectory. This
quantity of fuel at nominal values and design parameters of the rocket can be set
in conformity to the definite time of operation of the engine tx. Let us consider

for simplicity the plane motion (analogous reasoning can be conducted for spatial
motion) with which the flying range can be expressed as a function of four kinematic
parameters, for example, speed, angle of 1ts inclination to the horizon and of the
two coordinates taken at the time of the turning off of the englne:

l-l('u- 0l' Xye Y- (ha.i)

We will modify the program of the angle of pitch, keeping all other parcmeters P
of the rocket constant. This means that instead of the moticn of the rocket on the by
nominal trajectory with ¢ = wnp(t) there is examined the motion with ¢ = ¢  (t) +

+ 6¢(t)5 where 6¢(t) is the arbitrary deviation (error in the fulfillment of the
»
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program), possible in real conditions, With this we obtain the variation of

parameters of motion at the end of the powered-flight section and, consequently, the

variation of the full range, 1In conformity with that said above, these variations :
should be taken for the fixed moment t“ corresponding to the complete expenditure :

of fuel, and the necessary condition of achievement of maximum range can be recorded
in the form

a a a o -
“"‘5‘“"_!,,,."‘ i W TI“L._"'T:"”I..._ o (42.2)

Before writing down the condition of minimum dispersion, let us note that in i
actual flight with an operating range control system the deviation of the impact Dot
pcint from the assigned does not depend directly on the maximum time of operation
of the engine tyr but is determined by deviations of parameters of motion Vie? BK,

X, and Yy 8t the time of the actual turning off of the engine on command from
automatic range control device. Thus, designating these deviations Avx, Aex, Axx,
and Ay, the condition of minimum dispersion will be written thus:

“‘%4'-+%A°-+%§Ax.+§';— Ay, =0. (42.3)

More precisely, this is the condition of minimum influence of deviations of the pitch D F
program 5¢(t) on the deviation of the point of impact with an operating range control

system, '

In general the turnings off of the engine by one of the possible methods (with s
the help of the integrator of axial G-forces, with the achievement of the assigned P
speed, with the achievement of the assigned combination of coordinates and speed, cd
etc,) of the variation of parameters of motion at the end of the powered-flight .
section will be composed of varlations of parameters at the calculated moment of P
turning off of the engine t, and varlations induced by a change in time of the .

turning off of the engine Atx 80 that
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A’I - oo ".'. + % A’I-
80, =8|, + 3 AL,
. 2.4
Ax,=bdx],, + 25 at,. (42.4)

By,=dy|,., + A,

(let us recall that both these and other variations are caused in the examined case
only by a variation of the pitch angle 6¢(t)).

Substituting these variations into expression (42.3), the condition of minimum
dicpersion will be obtained in the following form:

oL i oL JL
AL’ W“L-l.-'—wwlnt.-'-.a?bxltnl‘-*.??oy,l-l.*—
oL v oL aL 9. oL dy:©
HEFHFEHE T L) o,

or

sl Rl e+

e

o oL (42.5)
—-Qy +—=A1 =0.
+ oy L-l. o

Comparing conditions of maximum range (42.2) and minimum dispersion (42.5), we
arrive at the conclusion that in general these conditions are not identical, and they

cannot be feasible simultaneously,

If the condition of the maximum range does not depend on the method of the
turning off, then the condition of minimum dispersion depends cn the method of
turning off of the engine, since Atx will be determined namely by the method of the

turning off of the engine, Only in one particular case, namely, when turning off
of the engine is produced after achievement of the assigned time of operation, do
these conditions completely coincide and, consequently, are fulfilled simultaneously.

This by no means mean that such a method of turning off is good, and only
signifies the fact that of all the possible programs selected for such a method of
turning off the best in the sense of accuracy will be that one which siaultaneously
correspnonds to the maximum renge. The very method of turning off by time 1s not
applied in practice in view of the extremely great methodical errors peculiar to it.

