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Proof. Since L is derivation bounded, L = L, (G) far some veighted context-free
grammer G = (V,Z,P,0,0). Let G’ = (V/,5,P’,g’) be the context-free grammar
defined in Lemma 4,1 It suffices to prove that G’ is nonexpansive.

Let o’ be the function on V'-f defined by p’(c’) = k and o’((§,(A,£)))=
£(0) far each (E,(A,f)) in V', sSince £(0) 2 p(§) >0, o’ 1s a function
from V'-F to the positive integers. Thus (V',Z,P’,0’,0’) 1s a weighted context-

’

free grammar, To prove G’ nonexpansive, it suffices to show that if E! = wo

- wé = w is an arbitrary derivation in G’, where £’ is in V’'-Z and w 1s in
v'* then w can contain no variables of weight > p’(€’) end at most one varisble
of weight o’(E’). Since the only productions involving ¢’ are of the farm o'~
(s,(A,£)), there is no loss in assuming £'# ¢’, i.e., there is no loss in
assuming £’ is of the farm (€,(A,f)). Suppose t = 1, Then the derivatiom is
§'= v{- w. Either w. is in z:*, in which case the result is true, or else w' =

A

vl(gl,(A(l),f(l)))...vs(Es, (a(®) £(8)))  ihere 521, each v, s 1n =", and

i
[(A("),f("))/l < J < s8) is determined by a control function (B,g) dominated by

(A,£). In the latter case, g(0) S £(0) = p’((,(A,£))). Now far each J and i,

l<j<sad0s<isr, f(J)(i(J))- 8(31(3))-3’;;3 51(5)(3'). Thus there exists

some J , 1 <J <s, such that f("o)(o) = B(O)-Jz;‘*i 0 = g(0)., For J#Jo,

. )- £ (39
8B () 5, Pr y(0)
<gl0)-z B €3")
€ 3743 rJ(J)
< 8(0)- BI'J(J)(JO)

< g(0).
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() ()

Thus o’(5, ,(A ©,f ©)) < 0'(8") and, for 34, p'(§d,(A(:),f(J))) < p'(g’).
o]
Therefore the result is true in this case., Continuing by induction, suppose

the result is true for all derivations of length < t,t> 1. Comsider §'= v/

=...= ¥ = v in G'. By induction, w _,

0’(€’), and at most one variable of weight o’(£’). Now wt: is ocbtained by

can contain noc variable of weight >

applying a production p’~ z’ to a variable v’ in wt:-l'

contain no variable of weight > p(v’), thus none of weight > p’(§’) 2 p’(v’),

By induction, z’ can

and can contain at most one variable of weight p’(v’) < p’(E’). Thus wé =w
can contain no variable of weight > o’(£’) and at most one variable of weight

0’(5'). Hence the induction is extended and the proof is camplete.

Remark, It was shown in [9] that there exist context-free languages generated
by no nonexpansive grammar. (In fact, the set L € (a,b)" of all wards w with
the following two properties is such a language: (i) The number of occurrences
of a in w equals the number of occurrences of b in w; and (ii) For each
initial subward w’ of w, the number of occurrences of & in w’ is greater than
ar equal to the number of occurrences of b in w',) From Lemma 4,2 it follows
that the family of derivation-bounded languages is a proper subfamily of the
family of context-free languages.
We now present several characterizations of derivation-bounded languages.

Thearem 4.2, Given a set L < Z*, the following statements are equivalent:

(1) L is a derivation-bounded language.

(2) L =L(G) foar some nonexpansive context-free grammar G.

(3) L belongs to the smallest family of sets containing all



8 January 1968 3k T™-738/041/00

the linear languages and closed under arbitrary substitution of sets in the
family for letters,

() L=L(G) = Lk(G) for same context-free grammar G and same
positive integer k.
Proof, By Lemma 4.2, (1) = (2). The implication (4) = (1) is trivial,
Thus there only remain proofs of (2) = (3) and (3)= (4). Let £; and I, be the
families satisfying conditions (3) and (4) respectively.

Consider (2) = (3). We shall prove tha: L(G) is in £, for each nonexpansive
context-free grammar G = (V,Z,P,0). To this end, suppose that V-I contains just
one element, i.e., just . Since G is nonexpansive, it is linear. Thus L(G)
is in £3. Continuing by induction assume that V-I contains n > 1 elements
and that the result is valid for all nonexpansive grammars with < n variables,
Without loss of generality, we may assume that G is reduced.(e) (For otherwise,
as noted in [2;3], there exists a reduced grammar G = (V,Z,F,0), vith V €V and
i © P, such that L(G) = L(G). Clearly G is also nonexpansive,) Let H = V-I
be the set of all varisbles € such that € 5 u Ow, for some w and w, in V'
Gbviously g is in H. Let G'= (V,z’,P’,,), where £’= V-H and P’ consists of all
productions § - w in P such that € is in H. Since G is nonexpansive, G’ is a

linear grammar. (For suppose otherwise. Then there exists a production § —

3
(84 context-free gramme~ G = (V,Z,P,0) is said to be reduced if for each

*
variable € (1) there exist uand v in V such that o = ufv, and (ii) there
exists w in z* such that § - W,