Since with all other possible methods of the turning off of the engine conditions
of maximum range and minimum dispersion do not coincide, 1t is necessary during
calculation of the concrete program of the pitch angle to assign a rondition whose
fulfillment should be provided in the first place, and fulfillment of the seconc
condition can be only checked; more correctly not the second condition but the degree
of deviation from it can be checked, In practice most frequently it is necessary to
discover a certain compromise solution, giving satisfactory accuracy and at the same
time not very great loss in range comparatively with the highest possible.

. So that peculiarities of the selection of a program become clearer, it is
necessary to dwell on one more question, The fact is that it 1s important to provide
fulfillment of the condlition of minimum dispersion not only for the upper limit of
the assigned range of distances of firing but also for any distance starting with
the minimum, In the opposite case firing at lesser distances will be produced with
greater errors than that for greater distances.
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Ir orinciple such & problem is feasible the nore so because the condition of
providing maxiuum range drops with the seiec.lon of progrems ror firing at any
distances e-cept the region of maxiuum ranges, Thus the program providing fulfiiiment
of the condition of minimun dispersion on the whole range of distances /and without
freat losges in the maximum range) would be best,

The sclution of tae corresponding variaiional protlem can d:itermine the program
satlsfying the selected conditions only for one distence, If for this distance we
take the maximum, then for any other distance lyilng between the maximum and aminimum,
the obiasined program will not provide minimum dfspersion, since for every diciance
solution of the variational problem wili give 1its program different Tiom that of
others, Thus we arrive &t the concliusion that the solution of the veriational prchien
in princliple does not permit selecting such & program which would give minimum
dispersion on the all range of distances, It is possible only by finding one of
solutions to check 1t for other distances for the purpose of clarification of limits
of applicatility of one praogranm,

Irrespective of what the method of turning off of the engine and what the
program providing minimum dispersion, the maximum range in all cases is checked by
the calculation,
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CHAPTER XI
METHODS OF SELECTION OF A PROGRAM

§ 43. Selection of a Program of Maximum Range

let us discyrss the applied procedures of determination of the maximum range of
the rocket, ILe{ us note that the exact solution of the problem on maximum range 1is
not obtained in firul form, However, there is known a number of solutions obtained
with certain simplifying assumptions, which give good orientatfion for the selec.ion
of & program of maximum range in real conditions of the motion.

In § 24 there is examined the variational problem by definition of the program
o maximum range undier conditions of a plane-parallel fleld of forces and the absence
of atmosphers, IL is shown that a certain constant direction of traction of the
engine, devending on the basic design parameters of the rocket, realizes a maximum
of distanc..

Examined in article [11] !s the variationsl problem by selection of the program
of pitch angle providing maximum horizontal speed at an assigned altitude,

The problem is solved on the assumption that motion occurs cutside the outside
the atmosphere in a plane-parallel field of forces, As a result of the solution it
is obtained that the tangent of the pltch angle with the optimum program should bz
a linear function of time, i.e,,

e =13q— 0t {83.1)

It 1s possible to establish that the solution of the variational problem for detecting
the extremum of the functional, expressed in terms of the parameter of motion at the
end of the powered-flight section, leads to a program determined by aquation (43,1}

or more general linear-fractional function

e+ M
€ =13

In this article there is examined another problem in a more complicated setting,
namely, there are considered the changeability of the field of gravitatior and
rotation of earth. For obtaining an optimum program it is necessary to solve the
complicated system of transcendental equations, attracting numerical interation
methods,

Not dwelling on this more specifically, we will say only that various examples
of the numerical solution of the examined problem lesd to pitch angle programs very
close to the linear dependence of the pitch angle on time:
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@ =0+ ¢t (43.2)

Depending upon basic design parameters of the rocket, the values % and 9 assume
different meanings realizing a maximum of distance.

Up till now we have talked only about results and possibilities emanating from
the formulation and solution’ of variational problems with certain simplifying
assumptions. How must we proceed with the detecting of optimum programs in real
conditions?

It 1s necessary to consider that everything stated above no matter what without
serious changes cen be applied to sectlons of trajectory lying outside the atmosphere,
If the discussion is about a single-stage rocket, then this is correct for the most
flnal stage of the powered-f.ight trajectory, on which the role of the atmosphere
is already insignificant. If a multistage rocket is examined, then usually this
pertains to all the stages starting from the second. Possibilities of the selection
of a trajectory of the first stage of a multistage rocket and the greater part of
the trajectory of & single-cstage rocket are rather rigidly limited by those conditions
about which it was mentioned in § 41,

Thus we arrive at following rather standard scheme of selecting a program of the
pitch angle:

1. Calculation 1s conducted of the vertical section of the trajectory up to a
certain moment t4. This time can vary with the selection of the trajectory and
therefore 1s examined as one of the free parameters,

2. Calculation continues of the trajectory from moment t4 under the condition
that nonzero angles of attack can be allowed only up to the value of the Mach number
M = 0,7-0.8. After that angles of attack should be close to zero during the period
of the whole flight up to the moment when the influence of the atmosphere on the
motion will not appear sufficiently small., Such a condition corresponds well to the

dependence of the form

a=ak(k —2), (43.3)

where

R == 2“(’5‘0.

@ 1s the limiting value of the angle of attack on the subsonic section of the
trajectory, and a is a certain constant coefficient usually selected for the entire
examined class of rockets, The trajectory 1s most sensitive to the quantity a,
which is examined as a parameter of the family of programs,

It 1s easy to see that the dependence (43.3) assigns the angle of attack in the
form of a curve, which rather quickly attains its maximum (in absolute magnitude)
value, and then decreases, at first quickly, but with an increase in time slower
and slower, tending to zero when t - o, Coefficient a will be selected in such a
manner that when M = 0,7-0.8 the angle of attack would already be practically equal
to zero. Thus 1t is possible to examine the family of programs of the pitch angle

dependent on two parameters: ti and o,

For single-stagze rockets whose powered sectlions are sufficiently short, the
t ectory of the maximum range is selected from such a family of two-parameter
[ gZgrams, The problem usually 1s solved on an electronic computer by means of
calculation of a certain number of trajectories and detecting the extremal solution

by two parameters.,

If the powered section is prolonged enocugh so that at the end of it, after
getting out of the region of intense aerodynamic action, it is possible to move again
with nonzero angles of attack, then usually from some moment we pass to the program
with a constant pitch angle, The basis for this 1s results of the solution of the
variational problerm for the maximum of distance under conditions of the plane-parallel
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field of gravity and the fact that on the powered section this field differs little
from the plane-parallel.

In the examined case the program of pitch angle has the form depicted in Fig,
3.1, In the same figure there is shown the character of the change in the angle
of attack. For programs obtained with every pair of values t1 and a, the magnitude

of angle @ = const on the last segment ls uniquely
g connected with time t; of the transition to this
‘f constant angle, Therefore time t3 can be examined

as the parameter selected with the solution of the
extreme problem for the maximum of distance.

Thus in general the problem is reduced to a
three-parameter extremal problem 1f there ere no
special conditions or limitations which determine

of the maximum range. It is posaible to indicate,

by maximum value of the velocity head connected
either with conditions of loads on the rockei and
its strength or with conditions of stabilization
with limited effectiveness of the controls, There
can be limitations acccrding to the maximum

. permissible vaulue of angular velocity of the turn

&
of the rocket or the minimum permissible value of
J time t4 {or the path gassable on the vertical
-
4

-~

section of the flight

With calculations of the trajectory by
selection of the program of pitch angle it is best
of all to use equations of motion of the form
{14.,25), i.e.,:

Fig. 43.1,

dv P-X . i x _ .
-a——:*——.—--—" 5130'-'r—gkose.

%t"g vsin®,

a8 ife -
-z-a-;[;—(P +4¢5 -‘:—-_—'-:1:,) —gcos0 +-:~gsin81.

£

On the vertical section the third of the eguations of this system is not
integrated, since

Gaqs-}.

On the interval from ty to t3 the angle of attack pursues in accordance with the

dependence (43.3), where the above described procedure of the selection of the velue
& provides smaliness of the angle of attack in the transonic region.

The program pitch angle is defined &s sum of the assigned angle a and the angle
6 obtained as a result of integration. After moment t3, conversely, the pitch angle

15 assigned ‘n the form @ = const and the dependence
9=0+a
is used as a static relation for determination of the angle of attack.

The problem of the selection of the program of pitcih angle, as can be seen from
the above mentioned recommendations, even for the simplest case, which is the

some of these parameters independently of conditions

for example, the limitations encountered in practice




condition of the maximum of distance for a simple single-stage rocket, in a
calculating relation 1s guite complicated. It is necessary to conduct many monotypic
calcuiations where the error in one of them raises doubt aLout certain otners.
Therefore, the operation manually, as a ruie, occutles a very leng time, rejulrec himn
qualification of calculators ani application of the thriftiest methods of detecting
optimum values of parameters of the prc ram, HNow similar calculations are conducted
only with the use of electronic computers, which permits freeing from the indicated
deficiencies of manual count,

Directly for calculations of the trajectory it is necessary to follow
recommendations given in § 27. Regarding methods of detecting the extremal sclution,
then, in general, it is possible to use any cof the well-known conducting calculations,
Methods of gradient or the very fastest descent are useful., '

It is possible to use also the approximation of the dependence L = f(tl’ a, t3)

in the form of a polynomial of the second degree:

» - . 1 e 4 - e
L=L+Lt+laotlt;+5 (L fi + L@ + Linf3) +
. - ” . - b3k
+ L0+ Lghts + L5 aly ( )
ten coefficients of which are determined from the solution of the system of algebraic

equations composed from results_of calculations of ten trajectories with ten different
combinations of parameters ti’ a, and t}. Further, by equating to zeroc the first

deviatives from distance by each of the pirameters, we obtain the system of three
algebraic equations:

-:-(."— =L+ Lt + L:.;E + Lot =0,

- o WD
=L L+ =0 (43.5)

% =L, +Ll,t+ L2+ Lty =0

the solution which gives the unknown values of parameters tl, a, and t3, realizing
in the first approximation the maximum of range.

With detecting of the program of maxioum range for & two-stage rccket we proceed
approximately the same way. The difference istthat in principle the guantity of
parameters of the program can be increased up to any value, since limitations similar
to those which were on the atmospheric section here are abvsent. However, on the basis
of known solutions of variational problems, it is impossible to expect that programs
of more complicated forms than those linearly variable with time can give substantial
gain,

Not dwelling on proofs of this position, we will note only that by many
calculations there is checked the impossibility of obtaining practically & noticeatle
gain in distance due to the complication of programs comparatively with the simple
ones, However, even consideration of linear programs delivers two additional
parameters, which are the initial angle ?q II and the speed of 1its change on the

second step 611, and thus the quantity of free parameters is increased to five, and
together with this difficulties of a purely calculating property connected with
detecting of the extremum increase, The problem in such cases is raduced to a three-
parameter one, proceeding from the following considerations,

Parameter t3 can be lowered completely, since owing to the variation of the
program on the short-duration section of the trajectory between moment t3 and the

end of first stage it is difficult to reach a practical gain. The duration of the
vertical section of the trajectory (up to moment ti) i1s selected as small as possible,
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since the larger it is the steeper the trajectory (losses in speed for overcoming
terrestrial gravity are increased) and the more difficult it is to achieve a turn of
the speed 3ubsequently (greater angles of attack are reauired),

Thus selection of the trajectory of the flrst stage is produced only Ly one
parameter o, To eacl of trajectories of this famlliy there can be appliied any pregram
in the second stage of a two-parameter family {0, ;1. wII).

It 18 necessary here to make one remark, The fact is that with & similar method
of composition of programs of the pitch angle, angles at the end of the first stage
L and in beginning of the second stage %0 1 cannot be Jjeined, and between them

there can be formed breaks of greater or smaller magnitude. This will disturb point
Z of requirements for tne prograw cstavilihed in § 41, However, t%'s disturbance
will be only formal, since it ies allowed only or the preiiminary siage of
determination of the mcst advantageous program, After the form and tasic gquantitatlive
characteristics of the program was determined, subsequently it was "refined,” i.e.,
acute angles on joints of neighboring sections were smoothed and "Jumps” were
eliminated with help of smooth transitions from one section of the program to another.
With the organization of such smooth transitions we usually proceed from magnitudes

of Eergissible angular acceleration, determined by possibilities of the sycstem and
controls,

Moving on the first part of the section of ccupling with constant acclzration
of one sign and on the second part of the other sign, it 1s possible to carry out
a sufflciently smooth transition between two s "signed sections of nreogram, as ic
shown on Fig., 43,2, ¥With this the duration of the sectlion of the program on which

there is realized a jump of a given magn_tude will De
[ minimum,

From everything that has been said it followe that
the optimum in the sense of maximum range program for a
two-stage rocket is selected from the famlly oI three~
parameter programs, where as parameters there are
Selected the maximun magnitude of the angle of attack
@ on the subsonic section of the trajectory, the initial
pitch angle Py 13 and angular velocity ®;y ON the second

stage, This method is expedient for rockets with a

number of stages greater than two, On all stages

starting with the second, the pitch angle should be
descrihed by & single linear dependence of the form

@ = 9y - ®t. Consliderable deviations from it lead onl-
Fig. 43.2. to losses of range. However, sometimes they are inevi ¢ le
for the satisfactiorn of requirements mentioned above 1:
point § § 41.

§ 4%, Selection of the Program of Minimum Dispersion

Iet us consider now, as is considered during the selection of the program, the
condition of minimum dispersion. From expression {42.3) it is clear that with
improvement of the method of turning off the engine requirements put to the progranm
for the purpose of fulfillment of conditions of minimum d4ispersion are reduced, and
the role of the program is as reduced,

Really, in varilation of range AL there appear varlations of kinematlc parameters,
induced by cnly the deviation 5¢(t) of the program of pitch from the nominal., But
the perfected control system strives to turn the variation AL into zeroc independently
what 18 the cause of the appearance of tnis variation.

It 15 possible to imagine the method of turning off of the engine founded on

the measurement of all gix parameters of motion and continuous caiculation with the
help of a special flying range computer:

L=Jf{v5 9y v, x. 3. 2) (84.1)
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or
L= f(x)). =12 ....6,

where Xqs eees *s are any six quantities connectpd one-to-one with Vs sees Zy which

can be measured by the range control system, When a given function attains an
assigned value, the command for turnin: off the engine 1s sent,.

. Obviously, ir. thls case methodical errors, ‘n-2luding those induced oy deviation
to(t), will be reduced to zero, ani deviations in range will appear only as a result
of instrumental mecasuring errors of parameters of motion, Correct to linear members
vne range error will be equal to

oL oL oL oL .
AL=“—_‘ v,,-}--;.w.&v,.-l—-—g;-_\v,.-*--;;Ax.-f

oL oL
+'5;-\h+';-\2. (44.2)
or
3 oL
M== ‘ZWAXI..
-y
where Av Av veey Dz or Ox,. are instrumental errors of measurements of

xu? yu’! i in

corresponding parameters,

The influence of the program of the pitch angle on range dispersion in the
examined case will appear in terms of derivatives bg/avx, bL/va, vees OL/OzZ,

dependent on the computed values of parareters of motion at the time of turning

off the engine, Therefore, in principle with the help of the selection of the
program it 1s possible to minimize the magnitude of the standard deviation in range.
This deviation, if one were to consider instrumental errors 4v, ., ..., 8z, (Axim)

random and independent and designate the correspc:.ding mean quadratic errors of
measurements OVys eeey OZ (cxi), it is possible to record in the form

oL=‘/(%‘-ov")’+(&"%ov,,)’+... -i-(%%oz.)z (44.3)

ar

' ' dl.—-—']/ ‘2';(;;"‘—0.‘,,)’.

Derivatives of distance with respect to parameters of motion should be considered
functions of parameters of the program, and such values of the latter, which reduce
the value of expression (44.3) to a minimum, should be found,

The formula for turning off the engine (44.1) can be presented in another form,
decomposing the function in Taylor series in the vicinity of the calculation point
in powers of deviatlions of parameters of motion from computed values:

[
L N
Azgf_‘_‘:(“‘ Ax+ w‘Ax,).q.
[
L .
+l.%‘lan3x: Ax,Ax)+ ... =0. (44.4)
<
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If in formula (44.,4) we are limited by the final nucber of terms of expansion, for
example, only by linear meabers, then besldes insirumental there error will appear
mathodical errors in the form of the sum of rejectcd members, It is clear that
with the help of the program of pitch angle it is possible tc influence not only the
instrumental errors but also the methodical, using the dependence of coefficients of
formula (44.4) (1.e., partial derivatives) from the prorram. B2ut here another
circumstance is important, which occures in the dependence of methodical errorsc on
quantities Axi which in the end are determined by having an effect on the rocket in

flight by random perturbations. Methods of the determination of the influence on

the trajectory of small devistions of design parspeters and certain other causes
were discussed in Chapter IX., Using these methods, on: can deiermine fo, an assigned
totality of random independent perturbetions and for the asiigned program of pitch
angle the deviations in range under the conditionu of the turning off of the engine

by the assigned formula. This wili give %o us wmethodica.i errors in range,.

Thus the problem 1s reduced to the selection of paramoters of the program from
the condition of the minimum of the tctal standard deviation in rangs owing to both
methodical and instrumental errors of controi,

The described avoroach to the selection of the program of minimum dicpersion is
quite common amvi 15 uieful for any methods of turning orf of the engine, Let us
dwell more concretely on methods connected with the appilcation of integraiurs of
g-forces in different variants,

For the case when the turning off of the engilne Js produced fron the integretor
of axial G-forces, the formulas for the determlnation of methodical and instrumental
errcrs were obtained in § 36 and 37. The equation of the operatlion of the Simplest
integrator

] ]
v‘-svcosc-{o!gsinqdl-i- Ic&ﬂacﬂ
¢

does not contain any coefficients, selecting which properly it would have been
possible to affect methodical errors in range. Thus both meathodical and instrum=ntal
errors are only functions of parameters of the plich angle program, It is assaned,
of course, that the probabllity characteristics (in the first place standargd
deviation) of tie random error of measurement of apparent speed are the given valve.
Thus scatterings of perturbing factors are assigned., We see that the problem is
reduced to the determination of values of a certain gquantity of parameters of the
progran from the condition of the minimum of totel deviation in range.

The integrator of axial G-forces with temporary compensation permits ordering
one more value, namely, the coefflclent of compensation. For every program determined
by the totality of some quantity of its parameters, it 1s possible to exsmine the
turning off of the engine at different values of the coefficient of compensation,
but with assigned probability characteristics of instrumental errors and perturbing
causes, The value of the coefficient of ccmpensation with which will be realized
the minimum error in range wili de optimum for s given program,

Inasmach as such a relative mlnimum exists for every program of the examined
family, it is necessary to select that program ani that coefficient which give
absolute minimim of deviation in range. Howsver, the selection performed by the
describved method will give the best result only for some one ... moment of turning
off of the engine, L.e,, for some one range. Thus, theoretically 1t would be
necessary to have an infinite quantity of programs and selected coefficients of
compensation respectively, In practice we manage with & small quantity of programs
covering A whole range of ranges. Of course, 11 18 necessary for some ranges to
retreat from conditions of providing the minimum possible dispersion.

Approximately the same way 1s the matter with the selection of programs in the
sage ol turning off of the engine from the integrator with a constant inclination
of the axls of sensitivity, i.e., installed on the stabilized platform, Here there
iz exanmiried the problem on the miniuiration of total deviation in range owing to
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the definite guantity of parameters properiy of the program and angle of inclination
of the axls of sensitivity of the integrator.

If the ccntrolling functional is complicated by the introduction of double
integration of the G-force, then with minimization of deviations 1in range the
direction of the axis of sensitivity along which calculation of the apparent path is
produced will also be subject to the determination.

It 1s not difficult to see that almost in all problems minimization should be
produced according to the quantity of parameters fluctuating from one to five,
Since the strict solution is sometimes hampered even with the application of
electronic computers, it is possible preliminarily to conduct an analysis of the
dispersion. With this lnstrumental errors depending upon the program and methodical
errors are examined separately for more or less suitable programs depending unon
coefficlents of the controlling functional gcoefficient of compensation, directions
of axes of sensitivity, and so forth). 1In 37 it was showr that optimum values of
the indicated coefficients from the condition of the minimum of methodical error
are determined quite simply. This occurs, as a rule, sufficiently in order to dwell
on some narrow beam of programs and formulate a concept about basic regularlities
which are obeyecd certaln components of the total deviation in range.

By conducting similar calculations for the upper and lower boundaries of the
accigned ranee of distances and also for one-two intermediste points, there can be
made a selection o: wuin the number of programs and the rumericai values of parameters
of these programs, It 1is necessary to remember that programs of both minimum
dispersion and maximum range essentially depend on the direction of firing and
latitude of the launching point. With firing to the east the effect of rotation of
the earth (Coriolls acceleration and turn of gyrosccpes expressed by the angle 73)

as if lifts the trajectory, makes 1t steeper, and with firing to the west, conversely,
the trajectory 1s as if pressed to the earth and becomes more sloping. Therefore
programs of the pitch angle In the first case should place the rocket at smaller
angles of inclination of the tangent to the trajectory and in the second case, at
larger angles. It is natural thet this effect is increased with a decrease in
latitude of the point of launching.

Everything that has been said does not exhauct all the problems connected with

selection of the program but gives an approach to the solution of problem and fixes
attention to the most essential sides of the problem.
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U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Italiec Transliteration Block Italic Transliteration

A a A 4 A, & P P P R, r

B 6 B § B, b c ¢ C ¢ S, s

B » B s v, v T « T m T, t
rr r s G, g y v y vy U, u
R x n e D, 4 ® ¢ ® ¢ F, f
E ¢ E ¢ Ye, ye; E, &* X x X x Kh, kh
H o= X x Zh, zh g u o y Ts, ts
2 3 3 Z, z b ¥ 4 Ch, c¢h
H o« H u I, 3 W w o w Sh, sh
SIS a ¢ Y, ¥ W w I oy Shzh, sheh
K x K = K, k B > 2 n

N ox 1 a L, 1 Bl & H u Y, ¥
M o M u M, m b & 5 !
H uw H~ N, n 3 2 3 E, e
C o O o 0, o 0 » O » Yu, yu
nna 7 a P, p s 2 A a Ya, ya

* ye initia.ly, after vowels, and after 3, b; € elsewhere.
en Wwritten as 8 in Russian, transliterate as y¥ or &.
The use of discritical marks is preferred, but such marks
may be omitted when expediency dictates.
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[ FOLLOWING ARE THE CORRESPONDING RUSSIAN AND ENGLISH
E DESIGEATIONS OF THE TRIGOHOMETRIC FUNCTIOHMS
L]
Russian English
; sin sin *
cos cos
. tg tan
ctg cot
sec sez
cosec cse
sh sinh
¢h cosh
th tanh
cth coth
ach sech
csch csch
arc sin sin-i
» arc cos cos™
' arc tg tan-1
arc ctg oot-1
; arc sec sec-l
g arc cosec cac™l
5 arc sk sinh-1
aro ch cosh™1
are th tanh-1
arc oth coth~1
are sch sech~1
L are csch cschl
ig log
;
E
E
E
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